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Abstract. Identity-based matchmaking encryption (IB-ME), proposed by Ateniese et al. at Crypto
2019, allows users to communicate privately in an anonymous and authenticated manner. In this work,
we revisit the security definitions and construction of IB-ME. First, we re-formalize the existing security
notions for IB-ME. We reorganize privacy and authenticity notions into respective three and four
definitions, which allows us to compare IB-ME schemes accurately. Second, we propose a highly efficient
and strongly secure IB-ME scheme from the bilinear Diffie-Hellman assumption in the random oracle
model. This scheme is based on the IB-ME scheme proposed by Ateniese et al., but we introduce several
techniques to improve its security and efficiency. Third, we propose a new generic construction of IB-
ME from anonymous identity-based encryption and identity-based signature. This is the first generic
construction that does not rely on hierarchical identity-based encryption. Through this construction,
we obtain various IB-ME schemes from both classical and post-quantum assumptions. For example, we
obtain a more efficient scheme from the symmetric external Diffie-Hellman assumption in the standard
model, and a practical scheme from lattices in the quantum random oracle model whose secret keys and
ciphertexts are less than 10 Kilobytes. Moreover, our generic construction produces the first pairing-free
IB-ME scheme in the standard model and the first tightly secure lattice-based IB-ME scheme in the
quantum random oracle model.
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1 Introduction

1.1 Background

Identity-based matchmaking encryption (IB-ME), proposed by Ateniese et al. [2], is a new identity-based
cryptographic primitive designed to ensure confidential and authenticated message delivery. Similar to con-
ventional identity-based encryption (IBE) [5], a key generation center generates secret keys of users corre-
sponding to their identity, and in the IB-ME setting, both a sender and receiver possess their secret keys.
When a sender with an identity σ sends a message, it encrypts the message with its (secret) encryption key
ekσ and a target receiver’s identity rcv. Then, a receiver with an identity ρ decrypts the ciphertext with its
secret decryption key dkρ and a target sender’s identity snd. The decryption process is successful only if the
identities match, meaning that σ = snd and rcv = ρ hold. In case the identities do not match, nothing is
leaked except for the fact that the identities are mismatched. IB-ME has many practical applications such
as secret handshake protocols [3], privacy-preserving bulletin boards [2], etc.

Security notions for IB-ME. Ateniese et al. [2] defined the security requirements for IB-ME which they call
privacy and authenticity. In essence, privacy guarantees the confidentiality of messages against unintended
receivers who do not match the sender’s policy. Also, authenticity guarantees the legitimacy of senders,
preventing impersonation without knowledge of their encryption key. We can see that privacy (resp., authen-
ticity) is similar to the semantic security of encryption schemes (resp., unforgeability of signature schemes.3)
Although the definitions capture basic threats, they do not satisfy some desired properties. For example,
their definition of authenticity does not take into account the case where an adversary might compromise
the secret key of a target receiver (not the secret key of a target sender4 ).

Following the pioneering work by Ateniese et al., a lot of works have explored more desirable security
notions. Regarding authenticity, Francati et al. [18] and Chen et al. [11] defined a new authenticity that allows
an adversary to compromise the receivers’ secret keys freely in contrast to Ateniese et al.’s definition5. Wang
et al. [35] proposed an extended version of authenticity notions, which they call “strong authenticity”, allowing
the adversary to access the encryption oracle that computes a ciphertext of adversarially chosen messages6.
Also, for stronger privacy guarantees, Chiku et al. [13] considered privacy against chosen-ciphertext attacks
(CCA). Their privacy game allows an adversary to access the decryption oracle that computes plaintexts of
adversarially chosen ciphertexts. Francati et al. [18] highlighted a deficiency in the original privacy security
definition by Ateniese et al. They pointed out that it does not account for privacy in the case where the
target identity snd chosen by a receiver mismatches with the actual sender’s identity σ. That is, the original
definition does not guarantee the confidentiality of messages when the case rcv = ρ but snd ̸= σ occurs
during decryption7. This gap led them to introduce a new privacy notion called “enhanced privacy”, which
captures privacy in cases involving mismatched sender identities used during decryption.

As explained, many security definitions for IB-ME have been considered, but they are not well-organized.
In particular, existing works compared the efficiency of each scheme ignoring the differences in the security
properties, which makes the evaluation inaccurate. From such a situation, we realize the first question:

Q1: What are proper security definitions of IB-ME for accurate comparison?

3 As explained later, we call them privacy against chosen plaintext attacks (CPA) and authenticity against no message
attacks (NMA), respectively.

4 Note that the authenticity does not hold inherently if a sender’s secret key is compromised since an adversary can
forge any ciphertext associated with the sender.

5 The difference was not explained explicitly in [11, 18], which confuses the comparison. Especially, Francati et al.
cited the original paper despite this difference.

6 The attack scenario can be seen as ordinary chosen message attacks (CMA), but they did not explain it as such.
7 As mentioned in [18], Ateniese et al. noticed this gap, and informally argued that their IB-ME scheme ensures the

confidentiality of messages in such a case.
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Table 1: Comparison between our schemes and the existing IB-ME schemes.

Schemes Security properties Assumptions ModelPrivacy Authenticity Mismatch
Ateniese et al. [2] CPA oNMA BDH ROM

Francati et al. [18] CPA iNMA
√ q-ABDHE+NIZK StdM+Reusable extractors

Chen et al. [11] CPA iNMA SXDH StdM
Wang et al. [35] CPA iCMA Anon HIBE+IBS StdM
Ours (§ 4) CCA oCMA

√
BDH ROM

Ours (§ 5) CCA iCMA
√ Anon IBE+IBS StdM+Reusable extractors

Constructions of IB-ME. Ateniese et al. introduced the initial IB-ME scheme based on the bilinear Diffie-
Hellman (BDH) assumption in the random oracle model (ROM) [2]. Their scheme seems a combination of the
Boneh-Franklin IBE scheme [5] and the Sakai-Ohgishi-Kasahara identity-based non-interactive key exchange
(IB-NIKE) scheme [33]. However, this combination does not appear to be intuitive. A straightforward fusion
of IBE and IB-NIKE would typically result in a receiver possessing two group elements, but in their scheme,
it involves three elements. Furthermore, ciphertexts include two random group elements, but one of them
does not appear to contribute to security. Additionally, their scheme does not achieve the stronger security
proposed after their work. This raises the second question about whether it is possible to construct a more
efficient and strongly secure scheme from the BDH assumption:

Q2: Can we construct a more efficient and strongly secure IB-ME scheme from the BDH
assumption in the ROM?

Following the initial work by Ateniese et al., several works have made efforts to develop improved IB-ME
schemes, with a particular focus on the standard model (StdM) [11, 18, 35]. Francati et al. [18] proposed an
IB-ME scheme in the StdM by building upon Gentry’s IBE scheme [21]. While their scheme is secure in the
StdM, it relies on a non-standard q-augumented bilinear Diffie-Hellman exponent (q-ABDHE) assumption.
To remove the reliance on non-standard assumptions, Chen et al. [11] constructed an IB-ME scheme based on
anonymous IBE scheme by Chen et al. [12], whose security relies on the symmetric external Diffie-Hellman
(SXDH) assumption in the StdM. Recently, Wang et al. [35] proposed a generic construction of IB-ME from
anonymous 2-level hierarchical IBE (HIBE) and identity-based signature (IBS) to realize IB-ME schemes
from lattices. Moreover, Chiku et al. [13] proposed a new variant of IB-ME, called “hierarchical” IB-ME, and
its generic construction based on anonymous HIBE and hierarchical IBS (HIBS).

We notice that the existing schemes relying on specific computational assumptions [2,11,18] are based on
IBE, but the existing generic constructions [13,35] are based on HIBE. Moreover, these generic constructions
do not satisfy “enhanced privacy” which captures a vital security property of IB-ME. This fact gives us the
third question:

Q3: Can we generic construct a strongly secure IB-ME from IBE, not HIBE?

1.2 Our Contributions

We revisit the concept of IB-ME and answer the above three research questions. We first re-formalize se-
curity notions for IB-ME, and then, present an efficient and strongly secure IB-ME scheme from the BDH
assumption in the ROM and a new generic construction from IBE, IBS, and reusable extractors in the StdM.
The comparison of our schemes and the existing ones is summarized in Table 1. See Section 6 for the detailed
comparison, especially the efficiency of them.
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A1: Re-formalizing security notions. We sort out the differences in security notions for IB-ME. At first,
we reorganize the authenticity notions in the previous works. We notice that the existing definitions can
be classified along two axes: one is whether an adversary has access to the encryption oracle and the other
is whether it can compromise the target receiver’s secret key. For the former axes, we name the respective
attacks as chosen message attacks (CMA) and no message attacks (NMA) according to the presence or
absence of access to the encryption oracle. For the latter axes, we call the adversary who compromises the
target receiver insiders and otherwise outsiders since we can regard the adversary, who knows the receiver’s
key, is inside the communication.8 As a result, we define four authenticity notions oNMA, iNMA, oCMA, and
iCMA (Table 1 shows the correspondence of them and the previous works).

For privacy, we rename the original definition by Ateniese et al. as CPA security since the adversary
cannot access the decryption oracle, and define CCA security [13]. Then, we redefine the security game for
“enhanced privacy” which captures privacy in mismatch cases during decryption. Francati et al. [18] defined
a single definition that includes both privacy originally considered and privacy in mismatch cases, which
complicates the understanding of the definition and security proofs. Thus, we extract the essence from it
and give a new simple security definition, called Priv-MisMatch security, which only considers privacy in
mismatch cases. Roughly, it captures the confidentiality of messages in the case the adversary knows the
target receiver’s secret key but does not know the sender’s identity. As a result, we can separate security
proofs for standard privacy and privacy in mismatch cases. See Section 3 for the details.

A2: An efficient and strongly secure IB-ME scheme from BDH in the ROM. We construct a new IB-ME
scheme from the BDH assumption in the ROM. Similar to the work by Ateniese et al., our basic idea is
combining the Boneh-Franklin IBE scheme [5] and the Sakai-Ohgishi-Kasahara IB-NIKE scheme [33]. At a
high-level, a sender with an identity σ holds an IB-NIKE key H(σ)msk as its encryption key and a receiver
with an identity ρ holds an IB-NIKE key H(ρ)msk and IBE key H(ρ)msk′ as its decryption key, where H is an
(appropriate) hash function and msk (resp., msk′) is a master secret key of the IB-NIKE scheme (resp., the
IBE scheme). When the sender σ encrypts a message m for targeting a receiver rcv, it computes a ciphertext
as (gr,m⊕ Ĥ(e(Xr,H(rcv)), e(H(σ)msk,H(rcv)))), where g is a generator (of the underlying group), X = gmsk′

is a public parameter of the IBE scheme, and e is a symmetric pairing. To reduce the key size, we reuse the
same master secret key for the IBE part and the IB-NIKE part. That is, we use the key H(id)msk for both the
IBE scheme and the IB-NIKE scheme, where id is an identity for either sender or receiver. This reduces the
size of a user’s secret key but weakens the security level since the compromise of a user leaks both encryption
and decryption keys. To overcome this problem, we separate the domains of senders’ and receivers’ keys
by employing asymmetric pairings. By using different hash functions H1 and H2, we compute the key of a
sender σ as H1(σ)

msk ∈ G1 and the key of a receiver ρ as H2(ρ)
msk ∈ G2. This allows us to reduce the key

size without weakening the security. Intuitively, privacy is followed by the security of the IBE scheme, and
authenticity is followed by the security of the IB-NIKE scheme9. To achieve the stronger CCA security, we
employ the Fujisaki-Okamoto (FO) transformation [19, 20]. Somewhat surprisingly, the FO transformation
allows us to achieve the oCMA security for free. Moreover, we formally prove that our scheme also achieves
Priv-MisMatch security. As a result, we get a more efficient and strongly secure IB-ME scheme from the BDH
assumption in the ROM. A user’s key contains only one group element and the ciphertext contains one group
element and a λ-bits string, both of which are smaller than that of Ateniese et al.’s scheme. See Section 4
for the details.

A3: Efficient and strongly secure IB-ME schemes in the StdM. We propose a new generic construction of
IB-ME from anonymous IBE, IBS, and reusable extractors. In our construction, a sender σ holds an IBS’s
user key ekσ and a receiver ρ holds an IBE’s user key. The sender σ encrypts a message m to a receiver rcv
as ct ← IBE.Enc(mpkIBE, rcv,m||sig), where mpkIBE (resp., mpkIBS) is a public parameter of the IBE (resp.,
IBS) scheme and sig ← IBS.Sign(mpkIBS, ekσ,m). We can show that this simple construction achieves the

8 Here, we employ the naming in a similar situation in signcryption [28]
9 Due to the symmetry of keys in the IB-NIKE part, the authenticity only holds when both sender and receiver are

not compromised, i.e., only holds against outsiders. This is also the case in the work by Ateniese et al.
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CCA security and the iCMA security from the CCA security of the IBE scheme and the CMA security of the
IBS scheme, respectively. However, it is not Priv-MisMatch secure. The main reason is that an adversary who
knows the receivers’ keys can decrypt IBE ciphertexts and thus get the encrypted messages without knowing
the designated sender’s identity. To hide messages in mismatch cases, we use reusable extractors similar to
the work by Francati et al. [18]. Roughly, m||sig is masked by the extractor’s output Z := Ext(s, σ) before
encryption. That is, (m||sig) ⊕ Z is encrypted by IBE. This mask prevents an adversary from recovering
messages without knowing the sender’s identity, which leads to the Priv-MisMatch security. It is worth
noting that this result makes it clear that HIBE is not necessary for constructing IB-ME schemes. Through
our generic construction, we can obtain a lot of IB-ME schemes from both classical and post-quantum
assumptions in both (quantum) ROM ((Q)ROM) and StdM.10 For example, we obtain a more efficient and
strongly secure IB-ME scheme from the SXDH assumption in the StdM, and a practical post-quantum IB-
ME scheme from lattices in the QROM. The latter scheme offers a small user’s key and ciphertext of less
than 10 Kilobytes. Moreover, as feasibility results, we get the first pairing-free IB-ME scheme in the StdM
from a pairing-free anonymous IBE scheme [8]11 and an IBS scheme [25], and the first tightly secure IB-ME
scheme from lattices in the QROM from lattice-based tightly secure anonymous IBE scheme [24] and IBS
scheme [16]. See Section 5 for the details.

1.3 Related Work

Identity-based encryption. Identity-based encryption, proposed by Shamir [34], is an encryption scheme that
allows users to use arbitrary strings (e.g., e-mail addresses) as their public keys. After quite a long time,
Boneh and Franklin constructed the first IBE scheme [5] using bilinear pairings, and then a lot of IBE
schemes have been proposed from various assumptions [1, 15, 21, 22, 24, 36, 37]. In IBE, the sender specifies
only the receiver’s identity, but in IB-ME, the sender specifies not only the receiver’s identity but also the
sender’s identity.

Identity-based signcryption. Signcryption [39] is a cryptographic primitive that offers both private and au-
thenticated delivery of messages. The motivation for signcryption is to provide equivalent functionality more
efficiently than a simple combination of encryption and signature schemes. The notion of identity-based sign-
cryption (IB-SC) was proposed by Malone-Lee [27]. The difference between IB-ME and IB-SC is that the
former ensures the anonymity of communicating users and the confidentiality of messages when ciphertexts
are decrypted with mismatched sender identities. Therefore, IB-ME provides better security properties than
IB-SC.

(General) Matchmaking encryption. Ateniese et al. proposed matchmaking encryption [2]. In ME setting,
the sender and the receiver have their own attribute, and they can specify access policies the other party
must satisfy. Ateniese et al. also gave generic constructions of ME based on functional encryption, signature
scheme, and non-interactive zero-knowledge. Recently, Francati et al. [17] proposed a simple ME scheme based
on two-key predicate encryption. Note that IB-ME is an ME supporting the policy of identity equivalence.

1.4 Organization of This Paper

The remaining part of this paper is organized as follows. In Section 2, we introduce notations and definitions
of the cryptographic primitives that will be used in this paper. Then, in Section 3, we give the relevant
definitions including syntax and security definitions of IB-ME. Section 4 shows an efficient and strongly
secure IB-ME scheme based on BDH assumption in the ROM. In Section 5, we provide a new generic
construction of IB-ME based on IBE, IBS, and reusable extractor in the StdM. Finally, Section 6 presents a
comparison between our IB-ME schemes and the existing schemes.
10 Reusable extractors can be instantiated from RO [6] or a variant of the decisional Diffie-Hellman (DDH) assumption

or of the learning party with noise (LPN) assumption in the StdM [9,14].
11 We can convert [8] to CCA secure one by using Naor-Yung transformation [29] with a pairing-free NIZK from the

sub-exponential DDH assumption [23]. Note that the Naor-Yung transformation preserves the anonymity of the
underlying IBE scheme.
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2 Preliminaries

In this section, we first define some notations used in this work. Then we recall asymmetric bilinear groups,
identity-based encryption, identity-based signature, and reusable computational extractors.

2.1 Notation

N denotes the set of positive integers. ∅ denotes the empty set. ê denotes the base of the natural logarithm.
PPT stands for probabilistic polynomial time. For n ∈ N, we denote [n] := {1, 2, . . . , n}. x := y denotes that
x is defined by y. y ← A(x; r) denotes that a PPT algorithm A outputs y on input x and a randomness r. We
simply denote y ← A(x) when A uses uniform randomness. AO means A has oracle access to a function O(·).
We say a function f(λ) is negligible in λ if f(λ) = o(1/λc) for every c ∈ Z, and we write negl(λ) to denote a
negligible function in λ. x ←$ X denotes an element x is sampled uniformly at random from a finite set X .
Let X be a distribution over X . The min-entropy of X is define as H∞(X) := − logmaxx∈X Pr[X = x]. We
call a distribution with min-entropy k k-distribution. x←$ X denotes an element x ∈ X is sampled following
the distribution X.

2.2 Asymmetric Bilinear Groups

We recall (asymmetric) bilinear groups12 and the bilinear Diffie-Hellman (BDH) assumption from [4,7]. Let
G1, G2 and GT be groups of prime order p. Let g1 ∈ G1 and g2 ∈ G2 be respective generators of G1 and G2.
Let e : G1 × G2 → GT be an efficiently computable function that satisfies (1) for any u ∈ G1, v ∈ G2 and
α, β ∈ Zp, e(uα, vβ) = e(u, v)αβ (i.e., bilinearity) and (2) e(g1, g2) ̸= 1, where 1 is the unit element in GT (i.e.,
non-degeneracy). Such function e is called a bilinear map or pairing. We call G := (p,G1,G2,GT , g1, g2, e)
bilinear group. We define bilinear group generators that generate a bilinear group corresponding to the input
security parameter.

Definition 1 (Bilinear Group Generator). A bilinear group generator G is a PPTalgorithm that, on
input 1λ, outputs the description of a bilinear group G = (p,G1,G2,GT , g1, g2, e).

We define the BDH assumption for G.

Definition 2 (Bilinear Diffie-Hellman (BDH) Assumption [4, 7]). Let G be a bilinear group gener-
ator. We say that BDH assumption holds for G if for all PPT adversaries A, it holds that

AdvbdhA,G(λ) := Pr

D = e(g1, g2)
αβγ

∣∣∣∣∣∣
G := (p,G1,G2,GT , g1, g2, e)← G(1λ),

α, β, γ ←$ Zp,

D ← A(G, gα1 , g
α
2 , g

β
2 , g

γ
1 )


= negl(λ).

2.3 Identity-Based Encryption

Syntax. An IBE scheme IBE consists of the following four algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes the security parameter 1λ, and outputs a public pa-
rameter mpk and a master secret key msk. mpk defines the identity space ID, message space M and
ciphertext space CT .

KGen(mpk,msk, id)→ skid: The key generation algorithm takes mpk, msk, and am identity id ∈ ID as input,
and outputs a secret key skid.

Enc(mpk, id,m)→ ct: The encryption algorithm takes mpk, id ∈ ID, and a plaintext m ∈ M as input, and
outputs a ciphertext ct ∈ CT .

Dec(mpk, skid, ct)→ m or ⊥: The decryption algorithm takes mpk, skid, and ct as input, and outputs m ∈M
or a special symbol ⊥ /∈M.

12 In this work, we only work on asymmetric bilinear groups. So, we omit the term “asymmetric”.
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ANO-IND-ID-CCAA
IBE(λ)

1 : LSK := ∅
2 : coin←$ {0, 1}

3 : (mpk,msk)← Setup(1λ)

4 : (id∗,m∗)← AOSK ,OD (mpk)

5 : if id∗ ∈ LSK then

6 : return coin

7 : ct0 ← Enc(mpk, id∗,m∗)

8 : ct1 ← CTSamp(mpk)

9 : ĉoin← AOSK ,OD (ctcoin)

10 : if coin = ĉoin then

11 : return 1

12 : else

13 : return 0

Oracle OSK(id)

1 : if id = id∗ then

2 : return ⊥
3 : skid ← KGen(mpk,msk, id)

4 : LSK ← LSK ∪ {id}
5 : return skid

Oracle OD(id, ct)

1 : if (id, ct) = (id∗, ctcoin) then

2 : return ⊥
3 : skid ← KGen(mpk,msk, id)

4 : m← Dec(mpk, skid, ct)

5 : return m

Fig. 1: The security game for IBE.

Correctness. We say that an IBE scheme IBE is correct if for all λ ∈ N, id ∈ ID and m ∈M, it holds that

Pr

Dec(mpk, skid, ct) = m

∣∣∣∣∣∣
(mpk,msk)← Setup(1λ),
skid ← KGen(mpk,msk, id),
ct← Enc(mpk, id,m)

 = 1− negl(λ).

Security. We recall adaptive-identity anonymity against chosen-ciphertext attacks (ANO-IND-ID-CCA secu-
rity) for IBE (used in e.g., [24]). Let CTSamp(·) be a PPT algorithm that takes as input a master public key
and outputs an element in the ciphertext space.

Definition 3 (ANO-IND-ID-CCA Security of IBE). We say that an IBE scheme IBE is ANO-IND-ID-CCA
secure if for all PPT adversaries A,

Advano-ind-id-ccaA,IBE (λ) :=

∣∣∣∣Pr[ANO-IND-ID-CCAA
IBE(λ)⇒ 1

]
− 1

2

∣∣∣∣ = negl(λ),

where the security game ANO-IND-ID-CCAA
IBE(λ) is depicted in Fig. 1.

2.4 Identity-Based Signature

Syntax. An IBS scheme IBS consists of the following four algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes the security parameter 1λ, and outputs a public param-
eter mpk and master secret key msk. mpk defines the identity space ID, message spaceM and signature’s
bit-length siglen.

KGen(mpk,msk, id)→ skid: The key generation algorithm takes mpk, msk, and an identity id ∈ ID as input,
and outputs a signing key skid.

Sign(mpk, skid,m)→ sig: The signing algorithm takes mpk, skid, and a message m ∈M as input, and outputs
a signature sig.

Ver(mpk, id,m, sig)→ 0 or 1: The verification algorithm takes mpk, id ∈ ID, m and sig as input, and outputs
a bit b ∈ {0, 1}.
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EUF-ID-CMAA
IBS(λ)

1 : LSK ,LSIG := ∅

2 : (mpk,msk)← Setup(1λ)

3 : (id∗,m∗, sig∗)← AOSK ,OSIG(mpk)

4 : if id∗ ∈ LSK ∨ (id∗,m∗) ∈ LSIG then

5 : return 0

6 : if Ver(mpk, id∗,m∗, sig∗) = 1 then

7 : return 1

8 : else

9 : return 0

Oracle OSK(id)

1 : skid ← KGen(mpk,msk, id)

2 : LSK ← LSK ∪ {id}
3 : return skid

Oracle OSIG(id,m)

1 : skid ← KGen(mpk,msk, id)

2 : sig← Sign(mpk, skid,m)

3 : LSIG ← LSIG ∪ {(id,m)}
4 : return sig

Fig. 2: The security game for IBS.

Correctness. We say that an IBS scheme IBS is correct if for all λ ∈ N, id ∈ ID and m ∈M, it holds that

Pr

Ver(mpk, id,m, sig) = 1

∣∣∣∣∣∣
(mpk,msk)← Setup(1λ),
skid ← KGen(mpk,msk, id),
sig← Sign(mpk, skid,m)

 = 1− negl(λ).

Security. We recall adaptive-identity unforgeability against chosen-message attacks (EUF-ID-CMA security)
[25].

Definition 4 (EUF-ID-CMA Security of IBS). We say that an IBS scheme IBS is EUF-ID-CMA secure
if for all PPT adversaries A, it holds that

Adveuf-id-cma
A,IBS (λ) := Pr

[
EUF-ID-CMAA

IBS(λ)⇒ 1
]
= negl(λ),

where the security game EUF-ID-CMAA
IBS(λ) is depicted in Fig. 2.

2.5 Reusable Computational Extractors

Let Ext : S × X → Y be an efficiently computable function that on input a seed s ∈ S and a value x ∈ X
outputs y ∈ Y. Intuitively, we say that Ext is an extractor if y = Ext(s, x) is pseudorandom when s is sampled
uniformly at random from S and x is sampled from a k-distribution X (defined over X ) for appropriate k,
even if the seed s is made public. An extractor is reusable [14] if it produces pseudorandom outputs even if
the same input is evaluated multiple times with different seeds. The formal definition is provided below.

Definition 5 (Reusable Computational Extractors). We say that Ext : S×X → Y is a (k, n)-reusable
computational extractor if for any k-distribution X over X and for all PPT adversaries A, it holds that

AdvextA,Ext(λ) :=
∣∣∣Pr[1← A(

{(si,Ext(si, x)}i∈[n]

) ∣∣∣ si ←$ S, x←$ X
]

−Pr
[
1← A

(
{(si, yi)}i∈[n]

) ∣∣∣ si ←$ S, yi ←$ Y
]∣∣∣

= negl(λ).

Reusable computational extractors can be constructed from random oracle [6], a strong variant of the
DDH assumption [9], or the auxiliary-input LPN assumption [14].
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3 Identity-Based Matchmaking Encryption

In this section, we first recall the syntax and security definition of identity-based matchmaking encryption
(IB-ME) defined by Ateniese et al. [2]. Then, we introduce stronger security notions of them and reformulate
privacy in cases of mismatch during decryption introduced by Francati et al. [18].

3.1 Syntax

An IB-ME scheme IB-ME consists of the following five algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes the security parameter 1λ, and outputs a public param-
eter mpk and master secret key msk. mpk defines the identity space ID, message spaceM and ciphertext
space CT .

SKGen(mpk,msk, σ)→ ekσ: The sender key generation algorithm takes mpk, msk, and a sender’s identity
σ ∈ ID as input, and outputs an encryption key ekσ.

RKGen(mpk,msk, ρ)→ dkρ: The receiver key generation algorithm takes mpk, msk, and a receiver’s identity
ρ ∈ ID as input, and outputs a decryption key dkρ.

Enc(mpk, ekσ, rcv,m)→ ct: The encryption algorithm takes mpk, ekσ, a receiver identity rcv, and a plaintext
m ∈M as input, and outputs a ciphertext ct ∈ CT .

Dec(mpk, dkρ, snd, ct)→ m or ⊥: The decryption algorithm takes mpk, dkρ, a sender identity snd, and ct as
input, and outputs m ∈M or a special symbol ⊥ /∈M.

Correctness. We say that an IB-ME scheme IB-ME is correct if for all λ ∈ N, σ, ρ, snd, rcv ∈ ID such that
snd = σ and rcv = ρ, and m ∈M, it holds that

Pr

Dec(mpk, dkρ, snd, ct) = m

∣∣∣∣∣∣∣∣
(mpk,msk)← Setup(1λ),
ekσ ← SKGen(mpk,msk, σ),
dkρ ← RKGen(mpk,msk, ρ),
ct← Enc(mpk, ekσ, rcv,m)

 = 1− negl(λ).

We say that an IB-ME scheme is perfectly correct if the above probability is equal to 1 (i.e., no error occurs).

3.2 Security Notions

Standard security notions. IB-ME schemes must satisfy two primary security properties: privacy and au-
thenticity. In essence, privacy ensures that nothing is disclosed to unintended recipients who do not adhere
to the sender’s policy, while authenticity guarantees that it is impossible to impersonate the sender without
possessing the sender’s secret key. We revisit the definitions of privacy and authenticity outlined by Ateniese
et al. [2]. To clarify, we rename their definitions privacy against chosen plaintext attacks (Priv-CPA), and
authenticity against no-message attacks from outsiders (Auth-oNMA). The term “outsiders” indicates nei-
ther the target sender nor the target receiver are compromised. Subsequently, an authenticity notion where
adversaries can compromise the target receiver is considered [11, 18]. Since the adversary knows the target
reciever’s key, we call such adversary insiders, and call the corresponding authenticity notion authenticity
against no-message attacks from insiders (Auth-iNMA). It is worth noting that this distinction between
insider and outsider adversaries is a well-established concept in the context of Signcryption [28].

The security games are depicted in Fig. 3. We remark that we employ a “real-or-random” style Priv-CPA
game instead of the “left-or-right” style game of Ateniese et al. In greater detail, to account for sender and re-
ceiver anonymity, Ateniese et al. designed the security game where the adversary outputs {(sndi, rcvi,mi)}i∈{0,1}
and presents a challenge ciphertext generated with one of them depending on the challenge bit coin ∈ {0, 1}.
In contrast, we define the game in a way that the adversary outputs (snd, rcv,m) and is provided with either
a real ciphertext generated using this information or a random ciphertext generated by a sampling algo-
rithm CTSamp(·) similar to the anonymity in IBE (cf. Section 2.3). In essence, our definition asserts that
ciphertexts convey no information beyond what is derived from the master public keys. Although we do not
furnish formal proof, our security definition encompasses Ateniese et al.’s security definition immediately.
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Definition 6 (Priv-CPA Security of IB-ME). We say that an IB-ME scheme IB-ME is Priv-CPA secure
if for all PPT adversaries A, it holds that

Advpriv-cpaA,IB-ME(λ) :=

∣∣∣∣Pr[Priv-CPAA
IB-ME(λ)⇒ 1

]
− 1

2

∣∣∣∣ = negl(λ),

where the security game Priv-CPAA
IB-ME(λ) is depicted in Fig. 3.

Definition 7 (Auth-{o, i}NMA Security of IB-ME). Let x ∈ {o, i}. We say that an IB-ME scheme IB-ME
is Auth-xNMA secure if for all PPT adversaries A, it holds that

Advauth-xnma
A,IB-ME (λ) := Pr

[
Auth-xNMAA

IB-ME(λ)⇒ 1
]
= negl(λ),

where the security game Auth-xNMAA
IB-ME(λ) is depicted in Fig. 3.

Stronger security notions. In this work, we define stronger security notions for IB-ME. We consider privacy
against chosen-ciphertext attacks (Priv-CCA) and authenticity against chosen-message attacks from outsiders
or insiders (Auth-oCMA or Auth-iCMA). In the Priv-CCA game, the adversary can access the decryption
oracle, similar to the standard CCA attack scenario. In the Auth-xCMA game, the adversary can access
the encryption oracle and receive a ciphertext for a message of its choice, as with the signing oracle in the
standard digital signature security game. These notions Priv-CCA and Auth-xCMA are the desired security
properties in practice. We note that Priv-CCA security was first defined in [13], and Auth-iCMA is the same
as the “strong authenticity” by Wang et al. [35].

Definition 8 (Priv-CCA Security of IB-ME). We say that an IB-ME scheme IB-ME is Priv-CCA secure
if for all PPT adversaries A, it holds that

Advpriv-ccaA,IB-ME(λ) :=

∣∣∣∣Pr[Priv-CCAA
IB-ME(λ)⇒ 1

]
− 1

2

∣∣∣∣ = negl(λ),

where the security game Priv-CCAA
IB-ME(λ) is depicted in Fig. 3.

Definition 9 (Auth-{o, i}CMA Security of IB-ME). Let x ∈ {o, i}. We say that an IB-ME scheme IB-ME
is Auth-xCMA secure if for all PPT adversaries A, it holds that

Advauth-xcma
A,IB-ME (λ) := Pr

[
Auth-xCMAA

IB-ME(λ)⇒ 1
]
= negl(λ),

where the security game Auth-xCMAA
IB-ME(λ) is depicted in Fig. 3.

Privacy in the case of mismatch during decryption. We additionally consider the case where ciphertexts are
decrypted with the valid receiver’s key but mismatched sender’s identities. Intuitively, IB-ME must ensure
the privacy of messages in this case from the design concept of IB-ME. This guarantees that the adversary
who compromises a receiver but has no knowledge about the sender cannot decrypt ciphertexts. This is a
crucial security property of IB-ME, which is different from IB-SC, but the original work did not consider it
explicitly13. Subsequently, Francati et al. [18] defined the security notion that captures privacy in cases of
mismatch (called enhanced privacy). To model that the adversary does not know who the sender is, Francati
et al. assumed that the target sender’s identities are chosen from a high min-entropy distribution. Their
definition effectively captures this intuition, but they used a single game that includes both conventional
privacy and privacy in mismatch cases, complicating the understanding of the definition and security proofs.
13 Ateniese et al. informally argued that their IB-ME scheme hides the message and the sender’s identity in the case

of mismatch, but they did not provide a formal model or a formal proof.
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Priv-CPAA
IB-ME(λ) Priv-CCAA

IB-ME(λ)

1 : LS ,LR := ∅
2 : coin←$ {0, 1}

3 : (mpk,msk)← Setup(1λ)

4 : (σ∗, rcv∗,m∗)← AO(mpk)

5 : if rcv∗ ∈ LR then

6 : return coin

7 : ekσ∗ ← SKGen(mpk,msk, σ∗)

8 : ct0 ← Enc(mpk, ekσ∗ , rcv∗,m∗)

9 : ct1 ← CTSamp(mpk)

10 : ĉoin← AO(ctcoin)

11 : if coin = ĉoin then

12 : return 1

13 : else

14 : return 0

Auth-xYYYA
IB-ME(λ)

1 : // x ∈ {o, i}, YYY ∈ {NMA,CMA}

2 : LS ,LR,LE := ∅
3 : (mpk,msk)← Setup(1λ)

4 : (snd∗, ρ∗, ct∗)← AO(mpk)

5 : dkρ∗ ← RKGen(mpk,msk, ρ∗);

6 : m∗ ← Dec(mpk, dkρ∗ , snd
∗, ct∗)

7 : if x = o ∧ ρ∗ ∈ LR then

8 : return 0

9 : if YYY = CMA

∧ (snd∗, ρ∗,m∗) ∈ LE then

10 : return 0

11 : if m∗ ̸= ⊥ ∧ snd∗ /∈ LS then

return 1

12 : else

13 : return 0

Available Oracles

Priv-CCA : O = {OS ,OR,OD}
Auth-xCMA : O = {OS ,OR,OE}
Others : O = {OS ,OR}

Oracle OS(σ)

1 : ekσ ← SKGen(mpk,msk, σ)

2 : LS ← LS ∪ {σ}
3 : return ekσ

Oracle OR(ρ)

1 : if ρ = rcv∗ then

2 : return ⊥
3 : dkρ ← RKGen(mpk,msk, ρ)

4 : LR ← LR ∪ {ρ}
5 : return dkρ

Oracle OE(σ, rcv,m)

1 : ekσ ← SKGen(mpk,msk, σ)

2 : ct← Enc(mpk, ekσ, rcv,m)

3 : LE ← LE ∪ {(σ, rcv,m)}
4 : return ct

Oracle OD(snd, ρ, ct)

1 : if (snd, ρ, ct) = (σ∗, rcv∗, ctcoin) then

2 : return ⊥
3 : dkρ ← RKGen(mpk,msk, ρ)

4 : m← Dec(mpk, snd, dkρ, ct)

5 : return m

Fig. 3: The security games for IB-ME schemes. The boxed lines are only for the Priv-CCA game.
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Priv-MisMatchAIB-ME(λ)

1 : LS ,LR := ∅
2 : coin←$ {0, 1}

3 : (mpk,msk)← Setup(1λ)

4 : (Σ0, Σ1, rcv
∗,m0,m1)← AOS ,OR(mpk)

5 : dkrcv∗ ← RKGen(mpk,msk, rcv∗)

6 : for i ∈ {0, 1} do
7 : σ∗

i ←$ Σi // Sample from the distribution.

8 : ekσ∗
i
← SKGen(mpk,msk, σ∗

i )

9 : cti ← Enc(mpk, ekσ∗
i
, rcv∗,m∗

i )

10 : ĉoin← AOS ,OR,OE∗ (dkrcv∗ , ctcoin)

11 : if coin = ĉoin then return 1

12 : else return 0

Oracle OE∗(i ∈ {0, 1}, rcv,m)

1 : ct← Enc(mpk, ekσ∗
i
, rcv,m)

2 : return ct

Fig. 4: The privacy game in the case of mismatch for IB-ME schemes. The oracles OS and OR are defined
in Fig. 3.

Therefore, in this work, we redefine the above intuition as another simple security game, which we call
Priv-MisMatch security.

The new security game Priv-MisMatch is depicted in Fig. 3. The difference from Francati et al. is the
adversary specifies one target receiver and is given the secret key of the target receiver explicitly. This
represents the intuition that, even if the adversary knows the key of the target receiver, if it is difficult for
the adversary to guess the sender’s identity, the privacy of messages is guaranteed.

Definition 10 (Priv-MisMatch Security of IB-ME). We say that an IB-ME scheme IB-ME is Priv-MisMatch
secure if for all PPT adversaries A that output ω(log λ)-distributions Σ0 and Σ1, it holds that

Advpriv-mismatch
A,IB-ME (λ) :=

∣∣∣∣Pr[Priv-MisMatchAIB-ME(λ)⇒ 1
]
− 1

2

∣∣∣∣ = negl(λ),

where the security game Priv-MisMatchAIB-ME(λ) is depicted in Fig. 4.

4 Practical IB-ME from BDH in the ROM

In this section, we propose a practical IB-ME scheme from BDH assumption in the ROM. The idea of our
scheme is to combine Boneh-Franklin IBE scheme [5] and Sakai-Ohgishi-Kasahara IB-NIKE scheme [33], and
introduce several optimization to reduce key and ciphertext sizes. To achieve stronger security, we employ
Fujisaki-Okamoto (FO) transformation [19,20]. Interestingly, the FO transformation allows us to achieve not
only Priv-CCA security at minimum costs but also Auth-oCMA security for free. We also provide a formal
proof of its Priv-MisMatch security. As a result, we obtain a highly efficient and strongly secure IB-ME scheme
from the BDH assumption in the ROM compared with the BDH-based scheme by Ateniese et al. [2].

4.1 Construction

The proposed IB-ME scheme IB-MEBDH is as follows. Its identity and message spaces are ID = {0, 1}∗ and
M = {0, 1}mlen, respectively.
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Setup(1λ): It first generates a bilinear group G := (p,G1,G2,GT , g1, g2, e)← G(1λ) and selects hash functions
H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G2, Ĥ : {0, 1}∗ × {0, 1}∗ × G1 × GT × GT → {0, 1}mlen+λ, and
G : {0, 1}∗ × {0, 1}∗ × {0, 1}mlen × {0, 1}λ → Zp. Then, it samples x ←$ Zp and sets X := gx1 . Finally, it
outputs mpk := (G,H1,H2, Ĥ,G, X) and msk := x.

SKGen(mpk,msk, σ): It computes uσ := H1(σ) and outputs ekσ := uxσ.
RKGen(mpk,msk, ρ): It computes uρ := H2(ρ) and outputs dkρ := uxρ .
Enc(mpk, ekσ, rcv,m): It picks k ←$ {0, 1}λ and computes r := G(σ, rcv,m, k). Then, it computes urcv :=

H2(rcv) and

R := gr1, ctxt := (m||k)⊕ Ĥ(σ, rcv, R, e(Xr, urcv), e(ekσ, urcv)).

Finally, it outputs ct := (R, ctxt).
Dec(mpk, dkρ, snd, ct = (R, ctxt)): It computes usnd := H1(snd) and

m||k := ctxt⊕ Ĥ(snd, ρ, R, e(R, dkρ), e(usnd, dkρ)).

It then computes r := G(snd, ρ,m, k) and checks if R = gr1. If so, it outputs m. Otherwise, it outputs ⊥.

Correctness. We can verify that IB-MEBDH is perfectly correct. For any λ ∈ N, (mpk,msk) ∈ Setup(1λ) and
any σ, ρ, snd, rcv ∈ {0, 1}∗ such that σ = snd and ρ = rcv, we have

e(Xr, urcv) = e((gx1 )
r,H2(rcv)) = e(gr1,H2(ρ)

x) = e(R, dkρ),

e(ekσ, urcv) = e(H1(σ)
x,H2(rcv)) = e(H1(snd),H2(ρ)

x) = e(usnd, dkρ).

That is, it holds that

Ĥ(σ, rcv, R, e(X, urcv)
r, e(ekσ, urcv)) = Ĥ(snd, ρ, R, e(R, dkρ), e(usnd, dkρ)),

and the receiver recovers m||k that the sender σ = snd encrypts. Thus, the receiver can recompute r :=
G(snd, ρ,m, k) that satisfies R = gr1.

4.2 Security Proof

We show that IB-MEBDH is Priv-CCA, Priv-MisMatch and Auth-oCMA secure in the ROM. First, we prove
its Priv-CCA security. To do so, we use the intermediate scheme IB-MEBasic, which is a simplified version
of IB-MEBDH. We prove that IB-MEBasic is Priv-CPA secure under the BDH assumption, and then prove the
Priv-CCA security of IB-MEBDH assuming the Priv-CPA security of IB-MEBasic.

Basic IB-ME scheme. The IB-ME scheme IB-MEBasic is as follows. The differences between IB-MEBasic and
IB-MEBDH are that IB-MEBasic.Enc samples uniform randomness r instead of generating it with a hash function
G, and IB-MEBasic.Dec does not perform the ciphertext validity check (i.e., do not check if R = gr1 holds). Its
identity and message spaces are ID = {0, 1}∗ and M = {0, 1}mlen+λ, respectively. We can easily verify that
IB-MEBasic is correct.

Setup(1λ): It is identical to IB-MEBDH.Setup except that G is not chosen.
SKGen(mpk,msk, σ): It is identical to IB-MEBDH.SKGen.
RKGen(mpk,msk, ρ): It is identical to IB-MEBDH.RKGen.
Enc(mpk, ekσ, rcv,m): It chooses r ←$ Zp and computes urcv := H2(rcv) and

R := gr1, ctxt := m⊕ Ĥ(σ, rcv, R, e(Xr, urcv), e(ekσ, urcv)).

Finally, it outputs ct := (R, ctxt).
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Dec(mpk, dkρ, snd, ct = (R, ctxt)): It computes usnd := H1(snd) and

m := ctxt⊕ Ĥ(snd, ρ, R, e(R, dkρ), e(usnd, dkρ)).

Finally, it outputs m.

We show that IB-MEBasic is Priv-CPA secure.

Theorem 1. Suppose the hash functions H1,H2, Ĥ are random oracles. Under the BDH assumption for G,
IB-MEBasic is Priv-CPA secure in the ROM. Formally, if there exists an adversary A that breaks the Priv-CPA
security of IB-MEBasic, there exists an adversary B that breaks the BDH assumption for G such that

Advpriv-cpaA,IB-MEBasic(λ) ≤ ê(1 + qR)qĤ · Adv
bdh
B,G(λ),

where qR and qĤ are the maximum number of queries A sends to OR and Ĥ oracles, respectively. The running
time of B is about that of A.

Proof. Let CTSamp(mpk) be an algorithm that outputs a random element in G1×{0, 1}mlen+λ. To prove the
theorem, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. We define the advantage of A
in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0 : This is the original security game. By definition, we have

ϵ0 = Advpriv-cpaA,IB-MEBasic(λ).

Game1 : In this game, we add abort conditions. We guess the challenge identity ρ∗ that is not sent to OR

oracle. If the guess fails, the game aborts and sets a random coin as A’s output. To do so, we change the
challenger’s procedures as follows. (The other procedures are worked as in the previous game.)

– When A sends ρ to H2 oracle, it flips a coin d which yields 0 with probability 1 − δ. Then, it samples
b←$ Zp, computes uρ := gb2 and updates LH2 ← LH2 ∪ {(ρ, uρ, b, d)}. Then it returns uρ to A.

– When A sends ρ to OR oracle, it searches an entry (ρ, uρ, b, d) ∈ LH2
14. If d = 0, the game aborts.

Otherwise (i.e., d = 1), it computes dkρ := (gx2 )
b and returns it to A.

– When A outouts (σ∗, rcv∗,m∗) to request a challenge ciphertext, it searches (rcv∗, urcv∗ , b, d) from LH2 .
If d = 1, the game aborts. Otherwise (i.e., d = 0), it works as in Game0.

The advantage of A in Game1 is equal to the advantage of A in Game0 conditioning on the game does
not abort. Therefore, we have

ϵ1 = ϵ0 · Pr[¬abort].

Let us estimate the probability Pr[¬abort]. The probability that the game does not abort in OR oracle
is δqR . The probability the game does not abort when A request a challenge ciphertext is 1− δ. Hence, the
overall non-aborting probability is δqR(1 − δ). This value is maximum when δ̂ = qR

1+qR
, and thus we have

Pr[¬abort] ≤ 1
ê(1+qR) for large qR. Therefore, we have

ϵ0 ≤ ê(1 + qR) · ϵ1.
14 If no entry exists, H2(ρ) is internally queried and flips a coin d. (In the rest of this paper, when we have a similar

situation, we also deal with it in the same manner.)
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Game2 : In this game, the challenge ct0 := (R∗, ctxt∗) is computed as

r∗ ←$ Zp, Z ←$ {0, 1}mlen+λ, R∗ := gr
∗

1 , ctxt∗ ← m∗ ⊕ Z.

Let BadQ be the event that A queries (·, rcv∗, R∗, U∗, ·) to the oracle Ĥ where U∗ := e(R∗, dkrcv∗). Since Z is
chosen independently at random from random oracles, A can distinguish the two games if BadQ occurs and
otherwise they proceed identically. Thus, we have

|ϵ2 − ϵ1| ≤ Pr[BadQ].

To estimate Pr[BadQ], we show that if A triggers BadQ, we can construct an adversary B that solves the
BDH problem.The construction of B is as follows.

1. Upon receiving (G = (p,G1,G2,GT , g1, g2, e), g
α
1 , g

α
2 , g

β
2 , g

γ
1 ), B sets X := gα1 (i.e., msk is implicitly set

α) and prepares three random oracles H1,H2, Ĥ (i.e., initialize the lists LH1
,LH2

,LĤ). Also, B flip a coin
coin←$ {0, 1}. Then, B executes A on input mpk := (G,H1,H2, Ĥ, X).

2. When A makes oracle queries, B answers them as follows:
(a) When A sends σ to H1 oracle, B samples b ←$ Zp and computes uσ := gb1. Then, B updates LH1

←
LH1
∪ {(σ, uσ, b)} and returns uσ to A.

(b) When A sends ρ to H2 oracle, B samples b ←$ Zp. With probability 1 − δ, B computes uρ := (gβ2 )
b

and updates LH2
← LH2

∪ {(ρ, uρ, b, 0)}. Otherwise, B computes uρ := gb2 and updates LH2
←

LH2
∪ {(ρ, uρ, b, 1)}. Then, B returns uρ to A.

(c) When B sends (σ, ρ,R, U, V ) to Ĥ oracle, B samples Z ←$ {0, 1}mlen and updates LĤ ← LĤ ∪
{(σ, ρ,R, U, V, Z)}. Then, B returns Z to A.

(d) When A sends σ to OS oracle, B searches (σ, uσ, b) ∈ LH1
and computes ekσ := (gα1 )

b. Then, B
returns ekσ to A.

(e) When A sends ρ to OR oracle, B searches (ρ, uρ, b, d) ∈ LH2 . If d = 0, B aborts the game. Otherwise
(i.e., d = 1), B computes dkρ := (gα2 )

b. Then, B returns dkρ to A.
(f) When A outputs (σ∗, rcv∗,m∗) to request a challenge ciphertext, B searches (rcv∗, urcv∗ , b∗, d∗) ∈ LH2

.
If d∗ = 1, B aborts the game. Otherwise, B sets R∗ := gγ1 and computes ctxt∗ := m∗ ⊕ Z where
Z ←$ {0, 1}mlen+λ. Then B sets ct0 := (R∗, ctxt∗) and ct1 ←$ CT , and returns ctcoin to A.

3. Finally, A outputs a guess ĉoin. Then, B picks an entry (·, rcv∗, R∗, U∗, ·) ∈ LĤ at random and outputs
D := (U∗)

1
b∗ as the solution of the BDH problem.

We can see that B perfectly simulates the Priv-CPA game against A if B does not abort. Moreover, we know
that dkrcv∗ = (urcv∗)

α = (gαβ2 )b
∗

and R∗ = gγ1 , and thus

U∗ = e(R∗, dkrcv∗) = e(gγ1 , g
αβb∗

2 ) = (e(g1, g2)
αβγ)b

∗
.

If A distinguish the two games, A has queried Ĥ(·, rcv∗, R∗, U∗, ·), and thus with probability at least 1
qĤ

, B
can solve the BDH problem correctly. Thus we have

|ϵ2 − ϵ1| ≤ Pr[BadQ] ≤ qĤ · Adv
bdh
G,B(λ).

In Game2, both ct0 and ct1 are chosen at random from the ciphertext space. Since coin is information-
theoretically hidden from A, we have ϵ2 = 0.

Putting everything together, we obtain

Advpriv-cpaA,IB-MEBasic(λ) ≤ ê(1 + qR)qĤ · Adv
bdh
B,G(λ).

We now prove the Priv-CCA security of IB-MEBDH assuming the Priv-CPA security of IB-MEBasic. The
proof is similar to the proof of the FO transformation for PKE/IBE schemes [19,20].
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Theorem 2. Suppose the hash function G is a random oracle. If IB-MEBasic is Priv-CPA secure, then IB-MEBDH

is Priv-CCA secure in the ROM. Formally, if there exists an adversary A that breaks the Priv-CCA security
of IB-MEBDH, there exists an adversary B that breaks the Priv-CPA security of IB-MEBasic such that

Advpriv-ccaA,IB-MEBDH(λ) ≤ 3Advpriv-cpaB,IB-MEBasic(λ) +
qDec

p
+

3qG
2λ

.

where p is the order of the underlying bilinear group, and qD and qG are the maximum number of queries A
makes to OD and G oracles, respectively. The running time of B is about that of A.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, · · · , 5}. Define
the advantage of A in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0 : This is the original security game. By definition, we have

ϵ0 = Advpriv-ccaA,IB-MEBDH(λ).

Game1 : In this game, the randomness k∗ ∈ {0, 1}λ (used to generate the challenge ciphertext) is chosen in
the setup phase instead of the challenge phase. Since there is no difference in A’s view, we have

ϵ1 = ϵ0.

Game2 : In this game, we change the behavior of G oracle. When A sends a tuple (σ, ρ,m, k) to G, the
challenger picks r ←$ Zp, and computes

ekσ := H1(σ)
x, ct← IB-MEBasic.Enc(mpk15, ekσ, ρ,m||k; r).

Then, it updates LG ← LG ∪ {((σ, ρ,m, k), r, ct)} and returns r to A. Since there is no difference in the
behaviors of oracles from A’s viewpoint, we have

ϵ2 = ϵ1.

We remark that ekσ is unique for each identity σ, and thus the ciphertext computed as above can be uniquely
determined by (σ, ρ,m, k).

Game3 : In this game, we change the behavior of OD oracle. When A sends (snd, ρ, ct) to OD, it finds an
entry ((snd, ρ,m, k), r, ct) ∈ LG. If such a tuple exists, m||k is returned to A. Otherwise, ⊥ is returned to A.

Let BadD be the event thatA submits a decryption query on (snd, ρ, ct) such that ((snd, ρ,m, k), r, ct) /∈ LG

but it is not rejected in the previous game. Due to the perfect correctness of the scheme, the two games
proceed identically unless BadD occurs. Thus, we have

|ϵ3 − ϵ2| ≤ Pr[BadD].

We now estimate Pr[BadD]. In the previous game, if ((snd, ρ,m, k), r, ct) /∈ LG when (snd, ρ, ct) is sent to OD,
G(snd, ρ,m, k) is queried internally and r ←$ Zq is sampled. Then, OD checks whether R = gr1 holds. For any
R ∈ G1, the probability that R = gr1 holds for randomly chosen r ∈ Zp is 1/p. Since A queries OD at most
qD, we have

|ϵ3 − ϵ2| ≤ Pr[BadD] ≤ qD
p
.

After this game, the decryption oracle is simulated without any decryption keys.
15 For simplicity, we use the same symbol mpk for IB-MEBasic and IB-MEBDH since mpk of IB-MEBDH covers that of

IB-MEBasic.
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Game4 : In this game, we add an abort condition into G oracle. If A sends a tuple (·, ·, ·, k) such that
k = k∗ before the challenge phase, the game aborts. Since k∗ ∈ {0, 1}λ is chosen at random and information-
theoretically hidden from A before the challenge phase, we have

|ϵ4 − ϵ3| ≤
qG
2λ

.

Game5 : In this game, we change how to generate the challenge ciphertext ct0. To generate ct0, the challenger
chooses r∗ ←$ Zp and computes

ekσ∗ := H1(σ
∗)x, ct0 ← IB-MEBasic.Enc(mpk, ekσ∗ , rcv∗,m∗||k∗; r∗).

Now, the randomness r∗ is chosen independently from G. Let BadQ be the event that A sends (·, ·, ·, k∗) to
G oracle after it requests the challenge ciphertext. Since A’s view is identical unless BadQ occurs, we have

|ϵ5 − ϵ4| ≤ Pr[BadQ].

To estimate Pr[BadQ], we show that if A can trigger the event BadQ, there exists an adversary B1 that
breaks the Priv-CPA security of IB-MEBasic.

The construction of B1 is as follows. Upon receiving mpk (of IB-MEBasic), B1 samples k∗ ←$ {0, 1}λ,
prepares mpk of IB-MEBDH, and executes A on input it. Then, B1 simulates the Priv-CCA game against A as
in Game5. When a query is sent to OS or OR oracle, B1 uses its oracles to generate encryption or decryption
keys. When A requests a challenge ciphertext on (σ∗, rcv∗,m∗), B1 sends (σ∗, rcv∗,m∗||k∗) to its challenger,
receiving the challenge ciphertext ct∗. B1 forwards it to A. When A triggers the event BadQ, B1 outputs
ĉoin := 0 to its challenger as its guess of coin. If A does not trigger the event BadQ, B1 outputs a randomly
chosen ĉoin←$ {0, 1} to its challenger.

Now, we evaluate the B1’s advantage. Let Fail be the event that BadQ occurs when ĉoin = 1 (i.e., ct∗ is
sampled by CTSamp). Since k∗ is uniformly distributed and independent from B1’s view when ct∗ is sampled
by CTSamp, Pr[Fail] ≤ qG/2

λ. Assume Fail did not happen, i.e., BadQ occurs only when ĉoin = 0. Since B1
always outputs 0 when BadQ occurs, Pr

[
coin = ĉoin

]
= 1. If BadQ did not occur, B1 outputs a random coin

and thus Pr
[
coin = ĉoin

]
= 1/2. Thus, we have

Advpriv-cpaB1,IB-MEBasic(λ) +
qG
2λ
≥

∣∣∣∣Pr[coin = ĉoin
]
− 1

2

∣∣∣∣
=

∣∣∣∣Pr[BadQ] + 1

2
Pr[¬BadQ]− 1

2

∣∣∣∣ = 1

2
Pr[BadQ].

Therefore, we have

|ϵ5 − ϵ4| ≤ Pr[BadQ] ≤ 2Advpriv-cpaB1,IB-MEBasic(λ) +
2qG
2λ

.

We finally bound ϵ5. If A can breaks the Priv-CCA security in Game5, there exisits an adversary B2 that
breaks the Priv-CPA security of IB-MEBasic such that

ϵ5 = Advpriv-cpaB2,IB-MEBasic(λ).

The proof is straightforward because B2 can simulate OD without any decryption keys and the challenge
ciphertext is generated with independent randomness r∗.

Putting everything together and folding both adversaries B1 and B2 into one adversary B, we obtain

Advpriv-ccaA,IB-MEBDH(λ) ≤ 3Advpriv-cpaB,IB-MEBasic(λ) +
qD
p

+
3qG
2λ

.
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We then prove that IB-MEBDH is Priv-MisMatch secure in the ROM.
Theorem 3. IB-MEBDH is Priv-MisMatch secure in the ROM. Formally, an adversary A attacking the
Priv-MisMatch security of IB-MEBDH has advantage

Advpriv-mismatch
A,IB-MEBDH (λ) ≤

qĤ + qG

2ω(log λ)−1
.

where qĤ and qG are the maximum number of queries A makes to Ĥ and G oracles, respectively. The running
time of B is about that of A.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, · · · , 3}. Define
the advantage of A in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0 : This is the original security game. By definition, we have

ϵ0 = Advpriv-mismatch
A,IB-MEBDH (λ).

Game1 : In this game, the challenger aborts the game if σ∗
0 or σ∗

1 are sent to Ĥ or G oracle beforeA requests the
challenge ciphertext. Since both of them are chosen independently at random and from ω(log λ)-distribution,
we have

|ϵ1 − ϵ0| ≤
qĤ + qG

2ω(log λ)
.

Game2 : In this game, the challenge ciphertext cti (i ∈ {0, 1}) is computed as cti ← (gri1 , (m0||k0)⊕ Zi) for
random ri ←$ Zp and Zi ←$ {0, 1}mlen+λ. A may notice this change when it sends σ∗

0 or σ∗
1 to Ĥ or G oracle.

Since σ∗
0 and σ∗

1 are chosen independently at random from ω(log λ)-distribution, we have

|ϵ2 − ϵ1| ≤
qĤ + qG

2ω(log λ)
.

In Game2, both ct0 and ct1 are distributed uniformly at random. Since coin is information-theoretically
hidden from A, we have

ϵ2 = 0.

Putting everything together, we obtain

Advpriv-mismatch
A,IB-MEBDH (λ) ≤

qĤ + qG

2ω(log λ)−1
.

We finally show that the Auth-oCMA security of IB-MEBDH under the BDH assumption. To prove it, we
need to simulate the encryption oracle OE without knowing the senders’ encryption key while the adversary
adaptively compromises senders. To do so, we employ the programmability of RO, similar to the proof
technique for non-committing encryption in the ROM [30].

Theorem 4. Suppose the hash functions H1, H2, Ĥ, and G are random oracles. Under the BDH assump-
tion, IB-MEBDH is Auth-oCMA secure in the ROM. Formally, if there exists an adversary A that breaks the
Auth-oCMA security of IB-MEBDH, there exists an adversary B that breaks the BDH assumption such that

Advauth-ocma
A,IB-MEBDH(λ) ≤

ê2(qS + qR)
2qĤ

2
· AdvbdhB,G(λ) +

qG
2mlen+λ

+
1

p
,

where p is the order of the underlying bilinear group and qS, qR, qĤ, and qG are the maximum number of
queries A makes to OS, OR, Ĥ, and G oracles, respectively. The running time of B is about that of A.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, · · · , 3}. Define
the advantage of A in Gamei as

ϵi := Pr
[
GameAi (λ)⇒ 1

]
.
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Game0 : This is the original Auth-oCMA game. By definition, we have

ϵ0 = Advauth-ocma
A,IB-MEBDH(λ).

Game1 : In this game, we change the behavior of OS , OR, and OE as follows.

– When A sends σ to OS oracle, it computes ekσ := H1(σ)
x. Then, it searches entries (snd, rcv,m||k, ctxt) ∈

LE such that snd = σ. If such entries exist, it works as follows for each such entry. Let urcv := H2(rcv)
and r := G(σ, rcv,m, k).
• If there exists an entry (snd, rcv, gr1, e(X

r, urcv), e(ekσ, urcv), ∗) ∈ LĤ, it aborts the game. (In this case,
it cannot program the random oracle.)
• Else, it updates

LĤ ← LĤ ∪ {(snd, rcv, g
r
1, e(X

r, urcv), e(ekσ, urcv), ctxt⊕ (m||k))}.

After that, it removes the programmed entries from LE .
Finally, it returns ekσ to A.

– When A sends ρ to OR oracle, it computes dkρ := H2(ρ)
x. Then, it searches entries (snd, rcv,m||k, ctxt) ∈

LE such that rcv = ρ. If such entries exist, it works as follows for each such entry. Let usnd := H1(snd)
and r := G(snd, ρ,m, k).
• If there exists an entry (snd, rcv, gr1, e(g

r
1, dkρ), e(H1(snd), dkρ), ∗) ∈ LĤ, it aborts the game.

• Else, for each entry, it updates

LĤ ← LĤ ∪ {(snd, rcv, g
r
1, e(g

r
1, dkρ), e(usnd, dkρ), ctxt⊕ (m||k))}.

Finally, it returns dkρ to A.
– When A sends a tuple (σ, rcv,m) to OE oracle, it samples k←$ {0, 1}λ and computes r := G(σ, rcv,m, k)

and R := gr1. Then, it computes ctxt as follows.
1. If σ ∈ LS , it retrieves ekσ

16 and computes urcv := H2(rcv) and

ctxt := (m||k)⊕ Ĥ(σ, rcv, R, e(Xr, urcv), e(ekσ, urcv)).

2. If σ /∈ LS and rcv ∈ LR, it retrieves dkrcv
17 and computes usnd := H1(snd) and

ctxt := (m||k)⊕ Ĥ(σ, rcv, R, e(R, dkrcv), e(usnd, dkrcv))

3. If σ /∈ LS and rcv /∈ LR, it samples ctxt←$ {0, 1}mlen+λ and updates LE ← LE ∪{(σ, rcv,m||k, ctxt)}.

Let Fail be the event that Game1 aborts if (snd, rcv, gr1, e(X
r, urcv), e(ekσ, urcv), ∗) ∈ LĤ exists. Game0 and

Game1 are identical unless Fail occurs. Therefore, we have

|ϵ1 − ϵ0| ≤ Pr[Fail].

To estimate Pr[Fail], we show that if A can triggers Fail, we can construct an adversary B1 that solves
the BDH problem. The construction of B1 is as follows.

1. Upon receiving (G = (p,G1,G2,GT , g1, g2, e), g
α
1 , g

α
2 , g

β
2 , g

γ
1 ), B1 sets X := gα1 (i.e., msk is implicitly set

α) and prepares the random oracles H1, H2, Ĥ, and G (i.e., initialize the lists LH1
, LH2

, LĤ, and LG).
Then, B1 samples I ←$ [qĤ] and executes A on input mpk := (G,H1,H2, Ĥ,G, X).

2. When A makes oracle queries, B1 answers them as follows:
(a) When A sends σ to H1 oracle, B1 samples b←$ Zp. With probability 1− δ, B1 computes uσ = (gγ1 )

b,
and updates LH1

← LH1
∪ {(σ, uσ, b, 0)}. Otherwise, B1 computes uσ := gb1 and updates LH1

←
LH1 ∪ {(σ, uσ, b, 1)}. Then, B1 returns uσ to A.

16 Since σ ∈ LS , the challenger already has computed ekσ.
17 Since rcv ∈ LR, the challenger already has computed dkrcv.
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(b) When A sends ρ to H2 oracle, B1 samples b̂←$ Zp. With probability 1− δ, B1 computes uρ := (gβ2 )
b̂,

and updates LH2
← LH2

∪ {(ρ, uρ, b̂, 0)}. Otherwise, B1 computes uρ = gb̂2 and updates LH2
←

LH2
∪ {(ρ, uρ, b̂, 1)}. Then, B1 returns uρ to A.

(c) When A sends (σ, ρ,R, U, V ) to Ĥ oracle, if this is the I-th query to Ĥ, B1 checks if both (σ, uσ, b, d) ∈
LH1

and (ρ, uρ, b̂, d̂) ∈ LH2
has coin d = 0 and d̂ = 0. If not, B1 aborts the game. Otherwise

(d = d̂ = 0), B1 outputs D := V
1
bb̂ as the solution of the BDH problem. If this is not the I-th query,

B1 samples Z ←$ {0, 1}mlen and updates LĤ ← LĤ ∪ {(σ, ρ,R, U, V, Z)}. B1 returns Z to A.
(d) When A sends (σ, ρ,m, k) to G oracle, B1 samples r ←$ Zp and updates LG ← LG ∪ {(σ, ρ,m, k, r)}.

Then, B1 returns r to A.
(e) When A sends (σ, rcv,m) to OE oracle, it answers as in Game1.
(f) When A sends σ to OS oracle, B1 extracts (σ, uσ, b, d) from LH1

. If d = 0, B1 aborts the game.
Otherwise, if d = 1, B1 computes ekσ = (gα1 )

b and works as in Game1.
(g) When A sends ρ to OR oracle, B1 extracts (ρ, uρ, b̂, d) from LH2

. If d = 0, B1 aborts the game.
Otherwise, if d = 1, B1 computes dkρ = (gα2 )

b̂ and works as in Game1.

Roughly, B1 guesses the identities and the Ĥ query that causes the event Fail, and if B1 succeeds to guess,
it perfectly simulates the Auth-oCMA game against A. Let us estimate the probability that B1 succeeds to
guess. The probability Fail occurs at the I-th Ĥ query is 1

qĤ
. The probability OS and OR do not abort is

δqS+qR . The probability the game does not abort when A sends the I-th Ĥ query is (1−δ)2. Hence, the overall
probability that B1 succeeds to guess is 1

qĤ
· δqS+qR(1− δ)2. This value is maximum when δ̂ = 1− 2

qS+qR+2 ,
and thus the probability is at most 4

ê2(qS+qR)2qĤ
for large qS+qR. Moreover, if B1 succeeds to guess, we know

that uσ = (gγ1 )
b and uρ = (gβ2 )

b̂ if σ /∈ LS and ρ /∈ LR, and thus

V = e(uσ, uρ)
α = e(gγb1 , gβb̂2 )α = (e(g1, g2)

αβγ)bb̂.

B1 can solve the BDH problem correctly when it does not abort. Thus, we have

|ϵ1 − ϵ0| ≤ Pr[Fail] ≤
ê2(qS + qR)

2qĤ
4

· AdvbdhB1,G(λ).

Game2 : In this game, the challenger decrypts ctxt∗ with a random Z∗ ←$ {0, 1}mlen+λ instead of Z∗ :=

Ĥ(snd∗, ρ∗, R∗, e(R∗, dkρ∗), e(H1(snd
∗), dkρ∗)).

Let BadQ be the event that A makes a query (σ∗, ρ∗, ·, ·, V ∗) to the oracle Ĥ where V ∗ := e(uσ∗ , uρ∗)x.
Since Z∗ is now chosen independently from random oracles, A notices the difference between the two games
if BadQ occurs and otherwise the two games proceed identically. Thus, we have

|ϵ2 − ϵ1| ≤ Pr[BadQ].

To estimate Pr[BadQ], we show that if A triggers BadQ, we can construct an adversary B2 that solves
the BDH problem. The construction of B2 is as follows.

1. Upon receiving (G = (p,G1,G2,GT , g1, g2, e), g
α
1 , g

α
2 , g

β
2 , g

γ
1 ), B2 sets X := gα1 (i.e., msk is implicitly set

α) and prepares three random oracles H1, H2, Ĥ, and G (i.e., initialize the lists LH1
, LH2

, LĤ, and LG).
Then, B2 executes A on input mpk := (G,H1,H2, Ĥ,G, X).

2. When A makes oracle queries, B2 answers them as follows:
(a) When A sends σ to H1 oracle, B2 samples b←$ Zp. With probability 1− δ, B2 computes uσ = (gγ1 )

b

and updates LH1 ← LH1 ∪ {(σ, uσ, b, 0)}. Otherwise, B2 computes uσ := gb1 and updates LH1 ←
LH1 ∪ {(σ, uσ, b, 1)}. Then, B2 returns uσ to A.

(b) When A sends ρ to H2 oracle, B2 samples b̂←$ Zp. With probability 1− δ, B2 computes uρ := (gβ2 )
b̂

and updates LH2
← LH2

∪ {(ρ, uρ, b̂, 0)}. Otherwise, B2 computes uρ = gb̂2 and updates LH2
←

LH2
∪ {(ρ, uρ, b̂, 1)}. Then, B2 returns uρ to A.
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(c) When A sends (σ, ρ,R, U, V ) to Ĥ oracle, B2 samples Z ←$ {0, 1}mlen and updates LĤ ← LĤ ∪
{(σ, ρ,R, U, V, Z)}. Then, B2 returns Z to A.

(d) When A sends (σ, ρ,m, k) to G oracle, B2 samples r ←$ Zp and updates LG ← LG ∪ {(σ, ρ,m, k, r)}.
Then, B2 returns r to A.

(e) When A sends (σ, rcv,m) to OE oracle, it answers as in the previous game.
(f) When A sends σ to OS oracle, B2 extracts (σ, uσ, b, d) from LH1 . If d = 0, B2 aborts the game.

Otherwise (that is, d = 1), B2 computes ekσ = (gα1 )
b and returns it to A.

(g) When A sends ρ to OR oracle, B2 extracts (ρ, uρ, b̂, d) from LH2 . If d = 0, B2 aborts the game.
Otherwise (that is, d = 1), B2 computes dkρ = (gα2 )

b̂ and return it to A.
3. A outputs (snd∗, ρ∗, ct∗ := (R∗, ctxt∗)). B2 sets σ∗ := snd∗. If both (σ∗, uσ∗ , b∗, d∗) ∈ LH1

and (ρ∗, uρ∗ , b̂∗, d̂∗) ∈
LH2

do not have coins d∗ = 0 and d̂∗ = 0, B aborts the game. Otherwise, B2 picks an entry (σ∗, ρ∗, R∗, U, V, ĥ) ∈
LĤ at random, and outputs D := V

1
b∗ b̂∗ as the solution of the BDH problem.

We can see that B2 perfectly simulates the Auth-oCMA game if B2 does not abort. Let us estimate the
probability Pr[¬abort]. The probability OS and OR do not abort is δqS+qR . The probability the game does
not abort when A outputs a forgery is (1−δ)2. Hence, the overall non-aborting probability is δqS+qR(1−δ)2.
This value is maximum when δ̂ = qS+qR

qS+qR+2 , and thus Pr[¬abort] ≤ 4
ê2(qS+qR)2 for large qS + qR. Moreover,

we know that uσ∗ = (gγ1 )
b∗ , uρ∗ = (gβ2 )

b̂∗ , and thus

V ∗ = e(uσ∗ , uρ∗)α = e(gγb
∗

1 , gβb̂
∗

2 )α = (e(g1, g2)
αβγ)b

∗b̂∗ .

If A can distinguish the two games, A has queried Ĥ(σ∗, rcv∗, ·, ·, V ∗), and thus B2 can solve the BDH problem
correctly with probability at least 1

qĤ
. Therefore,

|ϵ2 − ϵ1| ≤ Pr[BadQ] ≤
ê2(qS + qR)

2qĤ
4

· AdvbdhB2,G(λ).

Game3 : In this game, the challenger checks if G(m∗, k∗, snd∗, ρ∗) has been queried, and if so, it aborts the
game. Otherwise, it samples r∗ ←$ Zp at random instead of generating it with G. Since m∗||k∗ is chosen
independently at random, the probability G(m∗, k∗, snd∗, ρ∗) was queried is qG

2mlen+λ , and thus we have

|ϵ3 − ϵ2| ≤
qG

2mlen+λ
.

We finally evaluate ϵ3. In Game3, A breaks the Auth-oCMA security if R∗ = gr
∗

1 holds for randomly chosen
r∗ ∈ Zp. Since for any R ∈ G1 the probability that R∗ = gr

∗

1 holds for a randomly chosen r∗ ∈ Zp is 1
p , we

have
ϵ3 =

1

p
.

Putting everything together and folding both adversaries B1 and B2 into one adversary B, we obtain

Advauth-ocma
A,IB-MEBDH(λ) ≤

ê2(qS + qR)
2qĤ

2
· AdvbdhB,G(λ) +

qG
2mlen+λ

+
1

p
.

5 IB-ME from IBE and IBS in the Standard Model

In this section, we propose a new generic construction of IB-ME based on IBE, IBS, and reusable extractors.
To achieve Priv-MisMatch security, we hide messages with reusable extractors similarly to Francati et al. [18].
We formally show that the resulting scheme, which we call IB-MEIBE+IBS, satisfies Priv-CCA, Priv-MisMatch
and Auth-iCMA security in the StdM. Our result shows that HIBE is not necessary for constructing IB-ME
in contrast to the conventional approaches [13,35].
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5.1 Construction

To construct an IB-ME scheme with identity space ID = {0, 1}∗ and message spaceM = {0, 1}mlen, we use
the following building blocks.

– An IBE scheme IBE = (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) with IDIBE = {0, 1}∗ and MIBE =
{0, 1}mlen+siglen.

– An IBS scheme IBS = (IBS.Setup, IBS.KGen, IBS.Sign, IBS.Ver) with IDIBS = {0, 1}∗ and siglen bits
signatures.

– A reusable computational extractor Ext : S × ID → {0, 1}mlen+siglen.

The proposed IB-ME scheme IB-MEIBE+IBS is as follows. The correctness of IB-MEIBE+IBS immediately follows
from the correctness of IBE and IBS.

Setup(1λ): It computes (mpkIBE,mskIBE) ← IBE.Setup(1λ) and (mpkIBS,mskIBS) ← IBS.Setup(1λ), and out-
puts mpk := (mpkIBE,mpkIBS) and msk := (mskIBE,mskIBS).

SKGen(mpk,msk, σ): It computes ekσ ← IBS.KGen(mpkIBS,mskIBS, σ) and outputs ekσ.
RKGen(mpk,msk, ρ): It computes dkρ ← IBE.KGen(mpkIBE,mskIBE, ρ) and outputs dkρ.
Enc(mpk, ekσ, rcv,m): It samples s ←$ S and computes sig ← IBS.Sign(mpkIBS, ekσ,m), Z := Ext(s, σ),

m̂← (m||sig)⊕ Z, and ĉt← IBE.Enc(mpkIBE, rcv, m̂). It outputs ct := (ĉt, s).
Dec(mpk, dkρ, snd, ct = (ĉt, s)): It computes m̂ ← IBE.Dec(mpkIBE, dkρ, ĉt) and m||sig ← m̂ ⊕ Ext(s, snd).

Then, it computes b← IBS.Ver(mpkIBS, snd,m, σ). If b = 1, it outputs m, else outputs ⊥.

5.2 Security Proof

We prove IB-MEIBE+IBS is Priv-CCA, Priv-MisMatch and Auth-iCMA security.

Theorem 5. If IBE is ANO-IND-ID-CCA secure, IB-MEIBE+IBS is Priv-CCA secure. Formally, if there exists
an adversary A that breaks the Priv-CCA security of IB-MEIBE+IBS, there exists an adversary B that breaks
the ANO-IND-ID-CCA security of IBE such that

Advpriv-ccaA,IB-ME(λ) = Advano-ind-id-ccaB,IBE (λ).

The running time of B is about that of A.

Proof. Let CTSamp(mpk) be an algorithm that outputs a pair of a random element in S and an output
of CTSampIBE(mpk), which is a sampling algorithm used for the ANO-IND-ID-CCA security. Let A be an
adversary that breaks the Priv-CCA security of IB-MEIBE+IBS. We show an adversary B that breaks the
ANO-IND-ID-CCA security of IBE by using A. The description of B is as follows.

1. Upon receiving the master public key mpkIBE, B generates (mpkIBS,mskIBS)← IBS.Setup(λ) and executes
A on input mpk := (mpkIBE,mpkIBS).

2. B answers queries from A as follows.
– When A sends σ to OS oracle, B computes ekσ ← IBS.KGen(mpkIBS,mskIBS, σ) and returns it to A.
– When A sends ρ to OR oracle, B sends ρ to OSK oracle and receives dkρ. Then B returns it to A.
– When A sends (snd, ρ, ct = (ĉt, s)) to OD oracle, B sends (ρ, ĉt) to its decryption oracle OD and

receives m̂. Then, it computes m||sig← m̂⊕ Ext(s, snd) and b← IBS.Ver(mpkIBS, snd,m, σ). If b = 1,
it returns m; else returns ⊥.

3. When A sends (σ∗, rcv∗,m∗) to request a challenge ciphertext, B first samples s∗ ←$ S and computes
sig∗ ← IBS.Sign(mpkIBS, ekσ∗ ,m∗), m̂∗ ← (m∗||sig∗) ⊕ Ext(s∗, σ∗). Then, it sends (rcv∗, m̂∗) to its chal-
lenger and receives the challenge ciphertext ĉt

∗. Then, B returns (ĉt
∗
, s∗) to A.

4. Finally, when A outputs ĉoin, B sends it to the challenger as its guess.
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We can verify that B perfectly simulates the Priv-CCA game against A. Moreover, rcv∗ /∈ LOR
implies

rcv∗ /∈ LSK . Therefore, if A breaks the Priv-CCA security, B also breaks the ANO-IND-ID-CCA security, that
is,

Advpriv-ccaA,IB-ME(λ) = Advano-ind-id-ccaB,IBE (λ).

Theorem 6. If Ext is a (ω(log(λ)), qE+1)-reusable computational extractor, IB-MEIBE+IBS is Priv-MisMatch
secure. Formally, if there exists an adversary A that breaks the Priv-MisMatch security of IB-MEIBE+IBS, there
exists an adversary B that breaks the security of Ext such that

Advpriv-mismatch
A,IB-ME (λ) ≤ 2AdvextB,Ext(λ).

The running time of B is about that of A.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. Define the
advantage of A in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0 : This is the original security game. By definition, we have

ϵ0 = Advpriv-mismatch
A,IB-MEIBE+IBS(λ).

Game1 : In this game, when A sends (0, rcv,m) to OE∗ or the challenge ciphertext ct0 is generated, the
challenger uses a random Z ←$ {0, 1}mlen+siglen instead of Z := Ext(s, σ∗

0). Since σ∗
0 is sampled from ω(log(λ))-

distribution and A requests ciphertexts on σ∗
0 at most qE+1 times, (ω(log(λ)), qE+1)-reusable computational

extractor Ext ensures that Game0 and Game1 are indistinguishable for A. Formally, we can construct an
adversary B1 such that

|ϵ1 − ϵ0| ≤ AdvextB1,Ext(λ).

Game2 : In this game, when A sends (1, rcv,m) to OE∗ or the challenge ciphertext ct1 is generated, the
challenger uses Z ←$ {0, 1}mlen+siglen instead of Z := Ext(s, σ∗

1). From the same argument above, we can
construct B2 such that

|ϵ2 − ϵ1| ≤ AdvextB2,Ext(λ).

In Game2, the ciphertexts ĉt generated via OE∗ and the challenge ciphertexts ct0 and ct1 encrypt a
random message. Thus, they do not have information about encrypted messages and the senders σ∗

0 and σ∗
1 .

This means that the challenge bit coin is information-theoretically hidden from A. Therefore, we have

ϵ2 = 0.

Putting everything together and folding B1 and B2 into B, we obtain

Advpriv-mismatch
A,IB-ME (λ) ≤ 2AdvextB,Ext(λ).

Theorem 7. If IBS is EUF-ID-CMA secure, IB-MEIBE+IBS is Auth-iCMA secure. Formally, if there exists an
adversary A that breaks the Auth-iCMA security of IB-MEIBE+IBS, there exists an adversary B that breaks the
EUF-ID-CMA security of IBS such that

Advauth-icma
A,IB-ME (λ) = Adveuf-id-cma

B,IBS (λ).

The running time of B is about that of A.
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Proof. Let A be an adversary that breaks the Auth-iCMA security of IB-MEIBE+IBS. We show an adversary
B that breaks the EUF-ID-CMA security of IBS by using A. The description of B is as follows.

1. Upon receiving the master public key mpkIBS, B generates (mpkIBE,mskIBE)← IBE.Setup(λ) and executes
A on input mpk := (mpkIBE,mpkIBS).

2. B answers queries from A as follows.
– When A sends σ to OS oracle, B sends σ to its key generation oracle OSK oracle and receives ekσ.

Then B returns it to A.
– When A sends ρ to OR oracle, B computes dkρ ← IBE.KGen(mpkIBE,mskIBE, ρ) and returns it to A.
– When A sends (σ, rcv,m) to OE oracle, B first sends (σ,m) to its signing oracle and receives sig.

Then, it samples s ←$ S and computes m̂← (m||sig)⊕Ext(s, σ) and ĉt← IBE.Enc(mpkIBE, rcv, σ, m̂).
It returns ct := (ĉt, s) to A.

3. When A outputs (snd∗, ρ∗, ct∗ = (ĉt
∗
, s∗)) as a forgery, B computes m̂← IBE.Dec(mpkIBE, dkρ, snd

∗, ĉt
∗
)

and m∗||sig∗ ← m̂⊕ Ext(s∗, snd∗) and outputs (m∗, sig∗) as its forgery.

We can verify that B perfectly simulates the Auth-iCMA game. If A makes a valid forgery, we have snd∗ /∈
LS , (snd∗, ρ∗,m∗) /∈ LE , and IBS.Ver(mpkIBS, snd

∗,m∗, σ∗) = 1. Due to the construction of IB-MEIBE+IBS,
IBS.Ver(mpkIBS, snd

∗,m∗, σ∗) = implies m∗ ̸= ⊥. Also, snd∗ /∈ LS implies snd∗ /∈ LSK , and (snd∗, ρ∗,m∗) /∈
LE implies (snd∗,m∗) /∈ LSIG. Therefore, if A breaks the Auth-iCMA security, B also breaks the EUF-ID-CMA
security. Thus, we have

Advauth-icma
A,IB-ME (λ) = Adveuf-id-cma

B,IBS (λ).

6 Comparison

In this section, we compare our IB-ME schemes, IB-MEBDH and IB-MEIBE+IBS, with the existing IB-ME
schemes by Ateniese et al. [2], Chen et al. [11], and Wang et al. [35], which are based on standard assump-
tions 18. Their security and the size of secret keys and ciphertexts are summarized in Tables 2 and 3.

IB-ME from the BDH assumption in the ROM. We compare IB-MEBDH, IB-MEIBE+IBS and Ateniese et
al. scheme [2]. We instantiate IB-MEIBE+IBS with the Bobeh-Franklin IBE scheme and the Cha-Cheon IBS
scheme [10].19 Table 2a summaries their security property and space complexity. IB-MEBDH is the best scheme
in terms of key and ciphertext sizes since they contain only one group elements. Moreover, it achieves stronger
Priv-CCA and Auth-oCMA security. IB-MEIBE+IBS has about two times larger ciphertext than IB-MEBDH, but
it achieves Auth-iCMA security (i.e., secure even if the receiver’s key is compromised), which is stronger than
Auth-oCMA. Thus, IB-MEBDH and IB-MEIBE+IBS offer a trade-off between the security level (i.e., outsider
security vs. insider security) and efficiency.

IB-ME from the SXDH assumption in the StdM. We compare IB-MEIBE+IBS, Chen et al. scheme [11], and
Wang et al. scheme [35]. To instantiate IB-MEIBE+IBS from the SXDH assumption in the StdM, we use the
CCA-secure anonymous IBE scheme [22] (and the IBS scheme [31] based on CDH assumption). Table 2b
summaries the comparison results. Among them, our scheme achieves the smallest secret key size while
achieving stronger Priv-CCA and Auth-iCMA security. In particular, the size of the decryption key is 4 or
more times shorter than the existing schemes. Regarding the ciphertext size, ours is smaller than Wang et
al. scheme but slightly larger than Chen et al. scheme. This difference between ours and Chen et al. scheme
can be interpreted as the cost our scheme pays for stronger security. We conclude that our scheme achieves
stronger security with reasonable space complexity.
18 We do not consider Francati et al. scheme [18] here since its security relies on a non-standard q-type assumption.
19 RO is used as a reusable extractor.
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Table 2: Comparison of the IB-ME schemes based on bilinear groups. The column “Ciphertext” indicates
the difference between the length of ciphertext and that of plaintext. |G1|, |G2| and |GT | denotes the size of
group element in G1, G2 and GT , respectively.

(a) IB-ME schemes from the BDH assumption in the ROM.

Schemes Security Space complexity
Priv Auth Mismatch Enc. key Dec. key Ciphertext

Ateniese et al. [2] CPA oNMA |G1| 3|G2| 2|G1|+ λ

IB-MEBDH(§ 4.1) CCA oCMA
√

|G1| |G2| |G1|+ λ

IB-MEIBE+IBS(§ 5.1)
(IBE [5]+IBS [10]) CCA iCMA

√
|G1| |G2| 3|G1|+ λ

(b) IB-ME schemes from the SXDH assumption in the StdM.

Schemes Security Space complexity
Priv Auth Mismatch Enc. key Dec. key Ciphertext

Chen et al. [11] CPA iNMA 8|G1| 16|G2|+ |GT | 8|G1|
Wang et al. [35]
(HIBE [26]+IBS [31]) CPA iCMA 2|G1| 52|G2| 13|G1|

IB-MEIBE+IBS(§ 5.1)
(IBE [22]+IBS [31]) CCA iCMA

√
2|G1| 4|G2| 10|G1|+ λ

Table 3: Comparison of IB-ME schemes from lattices in the QROM. The data sizes are provided in bytes.
The column “Ciphertext” indicates the difference between the length of ciphertext and that of plaintext.
Note that LATTE-1 and LATTE-3 offer different security levels, 128-bit and 80-bit respectively.

Schemes Security Space complexity
Priv Auth Mismatch Enc. key Dec. key Ciphertext

Wang et al. [35]
(LATTE-3 [38]+Falcon-IBS†) CPA iCMA 1579 92160 29941

IB-MEIBE+IBS(§ 5.1)
(LATTE-1 [38]+Falcon-IBS†)

CCA iCMA
√

1579 3072 8533

†: IBE scheme derived from Falcon [32] via the signature-to-IBS conversion [25].

IB-ME from lattices in the QROM. We finally compare post-quantum lattice-based IB-ME schemes in the
QROM derived from our IB-MEIBE+IBS and the Wang et al. scheme [35]. We instantiate them with a lattice-
based anonymous (H)IBE scheme LATTE [38] and a lattice-based IBS scheme derived from Falcon [32] via
the signature-to-IBS conversion [25]. Table 3 summarizes their security and space complexity. Our scheme
is significantly space efficient than Wang et al. scheme. Especially, our decryption key and ciphertext are
respectively 30 and 3.5 times shorter than that of Wang et al. scheme, and all of them are less than 10
Kilobytes. This is due to the fact that our scheme is simply based on IBE, not HIBE. Moreover, our scheme
achives stronger security. Our result makes post-quantum IB-ME schemes practical.

Feasibility results by IB-MEIBE+IBS. It is worth noting that IB-MEIBE+IBS provides IB-ME schemes that have
not been realized to date. We obtain the first pairing-free IB-ME scheme in the StdM from a pairing-free
anonymous IBE scheme [8]11 and IBS scheme [25]. We also obtain the first tightly-secure IB-ME scheme from
lattices in the QROM from a tightly-secure lattice-based anonymous IBE scheme [24] and IBS scheme [16].
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