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Abstract. Truncated differential attacks were introduced by Knudsen in 1994 [1].
They are a well-known family that has arguably received less attention than some
other variants of differential attacks. This paper gives some new insight on truncated
differential attacks and provides the best-known attacks on both variants of the
lightweight cipher QARMA, in the single tweak model, reaching for the first time 10
rounds while contradicting the security claims of this reduced version. These attacks
use some new truncated distinguishers as well as some evolved key-recovery techniques.
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1 Introduction
In the realm of modern cryptography, the design and analysis of secure block ciphers
play a pivotal role in ensuring the confidentiality of sensitive data. The development
of advanced encryption algorithms has been an ongoing endeavor, aiming to thwart
increasingly sophisticated attacks while maintaining implementation efficiency. One of the
key aspects in this evolution is the study of the variations of differential attacks, which are
powerful techniques utilized by cryptanalysts to probe the vulnerabilities of cryptographic
primitives. This paper focuses on the truncated differential attack, proposed first in 1994
by Knudsen [1], as a tool for the security evaluation of block ciphers.

Despite some instances of cryptanalysis based on truncated differential attacks as an
independent attack [2, 3, 4], this attack has received less attention compared to other
variations, such as the impossible differential attack, higher-order differential attacks,
as well as boomerang and rectangle attacks. The primary utilization of an automated
truncated differential path search has been targeted for discovering paths with minimal
activation of S-boxes, to serve as a tool for high-probability concrete differential paths [5].
It also aids in identifying contradictions pertinent to impossible differential attacks [6].

In a recent work [7], a novel MILP (Mixed Integer Linear Programming) tool has
been introduced for identifying the optimum truncated differential paths and applied on
MIDORI, SKINNY, and CRAFT block ciphers covering a greater number of rounds with higher
probabilities compared to their concrete differential counterparts.

This work subsequently garnered some interest in truncated differential attacks. In
[8], considering that [7] has utilized certain approximations, an effective algorithm for
accurately calculating the truncated differential path probability for a given truncated
path is proposed. Another technique aimed at calculating the probability of truncated
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differentials, considering the clustering effects (also referred to as the differential effect)
has been outlined in [9]. Furthermore, certain studies have employed the methodology
presented in [7] to automate the discovery of other distinguishers. These encompass the
triangle attack [10] and mixture differential attacks [11], as examples. The significant
advantages of truncated differential attacks, compared to concrete differential attacks, are
as follows.

• Simplicity. The truncated differential attack utilizes a word-oriented variable
definition. Moreover, this kind of attack does not inherently depend on the S-
box details, hence its MILP model is free from the bottleneck of S-box modeling.
Consequently, the truncated differential automatic search tools display enhanced
efficiency and running time compared to the automatic tools for finding optimum
concrete (bit-oriented) differentials.

• Efficiency. There are notable instances where the truncated differential distinguisher
outperforms its concrete counterpart. Some examples include KLEIN, MIDORI, SKINNY,
and CRAFT, for which truncated differential paths have been proposed for the number
of rounds, proving that there are no concrete differential distinguishers [7, 2, 3].

• Value-insensitivity. The truncated differential distinguisher is inherently indepen-
dent of the concrete value of the active words. This makes the key recovery part of
the attack more flexible, potentially requiring less key material to be guessed, at the
two edges of the distinguisher.

Reflection ciphers are a class of symmetric encryption algorithms that exhibit a unique
property: the set of encryption functions is identical to the set of decryption functions.
In other words, the encryption and decryption processes are the same, making the cipher
"reflect" the input to produce the output. This design strategy aims to reduce the
implementation cost of the cipher, by minimizing the overhead of decryption on top of the
encryption.

PRINCE block cipher [12], an SPN cipher with FX construction, stands as one of the
most renowned examples of a reflection cipher. To be precise, it possesses the α-reflection
property, meaning that decryption is equivalent to the encryption with the related key
of Kdec = Kenc ⊕ α, where α is a constant. In [13], a new attack called the reflection
attack is proposed as a dedicated tool for cryptanalysis of PRINCE-like ciphers. It exploits
the existence of too many fixed points in the intermediate rounds of the cipher and its
extension to the full cipher.

Following in the footsteps of PRINCE, MANTIS [14] emerges as the subsequent reflection
cipher again in the FX framework. It takes inspiration from PRINCE’s design while evolving
into a tweakable block cipher. Notably, MANTIS integrates certain choices from MIDORI’s
components [15] to enhance its structure. However, a practical attack on MANTIS5 has
been presented in [16], attributed to the MANTIS’s extremely lightweight components,
including the tweak schedule, and the vulnerability resulting from the interaction between
the MIDORI-inspired round function and the PRINCE-inspired inner rounds.

QARMA family of block ciphers is the most recent reflection cipher, boasting additional
features such as being tweakable, lightweight, and low-latency [17]. Drawing inspiration
from PRINCE, MIDORI, and MANTIS, QARMA exhibits notable differences both in the structure
and in the choice of components. Unlike its predecessors, QARMA adopts a three-round
Even-Mansour (EM) construction [18] rather than adhering to the FX construction. This
departure from the FX construction was motivated by the cryptanalysis presented in [19].
Furthermore, QARMA’s decision to pivot to EM construction is motivated by the improved
time, memory, and data complexities, which offer superior bounds compared to the FX
construction.

Insights gleaned from the MITM and accelerated exhaustive search attacks on PRINCE
[20], that exploited the unkeyed central construction of PRINCE, the designer of QARMA
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included a key addition in the middle permutation of QARMA. Moreover, this middle
permutation is non-involutory to avoid predictable differences at its two sides. Another
innovation within the QARMA design pertains to the introduction of a family of almost MDS
matrices defined over a ring with zero divisors. They allow to encode rotations in their
operation while maintaining the minimal latency associated with binary matrices. The
matrices used in QARMA are with the minimum and close to minimum fixed points for 64
and 128-bit versions, respectively. This property as well as suitable whitening keys around
the middle permutation makes it secure against the reflection attacks [13].

Similar to PRINCE and MANTIS, QARMA claims a k-bit time-data trade-off security, where
k is its key size, meaning that for any attack on QARMA, the product of time and data
complexities is less than 2k.

It is worth noting that the QARMA cipher has been the subject of various cryptanalysis
efforts, most of which in the related tweak model, including MITM attack [21, 22], statistical
saturation attack [23] and impossible differential attack [24, 25]. The only single-tweak
attack [21] is a 10-round MITM attack, but it fails to meet the time-data tradeoff threshold.
A review and discussion on the details of QARMA attacks, is provided in Sec. 5.2 of the
paper. The designer of QARMA has proposed some security bounds against the differential
attack by counting the minimum number of active S-Boxes using Mouha et al.’s MILP
search method [26]. However, the resistance of this cipher against the truncated differential
attack has not been evaluated, either by the designer or external cryptanalysts.

Contributions . This paper gives new insights into the theory of the -relatively less
discussed- truncated differential attack and adds a new dimension to the cryptanalysis
of QARMA by introducing the first valid single tweak truncated differential attack on both
versions of 10-round QARMA. The contributions of this paper are as follows:

• Extension of truncated differential attack theory: The paper extends the theory of
truncated differential attacks by providing a series of evidences and theorems, and
formulating the complexities of the truncated differential attack. It is also proved
that SPN ciphers with MDS MixColumn are resistant to this kind of attack.

• Discovering Optimal Truncated Differential Distinguishes for QARMA: The almost-MDS
property of the MixColumn matrix within the QARMA cipher renders it susceptible to
truncated differential analysis. Focusing this cipher, and by employing the automated
MILP-based method proposed in [7], the paper identifies the optimum 6 and 4-round
truncated differential distinguishers for QARMA family of ciphers.

• Attack on 10-round QARMA: Based on the identified distinguishers, the paper proposes
the first valid attacks on both versions of the 10-round QARMA cipher with respect
to the security claim trade-off given by the designer of QARMA; i.e. DT < 2k with
data and time complexities D and T and the key size k. The attack exploits some
evolved key-recovery methods based on list merging techniques and precomputation.

2 Theoretical Background
In this paper, we consider a block cipher E : Fn

2 × Fk
2 → Fn

2 , with an n-bit block and a
k-bit key. The input and output difference variables of E are denoted by ∆X and ∆Y ,
respectively.

Definition 1 (Differential Probability). For block cipher E, the differential probability of
the concrete input difference α ∈ F n

2 and output difference β ∈ F n
2 is defined as:

Prx,K(α E−→ β) = Prx,K(∆Y = β|∆X = α) = Prx,K [EK(x)⊕ EK(x⊕ α) = β] (1)
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Figure 1 goes here.
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Figure 1: A 9-round truncated differential characteristic for Skinny-64. The
probability of black(forward) direction is 2−40 and for red(backward) direction
is 2−56

Figure 2 goes here.
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Figure 2: Truncated diffrential attack framework

Figure 1: A 9-round truncated differential path for Skinny-64. The probability of black
(forward) direction is 2−40 and for red (backward) direction is 2−56

The differential (α E−→ β) is called an efficient distinguisher if Pr(α E−→ β)≫ 2−n.

Definition 2 (Truncated Differential Probability). For block cipher E, the truncated
differential probability with input truncated difference ∆in ⊆ F n

2 , and output truncated
difference ∆out ⊆ F n

2 , is defined as:

Prx,K(∆in
E−→ ∆out) = Prx,K(∆Y ⊆ ∆out|∆X ⊆ ∆in)

= Prx,K [EK(x)⊕ EK(x⊕ α) ∈ ∆out|α ∈ ∆in] (2)

Definition 3 (Efficient Truncated Differential). The truncated differential (∆in −→ ∆out)
is called efficient if it can distinguish cipher E from a Pseudo Random Permutation (PRP),
which holds if:

Pr(∆in
E−−→ ∆out) > Pr(∆in

P RP−−−→ ∆out) = |∆out|
2n

. (3)

Preposition 1. For block cipher E with concrete input-output differential pair (α, β), it
holds that:

Pr(α E−→ β) = Pr(β E−1

−−−→ α) (4)

Lemma 1. For block cipher E with truncated input-output differential pair (∆in, ∆out) it
holds that:

Pr(∆out
E−1

−−−→ ∆in) = Pr(∆in
E−→ ∆out)

|∆in|
|∆out|

(5)

Proof. By using Bayse theorem,

Pr(∆out
E−1

−−−→ ∆in) = Pr(∆X ⊆ ∆in|∆Y ⊆ ∆out)

= Pr(∆Y ⊆ ∆out|∆X ⊆ ∆in) Pr(∆X ⊆ ∆in)
Pr(∆Y ⊆ ∆out)

= Pr(∆in
E−→ ∆out)

|∆in|
|∆out|

(6)

where the last equality holds by assuming uniform distributions for ∆X and ∆Y .

Example 1. Fig. 1 shows a 9-round truncated differential distinguisher for Skinny-64
with the probability of 2−40 in the forward direction [7]. The reverse truncated differential
in the backward direction is depicted by red arrows, which has the probability of 2−56.
Note that this trail is consistent with Lemma 1, where |∆in| = 24 and |∆out| = 220 and
P (∆out

E−1

−−−→ ∆in) = 2−40 24

220 = 2−56.

Preposition 2. The truncated differential (∆in
E−→ ∆out) is efficient, iff (∆out

E−1

−−−→ ∆in)
is efficient.
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Proof.

(∆in
E−→ ∆out) is efficient ⇐⇒ Pr(∆in

E−→ ∆out) >
|∆out|

2n

(5)⇐=⇒ Pr(∆out
E−1

−−−→ ∆in) >
|∆in|

2n

⇐⇒ (∆out
E−1

−−−→ ∆in) is efficient. (7)

Definition 4 (Optimum Truncated Differential). The truncated differential (∆in
E−→ ∆out)

is called optimum if it is efficient and has the maximal P (∆in
E−→ ∆out)|∆in|.

Despite the concrete differential attack in which the data required for the distinguisher
is only proportional to the inverse of the differential probability [27], this is not the case
with the truncated differential distinguisher. This will be discussed more in Sec. 3.

Preposition 3. The differential (∆in
E−→ ∆out) is the optimum truncated differential for

E, iff (∆out
E−1

−−−→ ∆in) is the optimum one for E−1.

Proof. This proposition is proved by contradiction. Suppose that (∆out
E−1

−−−→ ∆in) is
not optimum. So, there is another efficient differential (U E−1

−−−→ V) such that P (U E−1

−−−→
V)|U | > P (∆out

E−1

−−−→ ∆in)|∆out|. By Lemma 1, it holds that:

P (U E−1

−−−→ V)|U | > P (∆out
E−1

−−−→ ∆in)|∆out|
P (V E−→ U)|V | > P (∆in

E−→ ∆out)|∆in| (8)

Eq. (8) means that (∆in
E−→ ∆out) is not the optimum truncated differential distinguisher

for E, which is a contradiction. The proof of the reverse direction is analogous to this
proof.

3 Truncated Differential Attack
Let (∆in

E−→ ∆out) be an rd-round truncated differential of probability 2−p for block cipher
E. As shown in Fig. 2, we extend ∆in in the backward direction for rin rounds to get the
difference Din and ∆out in the forward direction for rout rounds to get Dout, both with
probability 1. We denote |Dx| = 2dx and |∆x| = 2δx , where x ∈ {in, out}. According to
Def. 3, (∆in

E−→ ∆out) is an efficient distinguisher if

p < n− δout (9)

In the following, we formulate the parameters of the chosen plaintext attack constructed
over the truncated differential distingusher (∆in

E−→ ∆out).

Data Complexity. To generate the pairs required for the attack, we construct 2s structures
in plaintext, each of which is constant in non-active bits, and take all 2din values in active
bits of Din. So, each structure can generate about 22din−1 pairs with differences belonging
to Din.

Lemma 2. The probability that a pair with plaintext difference Din come up with a
difference ∆in after rin rounds is Pfilt = 2−(din−δin).



6 iacrtans class documentation

Figure 2: Truncated differential attack framework

Proof. We can assume the differential (∆in
E−1

−−−→ Din) for the first rin rounds of E in
backward direction, with probability 1. Applying Lemma 1 to this differential, yields:

Pr(Din
E−1

−−−→ ∆in) = Pr(∆in
E−1

−−−→ Din) |∆in|
|Din|

= 1 · 2δin

2din
= 2−(din−δin) (10)

Therefore, the number of total pairs required for the attack must be equal to (2−p ×
Pfilt)−1 = 2p+din−δin . This gives the number of required structure as 2s+2din−1 =
2p+din−δin which yields s = p − din − δin + 1. Finally, the data required for the attack
would be as follows.

D = 2s+din = 2p−δin+1 (11)

Note that to minimize the data complexity, it is necessary to minimize the value of p− δin,
which is consistent with the definition of the optimum distinguisher, given in Def. 4

Time Complexity. The probability that a differential pair with difference ∆in at round
rin have a difference belonging to Dout at the output is Psieve = 2−(n−dout). So, the total
number of sieved pairs supposed to be processed in the key recovery phase of the attack is
P = 2p−n+din+dout−δin , and the time complexity of the attack is:

T = (2p−δin+1 + 2p−δin+1 CS

CE
+ 2p−n+din+dout−δin

CKR

CE
)CE (12)

where CE , CS , and CKR are the time complexities of the encryption, the sieving step, and
the key recovery step, respectively.

The concrete differential attack is a symmetric attack, which means that if there is an
attack in the forward direction, there is also another one with the same main parameters,
using the reverse distinguisher in the backward direction [28]. In the following theorem,
we show that the same case is valid for the truncated differential attack.

Theorem 1. Suppose that there is a chosen plaintext truncated differential attack on block
cipher E based on the distinguisher (∆in

E−→ ∆out) of probability 2−p, with data complexity
D and the total sieved pairs P . we can construct a chosen ciphertext attack, using the
reversed truncated differential (∆in

E−1

←−−− ∆out), with the same data complexity D and total
sieved pairs P .
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Proof. Suppose that P (∆out
E−1

−−−→ ∆in) = 2−p′ . So, according to Lemma 1,

p′ = p− δin + δout (13)

This distinguisher is efficient if p′ < n− δin which, given (13), is equivalent to the efficiency
of the forward distinguisher (9). Suppose that we construct 2s′ structures in the output of
the cipher, each of which contains 2dout ciphertexts, that gives 22dout−1 pairs of ciphertexts.
So, the total number of pairs would be 2s′+2dout−1. The filtering probability from Dout

to ∆out is P ′
filt = 2−(dout−δout). So, the total pairs required for the attack is 2p′+dout−δout

which must be equal to 2s′+2dout−1. In this way, the total number of structures would be
obtained as 2s′ = 2p′−dout−δout+1. Therefore, the data complexity of the attack is

D′ = 2s′+dout = 2p′−δout+1 = 2p−δin+1 = D (14)

Finally, the sieving probability is P ′
sieve = 2−(n−din), and Total pairs after sieving is

P ′ = 2p′−n+din+dout−δout = 2p−n+din+dout−δin = P (15)

The time complexity of the attack mainly depends on D′ and P ′, as

T ′ = (D′ + D′ C ′
S

CD
+ P ′ C ′

KR

CD
)CD (16)

Note that the concrete differential attack can be regarded as a special case of truncated
differential attack, in which δin = δout = 0.

4 Potential Targets for Truncated Differential Attack
Truncated differential attacks are particularly effective on word-oriented Substitution-
Permutation Network (SPN) ciphers. While their efficiency remains unlinked to the
S-box specification, it becomes significantly reliant on the differential characteristics of the
MixColumn matrix. In the following, we present the general structure of a word-oriented
SPN cipher, a framework that has served as the foundation for various block cipher designs
including AES, MIDORI, SKINNY, QARMA, and CRAFT. Subsequently, we establish a theorem
that identifies a prerequisite condition for the effectiveness of the truncated differential
distinguisher.

Definition 5 (Word-oriented SPN cipher). The block cipher E, featuring an internal
state matrix of t× t of m-bit words, is called a word-oriented SPN cipher, if it undergoes
the following sequence of four operations in each round, in any order of execution:

• Subkey addition: XORs a subkey of size t2 m-bit words to the internal state.

• S-box: applies m-bit S-boxes to each m-bit word of the internal state, in parallel.

• Permutation: applies the word-wise permutation π on Zt2 within the internal state,
i.e. Y [i] = π(X[i]) = X[π(i)] for i ∈ 0, . . . , t2 − 1, where X[i] denotes the ith word
of the internal state. Here, every column of X[i] gets mapped to exactly to the t
columns of Y [i].

• MixColumn: multiplies matrix M to each column of the internal state, in parallel.
where, M is a t× t matrix M over Fm

2 .
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While MDS (Maximum Distance Separable) matrices do provide optimal diffusion for
the MixColumn operation, this constraint has been intentionally relaxed in several ciphers
to gain implementation advantages. In the next theorem, we show that an MDS MixColumn
matrix in the word-oriented SPN ciphers is a sufficient condition for provable security
against truncated differential attack.

Lemma 3 ([29]). Let M be an MDS t × t matrix over Fm
2 , and a, b are the input and

output truncated differential vectors x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], respectively.
It holds that:

Pr(yi = 0|x) =





1 x = 0
≈ 2−m x ̸= 0, Hw(x) + Hw(y) ≥ t + 1
0 Hw(x) + Hw(y) < t + 1

(17)

where Hw(·) is the truncated Hamming weight operator.

Theorem 2. There is no efficient truncated differential distinguisher for 3 rounds of a
word-oriented SPN cipher with an MDS MixColumn matrix.

Proof. Without loss of generality, we consider the order of operations as given in Def. 5.
Let Xi, Yi, and Zi be the truncated differences of the input state, input to MixCol, and
output of MixColumn for round i, respectively. Let’s denote the number of zero columns in
Zi as ci for i = 1, 2, 3, which is also equivalent to the number of zero columns in Yi. Each
column in Zi = Xi+1 = π−1(Yi+1) inherits at least ci+1 zero words from Zi+1. Therefore,
the count of zero words in Zi, excluding those within zero columns, is at least (t− ci)ci+1.
We use Pi to denote the truncated differential probability for round i. Considering the
uniform distribution of the MDS matrix output (as stated in Lemma 3), it holds that:

Pi ≤ 2−m((t−ci)ci+1) i = 1, 2 (18)

Let w3 denote the number of zero words of Z3, not belonging to a zero column so
P3 = 2−mw3 . Therefore, the probability of the truncated differential path would be
upper-bounded by P1P2P3 ≤ 2−m(tc2−c1c2+tc3−c2c3+w3). The probability of Z3 being the
truncated differential pattern of the output of a PRP is PP RP = 2−m(tc3+w3). To prove the
theorem, it suffices to show that the upper bound of P1P2P3 is less than or equal to PP RP ,
which holds if c2 = 0 or c1 + c3 ≤ t. In the former case, we have P1P2P3 ≤ 2−mw3 = PP RP ,
which proves the claim. In the latter, consider a nonzero column of Z2 and Y2, corresponding
to the MixColumn operation of round 2. This MixColumn matrix has at least c1 and c3
input and output zero words. Since the MixColumn matrix is MDS, it follows that c1 + c3
must be less than t, thereby completing the proof.

Theorem 2 implies that word-oriented SPN ciphers with non-MDS MixColumn matrices
would be potentially vulnerable to truncated differential attacks. This assertion is corrobo-
rated by observations made during truncated differential cryptanalysis of MIDORI, SKINNY,
and CRAFT [7], all of which use non-MDS MixColumn matrices. Within the QARMA family
of block ciphers, to avoid the expensive implementation of MDS matrices, an almost-MDS
matrix is selected as the MixColumn matrix. This motivated us to evaluate its security
against truncated differential attack, which is outlined in the following Sections.

5 Introduction of QARMA Block cipher family
QARMA is a family of lightweight tweakable block ciphers proposed in 2017 [17], fitting
to applications such as memory encryption, the generation of very short tags, and the
construction of keyed hash functions. This family of block ciphers has two versions:
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2 Specification of QARMA
2.1 General Definitions and Notation
The overall scheme of the TBC QARMA is depicted in Figure 1. There, and throughout
the paper, a bar over a function – e.g. F – denotes its inverse. QARMA is a three-round
Even-Mansour construction where the permutations are parameterized by a core key, and
the key mixings between rounds are derived from a whitening key. The first and third
permutations are functionally the inverse of each other and are further parameterized by a
tweak. The central permutation is designed to be easily inverted by means of a simple
transformation of the key.

The cipher is depicted in more detail in Figure 2. Both similarities and differences with
respect to previous designs can be clearly seen from the picture.

The keys k0, k1, w0, and w1 are derived from a master key K via a simple key
specialisation. The letters P , C and T denote the plaintext, the ciphertext and the tweak;
S represents a layer of sixteen m-bit S-Boxes, h and τ are permutations, M and Q are
MixColumns-like operations, with Q involutory, and ω is a LFSR.

Write n = 16m with m = 4 or 8. All n-bit values are represented as arrays of sixteen
m-bit cells. Cells are indexed in big endian order (hence, for QARMA-64, bits 63..60 are
contained in the zeroth cell, and bits 3..0 in in the fifteenth cell) while the bits inside a
cell are ordered in little endian order. Any array of sixteen cells is also viewed as a 4× 4
matrix, for instance, the internal state admits representations

IS = s0‖s1‖ · · · ‖s14‖s15 =




s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


 , (1)

so that 4 × 4 matrices operate column-wise on these values by left multiplication. The
plaintext is given as P = p0‖p1‖ · · · ‖p14‖p15, the tweak as T = t0‖t1‖ · · · ‖t14‖t15.

Figure 3: Overal scheme of QARMA [17]
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The overall scheme of the TBC QARMA is depicted in Figure 1. There, and throughout
the paper, a bar over a function – e.g. F – denotes its inverse. QARMA is a three-round
Even-Mansour construction where the permutations are parameterized by a core key, and
the key mixings between rounds are derived from a whitening key. The first and third
permutations are functionally the inverse of each other and are further parameterized by a
tweak. The central permutation is designed to be easily inverted by means of a simple
transformation of the key.

The cipher is depicted in more detail in Figure 2. Both similarities and differences with
respect to previous designs can be clearly seen from the picture.

The keys k0, k1, w0, and w1 are derived from a master key K via a simple key
specialisation. The letters P , C and T denote the plaintext, the ciphertext and the tweak;
S represents a layer of sixteen m-bit S-Boxes, h and τ are permutations, M and Q are
MixColumns-like operations, with Q involutory, and ω is a LFSR.

Write n = 16m with m = 4 or 8. All n-bit values are represented as arrays of sixteen
m-bit cells. Cells are indexed in big endian order (hence, for QARMA-64, bits 63..60 are
contained in the zeroth cell, and bits 3..0 in in the fifteenth cell) while the bits inside a
cell are ordered in little endian order. Any array of sixteen cells is also viewed as a 4× 4
matrix, for instance, the internal state admits representations

IS = s0‖s1‖ · · · ‖s14‖s15 =




s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


 , (1)

so that 4 × 4 matrices operate column-wise on these values by left multiplication. The
plaintext is given as P = p0‖p1‖ · · · ‖p14‖p15, the tweak as T = t0‖t1‖ · · · ‖t14‖t15.

Figure 4: The structure of QARMA [17]

QARMA-64 and QARMA-128. QARMA-64 has a 64-bit block size with a 128-bit encryption
key, while QARMA-128 has a 128-bit block size with a 256-bit key. The design of QARMA
was influenced by PRINCE [12] and MANTIS [14]. The cipher is intended for fully-unrolled
hardware implementations with low latency, such as memory encryption.

5.1 Specifications of QARMA-64 and QARMA-128
QARMA is an Even-Mansour cipher that uses three stages at the middle, and whitening keys
XORed in at the beginning and end of the cipher. The structure of this cipher is shown in
Fig. 3 and 4. For QARMA-n, n = 64 or 128, the data is split into 16 m-bit words, m = 4 or
8 respectively, arranged in a 4× 4 internal state matrix IS, which is shown as:

IS =




s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


 (19)

The key size of QARMA-n is 2n = 32m bits. The secret key K is divided into two halves of
length n-bit, K = w0||k0, and extends to k1 = k0 and w1 = (w0 ≫ 1)+(w0 ≫ (16m−1)).
For the sake of simplicity, in the rest of the paper, we refer to k0 as k, w0 as w, and w1 as
w′.

The tweak size of QARMA-n is n = 16m bits denoted as T = t0||t1||...||t15. The tweak
update function consists of a permutation h as well as an LFSR ω. The permutation h is ap-
plied as h(T ) = th(0)||th(1)||...||th(15) where h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11].
The LFSR ω updates the tweak words {t0, t1, t3, t4, t8, t11, t13} as (b3, b2, b1, b0) → (b0 ⊕
b1, b3, b2, b1) for m = 4 and (b7, b6, ..., b0)→ (b0 ⊕ b2, b7, ..., b1) for m = 8.

The Forward Round Function R(IS; tk) of QARMA-n is composed of the following layers:

1. AddRoundTweakey. The round tweakey tk is added to IS.
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2. ShuffleCells. For both versions of QARMA, the internal state IS is shuffled according
to the word permutation τ .




s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15




τ−→




s0 s11 s6 s13
s10 s1 s12 s7
s5 s14 s3 s8
s15 s4 s9 s2


 (20)

3. MixColumns. The MixColumns matrix Mm, which is multiplied by IS in QARMA-n is:

M4 =




0 ρ ρ2 ρ
ρ 0 ρ ρ2

ρ2 ρ 0 ρ
ρ ρ2 ρ 0


 , M8 =




0 ρ ρ4 ρ5

ρ5 0 ρ ρ4

ρ4 ρ5 0 ρ
ρ ρ4 ρ5 0


 (21)

which is defined over ring Rm = F2[X]/(Xm + 1), and the multiplication by the
image ρ of X in the ring Rm is just a simple circular left rotation of X. Mm is a
symmetric and involutive matrix, i.e. Mm = M⊤

m = M−1
m .

4. SubCells. A m-bit S-Box is applied to all words of IS in QARMA-n.

The ShuffleCells and MixColumns layers are omitted for the final round. The Backward
Round Function R̄(IS; tk) is the inverse of the forward round function R. The Pseudo-
Reflector function P(IS; tk) is positioned at the center of the cipher, which is

P = R̄(τ̄(k ⊕Qm(τ(R(IS))) (22)

where Qm = Mm, and the bar over a transformation denotes its inverse. Finally, the
(2r + 2)-round QARMAr-n is defined as R̄r(P(Rr(·))).

5.2 Security Claims and Attacks on QARMA
Time-Data Trade off for QARMA-n. The designer of QARMA has claimed that: Similarly to
MANTIS and PRINCE, for QARMA-64 and QARMA-128, with r = 7 and r = 11 respectively, we
claim that they attain n bits of tradeoff security. This statement means that any attack on
QARMA-n with data and time complexities D and T , is a valid attack as far as DT < 22n.

Number of rounds. For QARMA-64, r is chosen as 7, i.e. the total round of QARMA-64
would be 16 rounds. However, it is stated that the cipher is believed to be secure against
practical attacks already for r = 6, i.e. 14 rounds, with some use cases even allowing for
r = 5, i.e. 12 rounds. For QARMA-128, r is chosen as 11, i.e. the total round of QARMA-128
would be 24 rounds. However, it is stated that the cipher is believed to be secure against
practical attacks already for r = 8, i.e. 18 rounds.

Cryptanalysis history. Most of the cryptanalytic work on QARMA-64 and QARMA-128 is in
the related tweak model. In [22], the idea of two related tweaks in the MITM attacks
on 8 and 9 rounds of QARMA-64, along with a related tweak on 10 rounds of QARMA-128,
has been proposed. They are based on a 5-round MITM distinguisher demanding a δ-set
on tweak variables. For QARMA-64, the T D is 2106 and 2105, respectively, while QARMA-128
holds 2244. Li et al. in [23] proposed a new cryptanalytic method that can be seen
as a related-tweak statistical saturation attack by making a link between related-tweak
statistical saturation distinguishers and the tweak difference invariant bias. By applying
this approach, a related-tweak statistical saturation attack for 10-rounds of QARMA-64 and
an 11-round attack on QARMA-128 were obtained.
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Table 1: Summary of the external cryptanalysis of QARMA
Cipher Type Model Whitening Symmetry Rounds Time Data Memory Ref.

MITM RT Yes Yes 8 290 216 290 [22]
MITM RT Yes No 9 289 216 289 [22]

SS RT Yes Yes 10 259 259 229.6 [23]
QARMA-64 ID RT Yes No 10 2125.8 262 237 [30]

ID RT No No 11 269 258.38 263.38 [24]
MITM ST No No 10 2116 253 2116 [21]

TD ST Yes Yes 10 268.03 251.48 265.22 Sec. 6.2
MITM RT Yes Yes 10 2164.48 288 297 [24]
MITM RT Yes Yes 10 2156 288 2145 [22]

ID RT Yes No 10 2120.94 2104.02 294.50 [25]
ID RT No No 11 2137 2111.38 2120.38 [24]

QARMA-128 ID RT No No 11 2145.98 2102.54 2135.54 [25]
TDIB RT Yes No 11 2126.1 2126.1 271 [23]
MITM RT Yes No 12 2156.06 288 2154 [24]
MITM ST No No 10 2141.7 2105 2232 [21]

TD ST Yes Yes 10 2123.26 2104.36 2120.68 Sec. 6.3
MITM: Meet In the Middle ID: Impossible Differential
SS: Statistical Saturation TD: Truncated Differential
RT/ST: Related Tweak/Single Tweak TDIB: Tweak Difference Invariant Bias

In [24], two related-tweak impossible differential attacks on the 11 rounds of both
versions of QARMA, without whitening keys, a MITM attack on the 10 rounds of QARMA-128
with whitening keys, and 12 rounds of QARMA-128 with the whitening keys are proposed.
In[30] and [25], two related-tweak impossible differential attacks on QARMA-64 and QARMA-
128 are proposed, respectively. The former, which is a 10-round key recovery attack
with time and data complexity of 2125.8 and 262, violates the T D threshold claimed for
QARMA-64.The latter is an 11-round atack on QARMA-128 that omits the outer whitening
key with time complexity and data complexity of 2145.98 and 2102.54.

The only work in the single-tweak model is [21], which proposes 10-round MITM
attacks for both versions of QARMA. However, it does not meet the time-data tradeoff
threshold. For QARMA-64 the time complexity and data complexity were reported as 270

and 253 respectively, but its memory complexity, which is the lower bound of the time
complexity, is 2116. For QARMA-128, the time complexity and data complexity were 2141

and 2105 while, its memory complexity remains consistent at 2232. Hence, both of these
attacks do not satisfy the time-data tradeoff threshold and can not be considered as valid
attacks of QARMA.

A summary of all the attacks on reduced-round QARMA, along with the new attacks
presented in this paper, is given in Tab. 1.

6 Truncated Differential attack on QARMA-64 and QARMA-128
In this section, we present 10-round attacks on both versions of QARMA which are the best
valid attacks on this cipher in the single-tweak model. We first introduce the optimum
6-round truncated distinguisher for this cipher, then based on the 4 inner rounds of which,
we propose the 10-round key recovery attack.

6.1 6-round Truncated Distinguisher for QARMA-n
In order to find an appropriate truncated differential path, we use the MILP tool proposed
in [7] to efficiently automate the search process. In this method, the only thing that needs
to be modeled is the Differential Branching Table (DBT) of MixColumns’s matrix Mm,
which is given in Appendix A for m = 4 and 8.

In [7], an approximated DBT is employed due to its simplicity. In this approach, all
the transition probabilities of DBT table are rounded to the nearest power of 2−m. For
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DBT of M4 and M8, we compute more accurate values for transition probabilities and,
due to the relatively wide range of probability values, we use the method given in [5] for
MILP modeling of the DBT. We assume independent and uniformly distributed variables
for the output differences of the active Sboxes. This assumption has been challenged
in [8], where an improved method for computing the precise truncated differential trail
probability is proposed. This method counts all the concrete differential trails consistent
with the truncated path into account, using an efficient proposed algorithm. This method
yet being the most accurate approach, needs the truncated path as an input, so it can not
be utilized as a search method for finding the optimum path, but can be used to refine
the probability of the truncated path, after finding it by a search tool like [7]. However,
based on the values reported in [8], the gap between the approximated method [7] and the
precise method [8] is not too much.

To find the optimum truncated differential path, according to Def. 4, we set the
objective function to minimize p− δin, and to ensure that the returned path is an efficient
one, according to Def. 3, we add the constraint p ≤ n− δout to the model.

6-round distinguishers. We searched for the longest optimum truncated differential
distinguisher for the middle part of QARMA-n and found a set of 16 distinguishers covering
R̄2(P(R2(·))), for both QARMA-64 and QARMA-128. These distinguishers covers 6 full R
(or R̄), though seven {ShuffleCells + MixColumns} layers are involved in. They are as
follows:

τ̄(M(a · ei))
R̄2(P(R2(·)))−−−−−−−−→

2−p
τ̄(M(b · ei)), a, b ∈ Fm

2 /{0}, i = 0, . . . , 15 (23)

where a ·ei is the 4× 4 matrix whose ith element is a, while all other elements are zero. All
the 16 paths given in (23) exhibit a reflective pattern and share the following parameters:
For QARMA-64, p = 51.8, δin = 4, and δout = 4, and for QARMA-128, p = 108.77, δin = 8, and
δout = 8. For example, for i = 4, we have the following distinguisher for QARMA-64, which
is shown in Fig. 5.




aρ 0 0 0
0 aρ 0 0
0 0 0 0
0 0 0 aρ2




R̄2(P(R2(·)))−−−−−−−−→
2−51.8




bρ 0 0 0
0 bρ 0 0
0 0 0 0
0 0 0 bρ2


 (24)

Note that even though the output of these distinguishers has 3m bits of active words,
δout = m. This is because the three output nibbles are interdependent, as demonstrated
in (24), for instance. To investigate the clustering effect for possible improvement in the
probability, we fixed the optimum (∆in, ∆out) in the MILP model and searched for other
possible paths with the same input and output truncated differences. However, we found
that there is no other path.

4-round distinguishers. The first and last rounds of transitions in the paths given in (23)
are deterministic. So, if we omit these two rounds, we come up with a series of 4-round
totally reflective distinguishers with the same probability, which is as follows.

a · ei
R̄(P(R(·)))−−−−−−−→

2−p
b · ei (25)

where p = 51.8 and 108.77 for QARMA-64 and QARMA-128, respectively. An example of this
distinguisher has been shown in Fig. 5, being differentiated from the 6-round distinguisher
in red. In the next subsection, we use these 4-round paths as the underlying distinguisher
for the proposed key recovery attacks.
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Figure 5: A 6-round truncated differential distinguisher for QARMA-64 and QARMA-128 with
probability P = 2−51.8 and 2−108.77, respectively. The red part is the 4-round path with
the same probabilities.

6.2 Key Recovery Attack on QARMA-64
We first present the main attack procedure on QARMA-64, by which its key space is reduced
by a factor of about 210. Then, we use it repeatedly to realize a full key recovery attack,
satisfying the T D trade-off threshold.

6.2.1 Reducing the Key Space

We use an equivalent representation of QARMA-64, in which the AddRoundTweakey layer
of all rounds, except for the first and last rounds, are replaced by an equivalent key
u = MC(τ(k)) XORed in after (before) the MixColumn layer in the forward (backward)
round functions. We use the 4-round distinguisher given in (25) of probability 2−51.8 for
i = 4, which is shown in Fig. 5, omitting the first and last rounds of the 6-round path. We
extend this distinguisher for three rounds in each direction, resulting in a 10-round attack.
This attack is shown in Fig. 6. For simplicity in this figure, we have omitted the tweaks,
the constants ci and also α.

The propagation of active nibbles in the upper and lower parts is exactly the same.
This causes all subkeys k or u involved in the attack to be the same in the upper and
lower parts. The resulting differences in plaintext and ciphertext are active over the same
nibbles, and finally din = dout = 36.

Precomputation Phase. We will use the linear relations in the subkey bits to compute a
precomputation table to reduce the time complexity of the attack by reducing the number
of subkey bits guessed during the attack steps.

Thanks to the key schedule and the linear description of subkey bits involved in the
attack given in Appendix B, we have the following linear relations between the subkey
bits of (w ⊕ k), u and (w′ ⊕ k):

(w′⊕k)[4]3+(w′⊕k)[11]2+(w′⊕k)[14]2 = (w⊕k)[4]2+(w⊕k)[11]1+(w⊕k)[14]1+u[5]1,4,

(w′⊕k)[4]4+(w′⊕k)[11]3+(w′⊕k)[14]3 = (w⊕k)[4]3+(w⊕k)[11]2+(w⊕k)[14]2+u[5]1,2,

(w′⊕k)[4]2,3,4+(w′⊕k)[11]4+(w′⊕k)[14]4 = (w⊕k)[4]1,2,3+(w⊕k)[11]3+(w⊕k)[14]3+u[5]2,3.

Thus if we guess the 212 possible values of (w ⊕ k)[4,11,14], the 24 possible values of
u[5], the 24 possible values of (w′ ⊕ k)[4], and the 224 possible values of (C, C ′)[4, 11, 14],
we would be able to compute (w′ ⊕ k)[11] and (w′ ⊕ k)[14], according to Step 1 of the
attack below. Then, the three linear relations between the subkey bits apply a 3-bit
filter on (w′ ⊕ k)[4] and only two possible values of (w′ ⊕ k)[4] remain for each triplet of
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((w ⊕ k)[4, 11, 14], u[5], (C, C ′)[4, 11, 14]). We can now compute a precomputation table of
the values of (w′ ⊕ k)[4] for each possible ((w ⊕ k)[4, 11, 14], u[5], (C, C ′)[4, 11, 14]). Thus
we have a size 241 precomputation table of the 2 possible values of (w′ ⊕ k)[4] for each of
the 240 possible values of ((w ⊕ k)[4, 11, 14], u[5], (C, C ′)[4, 11, 14]).

Similarly, we can compute the same precomputation table for the values of (w′ ⊕ k)[5]
and (w′ ⊕ k)[7].

Generating Pairs. We follow the process discussed in Sec. 3 to accurately determine the
data required for the attack. Each structure contains 236 plaintexts, which are constant
in the 7 non-active nibbles {0,1,2,3,6,9,12}, and take all possible values in the other
nibbles. Since none of the differential pairs should share similar values in the active nibbles,
the total number of pairs in each structure is 1

2 (24(24 − 1))9 = 270.16. According to the
differential branch table of M4, that can be found in Appendix A, the filtering probability
is PF ilt = (2−7.81)4 = 2−31.25, because of the three column transitions in the first MixCol,
and the one in the second. It must be held that 2s+70.16 = 251.8+31.25 which gives s = 12.9.
Therefore, the data required for the attack is 2s+36 = 248.9. Finally, the probability of
sieving the ciphertext pairs is Psieve = (2−4)7 × ( 15

16 )9 = 2−28.84, and the total number of
pairs after sieving is 2s+70.16−28.84 = 254.22.

Attack Steps. For each of the 254.22 candidate pairs, in order to verify which keys would
allow to follow the differential path, the following steps are performed:

1. We first guess the nibble (w ⊕ k)[4] which implies the pair of values in X1[4]. The
MixColumn transition to column two in Y1 implies that ∆X1[11] = ∆X1[14] =
ρ−1∆X1[4]. On the other hand, we know the differences in nibbles X0[11] and X0[14]
in the input of the S-box as they are given by the plaintext.
There is a 2−pn probability of having a possible transition through the DDT and
for each transition 2pn values make it possible. Thus, on average we associate one
value of the nibbles (w ⊕ k)[11,14], per pair and per guess of (w ⊕ k)[4]. The time
complexity of this step is 254.22 × 24 = 258.22.

2. We guess the nibble u[5] to be able to use the precomputation table. Since we have
P and P ′, we already have the needed bits of the ciphertexts, i.e. (C, C ′)[4,11,14].
Thus we can read on the precomputation table the 2 possible values of (w′ ⊕ k)[4]
and compute as in step 1, the value of (w′ ⊕ k)[11] and (w′ ⊕ k)[14]. The time
complexity after this step is 258.22 × 24 × 2 = 263.22.

3. Since we guessed u[5], we can compute the pairs of values in Y8[5], and consequently
X8[5]. Due to the linear relation imposed by the MixCol matrix, it holds that
∆Z7[4] = ρ−1∆X8[5]. Thanks to the reflective structure of the cipher, the same
conditions apply to the upper part and we can compute ∆Z2[4] = ρ−1∆X2[5].

4. We repeat Steps 1,2 and 3 with ((w′ ⊕ k)[5], u[0]) and ((w′ ⊕ k)[7], u[15]). The time
complexity is now 3× 263.22 = 264.82.

5. We now have to match the three different candidates subkey bits we computed. For
this, we will merge the list of the 29 differences (∆1Z2[4], ∆1Z7[4]) computed in Step
3 using u[5], the list of the 29 differences (∆2Z2[4], ∆2Z7[4]) computed in Step 3
using u[0] and the list of the 29 differences (∆3Z2[4], ∆3Z7[4]) computed in Step 3
using u[15].
There is 28 possible values for the differences (∆iZ2[4], ∆iZ7[4]) , i = 1, 2, 3, therefore
for each of the 29 possible values of ((w⊕k)[4,11,14], u[5], (w′⊕k)[4]), there is 29

28 = 2
values of ((w ⊕ k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15]) which will match. Similarly,
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for each of the two values of ((w ⊕ k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15]), there will
be two matches in the list of differences (∆3Z2[4], ∆3Z7[4]) thus there will be
2 values of ((w ⊕ k)[7,8,13], u[15], (w′ ⊕ k)[7,8,13]) for each of the 2 values of
((w ⊕ k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15]).
Thus for each of the 29 guesses of ((w ⊕ k)[4,11,14], u[5], (w′ ⊕ k)[4,11,14]) we
match two sets of subkey bits candidates ((w ⊕ k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15])
and for each of those two sets we match two sets of subkey bits candidates of
((w⊕k)[7,8,13], u[15], (w′⊕k)[7,8,13]). So overall, we get 254.22×29×2×2 = 265.22

candidate triplets (P, P ′, information bits of key).

The information bits of subkeys involved in the attack have linear representations in key
bits w and k, which are shown in Tab. 4 of Appendix B. The resulting linear system
of equations has 84 equations (each corresponds to a guessed/implied subkey bit in the
attack) in 77 variables (w and k bits), and its rank is 75. This means that the remaining
triplets give 265.22 possible values for 75 key bits, hence reducing the space for about 9.78
bits.

6.2.2 Recovering the Whole Key

If we repeat the attack steps once again with a new set of data, the data and time
complexity will increase by a factor of 2, each. But, the key space is reduced by a factor of
29.78. So, the remaining candidate keys will become 265.22−9.78 = 255.44.

In general, the time complexity of repeating the attack for N times is 265.22 ×N , and
the complexity of the exhaustive search of the remaining key bits is 2128−9.78N , so the time
complexity would be 2128−9.78N + 265.22 ×N , which is minimized at N = 7. All in all, the
time, data, and memory complexities of the attack are:

D = 7× 248.9 = 251.48

T = 265.22 × 7 + 2128−9.78×7 = 268.03 (26)
M = 265.22

T D = 2119.74 < 2128. (27)

6.3 Key Recovery Attack on QARMA-128
The attack on QARMA-128 shares many similarities with QARMA-64 and uses the same 4-round
pattern for truncated distinguisher with probability 2−108.77. Therefore, in this section,
we will focus on highlighting the distinctions between them to avoid repeating the details
already discussed.

Precomputation Phase. For QARMA-128, we also have linear relations in the subkey bits
which are used in the precomputation phase of the attack. Based on the linear description
of subkey bits involved in the attack given in Appendix B, we have the following linear
relations between the subkey bits of (w ⊕ k), u and (w′ ⊕ k):

(w′⊕k)[4]2 +(w′⊕k)[11]3 +(w′⊕k)[14]7 = (w⊕k)[4]1 +(w⊕k)[11]2 +(w⊕k)[14]6 +u[5]5,6

(w′⊕k)[4]3 +(w′⊕k)[11]4 +(w′⊕k)[14]8 = (w⊕k)[4]2 +(w⊕k)[11]3 +(w⊕k)[14]7 +u[5]6,7

(w′⊕k)[4]4+(w′⊕k)[11]5+(w′⊕k)[14]2...8 = (w⊕k)[4]3+(w⊕k)[11]4+(w⊕k)[14]1...7+u[5]7,8

(w′⊕k)[4]5 +(w′⊕k)[11]6 +(w′⊕k)[14]2 = (w⊕k)[4]4 +(w⊕k)[11]5 +(w⊕k)[14]1 +u[5]1,8

(w′⊕k)[4]6 +(w′⊕k)[11]7 +(w′⊕k)[14]3 = (w⊕k)[4]5 +(w⊕k)[11]6 +(w⊕k)[14]2 +u[5]1,2

(w′⊕k)[4]7 +(w′⊕k)[11]8 +(w′⊕k)[14]4 = (w⊕k)[4]6 +(w⊕k)[11]7 +(w⊕k)[14]3 +u[5]2,3
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(w′⊕k)[4]8+(w′⊕k)[11]2...8+(w′⊕k)[14]5 = (w⊕k)[4]7+(w⊕k)[11]1...7+(w⊕k)[14]4+u[5]3,4

Thus if we guess the 224 possible values of (w ⊕ k)[4,11,14], the 28 possible values of
u[5], the 28 possible values of (w′ ⊕ k)[4], and the 248 possible values of (C, C ′)[4, 11, 14]
to be able to compute (w′ ⊕ k)[11] and (w′ ⊕ k)[14], as in Step 1 of the attack. Then,
the seven linear relations between the subkey bits apply a 7-bit filter on (w′ ⊕ k)[4]
and only two possible values of (w′ ⊕ k)[4] remain for each triplet of ((w ⊕ k)[4, 11, 14],
u[5], (C, C ′)[4, 11, 14]). We can now compute a precomputation table of the values of
(w′ ⊕ k)[4] for each possible ((w⊕ k)[4, 11, 14], u[5], (C, C ′)[4, 11, 14]). Thus we have a size
281 precomputation table of the 2 possible values of (w′ ⊕ k)[4] for each of the 280 possible
values of ((w ⊕ k)[4, 11, 14], u[5], (C, C ′)[4, 11, 14]).

Similarly, we can compute the same precomputation table for the values of (w′ ⊕ k)[5]
and (w′ ⊕ k)[7].

Generating Pairs. Each structure contains 29m = 272 plaintexts, which are constant
in 7 non-active words, taking all possible values in the other words. The total number
of pairs in each structure is 1

2 (2m(2m − 1))9 = 2142.94. The filtering probability is
PF ilt = (2−15.99)4 = 2−63.96. It must be held that 2s+142.94 = 2108.77+63.96 which gives
s = 29.78. Therefore, the data required for the attack is 2s+72 = 2101.78. Finally, the
probability of sieving the ciphertext pairs is Psieve = (2−8)7 × ( 255

256 )9 = 2−56.05, and the
total number of pairs after sieving is 2s+127.95−56.05 = 2101.68.

Attack Steps. Since the attack steps is very similar to QARMA-64’s, which are performed
for each of the 2101.68 pairs of data. In the following, we just report the time complexity
of each step.

1. The time complexity of this step is 2101.68 × 28 = 2109.68.

2. The time complexity after this step is 2109.68 × 28 × 2 = 2118.68.

3. In this step, it should hold that ∆Z7[4] = ρ−5∆X8[5] and ∆Z2[4] = ρ−5∆X2[5].

4. After repeating Steps 1,2 and 3 with ((w′ ⊕ k)[5], u[0]) and ((w′ ⊕ k)[7], u[15]), the
time complexity is now 3× 2118.68 = 2120.26.

5. The three different candidate subkey bits should be matched by merging the list of
the 217 differences (∆iZ2[4], ∆iZ7[4]), 1 ≤ i ≤ 3, computed in Step 3 using u[5], u[0],
and u[15].
Thus for each of the 217 guesses of ((w ⊕ k)[4,11,14], u[5], (w′ ⊕ k)[4,11,14]) we
match two sets of subkey bits candidates ((w ⊕ k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15])
and for each of those two sets we match two sets of subkey bits candidates of
((w ⊕ k)[7,8,13], u[15], (w′ ⊕ k)[7,8,13]). So overall, we get 2101.68 × 217 × 2× 2 =
2120.68 candidate triplets (P, P ′, information bits of key).

The linear representations of the information bits of subkeys involved in the attack in key
bits w and k are shown in Tab. 5 of Appendix B. The resulting linear system of equations
has 168 equations in 149 variables, with rank 147. This means that the remaining triplets
give 2120.68 possible values for 147 key bits, hence reducing the space for about 26.32 bits.

6.3.1 Recovering the Whole Key

The time complexity of repeating the attack N times is 2101.78 ×N , and the complexity
of the exhaustive search of the remaining key bits is 2256−26.32N , so the time complexity



18 iacrtans class documentation

would be 2256−26.32N + 2120.68 × N , which is minimized at N = 6. All in all, the time,
data, and memory complexities of the attack are:

D = 6× 2101.78 = 2104.36

T = 2256−26.32×6 + 2120.68 × 6 = 2123.26

M = 2120.68

T D = 2227.62 < 2256. (28)

7 Conclusion
We have generalized and provided some new insight on truncated differential attacks, and
we hope these results will be usefull for future research. We have analyszed the QARMA [17]
block cipher proposed in 2017, with respect to truncated differential attacks and have
been able to propose the best known attacks on this cipher, that reach up to 10 rounds
and break the security claims of these reduced versions proposed by the designers (unlike
the previous known attacks on 10-round QARMA that had a complexity higher than the
security claims). For reaching this attacks we provide some new truncated distinguishers
and an improved and dedicated key-recovery part, based on list merging techniques and
precomputation, that allows to greatly reduce the time complexity.
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A Differential Branch Tables for QARMA-64/128
Tables 2 and 3 show the Differential Branch Table (DBT) for QARMA-64/128 MixColumn
Matrix M . whose entry (a, b) reflects the base-2 logarithm of P (a M−→ b), the transition
probability of matrix M (and Q), for the input and output truncated differential vectors
a = [a3, a2, a1, a0]⊤ and b = [b3, b2, b1, b0]⊤, respectively. The impossible transitions are
shown by a "-".

DBT (a, b) = log2(Prx{Hw(M · x) = b|Hw(x) = a}) (29)

where Hw(·) is the truncated Hamming weight operator.
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Table 2: DBT for QARMA-64 MixColumn Matrix M4

in/out 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 0 - - - - - - - - - - - - - - -

0x1 - - - - - - - - - - - - - - 0 -

0x2 - - - - - - - - - - - - - 0 - -

0x3 - - - -6.229 - - - -4.229 - - - -4.229 - - - -0.184

0x4 - - - - - - - - - - - 0 - - - -

0x5 - - - - - -3.907 - - - - - - - - - -0.099

0x6 - - - - - - -6.229 -4.229 - - - - - - -4.229 -0.184

0x7 - - - -8.135 - - -8.135 -4.181 -7.814 - - -4.091 - -4.006 -4.091 -0.408

0x8 - - - - - - - 0 - - - - - - - -

0x9 - - - - - - - - - -6.229 - -4.229 - -4.229 - -0.184

0xa - - - - - - - - - - -3.907 - - - - -0.099

0xb - - - -8.135 -7.814 - - -4.091 - -8.135 - -4.181 - -4.091 -4.006 -0.408

0xc - - - - - - - - - - - - -6.229 -4.229 -4.229 -0.184

0xd - - -7.814 - - - - -4.006 - -8.135 - -4.091 -8.135 -4.181 -4.091 -0.408

0xe - -7.814 - - - - -8.135 -4.091 - - - -4.006 -8.135 -4.091 -4.181 -0.408

0xf - - - -7.998 - -7.913 -7.998 -4.314 - -7.998 -7.913 -4.314 -7.998 -4.314 -4.314 -0.368
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Table 3: DBT for QARMA-128 MixColumn Matrix M8

in/out 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 0 - - - - - - - - - - - - - - -

0x1 - - - - - - - - - - - - - - 0 -

0x2 - - - - - - - - - - - - - 0 - -

0x3 - - - -14.404 - - - -8.011 - - - -8.011 - - - -0.011

0x4 - - - - - - - - - - - 0 - - - -

0x5 - - - - - -7.994 - - - - - - - - - -0.005

0x6 - - - - - - -14.404 -8.011 - - - - - - -8.011 -0.011

0x7 - - - -16.007 - - -16.007 -8.011 -15.99 - - -8.06 - -8 -8.006 -0.022

0x8 - - - - - - - 0 - - - - - - - -

0x9 - - - - - - - - - -14.404 - -8.011 - -8.011 - -0.011

0xa - - - - - - - - - - -7.99 - - - - -0.005

0xb - - - -16.007 -15.99 - - -8.006 - -16.007 - -8.011 - -8.006 -8 -0.022

0xc - - - - - - - - - - - - -14.404 -8.011 -8.011 -0.011

0xd - - -15.99 - - - - -8 - -16.007 - -8.006 -16.007 -8.011 -8.006 -0.022

0xe - -15.99 - - - - -16.007 -8.006 - - - -8 -16.007 -8.006 -8.011 -0.022

0xf - - - -16 - -15.995 -16 -8.017 - -16 -15.995 -8.017 -16 -8.017 -8.017 -0.022
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B Linear description of Subkey bits
The information bits guessed/implied during the attack have linear representations in key
bits w and k which are shown in Tab. 4 and Tab. 5. In this paper the bit indices are
arranged according to the following patterns. For QARMA-64




x0 . . . x3 x4 . . . x7 x8 . . . x11 x12 . . . x15
x16 . . . x19 x20 . . . x23 x24 . . . x27 x28 . . . x31
x32 . . . x35 x36 . . . x39 x40 . . . x43 x44 . . . x47
x48 . . . x51 x52 . . . x55 x56 . . . x59 x60 . . . x63


 , (30)

and for QARMA-128



x0 . . . x7 x8 . . . x15 x16 . . . x23 x24 . . . x31
x32 . . . x39 x40 . . . x47 x48 . . . x55 x56 . . . x63
x64 . . . x71 x72 . . . x79 x80 . . . x87 x88 . . . x95
x96 . . . x103 x104 . . . x11 x112 . . . x119 x120 . . . x127


 . (31)
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