
High-precision RNS-CKKS on fixed but smaller word-size
architectures: theory and application∗

Rashmi Agrawal

rashmi.agrawal@intel.com

Intel Labs

Jung Ho Ahn

gajh@snu.ac.kr

Seoul National University

Flavio Bergamaschi

flavio@intel.com

Intel Labs

Ro Cammarota

rosario.cammarota@intel.com

Intel Labs

Jung Hee Cheon

jhcheon@snu.ac.kr

Seoul National University

CryptoLab Inc.

Fillipe D. M. de Souza

fillipe.souza@intel.com

Intel Labs

Huijing Gong

huijing.gong@intel.com

Intel Labs

Minsik Kang

kaiser351@snu.ac.kr

Seoul National University

Duhyeong Kim

duhyeong.kim@intel.com

Intel Labs

Jongmin Kim

jongmin.kim@snu.ac.kr

Seoul National University

Hubert de Lassus

hubert.de.lassus@intel.com

Intel Labs

Jai Hyun Park

jhyunp@snu.ac.kr

Seoul National University

Michael Steiner

michael.steiner@intel.com

Intel Labs

Wen Wang

wen.wang@intel.com

Intel Labs

ABSTRACT
A prevalent issue in the residue number system (RNS) variant of

the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption (HE)

scheme is the challenge of efficiently achieving high precision on

hardware architectures with a fixed, yet smaller, word-size of bit-

length𝑊 , especially when the scaling factor satisfies logΔ >𝑊 .

In this work, we introduce an efficient solution termed composite

scaling. In this approach, we group multiple RNS primes as 𝑞ℓ :=∏𝑡−1

𝑗=0
𝑞ℓ, 𝑗 such that log𝑞ℓ, 𝑗 < 𝑊 for 0 ≤ 𝑗 < 𝑡 , and use each

composite 𝑞ℓ in the rescaling procedure as ct ↦→ ⌊ct/𝑞ℓ ⌉. Here,
the number of primes, denoted by 𝑡 , is termed the composition

degree. This strategy contrasts the traditional rescaling method in

RNS-CKKS, where each 𝑞ℓ is chosen as a single logΔ-bit prime, a

method we designate as single scaling.

To achieve higher precision in single scaling, where logΔ >𝑊 ,

one would either need a novel hardware architecture with word

size𝑊 ′ > logΔ or would have to resort to relatively inefficient

solutions rooted in multi-precision arithmetic. This problem, how-

ever, doesn’t arise in composite scaling. In the composite scaling

approach, the larger the composition degree 𝑡 , the greater the preci-

sion attainable with RNS-CKKS across an extensive range of secure

parameters tailored for workload deployment.

We have integrated composite scaling RNS-CKKS into both

OpenFHE and Lattigo libraries. This integration was achieved via a

concrete implementation of the method and its application to the

∗
This research was, in part, funded by the Defense Advanced Research Projects

Agency (DARPA) through contract HR0011-21-3-0003. The views, opinions, and find-

ings expressed are those of the authors and should not be interpreted as representing

the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited).

most up-to-date workloads, specifically, logistic regression train-

ing and convolutional neural network inference. Our experiments

demonstrate that single and composite scaling approaches are func-

tionally equivalent, both theoretically and practically.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures;

KEYWORDS
Fully Homomorphic Encryption; High-precision CKKS; Fixed-word

Size Architecture; Composite Scaling

1 INTRODUCTION
CKKS [13] is a fully homomorphic encryption (FHE) scheme that

supports fixed-point arithmetic operations on real and complex

numbers while they are encrypted. It is widely adopted in vari-

ous fields, especially for real-world privacy-preserving applications

including, but not limited to machine learning. Leading FHE li-

braries [2, 28, 33] implement a full-RNS variant of CKKS (referred

to as RNS-CKKS) [12]. This variant expresses each polynomial over

super-large modulus as a vector of multiple polynomials over small

moduli. Since all operations in RNS-CKKS are done with these

small modulo spaces, it offers a significant computational efficiency

advantage compared over the basic CKKS scheme.

In RNS-CKKS, several algorithmic modifications differentiate it

from the basic CKKS, leading to a distinct precision analysis com-

pared to basic CKKS version. Specifically, the basic CKKS features

a homomorphic operation called Rescaling. This operation divides

1

the ciphertext by 1/Δ, where the CKKS parameter Δ > 0 - known

as scaling factor - determines the initial bit precision. In contrast,

RNS-CKKS replaces this procedure with division by a prime 𝑞𝑖
instead of Δ. To attain precision comparable to the basic CKKS,

Cheon et al. [12] suggests to set 𝑞𝑖 to closely approximate Δ. This
approach is particularly logical when the scaling factor Δ is smaller

than the word size (𝑊). In such cases, each 𝑞𝑖 can be set as an ap-

propriate logΔ-bit prime. However, for high-precision arithmetic

in RNS-CKKS, where Δ may exceed the word size, the solution

proposed in [12] might fall short. This is because each prime would

surpass the given word size.

As diverse RNS-CKKS applications are being actively developed,

both in the literature and practice, progressively higher precision is

required for RNS-CKKS over time to support applications such as

machine learning training andmulti-resolution imaging. There exist

two different approaches to implement high-precision RNS-CKKS

on a fixed, small word-size architecture. The first approach is in

software [20], wherein we can use multi-precision arithmetic with

the base of a given word size (say 2
32
) to emulate an implementation

with a larger word size (say 2
64
). The second approach is to leverage

the modular arithmetic circuit design principles, wherein one can

compose the existing functional units to larger word-size functional

units by assuming that composition arithmetic units are possible in

the target architecture [1]. For example, a 64-bit modular multiplier

can be realized by composing two 32-bit modular multipliers.

In this work, we pose and solve the following problem, which is a

common issue for all FHE libraries implementing RNS-CKKS: How
can we efficiently achieve higher-precision fully homomorphic encryp-
tion (FHE) for fixed and smaller bit-length architectures? Moreover,

the precision vs. performance trade-off has never been fully inves-

tigated until now. To succinctly perform this investigation, we first

need to describe a way to implement high-precision RNS-CKKS on

a given fixed but small word-size architecture. We choose𝑊 = 32

bit, although our technique holds for any fixed bit-length, including

classic power of two, e.g.,𝑊 = 64 and crafted word sizes [23]. To

this end, we first describe a more general approach, a.k.a. composite
scaling. Then we address the challenges algorithmically while con-

tinuing to use the fixed, small word-size architectures. In composite

scaling, we can group multiple RNS primes and use their product

as scaling factor Δ in RNS-CKKS. We define the number of primes

that are grouped together as the composition degree. The achievable
precision in RNS-CKKS is directly proportional to the composition

degree, as higher the composition degree, higher is the precision

that can be achieved. Moreover, the composite scaling approach

allows to trade-off precision for performance on fixed word-size

architectures for a range of applications with different precision

requirements without compromising security.

We enable composite scaling RNS-CKKS in the OpenFHE [2] and

LattiGo [28] libraries through the concrete implementation of the

method and known-to-date workloads, namely logistic regression

training using the 2014 US Infant Mortality dataset, and convolu-

tional neural network inference using the CIFAR-10 dataset. We

illustrate through experiments that single and composite scaling

are equivalent in terms of precision loss during homomorphic com-

putation including bootstrapping, not only in theory but also in

practice.

Table 1: Key CKKS notations and parameters.

Notation Description

ct Ciphertext.

swk Key-switching key.

𝑛 Length of a vector message, 𝑛 ≤ 𝑁
2
.

𝑁 Degree of power-of-two, # (number) of coefficients in a poly-

nomial.

R𝑞 R𝑞 = R/𝑞R for an integer 𝑞, where R denotes the cyclo-

tomic ring Z[𝑋]/⟨𝑋𝑁 + 1⟩.
∥ · ∥can∞ Canonical embedding norm for elements in R[𝑋]/⟨𝑋𝑁 +1⟩.

A formal definition is provided in [13].

ℎ Hamming weight of the ternary secret 𝑠 ∈ {0,±1}𝑁 [𝑋]
from a secret key distribution 𝜒key over R.

𝜎 Standard deviation of an error distribution 𝜒err over R.
Δ Scale multiplied by the message during encryption.

ℓ (Current) ciphertext level for 0 ≤ ℓ ≤ 𝐿, where 𝐿 denotes

the largest level.

𝑄ℓ A modulus at the ℓ-level with𝑄ℓ =
∏ℓ
𝑖=0
𝑞𝑖 , where each 𝑞𝑖

corresponds to one level. A top-level modulus𝑄𝐿 is simply

denoted as𝑄 .

𝑞𝑖 One level in modulus𝑄 =
∏𝐿
𝑖=0
𝑞𝑖 .

𝑞ℓ,𝑗 Each RNS prime composing one level 𝑞ℓ =
∏𝑡−1

𝑗=0
𝑞ℓ,𝑗 .

𝑡 # of RNS primes in a composite level 𝑞ℓ .

𝑃 Auxiliary modulus used for key-switching in R𝑃𝑄 .

𝑝𝑖 Each RNS prime in modulus 𝑃 =
∏𝐾−1

𝑖=0
𝑝𝑖 .

𝐾 # of RNS primes 𝑝𝑖 ’s composing 𝑃 .

dnum Decomposition number of the modulus𝑄 =
∏dnum−1

𝑖=0
�̃� 𝑗 .

𝛼 # of the factors in each partial product �̃� 𝑗 =
∏(𝑗+1)𝛼−1

𝑖=𝑗𝛼
𝑞𝑖

satisfying 𝛼 = (𝐿 + 1)/dnum.

𝑄 ′ Modulus left after bootstrapping.

𝑊 Word size (bits).

2 BACKGROUND
We introduce the basic formulation of CKKS. Key notations and

parameters are tabulated in Table 1.

2.1 CKKS Basics
In CKKS, a complex message vector z ∈ C𝑁 /2 is first encoded into

a plaintext polynomial 𝑚 ∈ Z[𝑋]/⟨𝑋𝑁 + 1⟩ for a power-of-two

𝑁 . To be precise, a variant of inverse discrete Fourier transform

is applied to z and result in a real-coefficient polynomial. Then,

this polynomial is multiplied with a scaling factor Δ (typically in

the range [2
30
, 2

60
]) and rounded to the closest integer-coefficient

polynomial𝑚, denoted by𝑚 ← Ecd(z;Δ). The decoding process

is exactly the reverse, which is to apply a variant of the discrete

Fourier Transform and divide by the scaling factor 1/Δ, which is

denoted by z′ ← Dcd(𝑚;Δ). Note that Dcd(Ecd(z;Δ);Δ) ≃ z.
The multiplication of encoded polynomials approximately pre-

serves the Hadamard multiplication of input message vectors, while

the corresponding scaling factor is increased into a quadratic scale:

For𝑚 ← Ecd(z;Δ) and𝑚′ ← Ecd(z′;Δ), the multiplication𝑚 ·𝑚′
will approximately correspond to Ecd(z ⊙ z′;Δ2), where ⊙ repre-

sents Hadamard product between the two vectors.

2

After the encoding process, a plaintext polynomial can be se-

curely encrypted into a ciphertext ct under the ring learning with

errors (RLWE) assumption as follows: For a large modulus 𝑄 ≫ Δ,
we denote the residue ringR/𝑄R asR𝑄 . For a (small) secret polyno-

mial 𝑠 ∈ R, the public key is generated as pk := (𝑏 = −𝑎 · 𝑠 + 𝑒, 𝑎) ∈
R2

𝑄
, where 𝑎 is uniformly sampled from R𝑄 , and 𝑒 is sampled from

a Gaussian distribution over R. Then, with randomly chosen small

polynomials 𝑟, 𝑒0, 𝑒1 ∈ R, the message vector z is encoded into a

plaintext polynomial and then encrypted into ct = (𝑐0, 𝑐1) ∈ R2

𝑄
:

Encpk (z;Δ) : z ↦→ 𝑟 · (𝑏, 𝑎) + (Ecd(z;Δ) + 𝑒0, 𝑒1) (mod 𝑄) .
The decryption of ct = (𝑐0, 𝑐1) (mod 𝑄) is simply done by com-

puting 𝑚 ← 𝑐0 + 𝑐1 · 𝑠 (mod 𝑄) through the secret key 𝑠 . Note

that the CKKS decryption is not exact, but approximate. For ex-
ample, when ct = (𝑐0, 𝑐1) is the encryption of the message z, it
holds that 𝑐0 + 𝑐1 · 𝑠 = 𝑚 + 𝑒′ (𝑚𝑜𝑑 𝑄) for 𝑚 ← Ecd(z;Δ) and
𝑒′ := 𝑒 + 𝑒0 + 𝑒1 · 𝑠 , and the final output of the decryption would be

Dcd(𝑚 + 𝑒′;Δ) ≃ Dcd(𝑚;Δ) ≃ z.
Various operations can be evaluated on ciphertexts, but we only

explain addition and multiplication here. Please refer to [12, 13]

for more details of applicable operations. Let ct := (𝑐0, 𝑐1) and
ct′ := (𝑐′

0
, 𝑐′

1
) be the ciphertexts of themessage z and z′, respectively.

Then, the homomorphic addition and multiplication are described

as follows:

Addition: ct
add
← ct + ct′ is a valid ciphertext of z + z′. Namely,

ct
add

= (𝑐0, 𝑐1) satisfies
𝑐0 + 𝑐1 · 𝑠 ≃ Ecd(z + z′;Δ).

Multiplication: To multiply ctwith ct′, the following computation

(𝑐×,0, 𝑐×,1, 𝑐×,2) = (𝑐0 · 𝑐′
0
, 𝑐0 · 𝑐′

1
+ 𝑐1 · 𝑐′

0
, 𝑐1 · 𝑐′

1
) is done first. This

procedure is referred to as tensoring. From tensoring, the ciphertext

degree is increased from 2 to 3, and this new degree-3 ciphertext

(𝑐×,0, 𝑐×,1, 𝑐×,2) satisfies

𝑐×,0 + 𝑐×,1 · 𝑠 + 𝑐×,2 · 𝑠2 ≃ Ecd(z;Δ) · Ecd(z′;Δ) ≃ Ecd(z ⊙ z′;Δ2) .
Refer to Section 3.2 for a formal error analysis.

To prevent the exponential growth of the ciphertext degree, a

procedure called relinearization is performed. It requires the use

of a special public key called key-switching key (swk), which is an

encryption of 𝑃 · 𝑠2
under a larger modulus 𝑃𝑄 for 𝑃 ≃ 𝑄 . Then,

by computing

ct
mult
← (𝑐×,0, 𝑐×,1) +

⌊
1/𝑃 · 𝑐×,2 · swk

⌉
,

we can obtain a valid ciphertext ct
mult

whose decryption is approx-

imately z⊙ z′. The size of the special modulus 𝑃 can be dynamically

controlled by the use of hybrid key-switching technique [16].

Rescaling: The resulting ciphertext ct
mult

= (𝑐0, 𝑐1) of homomor-

phic multiplication is actually associated with the squared scaling

factor Δ2
, which means

𝑐0 + 𝑐1 · 𝑠 ≃ Ecd(z
mult

;Δ2),
and the squared scaling factor Δ2

must be reduced back to Δ to

continue further operations with other ciphertexts. We simply com-

pute (⌊𝑐0/Δ⌉, ⌊𝑐1/Δ⌉) to do so, and the procedure is called rescal-

ing. The modulus is reduced from 𝑄 to 𝑄/Δ by rescaling, such that

⌊𝑐0/Δ⌉ + ⌊𝑐1/Δ⌉ · 𝑠 ≃ Ecd(z
mult

;Δ) (mod 𝑄/Δ).

2.2 Full-RNS Instantiation of CKKS: RNS-CKKS
To efficiently handle the large modulus 𝑄 , RNS-CKKS [12] utilizes

the residue number system (RNS) to split a large coefficient 𝑎 of a

polynomial into a tuple of multiple small residues modulo 𝑞𝑖 primes

(𝑎 (0) , 𝑎 (1) , . . . , 𝑎 (𝐿)), where 𝑄 =
∏𝐿
𝑖=0

𝑞𝑖 , 𝑎
(𝑖) = 𝑎 (𝑚𝑜𝑑 𝑞𝑖), and

𝑎 (𝑖) ∈ {0, 1, . . . , 𝑞𝑖 − 1}. As it is difficult to evaluate the division by

Δ (and rounding) in this form, RNS-CKKS adopts an alternative

way of performing rescaling, where it chooses 𝑞𝑖 (𝑖 = 1, 2, . . . , 𝐿)
to be close to Δ and instead compute (⌊𝑐0/𝑞𝑖 ⌉, ⌊𝑐1/𝑞𝑖 ⌉). Then, we
can perform a total of 𝐿 rescaling operations on a ciphertext, which

we refer to as the maximum level. When ℓ + 1 number of primes

are utilized in the modulus 𝑄ℓ =
∏ℓ
𝑖=0

𝑞𝑖 , the (current) level of

the ciphertext is ℓ . The ciphertext level is reduced by 1 through

the rescaling procedure (𝑐0, 𝑐1) (mod 𝑄ℓ) ↦→ (⌊𝑐0/𝑞ℓ ⌉, ⌊𝑐1/𝑞ℓ ⌉)
(mod 𝑄ℓ−1).

Contrary to the basic CKKS scheme, RNS-CKKS has a precision

issue in homomorphic addition, since the input ciphertexts might

have different scaling factors because of the difference between Δ
and 𝑞𝑖 ’s. In [12], they suggested to set each 𝑞𝑖 to be very close to

Δ so that the gaps between different scaling factors become very

small. However, this method results in non-negligible precision

loss from homomorphic addition if we are not able to find enough

number of such 𝑞𝑖 ’s with the closeness property. Recently, a new

technique resolving this precision issue called exact scaling [22]

has been proposed, which does not require such closeness property

for each prime. The exact scaling method defines the scaling fac-

tor Δℓ per level, which is defined as Δℓ−1 := Δ2

ℓ
/𝑞ℓ from ℓ = 𝐿 to

ℓ = 1. The input ciphertexts of homomorphic operations are ma-

nipulated to have the same level and the same scaling factor before

performing the homomorphic operations, and hence we are able to

fundamentally avoid the precision issue of homomorphic addition.

This manipulation process before the homomorphic operations is

done by the algorithm called Adjust.
Let ct and ct′ be ciphertexts with level ℓ and ℓ′ (ℓ > ℓ′), and

scaling factors Δℓ and Δℓ ′ , respectively. To perform homomorphic

addition or multiplication over ct and ct′, we adjust the level and the
scaling factor of ct through Adjust(ct, ℓ′) which works as follows:

First, drop the level of the ciphertext ct from ℓ to ℓ′ + 1. Then, multi-

ply ct by a constant

⌈
Δℓ ′ ·𝑞ℓ ′+1

Δℓ

⌋
=

Δℓ ′ ·𝑞ℓ ′+1
Δℓ

+ 𝛿 with 𝛿 ∈ [−1/2, 1/2].
Finally, rescale the result by 𝑞ℓ ′+1, and the final result belongs to

level ℓ′ with the appropriate scaling factor Δℓ ′ . As a result, ct and
ct’ eventually have the same level and the same scaling factor.

RNS-CKKS also provides a method to efficiently change the

modulus (e.g., between 𝑄 and 𝑃 during key switching) referred to

as fast base conversion (FBC). For example, the modulus can be

converted from 𝑄ℓ =
∏ℓ
𝑖=0

𝑞𝑖 to 𝑃 =
∏𝐾−1

𝑖=0
𝑝𝑖 using the following

equation for every 𝑝𝑖 (𝑖 = 0, 1, . . . , 𝐾 − 1):

ℓ∑︁
𝑗=0

©«
[
𝑎 (𝑗) ·

(
𝑄ℓ

𝑞 𝑗

)−1

]
𝑞 𝑗

·
[
𝑄ℓ

𝑞 𝑗

]
𝑝𝑖

ª®¬
𝑝𝑖

Here, [·]𝑞 denotes a modular reduction into the range [0, 𝑞 − 1].[(
𝑄ℓ
𝑞 𝑗

)−1

]
𝑞 𝑗

and

[
𝑄ℓ
𝑞 𝑗

]
𝑝𝑖

are precomputed constant values. Each

3

[
𝑎 (𝑗) ·

(
𝑄ℓ
𝑞 𝑗

)−1

]
𝑞 𝑗

value can be computed only once and reused for

every 𝑝𝑖 . Also, the final modular reduction by 𝑝𝑖 can be done after

the summation, which is called lazy modular reduction in FBC [3].

Another important performance optimization is using number-

theoretic transform (NTT), a finite-field variant of Fourier trans-

form, for polynomial multiplications modulo 𝑞. As a multiplica-

tion between two polynomials in R𝑞 is equivalent to a convolu-

tion between their coefficients, NTT can reduce the computational

complexity from O(𝑁 2) to O(𝑁 log𝑁) by converting the convo-

lution into a simple Hadamard product; 𝑁𝑇𝑇 (𝑚) ⊙ 𝑁𝑇𝑇 (𝑚′) =
𝑁𝑇𝑇 (𝑚 ·𝑚′) holds and the complexity of NTT is O(𝑁 log𝑁) when
using fast Fourier transform algorithms. Computationally, FBC and

NTT are the two most dominant operations in the computation of

RNS-CKKS, and other element-wise modular multiplication and

addition operations account for the rest.

2.3 Bootstrapping
After repeated rescaling, the modulus eventually becomes too small

to perform more rescaling operations. To continue operations when

the modulus is fully dissipated, bootstrapping is required to restore

the modulus. CKKS bootstrapping is performed in four steps of

ModRaise, CoeffToSlot, EvalMod, and SlotToCoeff. ModRaise
increases the current modulus of ciphertext to 𝑄 by increasing the

number of primes utilized from one (i.e., 𝑞0) to the maximum possi-

ble. In this process, multiples of 𝑞0 are added to the coefficients of

the polynomials composing the ciphertext. The following bootstrap-

ping steps remove these multiples by moving coefficients to slot

positions (CoeffToSlot), homomorphically evaluating the mod 𝑞0

function with an approximate polynomial (EvalMod), and mov-

ing the coefficients back to their original positions (SlotToCoeff).
These steps include dozens of rescaling operations, and dissipate a

large portion of the modulus, leaving only𝑄 ′ (< 𝑄) as the modulus

for further operations.

Enhancing bootstrapping performance is crucial to the practi-

cal use of FHE as bootstrapping is the most dominant procedure

accounting for most of the computation time in CKKS-based FHE

applications [14, 21]. In addition, contrary to the other FHE schemes,

the CKKS bootstrapping results in an additional error attached to

themessage, so the output precision is another critical factor of boot-

strapping performance. Abundant studies have proposed methods

for enhancing the performance and precision of bootstrapping [8–

10, 18], which we selectively adopt in each of our implementations

of FHE CKKS applications.

3 CKKS OVER SMALL WORD-SIZE BASED ON
COMPOSITE SCALING

3.1 Composite Scaling
As described in Section 2.2, rescaling in RNS-CKKS is done as

𝑐𝑡 (mod 𝑄ℓ) ↦→ ⌊1/𝑞ℓ · 𝑐𝑡⌉ (mod 𝑄ℓ−1), where each prime 𝑞𝑖 is

chosen to be approximately logΔ-bit. We refer to this approach as

single scaling. However, this single scaling approach is only possible

when logΔ is smaller than the word size of the given architecture,

unless we use multi-precision arithmetic which accompanies large

computational overhead [35]. In other words, if logΔ is larger than

the word size, we need to take another approach for rescaling,

which we call composite scaling.
In composite scaling, each modulus 𝑞ℓ is not a prime anymore,

but a product of multiple primes 𝑞ℓ, 𝑗 ’s for 0 ≤ 𝑗 < 𝑡 , i.e., 𝑞ℓ :=∏𝑡−1

𝑗=0
𝑞ℓ, 𝑗 . The number of primes 𝑡 in each 𝑞ℓ is determined by the

gap between logΔ and the word-size, i.e., 𝑡 := ⌈ logΔ
word-size

⌉. For the
functionality of rescaling, each 𝑞ℓ needs to be set as logΔ-bit, and

hence we set each prime 𝑞ℓ, 𝑗 to be approximately
logΔ
𝑡 -bit.

Mathematically, all the homomorphic operations in CKKS based

on the composite scaling approach are expressed in exactly the

same way as those in Section 2.1. However, since each modulus 𝑞𝑖
is now a composition of multiple primes, there exist algorithmic

differences between composite and single scaling. For example,

rescaling in single scaling is to divide by a single prime and take

rounding. However, in composite scaling, one needs to divide by

multiple primes instead as follows:

C𝑜𝑚𝑝-𝑅𝑆 (ct) : ct (mod 𝑄ℓ) →
⌊

1∏𝑡
𝑗=0

𝑞ℓ, 𝑗
· ct

⌉
(mod 𝑄ℓ−1) .

In the following subsections, we provide the precision analysis

for each homomorphic operation based on composite scaling and

show that there is basically no difference in terms of precision loss

compared to the previous approach.

3.2 Precision Analysis for Mult and Rescale
We first analyze the precision of homomorphic operations between

two ciphertexts with the same level. The CKKS algorithms that

do not contain the division procedure, including encryption, de-

cryption, addition, and tensoring, result in the same error growth

for single and composite scaling methods. However, the other op-

erations such as rescale and (hybrid) key-switching include the

division-by-𝑞ℓ computation, which might result in different error

growth between single and composite scaling.

Since each modulus 𝑞ℓ is a product of multiple primes in compos-

ite scaling, the division-by-𝑞ℓ computation can be done by applying

either a single FBC from a big base 𝑞ℓ =
∏𝑡−1

𝑗=0
𝑞ℓ, 𝑗 or multiple

FBCs from a small base 𝑞ℓ, 𝑗 for 0 ≤ 𝑗 < 𝑡 successively. In this pa-

per, we apply the latter strategy, which results in almost the same

rescaling error for the single scaling approach. With this strategy,

Theorem 3.1 and 3.2 below show the precision loss from rescaling

and key switching in composite scaling.

Theorem 3.1 (Composite Rescale). For a level-ℓ ciphertext ct =
(𝑐0, 𝑐1), the algorithm Comp-RS(ct) returns a ciphertext ct′ of level
ℓ − 1, along with additional error 𝑒𝑟𝑠 satisfying

| |𝑒comp-rs | |can∞ ≤
(

1

𝑞𝑙,1𝑞𝑙,2 · · ·𝑞𝑙,𝑡−1

+ · · · + 1

𝑞ℓ,𝑡−1

+ 1

)
𝐵𝑟𝑠 ,

where 𝐵𝑟𝑠 :=
√

3𝑁 + 8

√︃
ℎ𝑁

3
denotes the upper bound of the rescaling

error in the single scaling approach.

Proof. We follow the heuristic assumption about the canonical

embedding norm in [12, 13, 22]. The given ciphertext ct = (𝑐0, 𝑐1) ∈
R2

𝑄ℓ
encrypting𝑚 with error 𝑒 satisfies the following relation:

𝑐0 + 𝑐1 · 𝑠 ≡ Δℓ ·𝑚 + 𝑒 (𝑚𝑜𝑑 𝑄ℓ) .
4

To performModDown about one level 𝑞ℓ , we first perform a rescal-

ing procedure with one RNS-prime 𝑞ℓ,0. Then it follows that⌈
𝑐0

𝑞ℓ,0

⌋
+

⌈
𝑐1

𝑞ℓ,0

⌋
· 𝑠 ≡ 1

𝑞ℓ,0
(Δℓ ·𝑚 + 𝑒) + (𝑟0 + 𝑟1 · 𝑠)

(
𝑚𝑜𝑑

𝑄ℓ

𝑞ℓ,0

)
,

where 𝑟0, 𝑟1 denote the rounding parts by one RNS prime 𝑞ℓ,0 with

coefficients bounded by 1/2. From lemma 2 of [13], it follows that

𝑒
(0)
𝑟𝑠 := 𝑟0 + 𝑟1 · 𝑠 is bounded by ∥𝑒 (0)𝑟𝑠 ∥can∞ ≤ 𝐵𝑟𝑠 =

√
3𝑁 + 8

√︃
ℎ𝑁

3
.

We rewrite the modular equation as follows:

𝑐
(0)
0
+ 𝑐 (0)

1
· 𝑠 ≡ 1

𝑞ℓ,0
(Δℓ ·𝑚 + 𝑒) + 𝑒 (0)𝑟𝑠

(
𝑚𝑜𝑑

𝑄ℓ

𝑞ℓ,0

)
.

We then perform rescaling with next RNS-prime 𝑞ℓ,1 to obtain

𝑐
(1)
0
+𝑐 (1)

1
·𝑠 ≡ 1

𝑞ℓ,0𝑞ℓ,1
(Δℓ ·𝑚+𝑒) +

(
𝑒
(0)
𝑟𝑠

𝑞ℓ,1
+ 𝑒 (1)𝑟𝑠

) (
𝑚𝑜𝑑

𝑄ℓ

𝑞ℓ,0𝑞ℓ,1

)
,

where 𝑒
(1)
𝑟𝑠 represents the new error added during rescaling with

𝑞ℓ,1. We repeat this procedure 𝑡 times for each RNS-prime 𝑞ℓ, 𝑗
composing one level 𝑞ℓ , resulting in the following:

𝑐
(𝑡−1)
0

+ 𝑐 (𝑡−1)
1

· 𝑠 ≡ 1

𝑞ℓ
(Δℓ ·𝑚 + 𝑒) + 𝑒comp-rs (𝑚𝑜𝑑 𝑄ℓ−1) ,

where the final rescaling error 𝑒comp-rs is of the form:

𝑒comp-rs =
𝑒
(0)
𝑟𝑠

𝑞𝑙,1𝑞𝑙,2 · · ·𝑞𝑙,𝑡−1

+ · · · + 𝑒
(𝑡−2)
𝑟𝑠

𝑞ℓ,𝑡−1

+ 𝑒 (𝑡−1)
𝑟𝑠 .

We note that all error terms 𝑒
(𝑗)
𝑟𝑠 ’s have the same upper bound 𝐵𝑟𝑠 .

Therefore, we obtain the following inequality for error 𝑒comp-rs as

follows:

∥𝑒comp-rs∥can∞ ≤ ∥𝑒 (0)𝑟𝑠 ∥can∞
𝑞𝑙,1𝑞𝑙,2 · · ·𝑞𝑙,𝑡−1

+ · · · + ∥𝑒
(𝑡−2)
𝑟𝑠 ∥can∞
𝑞ℓ,𝑡−1

+ ∥𝑒 (𝑡−1)
𝑟𝑠 ∥can∞

≤
(

1

𝑞𝑙,1𝑞𝑙,2 · · ·𝑞𝑙,𝑡−1

+ · · · + 1

𝑞ℓ,𝑡−1

+ 1

)
𝐵𝑟𝑠 .

□

Remark. The approach to reduce one level𝑞ℓ at once requires to per-

formModDown (i.e., a big FBC) for 𝑡 RNS primes 𝑞ℓ,0, 𝑞ℓ,1, ..., 𝑞ℓ,𝑡−1.

This operation induces the error whose upper bound is

√
𝑡 times

larger compared to the error bound 𝐵𝑟𝑠 . We refer to the proof of

Lemma 1 in [12] for more details.

A similar argument can be applied to the key-switching proce-

dure as well.

Theorem 3.2 (Composite KeySwitching). Let ct = (𝑐0, 𝑐1) be
a level-ℓ ciphertext under the secret 𝑠′. The composite key-switching
algorithm Comp-KSs′→s (ct) outputs a ciphertext ctcomp-ks under
the secret 𝑠 with additional error 𝑒comp-ks satisfying

| |𝑒comp-ks | |can∞ ≤ 8𝛽 ·
√
𝛼 ·max𝑖 (�̃�𝑖) · 𝜎𝑁√

3𝑃

+
(

1

𝑝1𝑝2 · · · 𝑝𝐾−1

+ · · · + 1

𝑝𝐾−1

+ 1

)
𝐵𝑟𝑠 ,

where 𝐵𝑟𝑠 :=
√

3𝑁 + 8

√︃
ℎ𝑁

3
is the upper bound of the key-switching

error in the single scaling approach, and 𝛽 := ⌈(ℓ + 1)/𝛼⌉.

Proof. We follow the key switching procedure as described in

[18]. We first perform RNS-Decompose andModUp on polynomial

𝑐1 ∈ R𝑄ℓ to obtain 𝑐
(𝑖)
1
∈ R𝑃𝑄𝐿 for 0 ≤ 𝑖 < 𝛽 , satisfying

𝑐
(𝑖)
1
≡ 𝑐1 ·

(
𝑄ℓ

�̃�𝑖

)−1

(𝑚𝑜𝑑 �̃�𝑖) 𝑎𝑛𝑑 ∥𝑐 (𝑖)
1
∥∞ ≤

𝛼

2

· �̃�𝑖

where𝑄ℓ = �̃�0 · �̃�1 · · · �̃�𝛽−1
. We note that each polynomial 𝑐

(𝑖)
1

be-

haves like the sum of 𝛼 independent and uniform random variables

over R
�̃�𝑖
, so its variance is 𝑉 = 𝛼 · �̃�2

𝑖
𝑁 /12. For a given key-

switching key swk = (swk0, swk1) =
(
{𝑏′
𝑖
}dnum−1

𝑖=0
, {𝑎′

𝑖
}dnum−1

𝑖=0

)
∈

R2×dnum
𝑃𝑄𝐿

, we denote the error terms in swk1 as {𝑒′𝑖 }. Then the error

after the Inner Product is bounded by

∥
𝛽−1∑︁
𝑖=0

𝑐
(𝑖)
1
· 𝑒′𝑖 ∥

can
∞ ≤

𝛽−1∑︁
𝑖=0

∥𝑐 (𝑖)
1
· 𝑒′𝑖 ∥

can
∞

≤
𝛽−1∑︁
𝑖=0

16 ·

√︄
𝛼 · �̃�2

𝑖
𝑁

12

·
√︁
𝜎2𝑁

≤ 8𝛽 ·
√
𝛼 ·max𝑖 (�̃�𝑖) · 𝜎𝑁√

3

:= 𝐵ks,

adopting the heuristic bound for canonical embedding norm [12,

13, 22]. Finally, we perform ModDown to reduce 𝐾 RNS primes

in modulus 𝑃 =
∏𝐾−1

𝑖=0
𝑝𝑖 . We note that we can adopt the same

technique in Theorem 3.1 by applying rescaling 𝐾 times for each

RNS primes 𝑝𝑖 . Hence, we obtain the following error bound for

𝑒comp-ks in ciphertext ctcomp-ks.

∥𝑒comp-ks∥can∞ ≤ 1

𝑃
· 𝐵ks +

(
1

𝑝1𝑝2 · · · 𝑝𝐾−1

+ · · · + 1

𝑝𝐾−1

+ 1

)
𝐵𝑟𝑠 ,

where 𝐵rs =
√

3𝑁 + 8

√︃
ℎ𝑁

3
as in Theorem 3.1. □

To put this all together, we can analyze the precision for the

multiplication (with rescaling) for composite scaling. The multi-

plication consists of three steps: (1) tensoring, (2) key-switching,

and (3) rescaling. For tensoring, the error terms are the same as

the single scaling approach. For the last two steps, we can use

Therom 3.2 and 3.1 respectively to analyze the error. Also, note that

the tensoring and key-switching errors are significantly reduced

during the rescaling procedure; hence, the rescaling error becomes

the dominant term for the entire multiplication error.

Let ct1, ct2 be two ciphertexts at the same level encrypting𝑚1,𝑚2

respectively. The multiplication for ciphertexts ct1, ct2 at the same

level ℓ is done in three steps: tensoring, linearization, and rescaling.

For tensoring, we tensor the ciphertexts as follows.

𝑐×,0 + 𝑐×,1 · 𝑠 + 𝑐×,2 · 𝑠2

≡ (Δℓ ·𝑚1 + 𝑒1) · (Δℓ ·𝑚2 + 𝑒2)
= Δ2

ℓ ·𝑚1𝑚2 + Δℓ · (𝑚1𝑒2 +𝑚2𝑒1) + 𝑒1𝑒2︸ ︷︷ ︸
tensoring error 𝑒×

(𝑚𝑜𝑑 𝑄ℓ) .

After tensoring, to remove the 𝑠2
term, we relinearize the ten-

sored ciphertext using key-switching as follows.

(𝑐relin,0, 𝑐relin,1) ← (𝑐×,0, 𝑐×,1) + Comp-KS𝑠2→𝑠 (0, 𝑐×,2) (𝑚𝑜𝑑 𝑄ℓ) .
5

Then, we yield the ciphertext encrypting the product of the inputs,

but with an inappropriate scaling factor. That means,

𝑐relin,0 + 𝑐relin,1 · 𝑠 ≡ Δ2

ℓ ·𝑚1𝑚2 + 𝑒× + 𝑒comp-ks (𝑚𝑜𝑑 𝑄ℓ) .

Finally, we rescale the relinearized ciphertexts to have an appropri-

ate scaling factor. To be more precise,

𝑐out,0 + 𝑐out,1 · 𝑠 ≡
Δ2

ℓ

𝑞ℓ
·𝑚1𝑚2 +

𝑒× + 𝑒comp-ks

𝑞ℓ
+ 𝑒comp-rs

= Δℓ−1 ·𝑚1𝑚2 + 𝑒comp-mult (𝑚𝑜𝑑 𝑄ℓ−1),

where Δℓ−1 =
Δ2

ℓ

𝑞ℓ
is the scaling factor at (ℓ − 1)-level [22]. We can

estimate the error induced by composite multiplication as follows.

Corollary 3.3 (Composite Multiplication). The error term
𝑒comp-mult induced from Mult (Tensoring + Relin. + Rescaling) is
bounded as

∥𝑒comp-mult∥can∞ ≤ ∥𝑒× ∥
can
∞

𝑞ℓ
+
∥𝑒comp-ks∥can∞

𝑞ℓ
+ ∥𝑒comp-rs∥can∞ ,

where 𝑒comp-rs and 𝑒comp-ks are described in Theorem 3.1 and 3.2.

Note that the Mult error from the single scaling approach has

the same form of the upper bound ∥𝑒mult∥can∞ ≤ ∥𝑒× ∥
can
∞

𝑞ℓ
+ ∥𝑒ks ∥

can
∞

𝑞ℓ
+

∥𝑒rs∥can∞ , where 𝑒ks and 𝑒rs denote the key-switching and rescaling

error in single scaling, respectively. From Theorem 3.1 and 3.2, we

get ∥𝑒comp-rs∥can∞ ≃ ∥𝑒rs∥can∞ + 1

𝑞ℓ,𝑡−1

· ∥𝑒rs∥can∞ and ∥𝑒comp-ks∥can∞ ≃
∥𝑒ks∥can∞ + 1

𝑝𝐾−1

∥𝑒rs∥can∞ , where both additional terms
1

𝑞ℓ,𝑡−1

·∥𝑒rs∥can∞
and

1

𝑝𝐾−1

∥𝑒rs∥can∞ are negligible compared to the dominant terms.

As a result, single and composite scaling methods result in almost

the same precision loss in homomorphic operations between the

ciphertexts with the same level.

3.3 Precision Analysis for Add and Crossing
levels

When we manipulate ciphertexts at different levels, we need to

make their level the same before the subsequent homomorphic

operation. If we lower the level, ciphertexts would have the same

level but different scaling factors, resulting in an extra error after

homomorphic addition due to the difference of the scaling factors.

To address this issue, we use the exact scaling approach as in

Section 2.2, whichwas introduced in [18] and analyzedwith detailed

experiments in [22]. We utilize the Adjust function in [22] to adjust

the scaling factors of ciphertexts that are at different levels. At a

high level, to adjust the ciphertext at level ℓ to lower level ℓ′, we first
multiply the ratio between the scaling factors (i.e., ⌊𝑞ℓ ′+1Δℓ ′/Δℓ ⌉)
and lower the level to adjust the scaling factors (see Section 2.2 for

the details). Since Adjust also crosses multiple moduli, we need to

analyze the precision for composite scaling.

To adopt the Adjust technique to the composite scaling approach,

we should replace the last rescaling procedure with the compos-

ite rescaling procedure. Except for the last rescaling procedure, all

other processes can be done the same as the single scaling approach.

The last rescaling error is the dominant term for the error from Ad-
just , as in the multiplication and rescaling procedure in Section 3.2.

By applying the similar argument in Section 3.2, Theorem 3.4 rep-

resents the Adjust error of the composite scaling approach.

Theorem 3.4 (Composite Adjust). Let ct be an encryption of𝑚
having an error 𝑒 , along with level ℓ > ℓ′ and scaling factor Δℓ . The
algorithm Comp-Adj(ct, ℓ′) returns a ℓ′-level ciphertext ct𝑐𝑜𝑚𝑝-𝑎𝑑 𝑗
having error 𝑒𝑐𝑜𝑚𝑝-𝑎𝑑 𝑗 denoted by

𝑒𝑐𝑜𝑚𝑝-𝑎𝑑 𝑗 =
Δℓ ′

Δℓ
· 𝑒 + 𝛿 (Δℓ ·𝑚 + 𝑒)

𝑞ℓ ′+1
+ 𝑒𝑐𝑜𝑚𝑝-𝑟𝑠 ,

where 𝛿 =

⌈
Δℓ ′ ·𝑞ℓ ′+1

Δℓ

⌋
− Δℓ ′ ·𝑞ℓ ′+1

Δℓ
∈ [−1/2, 1/2] and 𝑒𝑐𝑜𝑚𝑝-𝑟𝑠 denotes

the error during Comp-RS to reduce one level 𝑞ℓ ′ .

Proof. The algorithm Comp-Adj(ct, ℓ′) replaces the original

rescaling in Adjust [22] with our Comp-RS and the rest of the

process is the same. We refer to [22, pg.18] for detailed proof. □

In conclusion, we can use composite scalingwith almost the same

precision loss to single scaling. Note that we can further improve the

speed for rescaling, adjusting, and key-switching from the hybrid

use of FBC from a big base and a small base. For example, we can

compute the division-by-𝑞ℓ with the following method instead: (a)

Apply a single FBC from the big base 𝑞ℓ,0 · 𝑞ℓ,1 · · ·𝑞ℓ,𝑡−2, and then

(b) apply a single FBC from the small base 𝑞ℓ,𝑡−1. The rescaling

error would be slightly increased but not significantly.

3.4 Moduli Generation for Composite Scaling
In the exact scaling approach, the closeness of 𝑞ℓ ’s does not affect

the precision of homomorphic addition anymore, but each prime

𝑞ℓ,𝑖 (for 1 ≤ ℓ ≤ 𝐿, 0 ≤ 𝑗 < 𝑡) still needs to be carefully chosen to

prevent the divergence of the scaling factor Δℓ as ℓ increases [22].
We follow a similar methodology to the moduli generation algo-

rithms given in [22], which adaptively choose 𝑞ℓ,0, 𝑞ℓ,1, ..., 𝑞ℓ,𝑡−1

from ℓ = 𝐿 to 1 based on the value of the previous scaling factor

Δℓ+1. To be precise, we choose each 𝑞ℓ, 𝑗 to be close to (Δ2

ℓ+1/Δ𝐿)
1/𝑡

so that Δℓ = Δ2

ℓ+1/
∏𝑡−1

𝑗=0
𝑞ℓ, 𝑗 ≃ Δ𝐿 . Since the level-0 modulus 𝑞0 is

irrelevant to the divergence issue of the scaling factors, the primes

𝑞0, 𝑗 for 0 ≤ 𝑗 < 𝑡 which determines 𝑞0 is determined independently.

The baseline algorithm of RNS-CKKS moduli generation for

composite scaling is given as Algorithm 1. The max level 𝐿, the

target bit length 𝑝 of the scaling factor, and the target bit length

𝑝0 (> 𝑝) of the level-0 modulus 𝑞0 are given as input.

Algorithm 1 RNS-CKKS Moduli Generation for Composite Scal-

ing; ClosestPrimes(𝑥, 2𝑁, 𝑡) outputs 𝑡-closest primes of 𝑥 which

congruent to 1 modulo 2𝑁 .

Require: Max level 𝐿, target scaling factor Δ, and target log𝑞0

size 𝑝0

Ensure: Δℓ = Δ2

ℓ+1/𝑞ℓ+1 ≃ Δ𝐿 for 0 ≤ ℓ < 𝐿
1: (𝑞𝐿,0, 𝑞𝐿,1, ..., 𝑞𝐿,𝑡−1) ← ClosestPrimes(Δ1/𝑡 , 2𝑁, 𝑡)
2: for ℓ = 𝐿 − 1 to 1 do
3: Δℓ+1 ←

∏𝑡−1

𝑗=0
𝑞ℓ+1, 𝑗

4: Δtarget ← Δ2

ℓ+1/Δ𝐿
5: (𝑞ℓ,0, 𝑞ℓ,1, ..., 𝑞ℓ,𝑡−1) ← ClosestPrimes(Δ1/𝑡

target
, 2𝑁, 𝑡)

6: end for
7: (𝑞0,0, 𝑞0,1, ..., 𝑞0,𝑡−1) ← ClosestPrimes(2𝑝0/𝑡 , 2𝑁, 𝑡)
8: return (𝑞ℓ, 𝑗)0≤ℓ≤𝐿,0≤ 𝑗<𝑡

6

Table 2: Empirical bootstrapping precision bits (log 𝜖−1) of 64-
bit (baseline) and 32-bit (composite scaling) parameter sets
implemented on Lattigo [28]. 𝜖 denotes the mean magnitude
of bootstrapping error averaged over 100 bootstrapping trials.
ℎ and ˜ℎ are the secret key sparsity factors (Hamming weights)
defined in [9].

Param 𝑁 Δ log𝑄𝑃 log𝑄 ′ ℎ ˜ℎ # of primes log 𝜖−1

64-bit 2
16

2
48

1519 487 192 32 𝑄 : 24, 𝑃 : 5 22.771

32-bit 2
16

2
48

1519 487 192 32 𝑄 : 48, 𝑃 : 10 22.770

Table 3: Empirical bootstrapping precision bits (log 𝜖−1) of
64-bit (baseline) and 32-bit (composite scaling) parameter
sets implemented on OpenFHE [2]. LevelBudget denotes the
number of FFT layers used in CoeffToSlot and SlotToCoeff.
Secret key is sampled from uniform ternary distribution in
both cases.

Param 𝑁 Δ log 𝑃𝑄 levelBudget # of primes log 𝜖−1

64-bit 2
16

2
58

1580 (2,2) 𝑄 : 20, 𝑃 : 7 12

32-bit 2
16

2
58

1580 (2,2) 𝑄 : 40, 𝑃 : 14 12

4 BOOTSTRAPPING ANALYSIS
As described in Section 2.3, bootstrapping is a crucial procedure

that determines the performance and precision of FHE applications.

Therefore, in this section, we analyze in detail how composite

scaling affects the precision and execution cost of bootstrapping.

4.1 Bootstrapping Precision
First, we analyze how the bootstrapping precision bits (log 𝜖−1

) are

affected when applying composite scaling. We developed proof-

of-concept implementations of 32-bit composite scaling and the

corresponding bootstrapping algorithm in both Lattigo [28] and

OpenFHE [2]. The implemented 32-bit bootstrapping algorithm

only differs from the baseline algorithm in that composite scaling is

used in rescaling and that ModRaise starts with multiple primes left

in the modulus 𝑞0. Therefore, we are able to reuse the majority of

the publicly available bootstrapping codes in Lattigo and OpenFHE.

Table 2 and Table 3 show the baseline 64-bit parameter set along

with the 32-bit parameter set we designed. Two parameter sets are

equivalent in terms of applied algorithms and usability. They only

differ in the number of primes: the 32-bit parameter set utilizes

a doubled number of primes due to composite scaling, but both

procedures consume the same amount of levels.

Despite using different scaling methods, the bootstrapping pre-

cision measured for the two parameter sets does not show a sig-

nificant difference with merely 0.001 bits of precision difference

(see log 𝜖−1
in Table 2). Also, for 100 bootstrapping trials, the em-

pirical worst-case precision bits, each of which is measured for the

message slot with the maximum error among all slots and trials,

were 20.66 bits for the 64-bit parameter set and 20.67 bits for the

32-bit set. As the precision difference is negligible for bootstrapping,

which is the dominant source of error, we expect composite scaling

Table 4: Operation counts of the major operations and their
weighted sum (WSum) for 64-bit (baseline) and 32-bit (com-
posite scaling) parameter sets in Lattigo. Each operation’s
portion (ratio) in the weighted sum is also shown. For base
conversion, it is assumed that lazy modular reduction (red)
is performed after the accumulation of multiplication (mult)
results.

Op (I)NTT Base conversion ModMult WSum

(weight) (
2𝑊 2+𝑊

2
log𝑁) mult (𝑊 2

) red (𝑊 2+𝑊) (2𝑊 2+𝑊)

64-bit 10,685 39,420 9,083 47,513 1,297M

(ratio) (54.4%) (12.4%) (2.9%) (30.2%)

32-bit 21,652 161,410 21,452 95,550 747M

(ratio) (48.2%) (22.1%) (3.0%) (26.6%)

to not require any additional measures to ensure the correctness of

practical FHE applications compared to when using single scaling.

4.2 Execution Cost
To estimate the hardware execution cost of bootstrapping for each

parameter set, we count the number of major operations that re-

quire multiplicative operations: number-theoretic transform and

its inverse ((i)NTT), fast base conversion [5], and general modu-

lar multiplication (ModMult). We calculate the weighted sum of

these operations considering the computational complexity of each

operation; for word size of bit-length𝑊 , we set the weight of mul-

tiplication as𝑊 2
and (Montgomery) modular reduction as𝑊 2 +𝑊

based on [7]. Then, the weight of each operation and the weighted

sum of operations for the two parameter sets in Table 2 can be

calculated as in Table 4.

As we utilize twice more primes for the 32-bit set, the number

of (i)NTT and general modular multiplications increase linearly by

2.03× and 2.01×. Meanwhile, as the computational complexity of

base conversion is quadratic to the number of primes, the number

of base conversion multiplication increases by 4.09×. The number

of modular reductions in base conversion does not increase quadrat-

ically (2.36×) due to the lazy modular reduction technique [3].

However, as the computational complexity of each operation is

quadratic to the word size𝑊 , the 32-bit set substantially lowers

the weighted sum (WSum), which represents the total computa-

tional cost of bootstrapping, by 42.4%. Also, we observe that base

conversion accounts for a larger 25.1% (vs. 15.4%) portion of the

total complexity for the 32-bit set, which is due to the quadratic

complexity growth of base conversion in proportion to the number

of primes.

Finally, we stress that the same amount of memory space is re-

quired for both parameter sets except for the precomputed constants

required for base conversion, which occupy memory space of only

few dozens of KB. The size of other major contributors to the work-

ing set, namely ciphertexts, plaintexts, and evaluation keys, does

not change because (the number of primes)× (word size) stays the
same for both parameters.

7

Figure 1: Comparison of training losses: 32-bit composite
scale, 64-bit single scale, and cleartext computations

4.3 Toward High-Precision Workloads
Most of real-world complex applications accompany the computa-

tion of large-depth circuits, and hence bootstrapping is required.

The composite scaling method basically enables the use of large

scaling factors even in small word-size architecture, but the preci-

sion of CKKS bootstrapping has an inherent upper bound regardless

of the scaling factor size. Recently, there has been proposed a new

method called META-BTS [4] that resolves this precision issue of

CKKS bootstrapping. To be precise, META-BTS repeats the baseline

CKKS bootstrapping multiple (𝑟) times, which results in roughly 𝑟

times higher precision. As a result, composite scaling with META-

BTS finally enables to support high-precision workloads based on

CKKS in arbitrary word-size architectures.

5 REAL-WORLD IMPLEMENTATION AND
EVALUATION

5.1 Logistic Regression Model Training
In this section, we evaluate a logistic regression (LR) model trained

using the composite scaling approach. During this training phase,

the model receives encrypted training data as input and computes

the weight vector of the LR model in an encrypted state. The pre-

diction model can be expressed as follows:

𝒚 = Sigmoid(𝑿𝒘) (1)

where 𝒘 denotes a vector of weights and Sigmoid is a function

applied entry-wise defined as

Sigmoid(𝑥) = 1

1 + exp (−𝑥) (2)

We leverage the code sourced from [19], which provides an

example of LR model training using the OpenFHE library in CKKS

with the 2014 US Infant Mortality dataset. This implementation uses

a cross-entropy loss function and deploys the Nesterov Accelerated

Gradient (NAG) as the optimization technique.

Figure 2: Comparison of accuracy: 32-bit composite scale,
64-bit single scale, and cleartext computations

Table 5: Precision and average CPU execution time com-
parison of the logistic regression implementation based on
OpenFHE. (∗) Refer to Section 5.4 on the CPU performance
of composite scaling workloads.

Operation

Bit Precision Time Time
(∗)

Abs. Diff. (64-bit - 32-bit) 64-bit 32-bit

MatVector 0.0002730 5.41s 12.16s

Sigmoid 0.0000599 9.02s 20.26s

Weights update 0.0002484 0.18s 0.46s

Epoch (loss) 0.00001585 14.83 34.01s

A comparison of LR models trained via OpenFHE CKKS com-

posite scaling, OpenFHE CKKS single scaling, and cleartext is

conducted across 200 epochs. Our model operates at a learning

rate of 0.1 and uses 1024 training samples, each with 10 features.

Both encrypted training processes set a ring dimension of 2
17
,

log
2
(scaling factor) = 58 and ensures a 128-bit security. Note that

for encrypted training, a single bootstrapping (not META-BTS) is

executed during each epoch excluding the first one.

Figure 1 provides a visual comparison of the loss values. The

closely overlapped curves show very similar loss progression and

convergence rates for the three training processes.

We assess and compare the accuracy of each epoch iteration in

Figure 2. The data points are obtained by evaluating the prediction

model against a test dataset of 46582 samples, based on the updated

weights at the end of each epoch. The accuracy is defined by the

percentage of correctly classified samples. Figure 2 shows the ac-

curacy for each epoch in the encrypted training with composite

scaling is closely aligned with that of single scaling and cleartext

training, also converging at a similar rate. After 200 epochs, all three

training processes obtain 83.2% accuracy. Overall, the experimental

evidence in this section suggests that composite scaling exhibits

functional capabilities that are sufficiently comparable to those of

single scaling in the context of LR training.

Table 5 shows the mean absolute difference of the outputs of the

Matrix-Vector multiplication, and the outputs of the Sigmoid col-

lected over 200 epochs. We show also the absolute mean difference

8

0 0 1 1

0 0 1 1

4 4 5 5

4 4 5 5

2 2 3 3

2 2 3 3

6 6 7 7

6 6 7 7

8 8 9 9

8 8 9 9

12 12 13 13

12 12 13 13

10 10 11 11

10 10 11 11

14 14 15 15

14 14 15 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 0 1 1

0 0 1 1

4 4 5 5

4 4 5 5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

2 2 3 3

2 2 3 3

6 6 7 7

6 6 7 7

8 8 9 9

8 8 9 9

12 12 13 13

12 12 13 13

10 10 11 11

10 10 11 11

14 14 15 15

14 14 15 15

𝑘

Multiplexed

packing

Figure 3: Multiplexed packing of a feature map withmultiple
channels (left side) into the slots (right side) for 𝑘 = 2.

Table 6: The specification of our CNN model. Input and out-
put feature map shapes are expressed as tuples of (channel,
height, weight). All convolutional (conv) layers have strides
of one. 𝑘𝑖 and 𝑘𝑜 are multiplexed packing parameters for
input and output feature maps defined in [26]. After each
conv layer, a precise polynomial approximation of ReLU ac-
tivation based on [26] is evaluated.

Layer Input shape Output shape 𝑘𝑖 𝑘𝑜

Conv1 (3×3) (3, 32, 32) (64, 32, 32) 1 1

Conv2 (3×3) (64, 32, 32) (64, 32, 32) 1 1

AvgPool1 (2×2) (64, 32, 32) (64, 16, 16) 1 2

Conv3 (3×3) (64, 16, 16) (64, 16, 16) 2 2

Conv4 (3×3) (64, 16, 16) (64, 16, 16) 2 2

AvgPool2 (2×2) (64, 16, 16) (64, 8, 8) 2 4

Conv5 (3×3) (64, 8, 8) (64, 8, 8) 4 4

Conv6 (1×1) (64, 8, 8) (64, 8, 8) 4 4

Conv7 (1×1) (64, 8, 8) (16, 8, 8) 4 4

FC (1,024×10) 1,024 (flattened) 10 - -

of the weights computed for each of the 200 epochs and the time

it takes on CPU to execute these algorithms for each architecture.

For the Epoch precision we report the mean absolute difference

of the losses collected over 200 epochs. With 32-bit architecture

in comparison to state-of-the-art implementations we expect to

see a reduction in die area, silicon cost and power consumption

with no loss of latency if the architecture allows parallel process-

ing of the Residue Number System limbs. On CPU though, as the

table 5 shows, the 32-bit architecture executed serially takes more

execution time than 64-bit architecture.

5.2 CNN Inference with Multiplexed Packing
As a baseline, we implement a privacy-preserving Convolutional

Neural Network (CNN) inference workload using the Lattigo FHE

library [28] based on the multiplexed packing method [26], which is

shown in Figure 3. Multiplexed packing fills the empty slots arising

from strided convolution and pooling layers with other available

channels from the feature map to utilize the slots in a ciphertext

as much as possible. A detailed specification of our CNN model is

summarized in Table 6. The model consists of seven convolutional

Table 7: Accuracy and average single-thread CPU per-
inference execution time (time / infer.) of CNN based on
Lattigo with the parameter sets in Table 2. The values are
measured with 3,000 random samples from the CIFAR-10
validation images. (∗) Refer to Section 5.4 on the CPU per-
formance of composite scaling workloads.

64-bit set (single scaling) 32-bit set (comp. scaling)

Accuracy Time / infer. Accuracy Time / infer.

90.97% 376 s 90.97% 895 s
(∗)

layers and achieves an accuracy of 90.89% for 10,000 CIFAR-10

validation images when evaluated in the unencrypted (FP32) form.

We test our implemented CNN model with the two parameter

sets in Table 2: a 64-bit set using single scaling and a 32-bit set using

composite scaling. Table 7 shows the accuracy and execution time

of inference for each parameter set. Execution time is measured

using a single CPU thread on an AMD EPYC 7473X system with

512GB of DDR4-3200 memory.

We observe that applying composite scaling does not degrade

the accuracy of FHE CNN inference. In both parameter sets, our

CNN model achieves the same accuracy of 90.97% (2, 729 correctly

inferred images out of 3, 000). Observed accuracy values are similar

to the unencrypted inference accuracy of 90.89% and do not differ

depending on the scaling method.

5.3 CNN Inference with Longitudinal Packing
The data packing scheme proposed in CryptoNets [17] enables in-

ference of multiple images in a single forward pass. This makes

it suitable for batch processing and high-throughput applications,

unlike the multiplexed packing described in Section 5.2. Henceforth,

we interchangeably refer to longitudinal packing to the data pack-

ing technique used in CryptoNets [17]. Our choice is motivated by

its implementation simplicity and friendliness to homomorphic en-

cryption with the CKKS scheme. Regarding the latter, with respect

to parameterization, the higher the ring size 𝑁 , the more images

we can process in a single evaluation. Additionally, the operations

involved do not require rotations, except in the bootstrap layers;

thus, effectively minimizing the number of rotations. We implement

the longitudinal CNN inference as described in Table 8. Illustration

of the longitudinal packing for the image data and convolution

filter weights are shown in Figures 4 and 5, respectively.

5.3.1 Convolution Filters with Longitudinal Packing. Each convo-
lution filter weight 𝑓 [𝑗, 𝑖, 𝑥,𝑦] is packed in a single ciphertext and

replicated across all the available slots, as depicted in Figure 6(a).

Then, the convolution reduces to element-wise multiplications and

element-wise additions, as depicted in Figure 6(b). Algebraically,

this can be simply expressed as Equation 5.3.1, where the image 𝐼 is

encrypted as a collection of ciphertexts 𝐸 (𝐼 [𝑡]) and the convolution
weights 𝑓 are encoded as a collection of plaintexts 𝑃 (𝑓 [𝑡 ′]), where

9

Table 8: The specification of our CryptoNets-like CNN in-
ference model. Input and output feature map shapes are
expressed as tuples of (channel, height, weight). All convo-
lutional (Conv) layers have strides of one and average pool
layer have stride 2. 𝐵 is the number of input ciphertexts to
each layer, which in turn is the output by previous layer. 𝐾
denotes the number of ciphertexts required by to encrypt
the weights of a convolution filter. After each Conv layer,
bootstrapping is employed on its output which in turn is
input to a precise polynomial approximation of ReLU activa-
tion (ReLU layer) based on 59-degree Chebyshev Polynomials
with bounds [-13,13] is evaluated.

Layer Input shape Output shape 𝐵 𝐾

Input (3, 32, 32) - 3072 -

Conv1 (3×3) (3, 32, 32) (64, 32, 32) 3072 1728

Conv2 (3×3) (64, 32, 32) (64, 32, 32) 65536 36864

AvgPool1 (2×2) (64, 32, 32) (64, 16, 16) 65536 -

Conv3 (3×3) (64, 16, 16) (64, 16, 16) 16384 36864

Conv4 (3×3) (64, 16, 16) (64, 16, 16) 16384 36864

AvgPool2 (2×2) (64, 16, 16) (64, 8, 8) 16384 -

Conv5 (3×3) (64, 8, 8) (64, 8, 8) 4096 36864

Conv6 (1×1) (64, 8, 8) (64, 8, 8) 4096 4096

Conv7 (1×1) (64, 8, 8) (16, 8, 8) 4096 1024

FC (1024×10) 1024 10 1024 10240

𝑡 ∈ N3
and 𝑡 ′ ∈ Z4

are indexing tuples.

𝐸 (𝐼 ∗ 𝑓 [𝑗, :]) =
𝐶∑︁
𝑖=0

𝑘
2∑︁

𝑢=− 𝑘
2

𝑘
2∑︁

𝑣=− 𝑘
2

𝐸 (𝐼 [𝑖, 𝑥 + 𝑢,𝑦 + 𝑣]) ⊙ 𝑃 (𝑓 [𝑗, 𝑖, 𝑢, 𝑣]),

where 0 ≤ 𝑥 + 𝑢 <𝑊

and 0 ≤ 𝑦 + 𝑣 < 𝐻.

Note that 𝑗 spans the number of output feature maps, 𝑖 spans

the number of input feature maps, 𝑥 and 𝑦 iterate over the width

and height of the image, 𝑢 and 𝑣 iterate over the convolution filter

weights in a 𝑘 × 𝑘 window, where 𝑘 is typically one of the odd

numbers 3 or 1.

5.3.2 Average Pooling with Longitudinal Packing. Input cipher-
texts to the average pooling layer are the results of convolution

followed by bootstrapping and relu; thus, the input shape will be

the same as the output shape of the previous immediate convolu-

tion layer. All average pooling layers have stride 2 and 2x2 window,

effectively reducing the number of ciphertexts by a factor of 4. As

can be expected, the computation from a single pooling window

involves 3 element-wise additions and a single scalar multiplication

with the constant 0.25.

5.3.3 The Implications of Longitudinal Packing for CNN Inference.
We summarize below a series of implications that can be expected

from using longitudinal packing as the choice of data encoding

strategy for a convolution neural network:

(1) Implementation is simple and easy to understand.

(2) High throughput per single inference for larger ring sizes.

Figure 4: Longitudinal packing of image data per channel.
Four 3x3 images encrypted into a collection of 27 ciphertexts,
using 8 as the ring size, which leaves 4 slots available to store
a pixel from each of the four images.

Figure 5: Longitudinal packing of 2D convolution filter of
3x3 size.

(3) It requires high RAMmemory capacity, especially for large

ring sizes.

(4) High memory footprint during execution.

(5) Each layer’s computation can be reduced to element-wise

or scalar multiplications and element-wise additions.

(6) No rotation is required for the main bulk of computation

in convolution, except in bootstrapping.

On what concerns correctness validation, we provide an em-

pirical analysis of the arithmetic precision robustness of 32-bit

composite scaling with respect to 64-bit single scaling using sev-

eral statistical hypothesis tests. To assess the closeness of data

distributions of the outputs by the two approaches, we perform

a two-tailed two-sample z-test to determine if the means of their

populations are significantly different. We perform the z-test sta-

tistics for each layer. All the tests produce z-values ≤ 0.0003 and

p-values ≥ 0.9997; thus, with confidence level of 99%, the tests

fail to reject the null hypothesis, indicating that there is statisti-

cal significant relationship between the data distributions of all

outputs.

As for the arithmetic precision differences between the outputs

of the 32-bit composite scaling and 64-bit single scaling methods,

we perform a left-tailed one-sample z-test. The null hypothesis

𝐻0 states that the absolute difference in precision has mean `0 ≥
10
−5
. The alternative hypothesis 𝐻𝐴 states the opposite, 𝑖 .𝑒 . `𝐴 <

10

(a) Longitudinal packing of 2D convolution fil-
ter of 3x3 size.

(b) Illustration of how it convolution works with longitudinal packing. It reduces to element-
wise operations, ⊙ and ⊕.

Figure 6: Longitudinally-packed 2d convolution filter operating on a longitudinally-packed 3x3 red channel image. It consists
of element-wise multiplications between corresponding weight and pixel ciphertexts followed by the element-wise summation
of all ciphertexts resulted from the multiplications.

(a) Boxplot of data distribution of
outputs.

(b) Histogram of absolute arith-
metic precision differences.

Figure 7: Boxplots (on the left) and histogram of the precision
differences (on the right) in the outputs of the fully connected
(prediction) layer.

10
−5
. We use the absolute difference of the outputs of the two

methods as the sample data to perform the left-tailed paired z-

test statistics. All the tests produce very small calculated z-values,

tending to −∞ and accordingly p-values = 0; thus, with confidence

level of 99%, the tests successfully rejected the null hypothesis for

all layers, including the prediction layer (the fully connected layer),

confirming that most differences in arithmetic precision happens

after the 5
𝑡ℎ

digit after the decimal point.

In particular, the fully connected layer had the following abso-

lute precision difference statistics: sample mean 𝑋 = 1.1097𝑒−6
,

standard deviation 𝜎 = 1.0029𝑒−6
, maximum absolute difference as

1.0669𝑒−5
, minimum absolute difference as 0, number of samples

𝑁𝑓 𝑐 = 10240, calculated z-value as −897.0333 and p-value equal

to 0. As can be observed, most differences in arithmetic precision

occurs around the 6
𝑡ℎ

digit after the decimal point. In Figure 7, we

show the boxplots comparing the data distribution statistics of the

two approaches in the fully connected layer output, as well as the

histogram of their absolute precision differences.

In summary, both hypothesis tests, for all layers, provide desir-

able outcomes that corroborate only negligible difference in arith-

metic precision when running CNN-I workload on the CIFAR10

dataset using the 32-bit composite scaling strategy compared to the

64-bit single scaling’s.

5.4 Workload Execution time
Because most modern CPUs utilize 64-bit word size, utilizing 32-

bit composite scaling on CPUs has limited benefits. On CPUs, the

execution times of the workloads when using 32-bit composite

scaling increases. When using 32-bit composite scaling, logistic

regression training takes 1.7× longer, CNN inference takes 2.38×
(multiplexed packing) compared to when using 64-bit single scaling.

For CNN inference with multiplexed packing, the slowdown is

mainly due to our 32-bit parameter set implementation being a

proof-of-concept; our implementation still uses the 64-bit word size

internally. Revisiting Table 4, if we regard that the word size𝑊 is

fixed to 64 bits in both of the parameter sets, WSum of the 32-bit

set will become 2.29× larger (2,969M) than that of the 64-bit set

(1,297M), which explains the slowdown.

Although composite scaling may not be beneficial in terms of

performance on CPUs, graphics processing units (GPUs) and cus-

tom hardware can substantially benefit from it. As a representative

example, NVIDIA GPUs do not natively support 64-bit integer op-

erations and emulate them by compositions of 32-bit (or 16-bit)

integer operations. Therefore, by simply utilizing native 32-bit inte-

ger operations with 32-bit composite scaling, higher throughput can

be achieved for GPUs. In custom ASIC or FPGA hardware, 32-bit

datapath will reduce the hardware cost as analyzed in Section 4.2.

In fact, SHARP [23] has shown the effectiveness of double scaling

in reducing the chip area and power of an ASIC FHE accelerator.

We leave the implementation of 32-bit composite scaling on

GPUs and design of 32-bit hardware architecture for FHE CKKS as

promising future work.

6 RELATEDWORK
The early implementation work of FHE begins in the form of vari-

ous open-sourced software libraries [2, 11, 28, 33] targeting 64-bit

CPU architecture. However, with high computational overhead and

memory consumption, these software libraries cannot be leveraged

as is on the fixed but small word-size architectures. Therefore, the

performance of these software libraries (both in terms of achiev-

able precision and execution time) on small word-size architecture

remains unknown. As a result, Natarajan and Dai [29] proposed

SEAL-Embedded, a 32-bit version of the SEAL library featuring

the CKKS homomorphic encryption scheme. This library achieves

impressive performance gains but is limited in terms of the circuit

depth it can evaluate. To further improve the performance of SEAL-

Embedded, Li et al. [27] proposed a combination of SEAL-Embedded

and homomorphic encryption acceleration library (HEXL) [6] to

11

accelerate deep learning using 32-bit word-size operations. How-

ever, they do not implement bootstrapping or evaluate the precision

achieved by the deep learning workloads with 32-bit word-size.

GPUs being the next natural choice for FHE implementation,

there exists several works [15, 21, 34, 35] that perform either 32-bit

or 64-bit GPU implementations for various FHE schemes. Despite

the optimization efforts by these works, the existing 64-bit GPU

implementations suffer from a significant performance bottleneck.

This is because 64-bit integer operations are emulated using multi-

ple 32-bit integer operations, giving rise to computational overhead.

Moreover, the 32-bit GPU implementations still suffer from the

precision that they can achieve for real-world privacy-preserving

applications without the use of composite scaling. Our proposed

composite scaling approach will be extremely beneficial to im-

plementing real-world privacy-preserving applications requiring

high-precision using GPUs having 32-bit word-size.

Similar to GPUs, FHE implementation on FPGAs can witness a

significant performance improvement with our proposed compos-

ite scaling approach. FPGAs have small word-size fast multipliers

and adders (27 bits in Intel FPGAs) within the DSP blocks. Typical

approach to leverage these blocks for performing fast large word-

size (54-64 bits) arithmetic operations is through multi-precision

arithmetic approach [30]. However, using multi-precision arith-

metic approach leads to higher latency on FPGA-based FHE imple-

mentations. Instead, with composite scaling approach, these FPGA

implementations can have reduced latency while still achieving a

higher operating frequency.

In the recent 2-3 years, there has been growing trend on de-

signing custom hardware accelerators for FHE. The 64-bit archi-

tectures include Bootstrappable, Technology-driven, Secure accel-

erator (BTS) [25] and an Accelerator for FHE with Runtime data

generation and inter-operation Key reuse (ARK) [24] designs while

the 32-bit or below architectures include F1 [31] and CraterLake [32]

designs. These state-of-the-art ASIC solutions rely on large amount

of on-chip memory, computational units, and power to process the

large working data sets (several 100 MBs) that can make them ex-

pensive to operate. To deliver high performance at a greatly reduced

hardware cost, a Short-word Hierarchical Accelerator for Robust

and Practical FHE (SHARP) [23] is the first work that explored a

wide range of small word-sizes that can be practical for various

privacy-preserving applications.

7 CONCLUSION
A prevalent issue in RNS-CKKS is the challenge of efficiently achiev-

ing high precision on hardware architectures with a fixed, yet

smaller, word-size. In this work, we provide an efficient solution

to the problem that we refer to as composite scaling. In this ap-

proach, we group multiple RNS primes as 𝑞ℓ :=
∏𝑡−1

𝑖=0
𝑞ℓ, 𝑗 such that

log𝑞ℓ, 𝑗 <𝑊 for 0 ≤ 𝑗 < 𝑡 , and use each composite 𝑞ℓ in the rescal-

ing procedure as ct ↦→ ⌊ct/𝑞ℓ ⌉. The larger the composition degree

𝑡 the higher is the precision that can be achieved with RNS-CKKS

under a wide range of secure parameters for workload deployment.

Our approach makes RNS-CKKS more flexible by allowing to

express precision requirements of applications and data sets atmuch

finer grains, and for most real workloads for which bootstrapping

is required, composite scaling combined with META-BTS finally

enable to support high precision RNS-CKKS in arbitrary word-size

architectures.

We enable composite scaling RNS-CKKS in the OpenFHE and the

Lattigo libraries through concrete implementation of the method

and known to date workloads, namely logistic regression train-

ing and convolutional neural network inference. Our experiments

demonstrate that single and composite scaling are functionally

equivalent, both theoretically and practically.

Finally, using composite scaling in RNS-CKKS can allow even

more resource-constrained devices, e.g., IoT and Edge devices, typi-

cally driven by 32-bit microcontrollers, to achieve higher-precision

efficiently in RNS-CKKS. Similar considerations hold for GPUs.

REFERENCES
[1] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Yazicigil,

Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. 2023. FAB: An

FPGA-based accelerator for bootstrappable fully homomorphic encryption. In

2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 882–895.

[2] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,

et al. 2022. Openfhe: Open-source fully homomorphic encryption library. In

Proceedings of the 10thWorkshop on Encrypted Computing&Applied Homomorphic
Cryptography. 53–63.

[3] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli,

and Kurt Rohloff. 2021. Implementation and Performance Evaluation of RNS

Variants of the BFV Homomorphic Encryption Scheme. IEEE Transactions on
Emerging Topics in Computing 9, 2 (2021), 941–956. https://doi.org/10.1109/TETC.
2019.2902799

[4] Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim.

2022. META-BTS: Bootstrapping Precision Beyond the Limit. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’22). ACM, New York, 223–234. https://doi.org/10.1145/3548606.3560696

[5] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. 2016.

A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes. In

International Conference on Selected Areas in Cryptography (SAC 2016). Springer,
Cham, 423–442. https://doi.org/10.1007/978-3-319-69453-5_23

[6] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, and Vinodh Gopal.

2021. Intel hexl: Accelerating homomorphic encryption with intel avx512-ifma52.

In Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography. 57–62.

[7] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. 1994. Comparison of

Three Modular Reduction Functions. In Advances in Cryptology — CRYPTO’ 93.
Springer, Berlin, Heidelberg, 175–186. https://doi.org/10.1007/3-540-48329-2_16

[8] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-

Pierre Hubaux. 2021. Efficient bootstrapping for approximate homomorphic

encryption with non-sparse keys. In Advances in Cryptology – EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part
I. Springer, Cham, 587–617. https://doi.org/10.1007/978-3-030-77870-5_21

[9] Jean-Philippe Bossuat, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. 2022.

Bootstrapping for Approximate Homomorphic Encryption with Negligible

Failure-Probability by Using Sparse-Secret Encapsulation. In International Con-
ference on Applied Cryptography and Network Security (ACNS 2022). Springer,
Cham, 521–541. https://doi.org/10.1007/978-3-031-09234-3_26

[10] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Improved bootstrapping for

approximate homomorphic encryption. In Advances in Cryptology – EUROCRYPT
2019: 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings,
Part II. Springer, Cham, 34–54. https://doi.org/10.1007/978-3-030-17656-3_2

[11] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2018. Bootstrapping for approximate homomorphic encryption. In Advances
in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May
3, 2018 Proceedings, Part I 37. Springer, 360–384.

[12] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2019. A full RNS variant of approximate homomorphic encryption. In Selected
Areas in Cryptography–SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15–17, 2018, Revised Selected Papers 25. Springer, 347–368.

[13] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and

12

https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1145/3548606.3560696
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/3-540-48329-2_16
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/978-3-030-17656-3_2

Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409–437.

[14] Leo de Castro, Rashmi Agrawal, Rabia Yazicigil, Anantha Chandrakasan, Vinod

Vaikuntanathan, Chiraag Juvekar, and Ajay Joshi. 2021. Does fully homomorphic

encryption need compute acceleration? arXiv preprint arXiv:2112.06396 (2021).
[15] Shengyu Fan, ZhiweiWang,Weizhi Xu, Rui Hou, DanMeng, andMingzhe Zhang.

2023. Tensorfhe: Achieving practical computation on encrypted data using gpgpu.

In 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 922–934.

[16] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic evaluation of

the AES circuit. In Annual Cryptology Conference. Springer, 850–867.
[17] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted

data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201–210.

[18] Kyoohyung Han and Dohyeong Ki. 2020. Better bootstrapping for approximate

homomorphic encryption. In Topics in Cryptology–CT-RSA 2020: The Cryptogra-
phers’ Track at the RSA Conference 2020, San Francisco, CA, USA, February 24–28,
2020, Proceedings. Springer, 364–390.

[19] Ian Quah and Ahmad Al Badawi and David Bruce Cousins and Yuriy

Polyakov. 2023. OpenFHE-Based Examples of Logistic Regression Training

using Nesterov Accelerated Gradient Descent. https://github.com/openfheorg/

openfhe-logreg-training-examples. (2023). Accessed: 2023-07-23.

[20] David Ireland. 2001. Google. https://code.google.com/archive/p/libmcrypto/.

(2001).

[21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho Lee.

2021. Over 100x Faster Bootstrapping in Fully Homomorphic Encryption through

Memory-centric Optimization with GPUs. IACR Transactions on Cryptographic
Hardware and Embedded Systems (2021), 114–148.

[22] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. 2022. Approxi-

mate homomorphic encryption with reduced approximation error. In Topics
in Cryptology–CT-RSA 2022: Cryptographers’ Track at the RSA Conference 2022,
Virtual Event, March 1–2, 2022, Proceedings. Springer, 120–144.

[23] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan Kim, and

Jung Ho Ahn. 2023. SHARP: A Short-Word Hierarchical Accelerator for Robust

and Practical Fully Homomorphic Encryption. In Proceedings of the 50th Annual
International Symposium on Computer Architecture. 1–15.

[24] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John Kim,

and Jung Ho Ahn. 2022. Ark: Fully homomorphic encryption accelerator with

runtime data generation and inter-operation key reuse. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1237–1254.

[25] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim,

Minsoo Rhu, and Jung Ho Ahn. 2022. Bts: An accelerator for bootstrappable

fully homomorphic encryption. In Proceedings of the 49th Annual International
Symposium on Computer Architecture. 711–725.

[26] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim,

Jong-Seon No, and Woosuk Choi. 2022. Low-Complexity Deep Convolutional

Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel

Convolutions. In Proceedings of the 39th International Conference on Machine
Learning, Vol. 162. PMLR, 12403–12422.

[27] Xinyi Li, Masaki Nishi, Teppei Shishido, and Keiji Kimura. 2022. Acceleration

of HE-Transformer with bit reduced SEAL and HEXL. IEICE Technical Report;
IEICE Tech. Rep. (2022).

[28] Christian Vincent Mouchet, Jean-Philippe Bossuat, Juan Ramón Troncoso-

Pastoriza, and Jean-Pierre Hubaux. 2020. Lattigo: a Multiparty Homomor-

phic Encryption Library in Go. In Proceedings of the 8th Workshop on En-
crypted Computing and Applied Homomorphic Cryptography (WAHC ’20). 64–70.
https://doi.org/10.25835/0072999

[29] Deepika Natarajan and Wei Dai. 2021. Seal-embedded: A homomorphic en-

cryption library for the internet of things. IACR Transactions on Cryptographic
Hardware and Embedded Systems (2021), 756–779.

[30] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An ar-

chitecture for computing on encrypted data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 1295–1309.

[31] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald

Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and pro-

grammable accelerator for fully homomorphic encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 238–252.

[32] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,

Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel

Sanchez. 2022. Craterlake: a hardware accelerator for efficient unbounded com-

putation on encrypted data. In Proceedings of the 49th Annual International
Symposium on Computer Architecture. 173–187.

[33] SEAL 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL.

(Jan. 2023). Microsoft Research, Redmond, WA.

[34] Kaustubh Shivdikar, Gilbert Jonatan, Evelio Mora, Neal Livesay, Rashmi Agrawal,

Ajay Joshi, José L. Abellán, John Kim, and David Kaeli. 2022. Accelerating

Polynomial Multiplication for Homomorphic Encryption on GPUs. In 2022 IEEE
International Symposium on Secure and Private Execution Environment Design
(SEED). 61–72. https://doi.org/10.1109/SEED55351.2022.00013

[35] Yujia Zhai, Mohannad Ibrahim, Yiqin Qiu, Fabian Boemer, Zizhong Chen, Alexey

Titov, and Alexander Lyashevsky. 2022. Accelerating encrypted computing on in-

tel gpus. In 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 705–716.

13

https://github.com/openfheorg/openfhe-logreg-training-examples
https://github.com/openfheorg/openfhe-logreg-training-examples
https://code.google.com/archive/p/libmcrypto/
https://doi.org/10.25835/0072999
https://github.com/Microsoft/SEAL
https://doi.org/10.1109/SEED55351.2022.00013

	Abstract
	1 Introduction
	2 Background
	2.1 CKKS Basics
	2.2 Full-RNS Instantiation of CKKS: RNS-CKKS
	2.3 Bootstrapping

	3 CKKS over Small Word-size based on Composite Scaling
	3.1 Composite Scaling
	3.2 Precision Analysis for Mult and Rescale
	3.3 Precision Analysis for Add and Crossing levels
	3.4 Moduli Generation for Composite Scaling

	4 Bootstrapping Analysis
	4.1 Bootstrapping Precision
	4.2 Execution Cost
	4.3 Toward High-Precision Workloads

	5 Real-world Implementation and Evaluation
	5.1 Logistic Regression Model Training
	5.2 CNN Inference with Multiplexed Packing
	5.3 CNN Inference with Longitudinal Packing
	5.4 Workload Execution time

	6 Related Work
	7 Conclusion
	References

