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Abstract
State-machine replication (SMR) allows a state machine to be
replicated across a set of replicas and handle clients’ requests
as a single machine. Most existing SMR protocols are leader-
based, i.e., requiring a leader to order requests and coordinate
the protocol. This design places a disproportionately high load
on the leader, inevitably impairing the scalability. If the leader
fails, a complex and bug-prone fail-over protocol is needed
to switch to a new leader. An adversary can also exploit the
fail-over protocol to slow down the protocol.

In this paper, we propose a crash-fault tolerant SMR named
Cascade, with the following properties:

• Leaderless: it does not require a leader, hence completely
get rid of the fail-over protocol.

• Scalable: it can scale to a large number of replicas.

• Robust: it behaves well even under a poor network con-
nection.

We provide a full-fledged implementation of Cascade and
systematically evaluate its performance. Our benchmark re-
sults show that Cascade achieves a peak throughput of around
two million TPS, up to 8.7× higher than the state-of-the-art
leaderless SMR.

1 Introduction

State-machine replication (SMR) replicates a state machine
across a set of replicas, and uses a consensus protocol to en-
sure that the service is available and consistent even in the
presence of faulty replicas. More specifically, replicas run the
consensus protocol to agree on the order of client requests,
store the ordered requests into a local log, and execute the
logged requests slot by slot. This strategy has been widely
used in real-world systems to provide better reliability. For ex-
ample, the classical consensus, Paxos and its variants [22, 23],
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had been adopted in Chubby [8], Google Spanner [13] and
Microsoft Azure Storage [10]; recent systems such as Re-
thinkDB [3], Redis [1] and CockroachDB [2], chose Raft [31]
over Paxos due to better understandability.

Most consensus protocols like Paxos and Raft are leader-
based, i.e., requiring a leading replica to decide the order of
requests and coordinate the protocol. The protocol cannot
make progress if the leader fails and it relies on a fail-over
protocol to switch to a new leader. This design has negative
effects on at least two aspects:

• Efficiency. It places a disproportionately high load on the
leader, inevitably impairing the scalability. An adversary
can also exploit the fail-over protocol to further slow
down the protocol [4].

• Codebase complexity. Although the normal case is sim-
ple, the fail-over protocol is too complex to implement
and debug [12]. For example, the fail-over protocol has
introduced bugs to Redis [21] and RethinkDB [21] when
Raft was integrated into these systems.

To address the first issue, recent consensus protocols adopt
a multi-leader paradigm to evenly distribute the leader’s re-
sponsibility and overhead [5, 16, 28, 30, 34]. However, repli-
cas in such protocols need to keep track of request dependen-
cies, which introduces new overhead for checking dependen-
cies. Furthermore, this paradigm needs a fail-over protocol
that is more complex than the single-leader consensus.
Leaderless SMR. In SOSP ’21, Haochen et al. presented a
leaderless SMR named Rabia [32] that targets the setting of a
single datacenter. Rabia gets rid of the fail-over protocol by
leveraging a randomized binary consensus (RBC) to agree on
the request for each slot of the log. More specifically, each
replica proposes a batch of requests and runs RBC; (i) if all
(non-crash) replicas propose the same requests, they agree
on those requests for the current slots; (ii) if no majority of
replicas propose the same requests, they forfeit the slots; in
either case, RBC terminates in three message delays. Haochen
et al. claim that case (i) is common in a single datacenter
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where message delay is small compared to request intervals.
Case (ii) reduces the chance for a long tail latency: when RBC
seems difficult to terminate fast, the replicas forfeit the slots so
that RBC can still terminate in three message delays. Despite
these nice properties, Rabia has two limitations: can only work
within a single datacenter, and cannot scale to a large number
of replicas, which significantly limits its deployability.

Our contribution. In this paper, we propose a leaderless
SMR named Cascade, which successfully overcomes the two
limitations of Rabia: it goes beyond a single datacenter and
scales to more replicas. The core idea of Cascade is to have
replicas run RBC to agree on “whether a certain replica has
proposed requests”, instead of “whether all replicas have pro-
posed the same request”; n instances of RBC can proceed in
a batch (where n is the number of replicas). In Rabia, each
replica proposes a batch of requests and they can agree on
one batch at most. In Cascade, each replica proposes a batch
of requests as well, but they can agree on upto n batches, and
these requests are likely to be different as each replica serves
as a proxy for different clients. As a result, Cascade could
potentially achieve a throughput that is n times higher than
Rabia. Furthermore, we borrow idea from the gossip protocol
to make three message delays to be the common case even
under a poor network connection. We provide a full-fledged
implementation of Cascade and systematically evaluate its
performance. Our experimental results show that Cascade
achieves a peak throughput around two million TPS, up to 8.7
× higher than Rabia.

Organization. In the remainder of this paper, we first pro-
vide necessary background for this paper in Section 2 and
provide a design roadmap for Cascade in Section 3. Then, we
describe Cascade in greater details in Section 4 and prove its
safety and liveness in Section 5. Next, we extensively evaluate
its performance and compare it to the state-of-the-art SMR
systems in Section 6. In the end, we survey related work in
Section 7 and conclude the paper in Section 8.

2 Preliminaries

2.1 State-machine replication

State-machine replication (SMR) allows a state machine to
be replicated across n replicas and handle clients’ requests
as a single machine, even in the presence of f faulty replicas.
In more details, (i) each replica locally maintains a log that
is divided into slots; (ii) clients submit requests to replicas
and wait for responses; (iii) replicas run a consensus protocol
to agree on the order of requests to be stored in the log;
(iv) replicas execute the operations in the requests slot by slot;
and (v) replicas respond to the corresponding clients with the
execution results.

The core component of a SMR system is its consensus
protocol, i.e. step (iii) above, which ensures the following two

properties:

• Safety: all non-faulty replicas execute the requests in
the same order, a.k.a. agreement; each executed request
was proposed by a client, a.k.a. validity.

• Liveness: a request proposed by a client will eventually
be executed, a.k.a. termination.

The famous FLP result states that it is impossible to achieve
deterministic consensus in an asynchronous network where
at least one replica may crash [18]. As a result, most existing
SMR systems [22, 31] ensure both safety and liveness only
when the network is stable (i.e., synchronous); they do not en-
sure liveness when the network becomes asynchronous. Such
systems rely on a leader to order the requests and coordinate
the protocol. This design places a disproportionately high
load on the leader, inevitably impairing the scalability. Fur-
thermore, this design relies on a fail-over protocol to tolerate
a failed leader, but the fail-over protocol is too complex to im-
plement and debug [12]. For example, the fail-over protocol
has introduced bugs to Redis [21] and RethinkDB [3].

2.2 Randomized binary consensus
Another way to circumvent the FLP impossibility result is to
allow probabilistic termination. For example, in the random-
ized binary consensus (RBC) proposed by Ben-Or [6], the
probability for a replica to terminate approaches 1 as time pro-
ceeds. However, the original RBC has an average latency that
is exponential with respect to the number of replicas, as each
replica flips a local coin. This can be addressed by replacing
the local coins by a common coin whose value is identical
across all replicas. The details of RBC with a common coin
can be found in Algorithm 1.

RBC proceeds in rounds: in each round, replicas first ex-
change their states and decide their votes (Line 3-9 in Algo-
rithm 1) and then exchange their votes (Line 10-20 in Algo-
rithm 1). Ri sets vote to b (which is either 0 or 1) if b appears
at least (⌊ n

2⌋+ 1) times in the STATE messages that Ri has
received (Line 6 in Algorithm 1); otherwise, Ri sets vote to ?
(Line 8 in Algorithm 1).

• If a non-? value b appears at least ( f + 1) times in the
received VOTE messages, Ri can safely terminate and
output b (Line 14 in Algorithm 1).

• If a non-? value b appears at least once (a simple quorum
intersection argument guarantees that there is at most
one non-? value in all votes), Ri sets state as b and moves
on to the next round (Line 16 in Algorithm 1).

• If all the received VOTE messages are “?”, Ri flips a
common coin to determine the state for the next round
(Line 18 in Algorithm 1). Notice that replicas executing
Line 18 in the same round will obtain the same state.
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Algorithm 1: RBC - Ri

Input: A binary value bi
Output: A binary value of consensus

1 state← bi
2 while true do
3 Broadcast(STATE, r, state) ▷ r is the round number
4 Wait until receiving ≥ n− f round-r STATE messages
5 if value b appears ≥ ⌊ n

2⌋+1 times then
6 vote← b
7 else
8 vote← ?
9 end

10 Broadcast(VOTE, r, vote) ▷ vote can be 0, 1 or ?
11 wait until receiving ≥ n− f round-r VOTE messages
12 if a non-? value b appears ≥ f +1 times then
13 Broadcast(DECIDE, b)
14 return b ▷ output b and terminate
15 else if a non-? value b appears at least once then
16 state← b
17 else
18 state← CommonCoinFlip(r)
19 end
20 r← r+1 ▷ proceed to next round
21 end
22 /* executing in background */
23 Upon receiving a DECIDE message:
24 Broadcast(DECIDE, b)
25 return b
26 end

We remark that, when replicas can only crash (not Byzan-
tine), CommonCoinFlip(r) can be implemented easily by us-
ing a random binary number generator with the same seed
across all replicas. The number of rounds depends on the
outcome of the common coin flip, hence its latency is less
predictable compared to the leader-based consensus protocols
like Paxos and Raft.

2.3 Design goal

We aim to design a leaderless SMR for n = 2 f + 1 repli-
cas where at most f replicas can be faulty (fail by crashing).
It achieves both agreement and termination; following Ra-
bia [32], it only achieves weak validity: each slot of the log
can either store client requests or be empty.

We consider an environment where communication is asyn-
chronous: each message sent to a non-crash replica will even-
tually be received, but there is no bound on the message delay.
Like other leader-based SMR systems, we rely on synchrony
to ensure liveness; safety is guaranteed even if the communi-
cation is asynchronous.

We assume that, at any time in the execution, an adversary
can dynamically select which replica crashes and which mes-
sage delivers. However, as mentioned above, messages sent to

a non-crash replica will eventually be received and there will
be at most f crash replicas. Prior work shows that such an
adversary can significantly slow down the fail-over protocol
(if any) [4].

3 Design Roadmap

We explain the design roadmap of Cascade by first revisiting
Rabia, and then step-by-step towards the final design.

3.1 Rabia revisit

In Rabia [32], a client sends requests to a designated replica
(which is this client’s proxy) and waits for responses from
the same replica. Upon receiving a request, Ri pushes it to a
local priority queue PQi and forwards it to all other replicas.
Replicas continuously agree on the requests for each slot as
long as their PQs are non-empty.

During a consensus round of Rabia, each Ri sends the top-
m requests of PQi to other replicas in proposali and waits for
(n− f ) proposals; if all these proposals are with the same
requests, Ri inputs 1 to RBC (Algorithm 1); otherwise, it
inputs 0. If RBC outputs 1, replicas store the agreed requests
in the current slot of their local logs. If RBC outputs 0, replicas
forfeit the current slot and move on to the next slot.

Allowing replicas to forfeit a slot, Rabia violates the valid-
ity property of a SMR system (i.e., the output has to be client
requests). Instead, it achieves a relaxed version of validity
named weak validity: the value stored in each slot of the log
can either be client requests or a NULL value ⊥.

Although the latency of RBC is unpredictable (cf. Sec-
tion 2.2), the consensus in Rabia is guaranteed to terminate in
three message delays when either of the following conditions
is satisfied:

1. all (non-crash) replicas propose the same requests; or

2. no majority of replicas propose the same requests.

We remark that condition (1) is the key requirement for
Rabia to be efficient (condition (2) also results in three mes-
sage delays, but replicas will forfeit the slot, hence they still
rely on condition (1) to make progress). The authors of Rabia
claim that condition (1) is the most common case in a single
datacenter where message delay is small compared to request
intervals: given that each replica will forward a request (re-
ceived from a client) to all other replicas, it is highly likely
that replicas will have the same oldest pending requests in
their local priority queues. However, this is not the case if
replicas are deployed across multiple zones, where message
delay could be larger than the request intervals. When batch-
ing is introduced, the batch of requests proposed by a replica
is more likely to be different from others.
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3.2 Go beyond a single datacenter

Recall that a leader-based SMR relies on a leader to pro-
pose requests, and all replicas run consensus to agree on its
proposal. Rabia gets rid of the leader by having all replicas
propose requests and it uses RBC to determine whether these
replicas have proposed the same request. Consequently, its
efficiency highly relies on the condition that “all (non-crash)
replicas propose the same request”, which is only true within
a single datacenter. In Cascade, we go one step further: we
have replicas agree on whether a certain replica has proposed
requests or not.

In Cascade, each Ri also sends the top-m requests of PQi to
other replicas in proposali and waits for proposals from other
replicas. However, we do not require all replicas to propose
the same requests; on the contrary, it will be much better if
they propose totally different requests (we will explain in
Section 3.3). If R j has received proposali within a timeout, it
inputs 1 to RBC (Algorithm 1), otherwise, it inputs 0. RBC is
guaranteed to terminate in three message delays when either
of the following conditions is satisfied:

1. all (non-crash) replicas have received proposali within a
timeout; or

2. no replica has received proposali within a timeout.

Notice that we do not require all replicas to input the same
request, hence Cascade goes beyond a single datacenter and
can be deployed across multiple zones. Furthermore, batching
will not introduce any side-effect in Cascade, because we do
not require replicas to propose the same batch of requests.

3.3 To be more scalable

During a consensus round of Cascade, each replica Ri lo-
cally maintains a vector BIi of input bits: if Ri has received
a proposal from R j (i.e., proposal j) within a timeout, it
sets BIi[ j] := 1; otherwise, it sets BIi[ j] := 0; it always sets
BIi[i] := 1. Then, they run n instances of RBC (Algorithm 1):
each Ri inputs BIi[ j] to the j-th instance; if the j-th instance
outputs 1, the requests in proposal j will be stored in the cor-
responding slot; if it outputs 0, these requests will be left to
the next round (forfeit the slot like Rabia). Notice that the n
instances of RBC can proceed in a batch, as a single instance.
Figure 1 visualizes this process.

In Rabia, each replica proposes a batch of requests and
they can agree on one batch at most. In Cascade, each replica
proposes a batch of requests as well, but they can agree on
upto n batches, and these requests are likely to be different
as each replica serves as a proxy for different clients. As a
result, Cascade could potentially achieve a throughput that is
n times higher than Rabia.

3.4 To be more robust
Next, we discuss different kinds of network connectivities
among n = 2 f +1 replicas and explain how we optimize the
broadcast to make Cascade more robust. For simplicity, we
say Ri and R j are “connected” if the message delay between
them is much smaller than the timeout; in contrast, they are
“disconnected” if the message delay is larger than the timeout.
A set of replicas are fully connected if every two of them are
connected; a set of replicas are strongly connected if there
is a connected path between every two replicas in this set.
Roughly, there are following kinds of network connectivities:

1. A quorum Q of at least f + 1 non-crash replicas are
fully connected, and the rest replicas are either crash or
disconnected from Q.

2. A quorum Q of at least f + 1 non-crash replicas are
strongly connected, and the rest replicas are either crash
or disconnected from Q.

3. No quorum of more than f non-crash replicas are either
fully or strongly connected.

Under condition (1), it is clear that every replica inside
Q will receive proposals sent from the replicas that are also
inside Q; the consensus instances for such proposals will out-
put 1s. On the other hand, replicas inside Q will not receive
proposals sent from the replicas that are outside Q; the con-
sensus instances for such proposals will output 0s. In either
case, the consensus instances are guaranteed to terminate in
three message delays. The replicas outside Q might stay in the
“while” loop of the binary consensus, but they will eventually
receive the DECIDE messages and catch up to the replicas
inside Q.

Under condition (3), the consensus is unlikely to termi-
nate in three message delays, but it will eventually terminate
and safety will be guaranteed. Notice that condition (3) is a
nightmare for all consensus protocols, so we leave it as it is.

The performance of Cascade under condition (2) can be
as worse as under condition (3), because when a replica Ri
broadcasts a proposali, only its direct neighbors can receive
proposali within a timeout. We aim to optimize this so that
all replicas in Q can receive proposali within a timeout, then
the performance of Cascade under condition (2) will be as
good as that under condition (1). To this end, we borrow idea
from the gossip protocol [14]: when R j receives proposali, it
broadcasts it again; to avoid flooding, R j broadcasts the hash
of proposali instead of proposali itself; replica who receives
the hash but did not receive proposali will pull proposali from
R j. Of course, when broadcasting the hash,R j can exclude the
replicas that it has received the same hash from. Suppose the
timeout is larger than n times of the message delay between
two connected replicas, our optimization is able to make a
quorum of strongly connected replicas behave like a quorum
of fully connected replicas.
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This optimization also needs to be applied to the STATE
and VOTE messages inside RBC (but no need to broadcast
the hash as the STATE and VOTE messages are small); it
ensures that replicas inside Q will receive the 1s (sent from
replicas inside Q) before receiving the potential 0s (sent from
the replicas outside q).
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Figure 1: Workflow of Cascade from R1’s point of view.

3.5 Workflow of Cascade
Figure 1 depicts the workflow from R1’s point of view:

❶ R1 retrieves the top-m requests from its priority queue
PQ1 and broadcasts them in a batch proposali.

❷ Meanwhile, R1 collects proposals from other replicas:
when it receives a proposal from R j, it sets BI1[ j] := 1.

❸ They run n instances of RBC in batch; R1 uses BI1[ j] as
the input for the j-th RBC instance.

❹ R1 uses BO1 to record the output for each RBC instance.

❺ R1 decides which proposals should be committed accord-
ing to BO1. In this example, proposal1, proposal2, and
proposal5 should be committed.

❻ R1 treats proposal4 as the proposal sent by R4 in the next
round. Notice that this is crucial for the protocol to be
live.

4 Cascade in Detail

In this section, we present Cascade in greater details.

4.1 Message handler
A client sends a request to a designated replica. If it receives
no response within timeout, it re-sends it to all replicas. Algo-
rithm 2 shows how a replica Ri in Cascade handles messages

that trigger consensus. It roughly works in the following three
cases:

• Upon receiving a request, Ri pushes it to PQi, which is
used to store pending requests, i.e., requests that have not
been stored in the log yet (Line 10-11). After gathering
at least m requests, Ri picks the top-m requests from
PQi and broadcasts them in a batch as proposali to all
replicas; this action brings Ri to the consensus stage
(Line 17-20).

• When other replicas receive proposali, they will also
move on to the consensus stage. In addition, they will
broadcast the hash of proposali to ensure that other
replicas that are not connected with Ri can also receive
proposali (Line 26-30).

• Replicas who received the hash of proposali will check
whether they have already received the proposal. If so,
they simply ignore this message. Otherwise, they will
pull proposali from the sender of the hash, and move on
to the consensus stage. They will also forward the hash
to other replicas (Line 36-40).

We introduce the term “run” to represent a run of the entire
protocol, starting with every replica making proposals and
ending with a decision being made. Each run has a run_id
(Line 6), which is concatenated to each proposal (Line 14),
making the proposals different. If a replica does not hear a
positive decision on its proposal by the end of the current run,
it will make the same proposal in the next run. We achieve this
through the “propose_on” flag (Line 5): a replica can make a
proposal only when this flag is 1. Furthermore, replicas will
accept a proposal as long as it was not committed, even if
its run_id is lower than the current run (Line 25 and 35). In
this way, even if a replica has a slow connection to others, its
proposals will eventually be received and committed.

4.2 Proposal exchange
Notice that replicas might send proposals simultaneously. To
include all these proposals into consensus, we introduce a
“proposal exchange” phase in the beginning of the consensus
stage (Line 1-19 in Algorithm 3). Namely, each Ri sets a
timer and collects proposals in a similar way as Algorithm 2
until timeout or having received n proposals. After collecting
the proposals, they start to run the batched RBC to agree on
which requests to be inserted into the log.

4.3 Batched RBC
Algorithm 4 shows the details of the batched RBC. It takes
BIi (indicators for whether Ri has received a proposal in the
current run) as the input states and outputs BOi (indicators
for whether a proposal should be inserted into the log).
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Algorithm 2: Message handler - Ri

1 Local Variables:
2 Logi ▷ local log
3 PQi ▷ priority queue
4 consensus_on := 0 ▷ whether Ri is in a consensus
5 propose_on := 1 ▷ whether Ri can make proposals
6 run_id := 0 ▷ The run id
7 BIi := [0, ...,0]
8 proposalsi := []
9

10 Upon receiving request from a client:
11 PQi.push(request)
12 if |PQi| ≥ m AND propose_on = 1 then
13 propose_on := 0
14 proposali ← (top-m requests in PQi) || run_id || i
15 BIi[i] := 1; proposalsi[i] := proposali
16 Broadcast(proposali)
17 if consensus_on = 0 then
18 consensus_on := 1
19 Cascade_main()
20 end
21 end
22 end
23

24 Upon receiving proposal j from R j:
25 if consensus_on = 0 and proposal j was not committed

then
26 consensus_on := 1
27 BIi[ j] := 1
28 proposalsi[ j] := proposal j
29 Broadcast(H(proposal j)) ▷ exclude R j

30 Cascade_main()
31 end
32 end
33

34 Upon receiving H(proposalk) from R j:
35 if consensus_on = 0 and proposalk was not committed

then
36 consensus_on := 1
37 pull proposalk from R j
38 BIi[k] := 1; proposalsi[k] := proposalk
39 Broadcast(H(proposalk)) ▷ exclude R j and Rk
40 Cascade_main()
41 end
42 end

Recall that, in RBC, replicas first exchange STATE mes-
sages containing a state bit of either 0 or 1, and decide their
votes; then, they exchange VOTE messages containing a vote
of 0, 1, or ?. The goal of our batched RBC is to run n RBC
instances in a single batch. To this end, we batch n state bits
into a single STATE message and batch n votes into a single
VOTE message. In this way, we can significantly save the
bandwidth without affecting the overall latency.

In more detail, each replica Ri maintains two arrays: statesi

Algorithm 3: Cascade_main - Ri

1 Start timer
2 repeat
3 Upon receiving proposal j from R j:
4 if proposal j was not committed then
5 BIi[ j] := 1
6 proposalsi[ j] := proposal j
7 Broadcast(H(proposal j)) ▷ exclude R j

8 end
9 end

10

11 Upon receiving H(proposalk) from R j:
12 if BIi[k] = 0 and proposalk was not committed then
13 pull proposalk from R j
14 BIi[k] := 1
15 proposalsi[k] := proposalk
16 Broadcast(H(proposalk)) ▷ exclude R j and Rk
17 end
18 end
19 until timeout or BIi[l] = 1 ∀ 0≤ l < n;
20

21 BOi ← BatchedRBC(BIi)
22

23 for k := 1 to n do
24 if BOi[k] = 1 and proposalsi[k] =⊥ then
25 pull proposalk from other replicas
26 proposalsi[k] := proposalk
27 end
28 end
29

30 Deduplicate(proposalsi)
31 commit proposalsi: add the requests in proposalsi to Logi
32 BIi := [0, ...,0]
33 for k := 1 to n do
34 if BOi[k] = 1 then
35 proposalsi[k] :=⊥
36 end
37 end
38 consensus_on := 0
39 run_id := run_id +1
40 if BOi[i] = 1 then
41 propose_on := 1
42 end

(initialized with BIi) and votesi (initially empty). In the first
round,Ri broadcasts statesi in a STATE message and waits for
the STATE messages from other replicas (Line 3-10). Upon
receiving a STATE message, Ri forwards it to other replicas,
for a similar reason as forwarding the proposals. However,
this time, Ri does not need to forward the hash because the
STATE message is small (only 3n bits). After receiving at
least ( f + 1) STATE messages1, Ri assigns values to votesi

1Recall that RBC (Algorithm 1) requires receiving (n− f ) STATE mes-
sages. As we assume n = 2 f + 1, it is equal to receiving ( f + 1) STATE
messages.
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Algorithm 4: BatchedRBC - Ri

Input: BIi
Output: BOi

1 statesi := BIi; votesi := []
2 while true do
3 Broadcast(STATE, r, run_id, statesi) ▷ r-th round
4 repeat
5 Upon receiving a STATE message M from R j:
6 if this is the first time received M then
7 Broadcast(M)) ▷ exclude R j
8 end
9 end

10 until receiving ≥( f +1) round-r STATE messages;
11 for k := 1 to n do
12 if (decided,b) appears at the k-th slot of any

received states j then
13 votesi[k] := (decided,b)
14 else if a value b appears ≥( f +1) times at the k-th

slot of all received states j then
15 votesi[k] := b
16 else
17 votesi[k] :=?
18 end
19 end
20 Broadcast(VOTE, r, run_id, votesi)
21 repeat
22 Upon receiving a VOTE message M from R j:
23 if this is the first time received M then
24 Broadcast(M)) ▷ exclude R j
25 end
26 end
27 until receiving ≥( f +1) round-r VOTE messages;
28 for k := 1 to n do
29 if (decided,b) appears at the k-th slot of any votes j

or a non-? value b appears ≥( f +1) times at the
k-th slot of all received votes j then

30 statesi[k] := (decided,b)
31 else if a non-? value b appears at the k-th slot of

any received votes j then
32 statesi[k] := b
33 else
34 statesi[k] := CommonCoinFlip(r)
35 end
36 r := r+1
37 end
38 if all n slots in statesi have “decided” flags then
39 Broadcast(DECIDE, run_id, statesi)
40 Return statesi

41 end
42 end
43 /* Executing in background */
44 Upon receiving a DECIDE message M from R j:
45 Broadcast(M) ▷ exclude R j
46 Return states j

47 end

based on the received states:

• First of all, once the replicas have reached a consensus
for any RBC instance, they will add a flag “decided” to
the corresponding slot in states; after seeing this flag,
Ri simply follows the decision and assigns the decided
value (together with the flag) to the corresponding slot
in votesi (Line 13).

• If a value b appears at least ( f +1) times at the k-th slot
of all received states, Ri assigns b to votesi[k] (Line 15).

• For other slots, Ri assigns ? to the corresponding slots
of votesi (Line 17).

Next, Ri broadcasts votesi in a VOTE message, and waits
for and forwards the VOTE messages of other replicas (Line
20-27). After receiving at least ( f +1) VOTE messages, Ri
decides statesi for the next round based on the received votes:

• If any slot has been decided with a non-? value b (has a
“decided” flag, or there are at least ( f +1) replicas vote
for b), Ri assigns (decided, b) to the corresponding slot
in statesi (Line 30).

• If a non-? value b appears at the k-th slot of any received
votes (the quorum intersection argument on state mes-
sages guarantees that there is at most one non-? value),
Ri assigns b to statesi[k] (Line 32).

• For other slots, replicas flip a common coin to decide the
states for the next phase (Line 34).

If all slots have been decided, Ri broadcasts statesi in a
DECIDE message and terminates the batched RBC (Line 38-
41). Other replicas who receive the DECIDE message will
also terminate the batched RBC (Line 44-47).

4.4 Reconciliation

After terminating the batched RBC, Ri will put the agreed
requests into Logi. More specifically, Ri first goes over all
slots in proposalsi: if the corresponding RBC instance for
a slot returns 1 but Ri has not received the proposal yet, it
needs to pull the proposal from others (Line 23-28 in Algo-
rithm 3). As different replicas may propose duplicate requests,
Ri needs to deduplicate the remaining requests in proposalsi
before adding them to Logi (Line 30-31 in Algorithm 3). In
the end of the consensus stage, Ri resets BIi, proposalsi, con-
sensus_on, propose_on, and enters the next run (Line 32-42
in Algorithm 3).

We remark in the end that, similar to Rabia [32], Cascade
supports a simple mechanism for log compaction. We refer
to [32] for more details.
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5 Safety and Liveness

In this section, we prove the correctness (i.e., safety and live-
ness) of Cascade, which is completely due to the correctness
of the batched RBC (Algorithm 4). We say “a non-? value
b is r-locked for the k-th RBC instance” if every replica Ri
starts round-r in Algorithm 4 with statesi[k] set to b.

5.1 Safety
We first show that the batched RBC satisfies safety (i.e., agree-
ment and weak validity).

Lemma 1. In the same round, it is impossible for two replicas
to vote differently for the same RBC instance.

Proof. The proof is by contradiction. Suppose Ri and R j vote
for 0 and 1 respectively for the k-th RBC instance in round-r.
Then, Ri must have received at least ( f + 1) states with the
k-th slot as 0. Similarly, R j must have received at least ( f +1)
states with the k-th slot as 1. As there are 2 f +1 replicas in
total, there must be at least one replica that has sent different
states to Ri and Ri (quorum intersection argument). This is
impossible as we assume replicas can only fail by crashing
(cf. Section 2.3)

Lemma 2. If a replica decides b for the k-th RBC instance in
round-r, then b is (r+1)-locked for the k-th RBC instance.

Proof. Suppose Ri decides b for the k-th RBC instance in
round-r (Line 30 in Algorithm 4). There are following cases:

1. “b appears ≥( f +1) times at the k-th slot of all received
votes”.

2. “(decided,b) appears at the k-th slot of any received
votes j”.

In case (1), there must be at least ( f + 1) replicas vote
for b for the k-th RBC instance. Then, any replica R j that
starts round-(r+1) must have received at least one vote for
b for the k-th RBC instance due to the quorum intersection
argument (recall that R j is required to receive at least ( f +1)
votes to move on to the next round). Furthermore, by Lemma
1, R j will not receive any votes for (1−b) for the k-th RBC
instance in round-r. As a result, R j will set statesi[k] to b in
Line 32 (Algorithm 4) in round-r and start round-(r+1) with
statesi[k] = b.

In case (2), R j must have decided b for the k-th RBC in-
stance in round-r′ with r′ < r. Based on the discussion above
for case (1), any replica Rl entering round-(r′+1) will have
statesl [k] = b, and the same for round-(r+1).

Lemma 3. If a value b is r-locked for the k-th RBC instance,
then any replica reaching Line 28 (Algorithm 4) in round-r
will decide b in round-r.

Proof. Suppose b is r-locked for the k-th RBC instance. Then,
the k-th slots of all states received in Line 5 (Algorithm 4) of
round-r are with b. As a result, all replicas reaching Line 20
(Algorithm 4) will vote for b for the k-th RBC instance. Any
replica Ri reaching Line 28 (Algorithm 4) in round-r must
have received at least ( f +1) votes and all the k-th slots are
with b. Then, Ri will decide b for the k-th instance in round-
r.

Lemma 4. If a replica decides b for the k-th instance in
round-r, then any replica reaching Line 28 (Algorithm 4) in
round-(r + 1) will decide b for the k-th instance in round-
(r+1).

Proof. By Lemmas 2 and 3.

Theorem 1 (Agreement). If two replicas Ri and R j decide
b and b′ for the k-th RBC instance in rounds r and r′ respec-
tively, then b = b′.

Proof. Suppose two replicas Ri and R j decide b and b′ for
the k-th RBC instance in rounds r and r′ respectively. There
are following two cases:

1. r = r′. If Ri decides b for the k-th instance, then it must
have received at least one vote for b. Similarly, R j must
have received at least one vote for b′. As this is in the
same round, by Lemma 1, b = b′.

2. r < r′. Given that R j decides in round-r′, it must have
reached Line 28 in rounds r+1, ...,r′. If Ri decides b in
round-r, by Lemma 4, R j will decide b in round-(r+1).
That means b′ = b.

Theorem 1 implies that replicas that have terminated the
batched RBC will have the same log: if a RBC instance out-
puts 1, all replicas will store the corresponding requests in the
current slot; otherwise, all of them will forfeit the slot.

Theorem 2 (Weak validity). If a replica stores a request other
than ⊥ in its log, this request must be sent by a client.

Proof. If Ri stores a request other than ⊥ in its log, the cor-
responding RBC instance must have output 1. In Line 31 of
Algorithm 3, Ri will add the requests in proposalsi to Logi,
and all requests in proposalsi were sent by clients.

5.2 Liveness
Next, we show that the batched RBC terminates with proba-
bility 1.

Lemma 5. With probability 1, there is a round-r where a
non-? value b is r-locked for the k-th RBC instance.

Proof. There are following three cases:
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1. In round-(r−1), if all replicas execute Line 34 in Algo-
rithm 4, they will start round-r with states[k] being set
to the output of CommonCoinFlip(r−1), and the claim
directly follows.

2. Similarly, if all replicas execute Line 32 in Algorithm 4,
they will start round-r with states[k] being set to the same
value b, and the claim follows.

3. It becomes complex when some replicas execute Line
32 and adopt b, while others execute Line 34 and adopt
b′. Due to the properties of the common coin, the value
it computes at a given round is independent from the
values it computes at the other rounds. Thus, b is equal
to b′ with probability p = 1/2. Let P(r) be the following
probability:

P(r) = Pr[∃r′ : r′ ≤ r : br′ = b′r′ ],

where br′ denotes the value of b in round-r′. We have

P(r) = p+(1− p)p+ ...+(1− p)r−1 p

= 1− (1− p)r.

As limr→+∞P(r) = 1, the claim follows.

Lemma 6. The batched RBC terminates with probability 1.

Proof. By Lemmas 3 and 5, with probability 1, there is a
round-r where all correct replicas decide b as long as they
reach Line 28 (in Algorithm 4). Based on the assumption of
asynchronous communication, they will eventually reach Line
28. That means the k-th RBC instance terminates in round-r.

As the above argument is for any RBC instance, then, with
probability 1, there is a round-r′ where all RBC instances
terminate (i.e., the batched RBC terminates).

Theorem 3. A request sent by a client will eventually be
executed.

Proof. Recall that, in Cascade, a client will eventually send
requests to a non-crashed replica Ri, which will batch them
into a proposali and send it to other replicas. If a replica R j
receives proposali, it inputs 1 to the corresponding RBC in-
stance; otherwise, it inputs 0. By Lemma 6, the batched RBC
terminates with probability 1. If all correct replicas input 1, the
batched RBC will output 1; otherwise, it may output 0 or 1. In
the former case, the requests will be executed. In the later case,
they will run the same consensus stage again for proposali.
Based on the assumption of asynchronous communication,
proposali will eventually be received by all non-crash replicas.
Recall that replicas will process a proposal as long as it was
not committed, even if its run_id is lower than the current
run. Then, they will input 1 to the corresponding RBC in-
stance, which will output 1 and the requests will be executed.
That is to say, a request sent by a client will eventually be
executed.

6 Evaluation

In this section, we systematically evaluate the performance of
Cascade and compare it against three SMR systems:

• Rabia [32]: our closest competitor.

• Multi-Paxos [12] (with pipelining): the most common
choice in production systems.

• EPaxos [30] (with pipelining): the state-of-the-art SMR
system that achieves fast-path latency of two message
delays.

For the above SMR systems, we reproduced the results re-
ported in the paper of Rabia [32], i.e., we run the same code2

in a similar setting as described in their paper. We also run
our Cascade implementation in this setting to provide a fair
comparison.

6.1 Implementation
We fully implemented Cascade in Go (version 1.15.8). Our
implementation closely follows the pseudo-code in Section 4
and it consists of around 2,100 lines of Go code. We use
Sha256 as the hash function and use go-channels for handling
connections.

Following prior work [19, 35], we implement the common
coin (Line 34 in Algorithm 4) using a random binary generator
G() with the same seed s across all replicas. Namely, for
each round r, each replica locally runs b← G(s||r), which
guarantees that all replicas will get the same random number
in round-r.

6.2 Setting
Each replica runs on a separate AWS VM with four 3.1GHz
vCPUs and 8 GB RAM, running Ubuntu Server 18.04.1 LTS
64. Following the setting of Rabia [32], the RTT is around
0.25ms within the same availability zone and 0.4ms between
multiple zones in the same region.

We generate closed-loop clients on a separate VM with
32 3.1GHz vCPUs and 128 GB RAM. In the EPaxos evalu-
ations, we generate non-conflicting requests to achieve the
maximal throughput for a fair comparison. The ratio of con-
flicting requests does not affect Cascade’s throughput since
it executes requests in total order. The size of a single re-
quest is 16B [7, 26]. Following [32], all systems use client
batching size 10, i.e., each client batches 10 requests into a
single request; EPaxos, Paxos, Rabia use proxy batching size
100, 500 and 20 respectively. In Cascade, We use the same
proxy batching size as Rabia. That means, in our benchmarks,
EPaxos, Paxos, Rabia, Cascade respectively batch at most

2The code of Rabia, Multi-Paxos, and EPaxos can be found in https:
//github.com/haochenpan/rabia.
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Figure 2: Performance in the same zone.

1 000, 5 000, 200, 200 16B-requests in a proposal. Following
prior work [30, 32], we set a timeout of 5ms for replicas to
batch requests if the desired batch size is not reached.

All experiments are repeated 5 times and average values
with error bars indicating standard deviations are reported.

6.3 Performance in the same zone

We first measure their performance when all replicas are de-
ployed in the same availability zone. We fix the number of
replicas n as three, increase the number of concurrent closed-
loop clients (60-500), and measure throughput vs. latency
(both median latency and 99th percentile latency). Figure 2a
and 2b show the results with varying load sizes (the number
of clients: 60, 80, 100, 200, 300, 400, 500) on each system.
The performance results of Rabia, Paxos and EPaxos are con-
sistent with the results reported in [32] (slightly better due to
better CPUs and network connections). As pointed in [32],
when the systems are saturated, the 99th percentile latency
becomes larger due to the increasing chances of NULL slots.
This also happens for Cascade.

Before saturation, Cascade and Rabia have smaller stable
latency than Paxos and EPaxos, despite of their three-message
delay. This is due to their higher throughput, making the
request queuing time small. The stable median latency of

Cascade is around 2× better than Rabia and 3× better than
Paxos and EPaxos; its 99th percentile latency is around 3×
better than Rabia and Paxos, and 4× better than EPaxos. The
peak throughput of Cascade is around 2× better than Rabia,
3.5× better than EPaxos, and 6.4× better than Paxos. In par-
ticular, in the same availability zone with 3 replicas, Cascade
can reach a peak throughput of 1 021 320 TPS, with a median
latency around 2ms.

Next, we increase the number of replicas n and measure
the scalability of these SMR systems. Figure 2c 2d and 2e
show the results. The 99th percentile latency of Rabia in-
creases significantly with more replicas being added. Recall
that Rabia requires as many replicas as possible to propose
the same proposal; otherwise, it will not take the fast path
or forfeit a slot, increasing the possibility of long tail latency
and null slots. Three replicas allow Rabia to use the fast path
99.626% of the time and have only 0.3% null slots, compared
to 90.498% and 5.9% with 11 replicas. In contrast, Cascade’s
latency plots are more flattened, because in Cascade a request
can be processed as long as the proposal containing that re-
quest can be delivered. Three replicas allow Cascade to use
the fast path 99.996% of the time and have only 0.012% null
slots, compared to 99.962% and 0.033% with 11 replicas.

With the number of replicas increasing, EPaxos can han-
dle more requests and its throughput increases. On the other
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Figure 3: Performance in the multiple zones.

hand, EPaxos needs to check request dependencies and the
local computation becomes its bottleneck at some point, after
which its throughput starts decreasing. In contrast, with the
number of replicas increasing, Cascade can handle more re-
quests without introducing more local computation, hence its
throughput keeps increasing.

When n=11, the stable median latency of Cascade is
around 4× lower than EPaxos and 3× lower than Rabia and
Paxos; its 99th percentile latency is around 4.7× lower than
Rabia, 1.7× lower than Paxos, and 2.3× lower than EPaxos.
When considering throughput, the superiority of Cascade be-
comes more prominent. It achieves a throughput (1 941 720
TPS) that is around 6.6× higher than EPaxos, 18× higher
than Paxos, and 8.7× higher than Rabia when n=11.

6.4 Performance across multi-zones
Figure 3 shows the performance of all systems when the
replicas are deployed across multiple availability zones in the
same region. Paxos and EPaxos are barely impacted, while
Cascade and Rabia are moderately impacted (around a 30%
drop and a 26.4% drop).

When there are three replicas, the stable median latency
of Cascade is around 2.5× better than Rabia and 3× better
than Paxos and EPaxos; its 99th percentile latency is around
3× better than Rabia and Paxos, and 3.7× better than EPaxos.

The peak throughput of Cascade is around 2× better than Ra-
bia, 2.5× better than EPaxos, and 4.3× better than Paxos. In
particular, in multi-zones with 3 replicas, Cascade can reach
a peak throughput of 707 280 TPS, with a median latency
around 2.2ms.

When adding more replicas, Cascade still performs the
best among all four SMR systems. It achieves a throughput
(1 624 480 TPS) that is around 5× higher than EPaxos, 11×
higher than Paxos, and 8× higher than Rabia when n=11.
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Figure 4: Performance under failures (5 replicas, 2 of which
are crash).
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6.5 Performance under failures.

The performance of both Cascade and Rabia depend on the
underlying network: Rabia requires all non-crash replicas to
propose the same batch of requests, and Cascade requires all
non-crash replicas to receive the proposal. Next, we measure
their performance under a poor network connection with crash
replicas. We set up a cluster consisting of 5 replicas, 2 of
which are crash; the rest 3 replicas are connected with each
other by 3 bidirectional links, one of which was added with
50ms delay (through NetEm3).

Figure 4 shows the performance of Cascade with and with-
out optimization (cf. Section 3.4) compared with Rabia, Paxos
and EPaxos when they are saturated. It shows that Cascade
(with optimization) has a massive performance drop under
this setting, because the correct replicas need to always wait
for the proposals from the crash replicas until a timeout (5ms).
Nevertheless, it is still around 20× better than that w/o opti-
mization and 50× better than Rabia in throughput, and it is
around 20× better than both that w/o optimization and Rabia
in latency. This is because both Cascade w/o optimization
and Rabia need to wait 50ms to get the message from the
slow link. Although Paxos and EPaxos achieve good perfor-
mance due to their pipelining implementation, Cascade still
has comparable throughput to Paxos and comparable latency
to EPaxos.

6.6 Integration with Redis

We integrate Cascade with Redis (dubbed RedisCascade)
to perform evaluation for a real-world example. In
RedisCascade, we utilize Redis native MGET and MSET
commands to process requests (same as RedisRabia). We sys-
tematically evaluate the throughput of RedisCascade and com-
pare it against three Redis-based systems: (i) synchronous-
replication with one master and one replica (Sync-Rep(1));
(ii) synchronous-replication with one master and two replicas
(Sync-Rep(2)); and (iii) RedisRabia [32]. All systems use a
batching size of 200. We evaluate these systems by deploying
them across three replicas (except for Sync-Rep(1), two repli-
cas) in the same zone, and test their performance when they
are saturated. Figure 5 shows the evaluation results.

In Sync-Rep(1) and Sync-Rep(2), the master makes choices
and dictates them to the backup; the system’s throughput is
limited by the rate of state machine execution. As a result,
the throughput of Sync-Rep(2) is 2× that of Cascade. On the
other hand, the throughput of Cascade is 1.7× higher than
that of Rabia.

7 Related Work

Leaderbased SMR. In 1998, Lamport presented Paxos [22,

3https://man7.org/linux/man-pages/man8/tc-netem.8.html
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Figure 5: Throughput of different Redis integrations.

23], which is the first work in this line of research. Paxos
requires three phases with five message delays. Multi-
Paxos [12] eliminates the first phase by designating a sta-
ble leader, resulting in three message delays. However, if the
leader crashes, a fail-over protocol will be triggered to select
a new leader. Fast Paxos [25] saves one message delay by
allowing clients to bypass the leader and send their requests
directly to all replicas. It performs well when no two clients
issue conflicting requests concurrently, but if collisions hap-
pen too frequent, it may perform worse than classic Paxos.
Generalized Paxos [24] improves throughput by leveraging
partial ordering, which allows requests to be committed in
different orders on different replicas, provided that execut-
ing them in any order has the same effect. Multicoordinated
Paxos [11] improves availability by allowing clients to send
their requests to a quorum of replicas. Raft [31] was proposed
to improve understandability and provide a better codebase
for implementing real-world systems. Roughly, it adopts a
stronger notion of leader to simplify the conceptual design.

Multi-leader SMR. To improve the performance of leader-
based SMRs, multi-leader SMRs have been proposed. For
example, in Mencius [28], every replica acts as a leader for
the sequence numbers assigned to it. For example, Ri is a
leader for all sequence numbers j that satisfies ( j mod n = i).
Ideally, Mencius can achieve a throughput that is n times
larger than leader-based SMRs. However, once a crash occurs,
the throughput of Mencius will quickly drop to zero until a re-
vocation starts that makes all correct replicas learn of no-ops
for instances coordinated by the faulty replica. EPaxos [30]
introduces a dependency graph to track the relationship of dif-
ferent requests. Benefits from this approach, non-conflicting
requests can be committed in a fast path of two message de-
lays. However, replicas need to spend more time for checking
the dependencies; and in the presence of conflicts, it takes
a slow path of four message delays. M2Paxos [34] gets rid
of the dependency graph by assigning different objects to
different replicas and enforcing requests accessing the same
objects to be ordered by the same replica. However, a request
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may access objects maintained by different replicas, hence
M2Paxos still needs to resolve conflicts. Based on the obser-
vation that concurrent failures in geo-distributed systems are
rare, Enes et al. presented Atlas [16], which is a multi-leader
SMR trading off fault tolerance for scalability. The size of the
fast quorum Q depends on f : Q = ⌊n/2⌋+ f .
Leaderless SMR. Ben-Or’s randomized binary consensus [6]
is the main component for constructing a leaderless SMR.
Ezhilchelvan et al. [17] use a common coin [35] to reduce
the average number of message delays and allow proposers
to propose arbitrary values. Pedone et al. [33] exploit the
weakly ordering guarantees from the network layer. Cachin et
al. [9] propose a Diffie-Hellman based coin-tossing protocol
and construct a practical and theoretically optimal Byzantine
agreement protocol. Its efficiency and robustness were further
improved in [15, 20, 27, 29].

8 Conclusion

In this paper, we propose Cascade, a crash-fault tolerant SMR.
It is leaderless, hence completely get rid of the fail-over pro-
tocol. It can scale to a large number of replicas and behave
well even under a poor network connection. We provide a
full-fledged implementation of Cascade and systematically
evaluate its performance on a testbed consisting of 11 AWS
VMs. Our experimental results show that Cascade achieves a
throughput that is up to 8.7× higher than the state-of-the-art
leaderless SMR.

References

[1] Redisraft: Strongly-consistent redis deployments, Ac-
cessed in May 2022. https://github.com/
RedisLabs/redisraft.

[2] Replication layer | cockroachdb docs, Accessed in May
2022. https://www.cockroachlabs.com/docs/
stable/architecture/replication-layer.html.

[3] Rethinkdb 2.1: high availability, Accessed in May 2022.
https://rethinkdb.com/blog/2.1-release/.

[4] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzan-
tine replication under attack. IEEE Transactions on
Dependable and Secure Computing, 8(4):564–577, July
2011.

[5] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giu-
liano Losa, and Binoy Ravindran. Speeding up con-
sensus by chasing fast decisions. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 49–60. IEEE, 2017.

[6] Michael Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols (ex-
tended abstract). In Robert L. Probert, Nancy A. Lynch,

and Nicola Santoro, editors, Proceedings of the Second
Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, Montreal, Quebec,
Canada, August 17-19, 1983, pages 27–30. ACM, 1983.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, An-
thony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkateshwaran Venkataramani. TAO: facebook’s
distributed data store for the social graph. In Andrew
Birrell and Emin Gün Sirer, editors, 2013 USENIX An-
nual Technical Conference, San Jose, CA, USA, June
26-28, 2013, pages 49–60. USENIX Association, 2013.

[8] Michael Burrows. The chubby lock service for loosely-
coupled distributed systems. In Brian N. Bershad and
Jeffrey C. Mogul, editors, 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), Novem-
ber 6-8, Seattle, WA, USA, pages 335–350. USENIX
Association, 2006.

[9] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Jour-
nal of Cryptology, 18(3):219–246, 2005.

[10] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew
Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi,
Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram
ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha
Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha
Manivannan, and Leonidas Rigas. Windows azure stor-
age: a highly available cloud storage service with strong
consistency. In Ted Wobber and Peter Druschel, editors,
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal,
October 23-26, 2011, pages 143–157. ACM, 2011.

[11] Lásaro Jonas Camargos, Rodrigo Malta Schmidt, and
Fernando Pedone. Multicoordinated paxos. In Pro-
ceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, pages 316–317,
2007.

[12] Tushar Deepak Chandra, Robert Griesemer, and Joshua
Redstone. Paxos made live: an engineering perspective.
In Indranil Gupta and Roger Wattenhofer, editors, Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium
on Principles of Distributed Computing, PODC 2007,
Portland, Oregon, USA, August 12-15, 2007, pages 398–
407. ACM, 2007.

13

https://github.com/RedisLabs/redisraft
https://github.com/RedisLabs/redisraft
https://www.cockroachlabs.com/docs/stable/architecture/replication-layer.html
https://www.cockroachlabs.com/docs/stable/architecture/replication-layer.html
https://rethinkdb.com/blog/2.1-release/


[13] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson C. Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szy-
maniak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford. Spanner: Google’s globally-distributed database.
In Chandu Thekkath and Amin Vahdat, editors, 10th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2012, Hollywood, CA, USA, Oc-
tober 8-10, 2012, pages 251–264. USENIX Association,
2012.

[14] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart,
and Doug Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the Sixth An-
nual ACM Symposium on Principles of Distributed Com-
puting, PODC ’87, page 1–12, New York, NY, USA,
1987. Association for Computing Machinery.

[15] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2028–2041, 2018.

[16] Vitor Enes, Carlos Baquero, Tuanir França Rezende,
Alexey Gotsman, Matthieu Perrin, and Pierre Sutra.
State-machine replication for planet-scale systems. In
Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos,
Dejan Kostic, and Margo I. Seltzer, editors, EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, pages 24:1–24:15. ACM, 2020.

[17] Paul Ezhilchelvan, Achour Mostefaoui, and Michel Ray-
nal. Randomized multivalued consensus. In Fourth
IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing. ISORC 2001, pages
195–200. IEEE, 2001.

[18] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, apr 1985.

[19] Roy Friedman, Achour Mostefaoui, and Michel Raynal.
Simple and efficient oracle-based consensus protocols
for asynchronous byzantine systems. IEEE Transac-
tions on Dependable and Secure Computing, 2(1):46–56,
2005.

[20] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and
Zhenfeng Zhang. Dumbo: Faster Asynchronous BFT
Protocols, page 803–818. Association for Computing
Machinery, New York, NY, USA, 2020.

[21] KyleKingsbury(Aphyr). Redis-raft1b3fbf6, Accessed
in May 2022. https://jepsen.io/analyses/
redis-raft-1b3fbf6.

[22] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[23] Leslie Lamport. Paxos made simple, fast, and byzantine.
In Alain Bui and Hacène Fouchal, editors, Procedings
of the 6th International Conference on Principles of
Distributed Systems. OPODIS 2002, Reims, France, De-
cember 11-13, 2002, volume 3 of Studia Informatica
Universalis, pages 7–9. Suger, Saint-Denis, rue Catuli-
enne, France, 2002.

[24] Leslie Lamport. Generalized consensus and paxos.
2005.

[25] Leslie Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[26] Wyatt Lloyd, Michael J. Freedman, Michael Kamin-
sky, and David G. Andersen. Stronger semantics for
low-latency geo-replicated storage. In Nick Feamster
and Jeffrey C. Mogul, editors, Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April
2-5, 2013, pages 313–328. USENIX Association, 2013.

[27] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang.
Dumbo-mvba: Optimal multi-valued validated asyn-
chronous byzantine agreement, revisited. In Proceed-
ings of the 39th Symposium on Principles of Distributed
Computing, PODC ’20, page 129–138, New York, NY,
USA, 2020. Association for Computing Machinery.

[28] Yanhua Mao, Flavio Paiva Junqueira, and Keith
Marzullo. Mencius: Building efficient replicated state
machine for wans. In Richard Draves and Robbert van
Renesse, editors, 8th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2008,
December 8-10, 2008, San Diego, California, USA, Pro-
ceedings, pages 369–384. USENIX Association, 2008.

[29] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 31–42,
2016.

[30] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parliaments.
In Michael Kaminsky and Mike Dahlin, editors, ACM
SIGOPS 24th Symposium on Operating Systems Princi-
ples, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 358–372. ACM, 2013.

14

https://jepsen.io/analyses/redis-raft-1b3fbf6
https://jepsen.io/analyses/redis-raft-1b3fbf6


[31] Diego Ongaro and John K. Ousterhout. In search of an
understandable consensus algorithm. In Garth Gibson
and Nickolai Zeldovich, editors, 2014 USENIX Annual
Technical Conference, USENIX ATC ’14, Philadelphia,
PA, USA, June 19-20, 2014, pages 305–319. USENIX
Association, 2014.

[32] Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang,
Yicheng Shen, Xiong Zheng, Joseph Tassarotti, Lewis
Tseng, and Roberto Palmieri. Rabia: Simplifying state-
machine replication through randomization. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, SOSP ’21, page 472–487, New York,
NY, USA, 2021. Association for Computing Machinery.

[33] Fernando Pedone, André Schiper, Péter Urbán, and
David Cavin. Solving agreement problems with weak
ordering oracles. In European Dependable Computing
Conference, pages 44–61. Springer, 2002.

[34] Sebastiano Peluso, Alexandru Turcu, Roberto Palmieri,
Giuliano Losa, and Binoy Ravindran. Making fast con-
sensus generally faster. In 46th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, DSN 2016, Toulouse, France, June 28 - July 1,
2016, pages 156–167. IEEE Computer Society, 2016.

[35] Michael O Rabin. Randomized byzantine generals. In
24th annual symposium on foundations of computer
science (sfcs 1983), pages 403–409. IEEE, 1983.

15


	Introduction
	Preliminaries
	State-machine replication
	Randomized binary consensus
	Design goal

	Design Roadmap
	Rabia revisit
	Go beyond a single datacenter
	To be more scalable
	To be more robust
	Workflow of Cascade

	Cascade in Detail
	Message handler
	Proposal exchange
	Batched RBC
	Reconciliation

	Safety and Liveness
	Safety
	Liveness

	Evaluation
	Implementation
	Setting
	Performance in the same zone
	Performance across multi-zones
	Performance under failures.
	Integration with Redis

	Related Work
	Conclusion

