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Abstract. In 2023, Basso, Maino, and Pope proposed FESTA (Fast En-
cryption from Supersingular Torsion Attacks), an isogeny-based public-
key encryption (PKE) protocol that uses the SIDH attack for decryption.
In the same paper, they proposed a parameter for that protocol, but the
parameter requires high-degree isogeny computations. In this paper, we
introduce QFESTA (Quaternion Fast Encapsulation from Supersingular
Torsion Attacks), a new variant of FESTA that works with better param-
eters using quaternion algebras and achieves IND-CCA security under
QROM. To realize our protocol, we construct a new algorithm to com-
pute an isogeny of non-smooth degree using quaternion algebra and the
SIDH attack. Our protocol relies solely on (2, 2)-isogeny and 3-isogeny
computations, promising a substantial reduction in computational costs.
In addition, our protocol has significantly smaller data sizes for public
keys and ciphertexts, approximately one-third the size of the original
FESTA.

We received feedback from Andrea Basso, Tako Boris Fouotsa, Giacomo Pope,
and Luciano Maino, indicating that our proposed parameter does not meet the
expected security level. We have some countermeasures and plan to make cor-
rections in the near future.

1 Introduction

In recent years, isogeny-based cryptography has been actively studied as one of
the candidates for post-quantum cryptography (PQC). In particular, SIDH [24],
proposed by De Feo, Jao, and Plut, is one of the well-known isogeny-based
cryptosystems. Additionally, SIKE [2], a key encapsulation scheme based on
SIDH, remained an alternative candidate for the NIST PQC standardization
competition until Round 4. However, recent attacks [7,29,32] broke the security
of SIDH and SIKE. These attacks find the secret isogeny from the two point
images of the isogeny by computing (2, 2)-isogenies.

In response, a new isogeny-based cryptosystem called FESTA (Fast Encryp-

tion from Supersingular Torsion Attacks) [3], was proposed by Basso, Maino,

and Pope, which is a public-key encryption (PKE) protocol that uses the SIDH

attack for decryption. Their protocol seems resistant to the SIDH attack because
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it multiplies two point images by a random 2 × 2 matrix when generating the

ciphertext. FESTA requires the computations of three isogenies: ϕA, ϕ1, and ϕ2

of degree dA, d1, and d2, respectively. These three isogenies satisfy the following

diagram.

E0
ϕA //

ϕ1
��

EA

ϕ2
��

E1 E2,

Due to their construction, the degrees dA, d1, and d2 must be smooth integers
satisfying the following conditions:

dA = dA,1dA,2 and m2
1dA,1d1 +m2

2dA,2d2 = 2b

for some positive integers m1,m2, and b. These strong constraints make the
parameters of FESTA much larger than SIDH, leading to larger data sizes of
the public key and ciphertext. In addition, their protocol requires high-degree
isogeny computations for key generation and encryption and is expected to be
not efficient.

In this paper, we introduce a new PKE protocol based on FESTA that of-
fers improved parameters and satisfies one-wayness against quantum plaintext
checking oracle (OW-qPCA) security. The main innovation in our protocol is
the use of our new algorithm named RandIsogImages, which computes the
codomain and point images of a non-smooth degree d-isogeny from a special
elliptic curve E0. We construct this algorithm using a quaternion technique and
the SIDH attack. We provide an overview of RandIsogImages below:

1. Let O0
∼= End(E0), which is a maximal order of a quaternion algebras.

2. Let D = 2a such that E0[D] ⊂ E0(Fp2) and let P0, Q0 be a basis of E0[D].
3. Find α ∈ O0 of norm d · (D − d).
4. Decompose α = ρ̂ ◦ τ , where τ and ρ are isogenies of degree d and D − d,

respectively.
5. Execute the SIDH attack by using the two point images α(P0) and α(Q0).
6. Obtain the codomain and the arbitrary point images of d-isogeny τ .

By using our new algorithm, the smoothness restriction for degrees dA and d1
are omitted, allowing for smaller parameters. Note that we must compute a
(2, 2)-isogeny chain for this algorithm since we rely on the SIDH attack.

Additionally, to achieve indistinguishability against chosen ciphertext attack
(IND-CCA) security under quantum random oracle model (QROM), we utilize
the Fujisaki-Okamoto transform [20]. Consequently, our protocol functions as a
key encapsulation mechanism (KEM) rather than PKE. We have named our new
KEM ‘QFESTA’ (Quaternion Fast Encapsulation from Supersingular Torsion
Attacks).

As mentioned above, the removal of the smoothness restriction allows us to
use more efficient parameters. In fact, our protocol uses less than a quarter of
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the characteristic p and approximately one third of the public key and ciphertext
size compared to the original FESTA under the NIST security level 1, 3, and 5.
Moreover, our protocol only requires (2, 2)-isogeny and 3-isogeny computations
and is expected to be highly efficient, whereas the original FESTA requires high-
degree isogeny computations. (See Table 1.)

FESTA QFESTA

KeyGen isogenies of degrees 59 to 41161 (2,2)-isogenies
Enc isogenies of degrees 3 to 3779 3-isogneies and (2,2)-isogenies
Dec (2,2)-isogenies (2,2)-isogenies

Table 1: Isogeny computations in FESTA and QFESTA for the NIST security
level 1.

Remark 1. The recent paper [9] proposed a polynomial-time attack on FESTA.
However, their attack succeeds only when the basis P0, Q0 of E0[2

b], which is a
system parameter of FESTA, satisfies a specific condition. According to their pa-
per, the probability of randomly chosen P0, Q0 ∈ E0[2

b] satisfying the condition
is sufficiently small. Moreover, we can determine in polynomial time whether
a basis is “safe”, meaning that the computational cost of their attack against
FESTA with the basis is in O(2λ). Our implementation of QFESTA includes an
algorithm to make that decision and can be found at: https://github.com/
hiroshi-onuki/QFESTA-SageMath.

1.1 Contributions

In this paper, we make the following contributions:

1. We construct the new algorithm RandIsogImages, which computes the
codomain and point images of a non-smooth degree isogeny from a special
elliptic curve E0.

2. Using our new algorithm RandIsogImages, we propose a new PKE that
has less data sizes and less computational cost than FESTA.

3. We prove that our PKE is OW-qPCA secure. The security proof relies on
novel security assumptions that are variants of FESTA’s security assump-
tions.

4. By applying the Fujisaki-Okamoto transform to our PKE, we obtain a new
KEM that is IND-CCA secure under QROM. We call this KEM ‘QFESTA’.

5. We describe a method to find parameters for QFESTA and give concrete
parameters for the NIST security level 1, 3, and 5. Under these parameter
settings, we analyse the public key and ciphertext sizes.

6. Finally, we implement the proposed QFESTA in SageMath [34] as a proof-
of-concept and compare the computational cost with FESTA.

https://github.com/hiroshi-onuki/QFESTA-SageMath
https://github.com/hiroshi-onuki/QFESTA-SageMath
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1.2 Organization

In Section 2, we give some notation and background knowledge used in our pro-
tocol. In Section 3, we propose our new KEM named QFESTA and its security
is analysed in Section 4. In Section 5, we give some concrete parameters for
QFESTA and analyse the data size and the computational cost of QFESTA
under a proof-of-concept implementation. Finally, in Section 6, we give the con-
clusion of this paper.

2 Preliminaries

In this section, we summarise some background knowledge used in our protocol.

2.1 Notation

Throughout this paper, we use the following notation. We let p be a prime
number of cryptographic size, i.e., p is at least about 2256. Let f(x) and g(x) be
real functions. We write f(x) = O(g(x)) if there exists a constant c ∈ R such that
f(x) is bounded by c·g(x) for sufficiently large x. f(x) is negligible if |f(x)| < x−c

for all positive integers c and sufficiently large x. We write f(x) < negl(x) if f(x)
is negligible. For a finite set S, we write x ∈U S if x is sampled uniformly at
random from S. Let ⊥ be the symbol indicating failure of an algorithm.

2.2 Isogenies

In this paper, we mainly use principally polarized superspecial abelian varieties
defined over a finite field of characteristic p of dimension one or two. Such a
variety is isomorphic to a supersingular elliptic curve, the product of two su-
persingular elliptic curves, or a jacobian of a superspecial hyperelliptic curve of
genus two, and always has a model defined over Fp2 . Therefore, we only consider
varieties defined over Fp2 .

Basic Facts. An isogeny is a rational map between abelian varieties which is a
surjective group homomorphism and has finite kernel. The degree of an isogeny φ
is its degree as a rational map and denoted by degφ. An isogeny φ is separable if
# kerφ = degφ. A separable isogeny is uniquely determined by its kernel up to
post-composition of isomorphism. For an isogeny φ : A→ B between principally
polarized abelian varieties, there exists a unique dual isogeny φ̂ such that φ̂ ◦ φ
is equal to the multiplication-by-degφ map on A.

Let A and B be principally polarized abelian varieties. If there exists an
isogeny between A and B then the dimensions of A and B are the same. If A is
superspecial then there exists an isogeny between A and B if and only if B is a
superspecial abelian variety of the same dimension as A.

Let A be a principally polarized abelian variety and ℓ a positive integer. An
ℓ-isotropic subgroup of A is a subgroup of the ℓ-torsion subgroup A[ℓ] of A on
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which the ℓ-Weil pairing is trivial. An ℓ-isotropic subgroup G is maximal if there
is no other ℓ-isotropic subgroup containing G. A separable isogeny whose kernel
is a maximal ℓ-isotropic subgroup is called an ℓ-isogeny if the dimension of the
domain is one or an (ℓ, ℓ)-isogeny if the dimension of the domain is two.

Computing Isogenies. Let A be a principally polarized abelian variety, ℓ a
positive integer, and G a maximal ℓ-isotropic subgroup of A.

If the dimension of A is one then we can compute an ℓ-isogeny φ with kernel
G by Vélu’s formulas [36]. More precisely, given A, ℓ, G, Vélu’s formulas give a
method to compute the codomain of φ in O(ℓ) operations on a field containing
the points in G. In addition, for additional input P ∈ A, we can compute φ(P ) in
O(ℓ) operations on a field containing the points in G and P . These computational
costs are improved to Õ(

√
ℓ) by Bernstein, De Feo, Leroux, and Smith [5].

If A is the jacobian of a hyperelliptic curve of genus two and ℓ = 2 then we
can compute (2, 2)-isogeny by formulas in Smith’s Ph.D thesis [33]. Formulas of
(2, 2)-isogenies for the case A is the product of two elliptic curves is given by
Howe, Leprévost, and Poonen [23]. Cosset and Robert [11] gave a method to
compute (ℓ, ℓ)-isogenies for general ℓ. The computational cost of their method is
O(ℓ4) operations on a field containing the points in G.

2.3 Quaternion Algebras and the Deuring Correspondence

Quaternion Algebras. A quaternion algebra over Q is a division algebra de-
fined by Q + Qi + Qj + Qk and i2 = a, j2 = b, ij = −ji = k for a, b ∈ Q∗. We
denote it by H(a, b). We say H(a, b) is ramified at a place v of Q if H(a, b)⊗QQv

is not isomorphic to the algebra of the 2 × 2 matrices over Qv. There exists a
quaternion algebra ramified exactly at p and ∞. Such an algebra is unique up
to isomorphism. We denote it by Bp,∞.

Let α = x+yi+zj+tk ∈ H(a, b) with x, y, z, t ∈ Q. The canonical involution
of α is x − yi − zj − tk and denoted by ᾱ. The reduced norm of α is αᾱ and
denoted by n(α).

An order O of H(a, b) is a subring of H(a, b) that is also a Z-lattice of rank
4. This means that O = Zα1 + Zα2 + Zα3 + Zα4 for a basis {α1, α2, α3, α4} of
H(a, b). We denote such an order by Z⟨α1, α2, α3, α4⟩. An order O is said to be
maximal if there is no larger order that contains O.

Deuring Correspondence. Deuring [16] showed that the endomorphism ring
of a supersingular elliptic curve over Fp2 is isomorphic to a maximal order of
Bp,∞ and gave a correspondence (Deuring correspondence) where a supersingular
elliptic E curve over Fp2 corresponds to a maximal order isomorphic to End(E).

Suppose p ≡ 3 (mod 4). This is the setting we use in our protocol. Then we
can take Bp,∞ = H(−1,−p) and an elliptic curve over Fp2 with j-invariant 1728
is supersingular. Let E0 be the elliptic curve over Fp2 defined by y2 = x3 + x.
Then j(E0) = 1782 so E0 is supersingular. We define endomorphisms ι : (x, y) 7→
(−x,

√
−1y) and π : (x, y) 7→ (xp, yp) of E0, where

√
−1 is a fixed square root of
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−1 in Fp2 . The endomorphism ring of E0 is isomorphic to O0 := Z⟨1, i, i+j
2 ,

1+k
2 ⟩.

This isomorphism is given by ι 7→ i and π 7→ j. From now on, we identify End(E0)
with O0 by this isomorphism.

Some isogeny-based protocols, e.g., SQISign [13], need to compute the image
under an element in O0 represented by the coefficients with respect to the basis
(1, i, i+j

2 ,
1+k
2 ). Let P ∈ E0(Fp2) and α = x + yi + z i+j

2 + t 1+k
2 for x, y, z, t ∈

Z. Given P and x, y, z, t, one can compute α(P ) in O(logmax{|x|, |y|, |z|, |t|})
operations on Fp2 and O(log p) operations on Fp4 . The latter operations on Fp4

is necessary only for the case the order of P is even. We need to compute α(P0)
and α(Q0) for a fixed basis P0, Q0 of E0[2

a] for some a in our protocol. In this
case, by precomputing the images of P0 and Q0 under i, i+j

2 , and 1+k
2 , we can

compute α(P0) and α(Q0) by scalar multiplications by x, y, z, t and additions.

Computing Quaternion with Given Norm. As in the above, we let O0

be the maximal order of Bp,∞ with basis (1, i, i+j
2 ,

1+k
2 ). We need an algorithm

to compute an element in O0 of given norm in our protocol. We can use an
algorithm RepresentInteger proposed by Kohel, Lauter, Petit, and Tignol
[27]. RepresentInteger takes an integer M > p as input and outputs α ∈
Z⟨1, i, j,k⟩ ⊂ O0 such that n(α) = M . Later, De Feo, Leroux, Longa, and
Wesolowski [14] extended RepresentInteger to take output from all elements
in O0. They named the new algorithm FullRepresentInteger.

Algorithm 2 gives a pseudocode of FullRepresentInteger. This uses Cor-
nacchia’s algorithm [12, Algorithm 2.3.12], which takes a prime q as input and
outputs integers x, y such that x2 + y2 = q or ⊥ if such integers do not exist.
One can extends this to take a positive integer as input by using a well-known
relation: (x2 + y2)(z2 + t2) = (xz − yt)2 + (xt + yz)2. This extension requires
the prime factorization of the input. In general, the computational time of the
prime factorization is subexponential in the size of the input. To make our al-
gorithm work in polynomial time in log p, we use “pseudo-factorization” in our
algorithm. In particular, our extension of Cornacchia’s algorithm with input M
returns x, y such that x2 + y2 = M if and only if such integers exists and M is
the product of a smooth number and a prime. This method is used in SQIsign
(see the official document [10] for the detail). We denote this alternate version of
Cornacchia’s algorithm by Cornachhia. Due to the failure of the factorization,
the outputs of Algorithm 1 does not contain all elements in O0 whose norm is
the input M . However, from the prime number theorem, we can assume at least
1/ logM of all elements in O0 whose norm is the input M could be the output
of Algorithm 1.

2.4 Computing Isogenies of Dimension one from Dimension Two

In this subsection, we give algorithms to compute isogenies of dimension one by
using an isogeny of dimension two, which are a main sub-algorithm for FESTA
and our protocol. These algorithms are comes from recent attacks to SIDH by
[7,28,32]. We use the following theorem, which is based on Kani’s criterion [26].
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Algorithm 1 FullRepresentIntegerO0
(M)

Require: An integer M > p.
Ensure: α ∈ O0 such that n(α) = M .

1: Let m′ = ⌊
√

4M
p
⌋ and sample a random integer z′ ∈ [−m′,m′].

2: Let m′′ = ⌊
√

4M
p
− z′2⌋ and sample a random integer t′ ∈ [−m′′,m′′].

3: Let M ′ = 4M − p(z′2 + t′2).
4: if Cornachhia(M ′) =⊥ then
5: Go back to Step 1.
6: else
7: Set (x′, y′)← Cornachhia(M ′).
8: end if
9: if x′ ̸≡ t′ mod 2 or y′ ̸≡ z′ mod 2 then
10: Go back to Step 1.
11: end if
12: return (x′ + y′i+ z′j+ t′k)/2.

Theorem 1 ([28, Theorem 1]). Let N1, N2, and D be pairwise coprime in-

tegers such that D = N1 + N2, and let E0, E1, E2, and E3 be elliptic curves

connected by the following commutative diagram of isogenies:

E0
ψ2 //

ψ1

��

E2

ψ′
1

��
E1

ψ′
2

//

f
==

E3,

where deg(ψ1) = deg(ψ′
1) = N1 and deg(ψ2) = deg(ψ′

2) = N2. Then, the isogeny

Φ =

(
ψ̂1 −ψ̂2

ψ′
2 ψ′

1

)
: E1 × E2 → E0 × E3 (1)

is a (D,D)-isogeny with respect to the natural product polarizations on E1 ×E2

and E0 × E3, and has kernel {([N2]P, f(P )) | P ∈ E1[D]}.

Conversely, a (D,D)-isogeny with kernel {([N2]P, f(P )) | P ∈ E1[D]} is of the
form ι ◦ Φ with an isomorphism ι from E0 × E3. To construct algorithms to
evaluate the isogenies in the matrix in Equation (1), we need to restrict the
possibility of ι. In particular, we assume that the codomain E3 of ψ′

1 and ψ′
2 is

not isomorphism to E0. This assumption is plausible because there exist about
p/12 supersingular elliptic curves over Fp2 up to isomorphism and ψ′

1 seems to
be a random isogeny unless we intend to E1

∼= E3. Under this assumption, an

isomorphism from E0 ×E3 is represented by

(
ι0 0
0 ι3

)
or

(
0 ι3
ι0 0

)
, where ι0 is an

isomorphism from E0 and ι3 is an isomorphism from E3.
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Using Theorem 1 and assuming the above assumption, we construct two
algorithms to evaluate the isogenies in the matrix in Equation (1) by computing
a (D,D)-isogeny.

The first algorithm is for the case that we know E0 in advance and denoted by
EvalByKani. Let N1, N2 be integers coprime with each other and D = N1+N2.
Let E0, E1, E2 supersingular elliptic curves over Fp2 , (P1, Q1) a basis of E1[D],
(P2, Q2) a basis of E2[D], S1 a finite subset of E1, and S2 a finite subset of E2.
If there exist isogenies ψ1 : E0 → E1 and ψ2 : E0 → E2 such that degψ1 = N1

degψ2 = N2, P2 = ψ2 ◦ ψ̂1(P1), and Q2 = ψ2 ◦ ψ̂1(Q1), then EvalByKani with
input (N1, N2, E0, E1, E2, P1, Q1, P2, Q2, S1, S2) returns the image of S1 under

ψ̂1 and the image of S2 under ψ̂2. If such isogenies do not exist then EvalByKani
returns ⊥. The procedure for EvalByKani is as follows:

1. Compute a (D,D)-isogeny Φ with kernel ⟨([N2]P1, P2), ([N2]Q1, Q2)⟩.
2. If the codomain of Φ is not the product of elliptic curves then return ⊥.
3. Otherwise let F1 × F2 be the codomain of Φ.
4. If both of F1 and F2 are not isomorphic to E0 then return ⊥.
5. Otherwise change Φ so that the first component of the codomain is E1 by

composing an isomorphism.
6. Return the first components of Φ((R1, OE2)) and Φ((OE1 , R2)) for R1 ∈ S1

and R2 ∈ S2, where OE is the neutral element of E for an elliptic curve E.

We use the same notation as in the previous paragraph. The second algorithm
CodomainByKani is for the case that we do not know the codomain of Φ and
that there exists an integer M > max{N1, N2} coprime with N1 and N2 such
that S1 contains a basis of E1[M ] or S2 contains a basis of E2[M ].

In this case, we can determine the order of elliptic curves in the codomain of
Φ by computing the M -Weil pairing. More precisely, we use the following fact.
For a basis R, T of E1[M ] and an isogeny ϕ : E1 → F , the M -Weil pairings
eM (R, T ) and eM (ϕ(R), ϕ(T )) satisfying eM (R, T )deg ϕ = eM (ϕ(R), ϕ(T )). This
determines deg ϕ modM .

The input of CodomainByKani is that of EvalByKani minus E0 and the
output of CodomainByKani is that of EvalByKani plus E0. The procedure
for CodomainByKani is the same in EvalByKani until Step 3. We describe
the rest of the procedure in the case that S1 = E1[D] and S2 = ∅ for simplicity
(this is the case we need in our protocol).

4. Let R, T be a basis of E1[D] in S1.
5. Let (R′

1, R
′
2) = Φ((R,OE2)) and (T ′

1, T
′
2) = Φ((T,OE2)).

6. Compute the D-Weil pairings eD(R, T ) and eD(R′
1, T

′
1).

7. If eD(R, T )N1 = eD(R′
1, T

′
1) then return F1 and (R′

1, T
′
1). Otherwise return

F2 and (R′
2, T

′
2).

When D is smooth, P1, Q1 ∈ E1(Fp2), S1 ⊂ E1(Fp2), P2, Q2 ∈ E2(Fp2), and
S2 ⊂ E2(Fp2) the computational costs of EvalByKani andCodomainByKani
are O((#S1 + #S2) logD) operations on Fp2 by using the methods stated in
Section 2.2. Especially, D is a power of 2 in our case.
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2.5 Cryptographic Preliminaries

In this subsection, we recall cryptographic notation, which is necessary for de-
scribing our protocol.

First, we define two cryptographic schemes, public key encryption (PKE)
and key encapsulation mechanism (KEM).

Definition 1 (Public Key Encryption (PKE)). A public key encryption
consists of a set of parameters {paramλ}λ∈Z>0

, a family of finite sets {Mλ}λ∈Z>0
,

and three polynomial-time algorithms KeyGen, Enc, and Dec such that

– KeyGen takes paramλ as input and outputs a pair (pk, sk) of keys,
– Enc takes paramλ, a public key pk, and a message m ∈ Mλ as input and

outputs a ciphertext ct,
– and Dec takes paramλ, a secret key sk, and ct as input and outputs the

message m if ct is a valid ciphertext or ⊥ otherwise.

Definition 2 (Key Encapsulation Mechanism (KEM)). A key encapsu-
lation mechanism consists of a set of parameters {paramλ}λ∈Z>0

and three
polynomial-time algorithms KeyGen, Encaps, and Decaps such that

– KeyGen takes paramλ as input and outputs a pair (pk, sk) of keys,
– Encaps takes a public key pk as input and outputs a pair (K, ct) of a key

and a ciphertext,
– and Decaps takes paramλ, a secret key sk, and ct as input and outputs the

key K if ct is a valid ciphertext or ⊥ otherwise.

For simplifying the notation, we omit paramλ from input of each algorithm. In
particular, we denote KeyGen(λ),Enc(pk,m), and so on.

Next, we define security notation, One-Wayness against quantum Plaintext
Checking Attacks (OW-qPCA) for PKE and INDistinguishability against Cho-
sen Ciphertext Attacks (IND-CCA) for KEM.

Definition 3 (OW-qPCA). Let Π = ({paramλ}, {Mλ},KeyGen,Enc,Dec)
be a PKE. Let Pco be an oracle such that Pco(m′, ct′) returns whether Dec(sk, ct′) =
m′ for any ct′ and m′ ∈ Mλ. We say that Π is OW-qPCA secure if, for any
probabilistic polynomial-time adversary AqPco(·,·) who can make quantum queries
to Pco,

Pr

[
m = m∗

∣∣∣∣ (pk, sk)← KeyGen(λ), m ∈U Mλ,
ct← Enc(pk,m), m∗ ← AqPco(·,·)(pk, ct)

]
< negl(λ).

Definition 4 (IND-CCA). Let Π = ({paramλ},KeyGen,Encaps,Decaps)
be a KEM and Kλ the set of the keys which Encaps with paramλ outputs. Let
Cco be an oracle such that Cco(ct′) returns Decaps(sk, ct′) for any ct′ ̸= ct.
We say that Π is IND-CCA secure if, for any probabilistic polynomial-time ad-
versary ACco(·) who can make queries to Cco,∣∣∣∣∣∣Pr

b = b∗

∣∣∣∣∣∣
(pk, sk)← KeyGen(λ), b ∈U {0, 1},
(K0, ct)← Encaps(pk), K1 ∈U Kλ,
b∗ ← ACco(·)(pk, ct,Kb)

− 1

2

∣∣∣∣∣∣ < negl(λ).
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Cryptographic Transform. The Fujisaki-Okamoto transforms [20] are meth-
ods to transform a cryptographic protocol with “weak” security into that with
“strong” security by using cryptographic hash functions. In this paper, we use
U ̸⊥ transform in [25], which transforms an OW-qPCA PKE into an IND-CCA
KEM under the quantum random oracle model (QROM).

LetΠ = ({paramλ}, {Mλ},KeyGen,Enc,Dec) be a PKE, andH = {Hλ}
be a set of cryptographic hash functions such that Hλ : {0, 1}∗ →Mλ. Then we
define a KEM ΠFO := U ̸⊥(Π,H) as follows. The parameter sets of ΠFO are the
same as Π. KeyGen of ΠFO outputs a dummy message s ∈U Mλ in addition
to the output of KeyGen of Π. A secret key of ΠFO is a pair (sk, s). Encaps
and Decaps of ΠFO are defined as follows:

– Encaps(pk)→ (K, (ct, d)):
1. m ∈U Mλ.
2. ct← Enc(pk,m).
3. K = Hλ(m, ct).
4. Return K, ct.

– Decaps((sk, s), ct)→ K:
1. m′ ← Dec(sk, ct).
2. If m′ =⊥ then return Hλ(s, ct).
3. Else return Hλ(m

′, ct).

In the above setting, we can obtain an IND-CCA KEM from an IND-qPCA
PKE.

Theorem 2 (Theorem 4 in [25]). We use the above notation. If Π is OW-
qPCA secure then ΠFO is IND-CCA secure against a quantum adversary under
the assumption that the hash functions in H are quantum random oracles.

2.6 FESTA

FESTA is an isogeny-based protocol proposed by Basso, Maino, and Pope [3].
This protocol is a PKE that uses EvalByKani for decryption. More precisely,
Basso et al. constructed a trapdoor one-way function (FESTA trapdoor function)
and obtained IND-CCA secure PKE by applying Optimal Asymmetric Encryp-
tion Padding (OAEP) transform [4]. In this subsection, we give an overview of
FESTA. For the detail, see [3].

FESTA Trapdoor Function. The core idea of FESTA is as follows. Let
E0, EA, E1, E2 be supersingular elliptic curves over Fp2 and P0, Q0 a basis of
E0[n] for a positive integer n. Let ϕA : E0 → EA, ϕ1 : E0 → E1, and ϕ2 : EA →
E2 be isogenies of degrees coprime with and less than n. If one knows the images
of P0 and Q0 under one of the isogenies then the SIDH attacks in §2.4 reveals
the isogeny. To prevent this attack, images “masked” by matrices are published
in FESTA. More precisely, for 2 × 2 regular matrices A and B over Z/nZ,
points (RA, SA) := A(ϕA(P0), ϕA(Q0))

⊤, (R1, S1) := B(ϕ1(P0), ϕ1(Q0))
⊤, and
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Fig. 1: A picture of FESTA.

(R2, S2) := B(ϕ2(RA), ϕ2(SA))
⊤ are published (see Figure 1). Since the action

of a matrix commutes with an isogeny, easy computation shows that(
R2

S2

)
=

1

deg ϕ1
BAB−1ϕ2 ◦ ϕA ◦ ϕ̂1

(
R1

S1

)
.

If AB = BA then one can remove B from the right-hand side of the above
equation. This means that the images of R1 and S1 under ϕ2 ◦ ϕA ◦ ϕ̂1 can be
computed by using only A. FESTA trapdoor function is a trapdoor function
with secret key A. In particular, the matrices A and B are chosen from diagonal
matrices in the implementation by [3]. Therefore, we only consider this case in
this paper.

To define FESTA trapdoor function precisely, we define system parameters
for it. Let dA, d1, d2 be smooth positive odd integers coprime with each other
and lager than 22λ for a security parameter λ. These are the degrees of ϕA, ϕ1,
and ϕ2, respectively. Let dA,1, dA,2,m1,m2, b be positive integers satisfying the
following condition:

dA = dA,1dA,2 and m2
1dA,1d1 +m2

2dA,2d2 = 2b.

In this setting, we let p = d1d2(dA)sff − 1 for a small cofactor f , where (dA)sf is
the square-free part of dA. This choice of p enable us to compute the isogenies in
FESTA by operations over Fp2 . We writeMn to denote the set of 2×2 diagonal
regular matrices over Z/nZ, and let

Ep,2b =

(E, (P,Q))

∣∣∣∣∣∣
E : a supersingular elliptic curve over Fp2

such that #E(Fp2) = (p+ 1)2,
(P,Q) : a basis of E[2b]

 .

As in the first paragraph of this subsubsection, let (E0, (P0, Q0)) ∈ Ep,2b , ϕA :
E0 → EA be an isogeny of degree dA, and (RA, SA)

⊤ = AϕA(P0, Q0)
⊤. In
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addition, we choose and publish bases (K0,K
′
0) and (KA,K

′
A) of E0[d1] and

EA[d2] for computing generators of the kernels of secret isogenies. The FESTA
trapdoor function with public information EA, RA, SA is a function

f(EA,RA,SA) : Z/d1Z× Z/d2Z×M2b → Ep,2b × Ep,2b .

The secret key of this function is A and ϕA. The output of f(EA,RA,SA) with
input (n1, n2,B) is computed as follows.

1. Compute an isogeny ϕ1 : E0 → E1 with kernel ⟨K0 + [n1]K
′
0⟩.

2. Compute an isogeny ϕ2 : EA → E2 with kernel ⟨KA + [n2]K
′
A⟩.

3. Ouput (E1,B(ϕ1(P0), ϕ2(Q0))
⊤) and (E2,B(ϕ2(RA), ϕ2(SA))

⊤).

Anyone who knows the secret key (A, ϕA) can compute the inverse of this
function by using EvalByKani. We decompose ϕA into ϕA,1 and ϕA,2 of degrees
dA,1 and dA,2, respectively. Let F be the codomain of ϕA,1. We define ψ1 := [m1]◦
ϕ1◦ϕ̂A,1, ψ2 := [m2]◦ϕ1◦ϕA,2, and f := ψ2◦ψ̂1 = [m1m2]◦ϕ2◦ϕA◦ϕ̂1 (see Figure

1). Then we have degψ1 + degψ2 = 2b and [m1m2]

(
R2

S2

)
= d1A

−1f

(
R1

R2

)
.

Therefore, we can evaluate ψ̂1 and ψ̂2 by EvalByKani with input

(m2
1d1,m

2
2d2, F, E1, E2, [m1]R1, [m1]S1, [d1]A

−1(R2, S2)
⊤).

Since the images of a basis of E1[d1] under the composition ϕ̂A,1 ◦ ψ̂1 generate
kerϕ1, we can recover n1 from A and ϕA,1. Similarly, we can recover n2 from
A and ϕA,2. Finally, we compute ϕ1 from n1 and recover B by computing the
images of P0 and Q0 under ϕ1.

Security. In [3], the following three problems are defined for discucsing the
one-wayness of the FESTA trapdoor function. We say that a trapdoor function
is a one-way function if there is no probabilistic polynomial-time algorithm to
invert the function from public information and the output of the function with
non-negligible probability.

Problem 1 (Decisional isogeny with scaled-torsion (DIST)). Let E0 be a super-
singular elliptic curve over Fp2 , and P0, Q0 be a basis of E0[n] for an integer n.
Fix a degree d coprime with n, and given an elliptic curve E1 and two points
P1, Q1 sampled with probability 1/2 from either distribution:

– D0 = (E1, P1, Q1), where E1 is the codomain of uniformly sampled d-
isogeny ϕ : E0 → E1 and the points P1, Q1 are given by (P1, Q1)

⊤ =
A(ϕ(P0), ϕ(Q0))

⊤, where the matrix A ∈U Mn,
– D1 = (E1, P1, Q1), where E1 is a random elliptic curve over Fp2 with the

same order of rational points as E0, and (P1, Q1) is a random basis of E1[n],

distinguish from which distribution the values were sampled.
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Problem 2 (Computational isogeny with scaled-torsion (CIST)). Let ϕ : E0 →
E1 be an isogeny of smooth degree d between supersingular elliptic curves over
Fp2 , and let n be a smooth integer coprime with d. Given E0, E1, a basis P0, Q0

of E0[n], and Aϕ(P0, Q0)
⊤, where A ∈U Mn, compute ϕ.

Problem 3 (Computational isogeny with double scaled-torsion (CIST 2)). Let E0

and E′
0 be two random supersingular elliptic curves over Fp2 , and let ϕ1 : E0 →

E1 and ϕ2 : E′
0 → E2 be two random isogenies of degrees d and d′, respectively.

Let n be an integer coprime with d, and let A be a matrix sampled as A ∈U Mn.
Given the curves E0, E

′
0, E1, E2, two bases P,Q ∈ E0[n] and P ′, Q′ ∈ E′

0, and
the points A(ϕ1(P ), ϕ1(Q))⊤ and A(ϕ2(P

′), ϕ2(Q
′))⊤, compute the isogenies ϕ1

and ϕ2.

Remark 2. To compute an isogeny ϕ : E → F as the answer of Problem 3 means
to obtain a polynomial-time algorithm that takes an arbitrary point P ∈ E as
input and outputs ϕ(P ). Note that we can compute ϕ1 and ϕ2 by executing the
SIDH attack ([32], Section 2, dimension 8 attack) when we obtain the matrix A.

Assuming the hardness of these problems for appropriate parameter, it is
claimed that the FESTA trapdoor function is a one-way function [3, Theorem 9]
and a quantum partial-domain one-way function [3, Theorem 10], i.e., it is hard
to compute the first input n1 in the input of the FESTA function from public
information and the output.

IND-CCA secure KEM. Basso et al. [3] obtained an IND-CCA KEM by
applying Optimal Asymmetric Encryption Padding (OAEP) transform [4] to
the FESTA trapdoor function. Here, we briefly explain OAEP transform. For
the detail of OAEP transform, see [4,17].

Let F : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m be a quantum partical-domain one-
way function. Then we obtain a KEM with message space {0, 1}n by applying
OAEP transform to F . The obtained KEM is IND-CCA secure under QROM
if n + k1 ≥ k0 and k0 − n ≈ n [17, Theorem 1]. Note that the bit length of a
message of the obtained KEM is less than about one quarter of that of an input
of the one-way function.

The bit length of an input of the FESTA trapdoor function is about log2 d1+
log2 d2 + b ≈ 7λ. Therefore, by appropriately separating the domain of the
FESTA trapdoor function and applying OAEP transform, we can obtain an
IND-CCA secure KEM with sufficiently large message space.

3 QFESTA

This section introduces our protocol, a new PKE based on FESTA and some
quaternion algebraic techniques. The original FESTA uses Vélu’s formula [36] to
compute the secret isogenies in KeyGen and Enc. Thus, their degrees must be
smooth and divide p+1 to efficiently use Vélu’s formula. This strong constraint
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makes p as large as 28λ for the security parameter λ, resulting in a large public
key and ciphertext size.

Our main idea is to evaluate point images under isogenies of non-smooth
degree not using Vélu’s formula but using FullRepresentInteger and the SIDH
attack. As a result, the size of the public key and ciphertext is nearly 1/3 of
FESTA, though our protocol requires (2, 2)-isogeny computations not only in
Dec but also in KeyGen and Enc.

Our PKE protocol described here is OW-qPCA secure, and by applying U ̸⊥

transform to the protocol, we obtain IND-CCA secure KEM. We name our new
KEM ‘QFESTA’ (Quaternion Fast Encapsulation from Supersingular Torsion
Attacks).

3.1 New Algorithm for Isogenies of Non-Smooth Degree

Here, we describe our new sub-algorithmRandIsogImages that evaluates point
images under isogenies of non-smooth degree.

Let p be a prime such that p ≡ 3 mod 4 and let E0 be a supersingular elliptic
curve defined as E0 : y2 = x3+x/Fp2 . Note that End(E0) is isomorphic to O0 =

Z⟨1, i, i+j
2 ,

1+k
2 ⟩ as mentioned in Section 2.3. Suppose that D is a smooth integer

such that E0[D] ⊂ E0(Fp2) and D ≈ p. Our sub-algorithm RandIsogImages
takes a finite subset S of E0 and an integer d coprime to D satisfying d < D and
D − d ≈ p as input. Then, it outputs the images τ(S) and the codomain EA of
a random isogeny τ of degree d.

The idea for this sub-algorithm is to compute an endomorphism α ∈ End(E0)
of degree d · (D−d) by using FullRepresentInteger. Then, we can decompose
α as α = ρ̂◦ τ , where τ and ρ are the isogenies whose domains are E0 and whose
degree are d and D − d, respectively. (See Figure 2.) Since deg τ + deg ρ = D
and gcd(deg τ,deg ρ) = 1, we can evaluate point images under the isogeny τ
by using CodomainByKani. Especially when D = 2a, we can compute it by
using Richelot isogenies. So, we use D = 2a in our protocol. We describe the
sub-algorithm in Algorithm 2.

Fig. 2: Picture of RandIsogImages.

We discuss the output space of RandIsogImagesO0
(S, d,D). We denote by

Cod(E0, S, d) the set of (E,S′), where E is the codomain of τ and S′ = τ(S)
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Algorithm 2 RandIsogImagesO0
(S, d,D)

Require: Finite subset S ⊂ E0, and integers d,D such that gcd(d,D) = 1, d < D,
D − d ≈ p, and E0[D] ⊂ E0(Fp2).

Ensure: (τ(S), EA) for a random d-isogeny τ : E0 → EA.
1: Let α← FullRepresentIntegerO0

(d · (D − d)).
2: Take a basis P0, Q0 of E0[D].
3: (τ(S), ∅, EA)← CodomainByKani(d,D − d,E0, E0, P0, Q0, α(P0), α(Q0), S, ∅).
4: return (τ(S), EA).

for all d-isogenies τ from E0. For any (E,S′) ∈ Cod(E0, S, d), there exits a
(D − d)-isogeny ρ : E0 → E in high probability since D − d ≈ p. This is due
to the Ramanujan property of the supersingular isogeny graphs [31]. There-
fore, there exists an endomorphism α ∈ End(E0) via E of degree d(D − d).
When FullRepresentInteger outputs such α in step 1, RandIsogImages
will output (E,S′). Though the output of FullRepresentInteger does not
contain all endomorphisms of degree d(D − d), we can assume that at least
1/ log (d(D − d)) of all endomorphisms of degree d(D − d) could be the output
of FullRepresentInteger as mentioned in Section 2.3. Therefore, the output
of RandIsogImages almost contains Cod(E0, S, d). Since the number of d-
isogenies from E0 is about d, the number of possible outputs ofRandIsogImages
is about d/ log (d(D − d)). More precisely, we can assume that the probability of
existing an isogeny ρ described above would be approximately (D − d)/(p/12).
Therefore, we can assume that the number of output of RandIsogImages is
approximately (d/ log (d(D − d)))·(D−d)/(p/12) = 12d(D−d)/p log (d(D − d)).

From the above argument, it seems possible to assume that the output dis-
tribution of RandIsogImages is indistinguishable from the distribution of the
codomain and the point images of uniformly sampled d-isogeny from E0. So, we
assume the hardness of Problem 4.

Problem 4. Let E0 be a supersingular elliptic curve over Fp2 , O0
∼= End(E0),

and P0, Q0 be a basis of E0[n] for an integer n. Fix integers d,D such that
gcd(d,D) = 1, d < D, D − d ≈ p, and E0[D] ⊂ E0(Fp2). Given an elliptic curve
E1 and two points P1, Q1 sampled with probability 1/2 from either distribution:

– D′
0 = (E1, P1, Q1), the output of RandIsogImagesO0

({P0, Q0}, d,D),
– D′

1 = (E1, P1, Q1), where E1 is the codomain of uniformly sampled d-
isogeny ϕ : E0 → E1 and the points P1, Q1 are given by (P1, Q1)

⊤ =
(ϕ(P0), ϕ(Q0))

⊤,

distinguish from which distribution the values were sampled.

The hardness of Problem 1 and Problem 4 imply that of the following prob-
lem, which is a variant of Problem 1.
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Problem 5 (A variant of DIST). Let E0 be a supersingular elliptic curve over
Fp2 , O0

∼= End(E0), and P0, Q0 be a basis of E0[n] for an integer n. Fix integers
d,D such that gcd(d,D) = 1, d < D, D − d ≈ p, and E0[D] ⊂ E0(Fp2). Given
an elliptic curve E1 and two points P1, Q1 sampled with probability 1/2 from
either distribution:

– D′′
0 = (E1, P1, Q1), where (E1, P,Q)← RandIsogImagesO0

({P0, Q0}, d,D)
and (P1, Q1)

⊤ = A(P,Q)⊤, for a matrix A ∈U Mn,
– D′′

1 = (E1, P1, Q1), where E1 is a random elliptic curve over Fp2 with the
same order of rational points as E0, and (P1, Q1) is a random basis of E1[n],

distinguish from which distribution the values were sampled.

3.2 PKE Protocol

Now, we describe our PKE protocol that is OW-qPCA secure. The proof of
OW-qPCA security of our protocol is given in Section 4.1. The main difference
of our protocol with FESTA is that we use non-smooth degree isogenies for ϕA
and ϕ1 in KeyGen and Enc. We show a picture of our protocol in Figure 3.
As in Section 2.6,Mn represents the set of 2× 2 diagonal regular matrices over
Z/nZ. Our protocol is roughly outlined below:

– Setup(1λ)→ param:
1. Find integers p, a, b, k,DA, and D1 satisfying the following conditions:
• p = 2a · 3f − 1 is a prime for a small integer f .
• a and b are even integers satisfying 2a ≈ 3b ≈ 22λ.
• k is a small odd integer.
• DA = 2a/2 + k · 3b/2 and D1 = 2a/2 − k · 3b/2 are positive integers
containing a large prime factor larger than 2λ. (We explain why DA

and D1 should have large prime factors in Section 4.2.)
2. Let E0 : y2 = x3 + x/Fp2 and O0 = Z⟨1, i, i+j

2 ,
1+k
2 ⟩.

3. Take a basis (P0, Q0) of E0[2
a].

4. Output a system parameter param = (p, a, b, k,DA, D1, E0,O0, P0, Q0).
– KeyGen(param)→ (pk, sk):

1. Let ({PA, QA}, EA)← RandIsogImagesO0
({P0, Q0}, DA, 2

a). (Denote
the corresponding isogeny by ϕA.)

2. Take a random diagonal matrix A ∈U M2a .
3. Let (RA, SA)

⊤ = A(PA, QA)
⊤.

4. Output a public key pk = (EA, PA, QA) and a secret key sk = A.
– Enc(pk,m;param)→ ct:

1. Convert the message m into a diagonal matrix B ∈M2a .
2. Let ({P1, Q1}, E1) ← RandIsogImagesO0

({P0, Q0}, D1, 2
a). (Denote

the corresponding isogeny by ϕ1.)
3. Let (R1, S1)

⊤ = B(P1, Q1)
⊤.

4. Let ϕ2 : EA → E2 be a random 3b-isogeny and evaluate the points
(R2, S2)

⊤ = B(ϕ2(RA), ϕ2(SA))
⊤.

5. Output the ciphertext ct = (E1, R1, S1, E2, R2, S2).
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Fig. 3: A picture of our protocol.

– Dec(sk, ct;param)→ m:

1. Let ψ1 = ϕ1 ◦ ϕ̂A and ψ2 = [k] ◦ ϕ2.
2. Let N1 = deg(ψ1) = DAD1 and N2 = deg(ψ2) = k23b.

3. Compute (R′
2, S

′
2) = (ψ2 ◦ ψ̂1(R1), ψ2 ◦ ψ̂1(S2)).

4. Execute EvalByKani(N1, N2, EA, E1, E2, R1, S1, R
′
2, S

′
2, ∅, {R2, S2}),

and obtain (R2,A, S2,A) = (ψ̂2(R2), ψ̂2(S2)).
5. Find B ∈M2a such that (R2,A, S2,A)

⊤ = k3bB(RA, SA)
⊤.

6. Convert the matrix B to the message m.
7. Confirm that there exists a DAD1-isogeny ψ1 which is the composite of

two isogenies: ϕ1 ◦ ϕ̂A : EA → E0 → E1 of degree DA and D1. If there
exits, output m, and otherwise, output ⊥.

Step 7 of Dec is necessary to check a validness of the ciphertext ct, which is
defined in Section 4.1. This check makes our protocol OW-qPCA secure (The-
orem 3). Although we can achieve OW-CPA security without step 7, we need
to use another Fujisaki-Okamoto transform QFO ̸⊥

m in [22] to convert OW-CPA
PKE into IND-CCA KEM under QROM. Since this transform requires the exe-
cution of Enc in Decaps, the computational cost of the KEM rather increases.
Step 7-10 of Algorithm 5 described below correspond to this step.

Remark 3. In our protocol, both parties should execute RandIsogImagesO0
.

Thus, we need to assume the hardness of Problem 4 in addition to the hardness of
Problem 1. Moreover, our protocol relies on both parties knowing O0

∼= End(E0).
As a result, we need to assume the hardness of Problem 1, Problem 4, and
Problem 3 with E0 restricted to the curve whose endomorphism ring is known.

Now, we describe the concrete algorithms for KeyGen,Enc and Dec in Al-
gorithm 3, 4, and 5, respectively. We denote by QFESTA.PKE our PKE defined
by these algorithms. As for Setup, we discuss in Section 3.3.
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Algorithm 3 KeyGen(param)

Require: The system parameter param = (p, a, b, k,DA, D1, E0,O0, P0, Q0).
Ensure: The key pair (pk, sk).
1: Take a random matrix A ∈U M2a .
2: Let ({PA, QA}, EA)← RandIsogImagesO0

({P0, Q0}, DA, 2
a).

3: Compute (RA, SA)
⊤ = A(PA, QA)

⊤.
4: return pk = (EA, RA, SA) and sk = A.

Algorithm 4 Enc(pk,m;param)

Require: The public key pk = (EA, RA, SA), the message m ∈ {0, 1}a−2, and the
system parameter param.

Ensure: The ciphertext ct.
1: Let sB = 2m+ 1 ∈ (Z/2aZ)∗ and B = diag(sB , s

−1
B ) ∈M2a .

2: Let ({P1, Q1}, E1)← RandIsogImagesO0
({P0, Q0}, D1, 2

a).

3: Compute (R1, S1)
⊤ = B(P1, Q1)

⊤.
4: Take a random 3b-isogeny ϕ2 : EA → E2.
5: Compute (R2, S2)

⊤ = B(ϕ2(RA), ϕ2(SA))
⊤.

6: return ct = (E1, R1, S1, E2, R2, S2).

Note that we only use the diagonal matrix of determinant 1 since we can
recover the determinant by using the 2a-Weil pairing e as follows:

e(RA, SA) = e(P0, Q0)
DA·detA.

Note again that we can evaluate the point images {RA,2, SA,2} in Algorithm 5
step 4 up to the automorphism of EA. When j(EA) ̸= 0, 1728, the automorphism
is {±1}. Therefore, the matrix B is determined by sB ∈ (Z/2aZ)∗/{±1}. Since
the following map

η : [0, 2a−2 − 1]→ (Z/2aZ)∗/{±1}, m 7→ 2m+ 1

is bijection, we choose {0, 1}a−2 as the message space.

Correctness. We show the correctness of our PKE. In step 1-3 of Algorithm 5,
we used Theorem 1 for ψ1 = ϕ1 ◦ ϕ̂A, ψ2 = [k] ◦ ϕ2, N1 = DAD1, N2 = k23b,

and f = ψ2 ◦ ψ̂1. Here, we have N1+N2 = DAD1+k
23b = 2a, and the following
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Algorithm 5 Dec(sk, ct;param)

Require: The secret key sk = sA, the ciphertext ct = (E1, R1, S1, E2, R2, S2), and
the system parameter param.

Ensure: The decrypted message m.
1: Let N1 = DAD1 and N2 = k23b.
2: Compute (R′

2, S
′
2)

⊤ = kD1A
−1(R2, S2)

⊤.
3: (∅, {R2,A, S2,A})← EvalByKani(N1, N2, EA, E1, E2, R1, S1, R

′
2, S

′
2, ∅, {R2, S2}).

4: if EvalByKani returns ⊥, return ⊥.
5: Find B = diag(sB , s

−1
B ) ∈ M2a such that (R2,A, S2,A)

⊤ = k3bB(RA, SA)
⊤ by

solving discrete logarithm problem.
6: if there is no such sB ∈ (Z/2aZ)∗/±1, return ⊥.
7: Let (R′

1, S
′
1)

⊤ = 2a/2−1B−1(R1, S1)
⊤.

8: Let (R′
A, S

′
A)

⊤ = 2a/2−1D−1
A A−1(RA, SA)

⊤.
9: Execute EvalByKani(DA, D1, E0, EA, E1, R

′
A, S

′
A, R

′
1, S

′
1, ∅, ∅).

10: if EvalByKani returns ⊥, return ⊥.
11: Let sB ← min{sB , 2a − sB}.
12: return m = (sB − 1)/2.

equation holds:

(f(R1), f(S1))
⊤ = ([k] ◦ ϕ2 ◦ ϕA ◦ ϕ̂1(R1), [k] ◦ ϕ2 ◦ ϕA ◦ ϕ̂1(S1))

⊤

= kD1B(ϕ2 ◦ ϕA(P0), ϕ2 ◦ ϕA(Q0))
⊤

= kD1BA−1(ϕ2(RA), ϕ2(SA))
⊤

= kD1BA−1B−1(R2, S2)
⊤

= kD1A
−1(R2, S2)

⊤

= (R′
2, S

′
2)

⊤.

Since the orders of R1, S1, R
′
2, and S′

2 are all N1 + N2 = DAD1 + k23b = 2a,
EvalByKani in step 3 succeed if the ciphertext ct is generated honestly.

In step 7-9, we again used Theorem 1 for ψ1 = ϕA, ψ2 = ϕ1, N1 = DA,
N2 = D1, and f = ϕ1 ◦ ϕ̂A. Here, the following equation holds:

(f(R′
A), f(S

′
A))

⊤ = (ϕ1 ◦ ϕ̂A(R′
A), ϕ1 ◦ ϕ̂A(S′

A))
⊤

= 2a/2−1D−1
A A−1(ϕ1 ◦ ϕ̂A(RA), ϕ1 ◦ ϕ̂A(SA))

⊤

= 2a/2−1(ϕ1(P0), ϕ1(Q0))
⊤

= (R′
1, S

′
1)

⊤.

Since the orders of R′
1, S

′
1, R

′
A, and S′

A are all N1 + N2 = DA + D1 = 2a/2+1,
EvalByKani in step 9 succeed if the ciphertext ct is generated honestly. From
the above discussion, the correctness of our protocol follows.
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Remark 4. We can efficiently compute the 3b-isogeny in Step 5 of Algorithm 4
by using the radical isogenies [8]. It should be noted, however, that we require
the point images, unlike the original radical isogenies. We show the method in
Appendix A.

3.3 Parameter Finding

Here, we show how to find a system parameter param = (p, a, b, k,DA, D1,
E0,O0, P0, Q0) for a given security parameter λ. The discussion of parameter
sizes is provided in Section 4.2.

First, we take a = 2a′, b = 2b′ ∈ 2N such that 2a ≈ 3b ≈ 22λ and then find
k ∈ N such that both DA = 2a

′
+ k3b

′
and D1 = 2a

′ − k3b′ have a prime factor
larger than 2λ by trying k in ascending order. If D1 becomes negative, increment
a′ and try k again from 1. Next, we find f ∈ N such that p = 2a ·3f −1 is prime.
We can try f in ascending order until p = 2a · 3f − 1 becomes prime. Finally, we
set E0 and O0 as E0 : y2 = x3 + x/Fp2 and O0 = Z⟨1, i, i+j

2 ,
1+k
2 ⟩, respectively,

and we find a basis (P0, Q0) of E0[2
a]. We show the algorithm for Setup in

Algorithm 6.

Remark 5. We need to compute cube roots of elements in Fp2 for the radical
isogenies. In the case that p + 1 is divisible by 3 and not by 9, the cube root
computation is efficient. Therefore, it is preferable that f is not divisible by 3. For
more detail, see Appendix A.2. Additionally, it is preferable that f is odd since we
use 2a-Tate pairing to solve the discrete logarithm problem in Algorithm 5. Thus,
the set S in step 1 could be S = {f ∈ N | gcd(f, 6) = 1, f ≤ Bf} for a bound
Bf . From the prime number theory, we can find f around O(log 2a) = O(λ).
Therefore, we can choose the bound Bf in O(λ). Note that the requirement of
gcd(f, 6) = 1 is just a preferred condition for implementation, not a theoretical
requirement.

4 Security Analysis

In this section, we analyse the security of QFESTA. The authors of FESTA
applied OAEP to their protocol to achieve IND-CCA security. Our protocol,
however, is not suitable for OAEP. The reason is as follows. Our protocol can be
seen as a one-way trapdoor function with the domain {0, 1}a−2. Therefore, by
applying OAEP, the massage size will be about a/4 bits, which is about λ/2 bits
since a ≈ 2λ. This message size is too small to achieve the λ-bit security. Instead,
we use the Fujisaki-Okamoto transform [20] to achieve IND-CCA security.

4.1 Security Proof

In this subsection, we prove that our PKE is OW-qPCA secure; thus, our
QFESTA is IND-CCA secure. First, we define a notion to simplify our proof.
Next, we show that the adversary can simulate the plaintext checking oracle
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Algorithm 6 Setup(1λ)

Require: The security parameter 1λ.
Ensure: The system parameter param.
1: Let S = {Set of available integers for f}.
2: Let a′ = λ and b′ = ⌈λ log3 2⌉.
3: while true do
4: Let k = 1.
5: while D1 = 2a

′
− k3b

′
> 0 do

6: Let DA = 2a
′
+ k3b

′
.

7: if DA and D1 have a prime factor larger than 2λ then
8: for f ∈ S (ascending order) do

9: if p = 22a
′
· 3f − 1 is prime then

10: Go to Step 18.
11: end if
12: end for
13: end if
14: Let k = k + 1.
15: end while
16: Let a′ = a′ + 1.
17: end while
18: Let a = 2a′ and b = 2b′.
19: Let E0 : y2 = x3 + x/Fp2 and O0 = Z⟨1, i, i+j

2
, 1+k

2
⟩.

20: Take a basis (P0, Q0) of E0[2
a].

21: return param = (p, a, b, k,DA, D1, E0,O0, P0, Q0)

Pco defined in Definition 3 by executing a polynomial-time algorithm. This
fact allows us to reduce the proof of OW-qPCA security to the proof of one-
wayness with no oracle. Thus, we can easily prove that our PKE is OW-qPCA
secure. Finally, we prove that our QFESTA is IND-CCA secure by applying the
Fujisaki-Okamoto transform.

Throughout this subsection, we fix a system parameter param and a key
pair (pk, sk) arbitrarily. For simplicity, we denote by B(m) the diagonal matrix
corresponding to the message m. First, we define the validness of the ciphertext
of our PKE, which roughly means that the ciphertext is generated honestly.

Definition 5. Let E1 and E2 be supersingular elliptic curves over Fp2 and let
(R1, S1) and (R2, S2) be basis of E1[2

a] and E2[2
a], respectively. For a message

m ∈ {0, 1}a−2, we say that the ciphertext ct = (E1, R1, S1, E2, R2, S2) is m-valid
if it satisfies the following conditions:
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– There exists a D1-isogeny ϕ1 : E0 → E1 and a k23b-isogeny ψ2 : EA → E2

such that

(R1, S1)
⊤ = B(m)(ϕ1(P0), ϕ1(Q0))

⊤,

k(R2, S2)
⊤ = B(m)(ψ2(RA), ψ2(SA))

⊤.

Next, we prove that our Dec algorithm accepts only the valid ciphertext.

Lemma 1. Let E1 and E2 be random elliptic curves isogenous to E0 and let
(R1, S1) and (R2, S2) be random basis of E1[2

a] and E2[2
a], respectively. Then,

the following two statements are equivalent with all but negligible probability.

(a) The ciphertext ct = (E1, R1, S1, E2, R2, S2) is m-valid.
(b) Dec(sk, ct) = m.

Proof. We can assume that j(E1) ̸= 0, 1728 and j(E2) ̸= 0, 1728 with all but
negligible probability. From the correctness of our PKE, it is apparent that
Dec(sk, ct) returns m if ct is m-valid. Conversely, we assume Dec(sk, ct) = m.
The probability of EvalByKani succeeding for inputs that do not satisfy the
conditions of Theorem 1 is negligible. Therefore, the inputs of EvalByKani
satisfy the conditions of Theorem 1 with all but negligible probability when
EvalByKani does not output ⊥. Then, k(R2, S2)

⊤ = B(m)(ψ2(RA), ψ2(SA))
⊤

holds for a k23b-isogeny ψ2 since step 4 and 6 of Algorithm 5 does not return ⊥.
Similarly, (R1, S1)

⊤ = B(m)(ϕ1(P0), ϕ1(Q0))
⊤ holds for a D1-isogeny ϕ1 since

step 10 of Algorithm 5 does not return ⊥. Therefore, the ciphertext ct is m-
valid. ⊓⊔

Then, we can prove the following lemma, which indicates that the adversary can
simulate the oracle Pco in polynomial time.

Lemma 2. Let P̂co(m, ct) be the following polynomial-time algorithm:

1. Parse ct = (E1, R1, S1, E2, R2, S2).
2. Let (P1, Q1)

⊤ = B(m)−1(R1, S1)
⊤.

3. Compute a D1-isogeny ϕ1 : E0 → E1 such that ϕ1(P0) = P1 and ϕ1(Q0) =
Q1 by the SIDH attack ([32], Section 2, dimension 8 attack). If the attack
failed, return false.

4. Let (P2, Q2)
⊤ = kB(m)−1(R2, S2)

⊤.
5. Compute a k23b-isogeny ψ2 : EA → E2 such that ψ2(RA) = P2 and ψ2(SA) =

Q2 by the SIDH attack ([32], Section 2, dimension 8 attack). If the attack
failed, return false.

6. If both attacks succeeded, return true.

Then, P̂co(m, ct) = Pco(m, ct) holds with all but negligible probability.

Proof. Assume that j(E1) ̸= 0, 1728 and j(E2) ̸= 0, 1728. It holds with all but

negligible probability. If P̂co(m, ct) = 1, then ct is m-valid from the definition

of P̂co. Then, Pco(m, ct) = 1 from Lemma 1. Conversely, if Pco(m, ct) = 1,

then ct is m-valid from Lemma 1. Therefore, P̂co(m, ct) = 1 from the definition
of m-validness. ⊓⊔
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Now, we prove that our PKE is OW-qPCA secure.

Theorem 3. QFESTA.PKE is OW-qPCA secure under the following assump-
tion.

Assumption 1 Problem 1 and Problem 4 is hard for j(E0) = 1728, d = DA, D1,
and D = n = 2a and Problem 3 is also hard for j(E0) = 1728, d1 = D1, d2 = 3b,
and n = 2a.

Proof. From Lemma 2, the adversary can simulate the oracle Pco by executing

P̂co with quantum state. Therefore, it is sufficient to prove that QFESTA.PKE
is one-way.

Now, we prove the one-wayness of QFESTA.PKE. Assume that there ex-
ists an adversary Adv that breaks the one-wayness of QFESTA.PKE. Note
that we can assume the hardness of Problem 5 from the hardness of Problem 1
and Problem 4. Let (EA, RA, SA) be an input of Problem 5 for j(E0) = 1728,
d = DA, and D = n = 2a and let (E1, P1, Q1) be an input of Problem 4
for j(E0) = 1728, d = D1, and D = n = 2a. Next, we take B ∈U M2a

and a random 3b-isogeny ϕ2 : EA → E2, let (R1, S1)
⊤ = B(P1, Q1)

⊤, and
let (R2, S2)

⊤ = B(ϕ2(RA), ϕ2(SA))
⊤. From the hardness of Problem 4 and

Problem 5, Adv(E1, R1, S1, E2, R2, S2) will output B regardless of whether
(EA, RA, SA) is sampled from D′′

0 or D′′
1 and whether (E1, P1, Q1) is sampled

from D′
0 or D′

1. Therefore, Adv(E1, R1, S1, E2, R2, S2) will output B even when
(EA, RA, SA) ∈ D′′

0 and (E1, P1, Q1) ∈ D′
0, which means that Adv can solve

Problem 3 for j(E0) = 1728, d1 = D1, d2 = 3b, and n = 2a. This is contrary to
our assumption. Therefore, QFESTA.PKE is one-way. ⊓⊔

Consequently, the following theorem immediately follows from Theorem 2 and
Theorem 3.

Theorem 4. Let QFESTA be the KEM obtained by applying the Fujisaki-Okamoto
transform U ̸⊥ to QFESTA.PKE. Then, QFESTA is IND-CCA KEM under
QROM under Assumption 1.

4.2 Hardness Analysis

Here, we discuss possible attacks against QFESTA and confirm that the param-
eters we have presented are of sufficient size to achieve λ-bit security.

In our protocol, we primarily publish three types of information: elliptic
curves E0, EA, E1, E2, masked torsion points PA, QA, R1, S1, R2, S2, and the de-
grees DA, D1, 3

b of each isogeny. To obtain the plaintext m in our protocol, it
is necessary and sufficient to compute one of the three secret isogenies, namely,
ϕA, ϕ1, or ϕ2.

An efficient method for computing isogenies using masked torsion points
was introduced in [9]. However, we can avoid this attack in the way described
in Remark 1. Apart from this method, there is no known efficient method to
compute isogenies using masked torsion points.
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Now, we focus on the problem of finding the isogeny ϕA : E0 → EA, ϕ1 :
E0 → E1, or ϕ2 : EA → E2 when given elliptic curves E0, EA, E1, E2 and each
degree DA, D1, 3

b. Three attack methods are considered: (i) exhaustive search
of all outputs of RandIsogImages, (ii) meet-in-the-middle strategies [1], and
(iii) computing the endomorphism ring of the elliptic curve.

(i) The number of possible outputs of RandIsogImagesO0
(S,DA, 2

a) is ap-
proximately 12DA(2

a − DA)/p logDA(2
a −DA) as we explained in Sec-

tion 3.1. In our setting, we have

12DA(2
a −DA)/p logDA(2

a −DA) ≈ 4DA/3λf ∈ Õ(2λ)

sinceDA ≈ 2λ, 2a ≈ 22λ, and p = 2a·3f−1. Consequently, the computational
cost for this attack is Õ(2λ). In the case of a quantum adversary, Grover’s
algorithm reduces the cost to Õ(2λ/2). The same argument as above follows
for D1. To be precise, 4DA/3λf is slightly smaller than 2λ, but this is not
considered to have a significant impact on the security of QFESTA. More
detailed analysis for this is left for a future work.

(ii) We discuss the computational cost of meet-in-the-middle strategies against
a d-isogeny from E to F . When the degree d can be factored as d = d′ · d′′,
we search exhaustively for d′-isogenies from E and d′′-isogenies from F . This
results in a computational cost of O(d′+d′′). In our setting, both DA and D1

have a prime factor greater than 2λ, meaning either d′ or d′′ becomes larger
than 2λ. Therefore, the attack’s cost remains O(2λ). On the other hand, as
for d = 3b, we have d′ = d′′ = 3b/2 ≈ 2λ, leading to an attack cost of O(2λ).
In the case of a quantum adversary, by using the method in [35], the cost is
reduced to O(22λ/3).

(iii) By using the method described in Section 4.2 of [21], we can compute ϕA
in polynomial time from the endomorphism ring End(EA). This is because
the degree DA of ϕA is approximately

√
p, meaning that ϕA has the smallest

degree among the isogenies between E0 and EA in high probability. Now, we
discuss the way of computing the endomorphism ring End(EA). When we
find an isogeny between E0 and EA of arbitrary degree by executing Delfs-
Galbraith attack [15], we can compute End(EA) in polynomial time [18].
The cost for Delfs-Galbraith attack is Õ(p1/2) = Õ(2λ) for a classical ad-
versary. The endomorphism ring End(EA) can also be obtained directly by
the method in [19] and the cost is also Õ(p1/2) = Õ(2λ) for a classical ad-
versary. In these attacks, the most computationally intensive task involves
searching for a path in the supersingular isogeny graph to a curve within a
specific set, which has an approximate cardinality of O(p1/2). Therefore, a
quantum adversary has the potential to reduce the computational costs of
these attacks to O(p1/4) = O(2λ/2) using Grover’s algorithm.

From the above discussion, it is likely that our parameter settings afford λ-bit
security against a classical adversary and λ/2-bit security against a quantum
adversary.
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5 Efficiency

In this section, we analyse the efficiency of QFESTA. First, we provide concrete
parameters for QFESTA, then compare the data sizes of QFESTA such as public
key size and ciphertext size with FESTA. Finally, we show the computational
cost by our proof-of-concept implementation.

5.1 Parameter

This subsection gives concrete parameters for QFESTA satisfying the NIST se-
curity level 1, 3, and 5. The parameters are generated by Algorithm 6 while we
take the set S in step 1 as S = {f ∈ N | gcd(f, 6) = 1, f ≤ 1000} (see Re-
mark 5) and the security parameter as λ = 128, 192, 256, respectively. We denote
QFESTA with the parameter for NIST security level 1, 3, and 5 by ‘QFESTA-
128’, ‘QFESTA-192’, and ‘QFESTA-256’, respectively. The parameters are as
follows:

– QFESTA-128:

p = 2272 · 3 · 169− 1, a = 272, b = 162, k = 131,

DA = 7 · 4146202281703185540486171127346289453649,
D1 = 19 · 7642166099557799711044452690191647267891.

– QFESTA-192:

p = 2404 · 3 · 671− 1, a = 404, b = 244, k = 183,

DA = 7 · 31 · 1598191803261240967104765525420428990622613648191857
4050521,

D1 = 9387428140995029305718355548566969910526552333686012113447

951.

– QFESTA-256:

p = 2530 · 3 · 7− 1, a = 530, b = 324, k = 15,

DA = 13 · 37 · 117122960358362990338039928683044754837063784583461
013065057280205783838893337,

D1 = 23 · 2705867628114747207006064476189212633266121039694399577
917913662831348619286929.

5.2 Data Size

In this subsection, we compare the data sizes of FESTA and QFESTA using
the above parameters. The parameter of FESTA-128 is given in Section 7.3 of
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[3]. As for the parameters of FESTA-192 and FESTA-256, we used the val-
ues given in the FESTA implementation at: https://github.com/FESTA-PKE/
FESTA-SageMath. Note that we used the latest version of FESTA at this time
(updated August 19th, 2023).

Now, we compare the sizes of characteristic p, public key, and ciphertext of
SIKE [2], FESTA [3], and QFESTA in Table 2. Note that all public key and
ciphertext sizes in the table are values using key compression, as in SIKE. As
shown in Table 2, all the data sizes of our protocol are much smaller than those
of FESTA. In particular, the public key and ciphertext sizes of QFESTA-128
are nearly three to four times smaller than those of FESTA-128. Moreover, our
public key size is smaller than SIKE.

Security Protocol p (bits) Public key (bytes) Ciphertext (bytes)

SIKEp434 434 197 236
Level 1 FESTA-128 1292 561 1122

QFESTA-128 281 174 348

SIKEp610 610 274 336
Level 3 FESTA-192 1966 864 1728

QFESTA-192 415 257 514

SIKEp751 751 335 410
Level 5 FESTA-256 2772 1246 2492

QFESTA-256 535 335 670

Table 2: Data size comparison

5.3 Implementation

We provide a proof-of-concept implementation of QFESTA in SageMath [34] and
make it available at: https://github.com/hiroshi-onuki/QFESTA-SageMath.
Now, we show the number of isogeny computations required for FESTA and
QFESTA in Table 3 to compare the computational cost. As shown in Table 3,
our protocol does not require high-degree isogeny computations for KeyGen
and Enc, whereas FESTA requires a lot. In particular, the higher the security
level, FESTA requires higher-degree isogeny computations, making QFESTA
more advantageous. As for Dec, our protocol requires less (2, 2)-isogeny com-
putations than FESTA. Furthermore, since our protocol uses a smaller p, the
computational cost would be even lower.

Finally, in Table 4, we show the actual computational times of FESTA and
QFESTA implemented in SageMath. These are the averages of 10 run times.
Our running environment is an Apple M1 CPU (3.2 GHz). Note that these
comparisons are not rigorous since both FESTA and QFESTA implementations
are just proof-of-concept. Optimized implementation of QFESTA in C or other
languages is a future work.

https://github.com/FESTA-PKE/FESTA-SageMath
https://github.com/FESTA-PKE/FESTA-SageMath
https://github.com/hiroshi-onuki/QFESTA-SageMath
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Protocol (2, 2) 3 high-degree

KeyGen - - 22 (degree: 59-41161)
FESTA-128 Enc - 6 69 (degree: 5-3779)

Dec 632 - -

KeyGen 272 - -
QFESTA-128 Encaps 272 162 -

Decaps 409 - -

KeyGen - - 22 (degree: 31-6842881)
FESTA-192 Enc - 5 79 (degree: 5-176549)

Dec 992 - -

KeyGen 404 - -
QFESTA-192 Encaps 404 244 -

Decaps 607 - -

KeyGen - - 26 (degree: 2729-44988859)
FESTA-256 Enc - 4 105 (degree: 5-513031)

Dec 1472 - -

KeyGen 530 - -
QFESTA-256 Encaps 530 324 -

Decaps 796 - -

Table 3: Number of isogeny computations of each degree

Protocol KeyGen Enc/Encaps Dec/Decaps

FESTA-128 4.88 3.13 9.25
QFESTA-128 1.61 1.85 2.70

FESTA-192 103.34 20.90 24.58
QFESTA-192 2.77 3.46 5.63

FESTA-256 298.06 58.06 58.06
QFESTA-256 4.51 5.81 10.16

Table 4: Computational times (sec.)

6 Conclusion

In this paper, we introduce QFESTA, a new variant of FESTA that works with
better parameters. The main idea of our protocol is to compute a non-smooth
degree isogeny by using FullRepresentInteger and the SIDH attack. The re-
moval of the smoothness restriction allows us to use more efficient parameters.

Indeed, the data sizes of the public key and ciphertext of QFESTA become
nearly three to four times smaller than those of FESTA in NIST security level 1,
3, and 5. Additionally, QFESTA is expected to have less computational cost since
it only requires (2, 2)-isogeny and 3-isogeny computations, whereas the original
FESTA requires high-degree isogeny computations. Especially as the security
level increases, the advantages of QFESTA expand.

As a future work, we need to analyse the number of possible outputs of Al-
gorithm 2 for a concrete parameter and its effect on the security. An optimized
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implementation of QFESTA is also a future work. In particular, since the Riche-
lot isogeny computations accounts for about 80% of the total computational cost,
speeding up the Richelot isogeny computation is an important future work.
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A Computing a chain of 3-isogenies

In this section, we give an explicit algorithm to compute a chain of 3-isogenies
in the encryption of our protocol.

Let p be a prime of form 2a3f − 1 with positive integers a, f , let E be a
supersingular elliptic curve over Fp2 , and let b be an positive integer. Suppose
that the order of E(Fp2) is (p+1)2. Our task is computing a random 3b-isogeny
from E. More precisely, we construct a function that takes E, b, and points in
E(Fp2) as input and outputs the codomain of a 3b-isogeny φ from E and the
images of the points in input. In addition, we require that the isogeny φ is chosen
uniformly at random from 3b-isogenies from E whose kernel is cyclic.

For the case that E[3b] is not in E(Fp2), which is our case, two methods
are known for computing such a function by Fp2 -operations. First is taking a
random order-3 point for each intermediate curve and computing a 3-isogeny
with kernel generated by that point. Second is radical isogenies by [8]. We use
the second in our implementation. The reason is as follows. Taking a random
order-3 point needs scalar multiplication by (p+1)/3 in an elliptic curve. Using
radial isogenies replaces this with a computation of a cube root in Fp2 . As shown
later, a cube root in Fp2 can be computed by an exponentiation by an integer
approximately p in size. Therefore, using radical isogenies is more efficient than
taking a random order-3 point.

A.1 Image under radical isogenies

It is well-known that an elliptic curve defined by y2 + a1xy + a3y = x3 has a
point (0, 0) of order 3. A radical isogeny between elliptic curves of such a form
is the following formula.

Proposition 1 ([8, Section 4]). Let E be an elliptic curve defined by y2 +
a1xy + a3y = x3 and α be a cube root of −a3. Then the codomain of an isogeny
with kernel ⟨(0, 0)⟩ is isomorphic to E′ : y2 + a′1xy + a′3y = x3, where a′1 =
−6α+ a1 and 3a1α

2 − a21α+ 9a3.

This formula is derived from the composition of the following two isogenies. First
is an isogeny from E with kernel ⟨(0, 0)⟩ derived from Velu’s formula. Second
is an isomorphism that sends a point of order 3 to (0, 0). The choice of α from
the cube roots of −a3 corresponds to the choice of a point of order 3 in the
isomorphism. This choice determines the codomain of the next 3-isogeny.

We need to compute the image of a basis of EA[2
b] in our encryption function.

For this, we use x-coordinate-only computation as in SIKE [2]. I.e., we compute
the x-coordinates of P,Q, and P +Q for a basis P,Q of the 2b-torsion subgroup
of the domain curve in each isogeny. This is more efficient than computing the
full coordinates of P and Q because there are 4 values to compute in the full
coordinates, while x-coordinate-only computation needs 3 values. We can obtain
a formula of the image of a point under the isogeny in Proposition 1 by the
construction described in the above paragraph. In particular, the first isogeny
sends (x,−) to ((x3 + a1a3x + a23)/x

2,−) and the second (x,−) to (x − a1α +
3α2,−).
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A.2 Cube root of −a3

We can taking α at uniformly random from the cube roots of −a3 as follows.
The cube of −a3 roots are in Fp2 since the 3-torsion subgroups of the elliptic

curves which we use are defined over Fp2 . Therefore, the multiplicative order
of −a3 divides (p2 − 1)/3. Recall that we use p of form 2a3f − 1 with a small
cofactor f . If f is not divisible by 3, then −a3 to the power of the inverse of 3
modulo (p2 − 1)/3 is a cube root of −a3. We can randomize this by multiplying
a random cube root of unity.

In the case that f is of form 3ef ′ with f ′ prime to 3, we can compute a cube
root of −a3 as follows.

1. Pre-compute a generator g of 3e-torsion part of F×
p2 , the inverse I1 of (p2 −

1)/3e modulo 3e, and the inverse I2 of 3 modulo (p2 − 1)/3e.

2. Let t be (−a3)((p
2−1)/3e)I1 .

3. Compute the discrete logarithm h of t to the base g.
4. Then (−a3/t)I2gh/3 is a cube root of −a3.

The computational cost of the discrete logarithm above is not large since f is
small. However, that f is not divisible by 3 is preferable. The optimal choice of
a and f depends on the computational costs of Richelot isogenies and the cube
root. We leave this as future work.

A.3 Explicit algorithm

We use the same key compression as SIKE [2] (our proof-of-concept implemen-
tation uses the key compression function in the implementation of FESTA [3]),
therefore the domain and the codomain of a 3b-isogeny are represented by Mont-
gomery forms.

In addition, we require ciphertext (E1, (P1, Q1);E2, (P2, Q2)) to satisfy that
[2a−1]P1 = (0, 0) and [2a−1]P2 = (0, 0) because this property makes the compu-
tation of a glueing isogeny a little more efficient (see FromProdToJac in riche-
lot isogenies.py in the implementation of FESTA).

Transforming an elliptic curve of a Weierstrass form to a Montgomery curve
is easy. In particular, given an elliptic curve E of a Weierstrass form and an
order-4 point P on E, we can compute a Montgomery curve isomorphism to E
in which the x-coordinate of the image of P is 1, so the image of [2]P is (0, 0).
Such a Montgomery curve uniquely exists [30]. We give an explicit algorithm in
Algorithm 9.

In summary, our explicit procedure to compute a part of public key computed
by a chain of 3-isogenies is as follows.

1. Decompress a public key and obtain a Montgomery curve EA and a basis
PA, QA of EA[2

a].
2. Take a point R uniformly at random from the order-3 points on EA.
3. Let ι be an isomorphism from EA to an elliptic E′

A curve of form y2 +
a1xy + a3y = x3 sending R to (0, 0). Compute E′

A and the x-coordinates of
the images of PA, QA, and PA +QA under ι (Algorithm 7).
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4. Compute the codomain E′
2 of a 3b-isogeny ϕ2 and the x-coordinates of the

images of PA, QA, and PA +QA under ϕ2 ◦ ι (by using Algorithm 8 repeat-
edly).

5. Let κ be an isomorphism from E′
2 to the Montgomery curve E2 such that

the x-coordinate of the image of [4]PA under κ ◦ϕ2 ◦ ι is 1. Compute E2 and
the x-coordinates xP , xQ, and xP+Q of the images of PA, QA, and PA+QA

under κ ◦ ϕ2 ◦ ι (Algorithm 9).
6. Compute points P2 and Q2 whose x-coordinates are xP and xQ, respectively.
7. If the x-coordinate of P2 +Q2 is not xP+Q then change Q2 with −Q2.
8. Compress (E2, P2, Q2) as a part of ciphertext.

Note that there are other forms of elliptic curves having a formula of radical
3-isogenies. A formula on Hessian curve is given by [6] and Montgomery curve
by [30]. The most efficient choice depends not only on the efficiency of radical
formulas but also on a formula of isogenies between abelian surfaces. We leave
finding the best choice of these formulas as future work.

Algorithm 7 Weierstrass to curve for radical 3-isogenies

Require: An elliptic curve E : y2 + a1xy + a3y = x3 + a2x
3 + a4x+ a6, (x0, y0) ∈ E

of order 3, and a set X of the x-coordinates of points on E.
Ensure: E′ : y2 + a′

1xy + a′
3y = x3 isomorphic to E in which the image of (x0, y0) is

(0, 0) and the set X ′ of the x-coordinates of the image of points with x-coordinates
in X.

1: Let f(x, y) be y2 + a1xy + a3y − x3 + a2x
3 + a4x+ a6.

2: Let g(x, y) be f(x+ x0, y + y0) .
3: Let c1 be the coefficient of x in g and c2 be the coefficient of g.
4: Let h(x, y) be g(x, y − c1/c2x). // h(x, y) is of form y2 + a′

1xya
′
3y − x3.

5: Let E′ be the elliptic curve defined by h(x, y) = 0.
6: Let X ′ = ∅.
7: for x in X do
8: Append x− x0 to X
9: end for
10: return E′ and X ′.
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Algorithm 8 Radical 3-isogeny

Require: An elliptic curve E : y2 + a1xy+ a3y = x3 and a set X of the x-coordinates
of points on E

Ensure: The codomain E′ : y2 + a′
1xy + a′

3y = x3 of an isogeny from E with kernel
⟨(0, 0)⟩ and the setX ′ of the x-coordinates of the image of points with x-coordinates
in X.

1: Sample α uniformly at random from the cube roots of −a3.
2: Let a′

1 be −6α+ a1.
3: Let a′

3 be 3a1α
2 + a2

1α+ 9a3.
4: Let X ′ = ∅.
5: for x in X do
6: Append (x3 + a1a3x+ a2

3)/x
2 + a1α− 3α2 to X.

7: end for
8: return E′ : y2 + a′

1xy + a′
3y = x3 and X ′.

Algorithm 9 Weierstrass to Montgomery

Require: An elliptic curve E : y2+a1xy+a3y = x3+a2x
3+a4x+a6, the x-coordinate

x4 of an order-4 point on E, and a set X of the x-coordinates of points on E.
Ensure: The Montgomery E′ curve isomorphic to E in which the image of (x4,−) is

(1,−) and the set X ′ of the x-coordinates of the image of points with x-coordinates
in X.

1: Let x2 be the x-coordinate of [2](x4,−).
2: Let u be 1/(x4 − x2).
3: Let A be (a2 + (a1/2)

2 + 3x2)u.
4: Let X ′ = ∅.
5: for x in X do
6: Append x− x2 to X ′.
7: end for
8: return E′ : y2 = x3 +Ax2 + x and X ′.
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