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Abstract

Recent works on lattice-based extractable polynomial commitments can be grouped into two
classes: (i) non-interactive constructions that stem from the functional commitment by Albrecht,
Cini, Lai, Malavolta and Thyagarajan (CRYPTO 2022), and (ii) lattice adaptations of the
Bulletproofs protocol (S&P 2018). The former class enjoys security in the standard model, albeit
a knowledge assumption is desired. In contrast, Bulletproof-like protocols can be made secure
under falsifiable assumptions, but due to technical limitations regarding subtractive sets, they
only offer inverse-polynomial soundness error. This issue becomes particularly problematic when
transforming these protocols to the non-interactive setting using the Fiat-Shamir paradigm.

In this work, we propose the first lattice-based non-interactive extractable polynomial com-
mitment scheme which achieves polylogarithmic proof size and verifier runtime (in the length
of the committed message) under standard assumptions. At the core of our work lies a new
tree-based commitment scheme, along with an efficient proof of polynomial evaluation inspired
by FRI (ICALP 2018). Natively, the construction is secure under a “multi-instance version” of
the Power-Ring BASIS assumption (Eprint 2023/846). We then base security on the Module-SIS
assumption by introducing several re-randomisation techniques which can be of independent
interest.
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1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) [Kil92; Mic94] are
a cryptographic primitive that allows a prover to produce a short proof that a statement is true
without revealing any information beyond the validity of the statement itself. A particularly
successful paradigm in the construction of zkSNARKs, which has been evident since the “canonical”
construction of zkSNARKs [Mic94], is that of combining an information theoretical proof system
with a cryptographic compiler. Originally, this was done via the combination of probabilistic
checkable proof (PCPs) [BFLS91] and vector commitment schemes [Mer90]. While the zkSNARKs
obtained from these ingredients were not concretely efficient (mostly due to the inefficiency of the
PCP), [BCS16] iterated on this approach, introducing interactive oracle proofs (IOPs), and these
efforts lead to many concretely deployed constructions (see e.g. [BBHR18b; BCRSVW19; AHIV22;
GLSTW21; COS20]). Currently, some of the most efficient and widely deployed zkSNARKs are
based on a similar ingredient combination, namely (i) polynomial IOPs (PIOPs) [CHMMVW20];
(ii) and polynomial commitment schemes [KZG10].

In this work, we focus on the cryptographic component of the above recipe, namely polynomial
commitment schemes. A polynomial commitment scheme is a generalisation of vector commitments
in which a prover is able to commit to any polynomial of bounded degree f :=

∑d
i=0 fi · Xi over a

ring R, and then later produce a proof π that f(u) = z for some public u, z. For the purpose of this
work, we are concerned with polynomial commitment schemes that are succinct in both the size of
the proof π and in the verification time, i.e. we wish both to be polylogarithmic in d. We aim the
verification time to be polylogarithmic without preprocessing dependent on u, as that reflects the
usage of polynomial commitment schemes in many PIOPs. Further, to obtain a SNARK, we will
require that π is a proof of knowledge, and call a polynomial commitment scheme with this property
extractable.

The literature on polynomial commitments [KZG10; BBBPWM18; BMMTV21; Lee21; BFS20;
WTsTW17] is vast, but most of the existing construction rely on classical computational assumptions,
and are thus insecure against quantum adversaries. If we require post-quantum security, the only
concretely and asymptotically efficient polynomial commitment schemes that are currently known
are based on the FRI IOP of Proximity [BBHR18a], compiled into an argument via the BCS
construction [BCS16] in the random oracle model.

A natural question is whether using post-quantum computational assumptions with “more
structure” can lead to more efficient plausibly post-quantum secure polynomial commitment schemes.
Constructions based on hard lattice problems have been successfully deployed in various areas
of cryptography, as evidenced by the NIST PQC competition, which concluded by standardising
lattice-based solutions for both key encapsulation mechanisms and signatures.

Constructions from functional commitments. Recently, a number of lattice-based polynomial
commitment schemes were introduced, mostly as a result of promising work on linear functional
commitments [ACLMT22; WW23b; CP23; PPS21; BCFL22; FLV23; CLM23]. At a high level,
by interpreting the evaluation f(u) = z as the linear relation ⟨f , pow(u)⟩ = z, where pow(u) =
(1, u, . . . , ud), those schemes naturally lead to polynomial commitments. A significant limitation in
that paradigm is that, without preprocessing, the verification cost (when performed naively1) is linear
in d and thus not succinct. Since in most PIOPs of interest u cannot be preprocessed, this limits

1The recent work of Fisch, Liu and Vesely [FLV23] manages to avoid this issue.
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the applicability of those schemes. Furthermore, only [ACLMT22; BCFL22; CLM23; FLV23] offer
extractability, albeit under a knowledge k-M -ISIS assumption [ACLMT22]. However, this knowledge
k-M -ISIS assumption has been recently shown to be (at least “morally”) broken [WW23a].

Split-and-fold protocols. Another line of research on lattice-based (interactive) polynomial
commitments with succinct verification [BCS23; CLM23] stems from the lattice adaptation [BLNS20]
of the Bulletproofs interactive protocol [BBBPWM18]. Unfortunately, both constructions inherit
the inverse-polynomial soundness error from [BLNS20]. Although parallel repetition can be applied
in the interactive setting for soundness amplification [AF22], this strategy incurs a super-polynomial
security loss when applying the Fiat-Shamir transformation in the random oracle model, as shown
by Attema, Fehr and Klooß [AFK22].

Independently, Fenzi and Nguyen [FN23] extended a commitment scheme introduced by Wee
and Wu [WW23b] to efficiently prove polynomial evaluations with a split-and-fold approach from
FRI [BBHR18a]. The authors pick an exponential-sized challenge space, which results in negligible
soundness error in one-shot. As a downside, due to the enormous norm growth of extracted
witnesses along with slack, which has direct influence on the proof system modulus and other lattice
parameters, [FN23] only manages to achieve quasi-polylogarithmic proof and verifier complexity.
Also, their scheme inherits several practical inefficiencies from [WW23b], i.e. a common reference
string (CRS) and committing time that are undesirably large, as they are quadratic in the degree
of the committed polynomial. Further, the binding property of the commitment scheme relies on
the non-standard Power-Ring-BASIS (PRISIS) assumption2, which did not feature a reduction from
more well-understood lattice problems.

In this work, we iterate on this previous construction, and study the following open question.

Can we construct a non-interactive, extractable polynomial commitment scheme with polylogarithmic
communication and verifier complexity; (quasi)-linear prover time; negligible knowledge soundness

error and whose security relies on standard lattice assumptions?

1.1 Our Contributions

We present SLAP, the first lattice-based polynomial commitment scheme that achieves the above
goals.

Merkle-PRISIS commitment scheme. Our starting point is the PRISIS-based commitment
scheme of Fenzi and Nguyen [FN23] which is compressing and supports arbitrarily large messages. We
will use it as a subroutine to build a Merkle tree. Concretely, for a message f = (fj)j∈[d] ∈ Rd where

d = 2h, we consider vectors th,j := fj · e to be the leaves of the Merkle tree, where e ∈ Rn is a fixed
vector defined later to argue binding. Then, given the i-th layer (ti,j)j∈[2i] of the tree, we commit to

the pairs of the form (ti,2j−1, ti,2j) ∈ R2n to obtain PRISIS commitments (ti−1,j)i∈[2i−1] ∈ Rn. The
final commitment is the root t1,1 ∈ Rn.

An immediate advantage over the original construction of [FN23] is a quasi-linear commitment
time. Indeed, we only apply the PRISIS commitment scheme for constant-sized messages. Hence,
the only non-constant cost comes from building the Merkle tree, which is quasi-linear3. Furthermore,

2Technically, the construction can be based either on PRISIS, or more general PowerBASIS assumption.
3The quasi part comes from the fact that performing operations over Rq := Zq[X]/(XN +1) takes polylog(d) time.
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since the commitment key for each layer is of constant size, the common reference string has size
only polylog(d).

Security under Module-SIS via new re-randomisation techniques. The binding property
of our commitment scheme holds under a “multi-instance” version of the PRISIS assumption, which
we call h-PRISIS. Recall that a PRISIS problem [FN23] belongs to the class of “SIS-with-hints”
problems [ACLMT22; BLNS23; WW23b], i.e. given a matrix A with some a hint aux, find a short
non-zero vector s such that A ·s = 0. In the multi-instance version of “SIS-with-hints”, the adversary
is given h ≥ 2 pairs of challenges (Ai, auxi)i∈[h] generated as above, and the goal is to find a short
non-zero vector such that [A1 | · · · | Ah] · s = 0.

In this work, we introduce new re-randomisation techniques to argue that, for a certain type of
“SIS-with-hints” problems, the multi-instance version is no easier than the single-instance version. In
particular, in Section 3.2, we give a reduction showing that h-PRISIS is no easier than PRISIS for
h = poly(λ). Using the same re-randomisation strategy, we also provide a reduction in Appendix A
that Twin-k-M -ISIS [BCFL22] is no easier than 2k-M -ISIS [ACLMT22]. These re-randomisation
tricks and reductions might be of independent interest.

Finally, we apply the result from [FN23] which says that a single-instance PRISIS for “small
parameters” is no easier than Module-SIS [LS15]. Since we work with such parameters when building
a Merkle tree of arity two, we conclude that the binding property of the Merkle-PRISIS commitment
scheme holds under the Module-SIS assumption.

Polynomial evaluation protocol and negligible soundness. As a next step, we augment the
new commitment scheme with a log d-round interactive polynomial evaluation proof, that applies a
“split-and-fold” approach from FRI [BBHR18a]. The protocol has polylogarithmic communication
and verifier complexity, while also simultaneously achieving negligible knowledge soundness error
without parallel repetition.

The crucial difference from [FN23] is that here we apply soundness amplification via batching,
namely proving multiple statements of the form fi(u) = zi simultaneously. We note that a similar
approach was applied in the setting of groups of unknown order, to argue knowledge soundness,
we do not aim to find a short (right-)inverse but instead we prove that our protocol satisfies
coordinate-wise special soundness [FN23]. This results in concretely smaller blow-up in parameters.
Finally, we show how to achieve zero-knowledge by applying the standard Fiat-Shamir-with-aborts
paradigm for lattices [BTT22].

Our construction natively supports polynomials over the standard power-of-two cyclotomic
rings Rq := Zq[X]/(XN + 1). In order to make it compatible with current Polynomial IOPs, the
commitment scheme should be able to commit and prove evaluations over finite fields. To this end,
we apply the Zq-to-Rq transformation demonstrated by Lyubashevsky, Nguyen and Plançon [LNP22]
to map a polynomial evaluation statement over Zq to one over Rq, where the polynomial in the
latter case has degree N times smaller. This technique is generic and could be applied to subsequent
lattice-based constructions for more efficiency.

1.2 Related Works

We provide a literature review on the existing publicly-verifiable succinct interactive proof systems
from lattices. Bootle, Lyubashevsky, Nguyen and Seiler [BLNS20] introduced the first lattice-
based adaptation of the Bulletproofs protocol [BCCGP16; BBBPWM18] over polynomial rings
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Rq = Zq[X]/(XN + 1), achieving polylogarithmic proof sizes. This methodology was later improved
in the context of soundness analysis [ACK21; AL21], and generalised to the bilinear module
setting [BCS21].

The core protocol, unfortunately, has the following three drawbacks. First, the verification time
is linear in the witness size. Second, soundness error of the protocol is only 1/poly(λ), and thus
soundness amplification is necessary. The reason for this limitation is a technical requirement on
the challenge space, where any two distinct challenges have to be invertible over the ring, and what
is more, its (scaled) inverse has to be short (such sets are called subtractive). As demonstrated
in [AL21], such sets can only have polynomial size. Thirdly, we need to account for slack and a
huge norm blow-up when performing knowledge extraction. In the case of lattice Bulletproofs, this
boils down to inverting a 3× 3 Vandermonde matrix for each round, and thus the extracted witness
suffers a blow-up in the order of poly(λ)3h, where h is the number of rounds. Since, for security
purposes, the proof system modulus q has to be larger than the norm of the extracted witness, we
conclude that q must be super-polynomial.

Recently, Bootle, Chiesa and Sotiraki [BCS23] and Cini, Lai and Malavolta [CLM23] inde-
pendently proposed variants of the lattice Bulletproofs protocol which achieve polylogarithmic
verification time. The work of [BCS23] avoids linear-time verification via a delegation protocol
inspired by Dory [Lee21]. On the other hand, [CLM23] introduces additional power structure on
the Ajtai commitment [Ajt96], which enables succinct verification at the cost of a new assumption
called Vanishing-SIS. The aforementioned works still inherit the latter two problems above.

Bünz and Fisch [BF22] considered a modified protocol, where instead of subtractive sets, the
challenges are simply integers in the range [0, 2λ−1). Then, using a new knowledge extraction
strategy called “almost special soundness”, the authors manage to achieve negligible soundness error
– also in the non-interactive setting. However, the protocol still maintains linear-time verification
and suffers from large extracted norm growth.

Fenzi and Nguyen [FN23] moved away from the lattice Bulletproofs template, and instead
considered a commitment scheme based on a power variant of the BASIS assumption [WW23b]. The
algebraic structure of the commitment allows proving polynomial evaluations using the FRI-type
split-and-fold approach, rather than the one from Bulletproofs. An immediate consequence of this
change is the norm blow-up in the order of poly(λ)h, since the knowledge extractor now only needs
to account for the norm growth from inverting a 2× 2 Vandermonde matrix. This comes at the
cost of a trusted setup. The authors propose two concrete instantiations, which either achieve
polylogarithmic verification time (using subtractive sets), or negligible soundness error (using an
exponential-size challenge space) – but not both.

Beullens and Seiler [BS23] proposed an interactive proof, which successfully combines ideas from
lattice-based batch arguments [BBCdGL18; NS22] with algebraic techniques from the non-interactive
zero-knowledge (NIZK) framework by Lyubashevsky, Nguyen and Plançon [LNP22]. The protocol
achieves asymptotically polylogarithmic proof size, and concretely ≈ 50KB proofs for circuits of
size 220. The key to achieving such small proofs in practice is proving exactly that the short
witness s satisfies a relation ∥s∥ = β without any blow-up in the extracted norm. As in [LNP22],
the approach is to prove that ∥s∥ ≪ √q via an approximate range proof [LNS21; GHL22], and
∥s∥2 = β2 mod q as a quadratic equation over Zq. Here, Beullens and Seiler observed that both
claims are folding-friendly and can thus be proven efficiently using recursion. As a downside, the
protocol does not support succinct verification due to the approximate range proof part.

In this work, we address the three limitations stated above: (i) our construction achieves
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polylogarithmic verification time, (ii) the protocol enjoys negligible soundness error via a batching
argument, and (iii) thanks to the FRI split-and-fold structure, we suffer the norm blow-up in the
order of poly(λ)h rather than poly(λ)3h as in the Bulletproofs-type protocols. Unfortunately, the
algebraic structure of our commitment comes at a price of a trusted setup.

We summarise the comparison with prior works in Table 1. To estimate concrete efficiency from
asymptotic statements, we estimate so-called “stretch” and “slack” of the protocols. That is, in
every lattice-based proof system there is a part where the prover wants to prove knowledge of a
short vector s such that A · s = t and ∥s∥ ≤ β. However, due to technical reasons, it is the case
that one can only extract a slightly larger vector z, along with a scalar c for which

A · z = c · t and ∥z∥ ≤ γstretch · β and ∥c∥ ≤ γslack. (1)

In the literature, γstretch is called stretch, and c is the slack. The term γstretch · γslack ∈ R+ often
indicates how efficient the underlying protocol is, because, for security, the proof system modulus
has to be larger than (γstretch · γslack) · β. For instance, [BS23] achieves γstretch, γslack ∈ O(1), which
results in small proof sizes.

Naturally, more efficient lattice-based constructions were proposed in the designated-verifier
setting [ISW21; SSEK22], which enjoy proofs of size a few kilobytes at the cost of very large crs (in
the order of tens of gigabytes). This line of works follows the template of combining Linear PCPs
with a secret-key homomorphic encryption scheme [BCIOP13].

It is also worth mentioning that lattice assumptions are not only used to construct lattice-based
commitments, but also to build non-interactive proof systems from the Fiat-Shamir transformation
without requiring a random oracle. For this goal, a so-called correlation intractable hash function
[CGH04] is needed, which can be built from the Learning with Errors (LWE) problem [HLR21].
Following this methodology, an exciting recent work by Choudhuri, Jain and Jin [CJJ22] showed how
to obtain non-interactive succinct arguments for languages in P, assuming only the LWE problem
with polynomial modulus. This result can be further applied to RAM delegation.

1.3 Technical Overview

We provide a brief overview of our techniques. First, let us recall some notation. We write Zh
2 for

the set of binary strings of length h, and let Z≤h2 := ∪0≤j≤hZj
2. For b = (b1, . . . , bh) ∈ Zh

2 and j ∈ [h]

we let b:j = (b1, . . . , bj) ∈ Zj
2. Let λ be a security parameter, q be an odd prime, and N be a power-

of-two. Define the polynomial rings R := Z[X]/(XN +1) and Rq := Zq[X]/(XN +1). Letting δ ≥ 2

be a (fixed) base and n ≥ 1, we define the gadget matrix as Gn :=
[
1 δ · · · δq̃

]
⊗ In ∈ Rn×nq̃

q

where q̃ := ⌊logδ q⌋ + 1. For simplicity, we omit the subscript n and write G := Gn when clear
from context. In our context, a trapdoor for a matrix B is a short matrix such that B ·T = G.
In particular, knowledge of a trapdoor of B enables to sample (random) short preimages of B, i.e.
short v such that B · v = t for a given image t [MP12]. We also let e be a fixed vector, that will be
used later to argue binding.

1.3.1 Merkle-PRISIS commitment schemes

A polynomial commitment scheme naturally consists of two components: (i) a commitment scheme;
(ii) an evaluation protocol. In order to achieve succinct verification, the commitment scheme has
to be compressing. Further, in order to commit to arbitrary polynomials, we would want the
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Table 1: Comparison of lattice-based publicly verifiable (interactive) polynomial commitments for
polynomials of degree at most d with polylogarithmic communication complexity.

scheme assumption TP
soundness

error

time

prover verifier

size

crs proof

stretch
× slack

[BLNS20] M-SIS ✓ 1/poly(λ) O(d) O(d) O(1) O(log d) O(d3 logN )
[BCS23] M-SIS ✓ 1/poly(λ) O(d) O(log2 d) O(1) O(log2 d) O(d6 logN )
[CLM23] vSIS ✓ 1/poly(λ) O(d) O(log d) O(1) O(log d) O(d4 logN )
[BF22] (M-)SIS ✓ negl(λ) O(d) O(d) O(1) O(log d) O(dlog d+2λ)
[BS23] M-SIS ✓ negl(λ) O(d) O(d) O(1) O(log d) O(1)
[FN23] PowerBASIS ✗ 1/poly(λ) O(d2) O(log d) O(d2) O(log d) O(dlogN )

SLAP M-SIS ✗ negl(λ) O(d) O(log2 d) O(log d) O(log2 d) O(dlogN )

We count the runtime (resp. sizes) in the number of operations (resp. elements) in Rq := Zq [X]/(XN + 1), which take time
(resp. size) polylog(d) each. We ignore the terms related polynomially in the security parameter λ. The “TP” column specifies
whether the scheme has transparent setup. The “stretch × slack” column denotes the term γstretch · γslack defined in (1). For
presentation, we only include the terms that are super-polynomial in d.

commitment scheme to work for any message over Rq and not only elements of small norm. Our
starting point is the following two-to-one commitment scheme, whose security relies on BASIS-style
assumptions introduced in [WW23b] and revisited in [FN23].
The common reference string consists of a triple (A, w,T), where T is a trapdoor to the matrix

B :=

[
A 0 −G
0 w ·A −G

]
and w ∈ R×q . To commit to a vector f = (f0, f1) ∈ R2

q , the committer sets

tb = fb · e and uses T to sample short vectors s0, s1, t̂ such that

B ·

s0s1
t̂

 =

[
−t0
−t1

]
.

The final commitment is then set to be t := G · t̂. To verify an opening, which consists of s0, s1,
the verifier simply checks whether the induced constraints are satisfied, namely by checking that
the openings are short and that wb ·A · sb + t = tb for b ∈ {0, 1}. The commitment scheme can be
naturally extended to handle messages of arbitrary length, and indeed variants of this construction
are at the core of the results in both [WW23b] and [FN23]. However, these natural extensions
incur some drawbacks. First, the common reference string has size quadratic in the message length.
Second, binding holds under BASIS-style assumptions in parameter regimes that are not known to
feature a reduction from standard assumptions.

Conversely, the commitment scheme that we sketched is binding under a version of the PRISIS
assumption of arity 2, which was shown in [FN23] to permit a reduction from the standard Module-SIS
assumption. The commitment scheme that we introduce in the work, which we refer to as Merkle-
PRISIS commitment, addresses both of these drawbacks by applying the sketched commitments
scheme iteratively in a Merkle-tree fashion. It is compressing for messages of arbitrary length in Rq,
binding follows under the Module-SIS assumption, has polylogarithmic common reference string,
and quasi-linear commitment time.
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For simplicity, assume that ℓ = 2h. The common reference string for the Merkle-PRISIS
commitment scheme (when used with messages of length ℓ) consists of h common reference strings for
the base commitment scheme, which we denote as (Ai, wi,Ti)i∈[h]. To commit to a message f ∈ Rℓ

q,

which we index by Zh
2 , the committer applies the basic commitment scheme to (fb,0, fb,1) ∈ R2

q for

b ∈ Zh−1
2 , obtaining ℓ/2 commitments tb (and corresponding openings). Recall that this is done by

setting tb,bh := fb,bh · e and then sampling an appropriate preimage. In the next layer, we apply
again the commitment scheme to these resulting commitments, without scaling by e. This process is
repeated h times, until a single commitment is obtained. Denoting by t this final commitment, and
by (sb)b∈Z≤h

2
the openings, checking a valid opening involves checking shortness of the openings

and that the following equation for each of the ℓ authentication paths b ∈ Zh
2∑

j∈[h]

w
bj
j ·Aj · sb:j

+ fb · e = t .

It is easy to verify that the commitment scheme has the claimed efficiency properties. What might
be surprising is that, despite the fact that the inner instantiations of the commitment schemes are
not individually binding, we show that the overall scheme is binding under a multi-instance version
of the PRISIS assumption, which we discuss next, and base on standard assumptions.

1.3.2 Power-Ring-BASIS Assumption

We first recall the BASIS family of assumptions, introduced in [WW23b]. Informally, each of the
assumptions states that it should be hard for an adversary to find a short non-zero element in the
kernel of a random matrix even when given a trapdoor to a matrix related to the target matrix.

Definition 1.1 (Informal). Let Samp be an algorithm that, when given A ∈ Rn×m
q , outputs

(B, aux)← Samp(A). The BASIS[Samp] assumption states that an efficient adversary, given access
to (A,B, aux,T), where A is a random matrix and T is a trapdoor for B, is not able to compute a
short non-zero solution z to A · z ≡ 0 mod q.

The choice of the Samp algorithm affects the hardness of the assumption. In this work, we consider
the PRISIS assumption, introduced in [FN23], which is obtained from BASIS when the sampling
algorithm is defined as in Figure 1.

As mentioned before, binding of the Merkle-PRISIS commitment scheme follows from a multi-
instance version of the PRISIS2 assumption. We give a general definition for multi-instance BASIS
assumptions, in which the adversary is given a number of BASIS instances, and aims to find a short
non-zero solution to the matrix obtained by concatenating the challenge matrices of the individual
instances.

Definition 1.2 (Informal). Let Samp be an algorithm as before. Let A1, . . . ,Ah be random matrices
in Rq, and suppose further that Bi, auxi ← Samp(Ai) and that Ti is a trapdoor for Bi. The h-
BASIS[Samp] assumption states that no efficient adversary, given (Ai,Bi, auxi,Ti)i, can find a short
non-zero vector z such that [A1| . . . |Ah] · z ≡ 0 mod q.

The PRISIS version is defined as h-PRISISℓ := h-BASIS[PRISIS.Sampleℓ]. In Section 3.2 we show
that this multi-instance version of PRISIS is as hard as the single-instance version. Combining
this with the result in [FN23, Sec 3.1], which reduces Module-SIS to PRISIS2, implies that binding
of Merkle-PRISIS follows from standard assumption. We alternatively show a tighter reduction
directly from Module-SIS to h-PRISIS2 in Section 3.1.
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PRISIS.Sampleℓ(A):

1. Samplea a⊤ ← Rm
q and set Ā :=

[
a⊤

A

]
. We write PRISISℓ := BASIS[PRISIS.Sampleℓ].

2. Sample w ← R×q .
3. Return

B :=

w
0 · Ā −G

. . .
...

wℓ−1 · Ā −G

 and aux := w .

aThis vector a will be used in concert with e to argue binding later. Refer to Section 4.1 for details.

Figure 1: Sampling algorithm for the PRISIS assumption.

1.3.3 Evaluation protocol

Next, we focus on the second component of our polynomial commitment scheme, namely the
evaluation protocol. First, we present a Σ-protocol, resembling that in [FN23], that reduces checking
an opening of a committed degree d polynomial to that of one of degree d/2. Our final protocol
will apply this Σ-protocol recursively, which will suffice to achieve polylog(d) communication and
verifier complexity.

Again for simplicity, assume that d = 2h − 1, and let (Aj , wj ,Tj)j∈[h] be a Merkle-PRISIS
common reference string as before. Given a public commitment t, an evaluation point u and a
claimed image z, the prover aims to show knowledge of a polynomial f of degree at most d such
that f(u) = z, and that t is a commitment to f .

The protocol, as the previous work, follows a FRI-inspired split-and-fold approach. The prover
will split the witness vector into odd and even components, and send over some evaluations and
partial openings. The verifier will sample randomness which will be used to update the witness to a
random linear combination of those components. Prover and verifier will jointly (and efficiently)
updated their reference string and commitment to one of the folded polynomial. We describe the
Σ-protocol in Figure 2.

Correctness, follows easily, if not for some cumbersome notation. We index the coefficients of
f, g with binary strings as before. Thus, the j-th coefficient of g is gj = α0f0,j + α1f1,j for j ∈ Zh−1

2 .
Now, by expanding the verification equations, we have

gj · e = (α0 · f0,j + α1 · f1,j) · e

= α0 ·

(
t− w0

1 ·A1 · s0 −
h−1∑
t=1

wjt
1+t ·A1+t · s0,j:t

)

+ α1 ·

(
t− w1

1 ·A1 · s1 −
h−1∑
t=1

wjt
1+t ·A1+t · s1,j:t

)
= α0 ·

(
t− w0

1 ·A1 · s0
)
+ α1 ·

(
t− w1

1 ·A1 · s1
)

−
h−1∑
t=1

wjt
1+t ·A1+t · (α0 · s0,j:t + α1 · s1,j:t)
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Basic Σ-Protocol

Prover Verifier

f(X) = f0(X
2) + Xf1(X

2)

zi := fi(u
2) for i ∈ Z2

z0, z1, s0, s1 Check: z0 + uz1 =? z; Check: s0, s1 short

g(X) := α0f0(X) + α1f1(X)
α0, α1 α0, α1 ← {Xi : i ∈ Z }

zb := α0sb,0 + α1sb,1 for b ∈ Z≤h−1
2

g, (zb)b crs′ := (A1+t, w1+t,T1+t)t∈[h−1]

t′ := α0 ·
(
t− w0

1A1s0
)
+ α1 ·

(
t− w1

1A1s1
)

u′ := u2; z′ := α0 · z0 + α1 · z1
Check: g(u′) = z′

Check: Open(crs′, t′, g, (zb)b) = 1

Figure 2: Σ-protocol to check evaluations of a degree d polynomial committed under Merkle-PRISIS.

= t′ −
h−1∑
t=1

·wjt
1+t ·A1+t · zj:t .

Note also that g(u2) = α0 · f0(u2) +α1 · f1(u2) = α0 · z0 +α1 · z1. Further, the updated openings
are scaled by monomials, and thus remain short. We are able to straightforwardly generalise the
protocol to an arbitrary “folding factor”, that we denote as k. This parameter regulates in how
many components the polynomial is divided into in a round of the protocol. More concretely, the
original degree d polynomial is split into 2k polynomials of degree roughly d/2k, which are then
folded as in the original protocol. Applying the protocol recursively logarithmically many times (in
d), we are able to obtain an interactive evaluation protocol with communication complexity and
verification complexity polylogarithmic.

Knowledge soundness of the Σ protocol follows from techniques similar to those in [FN23],

inheriting the limitation that the knowledge soundness error is 2k

2N , where N = poly(λ) and thus
non-negligible. In the interactive setting, we could boost this via parallel repetition, but since
our aim will to construct non-interactive arguments through the Fiat-Shamir transform another
approach is required.

To this end, we combine the amortisation techniques from [BBCdGL18; BHRRS21]. Rather than
proving a single claim f(u) = z, we consider a protocol for a bundle of r claims { fi(u) = zi }i∈[r]
(note that the evaluation points are the same across claims). The new Σ-protocol takes as input r
polynomials of degree d, applies the same “split” strategy to obtain r · 2k polynomials of degree
roughly d/2k. These polynomials are combined into r new ones via a redundant linear combination,
which induces a new bundle of claim to be recursively proven.

We apply this new Σ-protocol ℓ times recursively, and analyse the resulting protocol using
coordinate-wise special soundness. We show that the knowledge soundness error is roughly ℓ ·
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r2k/(2N)r. Setting r large enough, we can thus achieve negligible knowledge soundness error.
Applying the Fiat-Shamir transformation is then sound, and we obtain a non-interactive protocol
for proving multiple polynomial evaluations. The single polynomial case is then handled by proving
the same claim multiple times with the resulting protocol. An appropriate setting of parameters
then implies our main result.

Our protocols, as they are, natively provide evaluations proofs of polynomials over Rq. We
present a new generic technique to make use of such evaluations proof to provide evaluations proofs
over Zq. The techniques, allow to prove evaluation of degree d polynomials over Zq by making use
of evaluation protocols of degree d/N in Rq, leading to significant savings in practice. At a high
level, we make use of the observation in [LNP22] that R has an automorphism σ : R → R such that,
for a, b ∈ R, the constant coefficient of a · σ(b) equals the inner product of the coefficient vectors of
a and b. We then make use of this fact to “pack” the coefficients of the original polynomial in Zq in
one of smaller degree over Rq, embedding the original claim in the constant coefficient of this new
polynomial.

2 Preliminaries

We denote the security parameter by λ, which is implicitly given to all algorithms unless specified
otherwise. Further, we write negl(λ) (resp. poly(λ)) to denote a negligible function (resp. polynomial)
in λ. In this work, we implicitly assume that the vast majority of the key parameters, e.g. the ring
dimension, and the dimensions of matrices and vectors, are poly(λ). However, the modulus used in
this work may be super-polynomial in λ.

For a, b ∈ N with a < b, write [a, b] := {a, a + 1, . . . , b}, [a] := [1, a]. For q ∈ N write Zq for
the integers modulo q. We denote vectors with lowercase boldface (e.g. u,v) and matrices with
uppercase boldface (e.g. A,B). For a vector x of length n, we write xi or x[i] for its i-th entry.
Similarly, we define x:i := (x1, . . . , xi), xi: := (xi, . . . , xn) and xi:j := (xi, . . . , xj) for i, j ∈ [n]. Given
two vectors u,v, we denote by (u,v) its concatenation. Also, ε is an empty string. Given two
matrices A,B we write [A | B] for their concatenation. We write [A∥B] for stacking two matrices

on top of each other i.e. [A∥B] := [AT | BT ]
T
.

Norms. We define the ℓp norm on Cn as ∥x∥p = (
∑

i |xi|p)
1/p for p <∞ and ∥x∥∞ := maxi |xi|.

Unless otherwise specified, we use ∥·∥ for the ℓ2 norm. We let the norm of a matrix be defined as
the norm taken over the concatenation of columns of the matrix. For distributions X and Y we
define Here ∆(X ,Y) := supA | Pr(X ∈ A)− Pr(Y ∈ A) | to be the conventional statistical distance.

Bits-to-integer conversion. Let k ≥ 1. For a vector b ∈ Zk
2, we define the bits-to-integer

conversion function int(b) :=
∑k

i=1 bi · 2i−1 ∈ [0, 2k − 1]. Clearly, if u ∈ Zk
2 and v ∈ Zl

2 then
int((u,v)) = int(u) + 2k · int(v).

2.1 Lattices

A subset Λ ⊆ Rm is a lattice if: (i) 0 ∈ Λ, and for x,y ∈ Λ, x+ y ∈ Λ, and (ii) for every x ∈ Λ,
there exists ε > 0 such that {y ∈ Rm : ∥x− y∥ < ε} ∩ Λ = {x}. We say B ∈ Rn×m is a basis for Λ
if its columns are linearly independent and Λ = L(B) := {B · z : z ∈ Zm}. The span (as a vector
space) of the basis of a lattice is the span of a lattice denoted as Span(Λ). We also let Λ∗ be the
dual lattice defined as Λ∗ = {w ∈ Span(Λ) : ⟨Λ,w⟩ ⊆ Z}. We denote by B̃ the Gram-Schmidt
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orthogonalisation of B. The Gram-Schmidt norm of B is defined as ∥B̃∥ := maxi∈[k] ∥b̃i∥ where b̃i

is the i-th column of B̃.

2.2 Discrete Gaussian Distributions

Let σ > 0 be a parameter and Λ be a m-dimensional lattice. We then define the discrete Gaussian
distribution DΛ,σ,c over a lattice coset c+ Λ as follows.

ρσ,c(z) := exp

(
−π ∥z− c∥2

σ2

)
and DΛ,σ,c(z) :=

ρσ,c(z)∑
x∈Λ ρσ,c(x)

.

When c = 0 or Λ = Zm, we will omit either from the notation. We naturally extend this notion
for lattices over the ring of integers of number fields (see below), and for matrices by sampling
column-wise.

Let A ∈ Rn×m
q be a matrix over some ring Rq and take any u ∈ Rn

q . We write s← A−1σ (u) to
denote sampling s← Dm

σ conditioned on A · s ≡ u mod q.
We make use of the following lemmas on discrete Gaussians, bounding the norm of vectors

sampled from that distribution, and the entropy of the distribution.

Lemma 2.1 (Implicit in Cor 5.5 in [Pei07]). For any parameter m, a lattice Λ ⊂ Rm and a constant
σ > 0 we have:

Pr
u←DΛ,σ

[
∥u∥∞ > σ · ω(

√
logm)

]
= negl(m) .

Lemma 2.2 (Implicit in Lem 2.10 in [PR06]). Let Λ be a full rank lattice in RN . Let ε > 0 and
σ ≥ ηε(Λ). Let y ∈ Λ then

Pr
y′←DΛ,σ

[
y = y′

]
≤ (σN det(Λ∗)(1− ε))−1 .

2.3 Smoothing Parameter

The smoothing parameter ηε(Λ) of a lattice is the smallest s > 0 such that ρ1/s(Λ
∗) ≤ 1 + ε. Below

we recall the standard upper-bound on the smoothing parameter [MR07; GPV08].

Lemma 2.3. Let Λ ⊂ Rm be a lattice, and let ε > 0. Then, for every basis B of Λ,

ηε(Λ) ≤
1

λ∞1 (Λ∗)
·
√

ln(2m · (1 + 1/ε))

π

≤ ˜∥B∥ ·
√

ln(2m · (1 + 1/ε))

π
.

2.4 Rejection Sampling

We recall the generalised version of rejection sampling for discrete Gaussian over arbitrary lattices
as introduced recently in [BTT22] (here we skip the general case for ellipsoidal Gaussians).
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RejSamp:

1: (u,v)← h
2: z← DmN

Λ,σ,v+u

3: return (u,v, z) with prob. min
(
Dm

σ (z)
M ·Dm

σ,v(z)
, 1
)

SimRS:

1: (u,v)← h
2: z← DmN

Λ,σ,u

3: return (u,v, z) with prob. 1
M

Figure 3: Rejection sampling [BTT22].

Lemma 2.4 (Rejection Sampling [BTT22]). Take any α, T > 0 and ε ≤ 1/2. Let Λ ⊆ Rm be a
lattice over some ring R and σ ≥ max(α · T, ηε(Λ)) be a parameter. Let h : Rm ×Rm → [0, 1] be a
probability distribution which returns (u,v) where the vector v satisfies ∥v∥ ≤ T .4 Further, define
M := exp( π

α2 + 1) and ε := 21+ε
1−ε exp(−α

2 · π−1
π2 ). Then, the statistical distance between distributions

RejSamp and SimRS defined in Figure 3 is at most ε
2M + 2ε

M . Moreover, the probability that RejSamp

outputs something is at least 1−ε
M ·

(
1− 4ε

(1+ε)2

)
.

2.5 Power-of-Two Cyclotomic Rings

Let N be a power-of-two and K = Q[X]/(XN + 1) be the 2N -th cyclotomic field. Denote R :=
Z[X]/(XN + 1) to be the ring of integers of K. We write N (f) for the algebraic norm over Q of the
ideal f ⊂ R. for the algebraic norm of For an odd prime q, we write Rq := R/(q). We denote R×q to
be the set of invertible elements in Rq. Let ℓ be a divisor of N such that q ≡ 2N/ℓ+ 1 mod 4N/ℓ.
Then, by [LS18, Corollary 1.2], the polynomial XN + 1 factors as

XN + 1 ≡
N/ℓ∏
i=1

(Xℓ − ri) mod q ,

for distinct ri ∈ Z×q , where all Xℓ − ri are irreducible in the ring Zq[X]. Hence, the ideal ⟨q⟩ of R
can be written as a product of prime ideals:

⟨q⟩ =
N/ℓ∏
i=1

⟨q,Xℓ − ri⟩ .

Moreover, by the Chinese Remainder Theorem and a union bound, the probability of w ← Rq being
non-invertible can be bounded by N/(ℓ · qℓ). In this work, we fix q ≡ 5 mod 8, so that ℓ = N/2. In
particular, if N = O(λ) then Rq splits into exponentially large fields.

For A ∈ Rn×m
q , x ∈ Rm

q , we define the q-ary lattices (or lattice cosets) as Λ⊥u (A) := {z ∈ Rm :
A · z ≡ u mod q}. We omit the subscript u if u = 0.

Lemma 2.5 (Prop. 2 of [AL21]). In the power-of-2 cyclotomic ring R of degree N

max
a0, a1∈R

∥a0 · a1∥∞
∥a0∥∞ · ∥a1∥∞

≤ N .

Next, we define X := {1, X, . . . ,X2N−1} to be the set of monomials in R. We use the result
from [BCKLN14, Lemma 3.1] which says that the (scaled) inverse of any two distinct monomials
has small coefficients.

Lemma 2.6 (Lemma 3.1 of [BCKLN14]). Let 0 ≤ i < j < 2N . Then, 2/(Xi −Xj) mod (XN + 1)
has coefficients in {−1, 0, 1}.

4One may think of u (resp. v) as the public (resp. private) shift.
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2.6 Module-SIS

We recall the standard Module-SIS [LS15] assumption.

Definition 2.7 (Module-SIS). Let q = q(λ), n = n(λ), m = m(λ), β = β(λ) and N = N(λ). We
say that the MSISn,m,Rq ,β assumption holds if for any PPT adversary A, the following holds:

Pr

[
A · z = 0 ∧ 0 < ∥z∥ ≤ β

∣∣∣∣ A← Rn×m
q

z← A(A)

]
≤ negl(λ) .

2.7 Leftover Hash Lemmas over Rings

We will rely on a leftover hash lemma over rings, both explicitly and implicitly when performing
trapdoor sampling.

Lemma 2.8 (Cor. 4.2 of [LPR13]). For a cyclotomic number field of degree N , integers q ≥ 2 and
n ≤ m ≤ poly(λ). Let A = [Idn|Ā] ∈ Rn×m

q , where Ā is sampled uniformly at random. Then with

probability 1− 2−Ω(N) over the choice of Ā the distribution of A · u mod q where u← DRm,σ with
σ ≥ 2N · qn/m+2/(N ·m) is within statistical distance 2−Ω(N) of the uniform distribution over Rn

q .

Corollary 2.9. Let Sn,m ⊂ Rn×m
q , m ≥ n be a space of all matrices in Rn×m

q that contain an

invertible n×n submatrix. Let matrix A← Sn,m, and a vector x← DRm,σ with σ ≥ 2N ·qn/m+2/(N ·m)

then
∆
(
(A,A · x mod q), (U(Sn,m), U(Rn

q ))
)
≤ 2−Ω(N) .

Since the above statement is only for matrices containing an invertible submatrix, we need to prove
that for our parameters at least a constant fraction of all matrices are in S(n,m).

Lemma 2.10 (Lemma 2.5 of [BJRW23]). Let n, k, m, q be positive integers such that q is unramified
prime and factors as ⟨q⟩ =

∏κ
i=1 pi in R. Let 1 ≤ k ≤ m and a1, . . . ,ak ∈ Rm

q be a set of Rq

linearly independent vectors. Then

Pr
b←Rm

q

[a0, . . . ,ak−1,b are Rq-lin. indep.] =
κ∏

i=1

(
1− 1

N (pi)m−k

)
.

As a result for any 1 ≤ n ≤ m, it holds that

Pr
(ai)i←(Rm

q )n
[a1, . . . ,an are Rq-lin. indep.] =

n−1∏
k=0

κ∏
i=1

(
1− 1

N (pi)m−k

)
.

Remark 2.11. In this work, we pick xN +1 to split into two factors, so κ = 2 and ∀i : N (pi) = qN/2.
As a consequence, elements in Rq are invertible and linear independence holds with overwhelming
probability.

Remark 2.12. Let A← Rn×m
q and 1 ≤ n ≤ m. Then with overwhelming probability all matrix

elements are invertible and its rows are linearly independent. Then with overwhelming probability
the Gaussian elimination algorithm can find an inverse for some n× n submatrix of A. Therefore,
A ∈ S(n,m) with overwhelming probability.
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2.8 Trapdoor Sampling

Gadget matrix. Let δ ≥ 2. We set q̃ := ⌊logδ q⌋ + 1, g⊤ = [1, δ, . . . , δq̃−1] ∈ R1×q̃
q and Gn :=

In ⊗ g⊤ ∈ Rn×(n·q̃)
q . When the dimensions are clear from context we simply write G. Write

G−1n : Rn×t
q → R(n·q̃)×t

q for the inverse function that takes a matrix of entries in Rq, and decomposes

each entry w.r.t. the base δ. We also write g−1 for G−11 . Next, we recall the trapdoor generation
from [MP12; FN23] and make use of Remark 2.12.

Lemma 2.13 (Trapdoor Generation). Let Rq split into fields of super-polynomial size. Let N,n >
0, t = n · q̃ and Gn ∈ Rn×t

q be the gadget matrix. Take m ≥ t+ n. Then, there is a PPT algorithm
TrapGen(n,m) that with an overwhelming probability returns two matrices (A,R) ∈ Rn×m

q ×Rm×t
q

such that A · R ≡ Gn mod q and ∥R∥ ≤ σ ·
√

2 t · (m− t) ·N where σ > 2N · q
n

m−t
+ 2

N·(m−t) .
Moreover, A is statistically close to a uniformly random matrix in Rn×m

q .

The next lemma [MP12] states that given a short G-trapdoor matrix R for A, we can efficiently
sample preimages of A according to the discrete Gaussian distribution. We further merge the result
with the tail-bound inequality from [MR07].

Lemma 2.14 (Preimage Sampling). Let Rq split into fields of super-polynomial size. Let N,n,m > 0,
t = n · q̃ and k = max(n,m). Then, there exists a PPT algorithm SamplePre(A,R,v, σ) that takes
as input a matrix A ∈ Rn×m

q , a Gn-trapdoor R ∈ Rm×t
q for A with a tag H, a target vector v ∈ Rn

q

in the column-span of A, and a Gaussian parameter σ, and outputs a vector u ∈ Rm
q such that

A · u ≡ v mod q. Further, if σ ≥ δ · ∥R∥ · ω(N ·
√
log(k ·N)) then the statistical distance between

the following distributions is negligible:

{u← SamplePre(A,R,v, σ)} and
{
u← A−1σ (v)

}
,

and in particular, Pr[∥s∥ > σ ·
√
m ·N : s ← SamplePre(A,R,v, σ)] is negligible. We extend

this algorithm for matrices, i.e. for a matrix V ∈ Rn×ℓ
q with columns v1, . . . ,vℓ, we define

SamplePre(A,R,V, σ) to be the algorithm which returns a matrix S ∈ Rm×ℓ
q , where the i-th

column is the output of SamplePre(A,R,vi, σ).

2.9 Ring-LWE

The Ring-LWE problem is to distinguish Ring-LWE samples from uniform.

Definition 2.15 (Ring-LWE). Let χs, χe be distributions on R. The Ring-LWE problem, denoted,
RLWERq ,χs,χe is to distinguish {ai, ai · s+ ei} from uniform where ai ← Rq, ei ← χe and s← χs.

The problem is considered hard for χs, χe := D2
R,σ with σ ∈ poly(N) and q ∈ poly(N) [SSTX09;

LPR10]. By a hybrid argument we also have that {a · sj + ej}j∈poly(λ) for a fixed a and varying
sj , ej ← D2

R,σ is indistinguishable from uniform, cf. [PW08]. We refer to this setting as multi-instance
RLWER,DR,σ ,DR,σ

.

2.10 NTRU Lattices

Definition 2.16 (NTRU). Let q ≥ 2 ∈ Z and β > 0 a real number. A (Rq, χf , χg)-NTRU
instance is an element h ∈ Rq such that there exist (f, g) ∈ R2 \ {(0, 0)} with g · h ≡ f mod q and
f, g ← χf , χg. The (Rq, χf , χg)-NTRU problem, denoted NTRURq ,χf ,χg , is to distinguish NTRU
instances from uniform.
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Our main construction uses the main result of Stehlé and Steinfeld [SS13], which says that
there is an efficient algorithm that outputs (h,TNTRU) such that h is statistically close to a uniform
distribution over R×q and TNTRU is a trapdoor for h.

Lemma 2.17 (Statistical NTRU Trapdoor Generation [SS13]). Let q = ω(N) such that q ≡ 5 mod 8.
Take ε ∈ (0, 1/3) and σ ≥ max(

√
N ln(8Nq) · q1/2+ε, ω(N3/2 ln3/2N)). There is a PPT algorithm

NTRU.TrapGen(Rq, σ) which with an overwhelming probability outputs h ∈ Rq and a basis TNTRU

of the lattice
Λh := {(u, v) ∈ R2 : u+ v · h ≡ 0 mod q}

such that ∥T̃NTRU∥ ≤ N · σ. Furthermore, the statistical distance between the distribution of h and
uniform over R×q is at most 210N · q−⌊εN⌋.

When, as in Section 3.2, χf = χg = DR,σ and when σ <
√
q the problem is considered to be

computationally hard for some choices of parameters [HPS98; ABD16; CJL16; KF17; DW21]. In
particular, if σ ≪ √q then distinguishing NTRU is exponential in Θ̃(N · log(σ)/ log2(q)) under
known algorithms.

2.11 Commitment Scheme

We recall the notion of a commitment scheme with relaxed binding, as introduced in [ALS20].

Definition 2.18. Let CM = (Setup,Commit,Open) be a triple of PPT algorithms. We say that CM
is a commitment scheme overM with slack space S if it has the following syntax:
• Setup(1λ)→ crs takes a security parameter λ (specified in unary) and outputs a common reference
string crs.

• Commit(crs,m)→ (C, st) takes a common reference string crs a message m ∈M and outputs a
commitment C and decommitment state st.

• Open(crs, C,m, st, c) takes a common reference string crs, a commitment C, a message m ∈M,
a decommitment state st and a relaxation factor c ∈ S and outputs a bit indicating whether C is a
valid commitment to m under crs.5

We define the key properties of the commitment scheme: correctness, (relaxed) binding and hiding.
In the following, we denote the message space asM and the slack space as S.

Definition 2.19 (Completeness). A commitment scheme CM = (Setup,Commit,Open) satisfies
completeness if there exists a global relaxation factor c∗ ∈ S such that for every m ∈M:

Pr

[
Open(crs, C,m, st, c∗) = 1

∣∣∣∣ crs← Setup(1λ)
C, st← Commit(crs,m)

]
≥ 1− negl(λ) .

For the notion of relaxed binding, we assume that the adversary comes up with two different
openings with the same relaxation factor.

Definition 2.20 (Relaxed Binding). A commitment scheme CM = (Setup,Commit,Open) satisfies
relaxed binding if for every PPT adversary A:

Pr

 m ̸= m′ ∧m,m′ ∈M∧
Open(crs, C,m, st, c)
= Open(crs, C,m′, st′, c) = 1

∣∣∣∣∣∣ crs← Setup(1λ)
(C, (m, st), (m, st′), c)← A(crs)

 = negl(λ) .

5We implicitly assume that if c ̸∈ S then Open automatically returns 0.
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Definition 2.21 (Hiding). A commitment scheme CM = (Setup,Commit,Open) satisfies hiding if
for every (stateful) PPT adversary A:

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣
crs← Setup(1λ)

(m0,m1)← A(crs)
b← {0, 1}

C, st← Commit(crs,mb)
b′ ← A(C)

 ≤ 1

2
+ negl(λ) .

2.12 Polynomial Commitment Scheme

Polynomial commitment schemes extend commitments with the ability to prove evaluations of the
committed polynomial.

Definition 2.22. Let PC = (Setup,Commit,Open,Eval,Verify) be a tuple of algorithms. PC is a
polynomial commitment scheme over a ring R with degree bound d and slack space S if:
• (Setup,Commit,Open) is a commitment scheme over

M :=

{
(f0, f1, . . . , fd) ∈ Rd+1 :

d∑
i=0

fi · Xi ∈ R[X]

}
with slack space S.

• Eval(crs, C, u, st)→ π takes a common reference string crs, a commitment C, an evaluation point
u ∈ R, auxiliary state st and outputs an evaluation proof π.

• Verify(crs, C, u, z, π)→ 0/1 takes a common reference string crs, a commitment C, an evaluation
point u ∈ R, a claimed image z ∈ R, an evaluation proof π, and outputs a bit indicating whether
π is a valid evaluation proof that the polynomial committed to in C evaluates to z at the point u.

We also consider a setting in which Eval and Verify are replaced with an interactive two-party protocol
between a prover and a verifier, and refer to that setting as an interactive polynomial commitment
scheme.

Further, we require that the evaluations procedure satisfy evaluation completeness and knowledge
soundness. For simplicity, we give these definitions for non-interactive polynomial commitments,
the interactive variant follows similarly.

Definition 2.23 (Evaluation Completeness). We say that a polynomial commitment scheme
PC = (Setup,Commit,Open,Eval,Verify) satisfies completeness if for every polynomial f ∈ R≤d[X]
and any evaluation point u ∈ R:

Pr

 Verify(crs, C, u, f(u), π) = 0

∣∣∣∣∣∣
crs← Setup(1λ)

C, st← Commit(crs, f)
π ← Eval(crs, C, u, st)

 = negl(λ) .

Definition 2.24 (Knowledge Soundness). We say that a polynomial commitment scheme PC =
(Setup,Commit,Open,Eval,Verify) is knowledge sound with knowledge error ε if for all stateful PPT
adversaries P∗, there exists an expected PPT extractor E such that

Pr

 o = Open(crs, C, f, st, c)
b = 1 ∧
(o ̸= 1 ∨ f(u) ̸= z)

∣∣∣∣∣∣∣∣
crs← Setup(1λ)

(C, u, z, π)← P∗(crs)
b = Verify(crs, C, u, z, π)

(f, st, c)← EP∗
(crs, C, u, z, π)

 ≤ ε(λ) .
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2.13 Interactive Proofs

We recall the notion of interactive proofs [GMR85]. Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary
relation. If (i,x,w) ∈ R, we say that i is an index, x is a statement and w is a witness for x. We
denote R(i,x) = {w : R(i,x,w) = 1}. In this work, we only consider NP relations R for which a
witness w can be verified in time poly(|i|, |x|) for all (i,x,w) ∈ R.

A proof system Π = (Setup,P,V) for relation R consists of three PPT algorithms: the Setup
algorithm, prover P, and the verifier V. The latter two are interactive and stateful. We write
(tr, b)← ⟨P(i,x,w),V(i,x)⟩ for running P and V on inputs i,x,w and i,x respectively and getting
communication transcript tr and the verifier’s decision bit b. We use the convention that b = 0
means reject and b = 1 means accept the prover’s claim of knowing w such that (x,w) ∈ R. If tr
contains a ⊥ then we say that P aborts. Unless stated otherwise, we will assume that the first and
the last message are sent from a prover. Hence, the protocol between P and V has an odd number
of rounds. A Σ-protocol is a three-round protocol. Further, we say a protocol is public coin if the
verifier’s challenges are chosen uniformly at random independently of the prover’s messages.

Definition 2.25 (Completeness). A proof system Π = (Setup,P,V) for the relation R has statistical
completeness with correctness error ε(λ) if for all adversaries A,

Pr

b = 0 ∧ (i,x,w) ∈ R

∣∣∣∣∣∣
i← Setup(1λ)
(x,w)← A(i)

(tr, b)← ⟨P(i,x,w),V(i,x)⟩

 ≤ ε(λ) + negl(λ) .

Definition 2.26 (Knowledge Soundness). A proof system Π = (Setup,P,V) for the relation R is
knowledge sound with knowledge error ε(λ) if there exists an expected PPT extractor E such that for
any stateful PPT adversary P∗:

Pr

b = 1 ∧ (i,x,w) ̸∈ R

∣∣∣∣∣∣∣∣
i← Setup(1λ)
(x, st)← P∗(i)

(tr, b)← ⟨P∗(i,x, st),V(i,x)⟩
w← EP∗

(i,x)

 ≤ ε(λ) + negl(λ) .

Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can rewind it
to any point in the interaction.

2.14 Coordinate-Wise Special Soundness

We recall the notion of coordinate-wise special soundness defined in [FN23]. Let S be a set and
ℓ ∈ N. Namely, take two vectors x := (x1, . . . , xℓ),y := (y1, . . . , yℓ) ∈ Sℓ. Then, we define the
following relation “≡i” for fixed i ∈ [ℓ] as:

x ≡i y ⇐⇒ xi ̸= yi ∧ ∀ j ∈ [ℓ]\{i}, xj = yj .

That is, vectors x and y have the same values in all coordinates apart from the i-th one. For ℓ = 1,
the relations boils down to cheking whether two elements are distinct. Further, we can define the set

SS(S, ℓ) :=

{
(x1, . . . ,xℓ+1) ∈

(
Sℓ
)ℓ+1

:
∃ k ∈ [ℓ+ 1], ∀ i ∈ [ℓ],
∃ j ∈ [ℓ+ 1]\{k}, xk ≡i xj

}
.
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As a simple example, ((0, 0), (1, 0), (0, 1)) ∈ SS(Z2, 2) – the vector (0, 0) differs from (1, 0) (resp. (0, 1))
exactly in the first (resp. second) coordinate. Note that for ℓ = 1, this set contains pairs of distinct
elements in S.

We are ready to define the notion of coordinate-wise special soundness.

Definition 2.27 (Coordinate-Wise Special Soundness). Let Π = (Setup,P,V) be a public-coin
(2µ + 1)-round interactive proof system for relation R, where in each round the verifier picks a
uniformly random challenge from Sℓ. A tree of transcripts is a set of K = (ℓ+ 1)µ arranged in the
following tree structure. The nodes in the tree correspond to the prover’s messages and the edges
correspond to the verifier’s challenges. Each node at depth i has exactly ℓ+ 1 children corresponding
to ℓ+1 distinct challenges which, as a vector, lie in SS(S, ℓ). Every transcript corresponds to exactly
one path from the root to a leaf node.

We say that Π is ℓ-coordinate-wise special sound if there is a polynomial time algorithm that
given an index i, statement x and the tree of transcripts, outputs a witness w ∈ R(i,x).

The following lemma states that coordinate-wise special sound protocols are knowledge sound.

Lemma 2.28 (Lemma 2.30 of [FN23]). Let Π = (Setup,P,V) be public-coin (2µ + 1)-round
interactive proof system for relation R and suppose the challenge space of V in each round is Sℓ. If
Π is ℓ-coordinate-wise special sound and ℓµ = poly(λ), then it is knowledge sound with knowledge
error µℓ/|S|.

3 Power-Ring-BASIS Assumption

Our construction of the polynomial commitment will rely on the multi-instance version of the PRISIS
(Power-Ring-BASIS) assumption [FN23] which is a special case of the BASIS assumption introduced
by Wee and Wu [WW23b].6 Recall that Gn is a gadget matrix with base δ. We fix the modulus q
and set q̃ := ⌊logδ q⌋+ 1. Here, we consider a multi-instance version of BASIS, where the adversary
is given h instances (Ai,Bi,Ti, auxi) of BASIS, and it has to find a short non-zero solution to the
concatenated matrix [A1 | · · · | Ah].

We also analyse hardness of the h-PRISIS assumption for h = poly(λ). First, we show that
for specific parameters, h-PRISISn,m,Rq ,2,σ,β is secure under the Module-SIS assumption. This
implies that our polynomial commitment scheme in Section 5 is secure under standard assumptions.
Furthermore, we prove that h-PRISIS generally has a reduction from a single instance PRISIS which
can be of independent interest.

Definition 3.1 (h-BASIS). Let h ≥ 1 and q, n,m, n′,m′, ℓ,N, σ, β be the lattice parameters. Let
Samp be a PPT algorithm, which given a matrix A ∈ Rn×m

q , outputs a matrix B ∈ Rn′×m′
q along

with auxiliary information aux. We say the h-BASISn,m,n′,m′,Rq ,ℓ,σ,β assumption holds w.r.t. Samp
if for any PPT adversary A:

Pr

 [A1 | · · · | Ah] · z = 0
0 < ∥z∥ ≤ β

∣∣∣∣∣∣∣∣
∀j ∈ [h],Aj ← Rn×m

q ,

(Bj , auxj)← Samp (Aj)
Tj ← Bj

−1
σ (Gn′)

z← A
(
(Aj ,Bj ,Tj , auxj)j∈[h]

)
 ≤ negl(λ) .

6BASIS stands for Basis-Augmented Shortest Integer Solution.
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The PRISIS assumption is defined by the following sampling algorithm Samp.

Definition 3.2 (h-PRISIS). The h-PRISISn,m,Rq ,ℓ,σ,β assumption is an instantiation of the h-BASIS
assumption with the following sampling algorithm Samp. That is, Samp(A) samples a row a⊺ ← Rm

q

and sets Ā as

Ā :=

[
a⊺

A

]
∈ R(n+1)×m

q . (2)

Then, it samples w ← R×q , and outputs

B :=

w
0 · Ā −Gn+1

. . .
...

wℓ−1 · Ā −Gn+1

 and aux := w.

3.1 h-PRISIS Assumption for ℓ = 2

We provide an efficient reduction from MSIS to the h-PRISISn,m,Rq ,ℓ,σ,β assumption, where ℓ = 2.
Since we base security of our constructions on this case, we obtain a polynomial commitment from
standard lattice assumptions. In particular, we prove the following theorem:

Theorem 3.3 (MSIS =⇒ h-PRISIS). Let n > 0,m ≥ n and denote t = (n+ 1) · q̃. Let q = ω(N)
satisfy q ≡ 5 mod 8. Take ε ∈ (0, 1/3) and σ0 ≥ max(

√
N ln(8N · q) · q1/2+ε, ω(N3/2 · ln3/2 ·N))

such that 210Nq−⌊ε·N⌋ is negligible. Let τ := max(2 · (n+ 1), 2m+ t) and

σ1 ≥ δ
√
t ·N · (N2 · σ2

0 ·m+ 2 t) · ω(
√
N · log(τN)) .

Then, for h = poly(λ), h-PRISISn,m,Rq ,2,σ1,β is hard under the MSISn,hm,Rq ,β assumption.

Recall that Fenzi and Nguyen [FN23] already gave such a reduction for the single instance case
(h = 1). We adapt their proof strategy to prove hardness of h-PRISIS. To this end, we fist provide
a technical lemma from [FN23, Lemma 3.4], which says that if one can find a short solution to a
specific linear equation, then one can also build a PRISIS trapdoor.

Lemma 3.4 ([FN23]). Let n,m,N > 0 and α ≥ 1. Denote t = n · q̃. Then, there exists an efficient
deterministic algorithm, that given as input a matrix A⋆ ∈ Rn×m

q , invertible W1,W2,H ∈ Rn×n
q

and two matrices T1,T2 ∈ Rm×t
q , which satisfy

∥∥[T1∥T2]
∥∥ ≤ α and

W1 ·A⋆ ·T1 −W2 ·A⋆ ·T2 = H ·Gn ,

outputs a tag H∗ ∈ GL(2n,Rq) and a G2n-trapdoor S for the matrix B defined as:

B :=

[
W1 ·A⋆ 0 −G

0 W2 ·A⋆ −G

]
with a tag H∗, where ∥S∥ ≤

√
2 · (α2 + t2 ·N).

We now follow the footsteps of the proof of [FN23, Lemma 3.6] to prove hardness of h-PRISIS.

Proof of Theorem 3.3. Suppose there is a PPT algorithm A that wins h-PRISISn,m,Rq ,2,σ1,β with
probability ε. We revisit the h-PRISIS security game and introduce a game hop where we plug in
the NTRU trapdoors inside the auxiliary information w1, . . . , wh. We define εi to be the probability
that A wins Game i.
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Game 1: This is the standard h-PRISIS security game. To recall, for j ∈ [h], the challenger samples
aj ← Rm

q , Aj ← Rn×m
q and sets A⋆

j as in (2). Then, it generates an invertible element wj ← R×q
and computes the matrix:

Bj :=

[
A⋆

j 0 −G
0 wj ·A⋆

j −G

]
.

Then, it samples Tj ← Bj
−1
σ1

(
G2(n+1)

)
and outputs (Aj ,Bj ,Tj , wj)j∈[h] to the adversary A. By

definition, ε1 = ε.

Game 2: For all j ∈ [h], we substitute wj ← Rq by running (wj , T
(j)
NTRU)← NTRU.TrapGen(Rq, σ0).

By Lemma 2.17 and the hybrid argument on h, we get ε5 ≥ ε4 − negl(λ).
Assume there is an adversary that wins Game2. We now show how to build h-PRISIS trapdoors

(Tj)j∈[h] given the Module-SIS matrix [A1 | · · · | Ah] and the NTRU trapdoors (Tj
NTRU)j∈[h]. To

this end, we will show how to find short matrices Sj,1,Sj,2 such that:

A⋆
j · Sj,1 − w ·A⋆

jSj,2 = G

where A⋆
j is computed as in Eq. (2). Let gi be the i-th column of G and fix j ∈ [h]. Assuming

that A⋆
j is full-rank (cf. Lemma 2.10) and using linear algebra, we can find a (possibly large) vector

t such that A⋆
j · t = gi. Now, using the NTRU trapdoor TNTRU and the standard Nearest Plane

algorithm [LLL82; Bab85], we can sample vectors (s1,i, s2,i) such that:

s1,i − wj · s2,i = t and ∥(s1,i, s2,i)∥ ≤ N · σ0 ·
√
m ·N/2 .

Hence
A⋆

j · s1,i − wj ·A⋆
j · s2,i = A⋆

j · (s1,i − wj · s2,i) = A⋆ · t = gi .

Thus, we obtain the matrices Sj,1,Sj,2 by concatenation where∥∥[Sj,1∥Sj,2]
∥∥ ≤ α := N · σ0 ·

√
m · t ·N/2 .

Therefore, by Lemma 3.4, we can construct a G2(n+1)-trapdoor Sj for Bj such that

∥Sj∥ ≤
√

2 (α2 + t2 ·N) =
√

t ·N · (N2 σ2
0 ·m+ 2 t) .

Hence, the reduction B can build the trapdoor (Sj)j∈[h] as above and then randomise the trapdoor
for Bj by sampling fresh preimages as Tj ← SamplePre(Bj ,Sj ,G2(n+1), σ1) for j ∈ [h]. Finally

it sends the tuple to A and returns what it outputs. Since σ1 ≥ δ · ∥Sj∥ · ω(
√

N · log(τN)), by
Lemma 2.14 B wins the Module-SIS game with probability at least ε2 − negl(λ), which concludes
the proof.

3.2 h-PRISIS Assumption for ℓ = O(1)

In this section, we show that if PRISIS is hard then h-PRISIS is hard for ℓ ∈ O(1) > 2 and h = poly(λ).
In particular, we will prove the following theorem.
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Theorem 3.5 (PRISIS =⇒ h-PRISIS). Let n,m,Rq, ℓ, σT be PRISIS parameters. Let the ring Rq

split into fields of superpolynomial size. Let ℓ, n ∈ O(1). Let σx > 0 and β > 0 be real numbers. Let
δ be a gadget matrix base and set q̃ := ⌊logδ q⌋+ 1. Let m ≥ 2n > 0, let h = poly(λ), let

β′ ≥ 4h · β ·N9/2 ·m5/2 · q4n/m+8/(Nm) · ω(logN) ,

let

σT i ≥N6+2ℓ · σ2ℓ
x · 2ℓ+2 · q4n/m+8/(Nm) ·m2 · δ · σT ·

√
(mℓ+ n q̃) · n q̃ ℓ · log(m ·N) · ω(log3/2+ℓ(N)) .

Then h-PRISISn,m,Rq ,ℓ,σTi, β is hard under the PRISISn,m,Rq ,ℓ,σT , β′ assumption, under the RLWERq ,DR,σx

and the NTRURq ,DR,σx ,DR,σx
assumptions.

Overview

We will describe the key ideas of the proof and then glue them together in the end of the section.
First, we note that for an arbitrary matrix R ∈ Rm/2×m/2 the following holds:[

Idm/2 R

0 Idm/2

]
·
[
Idm/2 −R

0 Idm/2

]
= Idm .

If R has a small norm, both the matrix and its inverse are small. Similarly, we can place R in the
bottom left corner: [

Idm/2 0

R Idm/2

]
·
[
Idm/2 0

−R Idm/2

]
= Idm .

Randomising A. Using these, we are going to transform a given PRISIS matrix into multiple
almost independent uniform matrices. A PRISIS instance given by the challenger consists of
(A,B, w,T) such that B ·T = Gn ℓ, i.e:A −Gn

. . .
...

wℓ−1 ·A −Gn

 ·


T0,0
...

T0,(ℓ−1)
T0,ℓ

 = Gn ℓ .

We split A = [AL|AR] in the middle. Similarly, for an arbitrary trapdoor block T0,j such that
0 ≤ j ≤ ℓ− 1, let T0,j = [TL∥TR]. The block T0,ℓ is left unchanged in this step. We sample R1,R2

from a distribution we define later on. We rerandomise A and T0,j in the following way:

A′ := [AL | AR]·
[
Idm/2 R1

0 Idm/2

]
·
[
Idm/2 0

R2 Idm/2

]
=
[
AL + (AL ·R1 +AR) ·R2 | AL ·R1 +AR

]
,

and accordingly

T′0,j :=

[
Idm/2 0

−R2 Idm/2

]
·
[
Idm/2 −R1

0 Idm/2

]
·
[
TL

TR

]
=

[
TL −R1 ·TR

TR −R2 · (TL −R1 ·TR)

]
.

We can verify that
A′ ·T′0,j = A ·T0,j .
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We use the Leftover Hash Lemma to prove that the new challenge matrix A′ looks uniformly random
and independent of the initial instance. Then we can apply this rerandomisation h times to generate
h new instances.

That is, we will eventually sample fresh short matrices Ri1,Ri2 for each of the h-PRISIS matrices.
We denote

Mi :=

[
Idm/2 Ri1

0 Idm/2

]
·
[
Idm/2 0

Ri2 Idm/2

]
.

Then its inverse is equal to

M−1i =

[
Idm/2 0

−Ri2 Idm/2

]
·
[
Idm/2 −Ri1

0 Idm/2

]
.

Randomising w. We will also need to rerandomise the scalar w. For this, we use an approach
inspired by the NTRU rerandomisation in [PS21]. We set wi :=

w
xi

for some short xi. Then we have:

A −Gn

. . .
...

wℓ−1/xℓ−1i ·A −Gn

 ·


T0,0
...

xℓ−1i ·T0,(ℓ−1)
T0,ℓ

 = Gn ℓ .

We will show that this is indistinguishable from uniform {wi} if NTRU and RLWE are hard.

Randomising T. We apply both transformations to the initial trapdoor T and compute h new
trapdoors. We define

T′i =


T′i,0
...

T′i,(ℓ−1)
T′i,ℓ

 :=


M−1i ·T0,0

...

xℓ−1i ·M−1i ·T0,(ℓ−1)
T0,ℓ

 .

The columns of the new trapdoors do not look like spherical Gaussian vectors, so we use them in the
SamplePre algorithm from Lemma 2.14 and generate well-distributed preimages of vectors in Gn ℓ.

Technical Lemmas

Lemma 3.6 (Randomising A). Let Rq split into fields of superpolynomial size. Let AL,AR ←(
Rn×m/2

q

)2
with m/2 ≥ n. Let R1,R2 ∈ Rm/2×m/2 have columns sampled independently of DRm/2,σR

with σR ≥ 2N · q2n/m+4/(N ·m). Let

LHS := AL,AR, AL ·R1 +AR,AL + (AL ·R1 +AR) ·R2,

RHS := U(Rn×m/2
q ), U(Rn×m/2

q ), U(Rn×m/2
q ), U(Rn×m/2

q ) ,

then ∆(LHS,RHS) ≤ 2−Ω(N).

Proof. Using Corollary 2.9 and the fact that adding AR is a bijective map we get that ∆((AL,AL ·
R1 +AR), (AL,AF )) ≤ 2−Ω(N), where AF is a fresh uniformly random matrix. With the same
argument we obtain

∆((AL,AR,AF ,AL +AF ·R2), (AL,AR,AF ,A
′
F )) ≤ 2−Ω(N) ,
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where A′F is a fresh uniformly random matrix. Now applying the triangle inequality we get the
statement of the Lemma.

We now analyse the norms of the trapdoors we output. Let us drop the index i to make this
part of the document more readable.

Lemma 3.7 (Norm of T). For the trapdoor T′ :=
[
T′0∥ . . . ∥T′(ℓ−1)∥T

′
ℓ

]
∈ R(mℓ+nq̃)×ℓnq̃ constructed

above with R1,R2 ← (Dm/2×m/2
R,σR

)
2
and x← DR,σx. For σR ·N ·m > 2 we have s1(T

′) ≤ ∥T′∥ ≤√
(N mℓ+N n q̃) ·N n q̃ ℓ · (N · 2N · σ2

x)
ℓ · (N m)2 · σT σ2

R · ω(logℓ+3/2N)

with overwhelming probability.

Proof. We compute the norm of each block of the resulting trapdoor separately. By Lemma 2.1
each coefficient of the initial trapdoor matrix is bounded by σT · ω(

√
logN) in the infinity norm

with overwhelming probability.
In particular, the infinity norm of T0,ℓ is bounded by σT ·ω(

√
logN). For every remaining block

T0,i := [TL∥TR] with 0 ≤ i ≤ ℓ− 1 the transformation is of the following type:

xi ·
[
T′L
T′R

]
:= xi ·

[
Idm/2 0

−R2 Idm/2

]
·
[
Idm/2 −R1

0 Idm/2

]
·
[
TL

TR

]
:= xi ·

[
Idm/2 0

−R2 Idm/2

]
·
[
SL

SR

]
.

Analysing the first matrix multiplication that results in SL,SR, we note that SR = TR, hence
∥SR∥∞ ≤ σT · ω(

√
logN). As for SL = TL −R1TR, we can bound its infinity norm as follows:

∥SL∥∞ ≤ ∥TL∥∞ +max
ij

∥∥∥∥∥∥
m/2−1∑
k=0

r
(1)
ik · t

(R)
kj

∥∥∥∥∥∥
∞

≤ ∥TL∥∞ +

m/2∑
k=1

N · ∥R1∥∞ · ∥TR∥∞

≤ σT · ω(
√

logN) +
Nm

2
· σR · ω(

√
logN) · σT · ω(

√
logN)

≤ (σT +
N mσT σR

2
) · ω(logN) .

Here we denote an element of R1 at position (i, j) as r
(1)
ij and an element of TR as t

(R)
ij . The

transitions above use Lemmas 2.1 and 2.5 and the triangle inequality. Secondly, we bound the
results of the remaining matrix multiplication. As before, T′L = SL so ∥T′L∥∞ = ∥SL∥∞. Similarly,
we have T′R = SR −R2 · SL. We analyse its norm:

∥∥T′R∥∥∞ ≤ ∥SR∥∞ +

m/2∑
k=1

N · ∥R2∥∞ · ∥SL∥∞

≤ σT · ω(
√
logN) +

Nm

2
· σR · (σT +

NmσTσR
2

) · ω(log3/2N)
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=

(
σT +

σRσTNm

2
+

(Nm)2σTσ
2
R

4

)
· ω(log3/2N) .

Finally, we use the ring expansion factor and Remark 3.10 to bound the value
∥∥xi ·T′R∥∥∞ ≤

N i · ∥x∥i∞ · ∥T′R∥∞ ≤ N i · (2N · σ2
x · ω(logN))

i · ∥T′R∥∞. An equivalent bound holds for T′L.
We conclude that the quality of the trapdoor is as claimed using a geometric progression

inequality
∑ℓ−1

i=1 N
i · (2N · σ2

x · ω(logN))
i ≤ N ℓ · (2N · σ2

x · ω(logN))
ℓ
.

Lemma 3.8 (Randomising w). Let Rq be such that it splits into superpolynomially large fields. Let
σx be a real number > 0. Given {wi}1≤i≤k. If both NTRURq ,DR,σx ,DR,σx

and RLWERq ,DR,σx ,DR,σx

are hard, it is hard to decide if wi ← Rq or wi := w/xi where w ← Rq, xi := f · si + g · ei with
f, g, si, ei ← DR,σx.

Proof. We proceed in a sequence of hybrids.

Game 1: This is setting where we have uniformly random elements {w1, w2, . . . , wk}.

Game 2: We rewrite our elements as {u/u1, u/u2, . . . , u/uk}, where u← Rq and ui ← R×q . The
two distributions are within negligible statistical distance by our assumption on Rq which implies
that wi ← Rq are invertible with overwhelming probability.

Game 3: We rewrite our elements again as {u/b1, u/b2, . . . , u/bk} where bi := a · si + ei for
a ← Rq and si, ei ← D2

R,σx
. Under the Ring-LWE assumption for RLWERq ,DR,σx ,DR,σx

this game
hop is undetectable. To show this, we plant a multi-instance Ring-LWE challenge which is either
(a, bi := a · si + ei) or (a, ui) with ui ← Rq.

Game 4: We replace a with h = f
g where f, g ← DR,σx . If this game hop can be detected by the

adversary we can break the NTRU assumption with χf = χg = DR,σx . To do that we plant an

NTRU challenge into h. If h is uniform we have the distribution from Game 3. If h = f
g , we obtain

{u/(f/g · si + ei)}.

Game 5: We see that:

u/(h · si + ei) = u/(f/g · si + ei) = u · g/(f · si + g · ei) .

Therefore, the expression obtained in Game 4 is the distribution {w/xi} from the proposition
statement with xi := f · si + g · ei and w := u · g.

Remark 3.9. Note that we require ∥xℓ−1i ∥ < q and that NTRU for h = x1/x2 is hard. We pick
ℓ ∈ O(1) as per the discussion in Section 2.10.

Remark 3.10. By Lemma 2.1 and Lemma 2.5 when f, g, si, ei ← DR,σx we have:

Pr
[
∥f · si + g · ei∥ > 2N · σ2

x · ω(logN)
]
< negl(λ) .
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Proof

We are now ready to prove Theorem 3.5. The result follows by repeatedly applying Lemma 3.6
h times and randomising ring scalars using Lemma 3.8. The norm bounds on the trapdoors are
obtained from Lemma 3.7. This allows us to construct well-distributed trapdoors using Lemma 2.14.

Proof of Theorem 3.5. Assume that we have a PPT adversary A that solves the h-PRISIS problem
with non-negligible probability ε. We aim to use A to solve any PRISIS instance (A,B, aux,T)
where aux = w.

We proceed through a series of hybrids in which we transform the h-PRISIS input in order
to plant the given PRISIS instance within. Let us denote the adversary’s winning probability in
Game i with εi.

Game 1: (Standard h-PRISIS security game) We sample an h-PRISIS instance ({Ai } , {Bi } , {wi } ,
{Ti }) honestly and hand it to the adversary A. For every index i the inputs have the following
distributions:

1. ∀i ∈ [h],Ai ← Rn×m
q ,

2. auxi = wi ← Rq,

3. Bi =

Ai −Gn

. . .
...

wℓ−1
i ·Ai −Gn

 ,

4. Ti ← Bi
−1
σTi

(Gn·ℓ).

By definition ε1 = ε.

Game 2: (Replacing the scalar distribution) When sampling our h-PRISIS, we replace the auxiliary
ring elements wi with

w
xi

where w ← Rq and ∀i : xi = f · si + g · ei with f, g, {si}, {ei} ← DR,σx .
If the adversary’s advantage against h-PRISIS is different when given { wxi

} instead of uniformly
random ring elements we can build a distinguisher for these two distributions.

Given a challenge tuple {wi} we do the following. We generate h tuples (Ãi, T̃i)← TrapGen(n,m)
satisfying conditions of Lemma 2.13. Using T̃i we generate trapdoors for B̃i constructed from Ãi

and wi. If the adversary has the expected advantage then the distingusher detected the uniform
distribution, otherwise it detected { wxi

}.
By Lemma 3.8 such a distinguisher does not exist under the NTRU and RLWE assumptions.

Which allows us to conclude that the adversary cannot distinguish between { wxi
} and the uniform

distribution of scalars. Therefore, adversary’s winning probability ε2 ≥ ε1 − negl(λ).

Game 3: (Replacing the matrix distributions) We receive a PRISIS instance, (A, w,T) and sample
Ri,1,Ri,2 ∈ Rm/2×m/2 with columns from DRm/2,σR

. Recall

Mi :=

[
Idm/2 Ri1

0 Idm/2

]
·
[
Idm/2 0

Ri2 Idm/2

]
.
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We set our h-PRISIS matrices Ai := A ·Mi for 1 ≤ i ≤ h. Since A← Rn×m
q each Ai is statistically

close to uniformly random and independent of A by Lemma 3.6.
We also sample {xi} where ∀i : xi = f · si + g · ei with f, g, {si}, {ei} ← DR,σx as in Game 2.

Moreover, for each i we sample T′i =
(
T′i,1, . . . ,T

′
i,(ℓ−1),T

′
i,ℓ

)
where T′i,ℓ = T0,ℓ and T′i,j =

xji ·M
−1
i ·T0,j when j ≤ ℓ− 1. Here T0,j is the challenge trapdoor blocks. As a result for each i we

have the following: Ai −Gn

. . .
...

wℓ−1
i ·Ai −Gn

 ·
T
′
i,0
...

T′i,ℓ

 = Gn·ℓ .

The trapdoors T′i we have computed have a bounded norm, but they are not distributed according
to a spherical Discrete Gaussian. We use the Preimage Sampling Algorithm defined in Lemma 2.14
to resample them. This way we compute Ti := SamplePre(Bi,T

′
i,Gn ℓ, σT i).

Lemma 3.7 establishes a bound on the norm of T′i, so by Lemma 2.14 the final trapdoor Ti can

have a standard deviation parameter σT i ≥ δ ·
√

(N mℓ+N n q̃) ·N n q̃ ℓ · (N · 2N · σ2
x)

ℓ · (N m)2 ·
σT σ2

R · ω(log
3/2+ℓ(N) ·N ·

√
log(m ·N)). We take into account σR ≥ 2 ·N · q2n/m+4/(Nm) to obtain

the final bound on σT i. Since the bound holds with overwhelming probability the distribution of
Ti is statistically close to Bi

−1
σTi

(Gn·ℓ) and the advantage of the adversary can only change by a
negligible value.

Overall, the adversary’s winning probability in Game 3, ε3 is negligibly close to ε2.

Adversary’s output. The values constructed in Game 3 are now related to the initial PRISIS
instance. Upon receiving these values the adversary replies with a nonzero vector v = (v1, . . . ,vh)
such that:

[A1 | · · · | Ah] · v =
h∑

i=1

Ai · vi = 0 mod q .

We can rewrite this equality as A ·
∑h

i=1Mi · vi = 0 mod q. Then u :=
∑h

i=1Mi · vi is a candidate
solution for the PRISIS problem for A.

To confirm that u is a valid solution we need to prove the following two statements. First, that
the norm of u is upper bounded by β′ and second, that u ̸= 0. Applying the techniques from

Lemma 3.7 we see that
∥∥∥∑h

i=1Mi · vi

∥∥∥ ≤ h · (N m)5/2 · β · σ2
R · ω(logN) < β′.

It remains to prove that u ̸= 0. Let us assume that the adversary’s goal is to output a solution
v that

∑h
i=1Mi · vi = 0. Since A does not know the values of random matrices Mi, their chance to

succeed is bounded by maxv ̸=0 Pr [
∑

iMi · vi = 0].
Let us analyse this expression for an arbitrary fixed nonzero vector v. W.l.o.g. we assume

that v1 = v:m ̸= 0. Then Pr
[∑h

i=1Mi · vi = 0
]
≤ maxc Pr [M1 · v1 = c]. For any value of c the

probability above can be expressed as follows:

P := Pr

[[
v:m/2 +R1,1 · (R1,2 + Idm/2) · v(m/2+1):m

R1,2 · v:m/2 + v(m/2+1):m

]
= c

]
.

We know ∃1 ≤ j ≤ m such that v[j] ̸= 0. There are two cases to consider: 1 ≤ j ≤ m/2 and
m/2 < j ≤ m. In the first case

P ≤ Pr
[
R1,2 · v:m/2 = c(m/2+1): − v(m/2+1):m

]
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≤ Pr
[
r · v[j] = c′

]
≤ max

c′
Pr
[
r · v[j] = c′

]
.

Here r is the element of matrix R1,2 at position {1, j} and c′ = c(c,v,R1,2) is a value determined
by vectors v, c and all other entries of R1,2 not including r.

The ring R is an integral domain. Hence, ∀a, b ∈ R the equation a · x = b has not more than
one solution. Therefore, ∀ε ∈ (1/2, 1) if σR > ηε(ZN ) then by Lemma 2.2

P ≤ max
c′′

Pr
[
r = c′′|r ← DR,σR

]
≤ 1

σN
R (1− ε)

= negl(λ) .

Note that by Lemma 2.3 σR ≥ 2 ·N · q2n/m+4/(Nm) >

√
ln(2N(1+1/ε))

π > ηε(ZN ). In the second case

m/2 < j ≤ m and

P ≤ Pr
[
R1,1 · (R1,2 + Idm/2) · v(m/2+1):m = c:m/2

]
≤ max

c′

(
Pr
[
R1,1 · v′ = c′ | (R1,2 + Idm/2) · v(m/2+1):m = v′ ̸= 0

]
· Pr

[
v′ ̸= 0

]
+ Pr

[
v′ = 0

] )
≤ 1

σN
R (1− ε)

+
1

σN
R (1− ε)

= negl(λ) ,

where for the last transition we apply Lemmas 2.2 and 2.3 again.
We conclude that when v is correct then u is a valid solution to (A,B, aux,T) instance of

PRISISn,m,Rq ,ℓ,σT , β′ problem with overwhelming probability. Hence, the winning probability of this
adversary against PRISISn,m,Rq ,ℓ,σT , β′ is at least ε3 − negl(λ) ≥ ε− negl(λ).

4 Merkle-PRISIS Commitment Scheme

In this section we define a new compressing commitment scheme which combines the BASIS
construction [FN23; WW23b] with Merkle trees (of arity two). This approach significantly reduces
the size of the common reference string, as well as the prover running time.

Let ℓ = 2h be the length of the committed message. The message space isM := Rℓ
q. We let γ

be the parameter controlling the norm of the opening vectors. Further, we define the slack space
to be the set S := R×q . We define G := Gn ∈ Rn×t

q and the decomposition base δ as in Section 2.
Also, e1 := (1, 0, . . . , 0) ∈ Rn

q . The commitment scheme is presented in Figure 4.

4.1 Security Analysis

In the following, we show that the Merkle-PRISIS commitment scheme from Figure 4 satisfies
completeness, relaxed binding and hiding.

Lemma 4.1 (Completeness). Suppose n,N, βs ≥ 1, define t := n · q̃. Let m ≥ t+ n, m′ := 2m+ t,

n′ := 2t and t′ := max(n′,m′)7 and s > 2N · q
n

m−t
+ 2

N·(m−t) . Take

σ0 ≥2 δsN · ω(
√
t · (m− t) · log(t′N)) and

σ1 ≥δ σ0N · ω(
√

m′ n′ · log(t′N)) .

If γ ≥ σ1
√
m′N for j ∈ [h], then the Merkle-PRISIS commitment scheme satisfies completeness.

7Clearly, m′ ≥ n′. Nevertheless, we define t′ this way to explicitly show how we can apply Lemma 2.14.
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Merkle-PRISIS Commitment Scheme

Setup(1λ)

1. For j = h, . . . , 1:
2. (A,R)← TrapGen(n,m).
3. w ← R×q .
4. Let Ri := R ·G−1(w−i ·G) for i ∈ [0, 1].
5. Set

B :=

[
A 0 −G
0 w ·A −G

]
, R̃ :=

R0 0
0 R1

0 0

 .

6. Sample T← SamplePre(B, R̃,G2n, σ0)
7. Let (Aj , wj ,Tj) := (A, w,T).
8. Return crs := (Aj , wj ,Tj)j∈[h].

Commit(crs, f = (fb)b∈Zh
2
∈ Rℓ

q)

1. Set tb := fb · e1 for b ∈ Zh
2 .

2. For j = h, . . . , 1:
3. For b ∈ Zj−1

2 :

4.

s(b,0)s(b,1)
t̂b

← SamplePre

([
Aj 0 −G
0 wj ·Aj −G

]
,

[
−t(b,0)
−t(b,1)

]
,Tj , σ1

)
5. Set tb := G · t̂b.
6. Return (C := tε, st := (sb)b∈Z≤h

2
).

Open(crs, C, f , st, c)

1. Parse C := t, f := (fb)b∈Zh
2
, st := (sb)b∈Z≤h

2
and c ∈ S.

2. Return 1 if and only if for all b ∈ Zh
2 ,

•
∑h

j=1w
bj
j ·Aj · sb:j

+ fb · e1 = t.

• ∀j ∈ [h],
∥∥c · sb:j

∥∥ ≤ γ.

Figure 4: Merkle-PRISIS commitment scheme for arbitrary messages of length ℓ = 2h over Rq with
the slack space being S := R×q .

29



Proof. We first focus on the verification equation in Item 2. Fix b ∈ Zh
2 . Then by Item 4 of the

Commit algorithm, we have for every j ∈ [h]:

w
bj
j ·Aj · sb:j

+ tb:j
= tb:j−1

,

where b0 is defined as the empty string ε. By expanding this equation we obtain

h∑
j=1

w
bj
j ·Aj · sb:j

+ fb · e1 =
h∑

j=1

w
bj
j ·Aj · sb:j

+ tb:h
= tε = C .

For the second verification check, set a global relaxation factor c∗ = 1 ∈ S. First, note that
the matrix R̃ ∈ Rm′×n′

q in Item 5 satisfies ∥R̃∥ ≤ 2 s ·
√
t · (m− t) ·N with high probability by

Lemma 2.13. Hence σ0 ≥ δ · ∥R̃∥ · ω(
√

N log(t′N)) for t′ = max(n′,m′) and thus we can apply
Lemma 2.14 to deduce that with an overwhelming probability ∥Tj∥ ≤ σ0 ·

√
m′ n′N for all j ∈ [h].

Similarly, we have σ1 ≥ δ · ∥Tj∥ · ω(
√

N · log(t′N)) and thus ∥sb∥ ≤ σ1 ·
√
m′ ·N ≤ γ with an

overwhelming probability for any b ∈ Z≤h2 , which concludes the proof.

Lemma 4.2 (Relaxed Binding). Define t := n · q̃ and let m ≥ t+n and n′ = 2 t. Take m′ := 2m+ t,

n′ := 2 t and t′ := max(n′,m′) and s > 2N ·q
n

m−t
+ 2

N·(m−t) . If σ0 ≥ 2 δs ·N ·ω(
√

t · (m− t) · log(t′N))
then under the h-PRISISn−1,m,Rq ,2,σ0,2γ

√
h assumption the PowerBASIS commitment scheme satisfies

binding.

Proof. Let A be an adversary for the relaxed binding game which succeeds with probability ε. We
prove the statement using the hybrid argument. We define εi to be the probability that A wins
Game i.

Game 1: This is the standard relaxed binding game. By definition ε1 = ε.

Game 2: Here, for each j ∈ [h] we swap the SamplePre algorithm with sampling truly from a
discrete Gaussian distribution. Since σ0 ≥ δ∥R̃∥ · ω(

√
N log t′N), we can argue as in Lemma 4.1

that ε2 ≥ ε1 − negl(λ).

Game 3: In this game, we do not run TrapGen anymore, but instead the matrix A ← Rn×m
q is

selected uniformly at random. By Lemma 2.13, we deduce that ε3 ≥ ε2 − negl(λ).

Game 4: The challenger first samples a vector b∗ ← Zh
2 . Then, given the output t, c, (f , st), (f ′, st′)

from the adversary, it aborts if fb∗ ̸= f ′b∗ . Thus, ε4 ≥ 1
ℓ · ε3.

We claim that ε4 = negl(λ) under the h-PRISIS assumption. Suppose we are given the h-PRISIS
instance (Aj ,Bj ,Tj , wj)j∈[h] from the challenger and we want to find a short non-zero solution for

the matrix [A1 | · · · | Ah]. Recall that for j = 1, . . . , h:

Bj :=

[
Āj 0 −G
0 wjĀj −G

]
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where Āj :=

[
a⊺j
Aj

]
. Now, we need to prepare the correctly formed input (A∗j , w

∗
j ,T

∗
j )j∈[h] to send

to the adversary A. Let us fix j ∈ [h] and set b := b∗j
8. Define A∗j := wb

jĀj , w
∗
j := w1−2b

j and

T∗j :=

 Tb,b Tb,1−b
T1−b,b T1−b,1−b
T2,b T2,1−b

 where Tj :=

T0,0 T0,1

T1,0 T1,1

T2,0 T2,1

 .

Note that by careful inspection we get for any b ∈ Z2:[
A∗j 0 −G
0 w∗jA

∗
j −G

]
·T∗j =

[
wb
jĀj 0 −G
0 w1−b

j Āj −G

]
·

 Tb,b Tb,1−b
T1−b,b T1−b,1−b
T2,b T2,1−b

 =

[
G 0
0 G

]
.

Hence, the common reference string crs := (A∗j , w
∗
j ,T

∗
j )j∈[h] is well-formed and distributed identically

as the one output by Setup. Thus, we send crs to A.
Suppose, the adversary outputs the commitment t, the relaxation factor c ∈ S and two pairs

(f , st = (sb)b), (f
′, st′ = (s′b)b) where fb∗ ̸= f ′b∗ . Then, from the verification equations we know

h∑
j=1

w∗j
b∗j ·A∗j · sb∗

:j
+ fb∗ = t and

h∑
j=1

w∗j
b∗j ·A∗j · s′b∗

:j
+ f ′b∗ = t .

Thus, by subtracting both equations we get

h∑
j=1

w∗j
b∗j ·A∗j · (sb∗

:j
− s′b∗

:j
) + (fb∗ − f ′b∗) · e1 = 0 .

Finally, note that by construction of A∗j and w∗j and the fact that b∗j ∈ Z2:

w∗j
b∗j ·A∗j = w

(1−2b∗j )b∗j+b∗j
j · Āj = Āj .

Therefore, we found a non-zero solution for the matrix [A1 | · · · | Ah] since fb∗ ̸= f ′b∗ . Even though
it may not be short, we have∥∥∥∥∥∥∥ c ·

sb∗
:1
− s′b∗

:1
...

sb∗
:h
− s′b∗

:h


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
c(sb∗

:1
− s′b∗

:1
)

...
c(sb∗

:h
− s′b∗

:h
)


∥∥∥∥∥∥∥
2

≤
h∑

j=1

(2γ)2 = 4hγ2 .

Hence, we found a non-zero solution for h-PRISIS with norm at most 2γ
√
h, since c ∈ R×q .

Hiding. In order to argue hiding, we first note that the underlying PRISIS commitment is hiding
(see [FN23, Lemma 4.3]), and thus the bottom non-leaf commitments (tb)b∈Zh−1

2
look pseudo-random.

Therefore, any commitments computed in higher nodes (in particular, the root) do not leak any
information about the message f . Since the methodology is folklore and we do not instantiate the
hiding variant of our commitment, we leave a formal treatment out of scope of this paper.

8Recall that b∗ is the vector that was selected by the challenger in Game 3.
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Efficiency. If we assume that n,m,N ∈ poly(λ), then the common reference string contains
log ℓ · poly(λ) elements in Rq, while the prover and the verifier make ℓ · poly(λ) ring operations.

5 Proof of Polynomial Evaluation

We use the construction in Figure 4 to build our polynomial commitment scheme. Namely, given
a polynomial f ∈ Rq[X] of degree at most d := 2h − 1 over Rq, we commit to f by committing
to its coefficient vector f = (fb)b∈Zh

2
∈ Rd+1

q to obtain a commitment t ∈ Rn
q , along with the

decommitment state st = (sb)b∈Z≤h
2

, where each sb ∈ Rm
q . Here, we represent a polynomial f as

f(X) =
∑
b∈Zh

2

fb · Xint(b) .

We say that the b-th coefficient of f is fb.
An essential property of polynomial commitments is the ability to show that the committed

polynomial was evaluated correctly, i.e. f(u) = z for public u and z in Rq. In other words, we
consider the following relation:

Rh,β :=


(
(Aj , wj ,Tj)j∈[h],

(t, u, z),

(f, (sb)b∈Z≤h
2

)
)

∣∣∣∣∣∣∣∣
∀ b ∈ Zh

2 , ∥sb∥ ≤ β

∧
∑h

j=1w
bj
j ·Aj · sb:j

+ fb = t

∧f(u) = z

 . (3)

5.1 Compressed Σ-Protocol

The main intuition for proving evaluations can be described with the following Σ-protocol. First,
we define k ∈ [h] to be the folding factor and l := h− k.

The prover starts by splitting the polynomial f into 2k polynomials of degree at most d′ := 2l−1.
Namely, we introduce a (k + 1)-variate function f̄ : Rq × Zk

2 → Rq as follows:

f̄(X, I) :=
∑
j∈Zl

2

f(I,j) · Xint(j) .

Then, by construction and the fact that int((i, j)) = int(i) + 2k · int(j):

z = f(u) =
∑
i∈Zk

2

∑
j∈Zl

2

f(i,j) · u2
k·int(j)

 · uint(i)
=
∑
i∈Zk

2

f̄(u2
k
, i) · uint(i) =

∑
i∈Zk

2

zi · uint(i) ,

where for each i ∈ Zk
2, we define zi := f̄(u2

k
, i) ∈ Rq. The partial evaluations (zi)i are then sent to

the verifier. The prover also outputs the partial openings (si)i∈Z≤k
2

in the clear; later we will explain

the meaning behind this move. After the first round, the verifier already checks whether:

z =
∑
i∈Zk

2

zi · uint(i) and ∥si∥ ≤ β for ∀i ∈ Z≤k2 . (4)
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Now, the verifier outputs the challenge vector α = (αi)i ← X 2k , and the prover computes the folded
polynomial of degree d′

g(X) :=
∑
i∈Zk

2

αi · f̄(X, i) .

So far, this protocol focused on proving the evaluation f(u) = z. We additionally need to prove
knowledge of the opening Merkle-PRISIS commitment t. Let j ∈ Zl

2. Then, the j-th coefficient of g
satisfies

gj · e1 =
∑
i∈Zk

2

αi · f(i,j) · e1

=
∑
i∈Zk

2

αi ·

(
t−

k∑
t=1

wit
t ·At · si:t −

l∑
t=1

wjt
k+t ·Ak+t · s(i,j:t)

)
.

Thus, we obtain

l∑
t=1

wjt
k+tAk+t ·

∑
i∈Zk

2

αi · s(i,j:t)

+ gj e1 =
∑
i∈Zk

2

αi ·

(
t−

k∑
t=1

wit
t At · si:t

)
(5)

where the right-hand side can be computed by the verifier given the initial commitment t and
partial openings si:t . Hence, by setting for j ∈ Z≤l2 :

zj :=
∑
i∈Zk

2

αi · s(i,j), t′ :=
∑
i∈Zk

2

αi ·

(
t−

k∑
t=1

wit
t ·At · si:t

)
and

z′ :=
∑
i∈Zk

2

αi · zi

we can check that:(
(Ak+t, wk+t, Tk+t)t∈[l], (t′, u2

k
, z′), (g, (zj)j∈Z≤l

2
)
)
∈ Rl,2kβ .

Thus, in the third round the prover outputs (g, (zj)j∈Z≤l
2
), and the verifier checks the claim above,

along with (4). We highlight that the newly formed statement (t′, u2
k
, z′) can be constructed directly

by the verifier.
Similarly as in [FN23], one can show that the soundness error of the protocol above is 2k/(2N).

In order to amplify soundness, we directly consider proving r polynomial evaluations fι(u) = zι at
the same point u for ι = 1, . . . , r, where r will be the amplification parameter. Hence, in the setting
of our commitment scheme, we are interested in the following ternary relation:

R
(r)
h,β :=


( (Aj , wj , Tj)j∈[h],

((tι)ι∈[r], u, (zι)ι∈[r]),

(fι, (sι,b)b∈Z≤h
2

)ι∈[r]

)∣∣∣∣∣∣∣
∀ι ∈ [r], fι(u) = zι ∧ ∀b ∈ Zh

2 ,

∧
∑h

j=1w
bj
j Aj · sι,b:j

+ fι,b = tι
∧∀j ∈ [h], ∥sι,b:j

∥ ≤ β

 . (6)

To handle proving multiple polynomial evaluations at the same point u the prover defines functions
f̄ι with respect to the polynomials fι for ι ∈ [r] as before, and computes zι,i := f̄ι(u

2k , i) for

33



i ∈ Zk
2. It outputs (zι,i)ι,i along with the partial openings (sι,i)ι∈[r],i∈Z≤k

2
. The verifier replies with a

challenge (αι,i)ι∈[r],i∈Zk
2
← (X r)r2

k
where αι,i := (αι,i,1, . . . , αι,i,r) ∈ X r. Next, the prover computes

r polynomials g1, . . . , gr defined as:

gκ(X) :=
r∑

ι=1

∑
i∈Zk

2

αι,i,κ · f̄ι(X, i) for κ = 1, . . . , r.

Using the same strategy as in (5), we deduce that the j-th coefficient of gκ satisfies:

l∑
t=1

wjt
k+t ·Ak+t ·

 r∑
ι=1

∑
i∈Zk

2

αι,i,κ · sι,(i,j:t)

+ gκ,j · e1

=
r∑

ι=1

∑
i∈Zk

2

αι,i,κ ·

(
tι −

k∑
t=1

wit
t ·At · sι,i:t

)
.

Hence, by defining for j ∈ Z≤l2 and κ ∈ [r]:

zκ,j :=

r∑
ι=1

∑
i∈Zk

2

αι,i,κ · sι,(i,j),

t′κ :=
r∑

ι=1

∑
i∈Zk

2

αι,i,κ ·

(
tι −

k∑
t=1

wit
t ·At · sι,i:t

)
,

z′κ :=
r∑

ι=1

∑
i∈Zk

2

αι,i,κ · zι,i ,

we obtain


(Ak+t, wk+t, Tk+t)t∈[l],(
(t′κ)κ∈[r], u2

k
, (z′κ)κ∈[r]

)
,(

gκ, (zκ,b)b∈Z≤l
2

)
κ∈[r]

 ∈ R
(r)

l,r2kβ
. (7)

Hence, the prover sends (gκ, (zκ,b)b∈Z≤h
2

)κ∈[r], and the verifier checks (7), and whether for all ι ∈ [r]:

zι =
∑
i∈Zk

2

zι,i · uint(i) and ∥sι,i∥ ≤ β for ∀i ∈ Z≤k2 . (8)

As we will show in the more general case, soundness error of this Σ-protocol is r2k/(2N)r which is
negligible for e.g. N = poly(λ), and r, k = O(log d).

5.2 Succinct Arguments via Recursion

In order to achieve succinct proofs and verification, we extend the Σ-protocol above as follows.
Concretely, instead of checking (7) manually, the verifier recursively runs the Σ-protocol ℓ times (or
until the degrees of the r committed polynomials are zero). This yields a (2ℓ+ 1)-th round protocol
where ℓ ≤ h/k (here we assume that k is divisible by h). We recall the notation in Table 2 and
describe the resulting interactive proof in Figure 5.
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Interactive Protocol for R
(r)
h,β

P
(
(Aj , wj ,Tj)j∈[h], ((t0,ι)ι∈[r], u0, (z0,ι)ι∈[r]), (f0,ι, (s0,ι,b)b∈Z≤h

2
)ι∈[r]

)
1. Set l0 = h.
2. For τ ∈ [ℓ]:

(a) Set lτ := lτ−1 − k.

(b) Compute uτ := u2
k

τ−1.
(c) For ι ∈ [r] and i ∈ Zk

2:
i. Set f̄τ−1,ι(X, i) :=

∑
j∈Zlτ

2
fτ−1,ι,(i,j) · Xint(j) ∈ Rq[X].

ii. Set zτ−1,ι,i := f̄τ−1,ι(uτ , i).

(d) Send
(
(zτ−1,ι,i)i∈Zk

2
, (sτ−1,ι,i)i∈Z≤k

2

)
ι∈[r]

to the verifier.

(e) Receive (α
(τ)
ι,i )ι∈[r],i∈Zk

2
← (X r)r2

k
from the verifier.

(f) For κ ∈ [r]:

i. Compute fτ,κ(X) :=
∑r

ι=1

∑
i∈Zk

2
α
(τ)
ι,i,κf̄τ−1,ι(X, i)

ii. Compute sτ,κ,j :=
∑r

ι=1

∑
i∈Zk

2
α
(τ)
ι,i,κsτ−1,ι,(i,j) for j ∈ Z≤lτ2

3. Send ((fℓ,κ) ∈ R≤2
h−kℓ−1

q [X], (sℓ,κ,i)i∈Z≤h−kℓ
2

)κ∈[r] to the verifier.

V((Aj , wj ,Tj)j∈[h], ((t0,ι)ι∈[r], u0, (z0,ι)ι∈[r]))

1. Set l0 = h and β0 := β.
2. For τ ∈ [ℓ]:

(a) Set lτ := lτ−1 − k.

(b) Compute uτ := u2
k

τ−1.

(c) Receive
(
(zτ−1,ι,i)i∈Zk

2
, (sτ−1,ι,i)i∈Z≤k

2

)
ι∈[r]

from the prover.

(d) Check for ι ∈ [r]:

i. zτ−1,ι =
∑

i∈Zk
2
zτ−1,ι,i · u

int(i)
τ

ii. ∥sτ−1,ι,i∥ ≤ (r2k)τ−1β for all i ∈ Z≤k2

(e) Sample (α
(τ)
ι,i )ι∈[r],i∈Zk

2
← (X r)r2

k
and send it to the prover.

(f) For κ ∈ [r]:
i. For ι ∈ [r], i ∈ Zk

2, t̃ι,i,k := tτ−1,ι −
∑k

t=1w
it
(τ−1)k+tA(τ−1)k+tsτ−1,ι,i:t

ii. Set tτ,κ :=
∑r

ι=1

∑
i∈Zk

2
α
(τ)
ι,i,κt̃ι,i,k.

iii. Set zτ,κ :=
∑r

ι=1

∑
i∈Zk

2
α
(τ)
ι,i,κzτ−1,ι,i.

(g) Set βτ := r2k · βτ−1.
3. Receive ((fℓ,κ) ∈ R≤2

h−kℓ−1
q [X], (sℓ,κ,i)i∈Z≤h−kℓ

2
)κ∈[r] from the prover.

4. Check:  (Akℓ+t, wkℓ+t,Tkℓ+t)t∈[h−kℓ],

((tℓ,κ)κ∈[r], uℓ, (zℓ,κ)κ∈[r]),

((fℓ,κ), (sℓ,κ,i)i∈Z≤h−kℓ
2

)κ∈[r]

 ∈ R
(r)

h−kℓ,(r2k)ℓβ.

Figure 5: Interactive protocol for R
(r)
h,β with notation from Table 2. Intuitively, index τ keeps track

of the number of iterations of the compressed Σ-protocol, while indices ι and κ are used as in
Section 5.1.
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Table 2: Overview of parameters and notation.

Parameter Explanation

q proof system modulus
N degree of the cyclotomic ring R := Z[X]/(XN + 1)
d degree of the committed polynomial f ∈ Rq[X]
X Set of signed monomials ±Xi of R

n,m height and width of the matrices Aj

δ, q̃ decomposition base of the gadget matrix G; ⌊logδ q⌋+ 1

h positive integer such that d+ 1 = 2h

k folding factor of the folding protocol, divisor of h
l h− k
ℓ ≤ h/k

β, γ initial norm of the witness openings; extracted norm

Security analysis. In the following, we prove completeness and coordinate-wise special soundness
of the protocol in Figure 5.

Lemma 5.1 (Completeness). The protocol in Figure 5 satisfies perfect completeness.

Proof. Intuitively, completeness follows from the discussion on the Σ-protocol in Section 5.1 ap-
plied inductively. Nevertheless, due to an overwhelming amount of notation, we carefully show
completeness via the following claims.

Claim 5.2. Let 0 ≤ τ ≤ ℓ. Then, for every κ ∈ [r], fτ,κ(uτ ) = zτ,κ.

Proof. For τ = 0, this is equivalent to f0,κ(u0) = z0,κ which is true by assumption on the input
given to the prover P. For τ ≥ 1, by construction (cf. Items 2(c)i, 2(c)ii and 2(f)i of the prover
algorithm) we have:

fτ,κ(uτ ) =
r∑

ι=1

∑
i∈Zk

2

α
(τ)
ι,i,κf̄τ−1,ι(uτ , i) =

r∑
ι=1

∑
i∈Zk

2

α
(τ)
ι,i,κzτ−1,ι,i = zτ,κ ,

which concludes the proof.

Claim 5.3. Let τ ∈ [ℓ]. Then, for every ι ∈ [r], zτ−1,ι =
∑

i∈Zk
2
zτ−1,ι,i · u

int(i)
τ .

Proof. Using the claim above we deduce that

zτ−1,ι = fτ−1,ι(uτ−1) =
∑
i∈Zk

2

∑
j∈Zlτ

2

fτ−1,ι,(i,j) · u
2k·int(j)
τ−1

 · uint(i)τ−1

=
∑
i∈Zk

2

f̄τ−1,ι(u
2k

τ−1, i) · u
int(i)
τ−1

=
∑
i∈Zk

2

f̄τ−1,ι(uτ , i) · uint(i)τ−1
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=
∑
i∈Zk

2

zτ−1,ι,i · uint(i)

by Items 2b, 2(c)i and 2(c)ii of the prover algorithm.

Claim 5.4. Let 0 ≤ τ ≤ ℓ and lτ := h−τk. Then, for every κ ∈ [r] and j ∈ Z≤lτ2 , ∥sτ,κ,j∥ ≤ (r2k)τβ.

Proof. We prove the statement by induction on τ . For τ = 0, the claim holds by assumption on
(s0,κ,b)b∈Z≤h

2
as in Equation (6). Now suppose the statement is true for some τ − 1. Using the fact

that each α
(τ)
ι,i,κ is of the form ±Xj , we conclude that (cf. Item 2(f)ii of the prover algorithm)

∥sτ,κ,j∥ ≤
r∑

ι=1

∑
i∈Zk

2

∥α(τ)
ι,i,κsτ−1,ι,(i,j)∥

≤
r∑

ι=1

∑
i∈Zk

2

∥sτ−1,ι,(i,j)∥ ≤ (r2k) · (r2k)τ−1β = (r2k)τβ .

Claim 5.5. Let 0 ≤ τ ≤ ℓ and lτ := h− τk. Take any κ ∈ [r] and j = (j1, . . . , jlτ ) ∈ Zlτ
2 . Then,

lτ∑
t=1

wjt
τk+tAτk+tsτ,κ,j:t + fτ,κ,je1 = tτ,κ .

Proof. We prove the statement by induction. Let τ = 0. Then, it is equivalent to:

h∑
t=1

wjt
t ·At · s0,κ,j:t + f0,κ,j = t0,κ

for j ∈ Zh
2 . This is true by definition of the witness in Equation (6).

Now, suppose the statement holds for some τ − 1 ≥ 0. Take any j ∈ Zlτ
2 . By the induction

hypothesis we can write for any i ∈ Zk
2:

tτ−1,κ =

k∑
t=1

wit
(τ−1)k+t ·A(τ−1)k+t · sτ−1,κ,i:t +

lτ∑
t=1

wjt
τk+t ·Aτk+t · sτ−1,κ,(i,j:t) + fτ−1,κ,(i,j) · e1 .

Thus, by definition of tτ,κ in Item 2(f)ii of the verifier algorithm, and also by Items 2(f)i and 2(f)ii
in the prover algorithm:

tτ,κ =

r∑
ι=1

∑
i∈Zk

2

α
(τ)
ι,i,κ ·

(
tτ−1,ι −

k∑
t=1

wit
(τ−1)k+t ·A(τ−1)k+t · sτ−1,ι,i:t

)

=

r∑
ι=1

∑
i∈Zk

2

α
(τ)
ι,i,κ ·

(
lτ∑
t=1

wjt
τk+t ·Aτk+t · sτ−1,κ,(i,j:t) + fτ−1,κ,(i,j) · e1

)

37



=

lτ∑
t=1

wjt
τk+t ·Aτk+t ·

 r∑
ι=1

∑
i∈Zk

2

α
(τ)
ι,i,κ · sτ−1,ι,(i,j:t)

+

r∑
ι=1

∑
i∈Zk

2

α
(τ)
ι,i,κ · fτ−1,ι,(i,j) · e1

=

lτ∑
t=1

wjt
τk+t ·Aτk+t · sτ,κ,j:t + fτ,κ,j · e1

which concludes the proof.

Finally, correctness holds by applying all the claims above.

To argue coordinate-wise special soundness, we consider a relaxed relation:

R̃
(r)
h,γ,ξ :=


( (Aj , wj ,Tj)j∈[h],

((tι)ι∈[r], u, (zι)ι∈[r]),

(fι, (sι,b)b∈Z≤h
2

)
ι∈[r]

)∣∣∣∣∣∣∣
∀ι ∈ [r], fι(u) = z ∧ ∀b ∈ Zh

2 ,

∧
∑h

j=1w
bj
j Ajsι,b:j

+ fι,be1 = tι
∧∀j ∈ [h], ∥ξ · sι,b:j

∥ ≤ γ

 . (9)

Let us note the difference from the original relation R
(r)
h,β in (6). Namely, we do not require the

opening vectors to have norm at most β, and thus they do not need to be short anymore. One
can also see the connection between the relaxed notion and the slack space of the commitment in

Section 4. Also, we observe that R̃
(r)
h,β,1 = R

(r)
h,β which is the relation appearing in Item 4 of Figure 5.

Informally, the following lemma describes a procedure to extract a witness corresponding to a
(non-leaf) node, given witnesses corresponding to its r2k + 1 children. Thus, we deduce that our
protocol is r2k-coordinate-wise special sound.

Lemma 5.6 (Extraction From a Non-leaf Node). Let τ ∈ [ℓ] and β∗, γ, ξ > 0. Define i :=
(Ak(τ−1)+t, wk(τ−1)+t,Tk(τ−1)+t)t∈[h−k(τ−1)], and the statement x := ((tι)ι∈[r], u, (zι)ι∈[r]). Consider

r2k + 1 triples (a, cµ, zµ)µ∈[0,r2k] defined as:9

a :=
(
(zι,i)i∈Zk

2
, (sι,i)i∈Z≤k

2

)
ι∈[r]

cµ := (α
(µ)
ι,i )ι∈[r],i∈Zk

2
∈ (X r)r2

k

zµ := ((f
(µ)
κ,j )j∈Zh−τk

2
, (s

(µ)
κ,j )j∈Z≤h−τk

2
)κ∈[r]

which satisfy for all ι ∈ [r]: (cµ)µ ∈ SS(X r, r2k),

zι =
∑
i∈Zk

2

zι,i · uint(i) and ∥sι,i∥ ≤ β∗ for all i ∈ Z≤k2 ,

and for µ ∈ [0, r2k]:  (Akτ+t, wkτ+t,Tkτ+t)t∈[h−kτ ],

((t
(µ)
κ )κ∈[r], u

2k , (z
(µ)
κ )κ∈[r]) ,

((f
(µ)
κ ), (s

(µ)
κ,j )j∈Z≤h−kτ

2
)κ∈[r]

 ∈ R
(r)
h−kτ,γ,ξ

9One can think of a as the message sent by the prover at a particular (non-leaf) node of the tree, (cµ)µ as the
labels on the edges to its children, and (zµ)µ to be the witnesses already extracted in the children nodes. For example,
if the children are leaves then (zµ)µ are simply the prover’s last messages.
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where

t(µ)κ :=

r∑
ι=1

∑
i∈Zk

2

α
(µ)
ι,i,κ

(
tι −

k∑
t=1

wit
(τ−1)k+tA(τ−1)k+tsι,i:t

)
,

z(µ)κ :=

r∑
ι=1

∑
i∈Zk

2

α
(µ)
ι,i,κzι,i .

Then, there exists an efficient deterministic algorithm that given triples (a, cµ, zµ)µ∈[0,r2k], outputs
w such that

(i,x,w) ∈ R̃
(r)
h−k(τ−1),γ∗,2ξ where γ∗ := max (2ξβ∗, 2Nγ) .

To prove coordinate-wise special soundness, we need the following lemma. Informally, the result
describes a procedure to extract a witness corresponding to a (non-leaf) node, given witnesses
corresponding to its r2k + 1 children. Thus, we deduce that our protocol is r2k-coordinate-wise
special sound.

Lemma 5.7 (Extraction From a Non-leaf Node). Let τ ∈ [ℓ] and β∗, γ, ξ > 0. Define i :=
(Ak(τ−1)+t, wk(τ−1)+t,Tk(τ−1)+t)t∈[h−k(τ−1)], and the statement x := ((tι)ι∈[r], u, (zι)ι∈[r]). Consider

r2k + 1 triples (a, cµ, zµ)µ∈[0,r2k] defined as:10

a :=
(
(zι,i)i∈Zk

2
, (sι,i)i∈Z≤k

2

)
ι∈[r]

cµ := (α
(µ)
ι,i )ι∈[r],i∈Zk

2
∈ (X r)r2

k

zµ := ((f
(µ)
κ,j )j∈Zh−τk

2
, (s

(µ)
κ,j )j∈Z≤h−τk

2
)κ∈[r]

which satisfy for all ι ∈ [r]: (cµ)µ ∈ SS(X r, r2k),

zι =
∑
i∈Zk

2

zι,i · uint(i) and ∥sι,i∥ ≤ β∗ for all i ∈ Z≤k2 ,

and for µ ∈ [0, r2k]:  (Akτ+t, wkτ+t,Tkτ+t)t∈[h−kτ ],

((t
(µ)
κ )κ∈[r], u

2k , (z
(µ)
κ )κ∈[r]) ,

((f
(µ)
κ ), (s

(µ)
κ,j )j∈Z≤h−kτ

2
)κ∈[r]

 ∈ R
(r)
h−kτ,γ,ξ

where

t(µ)κ :=
r∑

ι=1

∑
i∈Zk

2

α
(µ)
ι,i,κ

(
tι −

k∑
t=1

wit
(τ−1)k+tA(τ−1)k+tsι,i:t

)
,

z(µ)κ :=
r∑

ι=1

∑
i∈Zk

2

α
(µ)
ι,i,κzι,i .

10One can think of a as the message sent by the prover at a particular (non-leaf) node of the tree, (cµ)µ as the
labels on the edges to its children, and (zµ)µ to be the witnesses already extracted in the children nodes. For example,
if the children are leaves then (zµ)µ are simply the prover’s last messages.
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Then, there exists an efficient deterministic algorithm that given triples (a, cµ, zµ)µ∈[0,r2k], outputs
w such that

(i,x,w) ∈ R̃
(r)
h−k(τ−1),γ∗,2ξ where γ∗ := max (2ξβ∗, 2Nγ) .

Proof. Without loss of generality, we can reorder the r2k + 1 triples (a, cµ, zµ)µ∈[0,r2k] as (a, c0, z0)
and (a, cρ,ν , zρ,ν)ρ∈[r],ν∈Zk

2
, where we now denote

cρ,ν := (α
(ρ,ν)
ι,i )ι∈[r],i∈Zk

2
∈ (X r)r2

k
,

zρ,ν :=
(
(f

(ρ,ν)
κ,j )j∈Zh−τk

2
, (s

(ρ,ν)
κ,j )

j∈Z≤h−τk
2

)
κ∈[r]

,

such that for any ρ ∈ [r],ν ∈ Zk
2, we have

∀(ι, i) ̸= (ρ,ν),α
(0)
ι,i = α

(ρ,ν)
ι,i and α

(0)
ρ,ν ̸= α

(ρ,ν)
ρ,ν .

Similarly, we denote t
(ρ,ν)
κ and z

(ρ,ν)
κ .

Let us fix ρ ∈ [r] and j ∈ Zh−k(τ−1)
2 . We will construct h−k(τ−1) vectors s̄1, . . . , s̄h−k(τ−1) ∈ Rm

q

and a coefficient f̄ρ,j ∈ Rq such that

h−k(τ−1)∑
t=1

wjt
(τ−1)k+tA(τ−1)k+ts̄t + f̄ρ,je1 = tρ ,

∥2ξ · s̄t∥ ≤ γ∗ for t ∈ [h− k(τ − 1)] .

(10)

By repeating the same argument for all j ∈ Zh−k(τ−1)
2 , if the polynomial f̄ρ :=

∑
j∈Zh−k(τ−1)

2

f̄ρ,j ·Xint(j)

satisfies f̄ρ(u) = zρ, then the statement follows.
To this end, write j := (ν, j∗) where ν ∈ Zk

2 and j∗ ∈ Zh−τk. Consider the two transcripts:

(a, c0, z0) and (a, cρ,ν , zρ,ν). We know that α
(0)
ρ,ν ̸= α

(ρ,ν)
ρ,ν . Let η ∈ [r] be an index such that

α
(0)
ρ,ν,η ̸= α

(ρ,ν)
ρ,ν,η. Note that η is independent of j∗. By definition of (9), we get:

h−τk∑
t=1

w
j∗t
τk+tAτk+ts

(0)
η,j∗:t

+ f
(0)
η,j∗e1 =

r∑
ι=1

∑
i∈Zk

2

α
(0)
ι,i,η

(
tι −

k∑
t=1

wit
(τ−1)k+tA(τ−1)k+tsι,i:t

)

and

h−τk∑
t=1

w
j∗t
τk+tAτk+ts

(ρ,ν)
η,j∗:t

+ f
(ρ,ν)
η,j∗ e1 =

r∑
ι=1

∑
i∈Zk

2

α
(ρ,ν)
ι,i,η

(
tι −

k∑
t=1

wit
(τ−1)k+tA(τ−1)k+tsι,i:t

)
.

By subtracting the two equations we obtain:

h−τk∑
t=1

w
j∗t
τk+tAτk+t

(
s
(0)
η,j∗:t
− s

(ρ,ν)
η,j∗:t

)
+
(
f
(0)
η,j∗ − f

(ρ,ν)
η,j∗

)
e1 =

(
α
(0)
ρ,ν,η − α

(ρ,ν)
ρ,ν,η

)(
tρ −

k∑
t=1

wνt
(τ−1)k+tA(τ−1)k+tsρ,ν:t

)
.

Hence, we define vectors s̄1, . . . , s̄h−k(τ−1) as:

s̄t := sρ,ν:t for t ∈ [k] and s̄k+t :=
s
(0)
η,j∗:t
− s

(ρ,ν)
η,j∗:t

α
(0)
ρ,ν,η − α

(ρ,ν)
ρ,ν,η

for t ∈ [h− kτ ]
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and

f̄ρ,j :=
f
(0)
η,j∗ − f

(ρ,ν)
η,j∗

α
(0)
ρ,ν,η − α

(ρ,ν)
ρ,ν,η

∈ Rq .

Then, since j := (ν, j∗), we obtain the first part of (10). As for the latter part, note that

∥2ξ · s̄t∥ ≤ 2ξβ∗ ≤ γ∗

for t ∈ [k], and using Lemma 2.6

∥2ξ · s̄k+t∥ ≤

∥∥∥∥∥ 2

α
(0)
ρ,ν,η − α

(ρ,ν)
ρ,ν,η

∥∥∥∥∥
1

·
∥∥∥η · (s(0)η,j∗:t

− s
(ρ,ν)
η,j∗:t

)∥∥∥ ≤ 2Nγ ≤ γ∗

for t ∈ [ℓ+ 1− τ ]. Thus, (10) holds.
Finally, we need to show that f̄ρ satisfies f̄ρ(u) = zρ. We rewrite f̄ρ as

f̄ρ =
∑
ν∈Zk

2

∑
j∗∈Zℓ+1−τ

2

f̄ρ,(ν,j∗) · X2k int(j∗) · Xint(ν)

Recall we have zρ =
∑

ν∈Zk
2
zρ,ν · uint(ν). Thus, it is sufficient to show that for every ν ∈ Zk

2 we have

zρ,ν =
∑

j∗∈Zℓ+1−τ
2

f̄ρ,(ν,j∗) · u2
k int(j∗) .

Fix ν and define η ∈ [r] as before. From (9) we deduce that∑
j∗∈Zℓ+1−τ

2

f
(0)
η,j∗ · u

2k int(j∗) = f (0)
η (u2

k
) = z(0)η =

r∑
ι=1

∑
i∈Zk

2

α
(0)
ι,i,ηzι,i

∑
j∗∈Zℓ+1−τ

2

f
(ρ,ν)
η,j∗ · u

2k int(j∗) = f (ρ,ν)
η (u2

k
) = z(ρ,ν)η =

r∑
ι=1

∑
i∈Zk

2

α
(ρ,ν)
ι,i,η zι,i .

Therefore

zρ,ν =
∑

j∗∈Zℓ+1−τ
2

 f
(0)
η,j∗ − f

(ρ,ν)
η,j∗

α
(0)
ρ,ν,η − α

(ρ,ν)
ρ,ν,η

 · u2k int(j∗) = ∑
j∗∈Zℓ+1−τ

2

f̄ρ,(ν,j∗) · u2
k int(j∗)

which concludes the proof.

We now prove Lemma 5.8 using Lemma 5.7 inductively, starting from the bottom non-leaf nodes, i.e.
for τ = ℓ, ℓ− 1, . . . , 1. For example, if τ = ℓ then using the notation from Lemma 5.7, γ := (r2k)ℓβ,
β∗ := (r2k)ℓ−1β and ξ = 1 (cf. Item 2(d)ii of the verifier algorithm). Hence, the extractor outputs a

witness for the relation R̃
(r)
h−k(ℓ−1),γℓ,2 where

γℓ := max(2β∗, 2Nγ) = 2N · (r2k)ℓβ .

Then by induction on τ , one can extract a witness for the relation R̃
(r)

h−k(τ−1),γτ ,2ℓ−τ+1 where

γτ := (2N)ℓ−τ+1(r2k)ℓβ. The statement follows by setting τ = 1. We are ready to prove
coordinate-wise special soundness.
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Lemma 5.8 (Coordinate-Wise Special Soundness). Define γ∗ := (2k+1rN)ℓβ. If (r2k + 1)ℓ =
poly(λ, d), then the interactive proof in Figure 5 is r2k-coordinate-wise special sound w.r.t. the

relation R̃
(r)

h,γ∗,2ℓ
.

Proof. We prove the statement using Lemma 5.7 inductively, starting from the bottom non-leaf
nodes, i.e. for τ = ℓ, ℓ− 1, . . . , 1. For example, if τ = ℓ then using the notation from Lemma 5.7,
γ := (r2k)ℓβ, β∗ := (r2k)ℓ−1β and ξ = 1 (cf. Item 2(d)ii of the verifier algorithm). Hence, the

extractor outputs a witness for the relation R̃
(r)
h−k(ℓ−1),γℓ,2 where

γℓ := max(2β∗, 2Nγ) = 2N · (r2k)ℓβ .

Then by induction on τ , one can extract a witness for the relation R̃
(r)

h−k(τ−1),γτ ,2ℓ−τ+1 where

γτ := (2N)ℓ−τ+1(r2k)ℓβ. The statement follows by setting τ = 1.

The result above in particular says that one can extract a relaxed opening for the Merkle-PRISIS
commitment with the relaxation factor 2h/k−1 = 2ℓ ∈ R×q .

Efficiency. We analyse the efficiency of the protocol in the next lemma.

Lemma 5.9 (Efficiency). The total communication complexity of the protocol in Figure 5 (in bits)
can be bounded by

(ℓ+ 1) · (2kN⌈log q⌉)︸ ︷︷ ︸
partial evaluations

+2k+1mN ·
ℓ−1∑
i=0

⌈log 2(r2k)iβ⌉︸ ︷︷ ︸
short openings

+ ℓ · r22k⌈log 2N︸ ︷︷ ︸
verifier messages

⌉

+ 2h−kℓN⌈log q⌉+ 2h−kℓ+1⌈log 2(r2k)ℓβ⌉︸ ︷︷ ︸
final message

.

Further, accounting both in terms of operations over Rq, the prover runs in time O(r2md+ r2h−kℓ)
and the verifier in time O

(
ℓ · 2kn(km+ r2) + r2h−kℓ

)
.

Proof. We start with the communication complexity. Note that the size of each i-th of the first ℓ
messages (counting from zero) can be naively bounded by

2k ·N · ⌈log q⌉+ 2k+1mN · ⌈log 2(r2k)iβ⌉ .

The size of the last message can be naively bounded by

2h−kℓ ·N · ⌈log q⌉+ 2h−kℓ+1 · ⌈log 2(r2k)ℓβ⌉ .

Meanwhile the total size of the verifier messages is ℓ · r22k⌈log 2N⌉.
Next, consider the prover runtime in a single iteration of the loop in Item 2 for some τ ∈ [ℓ].

The main bottleneck is the procedure in Item 2(f)ii which takes r · 2k+lτ+1 ·m = r · 2lτ−1+1 ·m
operations over Rq. Since we run that line r times, we conclude that the total runtime in a single
iteration of the loop is O(r2m2lτ−1). Hence, the total prover runtime can be bounded by

O

(
ℓ∑

τ=1

r2m2lτ−1 + r2h−kℓ

)
= O

(
r2m

ℓ∑
τ=1

2h−(τ−1)k + r2h−kℓ

)
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Table 3: Parameters for the polynomial commitment scheme obtained from Figure 4 and running
the protocol in Figure 5 for proofs of evaluation.

Par. Instantiation Par. Instantiation

δ q1/O(1) s > 2N · q
n

m−t
+ 2

N·(m−t)

t nq̃ σ0 ≥ 2δsN · ω(
√

t(m− t) log t′N)
m ≥ t+ n σ1 ≥ δσ0N · ω(

√
m′n′ log t′N)

m′ 2m+ t β ≥ σ1
√
m′N

n′ 2t γ (2k+1rN)ℓβ
t′ max(n′,m′) k O(log log d)

r O(log λ) ℓ h/k = O
(

log d
log log d

)
= O(r2md+ r2h−kℓ) .

As for the verifier, excluding reading the last message, the main bottleneck is computing the new tτ,κ
in Item 2(f)ii. First, the verifier can compute all the necessary partial sums

∑k
t=1w

it
(τ−1)k+tA(τ−1)k+tsτ−1,ι,i:t

in O(2kknm) operations over Rq. Then, calculating tτ,κ takes O(rn2k) time. Since we compute
that for every κ ∈ [r], a single iteration of the loop in Item 2f takes O(2kn(km + r2)) oper-
ations. Hence, by iterating over all possible τ ∈ [ℓ], the verifier runtime can be bounded by
O(ℓ · 2kn(km+ r2) + r2h−kℓ).

5.3 Succinct Polynomial Commitment Scheme

Finally, by combining the results above, we obtain a polynomial commitment scheme with polyloga-
rithmic evaluation proofs, quasi-linear prover runtime, and polylogarithmic verifier runtime.

Namely, we use the construction in Figure 4; given a polynomial f ∈ Rq[X] of degree at most
d := 2h − 1 over Rq, we commit to f by committing to its coefficient vector f = (fb)b∈Zh

2
∈ Rd+1

q to

obtain a commitment t ∈ Rn
q , together with the decommitment state st = (sb)b∈Z≤h

2
. Then, the

Eval protocol runs the Fiat-Shamir trasnformed protocol11 in Figure 5, and Verify verifies the proof.
The following theorem summarises our results.

Theorem 5.10 (Polynomial Commitment Scheme). Let n,m,N, d ∈ poly(λ) be lattice parameters.
Define PC = (Setup,Commit,Open,Eval,Verify) where Setup,Commit,Open are as in Figure 4 and
Eval,Verify are defined in Figure 5. Take the parameters from Table 3. Then, PC is an interactive
polynomial commitment scheme which satisfies evaluation completeness and relaxed binding under
the h-PRISISn−1,m,Rq ,2,σ1,2γ

√
h assumption. Further,

• the evaluation proof consists of O(log2 d) · poly(λ) elements in Rq,

• running time of Eval is O(d) · poly(λ) operations over Rq,

• running time of Verify is O(log2 d) · poly(λ) operations over Rq,

11Note that the prover in Figure 5 starts with proving r evaluations of r (not necessarily distinct) polynomials
(f0,ι)ι∈[r] at a single point u0, while for Eval we only require proving one evaluation for a single polynomial f . We can
thus naively let Eval run P for f = f0,1 = . . . = f0,r.
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• PC is knowledge sound in the random oracle model, with knowledge error O
(
log2 d·log λ
λlogN+1

)
= negl(λ).

Proof. First, evaluation completeness follows from Lemmas 4.1 and 5.1. Then, relaxed binding
follows from Lemma 4.2. Note that the parameter γ is chosen with respect to the extracted openings
in Lemma 5.8.

The proof sizes and the running times of Eval and Verify come from Lemma 5.9 for k = O(log log d),

r = O(log λ) and ℓ = O
(

log d
log log d

)
. The knowledge error can be directly deduced from Lemma 5.8

and Lemma 2.28 while keeping in mind that

(r2k + 1)ℓ = O
(
ℓ · (r2k)ℓ

)
= O

(
log d

log log d
· (log λ · log d)

log d
log log d

)
= O

(
log d

log log d
· d2
)

= poly(d) .

Batching. It is easy to see that the protocol in Figure 5 naturally supports proving multiple
polynomial evaluations at a single point; indeed, we consider proving r evaluations simultaneously
from the very start. Unfortunately, apart from small optimisations in the last round as in [FN23,
Section 5.4.2], we do not see how to batch polynomial evaluations proofs for multiple distinct points.

Non-interactive polynomial commitments. Eval,Verify can be made non-interactive using
the Fiat-Shamir transformation. One can show using the framework from [AFK22] that coordinate-
wise special sound protocols maintain knowledge soundness after performing the Fiat-Shamir
transformation, with the linear reduction loss in the number of random oracle queries. Since our
protocol satisfies coordinate-wise special soundness, this yields a secure non-interactive polynomial
commitment scheme.

5.4 Honest-Verifier Zero-Knowledge

We provide a linear-size zero-knowledge proof for relation Rh,β in (3). The protocol follows the
standard Fiat-Shamir with aborts paradigm [Lyu09; BTT22], and combined with Section 5.2 yields
a succinct zero-knowledge proof of polynomial evaluation.

Construction. Suppose the prover is given a witness (f, (sb)b) such that(
(Aj , wj ,Tj)j∈[h], (t, u, z), (f, (sb)b∈Z≤h

2
)
)
∈ Rh,β .

Denote the “leaf commitments” tb := fb · ei for b ∈ Zh
2 . Next, we define so-called “partial

commitments” tb which can be directly computed from the openings.

Lemma 5.11 (Partial Commitments). Let j ∈ [h] and b ∈ Zj−1
2 . Then, for any x,x′ ∈ Zh−j+1

2 we
have:

tb :=

h−j+1∑
i=1

wxi
i+j−1Ai+j−1s(b,xi) + f(b,x)e1

=

h−j+1∑
i=1

w
x′
i

i+j−1Ai+j−1s(b,x′
i)
+ f(b,x′)e1 .

(11)
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HVZK Σ-Protocol for Rh,β

Prover Verifier

g ← R≤d
q [X]

vb := gb · e1 for b ∈ Zh
2

zg := g(u)

for j = h, . . . , 1 :

for b ∈ Zj−1
2 :y(b,0)

y(b,1)
v̂b

← SamplePre

([
Aj 0 −G
0 wj ·Aj −G

]
,

[
−v(b,0)

−v(b,1)

]
,Tj , σ

)

vb := Gv̂b
v := vε, zg

α← X

α

h := g + αf

for j = h, . . . , 1 :z(b,0)z(b,1)
ẑb

 :=

y(b,0)

y(b,1)

v̂b

+ α

s(b,0)s(b,1)
t̂b

 for b ∈ Zj−1
2

z∗j :=

z(b,0)z(b,1)
ẑb


b∈Zj−1

2

, s∗j :=

s(b,0)s(b,1)
t̂b


b∈Zj−1

2

ρ← [0, 1)

if ρ > min

 Dm′
jN

σ (z∗j )

M · Dm′
jN

σ,αs∗j
(z∗j )

, 1

 :

abort

h, (zb)b∈Z≤h
2

Check for all b ∈ Zh
2 :

h(u) = zg + αz

h∑
j=1

w
bj
j Ajzb:j

+ hb

= v + αt

∥zb∥ ≤ βz

Figure 6: The honest-verifier zero-knowledge Σ-protocol for Rh,β. Here, m′j := 2j−1(2m+ nq̃) for

j ∈ [h]. The vectors t̂b are binary decompositions of partial commitments defined in Equation (12).
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In particular, we have

tb = Ajs(b,0) + t(b,0) and tb = wjAjs(b,1) + t(b,1) .

Proof. The second part follows directly from the definition of the partial commitments tb. For the
former one, we observe that (11) is equivalent to the following(

j−1∑
i=1

wbi
i Aisb:i

)
+

h−j+1∑
i=1

wxi
i+j−1Ai+j−1s(b,xi) + f(b,x)e1

=

(
j−1∑
i=1

wbi
i Aisb:i

)
+

h−j+1∑
i=1

w
x′
i

i+j−1Ai+j−1s(b,x′
i)
+ f(b,x′)e1 .

Finally, note that both sides are equal to t by assumption on the relation Rh,β.

Next, we define the binary decompositions of the partial commitments as

t̂b := G−1(tb) . (12)

Then, by construction and Lemma 5.11 we have for j ∈ [h] and b ∈ Zj−1
2 :

[
Aj 0 −G
0 wjAj −G

]s(b,0)s(b,1)
t̂b

 =

[
−t(b,0)
−t(b,1)

]
.

We are ready to describe our protocol. The prover first picks a uniformly random masking
polynomial g ∈ R≤dq [X] and runs the commit algorithm from Section 4. That is, the prover sets the

leaf commitments vb := gb · e1 for b ∈ Zh
2 , and then computes for j = h, . . . , 1 and b ∈ Zj−1:y(b,0)

y(b,1)

v̂b

← [
Aj 0 −G
0 wjAj −G

]−1
σ

([
−v(b,0)

−v(b,1)

])
and vb := G · v̂b .

In order to perform this operation efficiently, the prover makes use of the trapdoors (Tj)j . Further,
the prover outputs the commitment v := vε and the evaluation zg := g(u) ∈ Rq. Next, given a
challenge α← X from the verifier, the prover computes h := g + αf andz(b,0)z(b,1)

ẑb

 :=

y(b,0)

y(b,1)

v̂b

+ α

s(b,0)s(b,1)
t̂b

 for b ∈ Zj−1
2 , (13)

and outputs (h, (zb)b). Finally, the verifier checks whether(
(Aj , wj ,Tj)j∈[h], (tg + αt, u, zg + αz), (h, (zb)b∈Z≤h

2
)
)
∈ Rh,βz

for some suitable bound βz stated later.
Note that revealing vectors (zb)b as of now may reveal some information about the secrets (sb)b.

To prevent that, we apply rejection sampling. However, naively applying the procedure for each zb
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(there are O(d) of them) would result in the non-abort probability being negligible. In our final
protocol in Figure 6 we show how to increase the non-abort probability to 1/poly(λ).

First, for b ∈ Zh
2 , define ẑb := G−1(hb · e1). Then, by construction we have:

G · ẑb = gb · e1 + α · fb · e1 = vb + α · tb .

Moreover, by (13) we have that for all b ∈ Z≤h−12 :

G · ẑb = G · v̂b + α ·G · t̂b = vb + α · tb .

Hence, by (13) again, we obtain for all j ∈ [h] and b ∈ Zj−1:[
Aj 0 −G
0 wjAj −G

]
·

z(b,0)z(b,1)
ẑb

 = −
[
v(b,0) + α · t(b,0)
v(b,1) + α · t(b,1)

]
= −

[
G · ẑ(b,0)
G · ẑ(b,1)

]
. (14)

So, if we consider the concatenated vectors

z∗j :=

z(b,0)z(b,1)
ẑb


b∈Zj−1

2

∈ R2j−1(2m+nq̃)
q

and the lattice

Λ := Λ⊥
(
I2j−1 ⊗

[
Aj 0 −G
0 wjAj −G

])
(15)

then the distribution of z∗j is statistically close to a discrete Gaussian over a coset of Λ for a suitable
parameter σ. This is the setting where we apply the rejection sampling from Lemma 2.4. Hence, we
apply rejection sampling for each j = 1, . . . , h. If M = O(1) is a constant rejection rate, then the
non-abort probability is ≈ 1/Mh = 1/poly(d).

Security analysis. We start by showing completeness.

Lemma 5.12 (Completeness). Suppose the parameters are chosen as in Lemma 4.1. Set

σ ≥ max(σ1,
√
λ · (β2 + nq̃/2) · d) and βz ≥ σ

√
(2m+ nq̃)N + β.

Then, the protocol in Figure 6 satisfies completeness with correctness error 1− 1/Mh.

Proof. We first focus on the verification equations. The first two hold trivially since

h(u) = g(u) + αf(u) = zg + αz

and

h∑
j=1

w
bj
j ·Aj · zb:j

+ hb =

h∑
j=1

w
bj
j ·Aj · yb:j

+ gb + α ·

 h∑
j=1

w
bj
j ·Ajsb:j

+ fb

 = v + α · t .

Further, we know from Lemma 4.1 that ∥yb∥ ≤ σ1
√
(2m+ nq̃)N with an overwhelming probability

for all indices b. Hence,

∥zb∥ ≤ ∥yb∥+ ∥α · sb∥ = ∥yb∥+ ∥sb∥ ≤ σ1 ·
√

(2m+ nq̃) ·N + β ≤ βz .
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We now focus on the non-abort probability. First, the conditions in Lemma 4.1 allow us to argue
that the correctness error will not change (up to a negligible additive term) if instead of using
SamplePre we directly sample preimages from the discrete Gaussian distribution. Further, by picking
σ1 as in Lemma 4.1 we make sure that

σ1 ≥ ηε

(
Λ⊥
([

Aj 0 −G
0 wjAj −G

]))
for all j ∈ [h] .

for some negligible ε. Moreover, looking at the Gram-Schmidt basis of Λ in (15) and using the
bound in Lemma 2.3 we deduce that σ ≥ σ1 ≥ ηε(Λ). Also,

∥αs∗j∥2 = ∥s∗j∥2 ≤ (2β2 + nq̃) · 2j−1 ≤ (β2 + nq̃/2) · d .

Therefore, σ ≥
√
λ · ∥αs∗j∥. Thus, we can apply Lemma 2.4 for each j ∈ [h] and deduce that the

non-abort probability is indeed (1/M)h − negl(λ).

As usual, for soundness we consider a relaxed relation of Rh,β, where the witness is only a relaxed
opening of the commitment:

R∗h,γ :=


 (Aj , wj ,Tj)j∈[h],

(t, u, z),
(f, (sb)b∈Z≤h

2
)

∣∣∣∣∣
∀b ∈ Zh

2 , ∥2 · sb∥ ≤ γ

∧
∑h

j=1w
bj
j ·Aj · sb:j

+ fb = t

∧f(u) = z

 . (16)

Lemma 5.13 (Special Soundness). The protocol in Figure 6 is special sound w.r.t. the relation
R∗h,2βzN

.

Proof. Consider two accepting transcripts

((v, zg), α, (h, (zb)b)) and ((v, zg), α
′, (h′, (z′b)b))

where α ̸= α′. We can define

f̄(X) :=
h(X)− h′(X)

α− α′
and s̄b :=

zb − z′b
α− α′

for b ∈ Z≤h2 .

By the first verification equation we know that f̄(u) = z. From the second verification equation

we get for every b ∈ Zh
2 ,
∑h

j=1w
bj
j Aj s̄b:j

+ f̄b = t. Finally, we use the property of monomials to
deduce that

∥2 · zb∥ ≤
∥∥∥∥ 2

α− α′

∥∥∥∥
1

· ∥zb − z′b∥ ≤ 2βzN

which concludes the proof.

Remark 5.14. The lemma above implies that the knowledge error of the protocol in Figure 6 is
1/(2N), which is not negligible. A simple approach to amplify soundness would be to have the
verifier sample many challenges (α1, . . . , αr) ← X , and for each i ∈ [r] the prover would output

(h(i), (z
(i)
b )b) the same way as before, but corresponding to the challenge αi. One can show that

the protocol would still be special sound; thus the knowledge error becomes 1/(2N)r at the cost of
having the proof size almost r times larger.
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T ((Aj , wj ,Tj)j∈[h], f, (sb)b∈Z≤h
2

, t, u, z)

1: g ← R≤dq [X]

2: vb := gb · e1 for b ∈ Zh
2

3: zg := g(u)
4: for j = h, . . . , 1:
5: for b ∈ Zj−1

2 :

6:

y(b,0)

y(b,1)

v̂b

← SamplePre

([
Aj 0 −G
0 wjAj −G

]
,

[
−v(b,0)

−v(b,1)

]
,Tj , σ

)
7: vb := Gv̂b

8: α← X
9: h := g + αf

10: for j = h, . . . , 1 :

11:

z(b,0)z(b,1)
ẑb

 :=

y(b,0)

y(b,1)

v̂b

+ α

s(b,0)s(b,1)
t̂b

 for b ∈ Zj−1
2

12: z∗j :=

z(b,0)z(b,1)
ẑb


b∈Zj−1

2

, s∗j :=

s(b,0)s(b,1)
t̂b


b∈Zj−1

2

13: ρ← [0, 1)

14: if ρ > min

 D
m′

jN

σ (z∗j )

M ·D
m′

j
N

σ,αs∗
j
(z∗j )

, 1

 :

15: abort
16: return ((vε, zg), α, (h, zb)b∈Z≤h

2
)

S((Aj , wj ,Tj)j∈[h], t, u, z)

1: h← R≤dq [X]

2: ẑb := G−1(hb · e1) for b ∈ Zh
2

3: for j = h, . . . , 1:
4: for b ∈ Zj−1

2 :

5:

z(b,0)z(b,1)
ẑb

← SamplePre

([
Aj 0 −G
0 wjAj −G

]
,−
[
Gẑ(b,0)
Gẑ(b,1)

]
,Tj , σ

)
6: ρ← [0, 1)
7: if ρ > 1/M :
8: abort
9: α← X

10: vε := Gẑε − αt
11: v := h(u)− αz
12: return ((vε, zg), α, (h, zb)b∈Z≤h

2
)

Figure 7: Simulating the transcripts from the Σ-protocol described in Figure 7.
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We now turn to honest-verifier zero-knowledge. That is, we show how to simulate the transcripts
when the verifier behaves honestly.

Lemma 5.15 (Honest-Verifier Zero-Knowledge). Let σ and other parameters be chosen as in
Lemma 5.12. Then, the output distributions of T and S in Figure 7 are statistically indistinguishable.

Proof. We prove the statement via a standard hybrid argument.

• Game1 is identical to T as in Figure 7, but it additionally computes ẑb := G−1(hb ·e1) for b ∈ Zh
2 .

• Game2 is identical to Game1, but now we compute vε := G · ẑε − α · t and zg := h(u)− α · z. By
construction, the output distribution of Game2 is identical to Game1 since ẑε = v̂ε + α · t̂ε and
thus G · ẑε = vε + α · t. Similarly, h(u) = zg + α · z from the verification equations.

• Game3 is identical to Game2, but now for each j ∈ [h] and b ∈ Zj−1
2 we computez(b,0)z(b,1)

ẑb

 :=

y(b,0)

y(b,1)

v̂b

+ α ·

s(b,0)s(b,1)
t̂b


where y(b,0)

y(b,1)

v̂b

← [
Aj 0 −G
0 wj ·Aj −G

]−1
σ

([
−v(b,0)

−v(b,1)

])
.

By Lemma 2.14, Game2 and Game3 are statistically close.

• Game4 is identical to Game3, but here for each j ∈ [h] we directly compute

z∗j := y∗j + α · s∗j

where

y∗j ←
(
I2j−1 ⊗

[
Aj 0 −G
0 wj ·Aj −G

])−1
σ

(
−
([

v(b,0)

v(b,1)

])
b∈Zj−1

2

)
.

Here, we use the following simple fact: for any matrices D and E, and image vectors y0,y1, the
distributions below are identical:{[

x0

x1

]∣∣∣∣ x0 ← D−1σ (y0), x1 ← E−1σ (y1)

}
and {[

x0

x1

]∣∣∣∣∣
[
x0

x1

]
←
[
D 0
0 E

]−1
σ

([
y0

y1

])}
.

Thus, the distributions of Game3 and Game4 are identical.

• For j = h, . . . , 1, Game5+h−j is identical to Game4+h−j , but now we apply rejection sampling for

the vector z∗j : For b ∈ Zj−1
2

z∗j :=

z(b,0)z(b,1)
ẑb

← (
I2j−1 ⊗

[
Aj 0 −G
0 wjAj −G

])−1
σ

(
−
([

Gẑ(b,0)
Gẑ(b,1)

]))
,
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and with probability 1− 1/M we abort. By the generalised rejection sampling (cf. Lemma 2.4)
and Equation (14) we can argue that Game5+h−j and Game4+h−j are statistically close. Note
that the conditions on σ are satisfied by the proof of Lemma 5.12.

• Gameh+5 reverses the change from Game4. That is, for j ∈ [h] and b ∈ Zj−1
2 we compute:z(b,0)z(b,1)

ẑb

← [
Aj 0 −G
0 wjAj −G

]−1
σ

(
−
[
Gẑ(b,0)
Gẑ(b,1)

])
,

Thus, the output distributions of Gameh+4 and Gameh+5 are identical.

• Gameh+6 reverses the change from Game3. So, for j ∈ [h] and b ∈ Zj−1
2 we compute:z(b,0)z(b,1)

ẑb

← SamplePre

([
Aj 0 −G
0 wjAj −G

]
,−
[
Gẑ(b,0)
Gẑ(b,1)

]
,Tj , σ

)
.

As before, by Lemma 2.14 we deduce that Game4 and Game3 are statistically close.

• Gameh+7 is identical to Gameh+6, except now we generate the polynomial h← R≤dq [X] uniformly
at random. Since in Gameh+6 coefficients gi were sampled uniformly at random from Rq and
not used anywhere else apart from computing hi, we conclude that the output distributions of
Gameh+7 and Gameh+6 are identical.

Finally, the output distribution of Gameh+7 is identical to the one by S which ends the proof.

5.5 Polynomial Evaluations over the Integers

We provide a new method for proving evaluations over Zq using our framework which natively
operates over the ring Rq.

Suppose f(u) = z over Zq and f has degree at most d, which is divisible by the ring dimension
N . Then, we can write

z =

d−1∑
i=0

fiu
i =

d/N−1∑
i=0

N−1∑
j=0

fiN+ju
iN+j =

d/N−1∑
i=0

N−1∑
j=0

fiN+ju
j

 · (uN)i .

Let σ−1 : R → R be the Galois automorphism, which maps X 7→ X−1. We will use the following
key observation from [LNP22].

Lemma 5.16 ([LNP22]). For any polynomials a, b ∈ R, the constant coefficient of a · σ−1(b) ∈ R is
equal to ⟨a,b⟩ ∈ Z, where a (resp. b) is the coefficient vector of a (resp. b).

Hence, if we define the following Rq-elements:

u :=
N−1∑
j=0

uj ·Xj , fi :=
N−1∑
j=0

fiN+jX
j for i = 0, 1, . . . , d/N − 1,
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then the constant coefficient of

z :=

d/N−1∑
i=0

σ−1(u)fi ·
(
uN
)i

is indeed equal to z. Moreover, the equation above is a polynomial evaluation statement f(u) = z
over Rq, where the polynomial f has coefficients (σ−1(u)f0, . . . , σ−1(u)fd/N−1), the evaluation point

is u := uN and the image is z defined earlier. Hence, the prover can first send z ∈ Rq in the clear12,
and then proceed with proving knowledge of f such that f(u) = z. The verifier stays the same as
before, with an additional check that the constant coefficient of z is z. The advantage here is that
we only prove evaluations of polynomials of degree at most d/N rather than d, which has significant
implications in practice.

What we have left to do is to make sure that the polynomial u is invertible over Rq, since
otherwise we cannot extract f ∈ Zq[X] from f ∈ Rq[X]. To this end, note that

u · (uX − 1) =

N−1∑
j=0

(uX)j

 · (uX − 1) = (uX)N − 1 = −(uN + 1) .

This means that u is invertible if and only if u is not a primitive 2N -th root of unity. Since
q ≡ 5 mod 8, no such roots exist.

6 Concrete Instantiation

MSIS hardness. The MSISn,m,Rq ,β problem for a uniformly random matrix A is equivalent to
finding a non-trivial vector of norm smaller than β in the lattice Λ := Λ⊥(A). We make use of the
Block-Korkine-Zolatorev algorithm (BZK)[SE94; CN11], which makes itself use of an algorithm
for the shortest vector problem (SVP) in lattices of dimension b (we refer to this b as the block
size). Using the best known algorithm to solve SVP with no memory constraints, due to Becker
et al. [BDGL16], BKZ run with block size b on the mN -dimensional lattice Λ terminates in time
8mN · 20.292b+16.4. We would like to compute the minimum block size such that BKZ outputs a
feasible solution. Recall that BKZ outputs a vector with norm δmN

rhf · det(Λ)
1

mN , where δrhf is the

root Hermite factor defined as δrhf :=
(
b(πb)1/b

2πe

) 1
2(b−1)

. In our usual parameter ranges, A will be of

full rank with overwhelming probability (cf. Lemma 2.10) and thus det(Λ) = qnN . We use the
formula from Micciancio and Regev [MR09]:

δmN
rhf · q

nN
mN ≥ 22

√
nN log q log δ ,

with equality when mN =
√

nN log q/ log δ. Given a bound β < q, once can then solve for δrhf , and
obtain b accordingly, which leads us to estimate the time for BKZ to solve MSIS. Since Lemma 4.2
incurs in a multiplicative reduction loss of d + 1, in estimating parameters we target an higher
security level of λ+ log d for the underlying MSIS instance.

Deterministic preimage sampling. The instantiations that we are concerned with in this
section are not concerned with zero-knowledge. Thus, we can replace the SamplePre procedure in
the commit phase to make us of simpler deterministic sampling. More formally, given a matrix B

12Observe that the resulting protocol is not zero-knowledge.
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Table 4: Parameters and concrete sizes for the polynomial commitment described in Theorem 5.10.
δ and norms in log form. Here Q refers to number of adversarial queries to the random oracle
allowed (in log form).

k ℓ d λ Q n m N δ log q β |π|

1 1 220 128 64 162 2329 64 22 276 258 36.5 MB
1 8 230 128 64 583 9559 32 35 508 405 767 MB

and a corresponding trapdoor T, one can compute a preimage of a target vector t as v := T ·G−1(t).
It can then be easily verified that B · v = B ·T ·G−1(t) = G ·G−1(t) = t. This leads to shorter
commitments and openings. First, recall that s1(Tj) ≤ σ0 ·

√
m′ n′N . Then, the norm bound of the

resulting opening can be estimated as β ≤ s1(Tj) · δ ·
√
2n · q̃ ·N = σ0 ·

√
m′ n′N · δ ·N

√
2n · q̃.

Parameters. We performed parameter selection by means of an exhaustive grid search. The
results are summarised in Table 4.

As one can see, the resulting parameters are rather large, and thus we cannot claim that our
scheme achieves concrete efficiency. Part of the inefficiencies of the scheme lie in the starting norm
that results from the [MP12] sampling procedure. As one can see, for reasonable choices of parameter
the large β forces log q to be rather large (even without accounting for the further blow-up that
extraction introduces). Further, each round of the protocol involves sending 2k openings, each of
which consists of m short elements of Rq, a cost that practically adds up very quickly.
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the Statistical Distance”. In: ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata and Jung Hee
Cheon. Vol. 9452. LNCS. Springer, Heidelberg, 2015, pp. 3–24. doi: 10.1007/978-3-662-
48797-6_1.

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. “A Non-
PCP Approach to Succinct Quantum-Safe Zero-Knowledge”. In: CRYPTO 2020. Springer,
2020, pp. 441–469. doi: 10.1007/978-3-030-56880-1_16.

55

https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-031-38545-2\_8
https://doi.org/10.1007/978-3-031-38545-2\_8
https://doi.org/10.1137/1.9781611974331.ch2
https://eprint.iacr.org/2022/458
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/s00145-022-09441-3
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-030-56880-1_16


[BLNS23] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessandro Sorniotti.
“A Framework for Practical Anonymous Credentials from Lattices”. In: CRYPTO (2).
Vol. 14082. Lecture Notes in Computer Science. Springer, 2023, pp. 384–417.

[BMMTV21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. “Proofs
for Inner Pairing Products and Applications”. In: ASIACRYPT 2021, Part III. Ed. by
Mehdi Tibouchi and Huaxiong Wang. Vol. 13092. LNCS. Springer, Heidelberg, Dec. 2021,
pp. 65–97. doi: 10.1007/978-3-030-92078-4_3.

[BS23] Ward Beullens and Gregor Seiler. “LaBRADOR: Compact Proofs for R1CS from Module-
SIS”. In: CRYPTO (5). Vol. 14085. Lecture Notes in Computer Science. Springer, 2023,
pp. 518–548.

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. “MuSig-L: Lattice-Based Multi-
signature with Single-Round Online Phase”. In: CRYPTO 2022, Part II. Ed. by Yevgeniy
Dodis and Thomas Shrimpton. Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 276–
305. doi: 10.1007/978-3-031-15979-4_10.
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A Reduction from 2k-M-ISIS to Twin-k-M-ISIS.

Our reduction for k-M -ISIS and Twin-k-M -ISIS follows the same strategy as the reduction in
Section 3.2, except that we can use lighter rerandomisation for the matrix A. This in turn makes
it easier to analyse the distribution of the preimages (here denoted U), where we apply Rénýı
divergence arguments to prove that the output is well distributed.

A.1 Additional Preliminaries

As defined in [GMPW20] for any pair of real values x, y and for any value ε ≥ 0 the relation x ≈ε y
is equivalent to x ∈ [1 − ε, 1 + ε] · y. It extends to probability distributions X ,Y with the same
support. We say X ≈ε Y if for every outcome z we have X (z) ≈ε Y(z) The relation has the following
properties:

1. If X ≈ε Y then Y ≈ε̄ X with ε̄ = ε
1−ε

2. If X ≈ε Y then ∆(X ,Y) ≤ ε
2 .

For two probability distribution P,Q such that Supp(P ) ⊆ Supp(Q) the Rényi Divergence is

RDα(P | Q) :=
∑

x∈Supp(Q)

Pα(x)

Qα−1(x)
, α ∈ (1,+∞).

We denote RD2(P | Q) as RD(P | Q). It was established in [BLLSS15] that when the Rényi
Divergence between two challenger’s inputs is bounded by a constant the difference in any adversary’s
winning probability for any search problem is not more than negligible.

A.1.1 Presumed Hard Problems

We start by stating the definition of the k-M -ISIS problem. We restrict the original definition
of [ACLMT22] by specifying the hint distribution DA,g,t,v,Σ to be a bounded Discrete Gaussian
formally defined in Definition A.2. For well-defined parameters Σ and β this distribution is negligibly
close to unbounded Discrete Gaussians that we consider in the proof.

Definition A.1 (k-M -ISIS-Admissible, [ACLMT22]). Let g(X) ∈ R(X) be a Laurent monomial,
i.e. g(X) = Xe :=

∏
i∈Zw

Xei
i for some exponent vector e = (ei : i ∈ Zw) ∈ Zw. Let G ⊂ R(X) be a

set of Laurent monomials with k := |G|. Let g∗ ∈ R(X) be a target Laurent monomial. We call a
family G k-M -ISIS-admissible if 1. all g ∈ G have constant degree, i.e. ∥e∥1 ∈ O(1); 2. all g ∈ G are
distinct, i.e. G is not a multiset; and 3. 0 /∈ G. We call a family (G, g∗) k-M -ISIS-admissible if G is
k-M -ISIS-admissible, g∗ has constant degree, and g∗ /∈ G.

Definition A.2 (k-M -ISIS Assumptions, [ACLMT22]). Let m,n ∈ N. Let q be a rational prime, R
the 2N-th cyclotomic ring, and Rq := R/qR with 1/|Rq| = negl(λ). Let T ⊂ Rn

q be such that, for
any t = (ti)i∈Zn ∈ T , ⟨{ ti }⟩ = Rq. Let G ⊂ R(X) be a set of w-variate Laurent monomials. Let
g∗ ∈ R(X) be a target Laurent monomial. Let (G, g∗) be k-M -ISIS-admissible. Let Ḡ := G ∪ { g∗ }.
Let β ≥ 1 and β∗ ≥ 1 be reals. For n,m ∈ N, g ∈ Ḡ, let m satisfy the conditions of Lemma 2.14
for some Gaussian bounded by β, A ∈ Rn×m

q , t ∈ T , and v ∈ (R×)w and positive definite matrix

Σ ∈ RN ·m let DA,g,t,v,Σ be the following distribution:

[ug | ug ← DRm,Σ s.t. A · ug = g(v) · t mod q, ∥ug∥ ≤ β]
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Let D := {Dg,A,t,v : n,m ∈ N, g ∈ Ḡ,A ∈ Rn×m
q ,v ∈ (R×)w } be the family of these distributions.

Write pp := (Rq, n,m,w,G, g∗,D, T , β, β∗). The k-M -ISISpp assumption states that for any PPT
adversary A we have Advk-r-isispp,A (λ) ≤ negl(λ), where Advk-m-isis

pp,A (λ) :=

Pr


A · ug∗ ≡ s∗ · g∗(v) · t mod q

∧ 0 < ∥s∗∥ ≤ β∗

∧ ∥ug∗∥ ≤ β∗

∧ (g∗,ug∗) ̸= (0,0)

∣∣∣∣∣∣∣∣∣∣
A← Rn×m

q

t← T ; v← (R×)w

ug ← Dg,A,t,v, ∀ g ∈ G
(s∗,ug∗)← A(A, t, {uG } ,v)

 .

Below we state the definition of the Twin-k-M -ISIS problem first proposed in [BCFL22]. The
idea of this problem is to consider two matrices A1 and A2 with their respective hints to different
algebraically related vectors and ask the adversary to output a short preimage of 0 for the matrix
[A1 | A2]. We restrict the definition of the hint distributions similarly to the k-M -ISIS definition
above. Additionally, we consider a more general choice of Laurent monomials in sets G1 and G2
defined below as our reduction applies to arbitrary non-intersecting sets of monomials.

Definition A.3 (Twin-k-M -ISIS Assumption, [BCFL22]). Let n,m ∈ N. Let T ⊂ Rn
q be such that,

for any t = (t0, . . . , tn−1) ∈ T we have ⟨t0, . . . , tn−1⟩ = Rq. Let G1 ⊂ R(X) be a set of non-zero
w-variable Laurent monomials. Let β ≥ 1, β∗ ≥ 1 be reals. For i = 1, 2, Ai ∈ Rn×m

q , g ∈ Gi, t ∈ T ,
v ∈ (R×)w and positive definite matrix Σ ∈ RN ·m let DAi,g,t,v,Σ be the following distribution:

[ug | ug ← DRm,Σ s.t. Ai · ug = g(v) · t mod q, ∥ug∥ ≤ β]

Write pp := (Rq, n,m,w,G1,G2,Σ, T , β, β∗) where G1 and G2 are non-intersecting sets of Lau-
rent monomials. The Twin-k-M -ISISpp assumption states that for any PPT adversary A and
Advtwin-k-m-isis

pp,A (λ) :=

Pr


A1 · u∗ +A2 ·w∗ ≡ 0 mod q

∧ 0 < ∥(u∗|w∗)∥ ≤ β∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1,A2 ← Rn×m
q ,

t← T ,v← (R×)w,
∀g ∈ G1 : ug ← DA1,g,t,v,Σ,

∀g ∈ G2 : wg ← DA2,g,t,v,Σ.

inst← A1,A2, t,v, (ug)g∈G1 , (wg)g∈G2

(w∗,u∗)← A(inst)


.

We have Advtwin-k-m-isis
pp,A (λ) ≤ negl(λ).

A.1.2 Techical Lemmas

We need to establish the following statements for the main proof.

Lemma A.4 (adapted from [GPV07, Lemma 5.3]). If n,m ∈ N then for all but a fraction of 2−Nm

matrices A ∈ Rn×m
q we have λ∞1 (Λ(AT )) ≥ q

4 . Where Λ(AT ) := {AT · u mod q | u ∈ Rn}.
As consequence, for such A and for any ω(

√
log(Nm)) function, there is a negligible function

ε(Nm) such that ηε(Λ
⊥
q (A)) ≤ ω(

√
log(Nm)).
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Proof. Let us take a sphere S ⊂ RNm of radius q
4 defined with respect to the infinity norm. It is

a set of all vectors {v = (v1, . . . , vNm) ∈ RNm | ∀i ≤ Nm : vi <
q
4}. Define Z := S ∩ ZNm then

|Z| ≤ ( q2)
Nm. We interpret elements of Z as concatenated coefficient vectors of m elements of R.

Then

∀u ∈ Rn
q ,u ̸= 0 : Pr

A←Rn×m
q

(AT · u mod q ∈ Z) ≤ (q/2)Nm

qNm
≤ 1

2Nm

which proves the statement about the shortest vector in Λ(AT ). The second statement of the
Lemma comes from Lemma 2.3, and that ∀A : λ∞1 (Λ(AT )) = q · λ∞1 ((Λ⊥q (A))∗).

Lemma A.5 (adapted from [LSS14]). Let c ∈ Rm and ε, σ > 0. Let A ∈ Rn×m
q be a matrix, such

that ηε(Λ
⊥
q (A)) < σ. Consider the following distributions.

D1 = [u− c | u← Dm
R,σ s.t. A · (u− c) = g mod q],

D2 = [v | v← Dm
R,σ s.t. A · v = g mod q].

The Rényi Divergence between D1 and D2 is bounded by:

RD(D1 | D2) ≈ε exp

(
2π ∥c∥2

σ2

)
.

Proof. Both distributions have values in Λ⊥q (A) + t, where t ∈ Rm is an arbitrary solution to
equation A · x = g mod q. Note that A · u = A · c+ g mod q, which implies

D1 = [x− c | x← Dm
R,σ s.t. A · x = g +A · c mod q].

If s ∈ Rm is an arbitrary preimage of g +A · c then D1 = DΛ⊥
q (A)+s,σ − c. By definition the Rényi

Divergence between D1 and D2 is equal to

RD(D1 | D2) =
∑

x∈Λ⊥
q (A)+t

D2
1(x)

D2(x)

=
∑

x∈Λ⊥
q (A)+t

ρ2σ(x+ c) · ρσ(Λ⊥q (A) + t)

ρ2σ(Λ
⊥
q (A) + s) · ρσ(x)

.

Using the smoothness condition on Λ⊥q (A) and the definition of the Gaussian function ρσ(·) we can
simplify the expression further to

RD(D1 | D2) ≈ε
1

ρσ(Λ⊥q (A))
·
∑

x∈Λ⊥
q (A)+t

exp(π/σ2 · (−2∥x+ c∥2 + ∥x∥2)).

We rewrite −2 ∥x+ c∥2 + ∥x∥2 = −∥x+ 2 c∥2 + 2 ∥c∥2. Then the expression becomes:

RD(D1 | D2) ≈ε
1

ρσ(Λ⊥q (A))
·
∑

x∈Λ⊥
q (A)+t

exp(− π

σ2
· ∥x+ 2c∥2) · exp

(
2π
∥c∥2

σ2

)

=
1

ρσ(Λ⊥q (A))
· ρσ(Λ⊥q (A) + t+ 2c) · exp(2π∥c∥2/σ2)

≈ε exp(2π∥c∥2/σ2).
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Lemma A.6 (Conditional Rényi Divergence). For probability distributions X1, X2 both defined over
a set of outcomes ΩX and Y1, Y2 defined on the finite set ΩY we have

RD((X1, Y1) | (X2, Y2)) ≤ max
y∈ΩY

(RD((X1 given Y1 = y) | (X2 given Y2 = y)))·

·RD(Y1 | Y2)

Proof. By definition:

RD((X1, Y1) | (X2, Y2)) =
∑
y∈ΩY

∑
x∈ΩX

Pr2(X1, Y1 = x, y)

Pr(X2, Y2 = x, y)

=
∑
y∈ΩY

∑
x∈ΩX

Pr2(X1 = x | Y1 = y) · Pr2(Y1 = y)

Pr(X2 = x | Y2 = y) · Pr(Y2 = y)

=
∑
y∈ΩY

Pr2(Y1 = y)

Pr(Y2 = y)

∑
x∈ΩX

Pr2(X1 = x | Y1 = y)

Pr(X2 = x | Y2 = y)

≤
∑
y∈ΩY

Pr2(Y1 = y)

Pr(Y2 = y)
· max
y∈ΩY

(RD((X1 given Y1 = y) | (X2 given Y2 = y)))

A.2 2k-M-ISIS =⇒ Twin-k-M-ISIS

In this section we build an efficient transformation of an instance of the 2k-M -ISIS problem with
g∗(·) = 0 into an instance of Twin-k-M -ISIS such that the output of the Twin-k-M -ISIS oracle can
be transformed into a solution of 2k-M -ISIS with non-negligible probability.

Theorem A.7. Let pp = (Rq, n,m,w,G, 0, σ, T , β, β∗) and pp′ = (Rq, n,m,w,G1,G2,Σ, T , βTwin,
β∗Twin) such that G1 ∩ G2 = ∅ and G1 ∪ G2 = G,

Σ =

[
σ1Id 0
0 σ2Id

]
.

Let σ2 = σ satisfy the lowerbound of Lemma 2.14 for (AL,TL) ← TrapGen(n,m/2) and σ1 ≥
σ ·
√
π ·N5/2 ·m3/2 · q2n/m+4/(Nm) · ω(logN). Let

β∗Twin ≥ β∗ ·
(
2
√
2 +N5/2 ·m3/2 · q2n/m+4/(Nm) · ω(

√
logN)

)
Then Twin-k-M -ISISpp′ is hard under the 2k-M -ISISpp assumption.

The trick we use for the rerandomisation is the same as in Section 3.2, i.e. we use that ∀R ∈ Rm/2×m/2

we have [
Idm/2 R

0 Idm/2

]
·
[
Idm/2 −R

0 Idm/2

]
= Idm.

Similarly for R in the bottom left:[
Idm/2 0

R Idm/2

]
·
[
Idm/2 0

−R Idm/2

]
= Idm.
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We split in the middle the 2k-M -ISIS challenge matrix A = [AL | AR] and two sets of k preimages

U1 = [U1,L∥U1,R], U2 = [U2,L∥U2,R] and we sample R1,R2 ←
(
Dm/2×m/2
R,σR

)2
. We build the

following rerandomisation:

A1 := [AL | AR] ·
[
Idm/2 R1

0 Idm/2

]
= [AL | AL ·R1 +AR] (17)

A2 := [AL | AR] ·
[
Idm/2 0

R2 Idm/2

]
= [AL +AR ·R2 | AR] . (18)

The new set of hints for A1 and A2 now looks as follows:

U′1 :=

[
Idm/2 −R1

0 Idm/2

]
·
[
U1,L

U1,R

]
=

[
U1,L −R1 ·U1,R

U1,R

]
(19)

U′2 :=

[
Idm/2 0

−R2 Idm/2

]
·
[
U2,L

U2,R

]
=

[
U2,L

U2,R −R2 ·U2,L

]
. (20)

The distributions of A1 and A2 follow immediately from the Leftover Hash Lemma stated in
Corollary 2.9. As for the hint distribution, we prove that Rényi Divergence between the constructed
hint distribution and the Discrete Gaussian expected by the adversary is bounded by a constant.
This implies that adversary’s winning probability can only decrease by negl(λ). We consider the
problem for each column of U′1 and U′2 separately.

Lemma A.8 (strategy inspired by [GMPW20]). Let A = [AL | AR] ∈ Rn×m
q be a matrix, such

that σ1 > ηε(Λ
⊥
q (AL)). Let g ∈ Rn

q be an arbitrary vector and ε ∈ (0, 1). Consider the following
distributions:

D1 :=

[u1 −R · u2

u2

]∣∣∣∣∣∣∣∣
u1 ← (DR,σ1)

m/2, u2 ← (DR,σ2)
m/2

s.t. A ·
[
u1 −R · u2

u2

]
= g mod q

and ∥u2∥∞ ≤ σ2 · ω(
√
logN)


where R is a fixed matrix such that ∥R∥∞ ≤ σR · ω(

√
logN) and

D2 :=

[v1

v2

]∣∣∣∣∣∣∣∣
v1 ← (DR,σ1)

m/2, v2 ← (DR,σ2)
m/2

s.t. A ·
[
v1

v2

]
= g mod q

and ∥v2∥∞ ≤ σ2 · ω(
√
logN)


The Rényi divergence between D1 and D2 is bounded by:

RD(D1 | D2) ≤ exp

(
π ·N3 ·m3 · σ2

2 · σ2
R · ω(log

2N)

4σ2
1

)
· (1 + ε)3

1− ε
.

Remark A.9. In Theorem A.7 we set σR = 2 ·N · q2n/m+4/(Nm) and σ1 ≥ σ2 ·
√
π ·N5/2 ·m3/2 ·

q2n/m+4/(Nm) ·ω(logN). Therefore, the Rényi Divergence between the distributions above is bounded
by the constant:

RD(D1 | D2) ≤
(1 + ε)3

(1− ε)
· exp(1) := C.
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Proof. We argue about the top and bottom halves of sampled vectors separately. We show that D1

and D2 are close to a pair of distributions D3, D4 where bottom halves of the vectors are identically
distributed and the top halves are Discrete Gaussians defined over cosets of the same lattice.

Recall A = [AL|AR]. Define a distribution

D4 := [(v1,v2) |v1 ← DΛ⊥
q (AL)+tv2 ,σ1

,v2 ← DRm/2,σ2
,

∥v2∥∞ ≤ σ2 · ω(
√

logN)]

where tv2 ∈ Rm/2 and AL · tv2 = g −AR · v2 mod q.
We argue that ∀ε ∈ (0, 1) : D2 ≈ε D4. Note that both distributions are defined over the set

S = {(w1,w2) ∈ Rm | AL ·w1 +AR ·w2 = g mod q s.t. ∥w2∥∞ ≤ σ2 · ω(
√
logN)}. We denote

Zb = {x ∈ ZNm/2 s.t. ∥x∥∞ ≤ σ2 ·ω(
√
logN)} Let us take an arbitrary pair of vectors (w1,w2) ∈ S.

Then

Pr((v1,v2) = (w1,w2) | (v1,v2)← D4)

=
ρσ2(w2)

ρσ2(Zb)
· ρσ1(w1)

ρσ1(Λ
⊥
q (AL) + tw2)

≈ε
ρσ2(w2) · ρσ1(w1)

ρσ2(Zb) · ρσ1(Λ
⊥
q (AL))

.

The above transition relies on σ1 > ηε(Λ
⊥
q (AL)). For the other distribution D2 we denote Σ :=[

σ1Id 0
0 σ2Id

]
, tg ∈ Rm a vector such that A · tg = g mod q and Lb = {x = (x1,x2) ∈ Λ⊥q (A) +

tg s.t. ∥x2∥∞ ≤ σ2 · ω(
√
logN)}. Then we have:

Pr((v1,v2) = (w1,w2) | (v1,v2)← D2) =
ρσ2(w2) · ρσ1(w1)

ρΣ(Lb)
.

As we can see, both probabilities contain ρσ2(w2) · ρσ1(w1) divided by a constant independent of
w1,w2. If we add these values for all (w1,w2) we obtain:

1

ρΣ(Lb)

∑
(w1,w2)

ρσ2(w2) · ρσ1(w1) = 1,

1

ρσ2(Zb) · ρσ1(Λ
⊥
q (AL))

∑
(w1,w2)

ρσ2(w2) · ρσ1(w1) ≈ε 1.

Therefore, ρΣ(Lb) ≈ε ρσ2(Zb) · ρσ1(Λ
⊥
q (AL)) and as a consequence D2 ≈ε D4. The same argument

applies to D1 and

D3 :=
[
(u1,u2) |u1 ← DΛ⊥

q (AL)+tu2 ,σ1
,u2 ← DRm/2,σ2

,

∥u2∥∞ ≤ σ2 · ω(
√

logN)
]

where tu2 ∈ Rm/2 such that AL · tu2 = g +AL ·R · u2 −AR · u2 mod q.

After a calculation we get RD(D1 | D2) ≤ (1+ε)2

1−ε ·RD(D3 | D4). Let us now compute RD(D3|D4).
By Lemma A.6 we have RD(D3 | D4) ≤

max
w2

(RD((u1 given u2 = w2) | (v1 given v2 = w2))) ·RD(u2|v2)
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= max
w2

(RD((u1 given u2 = w2) | (v1 given v2 = w2)))

We use RD(u2 | v2) = 1 since u2 and v2 have the same distribution. It remains to upperbound
RD(u1,v1) for every fixed value w2 = u2 = v2. To do that we apply Lemma A.5 to distributions

D3(w2) = [u1 +R ·w2 | u1 ← DΛ⊥
q (AL)+tw2 ,σ1

]

where tw2 ∈ ZNm/2 and AL · tw2 = g −AR ·w2 mod q and

D4(w2) = [v1 ← DΛ⊥
q (AL)+tw2 ,σ1

]

where tw2 ∈ Rm/2 and AL · tw2 = g −A1 ·w2 mod q.
Since ∥w2∥∞ ≤ σ2 · ω(

√
logN) and ∥R∥∞ ≤ σR · ω(

√
logN), by standard norm inequalities, we

have ∥R ·w2∥ ≤
(
N ·m
2

)3/2 · σ2 · σR · ω(logN). Therefore, applying Lemma A.5 we get the following
inequality which in turn implies the main statement of the Lemma:

RD(D3 | D4) ≤ (1 + ε) · exp
(
π ·N3 ·m3 · σ2

R · σ2
2 · ω(log2N)

4σ2
1

)
.

We can now proceed to the proof of Theorem A.7.

Proof. We transform the input for A to plant a 2k-M -ISIS instance within through a sequence of
games. We prove that adversary’s winning probability in every game only changes by a negligible
value. Let us denote A’s winning probability against Twin-k-M -ISIS as ε, its winning probability in
Game i is denoted as εi.

Game 1: (Standard Twin-k-M -ISIS game) The adversary A receives a tuple of elements with the
following distributions:

1. A1,A2 ← (Rn×m
q )2,

2. t← T ,v← (R×)w,

3. U′1 ← DA1,G1,t,v,σ1 ,

4. U′2 ← DA2,G2,t,v,σ2

This corresponds to an honestly generated Twin-k-M -ISIS instance. By definition of the game
ε1 = ε.

Game 2: (Replacing the matrix distribution) Let values (t,v) have the same distribution as in
Game 1. We sample (AL,TL) = TrapGen(n,m/2) and (AR,TR) = TrapGen(n,m/2), by Lemma 2.13
the matrices AL and AR are statistically close to uniform. We denote A := [AL | AR]. We sample
R1,R2 ∈ Rm/2×m/2 with columns from DRm/2,σR

. We set the Twin-k-M -ISIS matrices A1,A2 as in
Eq. (17) and Eq. (18). Additionally, we denote

N1 :=

[
Idm/2 R1

0 Idm/2

]
,N2 :=

[
Idm/2 0

R2 Idm/2

]
.
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Then the inverses are equal to

N−11 :=

[
Idm/2 −R1

0 Idm/2

]
,N−12 :=

[
Idm/2 0

−R2 Idm/2

]
.

Since A = [AL | AR] is statistically close to uniform, matrices A1 and A2 are statistically close to
uniformly random and independent by Lemma 3.6.

We now use the trapdoors TL and TR to generate the preimages U′1 and U′2. Consider a column
vector u = [u1∥u2] of U

′
1. It has to satisfy

[
AL AL ·R1 +AR

]
·
[
u1

u2

]
= AL · u1 +AL ·R1 · u2 +AR · u2 = g mod q

where g is the corresponding column of G1. To do that we sample u2 ← DRm/2,σ2
and

u1 = SamplePre(AL,TL, σ1,g −AL ·R1 · u2 −AR · u2).

Note that the standard deviation of the output σ1 is lower-bounded by the quality of the trapdoor
TL which we take into account. By the same arguments as in Lemma A.8 this distribution is
statistically close to u← DΛ⊥

q (A)+tg ,Σ. Here tg ∈ Rm is an arbitrary preimage of g for matrix A.

The same transformation is applied to every other column of U′1.
Similarly, for every column w = [w1∥w2] of matrix U′2 we sample w1 ← DRm/2,σ1

and w2 =
SamplePre(AR,TR, σ2,g −AL ·w1 −AR ·R2 ·w1). This distribution is statistically close to what
is expected by the adversary by the same argument.

The adversary A receives the tuple (A1,A2, t,v,U
′
1,U

′
2) sampled above. Since every element

of the tuple is within negligible statistical distance from the expected distribution the adversary’s
winning probability satisfies ε2 ≥ ε1 − negl(λ).

Game 3: (Switching to bounded Gaussians) We replace the distributions of Ri for i = 1, 2, u2 and
w2 defined above with bounded Discrete Gaussian distributions as follows

Ri ←
{(
DRm/2,σR

)m/2×m/2
| ∥Ri∥∞ ≤ σR · ω(

√
logN)

}
,

u2 ←
{
DRm/2,σ2

| ∥u2∥∞ ≤ σ2 · ω(
√
logN)

}
,

w2 ←
{
SamplePre(AR,TR, σ2,g −AL ·w1 −AR ·R2 ·w1) s.t.

∥w2∥∞ ≤ σ2 · ω(
√

logN)
}
.

By Lemma 2.1 the statistical distance between replaced distributions and their counterparts is
negligible. Therefore, the winning probability of A follows ε3 ≥ ε2 − negl(λ).

Game 4: (Replacing the preimage distribution) The values (A1,A2, t,v) have the same distribution
as in Game 3. We proceed with a sequence of 2k sub-games where we replace the distributions of
every column of hint matrices U′1 and U′2 one by one.

Let us modify the distribution of the first column of U′1 and denote this Game 4(1). We sample
u = SamplePre(A,T,Σ,g) where A = [AL | AR] and T is a gadget-trapdoor for A computed using
TL,TR and g is the first column of G1.
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We transform u as defined in Eq. (19) and call the output u′. By Lemma A.8 and Remark A.9

RD(u′ | DA1,g,t,v,Σ) ≤ C.

We note that Lemma A.8 relies on σ1 > ηε(AL). Since σ1 > ω(
√

log(Nm)) by Lemma A.4 the
inequality above hold for all but negligible number of matrices. Therefore at this step the reduction
may fail but only with a negligible probability.

We sample all other preimages as in Game 3. The Rényi divergence between input distributions
in Game 3 and Game 4(1) is upper bounded by a constant so as discussed in Appendix A.1 the
adversary’s winning probability ε4,1 ≥ ε3 − negl(λ).

After a sequence of such transformation we obtain hint distributions defined in Eq. (19), Eq. (20)
and ε4,2k ≥ ε3 − negl(λ).

Game 5: (Switching back to unbounded Gaussians) We switch the distribution of Ri for i = 1, 2,
u2, w2 back to unbounded Discrete Gaussians. Similarly to Game 3 adversary’s advantage can only
change by a negligible amount ε5 ≥ ε4,2k − negl(λ).

Game 6: (Planting the k-M -ISIS instance) Suppose that (A ∈ Rn×m
q , (ug)g∈G ,v, t) is the challenge

instance of the 2k-M -ISIS problem, so |G| = 2k for some k ∈ N. We first separate the hints into two
sets of cardinality k that will serve as hints for matrices A1 and A2.

Denote G = G1 ∪ G2, such that G1 ∩ G2 = ∅. Let U1 ∈ Rm×k be the matrix with columns
corresponding to the hints for G1 and U2 ∈ Rm×k be the matrix of hints for G2. Let us also define
a matrix G1 ∈ Rn×k with columns gi(v) · t for all gi ∈ G1 and similarly G2 ∈ Rn×k a matrix
with columns gi(v) · t for all gi ∈ G2. Then by the definition of the k-M -ISIS problem we have
A ·U1 ≡ G1 mod q and A ·U2 ≡ G2 mod q.

We apply transformations defined in Eq. (17) and Eq. (18) to the challenge matrix A to compute
A1,A2. We also apply transformations from Eq. (19) and Eq. (20) to matrices U1 and U2 to
compute U′1 and U′2. The values (t,v) stay the same.

Computed tuple (A1,A2, t,v,U
′
1,U

′
2) is withing negligible statistical distance from the input in

Game 5. Therefore, ε6 ≥ ε5 − negl(λ) ≥ ε− negl(λ). We conclude that A wins the final game with a
planted k-M -ISIS instance with non-negligible probability.

Adversary’s output. Upon receiving (A1,A2, t,v,U
′
1,U

′
2) from Game 6 the adversary replies

with a nonzero vector v = (v1,v2,v3,v4) ∈ (Rm/2)4 such that

[A1 | A2] · v = 0 mod q.

Then u := [N1 | N2] · v is a candidate solution for the k-M -ISIS problem for matrix A. To confirm
that u is a valid solution we need to prove the following two statements. First, that the norm of u
is upper bounded by β∗Twin and second, that u ̸= 0. Concerning the norm of u the following holds:

∥u∥2 ≤ ∥N1 · [v1∥v2] +N2 · [v3∥v4]∥2

≤ ∥R1 · v2 + v1 + v3∥2 + ∥R2 · v3 + v2 + v4∥2.

Using Lemma 2.1, Lemma 2.5 and standard norm inequalities we compute that i = 1, 2: ∥Ri · vi+1∥ ≤(
N ·m
2

)3/2 · β∗ · σR · ω(√logN). Setting σR = 2 ·N · q2n/m+4/(Nm) we obtain the bound:

∥u∥ ≤
√
2

(
2β∗ +

(
N ·m

2

)3/2

· β∗ · σR · ω(
√
logN)

)
≤ β∗Twin.
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It remains to prove that u ̸= 0. Let us assume that the adversary’s goal is to output a solution v
that [N1 | N2] · v = 0. Since A does not know the values of random matrices Ni, their chance to
succeed is bounded by maxv ̸=0 Pr [[N1 | N2] · v = 0].

Let us analyse this expression for an arbitrary fixed nonzero vector v. Then the probability
above can be expressed as follows:

P := Pr

[[
R1 · v2 + v1 + v3

R2 · v3 + v2 + v4

]
= 0

]
.

If v2 = v3 = 0 then for the equality to hold v1,v4 must equal 0 contradicting v ̸= 0. Therefore, the
equality may hold only when either v2 or v3 is not equal to 0. W.l.o.g let us assume that v2 ̸= 0.
Then

P ≤ Pr [R1 · v2 = −v1 − v3] .

We know ∃1 ≤ j ≤ m/2 such that v2[j] ̸= 0. Then

P ≤ Pr [r · v2[j] = c] ≤ max
c

Pr [r · v2[j] = c] .

Here r is the element of matrix R1 at position {1, j} and c = c(v1,v3,R1) is a value determined by
vectors v, c and all other entries of R1 not including r.

The ring R is an integral domain. Hence ∀a, b the equation a · x = b has not more than one
solution. Therefore, ∀ε ∈ (1/2, 1) if σR > ηε(ZN ) then by Lemma 2.2

P ≤ max
c′

Pr
[
r = c′|r ← DR,σR

]
≤ 1

σN
R (1− ε)

= negl(λ).

Note that by Lemma 2.3 σR ≥ 2 ·N · q2n/m+4/(Nm) >

√
log(2N(1+1/ε))

π > ηε(ZN ).

We conclude that when v is correct then u is a valid solution to (A ∈ Rn×m
q , (ug)g∈G ,v, t)

instance of k-M -ISIS problem with overwhelming probability.
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