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Abstract. Bulletproofs (Bünz et al. IEEE S&P 2018) are a celebrated ZK proof system that allows
for short and efficient proofs, and have been implemented and deployed in several real-world systems.
In practice, they are most often implemented in their non-interactive version obtained using the Fiat-
Shamir transform. A security proof for this setting is necessary for ruling out malleability attacks.
These attacks can lead to very severe vulnerabilities, as they allow an adversary to forge proofs
re-using or modifying parts of the proofs provided by the honest parties. An earlier version of this
work (Ganesh et al. EUROCRYPT 2022) provided evidence for non-malleability of Fiat-Shamir
Bulletproofs. This was done by proving simulation-extractability, which implies non-malleability,
in the algebraic group model. In this work, we generalize the former result and prove simulation
extractability in the programmable random oracle model, removing the need for the algebraic group
model. Along the way, we establish a generic chain of reductions for Fiat-Shamir-transformed multi-
round public-coin proofs to be simulation-extractable in the (programmable) random oracle model,
which may be of independent interest.

⋆ An extended abstract appeared at EUROCRYPT 2022. This is a full version of [GOP+22] with additional
improved results and supersedes [GOP+21].
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1 Introduction

Zero-knowledge (ZK) proof systems [GMR85] are one of the most fascinating ideas in modern cryptog-
raphy, as they allow a prover to persuade a verifier that some statement is true without revealing any
other information. In recent years we have observed a new renaissance for ZK proofs, motivated in large
part by their applications to advanced Blockchain applications. This has led, among other things, to a
standardization effort for ZK proofs.5

A celebrated modern ZK proof system is Bulletproofs [BBB+18]. Bulletproofs offer transparent setup,
short proofs and efficient verification (and it is therefore a zero-knowledge succinct argument of knowl-
edge or zkSNARK) using only very well established computational assumptions, namely the hardness of
discrete logarithms. At the heart of Bulletproofs lies an “inner product” component. This can be used
then for general purpose proofs (i.e., where the statement is described as an arithmetic circuit) or for
specific purpose proofs (i.e., range proofs, which are the most common use case in practice). Bulletproofs
have been implemented in real world systems, especially for confidential transaction systems, like Monero,
Mimblewimble, MobileCoin, Interstellar, etc.

Most practical applications of Bulletproofs utilize their non-interactive variant which, since Bullet-
proofs is a public-coin proof system, can be obtained using the Fiat-Shamir heuristic [FS87] e.g., the
interaction with the verifier (who is only supposed to send uniformly random challenges) is replaced by
interacting with a public hash function. Under the assumption that the hash function is a random oracle,
one can hope that the prover has no easier time producing proofs for false statements (or for statements
for which they do not know a witness) than when interacting with an actual verifier.

While the Fiat-Shamir heuristic does not always guarantee soundness in the standard model [GK03,
BDG+13], the programmable random oracle model allows to construct sound non-interactive zero knowl-
edge proofs and digital signatures [OO98, PS00, AABN02, FKMV12, KMP16]. However, most existing
results only apply to classic Σ-protocols [CDS94], which are a special class of ZK protocols with only 3
moves. Therefore these analyses do not cover the case of Bulletproofs, which is a multi-round protocol.

For the case of Bulletproofs, Ghoshal and Tessaro [GT21] conducted a concrete knowledge soundness
analysis of Fiat-Shamir Bulletproofs in the algebraic group model [FKL18], e.g., it is not possible for any
algebraic prover to produce a valid proof without knowing a witness for the statement (a similar result, but
with less tight bounds, appeared concurrently also in [BMM+19]). Later, a recent work of Attema, Fehr
and Klooß [AFK21] formally proved the assumed concrete knowledge error of Fiat–Shamir transformation
of Bulletproofs-like protocols 6 in the random oracle model only. However, the results in [GT21], [AFK21]
only consider a malicious prover “in isolation”, whereas in most practical applications of Bulletproofs,
several provers are producing and exchanging proofs at the same time (e.g., on a Blockchain).

The notion of non-malleability in cryptography was introduced in [DDN91], and the notion of non-
malleability for zero-knowledge proofs was introduced in [Sah99]. In a nutshell, a malleability attack is
one in which the adversary gets to see proofs from honest parties, and then modifies or re-uses parts of
the proofs output by the honest parties to forge a proof on some statement for which they do not know
a witness. Malleability attacks can have very serious consequences, such as the famous MtGox attack of
2014 [DW14].

Therefore, it is worrisome that Fiat-Shamir Bulletproofs have been implemented in the wild without
any solid evidence that malleability attacks are not possible against them.
Improvements over the proceeding version [GOP+22]. In the previous version [GOP+22], we show
that Fiat-Shamir Bulletproofs satisfies a strong notion of simulation-extractability which in particular
implies non-malleability. The result assumes the algebraic group model (AGM) [FKL18] which is a model
that only considers restricted classes of adversaries that, in a nutshell, output a group element z ∈ G
together with its representations [z] w.r.t. all elements they have seen so far. This was to invoke the
concrete knowledge soundness analysis of Fiat-Shamir Bulletproofs provided in the AGM [GT21].

In this updated version, we improve upon [GOP+22] by proving simulation-extractability for Fiat-
Shamir Bulletproofs in the random oracle model and thus extending it to include all PPT adversaries.
The technical core of our analysis relies on the work of [GOP+22] and [AFK21]. Definitions of FS-EXT
and FS-SIM-EXT have been changed to more standard ones accordingly. The current version simplifies the
generic result showing FS-SIM-EXT assuming FS-WUR and FS-EXT by removing AGM-specific arguments.
In particular, the present result does not require the NIZK simulator to be algebraic anymore. The unique
response analysis of FS-BP has also been simplified, by directly proving FS-WUR for the Fiat-Shamir
5 https://zkproof.org
6 The analysis is not directly applicable to Bulletproofs. However, as we will see in Section 2.8, it applies to

Bulletproofs after minor tweaks to the protocol.
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Fig. 1: Overview of modular security analysis towards simulation-extractability of multi-round Fiat–
Shamir NIZK.

transformed protocol instead of its state-restoration variant for the interactive protocol. Along the way,
our reduction relies on the extraction strategy of [AFK21].

1.1 Technical Overview

As already argued, in applications where proof systems are deployed, an adversary who tries to break the
system has access to proofs provided by other parties using the same scheme. Thus, any reasonable security
notion must require that a ZK proof system be secure against adversaries that potentially see and utilise
proofs generated by different parties. Simulation-soundness and simulation-extractability (FS-SIM-EXT)
are the notions that guarantee soundness (the prover cannot prove false statements) or the stronger
property knowledge-soundness (the prover cannot prove statements without knowing a witness) to hold
against adversaries who may see many (simulated) proofs.
From extractability to simulation-extractability. Our starting point is the work of Attema, Fehr
and Klooß [AFK21], that proves that the Fiat-Shamir transform of multi-round special-sound (k-SS)
public coin protocols is knowledge sound (or extractable, denoted by FS-EXT) in the (programmable)
random oracle (RO) model. They proposed a novel extractor algorithm that given black-box rewinding
access to the adversary extracts a valid witness whenever the adversary outputs an accepting transcript. In
particular, their analysis implies that the Fiat-Shamir-transformed multi-round public coin protocols, are
knowledge sound in the ROM without an exponential security loss. This can be extended to Bulletproofs
(henceforth referred to as BP), as we will see in Section 2.8. The natural question is then, can their proof
be easily extended to cover the case of simulation-extractability (where the result needs to hold even when
the NIZK simulator has to provide the adversary with simulated proofs on statements of their choice)?

To see why the extension is not straightforward, consider the following natural approach: From
[AFK21] we can conclude (cf. Section 2.8) that Fiat-Shamir BP (FS-BP) satisfies FS-EXT. By proof-
by-contradiction, we assume there exists a cheating prover P̂ against FS-SIM-EXT. If we now manage to
construct an adversary P against FS-EXT given P̂, we could conclude that FS-BP is indeed FS-SIM-EXT.
A possible way to construct P invoking P̂ internally is as follows: The proof queries made by P̂ are
answered by P by running the honest verifier zero-knowledge (HVZK) simulator of BP, and then pro-
gramming the RO with the challenges returned by the simulator. The RO queries, on the other hand, are
simply forwarded outside to the RO as before. When P̂ outputs a transcript T , P forwards the same as its
output. However, this reduction fails in certain scenarios, e.g., consider the case when T shares a common
prefix with one of the simulated transcript. The challenges in T would not correspond to the actual RO
output (as they are programmed), and thus, T would not be an accepting transcript in the knowledge
soundness game even if it is accepting in the FS-SIM-EXT game. An existing strategy to circumvent the
issue is to assume that no adversary can generate two distinct accepting transcripts that share a common
prefix, which is captured by the notion of “unique response” for the underlying protocol. This notion
has already been used to prove simulation-extractability of Σ-protocols [FKMV12], multi-round public
coin interactive protocols [DFM20, GKK+22], and Sonic and Plonk [GKK+22]. However, BP does not
have unique response under their definition: this is simple to see since randomized commitments are sent
from the prover during the third round, so one can trivially come up with two accepting transcripts with
distinct commitment randomnesses.

The next natural attempt might then be to “de-randomize” later rounds of BP e.g., by letting the
prover choose and commit all their random coins in the first round, and then prove consistency of all
future rounds with these coins. This of course introduces new challenges, since these additional consistency
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proofs must themselves not use any additional randomness in rounds other than the first one. While these
technical challenges could be overcome using the right tools, the final solution would be all but satisfactory.
First of all, the new protocol would be less efficient than the original BP. And perhaps more importantly,
all real-world implementations of BP would have to decide whether to switch to the new protocol without
any evidence that the original BP is insecure.

Instead, we present a new approach here that allows us to prove that Fiat-Shamir BP as is satisfies
FS-SIM-EXT, which has wide-reaching impact for systems based on BP that are already in use. We discuss
our new security notions and a chain of implications below.
Weak unique response. We introduce two new definitions: state-restoration weak unique response
(SR-WUR), and Fiat-Shamir weak unique response (FS-WUR), which are the interactive, and non-
interactive definitions for showing unique response of protocols. We show that these two notions are
tightly related, i.e., FS-WUR tightly reduces to SR-WUR of the interactive protocol (Lemma 3.1). Both
notions require that it should be hard for the adversary, on input a simulated proof, to output a proof
which shares a prefix with it. This is opposed to the previous notion of (strong) unique response that
requires it should be infeasible for the adversary to come up with two different proofs that share a prefix.
As an analogy, our notion is akin to second preimage resistance for hash functions, while the previous
notion is akin to collision resistance. Clearly, it is easier to show that an existing protocol satisfies the
weaker definition. But it is in turn harder to show that the weaker definition is enough to achieve the
overall goal. However, note that the weaker variant of the definition is also somewhat closer to the intu-
itive goal of non-malleability: we do not want the adversary to be able to reuse parts of proofs generated
by other parties to forge new proofs.
Simultation-extractability of multi-round Fiat–Shamir. Once we have FS-EXT, FS-WUR, and
NIZK for a non-interactive protocol, we are able to show its simulation-extractability. The diagram in
Fig. 1 summarizes our modular security analysis towards FS-SIM-EXT of multi-round Fiat–Shamir NIZK.
While our framework has been built with Bulletproofs as its main use case, the results from Section 3 are
stated in a self-contained manner and could be used to show simulation-extractability for other public-
coin protocols in the literature. Putting our analysis and the result of [ACK21] together, we obtain the
following general theorem.

Theorem 1.1 (General Theorem (Informal)). If a multi-round public-coin interactive protocol sat-
isfies (1) special soundness (k-SS), (2) perfect honest verifer zero knowledge (HVZK), and (3) state-
restoration weak unique responses (SR-WUR), then the non-interactive version of the protocol achieved
via the Fiat-Shamir transform, is simulation-extractable (FS-SIM-EXT) in the programmable random or-
acle model.

Non-malleable Bulletproofs. We use our definitional foundation to show that Fiat-Shamir BP is non-
malleable and give concrete security bounds for it. The main technical contribution here is to show that
FS-BP satisfies our (weaker) definition of unique response, namely FS-WUR.7 We show that given Aur

breaking FS-WUR, one can construct a reduction B that finds a non-trivial discrete logarithm relation
between group generators in the public parameters, which is already assumed to be hard in [BBB+18] for
proving the knowledge soundness of BP. To this end, the reduction B requires the group representation of
forged transcript T . This is enabled by switching to a simulator which remembers the group representation
of simulated transcript T̃ (which shares some prefix with T ) and then by rewinding Aur to extract
the representation of the remaining part. For the latter analysis, we invoke a variant of the extractor
algorithm proposed in [AFK21] to construct a sub-tree of transcripts sharing the prefix with T̃ . For the
other assumptions in the theorem, we rely on existing knowledge with some adjustments: BP is known to
satisfy FS-EXT (from [AFK21]). We do this for two versions of FS-BP, namely Bulletproofs for arithmetic
circuits (in Section 4) and range-proofs Bulletproofs (in Appendix B).

.

1.2 Related work

Goldwasser and Kalai [GK03] show that the Fiat-Shamir heuristic is not sound in general, by showing
explicit – and somewhat contrived – counterexamples that cannot be proven secure for any hash function.
However, there is no evidence that any natural construction using the Fiat-Shamir heuristic is insecure.
7 While the proceedings version proved SR-WUR of the interactive BP in the AGM, in the present version we

show FS-WUR directly in the non-interactive setting. This is to make use of the existing extractor of [ACK21]
which was already tailored to the random oracle instead of the state-restoration oracle.
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Faust et al. [FKMV12] are the first to analyze simulation-soundness and simulation-extractrability
of Fiat–Shamir NIZK from Σ-protocols. Ganesh et al. [GKK+22] extend their result to multi-round
protocols with (n1, . . . , nr)-special soundness. The latter result requires the Fiat-Shamir transformed
protocol to be k-unique response, i.e., it is hard for a PPT adversary to produce two distinct proofs
that have the same first k-round messages, and k-programmable trapdoor-less zero-knowledge, i.e., the
simulator only needs to program the challenge corresponding to the k-th message. BP simulators, that
we know of, need to program challenges starting from round 1. Moreover, as discussed earlier, it has an
intermediate randomized round due to which it does not satisfy 1-unique response. Thus, general results
from [GKK+22] are not applicable to BP.

Don et al. [DFM20] study multi-round Fiat–Shamir in the quantum random oracle model, but their
generic claim (Corollary 15) incurs at least a multiplicative factor O(qr)8 in the loss in soundness due
to Fiat–Shamir, even if the result is downgraded to the classical setting. Hence their result leads to a
super-polynomial loss when the number of rounds r depends on the security parameter as in Bulletproofs.
They also showed simulation-extractability of multi-round Fiat–Shamir proofs in the QROM assuming
the (strong) unique response property of the underlying interactive protocols. As mentioned earlier,
Bulletproofs do not meet their definition of unique responses and we are thus motivated to explore
alternative paths towards simulation-extractability, but in the classical ROM.

There are a limited number of works that analyze the concrete soundness loss incurred by Fiat–Shamir
when applied to non-constant round protocols. Ben-Sasson et al. [BCS16] show that if the underlying
interactive oracle proof protocol satisfies state-restoration soundness (a stronger variant of soundness
where the prover is allowed to rewind the verifier states) then Fiat–Shamir only introduces 3(q2 + 1)2−λ

of additive loss both in soundness and proof of knowledge. Canetti et al. [CCH+18, CCH+19] propose
the closely related notion of round-by-round soundness which is sufficient to achieve soundness, even
in the standard model.Following these works, Holmgren [Hol19] shows state-restoration soundness and
round-by-round soundness are equivalent.

Ghoshal and Tessaro [GT21] and Bünz et al. [BMM+19] (concurrently) provide a detailed analysis of
non-interactive Bulletproofs in the algebraic group model (AGM) [FKL18] and, in particular, the former
shows state-restoration witness extended emulation of interactive Bulletproofs in the AGM and uses it
to argue that extractability of non-interactive Bulletproofs results in (q + 1)/2sLen(λ) in additive loss,
where sLen(λ) is the bit length of the shortest challenge. Finally, works by [AFK21, Wik21] generically
explore the concrete knowledge error of Fiat-Shamir-transformed special-sound multi-round public coin
protocols in the ROM, which includes FS-BP. Crucially, these works present carefully designed extraction
strategies tailored to special sound protocols to circumvent the loss of O(qr) in the knowledge error and
expected running time of the extractor. However, none of these works explore simulation-soundness or
simulation-extractability of non-constant round Fiat–Shamir.

There are also other zkSNARKs that satisfy simulation-extractability such as e.g., [GM17] and
[Gro16, GKK+22]. However, these constructions are very different than Bulletproofs since they rely on
a structured reference string which comes with a trapdoor, the knowledge of which compromises the
soundness. [BKSV20] show techniques to make [Gro16] black-box weakly simulation-extractable NIZK
using verifiable encryption. A generic framework to turn existing zkSNARKs into simulation-extractable
zkSNARKs was presented in [ARS20], but Bulletproofs is not covered by their result since their transform
only works for schemes with trusted setup.

2 Preliminaries

2.1 Notations

We denote by N = {0, 1, 2, . . . } the natural numbers, and Z the integers. We use bold face to denote
vectors, e.g., a ∈ Zn is a vector of n integers. For a, b ∈ Zn we write ⟨a, b⟩ for the inner product.
For a group G where (g1, . . . , gn) = g ∈ Gn and (a1, . . . , an) = a ∈ Zn, we denote by ga =

∏n
i=1 gai

i .
The identity element of G is denoted by 1G. The Hadamard product of vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) is a ◦ b = (a1b1, . . . , anbn). For z ∈ Z∗

p, denote zn as the vector (1, z, . . . , zn−1), and
z−n = (1, z−1, . . . , z−n+1).

The security parameter λ is 1λ in unary. We use negl(λ) to denote a negligible function in λ. We write
Xλ ≡ Yλ to denote that probabilistic ensembles {Xλ}λ and {Yλ}λ are equivalent.
8 Here and below q is the number of queries to the random oracle, r is the number of rounds, and λ is the security

parameter.
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2.2 Discrete Logarithm Problem

We recall the discrete logarithm relation problem (DL-REL). It is defined with respect to a group generator
algorithm GGen(1λ) that outputs a cyclic group G of prime order p(λ). Note that DL-REL is asymptotically
equivalent to the standard discrete logarithm assumption (see e.g. [JT20, Lemma 3]).

Definition 2.1 (DL-REL). Given an adversary A and n ≥ 2, the advantage of finding a non-trivial
discrete logarithm relation between random n generators is

AdvDL-REL
GGen (A) = Pr

[
gx = 1G ∧ x ̸= 0 : G← GGen(1λ); g := (g1, . . . , gn) $←− Gn;

x := (x1, . . . , xn)← A(G, g)

]
.

2.3 Relations

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be an efficiently decidable relation. For given public parameters pp,
we call w a witness for statement x if (pp, x, w) ∈ R. The associated language for pp is Lpp = {x |
∃w s.t. (pp, x, w) ∈ R}. Given a fixed public parameter pp, we denote by Rpp the restriction of R to{

(x, w) : (pp, x, w) ∈ R
}

.
Relation for inner product argument. The relation proven by the inner-product argument in
[BBB+18] is

RInPrd =
{

((n, g, h, u), (P ), (a, b)) | P = gahbuc ∧ c = ⟨a, b⟩
}

⊆ (N×Gn ×Gn ×G)× (G)× (Zn
p × Zn

p )
(1)

where G ∈ GGen(1λ) and g, h are vectors of uniformly sampled independent generators.
Relation for arithmetic circuit satisfiability. Any arithmetic circuit with n multiplication gates
can be represented using a constraint system (cf. [BCC+16] ). The constraint system consists of three
vectors aL, aR, aO ∈ Zn

p representing the left inputs, right inputs, and outputs of multiplication gates
respectively, so that aL ◦ aR = aO, and additional Q ≤ 2n linear constraints. The linear constraints can
be represented as WL · aL + WR · aR + WO · aO = c, where WL, WR, WO ∈ ZQ×n

p and c ∈ ZQ
p . This

results in the following relation for arithmetic circuit satisfiability

RACS =
{

((n, Q), (WL, WR, WO, c), (aL, aR, aO)) |
aL ◦ aR = aO ∧WL · aL + WR · aR + WO · aO = c

}
⊆ (Z× Z)× (ZQ×n

p × ZQ×n
p × ZQ×n

p × ZQ
p )× (Zn

p × Zn
p × Zn

p )

For simplicity, we also include the Bulletproofs setup resulting in the relation

RACSPf =
{

((n, Q, g, h, u, g, h), (WL, WR, WO, c), (aL, aR, aO)) |
aL ◦ aR = aO ∧WL · aL + WR · aR + WO · aO = c

}
(2)

⊆ (Z2 ×G3 ×Gn ×Gn)× (ZQ×n
p × ZQ×n

p × ZQ×n
p × ZQ

p )× (Zn
p × Zn

p × Zn
p )

2.4 Interactive Proofs

An interactive proof [GMR85] is a tuple of three algorithms Π = (Setup,P,V). On input 1λ, the setup
algorithm Setup produces public parameters pp. The transcript of the interaction between prover P with
private input w (i.e., witness) and PPT verifier V with common input x (i.e., statement) is denoted by
T ← ⟨P(pp, x, w) , V(pp, x)⟩. After interaction, V outputs a decision bit b, i.e., b = 1 means the verifier
accepts. For convenience, Ver denotes the verdict algorithm that V uses to determine the decision bit b
at the end of interaction, i.e., V outputs 1 during T ← ⟨P(pp, x, w) , V(pp, x)⟩ if and only if Ver(pp, x, T )
outputs 1. An interactive proof where the prover is PPT is also known as argument.

Intuitively an interactive proof for relation R allows a prover knowing a witness w to convince the
verifier of a statement x. Given (pp, x, w) ∈ R an honest prover should always convince the verifier
(completeness) while a prover should not be able to convince the verifier of x if x is not true (soundness),
nor without ‘knowing’ w such that (pp, x, w) ∈ R (proof of knowledge). Finally, the proof should not
reveal any more information than the validity of the statement (zero-knowledge).

In this work, we focus on analyzing (2r + 1)-round proof systems where the prover (resp. the verifier)
sends messages in odd (resp. even) rounds. That is, a transcript T of (2r + 1)-round proof can be parsed
as T = (a1, c1, . . . , ar, cr, ar+1) where ai for i = 1, . . . , r + 1 is a (2i− 1)-th round message output by P
and ci for i = 1, . . . , r is a 2i-th round message output by V, respectively.
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Definition 2.2 (Public Coin). An interactive proof Π = (Setup,P,V) is public coin if all messages
sent by the verifier V during the interaction with P in round 2i are chosen uniform-randomly from
the challenge space Chi (where the challenge spaces Chi are specified by Setup). In particular, they are
independent of the provers messages.
Definition 2.3 (Completeness). An interactive proof Π = (Setup,P,V) satisfies perfect completeness
if for all λ and for all adversaries A it holds that

Pr

Ver(pp, x, T ) = 1 ∧ (x, w) ∈ Rpp :
pp← Setup(1λ);
(x, w)← A(pp)

T ← ⟨P(pp, x, w) , V(pp, x)⟩

 = 1.

Definition 2.4 (Perfect Honest-Verifier Zero-Knowledge). An interactive proof Π = (Setup,P,V)
for relation R is perfect honest verifier zero-knowledge (HVZK) if there exists a PPT simulator S such
that for all adversaries A it holds that

⟨P(pp, x, w) , V(pp, x)⟩ ≡ S(pp, x)

where pp← Setup(1λ) and (x, w)← A(pp) such that (x, w) ∈ Rpp.

Min-entropy of commitments. We want to assess how likely it is for first round messages of an
interactive protocol to collide with a fixed value.
Definition 2.5 (Min-entropy of commitments). Let Π = (Setup,P,V) be a multi-round interactive
proof for relation R. Let Coin(λ) be the set of random coins used by the prover on input pp ∈ Setup(1λ)
and P1(·) the function that outputs the first round message for P. For any fixed λ ∈ N and (pp, x, w) ∈ R
such that pp ∈ Setup(1λ), consider the maximum probability that a first round prover message hits a
particular value:

µ(λ, pp, x, w) = max
a1∈{0,1}∗

Pr
[
P1(pp, x, w; ρ) = a1 : ρ

$←− Coin(λ)
]

.

The min-entropy α of protocol Π is

α(λ) = min
pp∈Setup(1λ) ∧ (x,w)∈Rpp

(− log2(µ(λ, pp, x, w))).

2.5 Non-Interactive Proofs via Fiat–Shamir
In this paper we focus on non-interactive proof systems obtained via the Fiat–Shamir heuristic [FS87],
which allows to transform a public-coin interactive proof into an non-interactive version in the random
oracle model. Given an interactive proof system Π = (Setup,P,V), we define the corresponding non-
interactive proof system ΠFS = (SetupFS,PFS,VFS) as follows. We write PH

FS and VH
FS to denote that the

prover and verifier only have oracle access to H.
– We denote by (pp, H)← SetupFS(1λ) the setup algorithm generating pp by invoking Setup(1λ) of Π,

and then for i ∈ [1, r] samples a function Hi uniformly from a set of all functions that map {0, 1}∗

to Chi. Note that this is equivalent to instantiating Hi from a single random oracle via usual domain
separation. We denote H as shorthand for {Hi}i∈[1,r].

– We denote by T ← PH
FS(pp, x, w) the prover producing a proof string T 9 on input pp, statement x,

and witness w. For each round i ∈ [1, r], PH
FS invokes the next message function of the interactive

prover P(pp, x, w) on prior challenge ci−1 to get ai, and obtains the ith round challenge by computing
ci = Hi(pp, x, a1, c1, . . . , ai−1, ci−1, ai). Then PH

FS outputs T = (a1, c1, . . . , ar, cr, ar+1).
– We write b ← VH

FS(pp, x, T ) for the decision bit of the verifier on input of pp, statement x, and
proof string T . VH

FS outputs b = 1, meaning the verifier accepts the proof, iff Ver(pp, x, T ) = 1 and
ci = Hi(pp, x, a1, c1, . . . , ci−1, ai) for all i ∈ [1, r].

Definition 2.6 (Completeness). A non-interactive proof ΠFS = (SetupFS, PFS, VFS) for relation R
satisfies perfect completeness if for all λ and for all adversaries A it holds that

Pr

VH
FS(pp, x, T ) = 1 ∧ (x, w) ∈ Rpp; :

(pp, H)← SetupFS(1λ);
(x, w)← A(pp)

T ← PH
FS(pp, x, w)

 = 1.

9 To make our analysis simpler we include a version of Fiat-Shamir where a proof string contains all challenges.
This also allows us to use the same notation T for transcripts and proof strings.
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2.6 NIZK and Simulation Oracles

We define zero-knowledge for non-interactive proofs in the explicitly programmable random oracle model
where the simulator can program the random oracle. The formalization below can be seen as that of
[FKMV12] adapted to multi-round protocols. The zero-knowledge simulator SFS is defined as a stateful
algorithm that operates in two modes. In the first mode, (ci, st′) ← SFS(1, st, t, i) takes care of random
oracle calls to Hi on input t. In the second mode, (T̃ , st′) ← SFS(2, st, x) simulates a valid proof string.
Throughout the paper, we assume the state st is initialized with pp once it’s generated by SetupFS. For
convenience we define three “wrapper” oracles. These oracles are stateful and share state.

– S1(t, i) to denote the oracle that returns the first output of SFS(1, st, t, i);
– S2(x, w) that returns the first output of SFS(2, st, x) if (pp, x, w) ∈ R and ⊥ otherwise;
– S ′

2(x) that returns the first output of SFS(2, st, x).
Since NIZK is a security property that is only guaranteed for valid statements in the language, the

definition below makes use of S2 as a proof simulation oracle. As we shall see later, simulation-extractability
on the other hand is defined with respect to an oracle similar to S ′

2 following [FKMV12].

Definition 2.7 (Non-interactive Zero Knowledge). Let ΠFS = (SetupFS,PH
FS,VH

FS) be a non-
interactive proof for relation R. ΠFS is unbounded non-interactive zero knowledge (NIZK) in the random
oracle model, if there exist a PPT simulator SFS with wrapper oracles S1 and S2 such that for all PPT
distinguisher D, its advantage

AdvNIZK
ΠFS

(D,SFS)

=
∣∣∣Pr
[
DH,PH

FS(pp) = 1 : (pp, H)← SetupFS(1λ)
]
− Pr

[
DS1,S2(pp) = 1 : (pp, H)← SetupFS(1λ)

]∣∣∣
is negligible in λ, where both PH

FS(pp, x, w) and S2 return ⊥ if (pp, x, w) ̸∈ R.

Given a perfect HVZK simulator S for Π, we immediately obtain the following canonical NIZK simu-
lator SFS for ΠFS by defining responses of each mode as follows.

– To answer query (t, i) with mode 1, SFS(1, st, t, i) lazily samples a lookup table Q1,i kept in state st. It
checks whether Q1,i[t] is already defined. If this is the case, it returns the previously assigned value;
otherwise it returns and sets a fresh random value ci sampled from Chi.

– To answer query x with mode 2, SFS(2, st, x) calls the perfect HVZK simulator S of Π to ob-
tain a simulated transcript T = (a1, c1, . . . , ar, cr, ar+1). Then, it programs the tables such that
Q1,1[pp, x, a1] := c1, . . . ,Q1,r[pp, x, a1, c1, . . . , ar] := cr. If any of the table entries has been already
defined SFS aborts, which should happen with negligible probability assuming high min-entropy of
a1.

2.7 Knowledge Extraction in ROM

We define an adaptive version of extractability for Fiat-Shamir NIZK. We slightly modify Definition 10
of [AFK21] by explicitly passing the random oracle query history of the first run to an extractor, and by
having an extractor only output the witness. Since the extractor of [AFK21] initially invokes a prover and
simulates the random oracle responses honestly, their main theorem can be reused to prove FS-EXT.10

Definition 2.8 (FS-EXT security). Consider a non-interactive proof system ΠFS = (SetupFS,PFS,VFS)
for relation R. ΠFS is (adaptively) extractable (FS-EXT) with knowledge error κ : N × N → [0, 1] in the
random oracle model, if there exists an extractor E and some polynomial poly, such that for any PPT
adversary P that makes at most q queries to H, it holds that

ext(P, E) ≥ acc(P)− κ(λ, q)
poly(λ)

and E halts in an expected number of steps that is polynomial in λ and q, where the probabilities acc (taken
over the random coins used by SetupFS and P) and ext (taken over the random coins used by SetupFS, P,
10 We also omit auxiliary information of [AFK21, Definition 10] since in our formulation the distributions of

outputs of P are trivially identical in acc and ext.
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and E) are defined as follows.

acc(P) = Pr
[
b = 1 : (pp, H)← SetupFS(1λ); (x, T )← PH(pp; ρ); b← VH

FS(pp, x, T )
]

ext(P, E) = Pr
[

b = 1 ∧ (x, w) ∈ Rpp :
(pp, H)← SetupFS(1λ); (x, T )← PH(pp; ρ);
b← VH

FS(pp, x, T ); w ← EP(pp, x, T , ρ,Q1)

]

where Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding to queries to the random oracle H
with index i. In the experiment of ext, E has oracle access to the next-message function of P.

2.8 Knowledge Extraction for Special-Sound Multi-Round Protocols

Attema, Fehr and Klooß [AFK21] presented a proof that multi-round public coin protocols with gener-
alized special soundness (defined below) lead to extractable non-interactive proofs in the random oracle
model when the Fiat-Shamir transform is applied. Importantly, they carefully design a knowledge extrac-
tor that significantly reduces number of rewindings via a clever early abort strategy. We will use their
extractor for proving the concrete result for BP. We summarize the extractor algorithm from [AFK21] in
the adaptive setting and its implication for (computational) knowledge soundness of BP next.

Definition 2.9 (Tree of Transcripts [AFK21]). Let k = (k1, . . . , kr) ∈ Nr. A k-tree of transcripts
for a (2r + 1)-round public-coin interactive proof Π = (Setup,P,V) is a set of K =

∏r
i=1 ki transcripts

arranged in the following tree structure. The nodes in this tree correspond to the prover’s messages and
the edges to the verifier’s challenges. Every node at depth i has precisely ki children corresponding to ki

pairwise distinct challenges. Every transcript corresponds to exactly one path from the root node to a leaf
node.

Definition 2.10 (k-Special-Soundness [AFK21]). Let k = (k1, . . . , kr) ∈ Nr. A (2r + 1)-round
public-coin interactive proof Π for relation R is k-special-sound (k-SS) if there exists a polynomial time
algorithm that, on input a statement x and a k-tree of accepting transcripts outputs a witness w such
that (pp, x, w) ∈ R.

The knowledge extractor of [AFK21].
Let ΠFS be the Fiat-Shamir transformation of a k = (k1, . . . , kr)-special sound, (2r + 1) rounds

public coin interactive proof Π. Let P be the adversary against knowledge-soundness of ΠFS. After
making q queries to the random oracle H, P outputs a transcript T = (a1, c1 . . . , ar+1) together with a
statement x. For ease of understanding we denote the following according to the notation in [AFK21];
I1 = (x, a1), I2 = (x, a1, a2), . . . , Ir = (x, a1, . . . , ar). I = (I1, . . . , Ir), and b = VH(pp, x, T ). Given P that
outputs (x, T ) after querying H, one can construct a wrapper A that internally invokes P and outputs
(I, T , b).

In order to extract, the goal is to construct a k-tree given blackbox access to the corrupt prover
A. Given such a tree the extractor either extracts a valid witness (because of special-soundness, see
Definition 2.10) or breaks discrete-log with very high probability. A k-tree is nothing but a composition
of k1 appropriate (1, k2, . . . , kr)-trees. Following this intuition, [AFK21] defines extraction algorithm E1
by defining a sequence of sub-extractors E2, . . . , Er, where extractor Eℓ is responsible for constructing a
(1, 1, . . . , kℓ, . . . , kr)-tree. The overall extraction algorithm then is recursive calls to these sub-extractors
starting from E1. The recursive definition for Eℓ appears in Fig. 1. In this definition, calls to Eℓ+1 are in
fact calls to the adversarial algorithm A, and we assume that challenges for all rounds come from the
same challenge set Ch.

Each extractor E1, . . . , Er executes in two parts. In the first part, Eℓ calls Eℓ+1 recursively till A is
invoked for the first time. Eℓ forwards any RO queries made by Eℓ+1 outside to the calling sub-extractor
Eℓ−1. These RO queries will ultimately be forwarded to E1 who answers them by lazily sampling from
the challenge space. The base of the recursion is the algorithm A which outputs I after making q RO
queries to Er. This ends the first recursion. Now, in the second part (the repeat loop, see Fig. 1), each
sub-extractor Eℓ calls Eℓ+1 to build a (1, . . . , kℓ, . . . , kr)-tree with respect to I, i.e., for all the transcripts
in the tree the first a1, . . . , aℓ prover messages are the same as in I. In this part, Eℓ answers the RO
queries made by Eℓ+1 itself. It will reprogram the RO output for the ℓ-th round challenge, and otherwise,
it answers them consistent with all previous runs of Eℓ+1 so far. Eℓ calls Eℓ+1 repeatedly till either an
appropriate tree (with respect to I) is found or it runs out of all challenges.

The success probability of extractor Eℓ, i.e. the extractor outputs a valid tree is given as:
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Lemma 2.1 (Proposition 2 in [AFK21]). Let Kℓ =
∏r

i=ℓ ki. The extractor Eℓ makes an expected
number of at most Kℓ + q · (Kℓ − 1) queries to A (and thus to P) and successfully outputs b = 1 with
probability at least

ϵ(A)− (q + 1) · κℓ

1− κℓ

where κℓ = Er((kℓ, . . . , kr); Chℓ, . . . , Chr) is the knowledge error of the interactive proof Π, and ϵ(A) is
the probability that the adversary A outputs an accepting transcript after making q queries to the random
oracle.

We assume that the challenges for all the rounds come from the same set Ch. The term Er((kℓ, . . . , kr); Ch)
denotes the knowledge error and is recursively defined as:

Er(∅;∅) = 1, and

Er((kℓ, . . . , kr); Ch) = 1− |Ch| − kℓ + 1
|Ch| (1− Er((kℓ+1, . . . , kr); Ch))

= 1−
m∏

i=ℓ

|Ch| − ki + 1
|Ch|

The extractability of Fiat-Shamir-transformed multi-round public coin interactive protocols in the
adaptive setting is given by Theorem 2.1.

Theorem 2.1 (Adapted from Theorem 4 in [AFK21]). The Fiat-Shamir transformation ΠFS of
a k = (k1, . . . , kr)-special-sound interactive proof Π, in which all challenges are sampled from a set Ch
of size |Ch|, is FS-EXT with knowledge error

κ(λ, q) = (q + 1) · κΠ(λ)

where κΠ(λ) = Er((k1, . . . , kr); Ch) is the knowledge error of the interactive proof Π.

Remark 2.1. We note that Proposition 2 and Theorem 4 in [AFK21] are stated w.r.t. deterministic and
unbounded cheating provers. These extend to PPT provers as well since we can invoke the subextractors
to obtain a tree of accepting transcripts even from an argument (computationally bounded) prover with a
fixed random tape. Extraction of a witness from such a tree always succeeds in the case of a proof system
whereas in an argument, it succeeds with all but negligible probability. This is because one can think of
the argument system as a proof of knowledge for a slightly different relation: knowledge of witness for
the underlying relation OR a discrete log relation (in general, solution to some computational problem).
Thus, given a tree, we either extract the orginal witness or the new witness (break a computational
assumption).11

Applicability to Bulletproofs [BBB+18]. Let n be the dimension of witness vectors in relationRACSPf
and m := log(n). The interactive Bulletproofs protocol for RACSPf (detailed in Protocol 1) is a (2r + 1)-
round public-coin proof with r = 3 + m. We first remark a small gap between the assumption required
by Theorem 2.1 and Bulletproofs. In fact, the first round challenge of Bulletproofs consists of two values
c1 = (y, z) ∈ Z2

p and for the witness extraction to succeed one needs a sufficient number of distinct
y’s and z’s individually, instead of distinct pairs (y, z). Concretely, the knowledge soundness analysis of
BP in [BBB+18] requires n distinct y and Q + 1 distinct z, respectively. To satisfy the aforementioned
k-special soundness the parameter k1 must be set to Ω(p), which is exponential in λ and thus invalidates
the analysis of [AFK21]. To circumvent the issue, one can slightly tweak the underlying multi-round
protocol by introducing an additional dummy round: on receiving a1 from the prover, the verifier only
returns the fist part of the challenge c1,0 = y, the prover sends an empty string to the verifier, and then
the verifier returns the second part c1,1 = z. This is indeed a (k1,0, k1,1, k2, . . . , kr)-special sound protocol
with (k1,0, k1,1, k2, k3, k4, . . . , kr) = (n, Q + 1, 7, 2, 8 . . . , 8), and therefore applying the Fiat-Shamir, PFS
derives y = H1(pp, x, a1, 0) and z = H1(pp, x, a1, y, 1), respectively. We can thus plug in this protocol into
Theorem 2.1. We also remark that the extractor of [AFK21] halts in expected polynomial time. Since a
reduction solving the DL-REL problem runs this extractor internally, the security of FS-BP also relies on
the expected-time hardness of DL-REL, which is shown to hold in the generic group model [JT20].
11 We thank Thomas Attema for clarifying this extension.
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Algorithm 1: Eℓ

1. First Run: Run Eℓ+1 as follows to obtain (I, tr1, b). Relay all the random oracle queries externally
to the random oracle and record query response pair. Set j := Iℓ and let cj be the response
to query j.

2. If b = 0, abort with output b := 0.
3. Repeat Run: Else, repeat:

(a) Sample c′ ∈ Ch \ {cj} (without replacement);
(b) Run Eℓ+1 as follows to obtain (I′, tr′, b′), aborting right after the initial run of A if I ′

ℓ ̸= Iℓ:
answer the query to j with c′

j , while answering all other queries consistently if the query
was performed by Eℓ+1 already on a previous run and with a fresh random value in Ch
otherwise;

until either kℓ − 1 additional challenges c′
j with b′ = 1 and I ′

ℓ = Iℓ have been found or until
all challenges c′ ∈ Ch have been tried.

4. In the former case, output I, the kℓ accepting (1, . . . , 1, kℓ+1, . . . , kr)-trees tr1, . . . , trkℓ
, and

b := 1; in the latter case, output b := 0.

Corollary 2.1 (Knowledge Soundness of FS-BP). Assuming the expected time hardness of solving
the discrete logarithm relation problem, the Fiat-Shamir transformation of Bulletproofs (Protocol 1) is
FS-EXT with negligible knowledge error. Concretely, there exists an adversary B against DL-REL such
that ΠFS is FS-EXT with knowledge error κ(λ, q), where

κ(λ, q) = (q + 1) · κΠ(λ) + AdvDL-REL
GGen (B)

where κΠ(λ) = Er((k1, . . . , kr); Ch), and Ch = Z∗
p. Moreover, the extractor E terminates after making an

expected number of at most K + q · (K − 1) queries to A, where K =
∏r

i=1 ki and the asymptotic running
time of B is equivalent to that of E.

3 Simulation-Extractability from Weak Unique Response

In this section, we introduce relaxed notions for the unique response property and show that along with
NIZK and FS-EXT, it implies simulation-extractability (FS-SIM-EXT). Later, in Section 4, we show that
BP satisfies our definition for unique response. First, we define FS-SIM-EXT and weak unique response.
Then, we present our generic result for FS-SIM-EXT from NIZK, FS-EXT and weak unique response.

3.1 Simulation-Extractability in ROM

At a high-level, the simulation-extractability (FS-SIM-EXT) property ensures that extractability holds
even when the adversary sees simulated proofs. The differences with FS-EXT are highlighted in orange.
The definition below follows the formulation of [FKMV12]. The difference is that we allow an extractor
to run in expected polynomial time instead of strict polynomial time. This is to base our generic theorem
on the analysis of [AFK21].

Definition 3.1 (FS-SIM-EXT security). Consider a non-interactive proof system ΠFS = (SetupFS,PFS,VFS)
for relation R with a NIZK simulator SFS. Let (S1,S ′

2) be wrapper oracles for SFS (see Section 2.6). ΠFS
is simulation-extractable (FS-SIM-EXT) with knowledge error κ̂ : N × N×N → [0, 1] and with respect to
SFS in the random oracle model, if there exists an extractor E and some polynomial poly, such that for
any PPT adversary P that makes at most q1 queries to S1 and q2 queries to S ′

2, it holds that

êxt(P, E ,SFS) ≥ âcc(P,SFS)− κ̂(λ, q1, q2)
poly(λ)
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and E halts in an expected number of steps that is polynomial in λ, q1 and q2, where the probabilities âcc
(taken over the random coins used by SetupFS, P, and SFS) and êxt (taken over the random coins used
by SetupFS, P, SFS, and E) are defined as follows.

âcc(P,SFS) := Pr
[
b = 1 ∧ (x, T ) /∈ Q2 : (pp, H)← SetupFS(1λ); (x, T )← PS1,S′

2(pp; ρ); b← VS1
FS (pp, x, T )

]
êxt(P, E ,SFS) := Pr

[
b = 1 ∧ (x, w) ∈ Rpp ∧ (x, T ) /∈ Q2 :

(pp, H)← SetupFS(1λ); (x, T )← PS1,S′
2(pp; ρ);

b← VS1
FS (pp, x, T ); w ← EP(pp, x, T , ρ,Q1,Q2)

]

where Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding to queries to S1 with random
oracle index i; Q2 is a set of statement-transcript pairs (x, T̃ ), where x is a statement queried to the
proof simulation oracle S ′

2 by P, and T̃ is the corresponding simulated transcript, respectively. In the
experiment of êxt, E has oracle access to the next-message function of P.

3.2 Weak Unique Response Properties

We now introduce two new definitions for the weak unique response property: one for interactive and
the other for non-interactive protocols. Our supporting claim (Lemma 3.1) below relates the two notions,
which might be of independent interest.
State-Restoration weak unique response. Our first definition considers the game SR-WURA,S

Π (λ) in
Figure 2. As the name suggests, the formalism of this notion is inspired from state-restoration witness
extended emulation definitions [GT21] [BCS16]. Intuitively, state-restoration witness extended emulation
says that having resettable access to the verifier (or “restoring its state”, hence the name) should not
help a malicious prover in producing a valid proof without knowing a witness for the statement. On a
similar note, our definition SR-WUR captures the security goal that resettable access to the verifier does
not help a malicious prover in generating a non-unique accepting response. Compared to the the usual
UR definition for interactive protocols, SR-WUR is both stronger (in the sense that an adversary can
rewind the verifier) and weaker (in the sense that an adversary is forced to use the simulated transcript
to find a forgery).

Concretely, the prover initially generates an instance x on which it attempts to break the unique
response property. We capture the power of the prover to rewind the verifier with an oracle Oext. Roughly,
the oracle allows the prover to build an execution tree, which is extended with each query to it by the
prover. The prover succeeds if it comes up with another accepting transcript T that is part of the execution
tree and have a prefix in common with the simulated transcript T̃ . Let T = (a1, c1, . . . , ar, cr, ar+1)
denote a transcript. We write T |i to denote a partial transcript consisting of the first 2i messages of T ,
i.e., T |i = (a1, c1, . . . , ai, ci).

We remark that, our SR-WUR is presented in a non-adaptive flavor (where the statement x is fixed
in the beginning) to prove subsequent lemmas with a weaker assumption. The reductions we present
later will go through even though the resulting simulation-extractability claim has an adaptive flavor, by
accepting a loss proportional to the number of simulation queries due to a standard guessing argument.

Definition 3.2 (SR-WUR). Consider a (2r+1)-round public-coin interactive proof system Π = (Setup,P,V)
that has perfect HVZK simulator S. Π is said to have state-restoration weak unique response (SR-WUR)
with respect to a simulator S, if for all PPT adversaries A = (A1,A2), the advantage AdvSR-WUR

Π (A,S) :=
Pr[SR-WURA,S

Π (λ) = 1] is negl(λ).

Fiat-Shamir weak unique response. We now present a similar definition tailored to non-interactive
protocols. While typical unique response properties in the literature are defined for interactive protocols,
[GKK+22, Definition 7] is in the non-interactive setting. Our definition below is strictly weaker than
theirs, as we only need to guarantee the hardness of finding another accepting transcript forked from a
simulated (honest) one.

Definition 3.3 (FS-WUR). Consider a (2r+1)-round public-coin interactive proof system Π = (Setup,P,V)
and the resulting non-interactive system ΠFS = (SetupFS,PFS,VFS) via Fiat-Shamir transform. Let SFS
be a canonical NIZK simulator for ΠFS (Definition 2.7) with wrapper oracles (S1,S ′

2) as defined in Sec-
tion 2.6. ΠFS is said to have weak unique responses (FS-WUR) with respect to SFS if given a tran-
script T̃ = (ã1, c̃1, . . . , ãr, c̃r, ãr+1) simulated by SFS, it is hard to find another accepting transcript
T = (a1, c1, . . . , ar, cr, ar+1) that both have a common prefix up to the ith challenge for an instance x.
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Game SR-WURA,S
Π (λ)

win← false
tr← ϵ
pp← Setup(1λ)
(x, stA)← A1(pp)
T̃ ← S(pp, x)
for i = 1, . . . , r do

tr← tr ∪
{
T̃ |i
}

end for
Run AOext

2 (T̃ , stA)
return win

Oracle Oext(T , ai)

Parse T as T = (a1, c1, · · · , ai−1, ci−1)
if T ∈ tr then

if i ≤ r then
ci

$←− Chi; tr← tr ∪ {(T , ai, ci)};
return ci

else if i = r + 1 then
d1 ← Ver(pp, x, (T , ai))
d2 ←

(
∃j ∈ [1, r] : T |j = T̃ |j ∧ aj+1 ̸= ãj+1

)
if d1 = 1 ∧ d2 = 1 then

win← true
return d1

return ⊥

Fig. 2: State-Restoration Weak Unique Response Game

That is, for all PPT adversaries A = (A1,A2) the advantage AdvFS-WUR
ΠFS

(A,SFS) defined as the following
probability is negl(λ):

Pr
[
VS1

FS (pp, x, T ) = 1

∧
(
∃j ∈ [1, r] : T |j = T̃ |j ∧ aj+1 ̸= ãj+1

) :
(pp, H)← SetupFS(1λ); (x, st)← AS1

1 (pp);

T̃ ← S ′
2(x); T ← AS1

2 (T̃ , st);

]
.

We now show that FS-WUR of ΠFS reduces to SR-WUR of the interactive proof system Π. Informally,
the lemma below guarantees that one can construct an adversary breaking unique response in the inter-
active setting, given an adversary breaking weak unique response in the non-interactive setting, as long
as it makes RO queries for the accepting transcript in right order.

Lemma 3.1. Consider a (2r + 1)-round public-coin interactive proof system Π = (Setup,P,V) and the
resulting non-interactive system ΠFS = (SetupFS,PFS,VFS) via Fiat-Shamir transform. Let S be a perfect
HVZK simulator for Π and SFS be the corresponding canonical NIZK simulator for ΠFS. If Π has SR-WUR
with respect to S, then ΠFS has FS-WUR with respect to SFS. That is, for every PPT adversary A against
FS-WUR of ΠFS that makes q queries to S1, there exists a PPT adversary B against SR-WUR of Π such
that,

AdvFS-WUR
ΠFS

(A,SFS) ≤ AdvSR-WUR
Π (B,S) + q + 1

|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 . Moreover, B makes at most q queries
to its oracle and is nearly as efficient as A.

Proof. Let A = (A1,A2) be the NIZK prover against FS-WUR. We define an adversary B = (B1,B2)
against SR-WUR. Without loss of generality we assume that A does not repeat the same RO queries.

In the first stage, B1 will run A1 on pp. Whenever A1 makes RO queries, B1 invokes S1 and keeps
track of the query history in tables Q1 = {Q1,1, . . . ,Q1,r}. When A1 returns (x, stA), B1 outputs (x, stB)
where stB = (pp, stA, x,Q).

In the second stage, B2 is given stB and T̃ , which is the output on invoking the HVZK simulator S on
x. Then, B2 programs the RO tables such that Q1,1[pp, x, ã1] := c̃1, . . . ,Q1,r[pp, x, ã1, c̃1, . . . , ãr] := c̃r.
Now, B2 invokes A2 on T̃ and stA and responds to the RO queries as follows.

– B2 initializes a set of partial transcripts tr as

tr = {(ã1, c̃1), . . . , (ã1, c̃1, . . . , ãr, c̃r)}.

– Whenever B2 receives from A2 a query to S1 of the form ((pp, x, T , ai), i) where transcript T =
(a1, c1, . . . , ai−1, ci−1), it checks if T ∈ tr. If that is the case, it queries Oext with T and ai (with
representation). On receiving challenge ci, it updates tr such that tr ← tr||(T , ai, ci) and programs
the RO table such that Q1,i[pp, x, T , ai] := ci. Note that the partial transcript set tr constructed as
above is guaranteed to be identical to that of SR-WUR.
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– When B2 receives from A2 a forged transcript T at the end, it checks whether the winning condition
is satisfied, i.e.,

VS1
FS (pp, x, T ) = 1 ∧ (∃j ∈ [1, r] : T |j = T̃ |j ∧ aj+1 ̸= ãj+1).

If that is the case but T |i /∈ tr for some i ∈ [1, r], B2 aborts, since it implies T is not present in the
partial transcript set maintained by Oext and therefore does not qualify as a winning transcript in
the SR-WUR game. Otherwise, it forwards T to Oext.
If B2 does not abort, B2 wins the SR-WUR game because all the partial transcripts of T are recorded

by Oext in the SR-WUR game. We now bound the probability that B2 aborts. It aborts only if (1) the
accepting transcript T was crafted byA2 without querying the RO in order, or (2) the accepting transcript
T contains some challenge that was obtained without querying the RO at all.

The first case happens only if for some i, j ∈ [1, r] such that j < i, a tuple (pp, x, T |i−1, ai) was
queried to S1 before (pp, x, T |j−1, aj) was queried. In that case, when (pp, x, T |j−1, aj) is queried later,
S1 must return cj already present in T |i−1 for T to be accepting. This happens with probability at most
q/|Chj | ≤ q/|Chi0 | (where i0 is the round with the smallest Chi0) since the adversary can try to guess
any challenge value for at most q times.

The second case happens only if for some i ∈ [1, r], a tuple (pp, x, T |i−1, ai) was never queried to S1
by A. In that case, when (pp, x, T |i−1, ai) is queried later, S1 must return ci already present in T for T
to be accepting. This happens with probability at most 1/|Chi| ≤ 1/|Chi0 | since VFS queries S1 once for
each challenge.

Overall, B wins whenever A wins except with probability at most (q + 1)/|Chi0 |.
⊓⊔

3.3 From Weak Unique Response to Simulation-Extractability

In this part, we prove that the weak unique response property is indeed sufficient for upgrading plain
extractability to simulation-extractability. Intuitively, one can construct a prover P that outputs a proof
in the FS-EXT game by internally invoking P̂ playing the FS-SIM-EXT game. P answers S ′

2 queries by
running SFS and forwards S1 queries made by P̂ to the actual random oracle H except for the inputs
already programmed by SFS. Notice that the programmed RO entries introduce inconsistencies between
the responses of S1 and H. Hence, P aborts if P̂ outputs a transcript that shares some prefix with any
of the simulated transcripts. The probability that P̂ aborts can be bounded by a negligible function,
assuming the FS-WUR property. Unless P aborts, we can run a FS-EXT extractor against P to obtain a
valid witness in expected polynomial time.

Lemma 3.2. Consider a non-interactive proof system ΠFS with a canonical NIZK simulator SFS. If ΠFS
is FS-EXT with negligible knowledge error and is FS-WUR, then it is FS-SIM-EXT with negligible knowledge
error. Concretely, if ΠFS is FS-EXT with knowledge error κ, then there exists a PPT adversary A against
FS-WUR such that ΠFS is FS-SIM-EXT with knowledge error κ̂ with respect to SFS, where

κ̂(λ, q1, q2) = q2 ·AdvFS-WUR
ΠFS

(A,SFS) + κ(λ, q1)

and q1 (resp. q2) is the number of queries to S1 (resp. S ′
2).

Proof. Let E be a FS-EXT extractor. We construct a FS-SIM-EXT extractor Ê . Given an arbitrary
FS-SIM-EXT prover P̂, Ê converts P̂ into a FS-EXT prover P that only has access to H.

To this end, let us first describe simple hybrids.
– G0(P̂,SFS): This game first runs a prover P̂ on input pp ← Setup(1λ) with access to S1,S ′

2. On
receiving output (x, T ) from P̂, G0 outputs 1 if and only if 1 = VS1

FS (pp, x, T ) and (x, T ) /∈ Q2. By
definition we have that

Pr[G0(P̂,SFS) = 1] = âcc(P̂,SFS).

– G1(P̂,SFS): This game is identical to the previous one, except that it aborts after setting the flag
bad if (x, T ) output by the adversary shares its prefix with some simulated statement-transcript pair
(x, T̃ ) ∈ Q2, i.e., there exists some j ∈ [1, r] such that T |j = T̃ |j and aj+1 ̸= ãj+1. Since G0 and G1
are identical until bad is set, we have that

|Pr[G0(P̂,SFS) = 1]− Pr[G1(P̂,SFS) = 1]| ≤ Pr[G1(P̂,SFS) sets bad]. (3)

Later we bound (3) by q2 ·AdvFS-WUR
ΠFS

(A,SFS).
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Algorithm 4: Construction of P

PH(pp)
1: Initialize st with empty Q1 = {Q1,1, . . . ,Q1,r}
2: Q2 := ∅
3: (x, T )← P̂S1,S′

2(pp)
4: b← VS1

FS (pp, x, T )
5: if (b = 0) ∨ ((x, T ) ∈ Q2) then
6: return (⊥,⊥)
7: end if
8: if ∃(x, T̃ ) ∈ Q2 : (∃j ∈ [1, r] : T |j = T̃ |j ∧aj+1 ̸=

ãj+1) then
9: bad := true

10: return (⊥,⊥)
11: end if
12: return (x, T )

S1(t, i)
1: Retrieve Q1,i from st
2: if Q1,i[t] ̸= ⊥ then
3: return Q1,i[t]
4: else
5: ci := Hi(t)
6: Q1,i[t] := ci

7: Update Q1,i in st
8: return Q1,i[t]
9: end if

S ′
2(x)

1: (T̃ , st) ← SFS(2, st, x) // Q1 in st gets up-
dated by SFS

2: Q2 := Q2 ∪ {(x, T̃ )}
3: return T̃

Construction of P for FS-EXT. We now construct a FS-EXT adversary P, detailed in Alg. 4. The
differences with the procedures of âcc are highlighted in orange. On a high level, P simulates the view
of P̂ in G1 while obtaining responses of S1 by querying the random oracle H. In doing so, the simulated
random oracle responses in Q1,i for i ∈ [1, r] are identical to those of H, except for the ones programmed
inside S ′

2. Since the prefix check performed on Line 8 rules out a forgery pair (x, T ) involving simulated
random oracle entries, P is guaranteed to output (x, T ) that is also accepting with respect to H, i.e.,
Hi(pp, x, a1, c1, . . . , ai) = ci for i ∈ [1, r]. Hence, we have that

Pr[G1(P̂,SFS) = 1] = acc(P).

Construction of Ê for FS-SIM-EXT. We are now ready to construct a FS-SIM-EXT extractor Ê . By
assumption, there exists an expected polynomial time FS-EXT extractor E satisfying Definition 2.8. After
the first run of P̂, Ê obtains (pp, x, T ,Q1,Q2) as input. If there exists (x, T̃ ) ∈ Q2 such that T ̸= T̃
and T |j = T̃ |j for some j ∈ [1, r], then Ê aborts. Otherwise, Ê strips from Q1 the entries involving
programmed partial transcripts derived from Q2, and passes (pp, x, T ,Q1) to E . Whenever E requests
running a prover, Ê gives E oracle access to the next-message function of P in Alg 4, which internally
calls the next-message function of P̂. In this way, whenever E outputs a valid witness, Ê also succeeds in
doing so. Putting everything together, we have

êxt(P̂, Ê ,SFS) ≥ ext(P, E) ≥ acc(P)− κ(λ, q1)
poly(λ)

≥ âcc(P̂,SFS)− Pr[G1(P̂,SFS) sets bad]− κ(λ, q1)
poly(λ)

By inspection, we observe the expected running time Time(Ê) ≈ q2 ·Time(SFS) ·Time(E), which is clearly
polynomial in λ, q1 and q2 if Time(E) is polynomial in λ and q1.
Reduction to FS-WUR. We now bound the probability (3) that the game G1 sets bad. We argue that,
if there exists P̂ that causes G1(P̂,SFS) to abort (or in other words, that causes P to abort), one can
use P̂ to construct another adversary A that breaks FS-WUR with respect to SFS. The reduction goes as
follows. The differences with G1 are highlighted in orange.

– A first picks a query index k ∈ [1, q2] uniformly at random.
– On receiving pp in the FS-WUR game, A forwards pp to P̂.
– Whenever P̂ makes a simulation query with input x, if this is the kth simulation query then it

forwards x to S ′
2 in the FS-WUR. We denote the statement-transcript pair of the kth query by

(xk, T̃ k). Otherwise, A internally invokes SFS(2, st, x) to obtain (T̃ , st′). It records a statement-proof
pair (x, T̃ ) in the set Q2. Then it programs the RO tables Q1 for every challenge in T̃ as SFS(2, st, x)
would do.
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– Whenever P̂ (or VFS at the end) makes a random oracle query with input ((pp, x, T , ai), i), where
T = (a1, c1, . . . , ai−1, ci−1), A checks whether (xk, T̃ k) has prefix in common with T , i.e., for some
1 ≤ j ≤ i − 1 it holds that T |j = T̃ k|j . If that is the case, it forwards the query ((pp, x, T , ai), i) to
S1 in the FS-WUR game, receives ci ∈ Chi, and updates Q1,i accordingly. Otherwise, it lazily samples
ci from Chi and updates Q1,i accordingly, as SFS(1, st, (pp, x, T , ai), i) would do.

– When P̂ outputs a forgery (x, T ), A first checks whether it would set bad in the game G1, i.e., for
some simulated statement-transcript pair (x, T̃ ) ∈ Q2, there exists some j ∈ [1, r] such that T |j = T̃ |j
and aj+1 ̸= ãj+1. If that is the case, A forwards T to the FS-WUR game as a forgery.

The above procedure perfectly simulates P̂’s view in the game G1. By construction A breaks FS-WUR
with respect to SFS if (G1 sets bad) and (x = xk ∧ T has some shared prefix with T̃ k), because then it is
guaranteed that for every i ∈ [1, r], ci has been obtained by querying the oracles (S1,S ′

2) in the FS-WUR
game. Therefore, T does qualify as a valid forgery in the FS-WUR game. Conditioned on the event that
G1 sets bad, the probability that A wins is at least 1/q2. Therefore, we have

1
q2
· Pr[G1(P̂,SFS) sets bad] ≤ AdvFS-WUR

ΠFS
(A,SFS).

⊓⊔

4 Non-Malleability of Bulletproofs – Arithmetic Circuits

The Bulletproof (henceforth referred as BP) protocol for arithmetic circuit satisfiability (see relation
2) is formally described in Protocol 112 and proceeds as follows. The algorithm Setup(1λ) parameterized
by n, Q invokes a group parameter generator GGen(1λ) to obtain G, samples (g, h, u, g, h) $←− G2n+3,
defines the challenge space Ch = Z∗

p, and outputs pp := (n, Q, g, h, u, g, h). In the first round, the prover
commits to values on the wire of the circuit (i.e. aL, aR and aO), and the blinding vectors (sL, sR). It
receives challenges y, z from the verifier. Based on these challenges, the prover defines three polynomials,
l, r and t, where t(X) = ⟨l(X), r(X)⟩, and commits to the coefficients of the polynomial t in the third
round, i.e. commitments T1, T3, T4, T5, and, T6

13. On receiving a challenge x from the verifier, the prover
evaluates polynomials l, r on this challenge point, computes t̂ = ⟨l(x), r(x)⟩, and values βx, µ, and sends
βx, µ, t̂, l = l(x) and r = r(x) in the fifth round. The verifier accepts if: the commitments {Ti}i∈S (for
S = {1, 3, 4, 5, 6}) are to the correct polynomial t and if t̂ = ⟨l, r⟩. To get logarithmic proof size, the
prover and verifier define an instance of the inner dot product for checking the condition t̂ = ⟨l, r⟩, instead
of sending vectors l, r in clear. The inner product subroutine InPrd is presented in Appendix A. Since
InPrd is a (2m + 1)-round protocol with m = log(n), BP is a (2r + 1)-round public-coin protocol with
r = 3 + m.

4.1 Alternative Simulation Strategy

Let SBP denote the perfect HVZK simulator from [BBB+18]. We define an alternative simulation strategy
S ′

BP for BP which will be used in the proof of FS-WUR. The canonical NIZK simulators corresponding
to SBP and S ′

BP are denoted by SFS-BP and S ′
FS-BP, respectively. The simulator S ′

BP essentially works as
SBP, except that it explicitly computes group representation for each simulated element. To do so, it
will generate AI , AO as well as the Ti’s by learning their discrete logarithm in bases g, h, u instead of
generically sampling random group elements like in the original proof. This makes no difference for the
ZK claim and makes the proof of FS-WUR simpler.

Remark 4.1. The simulator for the recursive version of Bulletproof e.g., the one that calls InPrd instead of
sending l, r directly, can easily be constructed from the simulator above by running the InPrd protocol on
l, r. The simulator also outputs the representation for the elements Li, Ri generated during this protocol
and this representation will be used explicitly in the proof later.
12 The protocol described in [BBB+18] is for relation that additionally incorporates a vector of Pedersen com-

mitments V and the weight parameter WV as part of the statement. We omit these for the sake of simplicity
since they do not impact the unique response analysis.

13 The degree two term is independent of the witness and can be computed by the verifier, therefore there is no
T2 commitment.
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Protocol 1: BP

This is a protocol for the following relation

RACSPf =
{

((n, Q, g, h, u, g, h), (WL, WR, WO, c), (aL, aR, aO)) |
aL ◦ aR = aO ∧WL · aL + WR · aR + WO · aR = c

}
.

Prover P and verifier V interact as follows:
1. P samples sL

$←− Zn
p , sR

$←− Zn
p , α, β, ρ

$←− Zp. P sends

S = hρgsLhsR , AI = hαgaLhaR , AO = hβgaO .

2. V sends challenge y, z
$←− Z∗

p.

3. P samples βi
$←− Zp,∀i ∈ S , computes polynomials

l(X) = aLX + aOX2 + y−n ◦ (zQ+1
[1:] ·WR) ·X + sLX3,

r(X) = yn ◦ aR ·X − yn + zQ+1
[1:] · (WL ·X + WO) + yn ◦ sR ·X3,

t(X) = ⟨l(X), r(X)⟩ =
6∑

i=1
tiX

i.

P computes ∀i ∈ S : Ti = gtihβi and sends {Ti}i∈S .

4. V sends challenge x
$←− Z∗

p.
5. P computes

l = l(x), r = r(x), t̂ = ⟨l, r⟩ ,

βx = β1 · x +
6∑

i=3
βi · xi, µ = α · x + β · x2 + ρ · x3

and sends t̂, βx, µ.

6. V sends challenge w
$←− Z∗

q .
7. P,V both compute

h′ = hy−n

, u′ = uw,

WL = h′zQ+1
[1:] ·WL , WR = gy−n◦(zQ+1

[1:] ·WR)
, WO = h′zQ+1

[1:] ·WO ,

P = Ax
I ·Ax2

O · h′−yn

·W x
L ·W x

R ·WO · Sx3
,

P ′ = h−µP (u′)t̂

and jointly execute the inner product argument protocol as

⟨InPrd.P((g, h′, u′, P ′), (l, r)), InPrd.V(g, h′, u′, P ′)⟩ .

8. V computes

δ(y, z) =
〈

y−n ◦ (zQ+1
[1:] ·WR), zQ+1

[1:] ·WL

〉
,

R = g
x2(δ(y,z)+

〈
zQ+1

[1:] ,c
〉

) · T x
1 ·

6∏
i=3

T xi

i ,

InPrd.V(g, h′, u′, P ′)→ b

and returns 1 iff b = 1 and gt̂hβx = R.
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Simulator 1: S ′
BP

The simulator S ′
BP is given as input:

pp = (n, Q, g, h, u, g, h), x = (WL, WR, WO, c)

The transcript is simulated as follows where the difference with the original simulator SBP is marked in orange:
1: x, y, w, z

$←− Z∗
p

2: βx, µ
$←− Zp

3: l, r $←− Zn
p

4: t̂ = ⟨l, r⟩
5: ρI , ρO, t3, t4, t5, t6, β3, β4, β5, β6

$←− Zp

6: AI = gρI , AO = uρO

7: Ti = gtihβi for i ∈ {3, 4, 5, 6}

1: h′ = hy−n

, u′ = uw

2: WL = h′zQ+1
[1:] ·WL , WR = gy−n◦(zQ+1

[1:] ·WR)
, WO = hy−n◦(zQ+1

[1:] ·WO)

3: S =
(

Ax
I ·Ax2

O · g−l · (h′)−yn−r ·W x
L ·W x

R ·WO · h−µ
)−x−3

4: T1 =
(

h−βx · gx2·(δ(y,z)+⟨zQ+1
[1:] ,c⟩)−t̂ ·

∏6
i=3 T xi

i

)−x−1

5: T = (S, AI , AO; y, z; {Ti}i∈S ; x; t̂, βx, µ; w; l, r)
6: Output T

Claim 1. The protocol BP is perfect HVZK with simulator S ′
BP.

Proof. The claim follows directly from the proof of HVZK in [BBB+18] by observing that the way
AI , AO, T3, T4, T5, T6 are generated in our and their simulator produces the exact same distribution (in
their case they are sampled as random elements from the group; in ours, we generate them by raising
generators to random exponents, and those are not re-used anywhere else). ⊓⊔

4.2 Weak Unique Responses of FS-BP

The following claim is crucial for invoking our generic result from Lemma 3.2. We remind the reader that
proving uniqueness of the randomized commitments Ti’s is made possible thanks to our relaxed definition:
if the adversary was allowed to control both transcripts, it would be trivial to break the (strong) unique
response by honestly executing the prover algorithm twice with known witness and by committing to ti

using distinct randomnesses βi and β′
i. Our proof below on the other hand argues that a cheating prover

against FS-WUR has a hard time forging Ti once one of the transcripts has been fixed by a simulator. In
other words, they cannot reuse parts of simulated proofs without knowing how the simulated messages
were generated. This is true even for true statements where the prover might know the witness.
Proof outline. First, consider the proof idea for proving SR-WUR for BP in the proceedings version of
this work [GOP+22]. In the SR-WUR game, the adversary queries a simulator S and receives a simulated
transcript T̃ . It then attempts to submit a transcript T that forks with respect to T̃ . The central idea
of the proof there is: given group representations for both the transcripts, one can analyse them to
break DL-REL. In [GOP+22], this is obtained by assuming an algebraic adversary (assuming AGM) and
an algebraic simulator. The latter means that the simulator outputs group representation along with the
simulated transcript. In this work, we will follow the same high-level idea of breaking DL-REL using group
representation of the transcripts, however, we will derive these representations for both the transcripts
in an alternate way so that we remove the reliance on both an algebraic adversary and an algebraic
simulator. Another point of difference with [GOP+22] is that we will prove FS-WUR directly.
Our first observation is that, for FS-BP, the group representation for any valid transcript T can be derived
from the tree of transcripts corresponding to T (see Definition 2.9). To build the tree of transcript, we
can run the knowledge extractor from [AFK21] (see Section 2.8). However, there are two caveats to
this approach. First, rewinding cannot be done with respect to the simulated transcript T̃ as we cannot
rewind the simulator. Thus, we cannot derive the group representation for T̃ . We resolve this issue by
considering a hybrid where instead of running some valid NIZK simulator SFS-BP for FS-BP, we run the
specific NIZK simulator S ′

FS-BP. This change is perfectly indistinguishable from the FS-WUR experiment
played with respect to SFS-BP as both SFS-BP and S ′

FS-BP are canonical NIZK simulators for FS-BP derived
from perfect HVZK simulators. Now, observe that S ′

FS-BP can output the group representation of the
simulated transcript in terms of the statement and pp, in addition to the transcript itself. Note that this
switch happens only in the reduction, and thus, the theorem statement holds for any valid simulator
SFS-BP (as opposed to just algebraic simulators in [GOP+22]).
Second, the adversary cannot be rewinded to a point before the round where T̃ diverges from T for the
first time. Doing so will result in reprogramming the random oracle entry at this point, which then will
not match the challenge in T̃ . This makes it easy for the adversary to distinguish real and ideal worlds.
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Inability to rewind the adversary fully implies that the group representation for a part of the transcript
T (the part in common with T̃ ) cannot be derived. Once again, switching to the simulator S ′

FS-BP in the
reduction resolves this problem.

Claim 2. Protocol FS-BP satisfies weak unique response (FS-WUR) with respect to a canonical NIZK
simulator SFS-BP in programmable ROM, under the assumption that solving the discrete-log relation is
hard. That is, for every PPT adversary Aur against FS-WUR of FS-BP that makes at most q random
oracle queries, there exists an adversary B against DL-REL that runs in expected polynomial time in q
and λ, such that,

AdvFS-WUR
FS-BP (Aur,SFS-BP) ≤ (1− κ2) ·AdvDL-REL

GGen (B) + 2
p− 1 + (q + 1) · κ2

where κ2 = 1−
∏r

i=2
p−ki

p−1 and (k2, k3, k4, . . . , kr) = (7, 2, 8, . . . , 8).

Proof. Given an adversary against FS-WUR of FS-BP with respect to a canonical NIZK simulator SFS-BP,
Aur = (A1,A2) (Definition 3.3), our ultimate goal is to construct an adversary B that breaks the discrete-
log relation. First, consider the following hybrid games.

– G0(Aur): This is identical to the game defining the FS-WUR advantage, except that G0 uses an
alternative simulator S ′

FS-BP instead of SFS-BP. That is, an adversary Aur is given access to (S1,S ′
2)

and the game outputs 1 if Aur outputs a valid proof T that shares prefix with simulated proof T̃
output by S1, where (S1,S ′

2) are now the wrappers defined for S ′
FS-BP. Since both SFS-BP and S ′

FS-BP
are canonical NIZK simulators derived from perfect HVZK simulators, the view of Aur is identical in
both games. Hence, we have

Pr[G0(Aur) = 1] = AdvFS-WUR
FS-BP (Aur,SFS-BP).

– G1(Aur): This is identical to G0, except that the game aborts by setting the flag bad if T =
(a1, c1, . . . , cr, ar+1) output byAur is constructed without querying all r random oracles while meeting
the winning condition of G0, i.e., G1 sets bad = true if ∃i ∈ [1, r] such thatQ1,i[pp, x, a1, c1, . . . , ai] = ⊥
∧ VH

FS(pp, x, T ) = 1 ∧ T shares prefix with T̃ . Since T must be accepted by VFS, the bad flag is set
only if the random oracle output exactly matches the challenge guessed by Aur. This happens with
probability at most 1/(p− 1) and we obtain

Pr[G0(Aur) = 1] ≤ Pr[G1(Aur) = 1] + 1/(p− 1).

Note that, this is assuming the adversary guesses only one challenge, as the advantage in this case is
higher than guessing multiple challenges.

In the rest of the proof, we bound the probability Pr[G1(Aur) = 1]. We do so by showing a reduction
B that, given an adversary Aur = (A1,A2) emulates its view in G1 and finds a non-trivial DL-REL
relation between ḡ = (g, h, u, g, h) ∈ G2n+3 by obtaining a tree-of-transcript. Concrete description of
B is provided in Alg. 5. To invoke the result of [AFK21], we introduce a wrapper algorithm A′ for the
unique response adversary analogously to the one for a knowledge soundness adversary from Section 2.8.
A′ takes (x, T̃ , st) as input, forwards (T̃ , st) to A2 and relays all the random oracle queries made by
A2 to S1. When A2 outputs a transcript T , A′ returns the postprocessed output (I, T , b, i∗), where
I1 = (x, a1), . . . , Ir = (x, a1, . . . , ar), I = (I1, . . . , Ir),

b =
(
∀i ∈ [1, r] : Q1,i[pp, x, a1, c1, . . . , ai] ̸= ⊥ ∧ VS1

FS (pp, x, T ) ∧ ∃i∗ ∈ [1, r] : (T |i∗ = T̃ |i∗ ∧ T ≠ T̃ )
)

and i∗ := 0 if b = 0. Note that the bit b indicates whether Aur would win G1 or not. Since this is merely
a syntactic change, the success probability of A′ is

ϵ(A′) := Pr
[

b = 1 :
(pp, H)← SetupFS(1λ); (x, st)← AS1

1 (pp);

T̃ ← S ′
2(x); (I, T , b, i∗)← A′S1(x, T̃ , st);

]
= Pr[G1(Aur) = 1].

In what follows, we explain how to build a (sub)tree of accepting transcripts (Definition 2.9) from
which B can derive a non-trivial discrete log relation.
Obtaining tree-of-transcript. Suppose after making q + r queries to the random oracle A′ generates a
winning transcript T which differs with simulated T̃ for the first time at the (i∗ + 1)-th prover message.
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For relation RACSPf , statement x consists solely of elements in Zp. Therefore B knows all representation
for elements in T̃ in terms of an equivalent representation purely in terms of (g, h, g, h, u). Our goal is
now to obtain the same for T .

Recall, interactive BP is a (k1,0, k1,1, . . . , kr)-special-sound public coin interactive protocol, where
k1,0 = n, k1,1 = (Q + 1), k2 = 7, k3 = 2 and k4 = 8, . . . , kr = 8.14 Thus, the Fiat-Shamir transformation
of BP is knowledge sound (Corollary 2.1). In particular, there exists a series of sub-extractors (E1, . . . , Er)
(defined in Fig. 1), where each sub-extractor Eℓ halts in expected polynomial time in λ and q and outputs
a (1, . . . , 1, kℓ, . . . , kr)-tree of transcript with probability at least ϵ(A)−(q+1)·κℓ

1−κℓ
(see Lemma 2.1).

To obtain group representation for T , B will attempt to build a (1, . . . , 1, ki∗+1, . . . , kr)-tree by running
a slightly modified extractor E ′

1, which is again composed of recursive calls to sub-extractors defined in
Fig. 6. We define the base case extractor E ′

r+1 := A′ as described above and E ′
ℓ for ℓ ∈ [1, r] is defined in

a similar way as Eℓ with the following differences.
– E ′

ℓ gets black-box access to (the second stage of) weak unique response adversary A2 via A′.
– Each E ′

ℓ, including E ′
1, relays all random oracle queries made in the first run outside to B who answers

these to be consistent with the challenges in the simulated transcript, and with previously answered
queries. New queries unrelated to T̃ are answered by lazy sampling. The random oracle queries made
in the repeat loop are answered locally by each sub-extractor as before.

– To allow the base case extractor to postprocess the transcript with prefix check, E ′
ℓ gets an additional

input T̃ . If T output during the initial run of A′ has no shared prefix with T̃ , there is no need to
build a tree of transcript and it simply aborts.

– Each sub-extractor executes the first run step completely but the repeat loop step only partially.
After the first run of A′, it outputs T such that it differs from T̃ for the first time at the (i∗ + 1)-
th prover message. The repeat loop for sub-extractors E ′

ℓ, for ℓ ∈ [i∗ + 1, r], is the same as before,
i.e., they output a (1, . . . , 1, ki, . . . , kr)-tree. On the other hand, sub-extractors E ′

ℓ, for ℓ ∈ [1, i∗],
do not run the repeat loop. Instead they merely propagate the last tree that was build, i.e., the
(1, . . . , 1, ki∗+1, . . . , kr)-tree output by E ′

i∗+1. Finally, E ′
1 outputs a (1, . . . , 1, ki∗+1, . . . , kr)-tree. This

is done to avoid rewinding A before the (i∗ + 1)-th round message, which as mentioned before, is
necessary to maintain indistinguishability of A2’s view from the view in FS-WUR experiment.

E ′
1 either outputs abort or outputs a (1, . . . , ki∗+1, . . . , kr)-tree called tr. In particular, the output of

E ′
1 is a tree that has transcripts sharing common prefix with T up until the (i∗ + 1)-th prover message,

after which, it forks. Using tr, A derives representation for T for group elements starting from round
i∗ + 1. Given these representations, B can break discrete-log.

Cases by case analysis. Note that, the very first timeA′ is invoked by B, there has been no rewinding till
now. Thus, this execution is identical to G1 (which is identical to G0 and FS-WUR up to the negligible bad
event). Since Aur wins the FS-WUR game, T (output in game G1) is an accepting transcript for statement
x which is different from T̃ , but has a common prefix. Therefore, at least the first two messages must be
equal. In particular, S ′

FS-BP outputs transcript of the form:

T̃ = (ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃; β̃x, µ̃, ˜̂t, w̃, L̃1, R̃1, x̃1, . . . , L̃m, R̃m, x̃m, ã, b̃)

and Aur outputs transcripts of the form:

T = (ÃI , ÃO, S̃; ỹ, z̃; (Ti)i∈S ; x; βx, µ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

We now proceed with a case by case analysis based on the first message in T which is different from
T̃ .
If T̃i ̸= Ti for some i ∈ S (i.e. i∗ = 1), then the verification equation satisfied by T is:

(g(m))a(h(m))b(u′)ab =(
m∏

i=1
L

x2
i

i

)
· h−µ · Ãx

I · Ãx2

O · (h̃′)−ỹn

· W̃ x
L · W̃ x

R · W̃O · S̃x3
· (u′)t̂ ·

(
m∏

i=1
R

x−2
i

i

)
.

14 Since the extractor of the inner product argument requires four challenges x1, x2, x3, x4 such that xi ̸= ±xj for
1 ≤ i < j ≤ 4, at most 8 distinct challenges suffice for meeting this condition.
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Algorithm 5: B(ḡ)

1. Using a received discrete log instance ḡ ∈ G2n+3, construct pp = (n, Q, g, h, u, g, h). Initialize
S ′

FS-BP with pp and run A1(pp) to receive a statement x, where B answers A1’s random oracle
queries and maintains the query tables Q as S1 would.

2. Follow the procedures of S2(x) to generate a simulated transcript T̃ and update Q. Note that by
examining the internal operations of S ′

FS-BP, B can obtain the group representation of T̃ w.r.t.
input generators.

3. Run E ′
1(x, T̃ , st) as follows to obtain output (I, tr, b, i∗): If the random oracle query has been asked

before, answer with the recorded reply. Answer all new queries by lazy sampling. In addition,
record all random oracle responses in Q.

4. If b = 0, abort. Else, let T be a transcript derived from the path in tr corresponding to the initial
run of A′. tr corresponds to the (1, . . . , 1, ki∗+1, . . . , kr)-tree of transcripts. Output discrete-log
relation by case-by-case analysis.

Algorithm 6: E ′
ℓ(x, T̃ , st)

1. First Run: Run E ′
ℓ+1(x, T̃ , st) as follows to obtain (I, tr1, b, i∗).

(a) Relay all the random oracle queries made by E ′
ℓ+1 externally to E ′

ℓ−1 and record query
response pair.

(b) Set j = Iℓ and let cj be the response to query j.
2. If b = 0, abort with output (I,⊥, 0, 0).
3. Else, if ℓ ≤ i∗, output (I, tr1, b, i∗).
4. Repeat Run: Else, initialize challenge set Ch′ = Ch \ {cj} and repeat:

(a) If Ch′ = ∅ goto Step 5.
(b) Sample c′

j ∈ Ch′ and update Ch′ := Ch′ \ {c′
j}.

(c) Run E ′
ℓ+1(x, T̃ , st) as follows to obtain (Î, t̂r, b̂, î∗), aborting right after the initial run of A′

if Îℓ ̸= Iℓ: answer the random oracle query to j with c′
j , while answering all other queries

consistently if the query was performed by E ′
ℓ+1 already on a previous run and with a fresh

random value in Ch otherwise.
(d) If kℓ − 1 additional challenges c′

j with b′ = 1 and I ′
ℓ = Iℓ have been found then goto Step 6.

5. Output (I,⊥, 0, 0).
6. Output (I, (tr1, . . . , trkℓ

), 1, i∗), where tr1, . . . , trkℓ
are the kℓ accepting (1, . . . , 1, kℓ+1, . . . , kr)-

trees.
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(The values W̃(·) and h̃′ are also marked as (̃·) to remind the reader that they are the same in both T
and T̃ . Remember that g(m), h(m) are different in the two transcripts and they are generated as part of
the InPrd). Dividing it by the verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃ = (4)(
m∏

i=1
L

x2
i

i

)(
m∏

i=1
L̃

−x̃2
i

i

)(
m∏

i=1
R

x−2
i

i

)(
m∏

i=1
R̃

−x̃−2
i

i

)
· h−(µ−µ̃) · Ãx−x̃

I · Ãx2−x̃2

O · W̃ x−x̃
L · W̃ x−x̃

R · S̃x3−x̃3
· (u′)t̂ · (ũ′)−t̂. (5)

We rearrange the exponents w.r.t. the generators (g, h, g, h, u). We will focus on the exponent of g.
Note that, from simulator S ′

FS-BP, B knows the representation for T̃ . Now, we derive representation for
T . Looking ahead, we will aim to derive representation of Li and Ri without using g. On the other hand,
exponent of g in T̃ will be non-zero with high probability. This will be crucial for breaking DL-REL using
the isolated exponent of g.
Recall, B obtains tr with i∗ = 1 from executing E ′

1, where tr is a (1, 7, 2, 8, . . . , 8)-tree of transcript. Given
the tree tr, we will derive the representation for all Li, Ri terms in Eq. (5) recursively, starting from
Lm, Rm. Consider the subtrees in tr rooted at the last level (the r = (m + 3)-th level). In the following
we use L̂m, R̂m to generically denote the root for all these subtrees, although note that, these most likely
take different values in each subtree. For e.g., for the very first subtree L̂m = Lm and R̂m = Rm. The
last round message in each transcript is two field elements generically denoted by â, b̂. Again, note that
for the first transcript in the first subtree, â = a, b̂ = b. Finally, we denote the last round challenge in
each of the transcript generically by x̂m, the group parameters by ĝ and ĥ, and the statement derived in
the previous round by P̂m−1. Each subtree rooted at the r-th level forks at most 8 times with respect to
four distinct challenges x̂m,1, . . . , x̂m,4, such that x̂m,i ̸= ±x̂m,j for i ̸= j. Using the first three challenges,
one can derive a group representation for L̂m, R̂m in an analogous manner to Theorem 1 of [BBB+18].
Since all these transcripts are valid, for x̂m ∈ {x̂m,1, . . . , x̂m,4}, they pass the verification check,

L̂
x̂2

m
m · P̂m−1 · R̂

x̂−2
m

m = (ĝ)â ·
(

ĥ
)b̂

· u⟨â,b̂⟩ (6)

Rewriting (6) in terms of ĝ(m−1) and ĥ(m−1) (as defined by honest verifier’s algorithm in Protocol 2,
given partial transcript till round m− 2.), we get,

L̂
x̂2

m
m · P̂m−1 · R̂

x̂−2
m

m =
((

ĝ(m−1)
[:nm]

)x̂−1
m

◦
(

ĝ(m−1)
[nm:]

)x̂m
)â

·
((

ĥ(m−1)
[:nm]

)x̂m

◦
(

ĥ(m−1)
[nm:]

)x̂−1
m

)b̂

· u⟨â,b̂⟩ (7)

Using the first three challenges, compute ν1, ν2, ν3 such that,

3∑
j=1

νj · x̂2
m,j = 1,

3∑
j=1

νj = 0
3∑

j=1
νj · x̂−2

m,j = 0 (8)

Now taking linear combination of three relations in (7), wrt to coefficients computed in (8), we get

â(m−1)
L b̂(m−1)

L , ĉ
(m−1)
L such that L̂m =

(
ĝ(m−1))â(m−1)

L ·
(

ĥ(m−1)
)b̂(m−1)

L · uĉ
(m−1)
L . Solving lhs in Eq. (8)

for rhs evaluations (0, 1, 0) and (0, 0, 1) gives us coefficients for P̂m−1 and R̂m, resp. Moreover, using the
forth challenge, one can argue that it must be the case that,

â(m−1)
L,[:nm] = 0, â(m−1)

R,[nm:] = 0, b̂(m−1)
R,[:nm] = 0, b̂(m−1)

L,[nm:] = 0

â(m−1)
L,[nm:] = â(m−1)

P,[:nm], â(m−1)
R,[:nm] = â(m−1)

P,[nm:]

b̂(m−1)
L,[:nm] = b̂(m−1)

P,[nm:], b̂(m−1)
R,[nm:] = b̂(m−1)

P,[:nm]

and
〈

â(m−1)
P,[:nm], b̂(m−1)

P,[nm:]

〉
= ĉ

(m−1)
L ,

〈
â(m−1)

P,[nm:], b̂(m−1)
P,[:nm]

〉
= ĉ

(m−1)
R (9)

We skip the exact argument to derive conditions in Eq. (9) as it follows directly from the extraction analy-
sis of BP in [BBB+18]. This procedure is replicated to obtain group representation for L̂m−1, R̂m−1, P̂m−2,
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given â(m−1)
P and b̂(m−1)

P , and, in general for L̂i, R̂i, P̂i−1, given the â(i)
P and b̂(i)

P , and using the following
check on four different challenges x̂i,

L̂
x̂2

i
i · P̂i−1 · R̂

x̂−2
i

i =
((

ĝ(i−1)
[:ni]

)x̂−1
i ◦

(
ĝ(i−1)

[ni:]

)x̂i
)â(i)

P

·
((

ĥ(i−1)
[:ni]

)x̂i

◦
(

ĥ(i−1)
[ni:]

)x̂−1
i

)b̂(i)
P

· u
〈

â(i)
P

,b̂(i)
P

〉
Once all the group representations have been derived for transcript T , substitute these values in

the verification equation in Eq. (5), and equate representation for g on lhs and rhs. Notice that the
g-component for Li (resp. Ri) is 0. The only elements with a non-zero component for g are: the simulated
ÃI and S̃ that have ρI and −ρI x̃−2 in the exponents of g, respectively.

Then the exponent of g in (5) is

−ρI x̃−2x3 + ρIx (10)

Consider one other subtree rooted at level 3, i.e., it has the same messages Ti’s as in T and then
fork for a different challenge x̂. Now consider one transcript from this subtree. Since this is an accepting
transcript as well, we can derive group representation for L̂i, R̂i for it. Once again, the coefficient for g
and h will come out to be zero. Equating exponents of g in (5), for challenge x̂, we get,

−ρI x̃−2x̂3 + ρI x̂ (11)

If either (10) or (11) is non-zero then we find a non-trivial DL solution, since the left-hand side
of Eq. (5) has g-component 0. Both (10) and (11) cannot be 0 at the same time as this would imply
that polynomial −ρI x̃−2X3 + ρIX is a zero-polynomial, and so ρI = 0. However, ρI = 0 happens with
probability 1/(p) because it is chosen uniformly by the simulator.
If βx ̸= β̃x or t̂ ̸= ˜̂t (i.e. i∗ = 2), then we have another transcript

T = (ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃, βx, µ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

Since both simulated and adversarial transcripts satisfy the verification equation w.r.t. the same R, we
have

gt̂hβx = R = g
˜̂thβ̃x

which leads to a non-trivial DL relation.
If µ ̸= µ̃ (i.e. i∗ = 2), the analysis is similar to the case where T̃i ̸= Ti. The verification equation satisfied
by T is

(g(m))a(h(m))b(u′)ab

=
(

m∏
i=1

L
x2

i
i

)
· h−µ · Ãx̃

I · Ãx̃2

O · (h̃′)−ỹn

· W̃ x̃
L · W̃ x̃

R · W̃O · S̃x̃3
· (u′)t̂ ·

(
m∏

i=1
R

x−2
i

i

)
.

Dividing it by the verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃

=
(

m∏
i=1

L
x2

i
i

)(
m∏

i=1
L̃

−x̃2
i

i

)(
m∏

i=1
R

x−2
i

i

)(
m∏

i=1
R̃

−x̃−2
i

i

)
· h−(µ−µ̃) · (u′)t̂ · (ũ′)−t̂. (12)

We rearrange the exponents w.r.t. the generators (g, h, g, h, u). Let us focus on the exponent of h.
Again, as explained in the case for Ti ̸= T̃i,we derive group representation for Li, Ri terms in (12) given a
(1, 1, 2, 8, . . . , 8)-tree tr with i∗ = 2, and observe that the h-component for Li, Ri is 0. Then the exponent
of h in (12) is −(µ− µ̃). Using the same argument as before, since the h-component in the left-handside
of 12 is 0, if µ ̸= µ̃ we obtain non-trivial DL relation. Otherwise, µ = µ̃, which happens with probability
1/p since the simulator picks µ̃ uniformly at random.
If Li ̸= L̃i or Ri ̸= R̃i for some i ∈ [1, m] (i.e. i∗ = i + 2), B obtains a (1, . . . , 1, 8, . . . , 8)-tree tr
after executing E ′

1. tr is such that all the transcripts share the same messages (AI , AO, . . . , Li, Ri) and
then fork with respect to challenges xi. Using the same procedure as discussed in the case of Ti ̸= T̃i,
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B can derive the group representation for Li, Ri and for Pi−1. Let the derived representation for Pi−1

in terms of group parameters g(i−1), h(i−1) be a(i−1)
P , b(i−1)

P , c
(i−1)
P , and the representation submitted by

the simulator for P̃i−1 be ã(i−1), b̃(i−1), c̃(i−1). Note that, Pi−1 = P̃i−1, and g(i−1), h(i−1) are the same in
both the transcripts since they deviate for the first time at (i + 3)-th prover round.

P̃i−1 = Pi−1 =
(

g(i−1)
)a(i−1)

P ·
(

h(i−1)
)b(i−1)

P · uc
(i−1)
P

and =
(

g(i−1)
)ã(i−1)

·
(

h(i−1)
)b̃(i−1)

· uc̃(i−1)
(13)

The exponent in (13) must match otherwise we obtain non-trivial DL relation.
Similar to the conditions in (9), from the analysis in [BBB+18], we also know that the derived

a(i−1)
L , b(i−1)

L , . . . must satisfy the following,

a(i−1)
L,[:ni] = 0, a(i−1)

R,[ni:] = 0, b(i−1)
R,[:ni] = 0, b(i−1)

L,[ni:] = 0

a(i−1)
L,[ni:] = ã(i−1)

[:ni] , a(i−1)
R,[:ni] = ã(i−1)

[ni:]

b(i−1)
L,[:ni] = b̃(i−1)

[ni:] , b(i−1)
R,[ni:] = b̃(i−1)

[:ni] ,

and
〈

ã(i−1)
[:ni] , b̃(i−1)

[nm:]

〉
= c̃

(i−1)
L , and

〈
ã(i−1)

[ni:] , b̃(i−1)
[:ni]

〉
= c̃

(i−1)
R (14)

Substituting these values for Li and (and similarly for Ri), we get,

Li =
(

g(i−1)
[ni:]

)ã(i−1)
[:ni]

(
h(i−1)

[:ni]

)b̃(i−1)
[ni:]

u

〈
ã(i−1)

[:ni] ,b̃(i−1)
[nm:]

〉
which is exactly how L̃i (and R̃i) is computed by the simulator. Thus, Li = L̃i and Ri = R̃i.
If a ̸= ã or b ̸= b̃ (i.e. i∗ = r), Since T is accepting,

Plog(n)=gahbuab

Similarly, for T̃ ,
Plog(n)=gãhb̃uãb̃

Note that the statement Plog(n) and parameters g, h with be the same for both transcripts since they
are defined using previous round messages. Dividing the two equation, B obtains a non-trivial DL-REL
between g, h, u, since either a ̸= ã or b ̸= b̃.

ga−ãhb−b̃uab−ãb̃ = 1G

Recall that g and h are constructed by taking linear combinations of (g1, . . . , gn) and (h1, . . . , hn) with
non-zero coefficients, respectively. Therefore, a non-trivial discrete log relation between g, h, u can be
converted into the one between g, h, u.
Concrete advantage of the adversary. If Aur succeeds in the G1, and the execution of E ′

1 outputs an
appropriate tree of transcript, then B succeeds in deriving a non-trivial DL relation. Let ℓ∗ be the first
round where the prover’s message deviates from the simulated one, i.e., ℓ∗ = i∗ + 1. Let Kℓ∗ =

∏r
i=ℓ∗ ki.

From Lemma 2.1, the extractor E ′
1 makes expected number of at most Kℓ∗ + q · (Kℓ∗ − 1) queries to A′

and outputs tuple containing a (1, . . . , 1, kℓ∗ , . . . , kr)-tree, and b = 1 with probability at least

ϵ(A′)− (q + 1) · κℓ∗

1− κℓ∗
(15)

where κℓ∗ = Er((kℓ∗ , . . . , kr); Ch). If Aur outputs T such that Ti ̸= T̃i, then B fails obtaining DL relation
if (i) execution of E ′

1 returns tr = ⊥, or (ii) for the simulated transcript ρI = 0. The former happens
with probability at the most 1-(15) (where ℓ∗ = 2), and the latter happens with probability (1)/(p). The
advantage of DL-REL adversary B is then,

AdvDL-REL
GGen (B) ≥ ϵ(A′)− (q + 1) · κ2

1− κ2
− 1

p
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where κ2 = 1−
∏r

i=2
p−ki

p−1 .
If µ ̸= µ̃, B fails in obtaining DL relation only if execution of E ′

1 returns ⊥. The advantage of DL-REL
adversary B is then

AdvDL-REL
GGen (B) ≥ ϵ(A′)− (q + 1) · κ3

1− κ3

If βx ̸= β̃x or t̂ ̸= ˜̂t, A always succeeds. Thus,

AdvDL-REL
GGen (B) = ϵ(A′)

If Li ̸= L̃i or Ri ̸= R̃i, B succeeds whenever E ′
1 outputs a tree. Thus,

AdvDL-REL
GGen (B) ≥ ϵ(A′)− (q + 1) · κi

1− κi

Finally, if a ̸= ã or b ̸= b̃ then, B always succeeds.

AdvDL-REL
GGen (B) = ϵ(A′)

Since, all the cases are sequential and Aur succeeds in forging unless B breaks discrete-log relation for
the very first case that the adversary exploits, it is enough to bound B’s advantage by the minimum rhs
value in all the cases. Thus, B’s advantage in breaking DL-REL is at least,

(1− κ2) ·AdvDL-REL
GGen (B) + 1

p
≥ ϵ(A′)− (q + 1) · κ2

≥ AdvFS-WUR
FS-BP (A,SFS-BP)− 1

p− 1 − (q + 1) · κ2

Rearranging the terms we obtain the bound in the statement.
Running Time of B. The adversary runs A1 once to obtain x. Then B runs S ′

FS-BP to obtain T̃ . Finally,
B invokes E ′

1 to obtain T and the tree of transcripts. The run-time of B is equal to run-time of A1, plus
run-time of S ′

BP (both of which are assumed to be PPT algorithms), plus the running time of E ′
1. Clearly,

the running time of E ′
1 is most dominant. E ′

1 terminates after making an expected number of at most
K2 +q · (K2−1) queries to A2, where K2 =

∏r
i=2 ki, and ki’s are special soundness parameters associated

to BP. Thus, B terminates in expected time (K2 + q · (K2 − 1)) · Time(A2). ⊓⊔

Combining the result from Lemma 3.2 we obtain the following corollary.

Corollary 4.1. FS-BP is FS-SIM-EXT with negligible knowledge error, assuming the hardness of the
DL-REL problem. Concretely, let κ be the FS-EXT knowledge error of FS-BP, then there exists an adversary
B against DL-REL such that FS-BP is FS-SIM-EXT with knowledge error κ̂ with respect to the NIZK
simulator SFS-BP, where

κ̂(λ, q1, q2) = q2 ·
(

(1− κ2) ·AdvDL-REL
GGen (B) + 2

p− 1 + (q1 + 1) · κ2

)
+ κ(λ, q1)

and q1 (resp. q2) is the number of queries to S1 (resp. S ′
2). The running time of B is expected polynomial

in q1 and λ.
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A Inner Product Argument

In this section we recall the inner product argument protocol from BP [BBB+17].

Protocol 2: InPRd

RInPrd =
{

((n, g, h, u), (P ), (a, b)) | P = gahbuc ∧ c = ⟨a, b⟩
}

1. P and V initialize g(0) = g, h(0) = h, n0 = n, P0 = P . Additionally, P initializes a(0) = a
and b(0) = b.

2. For i = {1, · · · , log(n)}:
(a) P,V compute:

ni = ni−1/2

(b) P computes:

cL =
〈

a(i−1)
[:ni] , b(i−1)

[ni:]

〉
, cR =

〈
a(i−1)

[ni:], b(i−1)
[:ni]

〉
Li =

(
g(i−1)

[ni:]

)a(i−1)[:ni] (
h(i−1)

[:ni]

)b(i−1)[ni:]
ucL

Ri =
(

g(i−1)
[:ni]

)a(i−1)[ni:] (
h(i−1)

[ni:]

)b(i−1)[:ni]
ucR

(c) P sends: Li, Ri to V.

(d) V sends challenge xi
$←− Z∗

p.
(e) P,V compute:

g(i) =
(

g(i−1)
[:ni]

)x−1
i ◦

(
g(i−1)

[ni:]

)xi

h(i) =
(

h(i−1)
[:ni]

)xi

◦
(

h(i−1)
[ni:]

)x−1
i

Pi = L
x2

i
i Pi−1R

x−2
i

i

(f) P computes:

a(i) = a(i−1)[: ni]xi + a(i−1)[ni :]x−1
i

b(i) = b(i−1)[: ni]x−1
i + b(i−1)[ni :]xi

3. Let

g ← g(log(n)), h← h(log(n))

a← a(log(n)), b← b(log(n))

P sends: a, b to V.
4. V checks:

Plog(n)
?= gahbuab

29



B Non-Malleability of Bulletproofs – Range Proofs

In this section we recall the range proof protocol from BP [BBB+17] and prove that they satisfy the
SR-WUR notion. The arguments follow closely the ones for the proofs for arithemtic circuits.

B.1 Range Proof Protocol

Protocol 3: RngPf

RRngPf = {((n, g, h, g, h, u), (V ), (v, γ)) | V = gvhγ ∧ v ∈ [0, 2n − 1]}

1. P computes aL ∈ {0, 1}n such that ⟨aL, 2n⟩ = v, and aR = aL − 1n.

2. P samples α, ρ
$←− Zp, sL, sR

$←− Zn
p , and sends to V:

A = hαgaLhaR , S = hρgsLhsR

3. V sends challenges y, z
$←− Z∗

p.
4. P computes:

l(X) = (aL − z · 1n) + sL ·X
r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · 2n

t(X) = ⟨l(X), r(X)⟩ = t0 + t1 ·X + t2 ·X

5. P samples β1, β2
$←− Zp, and sends to V:

Ti = gtihβi , i ∈ {1, 2}

6. V sends challenge x
$←− Z∗

p.
7. P computes:

l = l(x), r = r(x), t̂ = ⟨l, r⟩
βx = β2 · x2 + β1 · x + z2γ, µ = α + ρ · x

8. P sends to V:

βx, µ, t̂

9. V sends challenge w
$←− Z∗

p.
10. P and V compute:

h′ = hy−n

, u′ = uw

P = A · Sx · g−z·1n

· h′z·yn+z2·2n

, P ′ = h−µP (u′)t̂

11. P,V execute inner product argument protocol as ⟨InPrd.P((g, h′, u′, P ′), (l, r)), InPrd.V(g, h′, u′, P ′)⟩.
12. V computes:

δ(y, z) = (z − z2) · ⟨1n, yn⟩+ z2 · 2n

R = V z2
gδ(y,z)T x

1 T x2

2

InPrd.V(g, h′, u′, P ′)→ b

V returns 1 if b = 1 and gt̂hβx = R.
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B.2 Alternative Simulation Strategy

In this section we present an alternate simulator S ′
RngPf for RngPf. The simulator works similarly to

[BBB+18] but now we explicitly mention how to generate elements A and T2. This helps in simplifying
the proof of SR-WUR for RngPf.

Protocol 4: S ′
RngPf

The algebraic simulator SBP is given as input:

pp = (n, Q, g, h, u, g, h), x = (V )

The transcript is simulated as follows:
1. x, y, w, z

$←− Z∗
p;

2. βx, µ
$←− Zp;

3. l, r $←− Zn
p ;

4. t̂ = ⟨l, r⟩;

5. ρA, t2, β2
$←− Zp;a

6. A = gρA , T2 = gt2hβ2

7. h′ = hy−n ; u′ = uw;

8. S =
(

A · g−z·1n−l · (h′)z·yn+z2·2n−r · h−µ
)−x−1

9. T1 =
(

h−βx · g(δ(y,z)−t̂) · V z2 · T x2

2

)−x−1

10. T = (S, A; y, z; T1, T2; x; t̂, βx, µ; w; l, r);
11. Output T .

a Steps 5,6 are the difference with the original simulator.

Claim 3. The protocol RngPf is perfect HVZK (Definition 2.4) with the simulator S ′
RngPf (Protocol 4).

Proof. Observe that elements A, and T2 are distributed exactly as in the HVZK simulator for Range
proofs in [BBB+18]. Thus, this claim follows from the HVZK proof in [BBB+18].

B.3 Weak Unique Response of FS-RngPf

In this section we show that RngPf is FS-WUR with respect to a NIZK simulator SFS-RngPf . Here, SFS-RngPf
is the canonical NIZK simulator with respect to SFS-RngPf . Let S ′

FS-RngPf be the canonical NIZK simulator
with respect to the simulator S ′

FS-RngPf explained in the previous subsection.

Claim 4. Protocol FS-RngPf satisfies weak unique response (FS-WUR) with respect to a canonical NIZK
simulator SFS-RngPf in the programmable ROM, under the assumption that solving the discrete-log relation
is hard. That is, for every PPT adversary Aur against FS-WUR of FS-RngPf that makes q random oracle
queries, there exists an adversary B against DL-REL that runs in expected polynomial time in q and λ,
such that,

AdvFS-WUR
FS-RngPf(Aur,SFS-RngPf) ≤ (1− κ2) ·AdvDL-REL

GGen (B) + 2
p− 1 + (q + 1) · κ2

where κ2 = 1−
∏r

i=2
p−ki

p−1 and (k2, k3, k4, . . . , kr) = (3, 2, 8, . . . , 8).

Proof. Given an adversary against FS-WUR-game Aur = (A1,A2) for protocol FS-RngPf, we construct
an adversary, B, who breaks the discrete-log relation. As in the analysis for FS-BP, we will first switch
from any NIZK simulator SFS-RngPf to the specific one S ′

FS-RngPf . For this we use the same set of hybrids
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G0, G1 and a wrapper A′ as defined in the analysis for FS-BP. The only change is that instead of using
S ′

FS-BP in G0, G1, here we run the simulator S ′
FS-RngPf .

Now, if Aur produces a winning transcript in G1 then B breaks DL-REL as follows. Recall, RngPf
is a (n, 2, 3, 2, 8, . . . , 8)-special sound protocol. Thus, by Theorem 2.1 there a series of sub-extractors
(E ′

1, . . . , E ′
r) (same as defined in Fig. 6) where each sub-extractor (E ′

ℓ) halts in expected polynomial
time and outputs a (1, . . . , kℓ, . . . , kr)-tree of transcripts with probability at least ϵ(A′)−(q+1)·κℓ

1−κℓ
(see

Lemma 2.1).
Let T and T̃ differ for the first time at the i-th prover message. For the common prefix, B assumes

the same representation as output by S ′
FS-RngPf . To obtain the group representation for the rest of the

transcript, B attempts to build a (1, . . . , ki∗+1, . . . , kr)-tree by running E ′
1. E ′

1 either outputs abort or
outputs the required tree called tr. Given tr, B derives representation for T for all the group elements
after and including round i∗ + 1, using which it breaks discrete-log.
S ′

FS-RngPf outputs transcript of the form:

T̃ = (Ã, S̃; ỹ, z̃; T̃1, T̃2; x̃, β̃x, µ̃, ˜̂t, w̃, L̃1, R̃1, x̃1, . . . , L̃m, R̃m, x̃m, ã, b̃)

and Aur outputs transcripts of the form:

T = (Ã, S̃; ỹ, z̃; T1, T2; x, βx, µ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

Note that at least the first two round messages are the same in both T and T̃ . In the following, we do a
case by case analysis of T and T̃ .
If T̃i ̸= Ti for some i ∈ {1, 2}. Since transcript T is accepting, the InPrd sub-protocol returns b = 1.

(g(m))a(h(m))b(u′)ab =
(

m∏
i=1

L
x2

i
i

)
· P ′ ·

(
m∏

i=1
R

x−2
i

i

)
.

=
(

m∏
i=1

L
x2

i
i

)
h−µ ·A · Sx · g−z·1n

· h′z·yn+z2·2n

· (u′)t̂

(
m∏

i=1
R

x−2
i

i

)
Let us focus on the exponent of generator g. B derives group representation for Li, Ri values just as

in the proof for Claim 2, and similar to the previous case, the g-component for Li (resp. Ri) is 0 here as
well. The only non-zero g-component is ρA from A, and ρ · (−x̃−1) from S.

−(ρA · x̃−1) · x + ρA (16)

If (16) is non-zero then we find a non-trivial discrete-log relation. Otherwise, it must be a zero polynomial.
Now consider a subtree rooted at level 2, i.e., it has the same messages Ti’s as in T and then forks for a
different challenge x̂. Consider a transcript from this subtree. Since it is an accepting transcript as well,
we can derive group representation for L̂i, R̂i for it. Once again, the coefficient for g and h will come out
to be zero. Equating exponents of g, for challenge x̂, we get,

−(ρA · ˜̂x−1) · x̂ + ρA (17)

If either (16) or (17) is non-zero then we find a non-trivial DL solution. Moreover, both cannot be 0 at
the same time as this would imply that polynomial −ρA ·X−1 + ρA is a zero polynomial, and so ρA = 0.
However, ρA = 0 happens with probability 1/(p) because it is chosen uniformly by the simulator.
If βx ̸= β̃x or t̂ ̸= ˜̂t. This case is the same as the analogous case in Claim 2.
If µ ̸= µ̃. Similar to (12) in Claim 2, dividing the InPrd verification equation for T and T̃ , we get:

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃

=
(

m∏
i=1

L
x2

i
i

)(
m∏

i=1
L̃

−x̃2
i

i

)(
m∏

i=1
R

x−2
i

i

)(
m∏

i=1
R̃

−x̃−2
i

i

)
· h−(µ−µ̃) · (u′)t̂ · (ũ′)−t̂.

The rest of the analysis is same as in Claim 2.
If Li ̸= L̃i or Ri ̸= R̃i. This case is the same as the analogous case in Claim 2.
If a ̸= ã or b ̸= b̃. This case is the same as the analogous case in Claim 2.

Derivation of the concrete advantage as well as the expected running time of B is analogous to Claim 2.
Combining the result from Lemma 3.2 we obtain the simulation-extractability of FS-RngPf analogous to
Corollary 4.1.
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