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Abstract. The Hybrid Public Key Encryption (HPKE) standard was
recently published as RFC 9180 by the Crypto Forum Research Group
(CFRG) of the Internet Research Task Force (IRTF). The RFC specifies
an efficient public key encryption scheme, combining asymmetric and
symmetric cryptographic building blocks.
Out of HPKE’s four modes, two have already been formally analyzed by
Alwen et al. (EUROCRYPT 2021). This work considers the remaining
two modes: HPKEPSK and HPKEAuthPSK. Both of them are “pre-shared
key” modes that assume the sender and receiver hold a symmetric pre-
shared key. We capture the schemes with two new primitives which we
call pre-shared key public-key encryption (pskPKE) and pre-shared key
authenticated public-key encryption (pskAPKE). We provide formal secu-
rity models for pskPKE and pskAPKE and prove (via general composition
theorems) that the two modes HPKEPSK and HPKEAuthPSK offer active
security (in the sense of insider privacy and outsider authenticity) under
the Gap Diffie-Hellman assumption.
We furthermore explore possible post-quantum secure instantiations of the
HPKE standard and propose new solutions based on lattices and isogenies.
Moreover, we show how HPKE’s basic HPKEPSK and HPKEAuthPSK modes
can be used black-box in a simple way to build actively secure post-
quantum/classic-hybrid (authenticated) encryption schemes. Our hybrid
constructions provide a cheap and easy path towards a practical post-
quantum secure drop-in replacement for the basic HPKE modes HPKEBase
and HPKEAuth.
Keywords. Authenticated Public Key Encryption, Post-Quantum Hy-
brid, Open Standards, HPKE

1 Introduction

The Hybrid Public Key Encryption (HPKE) standard was published as RFC
9180 [4] by the Crypto Forum Research Group (CFRG) of the Internet Research
Task Force (IRTF)4 in February 2022. The RFC specifies an efficient public
key encryption scheme, combining asymmetric and symmetric cryptographic
4 https://irtf.org/cfrg
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building blocks. While this an old and relatively well understood paradigm, the
new standard was developed in an effort to address issues in previous standard-
izations of hybrid public key encryption. For example, HPKE relies on modern
cryptographic building blocks, provides test vectors to ease development of in-
teroperable implementations, and already received some cryptographic analysis
during its development, inspired by the “analysis-prior-to-deployment” design
philosophy adopted for the development of the TLS 1.3 protocol [20]. At the
time of development of HPKE, two IETF standardization efforts already started
building upon it: the Messaging Layer Security (MLS) protocol [3], and the
Encrypted Client Hello privacy extension of TLS 1.3 [21]. Since its publication,
HPKE has also been adopted by other higher-level protocols, like the published
RFC 9230 Oblivious DNS over HTTPS [16], and the Distributed Aggregation
Protocol for Privacy Preserving Measurement [15], and thus, has become an
important building block of today’s and the future Internet.

The HPKE standard may appear to resemble a “public key encryption”
approach, aligning with the KEM/DEM paradigm [9]. Indeed, it incorporates a
Key Encapsulation Mechanism (KEM) and an Authenticated Encryption with
Associated Data (AEAD), functioning as a Data Encapsulation Mechanism (DEM)
based on the KEM/DEM paradigm. However, upon closer inspection HPKE
turns out to be more complex than this perfunctory description implies. First,
HPKE actually consists of 2 different KEM/DEM constructions. Moreover, each
construction can also be instantiated with a pre-shared key (psk) known to both
sender and receiver, which is used in the key schedule KS to derive the DEM key.
In total this gives rise to 4 different modes for HPKE.

The basic mode HPKEBase makes use of a standard KEM to obtain a “message
privacy and integrity” only mode. This mode can be extended to HPKEPSK to
support authentication of the sender via a psk. The remaining 2 HPKE modes
make use of a different KEM/DEM construction built from a rather non-standard
KEM variant called Authenticated KEM (AKEM) [1]. An AKEM can be thought
of the KEM analogue of signcryption [22]. In particular, sender and receiver both
have their own public/private keys. Each party requires their own private and
the other party’s public key to perform en/decryption. The AKEM-based HPKE
modes also intend to authenticate the sender to the receiver. Just as in the
KEM-based case, the AKEM/DEM construction can be instantiated in modes
either without psk (HPKEAuth) or with a psk (HPKEAuthPSK). The HPKE RFC
constructs a KEM and an AKEM based on specific Diffie-Hellman groups (such
as P-256, P-384, P-521 NIST curves [19], Curve25519, or Curve448 [17]). Alwen,
Blanchet, Hauck, Kiltz, Lipp, and Riepel [1] have analyzed the security of the
Diffie-Hellman AKEM and showed that it can be securely combined with a key
schedule KS and an AEAD to obtain concrete security bounds for the HPKEAuth
modes, as defined in the HPKE standard, see Table 1. Their work explicitly
leaves analyzing the remaining two HPKE modes HPKEPSK and HPKEAuthPSK for
future work.

Applications of HPKE’s PSK Modes. One class of use cases for HPKE’s
PSKs is a sender to transferring security guarantees from external cryptographic
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Table 1: HPKE modes and their security.

HPKE mode Authenticated? PSK? Primitive Security

HPKEBase – – PKE CCAPKE (folklore)

HPKEAuth
√

– APKE [1] Insider-CCA & Outsider-Auth [1]

HPKEPSK –
√

pskPKE (§3) CCA & Auth (§4)

HPKEAuthPSK
√ √

pskAPKE (§3) Insider-CCA & Outsider-Auth (§4)

applications to an HPKE ciphertext. More concretely, a sender might want to
transfer the post-quantum security guarantees provided by a particular PSK
source to a (maybe even only otherwise classically secure) HPKE ciphertext.
One such source might be PSKs distributed via an include out-of-band method
(e.g., in person) or PSKs agreed upon using a post-quantum secure KEM (as
demonstrated in Section 5).

In another example, HPKE’s PSKs can be used to transfer the strong authen-
ticity guarantees of an ongoing Messaging Layer Security (MLS) group containing
both sender and receiver to 1-on-1 messages between the two. MLS sessions
include an HPKE (and signature) public key for each party in the group known
to all other group members. A party’s signature public key is authenticated via
an associated credential binding it to its owner (e.g. an X.509 certificate issued by
a CA). Each user also signs their own HPKE public key to assert their ownership
to rest of the group. To provide authenticity even over many years, MLS must
account for signatures and HPKE keys being corrupted mid session. Rather than
assuming the credentials for a corrupt signing key will be revoked, MLS instead
gives users the ability to update their keys periodically (or at will). To ensure
the old keys are no longer of any use, MLS also equips the group with a sequence
of shared symmetric group keys. Whenever a user updates their signature or
HPKE key, a new group key is produced in a way that ensures knowing the
updating client’s old state (including their signature and HPKE private keys) is
insufficient to learn the new group key. An MLS group including both parties A
and B can now be used to provide strong sender authentication for HPKEAuthPSK
ciphertexts (e.g. beyond the authenticity provided by static credentials). Say,
A wants to send a private message to B. On the one hand A use their HPKE
keys from the MLS session to encrypt and authenticate the message, thereby
inheriting the authenticity guarantees of the credentials in the MLS session. On
the other hand, A can also derive a psk off of the current MLS group key (e.g.
using MLS’s “exporter” functionality) for use with HPKEAuthPSK. Intuitively, this
provides the added guarantee to B that the sender is also currently in the MLS
session. The same method using HPKEPSK in place of HPKEAuthPSK gives B the
guarantee that the sender is a current member of the group.
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1.1 Our Contributions

So far, there has only been a formal analysis of the basic mode HPKEBase and
the authenticated mode HPKEAuth. In this work we focus on the HPKE stan-
dard in its pre-shared key mode, both in its basic form HPKEPSK and in its
authenticated mode HPKEAuthPSK. Furthermore, we explore possible future post-
quantum instantiations of the HPKE standard. To this end we make the following
contributions.
Pre-Shared Key (Authenticated) Public Key Encryption. We begin,
in Section 3, by introducing pre-shared key public key encryption (pskPKE)
and pre-shared key authenticated public key encryption (pskAPKE) schemes,
where the syntax of pskPKE matches that of the single-shot basic pre-shared
mode HPKEPSK, and the syntax of pskAPKE matches that of the single-shot
authenticated pre-shared mode HPKEAuthPSK. Compared to their respective non
pre-shared modes PKE and APKE, encryption and decryption additionally input
psk, a uniform symmetric key shared between the sender and the receiver. In
terms of security, we define (active, multi-user) security notions capturing both
authenticity (Auth) and privacy (CCA) for pskPKE and pskAPKE.

For pskPKE, privacy is essentially standard CCA security for PKE with the
difference that the adversary additionally has access to an encryption oracle
(which requires the secret pre-shared key to compute the ciphertext) and it
is allowed to adaptively corrupt pre-shared (symmetric) keys and long-term
(asymmetric) keys. Security holds as long as at least one of the pre-shared and
long-term keys used in the challenge ciphertext/forgery has not been corrupted.
Authenticity for pskPKE schemes provides the adversary with the same oracles,
and the adversary’s goal is to non-trivially forge a fresh ciphertext, i.e., one that
does not come from the encryption oracle.

Similar to APKE [1], for pskAPKE we consider so called weaker outsider
and stronger insider security variants for privacy, and only outsider security for
authenticity. Intuitively, outsider notions model settings where the adversary is an
outside observer. Conversely, insider notions model settings where the adversary
is somehow directly involved; in particular, even selecting some of the long-term
asymmetric secrets used to produce target ciphertexts. A bit more formally, we
call an honestly generated asymmetric key pair secure if the secret key was not
(explicitly) leaked to the adversary and leaked if it was. An asymmetric key pair
is called corrupted if it was sampled arbitrarily by the adversary. A scheme is
outsider-secure if target ciphertexts are secure when produced using secure key
pairs. Meanwhile, insider security holds even if one secure and one corrupted key
pair are used. For example, insider privacy (Insider-CCA) for pskAPKE requires
that an encapsulated key remains indistinguishable from random despite the
encapsulating ciphertext being produced using corrupted sender keys (but secure
receiver keys). Note that insider authenticity implies (but is stronger than)
Key Compromise Impersonation (KCI) security as KCI security only requires
authenticity for leaked (but not corrupt) receiver keys.

We remark that, for simplicity, our modeling assumes the pre-shared key
psk to be uniformly random from some sufficiently large key-space. Indeed, The
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Table 2: Security properties needed to prove Outsider-Auth and Insider-CCA
security of pskAPKE obtained by the pskAKEM/DEM construction.

AKEM AEAD

Outsider-Auth Outsider-CCA Insider-CCA INT-CTXT IND-CPA

Outsider-AuthpskAPKE X X X
Insider-CCApskAPKE X X X

HPKE RFC mandates the PSK have at least 32 bytes of entropy to counter
Partitioning Oracle Attacks [18] to which HPKE is vulnerable because it is
currently only specified for AEAD schemes that are not key-committing. Thus in
practice, say, hashing such a PSK to a 32 byte string prior to use with HPKE
would, at least in the random oracle model, result in a near uniform distribution.

pskKEM/DEM Construction. In Section 4, we consider the pskKEM/DEM
constructions that combine a KEM (AKEM) together with an AEAD (acting as a
DEM) to obtain pskPKE (pskAPKE). First, we construct pskPKE[KEM, KS, AEAD]
from a KEM, a key schedule KS, and an AEAD. To encrypt a message, a KEM
ciphertext/key pair (c, K) is generated. Next, the KEM key K is fed together
with the pre-shared key psk into KS to obtain the DEM key which in turn is
used to AEAD-encrypt the message. At an intuitive level, the DEM key remains
uniform as long as one of K or psk is uniform, meaning one of the receiver’s
asymmetric key or the pre-shared key has not been corrupted. We will present two
concrete security theorems bootstrapping privacy and authenticity of our pskPKE
construction from standard security properties of the underlying KEM, KS, and
AEAD. Similarly, we can construct pskAPKE[AKEM, KS, AEAD] by replacing the
KEM with an AKEM in the first step of the construction above. We will again
present two concrete security theorems bootstrapping privacy and authenticity
of our pskAPKE construction from standard security properties of the underlying
AKEM, KS, and AEAD. See also Table 2.

An Analysis of the HPKEPSK and HPKEAuthPSK Modes. Using the above
mentioned transformations, the two modes HPKEPSK and HPKEAuthPSK of the
HPKE standard can be obtained as pskPKE[DH-KEM, KS, AEAD] and pskAPKE[
DH-AKEM, KS, AEAD]. Here DH-KEM is the well known Diffie-Hellman based
KEM, DH-AKEM is the Diffie-Hellman based AKEM from [1], key schedule KS is
constructed via the functions Extract and Expand both instantiated with HMAC,
and AEAD is instantiated using AES-GCM or ChaCha20-Poly1305. Hence, our
theorems from Section 4 provide concrete bounds for CCA and Auth security of
HPKEPSK, and Insider-CCA and Outsider-Auth security of HPKEAuthPSK.

Hybrid APKE. In Section 5, we analyze a natural black-box construction of a
hybrid APKE from an AKEM and from HPKEAuthPSK. Intuitively, the resulting
scheme’s security depends on either one of two AKEM schemes being secure. (We
remark that essentially same construction and analogous proof also construct
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hybrid PKE from a KEM and HPKEPSK.) One interesting application of this con-
struction is building a PQ/classic-hybrid APKE which can be done by combining
a PQ secure AKEM with a classically secure one (in HPKEAuthPSK). In comparison
with the CPA secure PQ/classic-hybrid variant of HPKE in [2] our construction
enjoys CCA security. Moreover, unlike [2], our construction uses both the PQ
AKEM and HPKE as black-boxes meaning it can be easily implemented using
only the standard interfaces to the two schemes. For these reasons our hybrid
construction provides a cheap and easy path towards a practical PQ-secure
(A)PKE drop-in replacement for plain HPKE.

Post-Quantum AKEM. As we have seen, AKEM schemes are the fundamental
primitive underlying natural APKE and pskAPKE schemes. The HPKE standard
in its HPKEAuth and HPKEAuthPSK modes relies on the Diffie-Hellman based
DH-APKE instantiation. Unfortunately, none of them offers security against
attackers equipped with a quantum computer. In Section 6 we propose two
generic constructions of AKEM from basic primitives that can be instantiated in
a post-quantum secure way.

A well-known approach for constructing a post-quantum AKEM is to combine
a post-quantum KEM with a post-quantum signature [10]. Unfortunately, the
Encrypt-then-Sign (EtS) approach turns out not to be Insider-CCA secure [10].
The Sign-then-Encrypt (StE) approach is in fact Insider-CCA and Outsider-Auth
secure but extending it to Sign-then-KEM in a natural way would add unnecessary
overhead through the required detour over the KEM/DEM framework. Our first
construction extends EtS approach to the new “Encrypt-then-Sign-then-Hash”
(EtStH) approach. It combines a KEM, a digital signature SIG, and a hash function
to obtain AKEM. Concretely, AKEM encryption produces a KEM ciphertext/key
pair (c, K ′) and then uses the sender’s secret key to sign ciphertext c and the
sender’s public and verification key. Finally, the DEM key is derived from K ′,
the signature and all the public keys using a hash function. Security in the
sense of Insider-CCA and Outsider-Auth is proved under the assumption that the
hash function is a PRF. Our scheme can be instantiated, for example, with any
post-quantum secure KEM and signature scheme, for example Kyber [8] and
Dilithium [11].

Our second AKEM construction relies on a non-interactive key-exchange
scheme NIKE. Key encapsulation first computes an ephemeral NIKE key pair and
defines the ephemeral public key as the ciphertext. Next, it derives the DEM key
from the following two NIKE keys: The first (authentication) key between sender’s
secret key and the receiver’s public key. The second (privacy) key between the
ephemeral secret key and the receiver’s public key. Note that the knowledge of
the receiver’s secret key allows to recover both NIKE keys and hence the DEM
key. Security in the sense of Insider-CCA and Outsider-Auth is proved assuming
the NIKE to be actively secure [13]. Instantiating it with the (actively secure)
Diffie-Hellman NIKE [13], we obtain (a variant of) the DH-AKEM from the HPKE
standard. But it can also be instantiated with the post-quantum secure NIKE
from lattices [14] and from isogenies [12]. We remark that our NIKE approach
provides deniability, whereas our more efficient EtStH construction does not.
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2 Preliminaries

2.1 Notations

Sets and Algorithms. We write h $← S to denote that the variable h is
uniformly sampled from the finite set S. For an integer n, we define [n] :=
{1, . . . , n}. The notation JbK, where b is a boolean statement, evaluates to 1 if
the statement is true and 0 otherwise.

We use uppercase letters A,B to denote algorithms. Unless otherwise stated,
algorithms are probabilistic, and we write (y1, . . .) $← A(x1, . . .) to denote that
A returns (y1, . . .) when run on input (x1, . . .). We write AB to denote that A
has oracle access to B during its execution. For a randomised algorithm A, we
use the notation y ∈ A(x) to denote that y is a possible output of A on input x.
Security Games. We use standard code-based security games [6]. A game G
is a probability experiment in which an adversary A interacts with an implicit
challenger that answers oracle queries issued by A. The game G has one main
procedure and an arbitrary amount of additional oracle procedures which describe
how these oracle queries are answered. We denote the (binary) output b of game
G between a challenger and an adversary A as GA ⇒ b. A is said to win G
if GA ⇒ 1, or shortly G ⇒ 1. Unless otherwise stated, the randomness in the
probability term Pr[GA ⇒ 1] is over all the random coins in game G.

We now recall definitions for (authenticated) KEMs (Section 2.2), authenti-
cated PKE schemes (Section 2.3), and digital signatures (Section 2.6). Standard
definitions of pseudo-random functions (Section 2.4), Authenticated Encryption
with Associated Data (Section 2.5), and non-interactive key exchange (Section 2.7)
are postponed to the appendix.

2.2 (Authenticated) Key Encapsulation Mechanisms

We first recall syntax and security of a KEM.

Definition 1 (KEM). A key encapsulation mechanism KEM consists of three
algorithms:

– Gen outputs a key pair (sk, pk), where pk defines a key space K.
– Encaps takes as input a (receiver) public key pk, and outputs an encapsulation

c and a shared secret K ∈ K (or ⊥).
– Deterministic Decaps takes as input a (receiver) secret key sk and an encap-

sulation c, and outputs a shared key K ∈ K (or ⊥).

We require that for all (sk, pk) ∈ Gen,

Pr
(c,K) $←Encaps(pk)

[Decaps(sk, c) = K] = 1 .

To KEM we associate the two sets SK := {sk | (sk, pk) ∈ Gen} and PK := {pk |
(sk, pk) ∈ Gen}. We assume (w.l.o.g.) that there is a function µ : SK → PK
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such that for all (sk, pk) ∈ Gen it holds µ(sk) = pk. We further define PK′ to be
the set of all efficiently recognizable public keys (by Encaps), i.e., PK′ := {pk ∈
{0, 1}∗ | ⊥ ̸∈ Encaps(pk)}. Note that PK ⊆ PK′ by correctness, but PK′ could
potentially contain “benign looking” public keys outside of PK. We will also
require a property of the KEM called η-key spreadness:

∀pk ∈ PK′ : H∞(K | (c, K) $← Encaps(pk)) ≥ η,

where H∞ denotes the min-entropy. This property will assure that an honestly
generated key K has sufficient min-entropy, even if it was generated using a pk
outside PK.

Listing 1: Game (n, qd, qc)-CCA for KEM. Adversary A makes at most qd queries
to Decap, and at most qc queries to Chall.

(n, qd, qc)-CCA
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 E ← ∅
04 b $← {0, 1}
05 b′ $← ADecap,Chall(pk1, . . . , pkn)
06 return Jb = b′K

Oracle Decap(j ∈ [n], c)
07 if ∃K : (pkj , c, K) ∈ E
08 return K
09 K ← Decaps(skj , c)
10 return K

Oracle Chall(j ∈ [n])
11 (c, K) $← Encaps(pkj)
12 if b = 1
13 K $← K
14 E ← E ∪ {(pkj , c, K)}
15 return (c, K)

Privacy in the sense of multi-user chosen-ciphertext security is defined via
the game in Listing 1. The advantage of an adversary A is defined as

Adv(n,qd,qc)-CCA
A,KEM :=

∣∣∣∣Pr[(n, qd, qc)-CCA(A)⇒ 1]− 1
2

∣∣∣∣ .

Next, we recall syntax and security of an authenticated KEM (AKEM) [1].

Definition 2 (AKEM). An authenticated key encapsulation mechanism AKEM
consists of three algorithms:

– Gen outputs a key pair (sk, pk), where pk defines a key space K.
– AuthEncap takes as input a (sender) secret key sk and a (receiver) public key

pk, and outputs an encapsulation c and a shared secret K ∈ K (or ⊥).
– Deterministic AuthDecap takes as input a (sender) public key pk, a (receiver)

secret key sk, and an encapsulation c, and outputs a shared key K ∈ K (or
⊥).

We require that for all (sk1, pk1) ∈ Gen, (sk2, pk2) ∈ Gen,

Pr
(c,K) $←AuthEncap(sk1,pk2)

[AuthDecap(pk1, sk2, c) = K] = 1 .
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Sets SK, PK, PK′, function µ, and η-key spreadness are defined as in the
the KEM case.

Privacy (in the sense of insider and outsider CCA security) is defined via
game Listing 2. Oracles AEncap and ADecap can be called with arbitrary
public keys pk ∈ PK′ ⊇ PK, i.e., arbitrary strings that pass AKEM’s internal
verification check. The insider setting is modeled using the RepSK oracle which
can be used by the adversary to corrupt a sender’s secret key sk. (Here we can
assume sk ∈ SK since secret keys are usually seeds and can be efficiently verified.)

Note that this security notion is equivalent to the one from [1]. In the outsider
case, the adversary cannot corrupt secret keys, i.e., rsk = 0. The advantage is
defined as

Adv(n,qe,qd,qc,rsk)-Insider-CCA
A,AKEM :=

∣∣∣∣Pr[(n, qe, qd, qc, rsk)-Insider-CCA(A)⇒ 1]− 1
2

∣∣∣∣ ,

Adv(n,qe,qd,qc)-Outsider-CCA
A,AKEM := Adv(n,qe,qd,qc,0)-Insider-CCA

A,AKEM .

Authenticity is defined via the game in Listing 3.

Adv(n,qe,qd)-Outsider-Auth
A,AKEM :=

∣∣∣∣Pr[(n, qe, qd)-Outsider-Auth(A)⇒ 1]− 1
2

∣∣∣∣ .

Listing 2: Game (n, qe, qd, qc, rsk)-Insider-CCA for AKEM. Adversary A makes at
most qe queries to AEncap, at most qd queries to ADecap, at most qc queries
to Chall, and at most rsk queries to RepSK.

(n, qe, qd, qc, rsk)-Insider-CCA
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 E , Γpk ← ∅
04 b $← {0, 1}
05 b′ $← AAEncap,ADecap,Chall,RepSK(pk1, . . . , pkn)
06 return Jb = b′K

Oracle AEncap(i ∈ [n], pk ∈ PK′)
07 (c, K) $← AuthEncap(ski, pk)
08 return (c, K)

Oracle ADecap(pk ∈ PK′, j ∈ [n], c)
09 if ∃K : (pk, pkj , c, K) ∈ E
10 return K
11 K ← AuthDecap(pk, skj , c)
12 return K

Oracle Chall(i ∈ [n], j ∈ [n])
13 if j ∈ Γpk

14 return ⊥
15 (c, K) $← AuthEncap(ski, pkj)
16 if b = 1
17 K $← K
18 E ← E ∪ {(pki, pkj , c, K)}
19 return (c, K)

Oracle RepSK(i ∈ [n], sk ∈ SK)
20 (pki, ski)← (µ(sk), sk)
21 Γpk ← Γpk ∪ {i}
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Listing 3: Game (n, qe, qd)-Outsider-Auth for AKEM. Adversary A makes at most
qe queries to AEncap, and at most qd queries to ADecap.

(n, qe, qd)-Outsider-Auth
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 E ← ∅
04 b $← {0, 1}
05 b′ $← AAEncap,ADecap(pk1, . . . , pkn)
06 return Jb = b′K

Oracle AEncap(i ∈ [n], pk ∈ PK′)
07 (c, K) $← AuthEncap(ski, pk)
08 E ← E ∪ {(pki, pk, c, K)}
09 return (c, K)

Oracle ADecap(pk ∈ PK′, j ∈ [n], c)
10 if ∃K : (pk, pkj , c, K) ∈ E
11 return K
12 K ← AuthDecap(pk, skj , c)
13 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧K ̸= ⊥
14 K $← K
15 E ← E ∪ {(pk, pkj , c, K)}
16 return K

2.3 Authenticated Public Key Encryption

We recall syntax and security of an authenticated PKE (APKE) [1].

Definition 3 (APKE). An authenticated public key encryption scheme APKE
consists of the following three algorithms:

– Gen outputs a key pair (sk, pk).
– AuthEnc takes as input a (sender) secret key sk, a (receiver) public key pk, a

message m, associated data aad, a bitstring info, and outputs a ciphertext c.
– Deterministic AuthDec takes as input a (receiver) secret key sk, a (sender)

public key pk, a ciphertext c, associated data aad and a bitstring info, and
outputs a message m.

We require that for all messages m ∈ {0, 1}∗, aad ∈ {0, 1}∗, info ∈ {0, 1}∗,

Pr
(skS ,pkS )

$←Gen

(skR,pkR)
$←Gen

[
c← AuthEnc(skS , pkR, m, aad, info),
AuthDec(skR, pkS , c, aad, info) = m

]
= 1 .

Sets SK, PK, PK′, function µ, and η-key spreadness are defined as in the the
KEM case.
Privacy. We define the game (n, qe, qd, qc)-Insider-CCA in Listing 4, which is the
strongest privacy notion for APKE defined in [1].

The advantage of A is

Adv(n,qe,qd,qc)-Insider-CCA
A,APKE :=

∣∣∣∣Pr[(n, qe, qd, qc)-Insider-CCA(A)⇒ 1]− 1
2

∣∣∣∣ .

Authenticity. Furthermore, in Listing 5 we recall the (n, qe, qd)-Outsider-Auth
game from [1]. The advantage of A is defined as

Adv(n,qe,qd)-Outsider-Auth
A,APKE := Pr[(n, qe, qd)-Outsider-Auth⇒ 1].
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Listing 4: Game (n, qe, qd, qc)-Insider-CCA for APKE in which adversary A makes
at most qe queries to AEnc, at most qd queries to ADec and at most qc queries
to Chall.

(n, qe, qd, qc)-Insider-CCA
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 E ← ∅
04 b $← {0, 1}
05 b′ $← AAEnc,ADec,Chall(pk1, . . . , pkn)
06 return Jb = b′K

Oracle AEnc(i ∈ [n], pk ∈ PK′, m, aad, info)
07 c $← AuthEnc(ski, pk, m, aad, info)
08 return c

Oracle ADec(pk ∈ PK′, j ∈ [n], c, aad, info)
09 if (pk, pkj , c, aad, info) ∈ E
10 return ⊥
11 m← AuthDec(pk, skj , c, aad, info)
12 return m

Oracle Chall(sk ∈ SK, j ∈ [n], m0, m1, aad, info)
13 if |m0| ≠ |m1| return ⊥
14 c $← AuthEnc(sk, pkj , mb, aad, info)
15 E ← E ∪ {(µ(sk), pkj , c, aad, info)}
16 return c

Listing 5: Game (n, qe, qd)-Outsider-Auth for APKE in which adversary A makes
at most qe queries to AEnc and at most qd queries to ADec.

(n, qe, qd)-Outsider-Auth
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 E ← ∅
04 (i∗, j∗, c∗, aad∗, info∗) $← AAEnc,ADec(pk1, . . . , pkn)
05 return J(pki∗ , pkj∗ , c∗, aad∗, info∗) ̸∈ E
∧ AuthDec(pki∗ , skj∗ , c∗, aad∗, info∗) ̸= ⊥K

Oracle AEnc(i ∈ [n], pk ∈ PK′, m, aad, info)
06 c $← AuthEnc(ski, pk, m, aad, info)
07 E ← E ∪ {(pki, pk, c, aad, info)}
08 return c

Oracle ADec(pk ∈ PK′, j ∈ [n], c, aad, info)
09 m← AuthDec(pk, skj , c, aad, info)
10 return m

Note that in contrast to the privacy case we use the weaker outsider notion
instead of the insider notion for authenticity. This is because [1] show that
the HPKEAuth construction cannot fulfill insider authenticity for any possible
instantiation. Since the same attack can be run against HPKEPSK, we omit the
definition here.

2.4 Pseudorandom Functions

A keyed function F with a finite key space K, input length n, and a finite output
range R is a function F : K × {0, 1}∗ → R.

Definition 4 (Multi-Instance Pseudorandom Function). The (nk, qPRF)-
PRF advantage of an adversary A against a keyed function F with finite key
space K, and finite range R is defined as

Adv(nk,qPRF)-PRF
A,F :=

∣∣∣∣∣ Pr
K1,...,Knk

$←K
[AF (K1,·),...,F (Knk

,·)]− Pr[Af1(·),...,fnk
(·)]

∣∣∣∣∣ ,

where fi : {0, 1}∗ → R for i ∈ [nk] are chosen uniformly at random from the
set of functions mapping to R and A makes at most qPRF queries in total to the
oracles F (Ki, ·), fi resp.
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Definition 5 (2-Keyed Function). A 2-keyed function F with finite key
spaces K1 and K2, and finite range R is a function

F : K1 ×K2 × {0, 1}∗ → R.

2.5 Authenticated Encryption with Associated Data

We recall standard syntax and security for AEAD schemes.

Definition 6 (AEAD). A nonce-based authenticated encryption scheme with
associated data and key space K′ consists of the following two algorithms:

– Deterministic algorithm AEAD.Enc takes as input a key k ∈ K′, a message
m, associated data aad, and a nonce and outputs a ciphertext c.

– Deterministic algorithm AEAD.Dec takes as input a key k ∈ K′, a ciphertext
c, associated data aad and a nonce nonce and outputs a message m or the
failure symbol ⊥.

We require that for all aad ∈ {0, 1}∗, m ∈ {0, 1}∗, nonce ∈ {0, 1}Nnonce

Pr
k

$←K′
[AEAD.Dec(k, AEAD.Enc(k, m, aad, nonce), aad, nonce) = m] = 1 ,

where Nnonce is the length of the nonce in bits.

We define the multi-instance security game (n, qd)-INT-CTXT in Listing 6
and (n, qd)-CCA in Listing 7. Note that an AEAD scheme which is IND-CPA and
INT-CTXT secure is also CCA secure [5]. The advantage of an adversary A is

Adv(n,qd)-INT-CTXT
A,AEAD :=

∣∣ Pr[(n, qd)-INT-CTXT(A)⇒ 1]− 1
2

∣∣
Adv(n,qd)-CCA

A,AEAD :=
∣∣ Pr[(n, qd)-CCA(A)⇒ 1]− 1

2
∣∣ .

2.6 Digital Signatures

Definition 7 (Signature Scheme). A signature scheme SIG = (Gen, Sign, Vfy)
consists of three algorithm:

– Key generation Gen generates a secret signing key sigk and a verification key
vk.

– Signing Sign: On input a signing key sigk and a message m, outputs a
signature σ.

– Verification Vfy: On input a verification key vk, a message m, and a signature
σ, deterministically outputs a bit b.

The signature scheme fulfills correctness if for all (sigk, vk) $← Gen it holds

Pr
σ

$←Sign(sk,m)
[Vfy(vk, m, σ) = 1] = 1.
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Listing 6: Game (n, qd)-INT-CTXT for AEAD. Adversary A makes at most one
query per index i to Enc and at most qd queries in total to Dec.

(n, qd)-INT-CTXT
01 for i ∈ [n]
02 ki

$← K′

03 noncei
$← {0, 1}Nnonce

04 E ← ∅
05 b $← {0, 1}
06 b′ $← AEnc,Dec

07 return Jb = b′K

Oracle Enc(i ∈ [n], m, aad)
08 c← AEAD.Enc(ki, m, aad, noncei)
09 E ← E ∪ {i, m, c, aad}
10 return (c, noncei)

Oracle Dec(i ∈ [n], c, aad)
11 if b = 0
12 m← AEAD.Dec(ki, c, aad, noncei)
13 else if ∃m′ : (i, m′, c, aad) ∈ E
14 m← m′

15 else
16 m← ⊥
17 return m

Listing 7: Game (n, qd)-CCA for AEAD. Adversary A makes at most one query
per index i to Enc and at most qd queries in total to Dec.

(n, qd)-CCA
01 for i ∈ [n]
02 ki

$← K′

03 noncei
$← {0, 1}Nnonce

04 E ← ∅
05 b $← {0, 1}
06 b′ $← AEnc,Dec

07 return Jb = b′K

Oracle Enc(i ∈ [n], m0, m1, aad)
08 c← AEAD.Enc(ki, mb, aad, noncei)
09 E ← E ∪ {i, c, aad}
10 return (c, noncei)

Oracle Dec(i ∈ [n], c, aad)
11 if (i, c, aad) ∈ E
12 return ⊥
13 m← AEAD.Dec(ki, c, aad, noncei)
14 return m

To SIG we associate the two sets SK := {sigk | (sigk, vk) ∈ Gen} and VK := {vk |
(sigk, vk) ∈ Gen}. We assume (w.l.o.g.) that there is a function µ′ : SK → VK
such that for all (sigk, vk) ∈ Gen it holds µ′(sigk) = vk.

Definition 8 (Strong Unforgeability). Let SIG = (Gen, Sign, Vfy) be a signa-
ture scheme. We define multi-user strong unforgeability against a chosen message
attack (SUF-CMA) via the (n, qs)-SUF-CMA game in Listing 8. The advantage
of an adversary A is Adv(n,qs)-SUF-CMA

A,SIG = Pr[(n, qs)-SUF-CMA(A)⇒ 1].

2.7 Non-Interactive Key Exchange

Definition 9 (Non-Interactive Key Exchange). A NIKE scheme consists
of a setup, two algorithms NIKE.KeyGen, NIKE.SharedKey and a shared key space
SHK. The algorithms are defined as follows:

– NIKE.KeyGen outputs a pair of public and secret key (sk, pk).
– NIKE.SharedKey takes a secret key sk and a public key pk and outputs either

a shared key in SHK or the failure symbol ⊥.
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Listing 8: Game (n, qs)-SUF-CMA for SIG. Adversary A makes at most qs queries
to Sign.

(n, qs)-SUF-CMA
01 for i ∈ [n]
02 (sigki, vki) $← Gen
03 Q← ∅
04 (i∗, m∗, σ∗) $← ASign(vk1, . . . , vkn)
05 return JVfy(vki∗ , m∗, σ∗) = 1
∧ (i∗, m∗, σ∗) /∈ QK

Oracle Sign(i ∈ [n], m)
06 σ $← Sign(sigki, m)
07 Q← Q ∪ {(i, m, σ)}
08 return σ

The NIKE fulfills correctness if for all (sk1, pk1) $← NIKE.KeyGen, (sk2, pk2) $←
NIKE.KeyGen, it holds

NIKE.SharedKey(sk1, pk2) = NIKE.SharedKey(sk2, pk1).

The security definition for actively secure NIKE can be found in the full
version.

3 Pre-Shared Key (Authenticated) Encryption

In this section, we define syntax and security of pre-shared key public key
encryption (pskPKE) and pre-shared key authenticated public key encryption
(pskAPKE). The former is an extension of common public key encryption with
an additional pre-shared symmetric key that has already been shared between
the parties. The latter is an analogue extension of authenticated public key
encryption (APKE). The pre-shared key (psk) has two functionalities. First, it
provides an additional layer of privacy since the security does not have to rely
on the asymmetric key only. Second, it also provides authenticity. The intuition
behind security is that even if one of the two keys, either the asymmetric key or
the (symmetric) pre-shared key, is corrupted or in any other way insecure, the
scheme should still guarantee security.

We start with defining the syntax of pskPKE and pskAPKE in Section 3.1
and then define the security model for privacy (Section 3.2) and authenticity
(Section 3.3).

3.1 Syntax

Definition 10 (pskPKE). A pre-shared key public key encryption scheme pskPKE
consists of the following four algorithms:

– GenSK outputs a key pair (sk, pk).
– GenPSK outputs a pre-shared key psk.
– pskEnc takes as input a (receiver) public key pk, a pre-shared key psk, a

message m, associated data aad, a bitstring info, and outputs a ciphertext c.
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– Deterministic pskDec takes as input a (receiver) secret key sk, a pre-shared
key psk, a ciphertext c, associated data aad and a bitstring info, and outputs
a message m.

We require that for all messages m ∈ {0, 1}∗, aad ∈ {0, 1}∗, info ∈ {0, 1}∗,

Pr
(sk,pk)

$←GenSK

psk
$←GenPSK

[
c← pskEnc(pk, psk, m, aad, info),
pskDec(sk, psk, c, aad, info) = m

]
= 1 .

Definition 11 (pskAPKE). A pre-shared key Authenticated public key encryption
scheme pskAPKE consists of the following four algorithms:

– GenSK outputs a key pair (sk, pk).
– GenPSK outputs a pre-shared key psk.
– pskAEnc takes as input a (sender) secret key sk, a (receiver) public key pk, a

pre-shared key psk, a message m, associated data aad, a bitstring info, and
outputs a ciphertext c.

– Deterministic pskADec takes as input a (sender) public key pk, a (receiver)
secret key sk, a pre-shared key psk, a ciphertext c, associated data aad and a
bitstring info, and outputs a message m.

We require that for all messages m ∈ {0, 1}∗, aad ∈ {0, 1}∗, info ∈ {0, 1}∗,

Pr
(skS ,pkS )

$←GenSK

(skR,pkR)
$←GenSK

psk
$←GenPSK

[
c← pskAEnc(skS , pkR, psk, m, aad, info),
pskADec(pkS , skR, psk, c, aad, info) = m

]
= 1 .

Sets SK, PK, PK′, and function µ are defined as in the the KEM case.

3.2 Privacy

Privacy is defined via the games in Listing 9 (pskPKE) and Listing 10 (pskAPKE).
The idea is based on the standard CCA definition for PKE with the following
modifications.

For the game in Listing 9, the adversary is provided with an encryption oracle
Enc since, in contrast to standard PKE, encryption requires the knowledge of
the corresponding pre-shared key. We further strengthen the security model by
allowing corrupted keys. This is modeled by two oracles, RepPK and RepPSK.
Oracle RepPK models the corruption of an asymmetric key pair, where the
adversary is allowed to replace the public key of a user with pk ∈ PK′ (with
or without knowing the matching private key). Since the game is not able to
decrypt queries to a corrupted receiver’s key anymore, we return ⊥ on such
queries. To keep track of corrupted keys, the game maintains a set Γpk containing
all corrupted indices j. Similarly, oracle RepPSK models the corruption of a
pre-shared key between two chosen users. Set Γpsk keeps track of sender and
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Listing 9: Game (n, qe, qd, qc, rpk , rpsk)-CCA for pskPKE. Adversary A makes at
most qe queries to Enc, at most qd queries to Dec, at most qc queries to Chall,
at most rpk queries to RepPK, and at most rpsk queries to RepPSK.

(n, qe, qd, qc, rpk , rpsk)-CCA
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 for j ∈ [i]
04 pskij

$← GenPSK
05 pskji ← pskij

06 E , Γpk, Γpsk ← ∅
07 b $← {0, 1}
08 b′ $← AEnc,Dec,Chall,RepPK,RepPSK(pk1, . . . , pkn)
09 return Jb = b′K

Oracle Enc(i ∈ [n], j ∈ [n], m, aad, info)
10 c $← pskEnc(pkj , pskij , m, aad, info)
11 return c

Oracle Dec(i ∈ [n], j ∈ [n], c, aad, info)
12 if skj = ⊥ ∨ (pkj , pskij , c, aad, info) ∈ E
13 return ⊥
14 m← pskDec(skj , pskij , c, aad, info)
15 return m

Oracle Chall(i ∈ [n], j ∈ [n], m0, m1, aad, info)
16 if |m0| ̸= |m1| ∨ (j ∈ Γpk ∧ (i, j) ∈ Γpsk)
17 return ⊥
18 c $← pskEnc(pkj , pskij , mb, aad, info)
19 E ← E ∪ {(pkj , pskij , c, aad, info)}
20 return c

Oracle RepPK(j ∈ [n], pk ∈ PK′)
21 (skj , pkj)← (⊥, pk)
22 Γpk ← Γpk ∪ {j}

Oracle RepPSK(i ∈ [n], j ∈ [n], psk)
23 pskij ← psk
24 pskji ← psk
25 Γpsk ← Γpsk ∪ {(i, j), (j, i)}

Listing 10: Game (n, qe, qd, qc, rpk , rsk , rpsk)-Insider-CCA for pskAPKE. Adver-
sary A makes at most qe queries to Enc at most qd queries to Dec, at most qc

queries to Chall, at most rpk queries to RepPK, at most rsk queries to RepSK,
and at most rpsk queries to RepPSK.

(n, qe, qd, qc, rpk , rsk , rpsk)-Insider-CCA
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 for j ∈ [i]
04 pskij

$← GenPSK
05 pskji ← pskij

06 E , Γc, Γpk, Γpsk ← ∅
07 b $← {0, 1}
08 b′ $← AEnc,Dec,Chall,RepPK,RepSK,RepPSK(pk1, . . . , pkn)
09 return Jb = b′K

Oracle Enc(i ∈ [n], j ∈ [n], m, aad, info)
10 if ski = ⊥
11 return ⊥
12 c $← pskAEnc(ski, pkj , pskij , m, aad, info)
13 return c

Oracle Dec(i ∈ [n], j ∈ [n], c, aad, info)
14 if skj = ⊥ ∨ (pkj , pskij , c, aad, info) ∈ E
15 return ⊥
16 m← pskADec(pki, skj , pskij , c, aad, info)
17 return m

Oracle Chall(i ∈ [n], j ∈ [n], m0, m1, aad, info)
18 if |m0| ≠ |m1|∨ski = ⊥∨(j ∈ Γpk∧(i, j) ∈ Γpsk)
19 return ⊥
20 c $← pskAEnc(ski, pkj , pskij , mb, aad, info)
21 E ← E ∪ {(pki, pkj , pskij , c, aad, info)}
22 return c

Oracle RepPK(j ∈ [n], pk ∈ PK′)
23 (skj , pkj)← (⊥, pk)
24 Γpk ← Γpk ∪ {j}

Oracle RepSK(j ∈ [n], sk ∈ SK)
25 (skj , pkj)← (sk, µ(sk))
26 Γpk ← Γpk ∪ {j}

Oracle RepPSK(i ∈ [n], j ∈ [ℓ], psk)
27 pskij ← psk
28 pskji ← psk
29 Γpsk ← Γpsk ∪ {(i, j), (j, i)}
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Listing 11: Game (n, qe, qd, rpk , rpsk)-Auth for pskPKE. Adversary A makes at
at most qe queries to Enc, at most qd queries to Dec, at most rpk queries to
RepPK, and at most rpsk queries to RepPSK.

(n, qe, qd, rpk , rpsk)-Auth
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 for j ∈ [i]
04 pskij

$← GenPSK
05 pskji ← pskij

06 E , Γpsk ← ∅
07 (i∗, j∗, c∗, aad∗, info∗) $← AEnc,Dec,RepPK,RepPSK(pk1, . . . , pkn)
08 return J(i∗, j∗) /∈ Γpsk ∧ skj∗ ̸= ⊥
∧ (pkj∗ , pski∗j∗ , c∗, aad∗, info∗) /∈ E
∧ pskDec(skj∗ , pski∗j∗ , c∗, aad∗, info∗) ̸= ⊥K

Oracle Enc(i ∈ [n], j ∈ [n], m, aad, info)
09 c $← pskEnc(pkj , pskij , m, aad, info)
10 E ← E ∪ {(pkj , pskij , c, aad, info)}
11 return c

Oracle Dec(i ∈ [n], j ∈ [n], c, aad, info)
12 if skj = ⊥
13 return ⊥
14 m← pskDec(skj , pskij , c, aad, info)
15 return m

Oracle RepPK(j ∈ [n], pk ∈ PK′)
16 (skj , pkj)← (⊥, pk)

Oracle RepPSK(i ∈ [n], j ∈ [n], psk)
17 pskij ← psk
18 pskji ← psk
19 Γpsk ← Γpsk ∪ {(i, j), (j, i)}

Listing 12: Game (n, qe, qd, rpk , rpsk)-Outsider-Auth for pskAPKE. Adversary A
makes at most qe queries to Enc, at most qd queries to Dec, at most rpk queries
to RepPK, and at most rpsk queries to RepPSK.

(n, qe, qd, rpk , rpsk)-Outsider-Auth
01 for i ∈ [n]
02 (ski, pki) $← Gen
03 for j ∈ [i]
04 pskij

$← GenPSK
05 pskji ← pskij

06 E , Γpk, Γpsk ← ∅
07 (i∗, j∗, c∗, aad∗, info∗) $← AEnc,Dec,RepPK,RepPSK(pk1, . . . , pkn)
08 return J(i∗ /∈ Γpk ∨ (i∗, j∗) /∈ Γpsk) ∧ skj∗ ̸= ⊥
∧ (pki∗ , pkj∗ , pski∗j∗ , c∗, aad∗, info∗) /∈ E
∧ pskADec(pki∗ , skj∗ , pski∗j∗ , c∗, aad∗, info∗) ̸= ⊥K

Oracle Enc(i ∈ [n], j ∈ [n], m, aad, info)
09 if ski = ⊥
10 return ⊥
11 c $← pskAEnc(ski, pkj , pskij , m, aad, info)
12 E ← E ∪ {(pki, pkj , pskij , c, aad, info)}
13 return c

Oracle Dec(i ∈ [n], j ∈ [n], c, aad, info)
14 if skj = ⊥
15 return ⊥
16 m← pskADec(pki, skj , pskij , c, aad, info)
17 return m

Oracle RepPK(i ∈ [n], pk ∈ PK′)
18 (ski, pki)← (⊥, pk)
19 Γpk ← Γpk ∪ {i}

Oracle RepPSK(i ∈ [n], j ∈ [n], psk)
20 pskij ← psk
21 pskji ← psk
22 Γpsk ← Γpsk ∪ {(i, j), (j, i)}
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receiver pairs for which the corresponding psk was corrupted. Provided with
the additional oracles, it should still be hard to guess the challenge bit, i.e.,
which of the two messages given to the challenge oracle was encrypted. To avoid
trivial wins, we disallow the challenge oracle to be queried on pairs of users
for which both the receiver’s key as well as the pre-shared key were corrupted.
However, the challenge query is allowed if at most one of them is corrupted. (Note
that in particular the adversary is still allowed to issue challenge queries for a
corrupted psk.) In that sense we model an “insider setting”. An insider notion
for pskPKE cannot be formulated stronger because it does not make any sense
to allow corrupted senders in the sense of a corrupted sk since it is not used for
encryption.5 The advantage of adversary A is

Adv(n,qe,qd,qc,rpk ,rpsk)-CCA
A,pskPKE :=

∣∣∣∣Pr[(n, qe, qd, qc, rpk , rpsk)-CCA(A)⇒ 1]− 1
2

∣∣∣∣ .

The definition of CCA security for pskAPKE (Listing 10) works similar with
the following changes. The main difference compared to pskPKE is that the
asymmetric part of the encryption is authenticated which means that the sender’s
secret key is also involved. To take attacks into account which could make use
of corrupted senders, we make the following modification. The game provides
another oracle RepSK which allows the adversary to replace an asymmetric
secret key directly, which means they are also allowed to query all the other
oracles on corrupted sender keys. This is exactly what is called the “Insider”
setting in [1] and signcryption [10]. This means in particular that the encryption
of two different messages is indistinguishable even if the sender’s asymmetric
key was adversarially chosen. As in the case of pskPKE, the psk can also be
corrupted in the sense of an insider attack, i.e., the sender is corrupted. However,
due to the symmetric nature of the pre-shared key, this implies a security loss for
the receiver as well and we have to exclude trivial wins in the same way as for
pskPKE. Therefore, the same security requirement as for pskPKE holds, i.e., in
addition to the corruption of a sender’s secret key either a receiver’s key or the
pre-shared key can be corrupted and security still holds. We also define outsider
security as the simplified setting, where the adversary does not have access to
the RepSK oracle, i.e., rpk = 0. The advantage of adversary A is

Adv(n,qe,qd,qc,rpk ,rsk ,rpsk)-Insider-CCA
A,pskAPKE

:=
∣∣∣∣Pr[(n, qe, qd, qc, rpk , rsk , rpsk)-Insider-CCA(A)⇒ 1]− 1

2

∣∣∣∣ ,

Adv(n,qe,qd,qc,rpk ,rpsk)-Outsider-CCA
A,pskAPKE := Adv(n,qe,qd,qc,rpk ,0,rpsk)-Insider-CCA

A,pskAPKE .

5 To prevent confusion we do explicitly call this notion insider secure and only use the
term “insider” if it is possible to the (asymmetric) secret key of a sender. See also
the security definition of the pskAPKE.
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3.3 Authenticity
Authenticity is defined via the games in Listing 11 (pskPKE) and Listing 12
(pskAPKE). For the game in Listing 11, the goal is to forge a fresh ciphertext,
i.e., one that was not output by the encryption oracle and that does not decrypt
to ⊥. Further, we do not allow corrupted receiver keys for the challenge, i.e.
skj∗ ̸= ⊥, since the decryption would not be possible anymore. As in the privacy
case, we model corrupted keys via oracle RepPK which allows the adversary
to replace an asymmetric key and oracle RepPSK which allows to replace a
pre-shared key. Due to the structure of a pskPKE, authenticity cannot rely on
the asymmetric keys since the sender needs no secret material for the encryption.
Hence, authenticity can only be achieved via the pre-shared key. To avoid trivial
wins, the game excludes forgeries for which the corresponding pre-shared key
was corrupted, i.e., replaced via oracle RepPSK. This means, an adversary wins
if they can forge a new valid ciphertext for which the pre-shared key was not
corrupted given encryption and decryption oracles as well corruption oracles for
both the keys. The advantage of adversary A is

Adv(n,qe,qd,rpk ,rpsk)-Auth
A,pskPKE := Pr[(n, qe, qd, rpk , rpsk)-Auth(A)⇒ 1].

For the Auth security of a pskAPKE (Listing 12) there is only a slight modifi-
cation. Encryption pskAEnc also inputs the asymmetric sender’s secret key, which
is why the authenticity can now also rely on the sender’s asymmetric key and
not only on the pre-shared key. In the game, this is used for a stronger notion
which considers corruptions of the sender’s key and corruptions of the pre-shared
key. The adversary’s forgery is accepted if at most one of the keys was corrupted.
This means, it should be hard to forge a fresh ciphertext even if the sender’s key
or the pre-shared key were corrupted but not both. The advantage of adversary
A is

Adv(n,qe,qd,rpk ,rpsk)-Outsider-Auth
A,pskAPKE := Pr[(n, qe, qd, rpk , rpsk)-Outsider-Auth(A)⇒ 1].

One could also define Insider-Auth security for pskAPKE by allowing the
adversary to choose the secret key of the receiver of a forgery (and adjust the non-
triviality condition accordingly). Since we do not use Insider-Auth for pskAPKE
in the following, we omit the formal definition.

4 HPKE’s constructions of a pskPKE and pskAPKE

4.1 Generic Constructions
We construct a pskPKE and a pskAPKE from an (authenticated) key encapsula-
tion mechanism KEM (AKEM), a 2-keyed function KS (where KS1 denotes KS
keyed in the first input and KS2 keyed in the second input), and a nonce-based
authenticated encryption with additional data scheme AEAD. More concretely,
that is pskPKE[KEM, KS, AEAD] where pskPKE.GenSK = KEM.Gen, and the pre-
shared key generation pskPKE.GenPSK samples a uniformly random element from
the appropriate key space. Encryption and decryption are defined in Listing 13
and Listing 14, respectively.
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Listing 13: Encryption and decryption functions of the pre-shared-key PKE
scheme pskPKE[KEM, KS, AEAD], built from KEM, KS, and AEAD.

pskEnc(pk, psk, m, aad, info)
01 (c1, K) $← Encaps(pk)
02 (k, nonce)← KS(K, psk, info)
03 c2 ← AEAD.Enc(k, m, aad, nonce)
04 return (c1, c2)

pskDec(sk, psk, (c1, c2), aad, info)
05 K ← Decaps(sk, c1)
06 (k, nonce)← KS(K, psk, info)
07 m← AEAD.Dec(k, c2, aad, nonce)
08 return m

Listing 14: Encryption and decryption function of the pre-shared-key APKE
scheme pskAPKE[AKEM, KS, AEAD], built from AKEM, KS, and AEAD.

pskAEnc(sk, pk, psk, m, aad, info)
01 (c1, K) $← AuthEncap(sk, pk)
02 (k, nonce)← KS(K, psk, info)
03 c2 ← AEAD.Enc(k, m, aad, nonce)
04 return (c1, c2)

pskADec(pk, sk, psk, (c1, c2), aad, info)
05 K ← AuthDecap(pk, sk, c1)
06 (k, nonce)← KS(K, psk, info)
07 m← AEAD.Dec(k, c2, aad, nonce)
08 return m

4.2 Security of pskPKE and pskAPKE

The following Theorems 1–4 state privacy and authenticity of our constructions
pskPKE[KEM, KS, AEAD] and pskAPKE[AKEM, KS, AEAD].

Theorem 1 (KEM CCA + KS1 PRF + KS2 PRF + AEAD CCA ⇒ pskPKE
CCA). For any (n, qe, qd, qc, rpk , rpsk)-CCA adversary A against pskPKE[KEM,
KS, AEAD], there exists an (n, qd, qc)-CCA adversary B against KEM, a (qc, qd +
qc)-PRF adversay C1 against KS1, a (qe + qd + qc, qe + qd + qc)-PRF adversay C2
against KS2, and a (qe + qc, qd)-CCA adversary D against AEAD such that

Adv(n,qe,qd,qc,rpk ,rpsk)-CCA
A,pskPKE[KEM,KS,AEAD] ≤Adv(n,qd,qc)-CCA

B,KEM + Adv(qc,qd+qc)-PRF
C1,KS1

+ Adv(qe+qd+qc,qe+qd+qc)-PRF
C2,KS2

+ Adv(qe+qc,qd)-CCA
D,AEAD

+ q2
e + q2

c + qeqc

2η
.

Proof (Sketch). To prove CCA security for the pskPKE, we use CCA security of
the underlying KEM to replace the KEM keys with uniformly random values.
Together with a uniformly random psk, they can be used as PRF keys. Depending
on the challenge query and which keys were corrupted, we can use either the PRF
property when keyed on the first (KS1) or the second input (KS2). For the second
input we also need the KEM key to have enough entropy to avoid collisions. This
yields random symmetric keys and the theorem follows by the CCA of AEAD.
The full proof can be found in the full version. ⊓⊔

Theorem 2 (AKEM Insider-CCA + KS1 PRF + KS2 PRF + AEAD CCA ⇒
pskAPKE Insider-CCA). For any (n, qe, qd, qc, rpk , rsk , rpsk)-Insider-CCA adversary
A against the scheme pskAPKE[AKEM, KS, AEAD], there exists an (n, qe, qd, qc,
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rsk)-Insider-CCA adversary B against AKEM, a (qc, qd + qc)-PRF adversay C1
against KS1, a (qe + qd + qc, qe + qd + qc)-PRF adversay C2 against KS2, and a
(qe + qc, qd)-CCA adversary D against AEAD such that

Adv(n,qe,qd,qc,rpk ,rsk ,rpsk)-Insider-CCA
A,pskAPKE[AKEM,KS,AEAD] ≤Adv(n,qe,qd,qc,rsk)-Insider-CCA

B,AKEM + Adv(qc,qd+qc)-PRF
C1,KS1

+ Adv(qe+qd+qc,qe+qd+qc)-PRF
C2,KS2

+ Adv(qe+qc,qd)-CCA
D,AEAD + q2

e + q2
c + qeqc

2η
.

Proof (Sketch). Since we want to achieve Insider-CCA security for the pskAPKE,
we have to simulate the RepSK oracle which can be done by reducing to an
Insider-CCA secure AKEM. The remaining part of the proof is essentially the same
as for Theorem 1. The full proof can be found in the full version. ⊓⊔

Theorem 3 (KEM CCA + KS1 PRF + KS2 PRF + AEAD INT-CTXT ⇒
pskPKE Auth). For any (n, qe, qd, rpk , rpsk)-Auth adversary A against the scheme
pskPKE[KEM, KS, AEAD], there exists a (n, qd, qe)-CCA adversary B against KEM,
a (qe, qe)-PRF adversary C1 against KS1, a (qd, qd)-PRF adversary C2 against KS2,
and a (2qe + qd + 1, qd + 1)-INT-CTXT adversary D against AEAD such that

Adv(n,qe,qd,rpk ,rpsk)-Auth
A,pskPKE[KEM,KS,AEAD] ≤ Adv(n,qd,qe)-CCA

B,KEM + Adv(qe,qe)-PRF
C1,KS1

+ Adv(qd,qd)-PRF
C2,KS2

+ Adv(2qe+qd+1,qd+1)-INT-CTXT
D,AEAD + qe(qe + qd − 1)

|K|
.

Proof (Sketch). We use the CCA security of KEM to ensure that the key K fed
into KS2 is uniform random such that, with high probability, there are no key
collisions. Together with the pre-shared key, at least one of the inputs is uniformly
random and the PRF property of KS yields a random output. Then, this output
can be used for the AEAD such that decryption queries (with respect to an honest
psk) can be rejected. The full proof can be found in the full version. ⊓⊔

Theorem 4 (AKEM Outsider-CCA + AKEM Outsider-Auth + KS1 PRF + KS2
PRF + AEAD INT-CTXT ⇒ pskAPKE Outsider-Auth). For any (n, qe, qd, rpk ,
rpsk)-Outsider-Auth adversary A against the scheme pskAPKE[AKEM, KS, AEAD],
there exists an (n, 0, qd, qc)-CCA adversary B against AKEM, a (qe + qd, qe +
qd)-PRF adversay C1 against KS1, a (qe + qd, qe + qd)-PRF adversay C2 against
KS2, and a (2qe + qd + 1, qd + 1)-INT-CTXT adversary D against AEAD such
that

Adv(n,qe,qd,rpk ,rpsk)-Outsider-Auth
A,pskAPKE[AKEM,KS,AEAD] ≤Adv(n,qe,qd,qe)-Outsider-CCA

B1,AKEM

+ Adv(n,qe,qd)-Outsider-Auth
B2,AKEM

+ Adv(qe+qd,qe+qd)-PRF
C1,KS1

+ Adv(qd,qd)-PRF
C2,KS2

+ Adv(2qe+qd+1,qd+1)-INT-CTXT
D,AEAD + qe(qe + qd − 1)

|K|
.
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Proof (Sketch). To achieve Outsider-Auth security for pskAPKE, we need to first
use Outsider-CCA security and Outsider-Auth security of AKEM to replace the
KEM secret in encryption and decryption by random values. Together with the
pre-shared keys they can be used as inputs to KS where, depending on the query,
either the KEM shared secret or the psk act as the PRF key. Next, the PRF output
can be used to construct an adversary against INT-CTXT security of AEAD. The
full proof can be found in Section 4.4. ⊓⊔

4.3 The Security of HPKE’s PSK Modes

The HPKE standard’s specification of the HPKEPSK mode corresponds to the con-
struction pskPKE[KEM, KS, AEAD] (Listing 13), and the one of the HPKEAuthPSK
mode to the construction pskAPKE[AKEM, KS, AEAD] (Listing 14) with one ex-
ception. The HPKE standard explicitly defines an identifier for each psk, the
psk_id, and the actual key schedule function takes it as an additional parameter
alongside the KEM key K, the psk, and the info bitstring that we consider in
our model. For simplicity, we abstract away the psk_id and consider it to be
encoded as part of info, as both are simply hashed into the context of the key
derivation. HPKE uses the following specific components:

– KEM is the standard Diffie-Hellman DH-KEM which fulfills CCA security
assuming the Gap Diffie-Hellman assumption.

– AKEM is the Diffie-Hellman DH-AKEM from [1] which is proved Insider-CCA
and Outsider-Auth-secure assuming the Gap Diffie-Hellman assumption.

– The key schedule KS is constructed via the functions Extract and Expand
both instantiated with HMAC [1, Section 6.2]. If we assume HMAC to be a
PRF when keyed on either of the inputs, the assumptions for KS hold as well.

– AEAD is instantiated using AES-GCM or ChaCha20-Poly1305, which are
shown to fulfill IND-CPA and INT-CTXT security [7] and thus also IND-CCA
security.

Thus, applying the composition theorems from the last section, we achieve
CCA and Auth security for HPKEPSK, and Insider-CCA and Outsider-Auth security
for HPKEAuthPSK.

4.4 Proof of Theorem 4

Proof. We describe several games depicted in Listing 15.

Game G0. This is the (n, qe, qd, rpk , rpsk)-Outsider-Auth game for pskAPKE[
AKEM, KS, AEAD], thus we have

Pr[G0 ⇒ 1] = Pr[(n, qe, qd, rpk , rpsk)-Outsider-Auth(A)⇒ 1].
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Listing 15: Games G0 − G8 for the proof of Theorem 4.
G0 − G8

01 for i ∈ [n]
02 (ski, pki) $← GenSK
03 for j ∈ [i]
04 pskij

$← Kpsk

05 pskji ← pskij

06 E , E ′, Γpk, Γpsk, Λ← ∅
07 (i∗, j∗, (c∗

1, c∗
2), aad∗, info∗) $← AEnc,Dec,RepPK,RepPSK(pk1, . . . , pkn)

08 return J(i∗ /∈ Γpk ∨ (i∗, j∗) /∈ Γpsk) ∧ skj∗ ̸= ⊥
∧ (pki∗ , pkj∗ , pski∗j∗ , (c∗

1, c∗
2), aad∗, info∗) /∈ E

∧ pskADec(pki∗ , skj∗ , pski∗j∗ , (c∗
1, c∗

2), aad∗, info∗) ̸= ⊥K

Oracle Enc(i ∈ [n], j ∈ [n], m, aad, info)
09 if ski = ⊥
10 return ⊥
11 (c1, K) $← AuthEncap(ski, pkj)
12 (k, nonce)← KS(K, pskij , info)
13 if j /∈ Γpk �G2 − G8
14 K $← K �G2 − G8
15 Ê ← Ê ∪ {(pki, pkj , c1, K)} �G2 − G8
16 (k, nonce)← KS(K, pskij , info) �G2 − G8
17 if ∃k′, nonce′ : (k′, nonce′, i, j, K, pskij , info) ∈ Λ �G1 − G8
18 abort �G3 − G8
19 (k, nonce)← (k′, nonce′) �G1 − G8
20 (k, nonce) $← K′ × {0, 1}Nnonce �G4 − G8
21 Λ← Λ ∪ {(k, nonce, i, j, K, pskij , info)} �G1 − G8
22 c2 ← AEAD.Enc(k, m, aad, nonce)
23 E ← E ∪ {(pki, pkj , pskij , (c1, c2), aad, info)}
24 E ′ ← E ′ ∪ {(k, nonce, m, (c1, c2), aad)} �G8
25 return (c1, c2)

Oracle Dec(i ∈ [n], j ∈ [n], (c1, c2), aad, info)
26 if skj = ⊥
27 return ⊥
28 K ← AuthDecap(pki, skj , c1)
29 if ∃K′ : (pki, pkj , c1, K′) ∈ Ê �G2 − G8
30 K ← K′ �G2 − G8
31 (k, nonce)← KS(K, pskij , info) �G6 − G8
32 else if i /∈ Γpk ∧K ̸= ⊥ �G5 − G8
33 K $← K �G5 − G8
34 Ê ← Ê ∪ {(pki, pkj , c1, K)} �G5 − G8

35 (k, nonce) $← K′ × {0, 1}Nnonce �G6 − G8
36 else �G6 − G8
37 (k, nonce)← KS(K, pskij , info) �G6 − G8
38 (k, nonce)← KS(K, pskij , info) �G0 − G5
39 if i /∈ Γpk ∨ (i, j) /∈ Γpsk �G1 − G8
40 if ∃k′, nonce′ : (k′, nonce′, i, j, K, pskij , info) ∈ Λ �G1 − G8
41 (k, nonce)← (k′, nonce′) �G1 − G8
42 else if i ∈ Γpk �G7 − G8
43 (k, nonce) $← K′ × {0, 1}Nnonce �G7 − G8
44 m← AEAD.Dec(k, c2, aad, nonce) �G1 − G8
45 m← ⊥ �G8
46 if ∃m′ : (k, nonce, m′, (c1, c2), aad) ∈ E ′ �G8
47 m← m′ �G8
48 else
49 m← AEAD.Dec(k, c2, aad, nonce) �G1 − G8
50 m← AEAD.Dec(k, c2, aad, nonce) �G0 − G1
51 Λ← Λ ∪ {(k, nonce, i, j, K, pskij , info)} �G1 − G8
52 return m

Oracle RepPK(i ∈ [n], pk)
53 (ski, pki)← (⊥, pk)
54 Γpk ← Γpk ∪ {i}

Oracle RepPSK(i ∈ [n], j ∈ [n], psk)
55 pskij ← psk
56 pskji ← psk
57 Γpsk ← Γpsk ∪ {(i, j), (j, i)}

Game G1. We insert a set Λ to log the outputs of KS to use the stored outputs
if KS is queried on the same parameters again. This is only done for encryption
oracle queries for which the receiver’s key was not replaced, i.e. j /∈ Γpk (checked
in Line 13), as well as for decryption queries for which not both the sender’s
key and the psk were replaced, i.e. for queries on indices i /∈ Γpk ∨ (i, j) /∈ Γpsk
(checked in Line 39). Since the change is only conceptual, we have

Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1].

Game G2. If the corresponding receiver key has not been corrupted via RepPK,
i.e. j /∈ Γpk, we replace the KEM secret in oracle Enc by a uniformly random
value (Line 14) and store the output to return consistent queries to oracle Dec.
The difference is the advantage of a CCA adversary B1 against AKEM:

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Adv(n,qe,qd,qe)-CCA
B1,AKEM .

Adversary B1 against CCA security of an AKEM can simulate G1/G2 by issuing
a challenge query to the CCA experiment for any Enc query with j /∈ Γpk and
a decryption query for any Dec query. Any other query, i.e. Enc queries with
j ∈ Γpk, can be answered by using the AKEM adversary’s own encapsulation
oracle.
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Game G3. In G3, the game aborts in the encryption oracle if the corresponding
receiver’s key was not replaced and there already exists an entry in Λ with the
queried parameters (Line 18). The difference is negligible in the size of the key
space of KEM. Since K was randomly chosen in the previous game, the probability
of having such an entry is at most |Λ|

|K| . Note that Λ is filled with another element
at most once per Enc/Dec query. This yields the following advantage:

|Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ qe(qe + qd − 1)
|K|

.

Game G4. If the receiver’s key was not replaced and we do not abort, we replace
the output of KS in the encryption oracle with uniformly random values of the
respective domain (Line 19). The game difference is the advantage of a PRF
adversary C1 against KS1:

|Pr[G4 ⇒ 1]− Pr[G5 ⇒ 1]| ≤ Adv(qe,qe)-PRF
C1,KS1

.

The changes in Game G1 ensure consistent outputs of KS, i.e. queries on Enc
or Dec with the same parameters lead to the same output of KS (or the game
aborts in the for pskEnc). Hence, games G3 and G4 can only be distinguished
by distinguishing the real output of KS from a uniformly random one. This can
be turned into an adversary against PRF security of KS1, i.e. keyed on the first
input. Note that K is chosen uniformly at random due to the changes in Game
G2. There are at most qe different instances for the PRF and at most the same
number of queries.

Game G5. In Game G5, the decryption oracle is modified. If there KEM parameter
set was not queried before, i.e. the parameters do not occur in Ê , the sender was
not corrupted and the shared KEM secret K is not ⊥ (Line 32), K is replaced by
a uniformly random value and the result is stored in Ê . Due to these conditions,
the setup matches with oracles of an Auth adversary against AKEM and such an
adversary can simulate the games. This results in the following advantage:

|Pr[G4 ⇒ 1]− Pr[G5 ⇒ 1]| ≤ Adv(n,qe,qd)-Outsider-Auth
B2,AKEM .

Game G6. The game is modified by choosing uniformly random values instead
of the real output of KS in the same case as for the previous game (Line 32).
This can be turned into an adversary against PRF security of KS1, i.e. keyed in
the first input. There are at most qd different instances and at most qd different
queries resulting in

|Pr[G5 ⇒ 1]− Pr[G6 ⇒ 1]| ≤ Adv(qd,qd)-PRF
C1,KS1

.

Game G7. We modify the game by replacing the output of KS by uniformly
random values similar to the last game modification but in the following case
while querying the decryption oracle: not both the sender’s key and the psk were
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corrupted (i /∈ Γpk ∨ (i, j) /∈ Γpsk, Line 39), there is no corresponding element in
Λ (Line 42), and the sender’s key was corrupted, i.e. i ∈ Γpk (Line 42). This can
be turned into a PRF adversary C2 against KS2, i.e. keyed in the second input:

|Pr[G7 ⇒ 1]− Pr[G8 ⇒ 1]| ≤ Adv(qd,qd)-PRF
C2,KS2

.

The two conditions i /∈ Γpk ∨ (i, j) /∈ Γpsk and i ∈ Γpk imply that (i, j) /∈ Γpsk
which means that the psk was not replaced and was therefore chosen uniformly
at random in the beginning of the game. Thus, the two games can be simulated
by adversary C2 via their own evaluation oracle. We have at most qd different
indices for the PRF game and at most the same number of queries.

Game G8. In this game, we replace the actual decryption in an honest decryption
oracle query with ⊥ (Line 45). Distinguishing the game difference can be turned
into an INT-CTXT adversary D1 against AEAD:

|Pr[G7 ⇒ 1]− Pr[G8 ⇒ 1]| ≤ Adv(qe+qd,qd)-INT-CTXT
D1,AEAD .

Adversary D1 is formally constructed in Listing 16. Note that k and nonce are
uniformly random such that the adversary can use their own decryption oracle
either on a new index or on a previous index in case the same parameters were
queried before and the element is in Λ. Further, encryption queries can also be
simulated in each case. If there is an encryption query with a corrupted receiver’s
key, the adversary can compute the encryption on their own. Otherwise, they
can use their own encryption oracle. The abort in cases of a parameter set being
queried before (Line 18) prevents the need of querying the encryption oracle
twice which is not possible for the INT-CTXT game for an AEAD. There are at
most qe + qd different keys and adversary D1 makes at most qd queries to their
decryption oracle DecAEAD.

Reduction to Game G8. Winning Game G8 can be reduced to an INT-CTXT
adversary D2 against AEAD:

Pr[G8 ⇒ 1] ≤ Adv(qe+1,1)-INT-CTXT
D2,AEAD .

The adversary can simulate the decryption oracle since in cases i /∈ Γpk ∨ (i, j) /∈
Γpsk, they can output ⊥ (or the original encryption if it was produced during
the experiment). In cases (i, j) ∈ Γpsk, they can compute the output by their
own. For the encryption oracle, the adversary can use their own encryption
oracle or compute the output on their own similar to the adversary from the
last game hop. The output of the adversary against game G8 can then be used
to issue a decryption query in the INT-CTXT experiment on either a new key
or a previous key if the output parameters i∗, j∗, c∗

1, info∗ match with that key.
Matching parameters can be identified by computing K∗ ← Decaps(skj∗ , c∗

1) and
comparing (i∗, j∗, K∗, pski∗j∗ , info∗) to set Λ similar to Line 16 or Line 39 in
Listing 16. If the adversary against G8 wins, the adversary against the INT-CTXT
experiment has a valid ciphertext which does not decrypt to ⊥ due to the winning
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Listing 16: Adversary D1 against INT-CTXT security for AEAD having access
to oracles EncAEAD and DecAEAD.
DEncAEAD,DecAEAD

1

01 for i ∈ [n]
02 (ski, pki) $← GenSK
03 for j ∈ [i]
04 pskij

$← Kpsk

05 pskji ← pskij

06 E , E ′, Γpk, Γpsk, Λ← ∅
07 (i∗, j∗, (c∗

1, c∗
2), aad∗, info∗) $← AEnc,Dec,RepPK,RepPSK(pk1, . . . , pkn)

08 return J(i∗ /∈ Γpk ∨ (i∗, j∗) /∈ Γpsk) ∧ skj∗ ̸= ⊥
∧ (pki∗ , pkj∗ , pski∗j∗ , (c∗

1, c∗
2), aad∗, info∗) /∈ E

∧ pskADec(pki∗ , skj∗ , pski∗j∗ , (c∗
1, c∗

2), aad∗, info∗) ̸= ⊥K

Oracle Enc(i ∈ [n], j ∈ [n], m, aad, info)
09 if ski = ⊥
10 return ⊥
11 (c1, K) $← AuthEncap(ski, pkj)
12 (k, nonce)← KS(K, pskij , info)
13 if j /∈ Γpk

14 K $← K
15 Ê ← Ê ∪ {(pki, pkj , c1, K)}
16 if ∃ℓ′ : (ℓ′, i, j, K, pskij , info) ∈ Λ
17 abort
18 ℓ← ℓ + 1 �new key
19 c2 ← EncAEAD(ℓ, m, aad) �enc query
20 Λ← Λ ∪ {(ℓ, i, j, K, pskij , info)}
21 else
22 c2 ← AEAD.Enc(k, m, aad, nonce)
23 E ← E ∪ {(pki, pkj , pskij , (c1, c2), aad, info)}
24 E ′ ← E ′ ∪ {(k, nonce, m, (c1, c2), aad)}
25 return (c1, c2)

Oracle Dec(i ∈ [n], j ∈ [n], (c1, c2), aad, info)
26 if skj = ⊥
27 return ⊥
28 K ← AuthDecap(pki, skj , c1)
29 if ∃K′ : (pki, pkj , c1, K′) ∈ Ê
30 K ← K′

31 (k, nonce)← KS(K, pskij , info)
32 else if i /∈ Γpk ∧K ̸= ⊥
33 K $← K
34 Ê ← Ê ∪ {(pki, pkj , c1, K)}
35 (k, nonce) $← K′ × {0, 1}Nnonce

36 else
37 (k, nonce)← KS(K, pskij , info)
38 if i /∈ Γpk ∨ (i, j) /∈ Γpsk

39 if ∃ℓ′ : (ℓ′, i, j, K, pskij , info) ∈ Λ
40 m← DecAEAD(ℓ′, c2, aad) �dec query on old key
41 else if i ∈ Γpk

42 ℓ← ℓ + 1 �new key
43 m← DecAEAD(ℓ, c2, aad) �dec query on new key
44 Λ← Λ ∪ {(ℓ, i, j, K, pskij , info)}
45 else
46 m← AEAD.Dec(k, c2, aad, nonce)
47 return m

Oracle RepPK(i ∈ [n], pk)
48 (ski, pki)← (⊥, pk)
49 Γpk ← Γpk ∪ {i}

Oracle RepPSK(i ∈ [n], j ∈ [n], psk)
50 pskij ← psk
51 pskji ← psk
52 Γpsk ← Γpsk ∪ {(i, j), (j, i)}

condition of G8. That means they can distinguish between the real or random
case since the result of the decryption query must be unequal to ⊥ in the real
case.

Putting everything together, we obtain the stated bound. ⊓⊔

5 Hybrid Post-Quantum APKE

We want to build an HPKE scheme which is secure against classical as well as
quantum adversaries. To not rely solely on relatively new post-quantum primitives,
a common way is to use combiners which combine well studied classical primitives
and post-quantum primitives at the same time. This hybrid approach allows
for security against future quantum adversaries but is still secure in a classical
setting if current post-quantum primitives are broken. To this end, we use the
pre-shared key mode of HPKE to build a combiner from which we can instantiate
a hybrid post-quantum construction.

Let pskAPKE[AKEM1, KS, AEAD] be a pre-shared key PKE based on an au-
thenticated KEM AKEM1 = (Gen1, AuthEncap1, AuthDecap1), a two-keyed func-
tion KS, and an authenticated encryption with associated data AEAD as in
Listing 14. Further, let AKEM2 = (Gen2, AuthEncap2, AuthDecap2) be a second
authenticated KEM. From these components, we can construct an APKE using
the shared secret of the second KEM as the pre-shared key of the pskAPKE.
We remark that the same construction also works for non-authenticated prim-
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itives, i.e., we can construct a PKE PKE[KEM1, KEM2, KS, AEAD] built from
pskPKE[KEM1, KS, AEAD] and a KEM2.

Listing 17: Authenticated PKE APKE[AKEM1, AKEM2, KS, AEAD] built from
pskAPKE[AKEM1, KS, AEAD] and AKEM2

Gen
01 (sk1, pk1) $← Gen1
02 (sk2, pk2) $← Gen2
03 sk ← (sk1, sk2)
04 pk ← (pk1, pk2)
05 return (sk, pk)

Enc((sk1, sk2), (pk1, pk2), m, aad, info)
06 (c′, K′) $← AuthEncap2(sk2, pk2)
07 (c1, c2) $← pskAEnc(sk1, pk1, K′, m, aad, c′||info)
08 return ((c1, c2), c′)

Dec((pk1, pk2), (sk1, sk2), ((c1, c2), c′), aad, info)
09 K′ ← AuthDecap2(sk2, c′)
10 m← pskADec(pk1, sk1, K′, (c1, c2), aad, c′||info)
11 return m

The following two theorems state that the APKE is secure (in the sense of
Insider-CCA and Outsider-Auth) if at least one of the underlying AKEMs, AKEM1
or AKEM2, is secure.

Theorem 5. Let AKEM1 and AKEM2 be two AKEMs, KS a two-keyed function,
and AEAD an AEAD. If KS is a PRF in both keys, AEAD is IND-CCA secure,
and AKEM1 or AKEM2 is CCA secure, then the construction in Listing 17 is a
CCA secure APKE. In particular, for any (n, qe, qd, qc)-Insider-CCA adversary A
against APKE[AKEM1, AKEM2, KS, AEAD] there exists a (n + 1, qe, qd, qc)-Insider-
CCA adversary B1 against AKEM1, a (n, qe, qd, qc, qc)-Insider-CCA adversary B2
against AKEM2, a (qc, qd + qc)-PRF adversary C1 against KS1, a (qc, qd + qc)-PRF
adversary C2 against KS2, and a (qc, qd)-CCA adversary D against AEAD such that

Adv(n,qe,qd,qc)-Insider-CCA
A,APKE[AKEM1,AKEM2,KS,AEAD] ≤

min{Adv(n+1,qe,qd,qc)-Insider-CCA
B1,AKEM1

+ Adv(qc,qd+qc)-PRF
C1,KS1

,

Adv(n,qe,qd,qc,qc)-Insider-CCA
B2,AKEM2

+ Adv(qc,qd+qc)-PRF
C2,KS2

}+ Adv(qc,qd)-CCA
D,AEAD

Proof (Sketch). The first part of the proof is very similar to Theorem 2 except
that the queries to KS2 can be saved. The second part transforms the KEM secret
of AKEM2 into a uniformly random value using its Insider-CCA security which
can then be used as input to KS2 as a regular psk. These outputs are uniformly
random values and the remaining transformations are as for the first part. The
full proof can be found in the full version. ⊓⊔

Theorem 6. Let AKEM1 and AKEM2 be two AKEMs, KS a two-keyed function,
and AEAD an AEAD. If KS is a PRF in both keys, AEAD is INT-CTXT and
IND-CPA secure, and AKEM1 or AKEM2 is Outsider-Auth secure, then the con-
struction in Listing 17 is a Outsider-Auth secure APKE. In particular, for any
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(n, qe, qd)-Outsider-Auth adversary A against APKE[AKEM1, AKEM2, KS, AEAD],
there exists a (n + 1, 0, qd, qc)-Outsider-CCA adversary B1 against AKEM1, a
(n+1, qe, qd)-Outsider-Auth adversary B2 against AKEM1, a (n, 0, qd, qe)-Outsider-
CCA adversary B′

1 against AKEM2, a (n, qe, qd)-Outsider-Auth adversary B′
2

against AKEM2, a (qe +qd, qe +qd)-PRF adversary C1 against KS1, a (qd, qd)-PRF
adversary C2 against KS2, a (2qe + qd + 1, qd + 1)-INT-CTXT adversary D against
AEAD such that

Adv(n,qe,qd)-Outsider-Auth
A,APKE[AKEM1,AKEM2,KS,AEAD] ≤

min{Adv(n+1,qe,qd,qe)-Outsider-CCA
B1,AKEM1

+ Adv(n+1,qe,qd)-Outsider-Auth
B2,AKEM1

+ Adv(qe+qd,qe+qd)-PRF
C1,KS1

,

Adv(n,0,qd,qe)-Outsider-CCA
B′

1,AKEM2
+ Adv(n,qe,qd)-Outsider-Auth

B′
2,AKEM2

+ Adv(qd,qd)-PRF
C2,KS2

}

+ Adv(2qe+qd+1,qd+1)-INT-CTXT
D,AEAD + qe(qe + qd − 1)

|K|
.

Proof (Sketch). The first part of the proof is very similar to Theorem 4 except
that the queries to KS2 can be saved. The second part transforms the KEM secret
of AKEM2 into a uniformly random value using its Insider-CCA and Outsider-Auth
security which can then be used as input to KS2 as a regular psk in encryption and
decryption oracle. These outputs are uniformly random values and the remaining
transformations are as for the first part. The full proof can be found in the full
version. ⊓⊔
Post-Quantum Instantiation. Consequently, one can combine HPKEAuthPSK
with a post-quantum secure AKEM to obtain an APKE scheme with hybrid
security. Analogously, one can combine HPKEPSK with a post-quantum secure
KEM (such as Kyber) to obtain a PKE with hybrid security. In the next section,
we discuss how to construct post-quantum secure AKEM schemes.

6 Post-Quantum AKEM Constructions

6.1 KEM-then-Sign-then-Hash

A well-known approach for constructing a post-quantum AKEM is to combine a
post-quantum KEM with a post-quantum signature [10]. This could obviously
applied to the classical setting as well but with much worse performance than the
NIKE-based construction of HPKE which achieves authentication almost for free.

Our new construction extends the (insecure) Encrypt-then-Sign (EtS) paradigm
to Encrypt-then-Sign-then-Hash (EtStH). Let KEM = (KEM.Gen, Encaps, Decaps)
be a KEM and SIG = (Gen, Sign, Vfy) be a signature scheme. We construct
AKEMEtStH[KEM, SIG, H] as shown in Listing 18. The key generation outputs a
public key tuple and a private key tuple. The first component of both tuples
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is the receiver’s public/private key and the second component is the sender’s
public/private key.

Listing 18: AKEMEtStH[KEM, SIG, H] from a KEM KEM = (KEM.Gen, Encaps,
Decaps), a signature scheme SIG = (SIG.Gen, Sign, Vfy), and a random oracle H.

Gen
01 (sk, pk) $← KEM.Gen
02 (sigk, vk) $← SIG.Gen
03 return ((sk, sigk), (pk, vk))

AuthEncap((sk1, sigk1), (pk2, vk2))
04 (c, K′) $← Encaps(pk2)
05 σ $← Sign(sigk1, c||µ(sk1)||pk2||vk2)
06 K ← H(K′, σ||µ(sk1)||µ′(sigk1)||pk2||vk2)
07 return ((c, σ), K)

AuthDecap((pk1, vk1), (sk2, sigk2), (c, σ))
08 if Vfy(vk1, c||pk1||µ(sk2)||µ′(sigk2), σ) ̸= 1
09 K ← ⊥
10 else
11 K′ ← Decaps(sk2, c)
12 K ← H(K′, σ||pk1||vk1||µ(sk2)||µ′(sigk2))
13 return K

Theorem 7 (KEM CCA + H PRF ⇒ AKEM Insider-CCA). If KEM is a CCA
secure key encapsulation mechanism and H is a PRF, then AKEMEtStH[KEM, SIG,
H] is an Insider-CCA secure AKEM. In particular, for every (n, qe, qd, qc, rsk)-
Insider-CCA adversary A against AKEMEtStH[KEM, SIG, H] there exists a (n, qd, qc)-
CCA adversary B against KEM and a (qc, qd + qc)-PRF adversary C against H
such that

Adv(n,qe,qd,qc,rsk)-Insider-CCA
A,AKEMEtStH[KEM,SIG,H] ≤ Adv(n,qd,qc)-CCA

B,KEM + Adv(qc,qd+qc)-PRF
C,H .

Proof (Sketch). We use the CCA security of KEM to make the KEM keys random,
such that the key to H is uniformly random. Using the PRF property of H gives
a uniformly random value for the final key. The full proof can be found in the
full version. ⊓⊔

Theorem 8 (SIG SUF-CMA⇒ AKEM Outsider-Auth). If SIG is an SUF-CMA
secure signature scheme, then AKEMEtStH[KEM, SIG, H] is an Outsider-Auth secure
AKEM. In particular, for every (n, qe, qd)-Outsider-Auth adversary A there exists
a (n, qe)-SUF-CMA adversary B against SIG such that

AdvOutsider-Auth
A,AKEMEtStH[KEM,SIG,H] ≤ Adv(n,qe)-SUF-CMA

B,SIG .

Proof (Sketch). Queries to the decapsulation oracle containing invalid signatures
cannot be distinguished by an adversary due to the definition of the scheme.
Valid queries can be used against the SUF-CMA security of SIG. The full proof
can be found in the full version. ⊓⊔

6.2 AKEM from NIKE

We can build an AKEM from a NIKE. Let NIKE = (Setup, NIKE.KeyGen,
NIKE.SharedKey) be a NIKE and H a 2-keyed function, then we can construct
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an AKEM AKEMNIKE[NIKE, H] as defined in Listing 19. By H1, we denote func-
tion H keyed in the first component and by H2 function H keyed in the second
component.

Listing 19: AKEMNIKE[NIKE, H] from NIKE = (NIKE.KeyGen, NIKE.SharedKey)
where the setup parameters are known to every user.

Gen
01 (sk, pk) $← NIKE.KeyGen
02 return (sk, pk)

AuthEncap(sk1, pk2)
03 (sk∗, pk∗) $← NIKE.KeyGen
04 K1 ← NIKE.SharedKey(sk1, pk2)
05 K2 ← NIKE.SharedKey(sk∗, pk2)
06 K ← H(K1, K2)
07 return (pk∗, K)

AuthDecap(sk2, pk1, pk∗)
08 K1 ← NIKE.SharedKey(sk2, pk1)
09 K2 ← NIKE.SharedKey(sk2, pk∗)
10 K ← H(K1, K2)
11 return K

Theorem 9 (NIKE Active + H2 PRF ⇒ AKEM Insider-CCA). Let NIKE be a
NIKE and H a 2-keyed function. If NIKE is Active secure and H2 a PRF, then
AKEMNIKE[NIKE, H] is Insider-CCA secure. In particular for any adversary A
against (n, qe, qd, qc, rsk)-Insider-CCA security of AKEMNIKE[NIKE, H] there exists
an (n + qc, qe + 2qd, 0, qe + qd + qc, qe + 2qd, qc)-Active adversary against NIKE
and a (qc, qc)-PRF adversary C against H2 such that

Adv(n,qe,qd,qc,rsk)-Insider-CCA
A,AKEMNIKE[NIKE,H] ≤ Adv(n+qc,qe+2qd,0,qe+qd+qc,qe+2qd,qc)-Active

B,NIKE

+ Adv(qc,qc)-PRF
C,H2

.

Proof (Sketch). Assuming an active secure NIKE, the second shared key, K2
is indistinguishable from random. We show that by constructing an adversary
against an Active secure NIKE using an Insider-CCA adversary against AKEMNIKE[
NIKE, H] by simulating the corruptions from RepSK by registering corrupt users
in the NIKE game. Then, every other query can be answered by registering a
new key (if the query was made with a chosen public key) or computed by
the simulator themselves. The test query of the adversary against NIKE is then
directly embedded int the challenge query of the Insider-CCA game. With H2
being a PRF, we can further show that the resulting key is also uniformly random.
The full proof can be found in the full version. ⊓⊔

Theorem 10 (NIKE Active + H1 PRF⇒ AKEM Outsider-Auth). Let NIKE =
(Setup, NIKE.KeyGen, NIKE.SharedKey) be a NIKE and H a 2-keyed function.
If NIKE is Active secure and H1 a PRF, then AKEMNIKE[NIKE, H] is Outsider-
Auth secure. In particular, for every (n, qe, qd)-Outsider-Auth adversary against
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AKEMNIKE[NIKE, H] there exists an (n, qe + 2qd, 0, qe, 2qe + 2qd, qd)-Active adver-
sary against NIKE and a (qd, qd)-PRF adversary C against H1 such that

Adv(n,qe,qd)-Outsider-Auth
A,AKEMNIKE[NIKE,H] ≤ Adv(n,qe+2qd,0,qe,2qe+2qd,qd)-Active

B,NIKE + Adv(qd,qd)-PRF
C,H1

.

Proof (Sketch). The structure is similar to the proof of Theorem 9 except that
the test query is embedded in the decapsulation oracle instead of the challenge
oracle and that it is only embedded for queries with honest public keys. The full
proof can be found in the full version. ⊓⊔
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