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Abstract. A recent line of works on zero knowledge (ZK) protocols with
a vector oblivious linear function evaluation (VOLE)-based offline phase
provides a new paradigm for scalable ZK protocols with prover memory
footprint almost the same as verifying the circuit in the clear. Most of these
protocols can be made to have a non-interactive online phase, yielding a
preprocessing NIZK. In particular, when the preprocessing is realized by
a two-round protocol, one obtains a malicious designated verifier-NIZK
(MDV-NIZK), which is a recent closely scrutinized variant of DV-NIZK
that allows the verifier to generate a public key (first message of two-
round protocol) for the prover and a secret key to verify proofs. Though
many practically efficient protocols for proving circuit satisfiability over
any field are implemented, protocols over the ring Z2k are significantly
lagging behind, with only a proof-of-concept pioneering work called
Appenzeller to Brie and a first proposal called MozZ2karella. The ring
Z232 or Z264 , though highly important (it captures computation in real-
life programming and the computer architectures such as CPU words),
presents non-trivial difficulties because, unlike Galois fields F2k , the
fraction of units in rings Z2k is 1/2. In this work, we first construct
protocols over a large Galois ring extension of Z2k (fraction of units close
to 1) and then convert to Z2k efficiently using amortization techniques.
Our results greatly change the landscape of ZK protocols over Z2k .
(1) We propose a competing basic protocol that has many advantages over
the state-of-the-art MozZ2karella: our efficiency is independent of the
security parameter (so overwhelming superiority in high security region);
for frequently used 40, 80 bits soundness on 32, 64-bit CPUs we all offer
savings (up to 3× at best).
(2) Through adapting a recently proposed interactive authentication code
to work over Galois rings, we obtain constant round VOLE-based ZK
protocols over Z2k with sublinear (in the circuit size) communication
complexity, which was previously achieved only over fields.
(3) In order to circumvent the impossibility result of OT-based reusable
VOLE, we propose a novel construction of two-round reusable VOLE
over Galois rings using Galois fields counterpart and powerful tools
developed for non-interactive secure computation. We also show that
the pseudorandom correlation generator (PCG) approach to extending
VOLE without increasing rounds can be generalized to Galois rings.
Instantiating a non-interactive version of our basic protocol with a two-
round reusable VOLE preprocessing, we obtain MDV-NIZK over Z2k



with unique features. Such protocols are not only never achieved over
rings but also new over small fields.

1 Introduction

A zero-knowledge (ZK) protocol allows a prover to convince a verifier of an
assertion (soundness) without revealing any further information beyond the fact
that the assertion is true (zero-knowledge). Secure multi-party computation
(MPC) allows mutually suspicious players to jointly compute a function of their
local inputs without revealing to any corrupted players additional information
beyond the output of the function. Though ZK protocols are a strict subset
of two-party computation (or simply 2-PC for short), in the context of ZK
protocols, there are more stringent efficiency requirements (round complexity,
communication complexity, prover/verifier or combined computation complexity).
Take the round complexity for example, in the extreme case non-interactive zero
knowledge (NIZK), the prover sends a single message, which any verifier can
verify using public information available (publicly verifiable), in the idealised
random oracle model (ROM) or given a common reference string generated during
a setup. In a relaxed variant designated verifier NIZK (or DV-NIZK for short)
there is a setup phase in which a common reference string (CRS) is generated and
a secret verification key is given to the verifier, who is then the designated verifier
(cf. [36] and references therein). There is a recent interest in studying a malicious
variant of DV-NIZK (MDV-NIZK for short) where the secret key is not generated
by a trusted third party during a setup but by the verifier, who at the same
time also generates a corresponding public key for the prover. This is a malicious
variant in the sense that the verifier can maliciously choose a public key to leak
information from proofs generated by the prover and zero-knowledge must hold
even in this case. MDV-NIZKs can be interpreted as two-round ZK protocols
in the CRS model, where the verifier’s first message is reusable in the sense
that soundness is preserved even the prover knows whether previous proofs are
accepted or not. There is an even weaker notion of NIZK in the literature called
preprocessing NIZK (PP-NIZK for short), where the setup not only generates a
secret verification key for the verifier but also generates a secret proving key for
the prover (cf. [34] and reference therein for variants of PP-NIZKs). In this work,
we construct more efficient constant round ZK protocols in general. We also make
a special effort in minimizing round complexity and reusability of verifier’s first
message, which leads to MDV-NIZK.

The relation between ZK protocols and secure MPC protocols is one of the
most mutually beneficial in cryptography. On the one hand, ZK protocols help
transform a semi-honestly secure MPC protocol into a maliciously secure one
[37]. On the other hand, powerful techniques developed for MPC (sometimes
even off-the-shelf MPC protocols) contribute greatly to efficient constructions of
ZK protocols, especially those that prove arbitrary circuit satisfiability, which
is the focus of this work. The MPC-in-the-head paradigm [31] uses an MPC
protocol and a commitment scheme to construct a public verifiable NIZK in the
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ROM through Fiat-Shamir transform (the prover emulates the evaluation of the
circuit in his/her head with imaginary parties using a MPC protocol and commit
to the views of these imaginary parties, which the verifier randomly choose a
subset to check consistency). The MPC protocol employed could be an honest-
majority MPC protocol (so at least three parties) which is either semi-honestly or
maliciously secure. [31,27,13,1], or even a semi-honestly secure dishonest-majority
MPC protocol with preprocessing (typically uses multiple party version [33,39]
with a few exceptions using 2-PC, e.g. [29]; the preprocessing here is different
from that in MPC as all imaginary parties are controlled by the prover, who
can then use any functionality such as oblivious transfer (OT) channel for free
[33]. The bottleneck of this approach is either big proof size e.g. [31,27,13,33],
or small proof size but large prover computation time and memory, e.g. [1]. In
particular, the large prover memory bottleneck, which is also present in the
zero-knowledge succinct non-interactive argument of knowledge (ZK-SNARK, cf
[41] and reference therein) paradigm and the interactive oracle proof (IOP) based
protocols, imposes a hard limit on the maximum circuit size that a protocol can
support in practice. Another well-established MPC related ZK paradigm is the
garbled circuit ZK (GCZK) [32,25,47,30]. Unlike the MPC-in-the-head paradigm,
here one directly uses a 2-PC protocol (Yao’s 2-PC construction [46]), where
the prover is playing the role of the sender and the verifier the receiver. This
approach yields small prover computation time and memory requirement. But
the ZK protocol obtained is inherently interactive (the verifier needs to prepare
the garbled circuit) and the communication complexity is huge. Recently, in
the quest of scalable ZK protocols that do not have any efficiency bottlenecks
discussed above, 2-PC with preprocessing is reconsidered (departing from the
MPC-in-the-head [29] and leaning towards GCZK), resulting in a new paradigm
of active research in ZK. The starting point is the introduction of the novel idea
of pseudorandom correlation generator (PCG) [7,9], which is an extension of the
pseudorandom generator (PRG) from generating a single copy of randomness
to a pair of correlated randomness between mutually distrustful parties. PCG
provides a lightweight alternative for the costly preprocessing protocol (now that
we do not have functionalities for free as in MPC-in-the-head [33]) at the cost of
introducing learning parity with noise (LPN) [6] assumption or its many large
field/ring variants. This makes it possible to have the total prover computational
overhead (the online phase being non-cryptographic and can be made constant
round, even one non-interactive) only slightly bigger than computing the circuit in
the clear without any security, and with communication complexity much smaller
than GCZK. Another advantage of using a preprocessing 2-PC over GCZK is
that the offline phase is statement independent and when assuming a setup phase
for preprocessing, one obtains a PP-NIZK. The correlated randomness required
here is the (random) vector oblivious linear evaluation (VOLE) correlation, where
the sender obtains two random vectors M,x over a ring and the receiver obtains
a random scalar ∆ and a random vector K such that M = K−∆ · x. This new
paradigm of ZK is usually referred to as VOLE-based ZK. In [7], VOLE-based
PP-NIZK over large finite fields was first constructed as an application of their
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PCG. In [9], PCG for more general correlations including a subfield variant of
VOLE correlation (sVOLE for short) was studied, yielding silent OT extension,
and the previous results on PP-NIZK was carried from proving arithmetic circuits
over large fields to Boolean circuits. In [8], a maliciously secure construction
of PCG protocol for sVOLE correlation was given, which is two-round in the
ROM and satisfies an interesting property (useful in particular for constructing
non-interactive secure computation NISC) that allows the PCG protocol to be
combined with the online protocol, yielding silent preprocessing (further pursued in
[16], where computationally more efficient PCG protocols are constructed through
making structured LPN assumptions). In [22], a more efficient (communicates
one finite field element per multiplication gate for a big enough field) online
phase technique called line point zero knowledge (LPZK) was proposed that when
combining with VOLE protocols yields PP-NIZK in general and MDV-NIZK
(with two-round VOLE [8,16,14]) in particular. Concurrent work Wolverine [41]
constructed constant round ZK protocols for verifying circuits over arbitrary
fields, where in order to further reduce the computational complexity of the
underlying sVOLE protocols, the authors slightly modify the PCG idea following
[45]. Also concurrent to LPZK and Wolverine, Mac’n’Cheese [5] proposed two
different online phase protocols for verifying arbitrary circuits that when used for
disjunction have sublinear communications. Follow up works to the above include
QuickSilver [43] and then improved LPZK [21], AntMan [42]. QuickSilver uses
the idea of LPZK and Wolverine to achieve one field element per multiplication
gate for arbitrary field (also, the protocol has sublinear communication for
low degree polynomials). Improved LPZK [21] has reduced the communication
from 1 field element per multiplication gate to 1/2. AntMan [42] proposed a new
authentication coding technique that achieved asymptotic sublinear (in the circuit
size) communication for arbitrary circuits. The VOLE-based verification is in fact
the information-theoretic message authentication code (IT-MAC) technique in
MPC literature and the new technique generalises IT-MAC from authenticating
messages to polynomials (hence called IT-PAC, see technical overview for more
details).

The models of computation in real-life programming and the computer archi-
tectures (such as CPU words) are formulated as operations over the ring Z232

and Z264 . The fact that half of the ring Z2k are zero divisors presents non-trivial
technical difficulties for directly performing IT-MAC over them. Naively emulat-
ing arithmetic computation over these rings through finite field operations and
implementing using one of the above protocols over finite fields incurs significant
overhead [26]. Inspired by the techniques developed for MPC (in particular,
SPDZ2k [17]), Baum et.al. initiated the study of ZK protocols natively support-
ing computation over Z2k [2], where two online phase algorithms were proposed
following the finite field counterpart Wolverine [41] and Mac’n’cheese [5], respec-
tively. It was only in a followup work, a first complete proposal MozZ2karella [3]
with a QuickSilver style [43,22] protocol together with a PCG VOLE protocol
over Z2k were implemented. They used the ring extension technique of SPDZ2k

[17], which incurs sophisticated adjustments (overhead) and more importantly,
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the efficiency of such protocols has an inherent undesirable dependency on the
security parameter (as the soundness error becomes smaller, the protocol quickly
goes inefficient). Given the width and depth of the theoretical study on VOLE-
based ZK protocols over finite fields, especially large enough fields, the current
state of protocols over application-wise important rings Z2k leaves too much to
be desired.
Our Contributions.

We introduce more powerful tools for efficient MPC protocols over Z2k into the
VOLE-based construction of constant-round ZK protocols. On top of optimizing
the communication complexity and computation complexity (including memory
footprint and combined prover-verifier computation complexity), we also pay
special attention to achieving the minimum round complexity with the strongest
form of malicious security. We obtain three types of results.

(1) Targeting the state-of-the-art ZK protocol over Z2k , MozZ2karella, which
in turn uses QuickSilver as blueprint, we propose a competing basic protocol
(including the PCG-style sublinear VOLE protocol for implementing the protocol).
Both protocols have similar impressively low computational overhead and linear
communication complexity, while the efficiency of our basic protocol does not have
the undesirable dependence on security parameter (see Theorem 2). This means
that in all high security region applications, our basic protocol has overwhelming
advantage over MozZ2karella. We then compare concrete performance between
the two frequently used statistical security parameter choices κ = 40 and κ = 80
over Z232 and Z264 in Table 1, assuming the circuit whose satisfiability to be
proved is a single instruction multiple data (SIMD) circuit.

Table 1: Concrete comparison against MozZ2karella (online phase comparison).
"Comm." denotes the communication complexity (counted in bits) per multi-
plication gate, and "R" denotes the ring on which the protocol is running. For
κ = 40, we use (16, 45)-RMFEs, while for κ = 80, we use (27, 85)-RMFEs.1

k κ
MoZ2kzarella This work (Πm,n,t

ZK )

Comm. R Comm. R

32
40 179 Z2130 93 GR(232, 45)
80 302 Z2212 104 GR(232, 85)

64
40 211 Z2162 183 GR(264, 45)
80 334 Z2244 205 GR(264, 85)

(2) Targeting the sublinear (in the circuit size) communication ZK protocol
over fields, AntMan, we construct the first protocol over Z2k with the same
asymptotic efficiency. (We do not see any possibility that similar efficiency can
be achieved using the MozZ2karella approach.) Similar to the results over fields,

1 We select RMFEs over binary field according to [11], and lift to Galois rings via the
approach in [18].
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we need a large circuit size (estimated at least 220) to allow the computational
cost of setting up the more efficient authentication coding scheme be averaged
out. Assuming proving satisfiability of a SIMD circuit for m copies of data,
the sublinear communication protocol has better efficiency as m increases. For
example, for κ = 40, we use (16, 45)-RMFEs. We estimate that the sublinear
communication protocol starts to outperform our basic protocol when computing
a SIMD circuit over Z232 for more than 16× 12 copies of data 2.

(3) Targeting minimum round complexity and the strongest malicious security,
we start with a variant of our basic protocol with non-interactive online phase
and combine it with a two-round reusable VOLE protocol over Galois rings.
We propose a novel construction of reusable VOLE over Galois rings using
reusable VOLE over Galois fields and powerful tools from the study of reusable
non-interactive secure computation (NISC). We further show that the PCG
approach to extending VOLE without increasing rounds can be generalized to
Galois rings. Putting all these together, we obtain a MDV-NIZK with the kind of
communication complexity and computation complexity unique for VOLE-based
ZK protocols. On the other hand, unlike the conventional MDV-NIZKs, our
MDV-NIZK protocol uses a random oracle and this may be the reason for its
unusually good parameters.
Technical Overview

We begin with a basic construction that illustrates the high-level idea behind
both of our constructions in Section 3: constructing a ZK protocol over a Galois
ring GR(2k, d) (assuming a PCG-style VOLE protocol over the Galois ring, which
we also construct in Section 4) and then converting it into Z2k efficiently using
amortisation techniques. The reason for separating our basic construction from
the sublinear communication variant is that although the techniques applied
in the latter share high-level similarity with the former, there are substantial
low-level differences that, in particular, make the protocols obtained from the
latter do not have a non-interactive online phase. Building a ZK protocol over
Galois ring GR(2k, d) following the blueprint of a ZK protocol over a Galois field
is straightforward. For the basic protocol, we follow the QuickSilver style [43,22]
protocol, same as MozZ2karella does. By analogy between Galois fields and Galois
rings, the security parameter is now measured by 2−d. But as the relation we wish
to prove is over Z2k (so are the witnesses), we are paying d times communication
for the Galois structure. In order to amortise this non-trivial cost, we manage
to make one evaluation over the Galois ring computes m copies of data over
Z2k , maintaining a communication cost independent of the security parameter
(the ratio d

m is upper bounded by a constant). Amortisation techniques are well
studied in the MPC literature, mostly for constructing efficient protocols over
small size fields (e.g. binary) such as the coding approach MiniMAC [19] and the
versatile Reversed Multiplication Friendly Embedding (RMFE) [11,12], which
is also playing an important role in MPC protocols over Z2k [23]. We take this
opportunity to note a subtle difference between the MPC literature and the

2 This estimation uses an estimation of the additive homomorphic encryption (AHE)
ciphertext size c < 8920.
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VOLE-based ZK literature: efficient VOLE-based ZK protocols over small fields
can be directly obtained from sVOLE without resorting to amortisation techniques
(another evidence that these two problems are rather different, although we may
be using the same set of techniques on them). We are indeed inspired by the
recent Galois ring RMFE techniques developed for dishonest-majority MPC [23],
which unfortunately does not work well with the PCG-style VOLE protocol.
We then formulate the required functionality and construct a protocol for the
functionality that is compatible with PCG-style VOLE protocol. Finally, same
as all above mentioned amortisation techniques, our ZK protocol (stated for an
SIMD circuit) is to be combined with a circuit rearrangement technique that
transforms a generic circuit into a SIMD circuit that has equivalent functionality.
The transformation incurs an overhead that depends on the topology of the
given circuit. According to [19,12], a circuit is called well-formed (with respect to
an integer m) if every layer of the circuit is Ω(m) gates wide and the number
of output values that are inputs to subsequent layers is either 0 or Ω(m). The
transformation overhead for a well-formed circuit (into a SIMD circuit with m
copies of data) is very small. In our application scenario of scalable ZK protocols,
we generally consider large circuits and m = 16 for Z232 (m = 27 for Z264).
Moreover, circuits coming from real-life applications are usually more structured
than a random circuit.

We now proceed with our sublinear communication variant construction.
Consider a SIMD circuit with m = m1 × m2 copies of data over Z2k and we
will use RMFE amortisation to map m1 copies of data over Z2k into one copy
of data over GR(2k, d), followed by applying a new amortisation technique that
operates on a batch of m2 elements in GR(2k, d). Before we continue, let us point
out a fact that is important for distinguishing the previous RMFE amortisa-
tion technique from the new technique that enables sublinear communication.
Note that RMFE amortisation does not improve communication efficiency (in
fact, it incurs a constant fraction of degradation as we always have m1 < d).
In practice, we choose the smallest m1 such that a good (m1, d)-RMFE with
small d

m1
exist and 2−d is less than the required soundness error. The new

amortisation technique authenticates m2 values over GR(2k, d) in a batch using
communication cost less than authenticating them naively one-by-one, hence the
sublinear communication. We generalise the Information-Theoretic Polynomial
Authentication Code (IT-PAC) technique of [42] from Galois fields to Galois
rings, which now involves interpolating a polynomial over GR(2k, d) using m2

elements in GR(2k, d) and authenticating the polynomial through checking the
IT-MAC of its random evaluation. We note here that the nice structures of Galois
rings are crucial for the whole thing to work. For example, the ring Z2k+s used in
MozZ2karella [3] will not support the Lagrange interpolation step, which requires
the ring to have a large exceptional set. The IT-PAC techniques help reduce the
communication complexity by m2 in this case. Different from m1 (determined by
security parameter), it is desirable that m2 should be chosen as big as possible.
Another trick of reducing verifying a generic circuit to verifying a SIMD circuit
was proposed in [42] that we postpone to the end of Section 3. We quickly point
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out some possible disadvantages (without dwelling on them) of the IT-PAC. The
generation of IT-PAC increases the computational complexity considerably and
moreover it needs interaction.

Finally, in order to achieve the strongest malicious security, we need an
efficient protocol that generates reusable VOLE correlation. According to [14],
reusable VOLE can not be constructed solely based on OT, which rules out the
conventional OT-based construction. For example, the base VOLE construction
in [41,43] is not reusable. Exploiting the decomposition of the Galois ring GR(2k, d)
with respect to its subfield F2d (another nice structure of Galois rings), we propose
a novel idea of constructing reusable VOLE over GR(2k, d) using parallel calls to
a reusable VOLE over F2d . The decomposition structure also helps in making
this step more efficient than the conventional OT-based construction (intuitively,
emulating the computation over GR(2k, d) using Boolean computation). The
challenge in making this idea work lies in how to prevent a malicious sender
from providing inconsistent VOLE inputs across parallel calls. For this we use
an off-the-shelf protocol developed for constructing NISC called eVOLE [14,22],
which allows the sender to prove to the receiver that certain coefficients of
different inputs in parallel calls are equal. With the efficiency saving from the
decomposition structure, the extra cost of the eVOLE is canceled out and we
basically obtain reusability for free. To generate reusable VOLE correlation more
efficiently, we show that the PCG-style VOLE extension can be extended to
Galois rings. These PCG protocols are better than the PCG protocols over Z2k

in two aspects. First of all, the LPN assumption over GR(2k, d) is more secure. We
show a reduction relating to LPN over the field F2d . The same reduction severely
affects the security of an earlier version of MozZ2karella as reported in [35] and,
to evade this attack, the LPN error vector should contain only components that
are units in Z2k . Our results show that we can either go without this modification
and tolerating a slightly degraded security, or, adapt a similar modification while
remaining on safer ground than LPN over Z2k , as the fraction of units in GR(2k, d)
is close to one. Secondly, the Galois structure makes it natural to seamlessly
generalise different PCG protocols over Galois fields to PCG protocols over Galois
rings with all their different features well-preserved. We include the generalisation
of the two most important PCG protocol constructions, one based on primal
LPN with optimised computational complexity [45] and one based on dual LPN
with optimal round complexity [8].
Related Works.

The previous works most relevant to this work is MozZ2karella [3]. which still
has advantage over our basic construction on proving contrived circuits that incur
heavy overhead in rearranging into SIMD circuits. Other than that, our basic
construction gives better protocols. Moreover, MozZ2karella does not have sub-
linear communication variant and MDV-NIZK variant. Sublinear communication
ZK protocols with very attractive communication complexity for very specific
relations have been constructed over finite fields [5,43]. There is an orthogonal
line of active research on constructing different variants of DV-NIZKs including
its dual model designated prover NIZK (DP-NIZK) from standard assumptions
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such as learning with error (LWE) (see [36,34] and references therein). Our MDV-
NIZK uses multiple computational assumptions coming from many of its building
blocks, and moreover, we use random oracle, which makes it incomparable to
this line of works. Finally, we notice that an efficient threshold designated-verifier
Zero-Knowledge proofs over finite fields called Feta [4] and similar ideas [44]
were proposed to overcome the designated verifier restriction. We believe similar
improvements as above can be studied over Z2k . Due to the space limit, we only
discuss generic circuit solutions and restrict to designated verifier ZK in this
work.

2 Preliminaries

Notations. In this paper, bold letters (e.g. a, b) are used to denote vectors.
Besides, we use xi to denote the ith-component of the vector x. We use [a, b] (or
[a, b + 1) sometimes) to denote the set of integers in the range from a to b, if
a = 1, it is simplified by [b], which is not to be confused with the MAC notation
in Section 3. We also use x[a : b] to denote the set {xi | i ∈ [a, b]}. We use x $← R
to denote that x is uniformly sampled from a ring R and denote the uniform
distribution over R by UR. For a map ϕ : R1 7→ R2, we naturally extend it to
be defined over vector space Rn

1 and matrix space Rm×n
1 .

Galois Rings. Let p be a prime, and k, d ≥ 1 be integers. Let f(X) ∈ Zpk [X] be
a monic polynomial of degree d such that f(X) := f(X) mod p is irreducible over
Fp. A Galois ring over Zpk of degree d denoted by GR(pk, d) is a ring extension
Zpk [X]/(f(X)) of Zpk . The readers may refer to the text [40] for a friendly
exposition. Same as Galois fields, there is a bound on the number of roots.

Lemma 1. A nonzero degree-r polynomial over GR(pk, d) has at most rp(k−1)d

roots.

Lemma 1 immediately gives that for any nonzero degree-r polynomial f(x)
over GR(pk, d), we have that

Pr
[
f(α) = 0

∣∣∣α $← GR(pk, d)
]
≤ rp−d.

In particular, we have that 1/pd fraction of elements are zero divisors in GR(pk, d),
i.e. (1− 1/pd) fraction of elements are invertible.
VOLE based MAC. (Random) Vector OLE (VOLE) is a two-party functionality
that allows two parties PS , PR to obtain random correlated values. In more detail,
the sender PS obtains two random vectors M ,x, while the receiver PR obtains
a random scalar ∆ and a random vector K such that M = K −∆ ·x holds. We
formalize the VOLE ideal functionality over Galois ring GR(2k, d) following the
PCG-style formulation in Figure 1.

The above VOLE correlations can be viewed as Message Authentication Codes
(MACs) that authenticate x, denoted by [x]. We then call M the MAC tags, K
the local keys and ∆ the global key. It can be easily observed that this kind of
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MAC is linearly homomorphic. Suppose [x1], ..., [xl] have been already distributed
and the coefficients c, c1, ..., cl ∈ GR(2k, d) are public, the two parties can obtain
[y] without interaction, where y = c+

∑
i∈[l] ci · xi, by setting My :=

∑
i∈[l]Mxi

and Ky := ∆ · c+
∑

i∈[l] ci ·Kxi
, respectively. According to this observation, PS

and PR can obtain [y] from a random MAC [x] by sending y − x to PR while
maintaining the privacy of y.

Functionality FGR(2k,d)
VOLE

Init: Upon receiving (Init) from both parties, sample ∆ $← GR(2k, d) if receiver
PR is honest, and receive ∆ ∈ GR(2k, d) from the adversary A otherwise. Store ∆
and send it to PR. All further (Init) commands will be ignored.
Extend: Upon receiving (Extend, n) from both parties, proceed as follows:

(1) If PR is honest, sample K
$← GR(2k, d)n. Otherwise receive K from A.

(2) If PS is honest, sample x
$← GR(2k, d)n and compute M := K − ∆ · x ∈

GR(2k, d). Otherwise, receive x ∈ GR(2k, d) and M ∈ GR(2k, d) from A and then
recompute K := M +∆ · x.

(3) Send (x,M) to PS and K to PR.

Fig. 1: Ideal functionality for VOLE over GR(2k, d).

Reverse Multiplicative Friendly Embedding. Reverse Multiplicative Friendly
Embedding (RMFE for short) was first introduced in [11], which packs multiple
multiplications over a field Fq to one multiplication over its extension Fqd . It was
further showed in [18] that RMFEs over finite fields can be lifted to Galois rings.

Definition 1. Let p be a prime, k, r,m, d ≥ 1 be integers. A pair (ϕ, ψ) is called
a (m, d)-RMFE over GR(pk, r) if ϕ : GR(pk, r)m 7→ GR(pk, rd) and ψ : GR(pk, rd) 7→
GR(pk, r)m are two GR(pk, r)-linear maps such that

x ∗ y = ψ(ϕ(x) · ϕ(y))

for all x,y ∈ GR(pk, r)m.

RMFEs have the following properties, whose proofs can be found in Section
A in Supplementary Materials.

Lemma 2. Let (ϕ, ψ) be a (m, d)-RMFE over Galois ring GR(pk, r), we have
that GR(pk, rd) = ϕ(1) · Im(ϕ)⊕Ker(ψ).

Lemma 3. There always exists a (m, d)-RMFE over Galois ring GR(pk, r) with
ϕ(1) = 1.

RMFEs with constant rate (the ratio m
d ) exist over arbitrary Galois rings.
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Lemma 4 ([18]). There exists a family of (m, d)-RMFEs over Galois ring
GR(pk, r), where d = O(m).

Let r = 1, p = 2, we immediately obtain RMFEs from Zm
2k to GR(2k, d) and

w.l.o.g. we assume ϕ(1) = 1. For the rest of this paper, we always consider such
RMFEs. In particular, as showed in [11], there exists a family of (m, d)-RMFEs
over Z2k with

lim
m→∞

d

m
= 4.92.

Zero-Knowledge Proof. The zero-knowledge proof functionality (Fm
ZK, Figure

12) for circuit satisfiability allows prover P to prove knowledge of a witness w for
some public circuit C, i.e. C(w) = 1 without revealing any additional information
to verifier V. We generalize the functionality by allowing P to prove multiple of
witnesses of the same C, simultaneously.
Equality Test & Oblivious Transfer. The equality test functionality (FEQ,
Figure 13) allows two parties P and V to check their inputs are equivalent with
P’s input revealed to V. We define the oblivious transfer functionality (FOT,
Figure 14), which receives a bit from PS and two strings from PR, then sends
one of the strings to PS according to the bit. See more preliminaries in Section
A in Supplementary Material.

3 Zero-Knowledge Protocols over Z2k

We begin with describing our basic construction, as a warm-up for the more
sophisticated variant with sublinear communication online phase.

3.1 Basic Construction

Constructing a ZK protocol over a Galois ring GR(2k, d) following the blueprint of
a well-worked-out protocol over a Galois field is straightforward. The technicality
of our construction lies in the second step, which is converting the protocol
efficiently into one over Z2k using an RMFE (ϕ, ψ). The challenge lies in that, by
definition, multiplication is only preserved for two elements in GR(2k, d) that lie
in the image of ϕ, while in the ZK protocol over GR(2k, d), elements of GR(2k, d)
are multiplied without knowing whether they are belonging to the image of ϕ.
We note that there are off-the-shelf VOLE-based solutions in the MPC literature
for enforcing that multiplicands are belonging to image of ϕ [23,12]. But for ZK
protocols, we also need the solution to work with the PCG-style sublinear VOLE
protocol. Being the first to use RMFE on preprocessing of VOLE-based ZK
protocols, we define the functionality required and construct it before describing
how it is used in our ZK protocol over GR(2k, d).

Let ϕ : Zm
2k 7→ GR(2k, d) and ψ : GR(2k, d) 7→ Zm

2k be a (m, d)-RMFE pair
over Z2k . As ϕ, ψ are Z2k -linear, their composition ϕ ◦ ψ : GR(2k, d) 7→ GR(2k, d),
denoted by τ , is a Z2k -linear map as well. We use the VOLE based MAC to
authenticate values in GR(2k, d). To be compatible with RMFEs, we formulate the
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ideal functionality FGR(2k,d)
embVOLE in Figure 2 that extends FGR(2k,d)

VOLE by additionally

allowing the two parties to obtain ([x], [τ(x)]), where x $← GR(2k, d). We say
([x], [τ(x)]) is the re-embedding pair MAC of x.

Functionality FGR(2k,d)
embVOLE

FGR(2k,d)
embVOLE extends the existing VOLE functionality FGR(2k,d)

VOLE (Figure 1). Init
and Extend are identical to those in FGR(2k,d)

VOLE , respectively. Let (ϕ, ψ) be a
(m, d)-RMFE pair over Z2k , and τ := ϕ ◦ ψ.

Extend-pair: Upon receiving (Extend-pair, n) from both parties, proceed as
follows:

(1) If PS is honest, sample x,M
$← GR(2k, d)n; otherwise, receive x,M ∈

GR(2k, d)n from A. Compute η := τ(x)− x ∈ Ker(ψ)n and send η to PR.
(2) If PR is honest, compute K := M +∆ · x ∈ GR(2k, d)n; otherwise, receive

K ∈ GR(2k, d)n from A and recompute M := K −∆ · x.
(3) Send (x,M) to PS and (K,η) to PR.

Fig. 2: Ideal functionality for re-embedding VOLE over GR(2k, d).

Our protocol for FGR(2k,d)
embVOLE crucially relies on the key observation that GR(2k, d)

is the direct sum of Ker(ψ) and Im(ϕ), and the SIMD witnesses over Z2k one-to-
one correspond to a vector over Im(ϕ) (we use ϕ to map the witnesses to a vector
over GR(2k, d)). Thus, we allow the projection of x on Ker(ψ) to be revealed to V ,
which enables the two parties to obtain the re-embedding pair MACs of x. So far,
the prover can cheat during the generation of these re-embedding pair MACs. We
then have the two parties generate n+ s re-embedding pair MACs and sacrifice
the extra s re-embedding pair MACs by taking s random Z2k -linear combinations
of n remaining re-embedding pair MACs to obtain s equations, with each masked
with an extra re-embedding pair MAC. If there is at least one of the remaining n
re-embedding pair MACs that is not honestly generated, the correctness check
will fail, except with probability at most 2−s + 2−d, which can be negligible in
the security parameter κ by setting s, d big enough (e.g. s = d = κ+ 1). We give
the protocol ΠGR(2k,d)

embVOLE in Figure 3, and we have the following theorem, whose
security proof can be found in in Section C.1 in Supplementary Material. To
obtain n re-embedding pair MACs, our approach requires n+s VOLE correlations
with communication of (n+3s) Galois ring elements and ns coefficients over Z2k ,
i.e. on average (1+ 3s/n+ s/d) Galois ring elements. As n is sufficiently large for
most ZK applications, the overhead for constructing re-embedding pairs is O(1).

Theorem 1. ΠGR(2k,d)
embVOLE UC-realizes FGR(2k,d)

embVOLE in the (FGR(2k,d)
VOLE ,FEQ)-hybrid

model. In particular, no PPT environment Z can distinguish the real world
execution from the ideal world simulation except with advantage at most 2−s+2−d.

12



Protocol ΠGR(2k,d)
embVOLE

Init: Both parties send Init to FGR(2k,d)
VOLE , which returns ∆ ∈ GR(2k, d) to PR.

Extend-pair:
1. Construct:

(a) Both parties send (Extend, n + s) to FGR(2k,d)
VOLE . PS receives M ,x ∈

GR(2k, d)n+s, and PR receives K ∈ GR(2k, d)n+s, such that M = K − ∆ · x
holds. Thus, the parties now obtain [xi], i ∈ [n+ s].

(b) PS computes η := τ(x) − x, then sends η ∈ Ker(ψ)n+s to PR. If η /∈
Ker(ψ)n+s, PR aborts.

(c) PS sets M ′ := M , and PR sets K′ := K + ∆ · η. Note that M ′ =
K′ −∆ · τ(x) holds, so the parties now obtain [τ(xi)], i ∈ [n+ s].

2. Sacrifice:
(a) PR samples χ1, ...,χs $← Zn

2k , and sends them to PS .
(b) For i ∈ [s], PS computes ai = xn+i +

∑
j∈[n] χ

i
j · xj and bi = τ(xn+i) +∑

j∈[n] χ
i
j · τ(xj). PS sends a, b to PR. PS computes M̂i :=Mn+i +

∑
j∈[n] χ

i
j ·Mj ,

for i ∈ [s].
(c) PR checks bi − ai = ηn+i +

∑
j∈[n] χ

i
j · ηj , for i ∈ [s] and b ∈ Im(ϕ)s. If

the check fails, PR aborts. PR computes M̂ ′
i := Kn+i +

∑
j∈[n] χ

i
j ·Kj −∆ · ai, for

i ∈ [s].
(d) PR sends M̂ ′ to FEQ as V. PS sends M̂ to FEQ as P. PR receives M̂ .

PS and PR abort if the equality test fails.
3. Output: Output ([xi], [τ(xi)]) for i ∈ [n].

Fig. 3: Protocol for authenticating re-embedding pairs over GR(2k, d) in the
(FGR(2k,d)

VOLE ,FEQ)-hybrid model.
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Now we give the basic zero-knowledge proof protocol in Figure 4. Suppose the
prover P and the verifier V have agreed on a SIMD circuit C over Z2k with n inputs
and t multiplication gates, and P has m witnesses. By calling FGR(2k,d)

embVOLE, they

can obtain n+ t re-embedding pair MACs for µ $← GR(2k, d)n and ν
$← GR(2k, d)t,

and a MAC [π], where π $← GR(2k, d). P then computes ω := ϕ(w1, ...,wm), and
sends δ := ω − µ to V. They can obtain [τ(ω)] := [τ(µ)] + τ(δ). Note that if
ω ∈ Im(ϕ)n, we have that τ(ω) = ω and δ − τ(δ) = τ(µ)− µ should hold. Next,
the two parties are going to evaluate the circuit in a topological order. For Add
gates, the MAC of the output wire can be computed locally. While for Mul gates,
P is required to send the outputs with masks. As RMFE can only preserve one
multiplication, all values on the circuit wires should be ensured in the image
of ϕ, which can be achieved with the help of re-embedding pair MACs. More
specifically, for the i-th multiplication gate in C with inputs ωα, ωβ , if di sent to
V is equal to ωα ·ωβ − νi, they can compute [ωγ ] := [τ(ωα ·ωβ)] = [τ(νi)] + τ(di).
To verify that each di is computed honestly, the two parties additionally compute
[ω̂γ ] := [ωα · ωβ ] = [νi] + di. One can observe that

Bi : = Kωα ·Kωβ
−∆ ·Kω̂γ

= (Mωα +∆ · ωα) · (Mωβ
+∆ · ωα)−∆ · (Mω̂γ +∆ · (ωα · ωβ))

= (Mωα ·Mωβ
) +∆ · (ωα ·Mωβ

+ ωβ ·Mωα −Mω̂γ )

holds if di is correct. Therefore, it can be used to detect malicious behaviors
by letting P send A0,i :=Mωα

·Mωβ
, A1,i := ωα ·Mωβ

+ ωβ ·Mωα
−Mω̂γ

to V.
Further, we use a random linear combination technique to check all t equations
simultaneously. Briefly, V sends uniformly random coefficients {χi ∈ GR(2k, d)}i∈[t]

to P , and P returns to V the linear combination of {A0,i, A1,i}i∈[t] masked with
Mπ, π, respectively. In fact, as GR(2k, d) contains a subfield F2d , χ can be sampled
from Ft

2d . Finally, for the output wire ωh, if both parties follow the protocol
honestly, the equation Kωh

=Mωh
+∆ should hold. Thus, we let P open [ωh] by

sending Mωh
to V. We have the following theorem, whose security proof can be

found in Section C.2 in Supplementary Material. The protocol Πm,n,t
ZK transfers

one GR(2k, d) element and one random coefficient over F2d per multiplication
gate, yielding amortized communication complexity (kd+ d)/m bits, which is
independent of the statistical security parameter κ as d/m is constant.

Theorem 2. Protocol Πm,n,t
ZK communicates (kd+ d)/m bits per multiplication

gate, and UC-realizes Fm
ZK in the FGR(2k,d)

embVOLE-hybrid model with soundness error
2−(d−2) and information-theoretic security.

Note that this basic construction has constant rounds (two rounds for both
Π

GR(2k,d)
embVOLE and Πm,n,t

ZK ). By Fiat-Shamir heuristic, the two protocols can be
made non-interactive, respectively, and the overall round complexity of the basic
construction is one. Thus, one can obtain a MDV-NIZK protocol in ROM if
instantiating with a two-round reusable VOLE protocol.
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Protocol Πm,n,t
ZK

The prover P and the verifier V have agreed on a circuit C over Z2k with n inputs
and t multiplication gates, and P holds m witnesses wi ∈ Zn

2k such that C(wi) = 1,
i ∈ [m].

Offline phase
1. P and V send (Init) to FGR(2k,d)

embVOLE, and V receives ∆ ∈ GR(2k, d).

2. P and V send (Extend-pair, n+ t) to FGR(2k,d)
embVOLE, which returns authenticated

pairs ([µi], [τ(µi)])i∈[n], ([νj ], [τ(νj)])j∈[t], where all µi, νj are sampled uniformly at

random in GR(2k, d). Note that V also learns τ(µ)−µ and τ(ν)−ν from FGR(2k,d)
embVOLE.

3. P and V send (Extend, 1) to FGR(2k,d)
embVOLE, which returns authenticated value

[π], where π is sampled uniformly at random in GR(2k, d).
Online phase

1. For input W = (w1,w2, ...,wm), P computes ω := ϕ(W ), and sends δi :=
ωi − µi, i ∈ [n] to V. V checks whether δ − τ(δ) = τ(µ) − µ holds. If the check
fails, aborts. Both parties can locally compute [τ(ωi)] := [τ(µi)] + τ(δi).

2. For each gate (α, β, γ, T ) ∈ C, in a topological order:
- If T=Add, then P and V locally compute [ωγ ] := [ωα] + [ωβ ].
- If T=Mul and this is the i-th multiplication gate, then P sends di := ωα·ωβ−νi

to V, and both parties locally compute [ωγ ] := [τ(νi)] + τ(di), and [ω̂γ ] := [νi] + di.
3. For the i-th multiplication gate, the parties hold ([ωα], [ωβ ], [ω̂γ ]) with Kωj =

Mωj +∆ · ωj for j ∈ {α, β}, and Kω̂γ =Mω̂γ +∆ · ω̂γ .
- P computes A0,i := Mωα ·Mωβ ∈ GR(2k, d) and A1,i := ωα ·Mωβ + ωβ ·

Mωα −Mω̂γ ∈ GR(2k, d).
- V computes Bi := Kωα ·Kωβ −∆ ·Kω̂γ ∈ GR(2k, d).

4. P and V do the following check:
(a) P sets A∗

0 :=Mπ, A
∗
1 := π, and V sets B∗ := Kπ so that B∗ = A∗

0 +∆ ·A∗
1.

(b) V draws a uniformly random χ from Ft
2d and sends it to P.

(c) P computes X :=
∑

i∈[t] χi · A0,i + A∗
0 ∈ GR(2k, d) and Y :=

∑
i∈[t] χi ·

A1,i +A∗
1 ∈ GR(2k, d), and sends (X,Y ) to V.

(d) V computes Z :=
∑

i∈[t] χi · Bi + B∗ ∈ GR(2k, d), and checks whether
Z = X +∆ · Y holds. If the check fails, V outputs false and aborts.

5. For the single output wire ωh, both parties hold [ωh].
- P sends Mωh to V.
- V checks whether Kωh =Mωh +∆ ·ϕ(1). If the check fails, V outputs false.

Otherwise, V outputs true.

Fig. 4: Zero-knowledge protocol for circuit satisfiability over Z2k in the FGR(2k,d)
embVOLE-

hybrid model.
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3.2 Sublinear Communication Variant

The RMFE amortisation techniques in the basic construction only reduces the
cost of performing the proof over a Galois ring GR(2k, d) (has a sufficiently large
fraction of units) instead of the target ring Z2k (smaller but with half units).
The communication complexity is slightly bigger than if we were to perform
the proof directly over Z2k (assume Z2k had many units as F2k). In order to
reduce the communication complexity, we need to use a different amortisation
technique on top of it. The main idea is to use the Polynomial Authentication
Code (PAC) instead of the MAC, which allows to authenticate a batch of m2

values simultaneously. PAC is a generalisation of MAC, where the sender PS
holds a MAC tag M ∈ GR(2k, d), and a polynomial f(·) ∈ GR(2k, d)[X], while the
receiver PR holds a polynomial key Λ ∈ GR(2k, d), a global key ∆ ∈ GR(2k, d), and
a local key K ∈ GR(2k, d) such that M = K−∆ ·f(Λ). The PAC for f(·), denoted
by [f(·)], can be viewed as a MAC for f(Λ). In particular, the polynomial f(·) to
be authenticated is uniquely determined by the values needed to be authenticated
via Lagrange interpolation, if the evaluation points are picked appropriately. In
a high level, the protocol starts with P and V obtaining PACs for the SIMD
witnesses, then they evaluate the circuit using the PACs, and finally P opens the
output PAC to V. Thus, to guarantee malicious security, V should be convinced
that the PACs for inputs are corresponding to the witnesses, and the circuit
evaluation is done correctly. We next briefly summarise how the protocol works,
with special emphasis on how the RMFE and PAC amortisation techniques
collaborate.

Suppose that P and V have agreed on a SIMD circuit C over Z2k with n
inputs and t multiplication gates, and P holds m = m1m2 witnesses. Let (ϕ, ψ)

be a (m1, d)-RMFE pair over Z2k and T = {0, 1, ζ, ..., ζ2d−2}, where ζ ∈ GR(2k, d)
is of order 2d − 1. Now P uses ϕ to map m1m2 witnesses over Z2k to m2 vectors
over GR(2k, d), and the two parties first authenticate these values via VOLE
based MACs. Similar to that in the protocol Πm,n,t

ZK , we use re-embedding pair
MACs to guarantee that the authenticated values are in the image of ϕ. Next,
the two parties generate the corresponding PACs. In [42], an efficient interactive
protocol that generates a batch of PACs over Galois fields, using an Additively
Homomorphic Encryption (AHE) scheme was proposed. We generalise this PAC
construction to work over Galois rings (including the AHE, see C.3), denoted by
ΠPAC (see Figure 21 due to space constraint). Then, the two parties can locally
evaluate Add gates in the circuit. For the j-th Mul gate with input polynomials
ua(·), ub(·), P and V generates two PACs [v̂j(·)] and [vj(·)], where v̂j := ua(·)·ub(·)
with degree 2m2 − 2 and vj(·) with degree m2 − 1 is τ -consistent to v̂j(·), i.e.
vj(αi) = τ(v̂j(αi)), for some fixed points αi ∈ T , i ∈ [m2].

After the evaluation is completed, P and V do a series of checks. The first
check is for the τ -consistency. We adapt the BatchCheck procedure in [42] to
allow the verifier to check two sets of polynomials additionally satisfy the τ -
consistency simultaneously. Recall that τ = ϕ ◦ ψ is a Z2k -linear map. Thus,
V can check by P opening random Z2k -linear combinations of the two set of
polynomials. To avoid potential information leakage from linear combinations,
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the opening polynomials are masked with a pair of random polynomials that
satisfy the degree requirement and τ -consistency. Besides, V should be convinced
that the opened polynomials are consistent to their PACs. The PAC amortisation
techniques allow the polynomial key Λ to be opened to P, after all polynomials
needed to be authenticated are authenticated. Then the PACs are turned to
MACs for the polynomial evaluations on Λ naturally, and V can check this by P
opening the MACs.

The next check is for multiplication. Since the PACs are turned to MACs
naturally after the polynomial key is opened, we can use the multiplication check
procedure of Πm,n,t

ZK , where P can only pass the check with probability at most
3/2d, if using some incorrect polynomials v̂j(·), j ∈ [t]. Note that, unlike in the
basic protocol, we do not need re-embedding pair MAC in this step (the PAC
generation above came with the required guarantee).

The final check is for inputs and outputs. After Λ is opened to P, the two
parties can obtain MACs [uj(Λ)], j ∈ [n]. Note that they have already obtained
MACs for inputs. Let ξi(·), i ∈ [m2] be the Lagrange polynomials defined by the
evaluation point set {α1, ..., αm2

} ⊂ T . As uj(·), j ∈ [n] can be computed by
Lagrange interpolation, the formula still holds in a MAC representation by taking
ξi(Λ) as the coefficients, which enables V to check PACs for inputs are consistent
with inputs. Checking output can be done by opening the PAC associated with
the output wire, since a certain equation will hold with honest execution of the
protocol.

The protocol is given in Figure 6,7, which takes the BatchCheck procedure
in Figure 5 and ΠPAC in Figure 21 as sub-protocols. We have the following
theorem that guarantees security. We provide a sketched proof in Section C.3 in
Supplementary Material.

Theorem 3. Protocol Πm,n,t
slZK UC-realizes functionality Fm

ZK that proves circuit

satisfiability over Z2k in the FGR(2k,d)
embVOLE-hybrid model and the random oracle model

with soundness error at most 2m2+3
2d

+ negl(κ).

The protocol Πm,n,t
slZK communicates 2 AHE ciphertexts per multiplication gate.

The main costs for checking multiplications consist of two parts: transferring
random coefficients χ in Step 5.e in Figure 7, and transferring 2 polynomials
over GR(2k, d) of respective degree m2 − 1, 2m2 − 1 in the Linear combination
phase of the BatchCheck procedure. Assume the ciphertext size is c, these
yield 2ct+ td+ 3m2kd bits in total, which is sublinear in the circuit size mt. By
dividing mt, the amortized complexity per multiplication gate is ( 2c+d

m + 3kd
m1t

)-bit.

Reduction from Evaluating Arbitrary Circuit to SIMD Circuit. There
are two methods in the literature to transform a problem on a given circuit
into one on a related SIMD circuit. The first one is to arrange a generic circuit
into a SIMD circuit (cf. [19,12]) by dividing gates into layers of addition and
multiplication gates, which introduces an overhead that depends on the topology
of the given circuit (for a large class of well formed circuits, this overhead is quite
small). The second method [42] is specific to proving circuit satisfiability. Since
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Procedure BatchCheck

Let T be the set {0, 1, ζ, ..., ζ2
d−2}, where ζ ∈ GR(2k, d) is of order 2d − 1. Let

d1, d2,m, l be parameters. Let {α1, ..., αm} and {β1, ..., βm} be two public subsets
of T . Let H : {0, 1}κ → Zl

2k be a random oracle.

Inputs. P and V have the following inputs:
Two sets of PACs {[f1(·)], ..., [fl(·)]} and {[g1(·)], ..., [gl(·)]} where fi(·) is a degree-d1
polynomial and gi(·) is a degree-d2 polynomial over GR(2k, d) for i ∈ [l].
Consistency check. P and V check fj(αi) = τ(gj(βi)) for all i ∈ [m], j ∈ [l] as
follows.

Linear combination phase: Before the polynomial key Λ is opened, P and V
do as follows.

1. P picks two random polynomial r(·) and s(·) over GR(2k, d) with degree
d1, d2, respectively, such that r(αi) = τ(s(βi)), for i ∈ [m]. Then, P and V run the
Pre− Gen procedure of ΠPAC with input 2, to pre-generate two PACs [r(·)] and
[s(·)].

2. V samples a seed← {0, 1}κ and sends it to P. Then, two parties computes
(χ1, ..., χl) := H(seed) ∈ Zl

2k .
3. P and V locally compute [f(·)] :=

∑
j∈[l] χj · [fj(·)] + [r(·)] and [g(·)] :=∑

j∈[l] χj · [gj(·)] + [s(·)]. Then, P sends the polynomial pair (f(·), g(·)) to V, who
checks that f(·), g(·) have the degree d1 and d2 respectively and f(αi) = τ(g(βi))
holds for all i ∈ [m]. If the check fails, V aborts.

Check phase:
1. P and V locally compute [µ] := [f(Λ)] − f(Λ) and [ν] := [g(Λ)] − g(Λ).

Then, P sends Mµ,Mν to V, and V checks Mµ = Kµ and Mν = Kν , i.e. P opens
[µ] and [ν] to V. If the check fails, V aborts.

Fig. 5: Procedure for checking the τ -consistency of polynomial evaluations for
two sets of PACs.
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Protocol Πm,n,t
slZK -Part I

The prover P and the verifier V have agreed on a circuit C over Z2k with n inputs
and t multiplication gates, and P holds m = m1m2 witnesses wi ∈ Zn

2k such that
C(wi) = 1, i ∈ [m]. Let (ϕ, ψ) be a RMFE pair, and ζ ∈ GR(2k, d) is of order
2d − 1. Let T be the set {0, 1, ζ, ..., ζ2

d−2}, and α1, ..., αm2 be distinct elements of
T . Let ξi(X) =

∏
j∈[m2],j ̸=i(X −αj)/(αi−αj) ∈ GR(2k, d)[X] be a degree-(m2− 1)

polynomial for each i ∈ [m2], which is referred to as a Lagrange polynomial.
Offline phase The offline phase is independent of C and just needs upper bounds
on the number of inputs and multiplication gates of C as input.

1. P and V send (Init) to FGR(2k,d)
embVOLE, and V receives ∆ ∈ GR(2k, d).

2. P and V run the Poly-Key procedure of ΠPAC with input 2m2 − 2, and V
receives a uniform key Λ ∈ GR(2k, d).

3. P and V send (Extend-pair, nm2) to FGR(2k,d)
embVOLE, which returns authenticated

pairs {([µi
j ], [τ(µ

i
j)])}i∈[m2],j∈[n], where all µi

j are sampled uniformly at random in

GR(2k, d). Note that V also learns τ(µi)− µi from FGR(2k,d)
embVOLE.

4. P and V send (Extend, n + 2t) to FGR(2k,d)
embVOLE, which returns authenticated

values {[νi]}i∈[n] and {[πj ]}j∈[2t], where all νi, πj are sampled uniformly at random
in GR(2k, d).
Online phase

1. For input W i = (w(i−1)·m1+1,w(i−1)·m1+2, ...,w(i−1)·m1+m1
), P computes

ωi := ϕ(W i), and sends δi := ωi−µi, i ∈ [m2] to V. V checks whether δi−τ(δi) =
τ(µi)−µi holds for all i ∈ [m2]. If the check fails, aborts. Both parties can locally
compute [τ(ωi

j)] := [τ(µi
j)] + τ(δij), for i ∈ [m2], j ∈ [n].

2. For j ∈ [n], for the j-th group ofm2 inputs gates with input vector (ω1
j , ..., ω

m2
j ),

P defines a degree-(m2 − 1) polynomial uj(·) such that uj(αi) = ωi
j for i ∈ [m2].

3. P and V run the Pre-Gen procedure of ΠPAC with input [ν], to pre-generate
PACs [u1(·)], ..., [un(·)].

4. For each gate (a, b, c, T ) ∈ C, in a topological order:
- If T=Add, then P and V locally compute [uc(·)] := [ua(·)] + [ub(·)].
- If T=Mul and this is the j-th multiplication gate, where j ∈ [t], then P

computes a degree-(2m2−2) polynomial ṽj(·) = ũc(·) := ua(·) ·ub(·) ∈ GR(2k, d)[X]
and a degree-(m2 − 1) polynomial vj = uc such that vj(αi) = uc(αi) = τ(ũc(αi))
for all i ∈ [m2]. Then, P and V run the Pre-Gen procedure of ΠPAC with input
[π2j ], [π2j+1], to pre-generate two PACs [uc(·)] and [ũc(·)].

5. P and V do the following multiplication check:
(a) P and V execute the linear-combination phase of the BatchCheck proce-

dure with parameters (m2 − 1), (2m2 − 2),m2, t and a common evaluation subset
{α1, ..., αm2} ⊂ T on inputs {[v1(·)], ..., [vt(·)]} and {[ṽ1(·)], ..., [ṽt(·)]} to check that
vj(αi) = τ(ṽj(αi)) holds for all i ∈ [m2], j ∈ [t].

(b) P and V run the Gen procedure of ΠPAC to open Λ to P, and then V can
compute the local keys on all PACs. For the j-th multiplication gate (a, b, c, Mul) ∈ C,
P and V now hold [ua(Λ)], [ub(Λ)], [ũc(Λ)]. P computes A0,j :=Mua(Λ) ·Mub(Λ) ∈
GR(2k, d) and A0,j := ua(Λ) ·Mub(Λ) + ua(Λ) ·Mua(Λ) −Mũc(Λ) ∈ GR(2k, d). V
computes Bj := Kua(Λ) ·Kub(Λ) −∆ ·Kũc(Λ) ∈ GR(2k, d).

Fig. 6: Zero-knowledge protocol for SIMD circuit satisfiability over Z2k with
sublinear communication in the FGR(2k,d)

embVOLE-hybrid model-Part I.
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Protocol Πm,n,t
slZK -Part II

(c) P and V execute the check phase of the BatchCheck procedure to complete
the above check. If the check fails, V aborts.

(d) P sets A∗
0 :=Mπ, A

∗
1 := π, and V sets B∗ := Kπ so that B∗ = A∗

0 +∆ ·A∗
1.

(e) V draws a uniformly random χ from Ft
2d and sends it to P.

(f) P computes X :=
∑

j∈[t] χj · A0,j + A∗
0 ∈ GR(2k, d) and Y :=

∑
j∈[t] χj ·

A1,j +A∗
1 ∈ GR(2k, d), and sends (X,Y ) to V.

(g) V computes Z :=
∑

j∈[t] χj · Bj + B∗ ∈ GR(2k, d), and checks whether
Z = X +∆ · Y holds. If the check fails, V outputs false and aborts.

6. P and V do the following input output check. P convinces V that [uj(·)] is
consistent to ([ω1

j ], ..., [ω
m2
j ]) for j ∈ [n], and the values on all output gates are 1.

(a) For each j ∈ [n], P and V locally compute an MAC [zj ] :=
∑

i∈[m2]
ξi(Λ) ·

[ωi
j ]− [uj(Λ)]. Then, P opens [zj ], V continues if and only if zj = 0 holds for all

j ∈ [n]. Otherwise, V aborts.
(b) Let [u(·)] be the PAC associated with the output wire of C. P sends Mu(Λ)

to V.
(c) V checks whether Ku(Λ) =Mu(Λ) +∆ · ϕ(1). If the check fails, V outputs

false. Otherwise, V outputs true.

Fig. 7: Zero-knowledge protocol for SIMD circuit satisfiability over Z2k with
sublinear communication in the FGR(2k,d)

embVOLE-hybrid model-Part II.

the prover P holds the witness, he can calculate all values on the wires in the
circuit and authenticate them in batch as evaluating some SIMD circuit. But in
the generic circuit, the outputs of some gates may be the inputs of other gates,
thus each value on wires now needs to be authenticated twice, one as the output
of some gate, and the other as the input of some other gate. Therefore, V need to
check not only the correctness of gate evaluations, but also the consistency of every
two authenticated values on a wire, which would increase the communication
complexity considerably, depending on the topology of the given circuit. We
remark that the second method is compatible with our sublinear communication
variant, still yielding a sublinear communication online phase, where we can do
the additional check by slightly modifying the BatchCheck procedure to allow
checks on some specific Z2k -components (now it allows to check the τ -consistency,
namely all Z2k -components). It is also possible to combine the above two methods,
where we view the SIMD circuit over Z2k arranged by the first method as a
generic circuit over GR(2k, d) and use the second method to deal with it. Users
are advised to pick the most efficient strategy according to the circuit topology.

4 Reusable VOLE over Galois Rings

In this section, we show how to distribute VOLE correlations over Galois rings
with sublinear communication complexity. We begin by a novel base VOLE con-
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struction over Galois rings. Then we present two PCG-style VOLE constructions,
where the first basic construction is more efficient (but has multiple rounds), and
the second is a two-round variant we need for building a MDV-NIZK protocol.

4.1 Reusable VOLE over Galois rings

Our idea comes from the fact that every Galois ring contains a Galois field
and computations over Galois rings can be emulated by computations over
Galois fields. More specifically, any a ∈ GR(pk, d) can be uniquely written as
a0 + a1 · p+ ...+ ak−1 · pk−1, where ai ∈ Fpd . For any a, b ∈ GR(pk, d), a+ b can
be computed as

a+ b = (a0 + b0) + (a1 + b1) · p+ ...+ (ak−1 + bk−1) · pk−1,

and a · b can be computed as

a · b = a0b0 + (a0b1 + a1b0) · p+ ...+ (a0bk−1 + ...+ ak−1b0) · pk−1

=

k−1∑
m=0

∑
i+j=m

aibj · pm.

Thus, we utilize the above algebraic structures of Galois rings to realize a
semi-honest secure VOLE protocol over GR(2k, d) in the FF

2d

vOLE-hybrid model in
Figure 8, where FF

2d

vOLE (see Figure 15) is a fixed input VOLE functionality. We
remark that if building VOLE over F2d on OTs, our construction reduces the
communication complexity by half approximately comparing to that constructing
VOLE over GR(2k, d) directly from OTs in the semi-honest setting.

Protocol ΠGR(2k,d)
VOLE

PR has input ∆ ∈ GR(2k, d), PS has input a, b ∈ GR(2k, d)l, where l is a length
parameter. We write ∆ := ∆0 + ∆1 · 2 + ... + ∆k−1 · 2k−1, where ∆i ∈ F2d for
i = 0, 1, ..., k − 1. Similarly, we define ai, bi for i = 0, 1, ..., k − 1.

(1) For i = 0, 1, ..., k − 1, PR sends (i;∆i) to FF
2d

vOLE.
(2) For i = 0, 1, ..., k− 1, PS picks random bs,t ∈ Fl

2d such that
∑s+t=i

s,t bs,t = bi.

(3) For i = 0, 1, ..., k−1, and j = 0, ..., k−1− i, PS sends (i;aj , bi,j ; j) to FF
2d

vOLE.
(4) Upon receiving (i;vi,j ; j) where vi,j = aj ·∆+ bi,j , for i = 0, 1, ..., k− 1, and

j = 0, , ..., k− 1− i, PR computes v := v0,0 + (v0,1 + v1,0) · 2 + ...+ (v0,k−1 + ...+
vk−1,0) · 2k−1.

Fig. 8: Protocol for VOLE over GR(2k, d) in the FF
2d

vOLE-hybrid model.

We have the following theorem.
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Theorem 4. Protocol ΠGR(2k,d)
VOLE perfectly realizes the functionality FGR(2k,d)

vOLE with
semi-honest security in the FF

2d

vOLE-hybrid model. The total length of the VOLE
instances over F2d is k(k+1)

2 · l.

Proof. If PR is corrupted. The simulator SR receives ∆0, ...,∆k−1 ∈ F2d from
the adversary, and computes ∆ :=

∑k−1
i=0 ∆i · 2i. Then SR sends ∆ to FGR(2k,d)

vOLE ,

and receives v from FGR(2k,d)
vOLE . SR writes v as

∑k−1
i=0 vi · 2i. SR sets v0,0 := v0

and samples vj,i−j
$← Fl

2d such that
∑i

j=0 vj,i−j = vi, for j = 0, ..., i and i =
1, ..., k− 1. Finally, SR sends these vi,j to the adversary. The indistinguishability
is clear since these vi,j are identically distributed both in the real world and the
ideal world.

If PS is corrupted. The simulator SS receives aj , bi,j from the adversary for
i = 0, ..., k − 1 and j = 0, ..., k − 1 − i. SS computes a :=

∑k−1
i=0 ai · 2i and

b :=
∑k−1

i=0 (
∑i

j=0 bj,i−j) · 2i. SS sends a, b to FGR(2k,d)
vOLE . The indistinguishability

is clear since the outputs in the real world and the ideal world are identical.

For reusable security against a malicious sender, where A can cheat by taking
inconsistent inputs to VOLE instances over F2d , we use the eVOLE technique in
[22], while there is no room for a malicious receiver to cheat. Thus, instantiating
FF

2d

vOLE with the Paillier-based reusable VOLE construction in [14], we obtain a
reusable VOLE over GR(2k, d) in the fully malicious setting. We have the following
theorem.

Theorem 5. There exists a malicious secure reusable VOLE construction over
GR(2k, d) in the FF

2d

vOLE-hybrid model, where the receiver’s input ∆ is uniformly
random. The total length of the VOLE instances over F2d is (3k−1)k

2 · l, and PS

additionally sends k(k−1)
2 · l elements over F2d to PR.

Proof. Correctness and security are immediate from the correctness and the
security of the underlying protocols, where the receiver’s input ∆ is uniformly
random as eVOLE requires. As illustrated in [22], eVOLE requires two additional
VOLE correlations and transferring one field element for proving one equality
constraint. Since there are k(k−1)

2 · l equality constraints need to prove, the total
length of the VOLE instances over F2d is k(k+1)

2 · l+ k(k− 1) · l = (3k−1)k
2 · l, and

k(k−1)
2 · l elements over F2d are sent from PS to PR.

4.2 Basic VOLE Construction

Following the established VOLE extension paradigm, which extends short base
VOLE correlations into a large number of VOLE correlations via LPN assump-
tions, we instantiate the (D,G,R)-LPN assumption (we refer to Section B in
Supplementary Material for LPN preliminaries) with R a Galois ring GR(2k, d), D
the fixed Hamming weight distribution and G the random linear codes generation
algorithm. The above LPN instantiation also covers the case of regular noise as
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shown in [35], on which the discussion about existing attacks can be found in
Section B.3. To achieve better efficiency, we use the regular Hamming weight
distribution, where the error vector of weight t can be easily divided into t blocks
with each block having only one non-zero entry. To our best knowledge, no
attack has been found to utilize the regular structure and the ring structure to
decrease the cost except for a simple reduction attack (we refer to Section B.2).
For example, one can reduce an LPN instance’s noise weight by approximately
1/2d fraction via modulo 2, since GR(2k, d)/(2) ∼= F2d , which may be tolerable if
d is sufficiently large. We see this attack is much less efficient than that for LPN
over Z2k . Alternatively, similar to [3,35], one can additionally require that each
entry of the error vector e is invertible.

We use the GGM tree [28] based puncturable pseudorandom functions [7]
(PPRF for short) construction to obtain VOLE correlations for such error vectors.
Informally in a PPRF, one party P1 generates a key s and the other party P2

randomly picks an index α ∈ [0, n), after engaging in a protocol, P2 obtains a
punctured key s{α}. P1 can use the key s to obtain n pseudorandom values,
while P2 can use the punctured key s{α} to obtain these values except one value
that is dependent on the choice of α. The GGM algorithms are presented in
Figure 20.

Clearly, one can verify that on inputs α, {Kᾱi,i}i∈[h], the outputs of GGM.Eval
are consistent to those computed by GGM.Gen. Hence, taking s as the key of PPRF,
{Kᾱi,i}i∈[h] is the punctured key for index α. Notice that GGM.Gen also outputs
{Γj}j∈[0,2h−1), which can be used for checking consistency of the GGM tree in
our two-round variant and it will be explained later.

Our basic VOLE construction takes single-point VOLE as a black-box building
block, which is a variant of VOLE, where the sender PS holds w,u ∈ GR(2k, d)n

with u having only one entry invertible in GR(2k, d) and zeros everywhere else,
and the receiver PR holds v ∈ GR(2k, d)n, ∆ ∈ GR(2k, d) such that w = v −∆ ·u.
We formalize the ideal functionality for single-point VOLE in Figure 17.

As the GGM tree based PPRFs allow two parties PS and PR to obtain
{vj}j∈[0,n)\{α} and {vj}j∈[0,n), when they are given the punctured key corre-
sponding to α and the PPRF key, respectively. Delivering the punctured key can
be done by invoking the functionality for oblivious transfer. More specifically,
PR sends K0,i,K1,i to FOT and PS sends ᾱi to FOT, for i ∈ [h], then PS will
receive the punctured key.

After receiving the punctured key, PS can set uj := 0, and wj := vj =
vj −∆ · uj , for j ̸= α. To obtain the VOLE correlation on position α, they first
obtain a VOLE correlation δ = γ−∆ ·β, where β is invertible in GR(2k, d). Then,
by sending g := γ−

∑
j∈[0,n) vj to PS , PS can compute wα := δ− (g+

∑
i̸=α wi),

such that wα = vα−∆ ·β holds. Letting uα := β, PS and PR obtain a single-point
VOLE correlation w = v −∆ · u.

To guarantee the honest behaviors, we use a random linear combination check
on the single-point VOLE correlation. Let χi ∈ GR(2k, d), i ∈ [0, n) be uniformly
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random elements picked by PS . We have that∑
i∈[0,n)

χi · wi =
∑

i∈[0,n)

χi · vi −∆ · χα · β.

Obviously, this equation can not be directly used for consistency check, since
∆ ·χα · β can not be computed by only one party and the linear combination will
leak some information. These can be solved by masking the linear combination
equation with a VOLE correlation where z = y −∆ · χα · β. Namely, the two
parties check the equation∑

i∈[0,n)

χi · wi − z =
∑

i∈[0,n)

χi · vi − y.

We remark that this check provides a selective failure attack for the corrupted
receiver, where A can guess a set I ⊆ [0, n) that contains α and provides
inconsistent inputs to FOT according to I. Besides, it also enables the corrupted
sender to cheat on generating the VOLE correlation for χα · β and A will learn
∆ modulo some 2s if the attack succeeds. Thus, we let the functionality FGR(2k,d)

spVOLE

allow these two kinds of leakage.
We give the single-point VOLE protocol in Figure 9, and we have the following

theorem that guarantees security. The proof can be found in Section D.1 in
Supplementary Material.

Theorem 6. If G and G′ are PRGs, then Π
GR(2k,d)
spVOLE UC-realizes FGR(2k,d)

spVOLE func-

tionality in the (FGR(2k,d)
VOLE ,FOT,FEQ)-hybrid model. In particular, no PPT envi-

ronment Z can distinguish the real world execution from the ideal world simulation
except with advantage at most 1/2d + negl(κ).

We build a VOLE extension protocol that relies on the single-point VOLE
and a variant of the LPN assumption. Let A ∈ GR(2k, d)m×n be a generating
matrix and D be a noise distribution over GR(2k, d)n, for which the primal LPN
assumption holds. Suppose the two parties have obtainedm+n VOLE correlations
w = v −∆ · u and c = b−∆ · e, where u ∈ GR(2k, d)m and e ← D. They can
locally obtain n random VOLE correlations over GR(2k, d), since we have that

w ·A+ c = (v ·A+ b)−∆ · (u ·A+ e),

and u ·A+ e is pseudorandom by the primal LPN assumption. For simplicity,
we assume the primal LPN assumption with the regular noise distribution,
and we can obtain VOLE correlations for e by executing multiple ΠGR(2k,d)

spVOLE in
parallel and concatenating the outputs. In addition, as showed in [41], a kind
of "bootstrapping" technique can be used to reduce communication complexity,
where a part of the outputs can be reserved as the base VOLE correlations for
the next extension. We give the VOLE extension protocol in Figure 10.

Notice that our single-point VOLE protocol reveals some information on the
non-zero entry to the adversaries, thus the LPN assumption should be defined

24



Protocol ΠGR(2k,d)
spVOLE

Init: Both parties send Init to FGR(2k,d)
VOLE , which returns ∆ to PR.

SP-Extend: On input n = 2h, the two parties do as follows:
1. Construct:

(a) Both parties send (Extend, 1) to FGR(2k,d)
VOLE . PS receives a, c ∈ GR(2k, d) and

PR receives b ∈ GR(2k, d) such that c = b−∆ · a holds.
(b) PS samples α $← [0, n), and draws a uniformly random β in the set of

units of GR(2k, d). PS sets the vector u ∈ GR(2k, d)n with uα = β and ui = 0 for
all i ̸= α.

(c) PS sets δ := c and sends a′ := β − a ∈ GR(2k, d) to PR. PR computes
γ := b+∆ · a′ ∈ GR(2k, d). Note that δ = γ −∆ · β, so the two parties now obtain
[β].

(d) PR computes s ← GGM.KeyGen(1κ), and runs GGM.Gen(1n, s) to obtain
({vj}j∈[0,n), {(Ki

0,K
i
1)}i∈[h]). Let α =

∑
i∈[h] 2

h−iαi, where αi ∈ {0, 1}, and let ᾱi

denote the complement of αi. For i ∈ [h], PS sends ᾱi to FOT while PR sends
(Ki

0,K
i
1) to FOT, then PS receives Ki

ᾱi
. PS runs GGM.Eval(α, {Ki

ᾱi
}i∈[h]) and gets

{vj}j ̸=α.
(e) PR sends g := γ −

∑
j∈[0,n) vj ∈ GR(2k, d) to PS . PS defines a vector

w ∈ GR(2k, d)n such that wi := vi for i ̸= α and wα := δ − (g +
∑

i̸=α wi). Note
that w = v −∆ · u.

2. Check:
(a) Both parties send (Extend, 1) to FGR(2k,d)

VOLE . PS receives x, z ∈ GR(2k, d) and
PR receives y∗ ∈ GR(2k, d) where z = y∗ −∆ · x holds.

(b) PS samples χi
$← GR(2k, d) for i ∈ [0, n), and computes x∗ := χα · β − x ∈

GR(2k, d). PS sends ({χi}i∈[0,n), x
∗) to PR. PR computes y := y∗+∆·x∗ ∈ GR(2k, d).

Now, z = y −∆ · χα · β holds.
(c) PS computes VPS :=

∑
i∈[0,n) χi ·wi − z, and sends VPS to FEQ as P. PR

computes VPR :=
∑

i∈[0,n) χi · vi − y, and send VPR to FEQ as V. PR receives VPS .
PS and PR abort if the equality test fails.

3. Output: PS outputs (w,u), and PR outputs v.

Fig. 9: Protocol for single-point VOLE over GR(2k, d) in the (FGR(2k,d)
VOLE ,FOT,FEQ)-

hybrid model.
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with some static leakage (see Definition 5). Besides, the VOLE functionality
should be redefined with a global key query procedure (see FGR(2k,d)

qVOLE in Figure
16). We have the following theorem, while the proof can be found in Section D.1
in Supplementary Material.

Protocol ΠGR(2k,d)
VOLE

Let A ∈ GR(2k, d)m×n be a generating matrix used for LPN(m,n, t) over GR(2k, d).
We always assume that n is a multiple of t.

Init:
(1) Both parties send Init to FGR(2k,d)

spVOLE, which returns ∆ ∈ GR(2k, d) to PR.

(2) Both parties send (Extend,m) to FGR(2k,d)
spVOLE. PS receives u,w ∈ GR(2k, d)m,

and PR receives v ∈ GR(2k, d)m, such that w = v −∆ · u holds.
Extend:

(1) For i ∈ [t], both parties send (SP-Extend, n/t) to FGR(2k,d)
spVOLE. PS receives ei, ci

and PR receives bi, where ci = bi −∆ · ei over GR(2k, d)n/t, and ei ∈ GR(2k, d)n/t

has exactly one entry invertible in GR(2k, d) and zeros everywhere else.
(2) Let e := (e1, ..., et) ∈ GR(2k, d)n, c := (c1, ..., ct) ∈ GR(2k, d)n and b :=

(b1, ..., bt) ∈ GR(2k, d)n. PS computes x := u · A + e ∈ GR(2k, d)n, and M :=
w ·A+ c ∈ GR(2k, d)n. PR computes K := v ·A+ b ∈ GR(2k, d)n.

(3) PS updates u,w by setting u := x[1 : m] ∈ GR(2k, d)m and w := M [1 : m] ∈
GR(2k, d)m, and outputs (x[m + 1 : n],M [m + 1 : n]). PS updates v by setting
v := K[1 : m] ∈ GR(2k, d)m and outputs K[m+ 1 : n].

Fig. 10: Protocol for VOLE over GR(2k, d) in the FGR(2k,d)
spVOLE-hybrid model.

Theorem 7. If the decisional (RG,G, GR(2k, d))-LPN(m,n, t) with static leakage
assumption holds, then Π

GR(2k,d)
VOLE UC-realizes FGR(2k,d)

qVOLE in the FGR(2k,d)
spVOLE-hybrid

model.

4.3 Two-Round Variant

Here we focus on reducing the round complexity of the VOLE extension protocol.
Our basic construction can not be made two-round, since the two parties need to
obtain an additional VOLE correlation for the check. Inspired by the approach of
[8], we construct a two-round VOLE extension protocol that relies on the ideal
functionality for generalized VOLE over Galois rings (see FGR(2k,d)

gVOLE in Figure
18). Informally in the generalized VOLE, the two parties obtain two VOLE
correlations with the same length for different global keys, e.g. M = K −∆ · y
and c = a− δ · y. Similar to ΠGR(2k,d)

rVOLE , the functionality FGR(2k,d)
gVOLE can be realized
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by VOLE correlations over F2d , where the eVOLE technique [22] can be applied
as well.

We provide a multi-point VOLE construction in Figure 11, which can be
viewed as a concatenation of multiple single-point VOLEs intuitively. The ideal
functionality for multi-point VOLE is presented in Figure 19. PS and PR can
naturally obtain pseudorandom VOLE correlations with the help of multi-point
VOLE, just multiplying the functionality outputs by a parity check matrix H
for which a dual variant of the LPN assumption holds. Here we can use the dual
variant to further reduce the communication complexity, whose formal definition
is given in Definition 6.

Suppose the two parties want to obtain a t-point VOLE correlation, and
w.l.o.g. we assume the length n has the form t · 2h. We still use the GGM tree
construction to let the two parties obtain PPRF outputs. But, this time we
let PR calculate one more layer for each GGM tree, and view {Γi}i∈[0,2h) as
the right leaves of the last layer. For the j-th GGM tree, j ∈ [t], we let PS
always learn {Γ j

i }i∈[0,2h). Thus, PS can check the consistency of each GGM tree
independently, by hashing the right leaves. We slightly modify the GGM.Eval
algorithm and obtain GGM.Eval′ in Figure 20. To ensure all the right leaves fix a
unique tree, we require that G′ has the right half injective property 3.

Definition 2. We say a function f = (f0, f1) : {0, 1}κ 7→ GR(2k, d)2×{0, 1}κ has
the right half injective property, if and only if f1 : {0, 1}κ 7→ {0, 1}κ is injective.

Then, from the j-th GGM tree, the two parties can obtain two single-point
VOLE correlations of length 2h, wj

0 = vj
0 − ∆ · ej and wj

1 = vj
1 − δ · ej . To

guarantee the VOLE correlation on the position αj , we use a random linear
combination check that sacrifices half of the PPRF outputs, i.e. wj

1,v
j
1. We

remark that these two checks allow the corrupted receiver to query for the noisy
positions twice, while the corrupted sender learns nothing about ∆.

We have the following theorem, whose proof can be found in Section D.2 in
Supplementary Material.

Theorem 8. If G and G′ are PRGs with G′ having the right half injective
property, and Hash : {0, 1}2hκ 7→ {0, 1}κ is a collision resistant hash function,
Π

GR(2k,d)
mpVOLE realizes the functionality FGR(2k,d)

mpVOLE in the (FGR(2k,d)
gVOLE ,FOT)-hybrid model

with malicious security.

By using Fiat-Shamir transform, we immediately obtain a two-round multi-
point VOLE protocol, which yields a round optimal VOLE extension protocol. We
remark that when the length of required VOLE correlations is small, or namely
the "bootstrapping" in the basic construction is not activated, the two-round
variant has smaller communication complexity, as dual-LPN allows polynomial
stretch. Instantiating base VOLEs with the reusable construction and together
with the basic ZK protocol, we obtain a reusable MDV-NIZK in the ROM.
3 As noted in [8], the right-half injectivity requirement can be relaxed to right-half

collision resistance, if G′ is sampled uniformly at random from a family of hash
functions that are collision-resistant in their right-half output.
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Protocol ΠGR(2k,d)
mpVOLE

Init: Both parties send Init to FGR(2k,d)
gVOLE , which returns ∆, δ to PR.

MP-Extend: On input n = t · 2h, the parties do as follows:
Construct:

(a) Both parties send (Extend, t) to FGR(2k,d)
gVOLE , which returns (M , c,y) to PS

and (K,a) to PR such that M = K −∆ · y and c = a− δ · y, where each entry
of y is invertible.

(b) For j ∈ [t], both parties do as follows. PR com-
putes sj ← GGM.KeyGen(1κ), and runs GGM.Gen(2h+1, sj) to obtain
({(vj2i, v

j
2i+1, Γ

j
i )}i∈[0,2h), {(K

j
0,i,K

j
1,i)}i∈[h+1]). Recompute Kj

1,h+1 :=⊕
i∈[0,2h) Γ

j
i . Let αj =

∑
i∈[h] 2

h−iαj
i , where αj

i

$← {0, 1}, and let
ᾱj
i denote the complement of αj

i . For i ∈ [h], PS sends ᾱj
i to FOT

while PR sends (Kj
0,i,K

j
1,i) to FOT, then PS receives Kj

ᾱ
j
i ,i

. PR sends

Kj
1,h+1 to PS . PS runs GGM.Eval′(αj , {Kj

ᾱ
j
i ,i
}i∈[h],K

j
1,h+1) and gets

({(vj2i, v
j
2i+1)}i̸=αj , {Γ j

i }i∈[0,2h)). Additionally, PR sends gj0 := Kj −
∑

i∈[0,2h) v
j
2i

and gj1 := aj −
∑

i∈[0,2h) v
j
2i+1 ∈ GR(2k, d) to PS .

(c) PS defines vectors wj
0,w

j
1 ∈ GR(2k, d)2

h

such that wj
0,i = vj2i, w

j
1,i = vj2i+1

for i ̸= αj and wj

0,αj :=Mj − (gj0 +
∑

i̸=αj w
j
0,i), w

j

1,αj := cj − (gj1 +
∑

i̸=αj w
j
1,i).

PR defines vectors vj
0 := (vj0, v

j
2, ..., v

j

2h+1−2
) and vj

1 := (vj1, v
j
3, ..., v

j

2h+1−1
). Note

that wj
0 = vj

0 −∆ · ej and wj
1 = vj

1 − δ · ej , where ej ∈ GR(2k, d)2
h

has only one
entry invertible in GR(2k, d) and zeros everywhere else, i.e. ej

αj = yj ∈ GR(2k, d)∗

and eji = 0 for i ̸= αj .
(c) PR computes Γ j := Hash(Γ j

0 , ..., Γ
j

2h−1
) and sends it to PS . PS computes

Γ̂ j := Hash(Γ j
0 , ..., Γ

j

2h−1
) and checks Γ j = Γ̂ j , for all j ∈ [t]. If the check fails, PS

aborts.
(d) PS samples random χ, χ0, ..., χ2h−1 ∈ F2d and sends them to PR. For

j ∈ [t], PR computes Vj :=
∑

i∈[0,2h) χi(v
j
2i+χ ·v

j
2i+1). PR computes X := ∆+χ ·δ.

PR sends {Vj}j∈[t] and X to PS .
(e) PS computes Wj :=

∑
i∈[0,2h) χi(w

j
0,i+χ ·w

j
1,i). PS checks that Vj−Wj =

X · χαj · yj holds for all j ∈ [t]. If the check fails, PS aborts.
Output: PS outputs (w1

0, ...,w
t
0) ∈ GR(2k, d)n, (e1, ..., et) ∈ GR(2k, d)n. PR

outputs (v1
0, ...,v

t
0) ∈ GR(2k, d)n.

Fig. 11: Protocol for multi-point VOLE over GR(2k, d) in the (FGR(2k,d)
gVOLE ,FOT)-

hybrid model.
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Supplementary Material

A More Preliminaries & Missing Functionalities

Security Model. In UC framework [10], security is defined via the comparison
of an ideal world and a real world. In real world, the parties interact with
each other following the protocol. In ideal world, the parties interact with an
ideal functionality F that is designed to ideally realize the protocol rather than
each other. There exists an environment Z, who lives both in real world and
ideal world, provides the inputs to the parties and can read the outputs. The
corrupt party A, controlled by the environment Z, interacts with the honest
parties in the real world. We consider active adversary and static corruption,
namely the adversary A’ behavior is arbitrary and not necessarily according to
the protocol specification and corruption occurs before the protocol execution.
Further, the environment Z is allowed to interact with the adversary A at any
point throughout the protocol execution. Thus the UC-security is guaranteed, if
there is a simulator S plugged to the ideal world that interacts with the adversary
A such that the environment Z can not distinguish S and the honest parties
from the adversary A’s view along with all parties’ inputs and outputs. More
formally, We say a protocol UC-realize a functionality F with security parameter
κ, if there is a probabilistic polynomial-time (PPT) simulator S such that no
PPT environment Z can distinguish the ideal world and the real world with
advantage 1/poly(κ). For reusable security, we refer to [14,36,22] for a formal
definition and a friendly exposition.

Commitment Scheme. A commitment scheme is a two party protocol consist-
ing of two algorithms, Commit and Open. In the commit phase of the protocol,
the sender PS invokes Commit to commit some value m, obtaining (com, unv)←
Commit(m) as the result. Then he sends com to the receiver PR. Later on in the
unveil phase, PS is required to send m along with the unveil information unv to
PR such that PR can check whether Open(com, unv,m) = 1. Informally, there are
two security properties that a commitment scheme should satisfy; 1.Hiding: PR
can not learn anything about m from com in the commit phase, and 2.Binding:
PS can not provide a m′ ̸= m and a unv′ such that Open(com, unv′,m′) = 1 in
the unveil phase.

Additively Homomorphic Encryption. We describe the Additively Homo-
morphic Encryption (AHE) scheme in the private-key setting, which consists
of three algorithms, KeyGen, Enc, Dec. The KeyGen algorithm outputs a secret
key sk, which is determined by its random tape. The Enc algorithm takes the
secret key sk and message m as inputs, and outputs a ciphertext ⟨m⟩, while the
Dec algorithm decrypts the ciphertext via sk, denoted by m := Dec(⟨m⟩, sk).
The additive property indicates that the decryption of a linear combination of
ciphertexts equals to the corresponding linear combination of plaintexts. We
suppose the AHE scheme works on a Galois ring, and satisfies the chosen plaintext
attack (CPA) security. For the protocol ΠPAC (Figure 21), we require the AHE
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scheme additionally satisfy circuit privacy and degree restriction, as shown in
[42]. Such AHE schemes exist as shown in [15], and we also show a reduction
from AHE schemes over Galois rings to AHE schemes over Galois field later in
Section C.3.
Missing Proofs in Preliminaries.

Lemma 5 (Lemma 1, restated). A nonzero degree-r polynomial over GR(pk, d)
has at most rp(k−1)d roots.

Proof. It can be observed that any element α ∈ GR(pk, d) can be written as
α =

∑
i∈[0,k) αi · pi, where αi ∈ Fpd . Let f(x) :=

∑
i∈[0,r] ai · xi, and pt :=

gcd(a0, ..., ar). We divide both sides by pt and let g(x) :=
∑

i∈[0,r]
ai

pt ·xi. If f(α) =
0, then g(α) = 0 mod p. There are at most r roots α0 ∈ Fpd for polynomial
g(α0) = 0 mod p. Therefore, there are at most rp(k−1)d roots satisfying f(α) = 0.

Lemma 6 (Lemma 2, restated). Let (ϕ, ψ) be a (m, d)-RMFE over Galois
ring GR(pk, r), we have that GR(pk, rd) = ϕ(1) · Im(ϕ)⊕Ker(ψ).

Proof. As ϕ is injective and ψ is surjective, ψ induces a bijection from the set
ϕ(1) · Im(ϕ) to GR(pk, r)m by definition. Thus, the Galois ring GR(pk, rd) is the
direct sum of ϕ(1) · Im(ϕ) and Ker(ψ).

Lemma 7 (Lemma 3, restated). There always exists a (m, d)-RMFE over
Galois ring GR(pk, r) with ϕ(1) = 1.

Proof. Let (ϕ, ψ) be a (m, d)-RMFE over GR(pk, r). Assume ϕ(1) is a zero divisor
in GR(pk, r), pk−1 · ϕ(1) = ϕ(pk−1) = 0, which makes a contradiction since ϕ
is injective. Thus, ϕ(1) is invertible. Define ϕ′ : GR(pk, r)m 7→ GR(pk, rd) as
ϕ′(a) := ϕ(a · ϕ(1)−1) for a ∈ GR(pk, r)m and ψ′ : GR(pk, rd) 7→ GR(pk, r)m

as ψ′(b) := ψ(b · ϕ(1)) for b ∈ GR(pk, rd). It can be verified that (ϕ′, ψ′) is a
(m, d)-RMFE over GR(pk, r) satisfying ϕ(1) = 1. This completes the proof.

Functionality Fm
ZK

Input. Upon receiving (input, id, w) from a prover P and (input, id) from a
verifier V, with id a fresh identifier, store (id, w).
Prove circuit satisfiability. Upon receiving (prove, C, id1, ..., idmn) from P
and (verify, C, id1, ..., idmn) from V where id1, ..., idmn are present in memory,
retrieve (idi, wi) for i ∈ [mn] and define vectors wj := (wn(j−1)+1, ..., wnj), j ∈ [m].
Send true to V if C(wj) = 1 for all j ∈ [m] and false otherwise.

Fig. 12: Zero-knowledge functionality for circuit satisfiability.
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Functionality FEQ

On input VP from P and VV from V:
1. Send VP and (VP

?
= VV) to V.

2. If V is honest and VP = VV , or V is corrupted and sends continue, then send
(VP

?
= VV) to P.

3. If V is honest and VP ̸= VV , or V is corrupted and sends abort, then send
abort to P.

Fig. 13: Ideal functionality for equality tests.

Functionality FOT

On input b ∈ {0, 1} from PS and m0,m1 from PR: Send mb to PS .

Fig. 14: Ideal functionality for oblivious transfer.

Functionality FR
vOLE

Parameterized by a ring R, length parameters l1, ..., ln ∈ N.

Setup phase: Upon receiving input (sid;α) from PR where α ∈ R and sid is
a session identifier, store (sid;α), send (sid; initialized) to the adversary and
ignore any further inputs from PR with the same session identifier sid.
Send phases: Upon receiving input (sid;a; b; i) from PS where (a, b; i) ∈ Rli ×
Rli × N and sid is a session identifier, store (sid;a; b; i), send (sid; sent; i) to the
adversary, and ignore any further inputs from PS with the same session identifier
sid and the same value of i.
Deliver phases: Upon receiving a message (sid; Delivery; i) from the adversary
where i ∈ N and sid is a session identifier, verify that there are stored inputs
(sid;α) from PR and (sid;a, b; i) from PS ; else ignore that message. Next, compute
v := a ·α+ b, send (sid;v; i) to PR, and ignore further messages (sid; Delivery; i)
from the adversary with the same session identifier sid and the same value of i.

Fig. 15: Ideal functionality for fixed input VOLE over R.
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Functionality FGR(2k,d)
qVOLE

FGR(2k,d)
qVOLE extends the existing VOLE functionality FGR(2k,d)

VOLE (Figure 1). Init and

Extend are identical to those in FGR(2k,d)
VOLE , respectively.

Global-key Query: If PS is corrupted, receive (Guess,∆′) from A with ∆′ ∈
GR(2k, d). If ∆′ = ∆, send success to PS and ignore any subsequent global-key
queries. Otherwise, send abort to both parties and abort.

Fig. 16: Ideal functionality for VOLE over GR(2k, d) with global key query.

Functionality FGR(2k,d)
spVOLE

FGR(2k,d)
spVOLE extends the existing VOLE functionality FGR(2k,d)

VOLE (Figure 1). Init and

Extend are identical to those in FGR(2k,d)
VOLE , respectively.

SP-Extend: Upon receiving (SP-Extend, n) from both parties, proceed as follows:
(1) If PR is honest, sample v

$← GR(2k, d)n. Otherwise receive v from A.
(2) If PS is honest, sample uniform u from GR(2k, d)n with exactly one entry

invertible and zeros everywhere else, and compute w := v − ∆ · u ∈ GR(2k, d).
Otherwise, receive u ∈ GR(2k, d) (with at most one nonzero entry) and w ∈ GR(2k, d)
from A, then recompute v := w +∆ · u.

(3) If PR is corrupted, receive a set I ⊆ [0, n) from A. Let α ∈ [0, n) be the index
of the nonzero entry of u. If α ∈ I, send success to PR and continue. Otherwise,
send abort to both parties and abort.

(4) Send (u,w) to PS and v to PR.
Global-key Query: If PS is corrupted, receive (Guess,∆′, s) from A with ∆′ ∈
GR(2k, d) and s ∈ [k]. If ∆′ = ∆ mod 2s, send success to PS and ignore any
subsequent global-key queries. Otherwise, send abort to both parties and abort.

Fig. 17: Ideal functionality for single-point VOLE over GR(2k, d).
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Functionality FGR(2k,d)
gVOLE

Init: Upon receiving (Init) from both parties, sample ∆, δ $← GR(2k, d) if receiver
PR is honest, and receive ∆, δ ∈ GR(2k, d) from the adversary A otherwise. Store
∆, δ and send them to PR. All further (Init) commands will be ignored.
Extend: Upon receiving (Extend, t) from both parties, proceed as follows:

(1) If PR is honest, sample K,a
$← GR(2k, d)t. Otherwise, receive K,a from A.

(2) If PS is honest, sample y
$← GR(2k, d)t with each component invertible, and

compute M := K −∆ · y and c := a− δ · y. Otherwise, receive M , c,y from A,
and then recompute K := M +∆ · y and a := c+ δ · y.

(3) Send (M , c,y) to PS and send (K,a) to PR.

Fig. 18: Ideal functionality for generalized VOLE over GR(2k, d).

Functionality FGR(2k,d)
mpVOLE

Init: Upon receiving (Init) from both parties, sample ∆ $← GR(2k, d) if receiver
PR is honest, and receive ∆ ∈ GR(2k, d) from the adversary A otherwise. Store ∆
and send it to PR. All further (Init) commands will be ignored.
MP-Extend: Upon receiving (MP-Extend, n = t · 2h) from both parties, proceed
as follows:
1. If PR is honest, sample v

$← GR(2k, d)n. Otherwise, receive v from A.
2. If PS is honest, sample α1, ..., αt

$← [0, 2h), and y1, ..., yt
$← GR(2k, d)∗, and

define ej ∈ GR(2k, d)2
h

such that ejαj
= yj and eji = 0, i ̸= αj , for j ∈ [t], then

computes w := v−∆ · (e1, ..., et). Otherwise, receive ej with at most one invertible
entry and zeros everywhere else, for j ∈ [t], and w from A, then recompute
v := w +∆ · (e1, ..., et).
3. If PR is corrupted, receive a series of sets Ij ⊆ [0, 2h) from A. If αj ∈ Ij for all
j ∈ [t], send success to A and continue. Otherwise, send abort to both parties
and abort. Construct a set J := {j ∈ [t] | |Ij | = 1}.
4. If PR is corrupted, receive a series of elements α̂j , where α̂j ∈ Ij and j ∈ [t]\J .
If α̂j = αj for all α̂j received from A, send success to A and continue. Otherwise,
send abort to both parties and abort.
5. Send w, (e1, ..., et) to PS and v to PR.

Fig. 19: Ideal functionality for multi-point VOLE over GR(2k, d).
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Algorithm GGM

Let G : {0, 1}κ → {0, 1}2κ, and G′ : {0, 1}κ → GR(2k, d)2 × {0, 1}κ be two
pseudorandom generators (PRGs). For α ∈ [0, 2h), we write α =

∑
i∈[h] 2

h−iαi,
where αi ∈ {0, 1} and we denote the complement of αi by ᾱi. The GGM algorithms
GGM.KeyGen, GGM.Gen, GGM.Eval are defined as follows:

1. GGM.KeyGen: on input 1κ, output s $← {0, 1}κ.
2. GGM.Gen: on input n and s ∈ {0, 1}κ, where n = 2h,
(a) Set S0,0 := s.
(b) For i ∈ [h− 1] and j ∈ {0, 1, ..., 2i−1− 1}, compute (S2j,i, S2j+1,i) := G(Sj,i−1),
where S2j,i (S2j+1,i resp.) is the left (right resp.) child of Sj,i−1.
(c) For j ∈ [0, 2h−1), compute (v2j,h, v2j+1,h, Γj) := G′(Sj,h−1).
(d) For i ∈ [h− 1], set K0,i :=

⊕
j∈[0,2i−1) S2j,i and K1,i :=

⊕
j∈[0,2i−1) S2j+1,i, i.e.

XOR of left (right) nodes in layer i, respectively.
(e) Set K0,h :=

∑
j∈[0,2h−1) S2j,h and K1,h :=

∑
j∈[0,2h−1) S2j+1,h, i.e. sum of left

(right) leaves, respectively.
(f) Output ({vj}j∈[0,n), {(K0,i,K1,i)}i∈[h]), {Γj}j∈[0,2h−1).
3. GGM.Eval: On input α, {Ki}i∈[h], where α ∈ [0, n),
(a) Set S1

ᾱ1
:= K1, and x := 0.

(b) For i ∈ [h− 2],
i. Update x by 2x+ αi.
ii. For j ∈ [0, 2i)\{x}, compute (S2j,i+1, S2j+1,i+1) := G(Sj,i).
iii. Compute S2x+ᾱi+1,i+1 := Ki+1 ⊕

⊕
j∈[0,2i)\{x} S2j+ᾱi+1,i+1.

(c) Update x by 2x+ αh−1.
i. For j ∈ [0, 2h−1)\{x}, compute (v2j , v2j+1, Γj) := G′(Sj,h−1).
ii. Compute v2x+ᾱh := Kh −

∑
j∈[0,2h−1)\{x} v2j+ᾱh .

(d) Output ({vj}j∈[0,n)\{α}).
4. GGM.Eval′: On input α, {Ki}i∈[h] and K1,h+1, where α ∈ [0, n),
(a) Set S1

ᾱ1
:= K1, and x := 0.

(b) For i ∈ [h− 1],
i. Update x by 2x+ αi.
ii. For j ∈ [0, 2i)\{x}, compute (S2j,i+1, S2j+1,i+1) := G(Sj,i).
iii. Compute S2x+ᾱi+1,i+1 := Ki+1 ⊕

⊕
j∈[0,2i)\{x} S2j+ᾱi+1,i+1.

(c) i. For j ∈ [0, 2h)\{α}, compute (v2j , v2j+1, Γj) := G′(Sj,h−1).
ii. Compute Γα := K1,h+1 ⊕

⊕
j∈[0,2h)\{α} Γj .

(d) Output ({(v2j , v2j+1)}j∈[0,n)\{α}, {Γj}j∈[0,n)).

Fig. 20: Algorithms for GGM tree based PPRF.
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B LPN over Galois Rings

B.1 Learning Parity with Noise

The Learning Parity with Noise (LPN) assumption [6] has been studied for
decades, and it was adapted to be defined over a finite field Fq [7] or an integer
ring Zn [3], recently. We give the definition for (primal) LPN over arbitrary rings
below.

Definition 3 (LPN). Let D(R) = {Dt,n(R)} be the family of distributions over
the ring R where for any integers t ≤ n, Im(Dt,n(R)) ⊂ Rn. Let G be a proba-
bilistic code generation algorithm such that G(m,n,R) outputs a generator matrix
A ∈ Rm×n. Let parameters m,n, t be implicit functions of security parameter
κ. We say that the decisional (D,G,R)-LPN(m,n, t) problem is (T, ϵ)-hard if for
every probabilistic distinguisher B running in time T , we have that

|Pr[B(A,x ·A+ e) = 1]− Pr[B(A,u) = 1]| ≤ ϵ,

where A← G(m,n,R),x $← Rm,u
$← Rn, and e← Dt,n(R).

Informally, the decisional LPN(m,n, t) assumption states that b := x ·A+ e
is pseudorandom, where A,x, e are defined as above and A is public. There exists
another family of LPN assumptions, i.e. the dual LPN.

Definition 4 (Dual LPN). Let D(R) = {Dt,n(R)} be the family of distribu-
tions over the ring R where for any integers t ≤ n, Im(Dt,n(R)) ⊂ Rn. Let G⊥
be a probabilistic dual code generation algorithm such that G⊥(m,n,R) outputs a
parity check matrix H ∈ Rn×(n−m). Let parameters m,n, t be implicit functions
of security parameter κ. We say that the decisional dual (D,G,R)-LPN(m,n, t)
problem is (T, ϵ)-hard if for every probabilistic distinguisher B running in time
T , we have that

|Pr[B(H, e ·H) = 1]− Pr[B(H,u) = 1]| ≤ ϵ,

where H ← G⊥(m,n,R),u $← Rm, and e← Dt,n(R).
We mainly consider three kinds of noise distributions in this paper:
Bernoulli. Let Ber(R) = {Berλ,n(R)}λ,n be the family of Bernoulli distribu-

tions. e← Berλ,n(R) indicates that each component of e is a uniform random
element in R with probability λ and zero with probability 1− λ. Thus the ex-
pected Hamming weight of e is λN(|R| − 1)/|R|. We remark that this definition
is equivalent to sampling a uniform non-zero element in R with probability
λN(|R| − 1)/|R| for each component.

Fixed Hamming weight. Let HW(R) = {HWt,n(R)}t,n be the family of
distributions of uniform fixed-weight vectors. Let H denote the set {e ∈ Rn |
wt(e) = t}. Thus we have e← HWt,n(R) ⇐⇒ e← UH .

Regular Hamming weight. Let RG(R) = {RGt,n(R)}t,n be the family of
distributions of uniform regular weight vectors. W.o.l.g. we assume t|n and let
e = (e1, ..., et), where ei ∈ Rn/t, i ∈ [t]. Let G denote the set {e ∈ Rn | wt(ei) =
1, i ∈ [t]}. Thus we have e← RGt,n(R) ⇐⇒ e← UG, and RG(R) can be viewed
as a special case of HW(R).
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B.2 Reductions for LPN over GR(2k, d)

We adapt reductions for LPN over Z2k [35] to Galois rings, obtaining the following
theorems.

Theorem 9. If decisional (D,G, GR(2k, d))− LPN(m,n,w1) is (T, ϵ)-hard, then
decisional (D,G,F2d) − LPN(m,n,w2) is (T − poly(m,n),O(hϵ))-hard, where
(D, w1, w2, h) ∈ {(HW, t, 2

d(k−1)(2d−1)
2dk−1

t,
√
t), (Ber, λ, λ, 1)}.

Proof. Let (A, b := x·A+e) be an LPN instance over GR(2k, d). As GR(2k, d)/(2) ∼=
F2d , we observe that (A0 := A mod 2, b0 := b mod 2) constitute exactly the
LPN samples over F2d for noise e0 := e mod 2. Since e ← HWt,n(GR(2

k, d)),
the noise vector e0 follows a Bernoulli-like distribution over F2d . Further, it
can be observed that e0 has expected weight t′ = 2d(k−1)(2d−1)

2dk−1
· t. One can nat-

urally generalize Lemma 2 in [35] and obtain that the noise vector e0 follows
the uniform fixed-weight distribution HWt′,n(F2d) with probability Ω

(
1/
√
t
)
. On

the other hand, (A0,u0) are uniformly random as well. Therefore, one can
use a (HW,G,F2d)− LPN(m,n, t′) distinguisher to distinguish (A0, b0) from uni-
form samples. The proof for the second statement is similar, except that for
e← Berλ,n(GR(2

k, d)), one can immediately gets that e0 ∼ Berλ,n(F2d).

Theorem 10. If decisional (Ber,F2d)− LPN(m,n, λ(2d−1)
(1−λ)2dk+λ2d

) is (T, ϵ)-hard,
then decisional (Ber, GR(2k, d))− LPN(m,n, λ) is (T − poly(m,n), kϵ)-hard.

Proof. Let (A, b := x·A+e) be an LPN instance over GR(2k, d). As GR(2k, d)/(2) ∼=
F2d , for any a ∈ GR(2k, d), it can be uniquely written as the form

a = a0 + a1 · 2 + ...+ ak−1 · 2k−1,

where ai ∈ F2d , i = 0, 1, ..., k − 1. Thus, we can define a decomposition func-
tion Decom such that (a0, a1, ..., ak−1) := Decom(a) ∈ Fk

2d . We use Decom to
decompose the matrix and vectors, and we obtain (A0, A1, ..., Ak−1) := Decom(A),
(x0,x1, ...,xk−1) := Decom(x), (e0, e1, ..., ek−1) := Decom(e), (b0, b1, ..., bk−1) :=
Decom(b). Therefore, we have b0 = x0 ·A0 + e0, and for i = 1, ..., k − 1, we have
that

bi = (xi ·A0 + ei) + fi(A,x
0, ...,xi−1, e0, ..., ei−1) mod 2,

where fi is the sum of all other terms involving the individual xj and ej with
j ≤ i− 1. Define the hybrid distributions H0, ...,Hk as follows:

H0 = (A,u0, ...,ui−1,ui, ...,uk−1)

Hi = (A, b0, ..., bi−1,ui, ...,uk−1)

Hk = (A, b0, ..., bi−1, bi, ..., bk−1)

where ui
$← Fn

2d for i = 0, 1, ..., k−1. Since x is sampled uniformly at random,
its decomposition xi are independent and uniformly random as well. To distinguish
the adjacent hybrids Hi and Hi+1, it suffices to distinguish ui and bi with the
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knowledge of (b0, ..., bi−1). The fi term can be neglected if the effective noise rate
of ei conditioned on e0, ..., ei−1 is sufficient to make bi pseudorandom. Consider
a single noise sample (e0j , e

1
j , ..., e

k−1
j ) ← Decom(Berλ,n(GR(2

k, d))), where eij is
the j-th entry of ei. If there exists a non-zero component in (e0j , e

1
j , ..., e

i−1
j ), eij

must be uniformly random, which makes bij uniformly random. Thus, we have
that

Pr
[
eij ̸= 0

∣∣ (e0j , e1j , ..., ei−1
j ) = 0i

]
=
λ(2d − 1)(2−d(i+1))

1− λ+ λ2−di

is the noise rate needed to keep the computational indistinguishability between Hi

and Hi+1, which reaches its minimum when i = k − 1. This completes the proof.

B.3 Attacks on LPN over Galois Rings

To avoid the above reduction attack, one can let the errors be invertible in
GR(2k, d) when instantiating LPN instances over GR(2k, d), although it only
reduces approximately 1/2d fraction of noise rate. We are not aware of any
advantages for attacks over Galois rings compared to Galois fields. We review
the main attacks that may work on LPN over Galois rings, following the analysis
of [24,7,8,3,35].

Pooled Gaussian Elimination This attack takes time
(
n
t

)(
n−m

t

) ·m2.8, which

was estimated as ( n
n−t )

m ·m2.8 in [7]. By the following inequality,(
n
t

)(
n−m

t

) =
n!(n−m− t)!
(n−m)!(n− t)!

=

t−1∏
i=0

(n− i)/
t−1∏
i=0

(n−m− i) > (
n

n−m
)t,

we obtain a more accurate estimation for LPN with low noise, i.e. ( n
n−m )t ·m2.8.

We give the comparison in Table 2. Therefore, we use this formula to estimate
the complexity of Pooled Gaussian Elimination attack.

Table 2: Comparison of two estimations.
LPN parameters Complexity(bit)

m n t Gauss Estimation[7] Estimation(ours)
108112 358620 215 158.15 140.36 158.11
148912 649590 295 158.96 145.71 158.93

Statistical Decoding (SD) [20] In [7], they simplified the complexity of
this attack by log(m+ 1) + t · log n

n−m−1 . A recent work [35] pointed out that to
succeed with constant advantage, SD attack requires

log(m+ 1) + 2 ·
(
log

(
n
t

)
− log

(
n−m−1

t

)
+ log

2|Fq|
|Fq| − 1

)
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bits arithmetic operations over Fq. Their result can be naturally adapted to
Galois rings, as a Galois ring GR(pk, d) contains a field Fpd . We obtain that the
bit security of the LPN instance with respect to SD attack is computed as

log(m+ 1) + 2 ·
(
log

(
n
t

)
− log

(
n−m−1

t

)
+ log

2pd

pd − 1

)
≈ log(m+ 1) + 2t · (log n

n−m− 1
) + 2.

Information Set Decoding (ISD) In [35], they analysed known ISD
variants for different field size and show that the generalized SD-ISD attack [38]
is equivalent to pooled Gaussian attack for large fields. Since LPN over GR(2k, d)
can be reduced to LPN over F2d and d is set linear in the statistical security
parameter κ for our constructions, we use the pooled Gaussian attack to estimate
the LPN security.

B.4 Definitions for LPN variants

Recall that our basic construction of VOLE allows the adversary to guess a subset
that contains the noisy position for each block. Generally, this would leak 1-bit
information: the adversary learns whether his guesses are all right. We describe
the corresponding LPN security game GLPN as follows:

1. Let A← G(m,n) ∈ GR(2k, d)m×n be a primal LPN matrix, x← GR(2k, d)m

be the secret, and e = (e1, ..., et) ∈ GR(2k, d)n be the error vector, where each ei
has only one entry invertible in GR(2k, d) and zeros everywhere else.

2. A sends I1, ..., It ⊂ [n/t]. If for all i ∈ [t], Ii includes the noisy position of
ei, send success to A. Otherwise, abort.

3. Pick b ← {0, 1}. If b = 0, send y := x · A + e to A, otherwise, send
y

$← GR(2k, d)n to A.
4. A outputs a bit b′. The game outputs 1 if b′ = b, and outputs 0 otherwise.

Thus, we give the formal definition for the variant of the LPN assumption
used in our basic VOLE construction.

Definition 5 (Primal LPN with static leakage). We say that the decisional
(RG,G,R)−LPN(m,n, t) with static leakage is (T, ϵ)-hard, if for every probabilistic
distinguisher B running in time T , B wins the game GLPN with advantage at
most ϵ, i.e.

|Pr[GLPN = 1]− 1/2| ≤ ϵ.

Notice that our second two-round variant allows the adversary to do a second
guess. Similarly, this would introduce average one more bit leakage on the noisy
positions. We describe the corresponding dual LPN security game GDual as
follows:

1. Let H ← G⊥(m,n) ∈ GR(2k, d)n×(n−m) be a dual LPN matrix, and e =
(e1, ..., et) ∈ GR(2k, d)n be the error vector, where each ei has only one entry
invertible in GR(2k, d) and zeros everywhere else.
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2. A sends I1, ..., It ⊂ [n/t]. If for all i ∈ [t], Ii includes the noisy position of
ei, send success to A. Otherwise, abort. Construct a set J := {j ∈ [t] | |Ij | = 1}.

3. A sends α̂i, where α̂i ∈ Ii and i ∈ [t]\J . If for all i ∈ [t]\J , α̂i is the exact
noisy position of ei, send success to A. Otherwise, abort.

3. Pick b ← {0, 1}. If b = 0, send y := e · H to A, otherwise, send y
$←

GR(2k, d)(n−m) to A.
4. A outputs a bit b′. The game outputs 1 if b′ = b, and outputs 0 otherwise.

Thus, we give the formal definition for the variant of the dual LPN assumption
used in our non-interactive VOLE construction.

Definition 6 (Dual LPN with static leakage). We say that the decisional
dual (RG,G,R) − LPN(m,n, t) with static leakage is (T, ϵ)-hard, if for every
probabilistic distinguisher B running in time T , B wins the game GDual with
advantage at most ϵ, i.e.

|Pr[GDual = 1]− 1/2| ≤ ϵ.

We assume that the above two kinds of leakage would not decrease the security
of primal (dual) LPN, respectively. Thus, we select LPN parameters according
to the pooled Gaussian Elimination attack.

C Missing Proofs of Zero-Knowledge Protocols

C.1 Security of re-embedding VOLE

Theorem 11 (Theorem 1, restated). ΠGR(2k,d)
embVOLE UC-realizes FGR(2k,d)

embVOLE in

the (FGR(2k,d)
VOLE ,FEQ)-hybrid model. In particular, no PPT environment Z can

distinguish the real world execution from the ideal world simulation except with
advantage at most 2−s + 2−d.

Proof. We divide our proof into two parts. First, we consider PS is corrupted
and construct a PPT simulator SS , then we consider PR is corrupted and build
a PPT simulator SR as well. Both Simulators interact with the corrupted party
in the ideal world and can read the corrupted party’s inputs to functionalities
FGR(2k,d)

VOLE ,FEQ.
Corrupted PS: Whenever the Extend-pair procedure is going to run, SS

acts as follows:
1. SS reads M ,x ∈ GR(2k, d)n+s that A sends to FGR(2k,d)

VOLE .
2. Upon receiving η ∈ GR(2k, d)n+s from A, if η /∈ Ker(ψ)n+s, SS aborts. SS

sets M ′ := M .
3. SS samples χ1, ...,χs $← Zn

2k , and sends them to A.
4. Upon receiving a, b ∈ GR(2k, d)s from A. If bi − ai ̸= ηn+i +

∑
j∈[n] χ

i
j · ηj ,

for some i ∈ [s], or b /∈ Im(ϕ)s, SS aborts.
5. SS reads M̂i, i ∈ [s] that A sends to FEQ. SS computes M̂ ′

i := Mn+i +∑
j∈[n] χ

i
j · Mj, for i ∈ [s]. If both η = (τ(x) − x) and M̂ = M̂ ′ hold, SS
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sends true to A (emulating FEQ), and sends (x[1 : n],M [1 : n]) to FGR(2k,d)
embVOLE.

Otherwise, SS sends false to A and aborts.
It can be observed that when SS aborts in step 2 or step 4 of the simulation, the

honest PR aborts in corresponding step of the protocol as well. Besides, χ1, ...,χs

are sampled in the same way of the ideal simulation and real execution. Therefore,
it remains to consider the simulation for FEQ. Basically, A can cheat by sending
η ∈ Ker(ψ)n+s, but η ̸= τ(x)− x. Let η = τ(x)− x+ ε, where ε ∈ Ker(ψ)n+s.
We have that

η = τ(x)− (x− ε) = τ(x− ε)− (x− ε).

Therefore, A can set

a∗i := (xn+i − εn+i) +
∑
j∈[n]

χi
j · (xj − εj),

and

b∗i := τ(xn+i − εn+i) +
∑
j∈[n]

χi
j · τ(xj − εj) = τ(xn+i) +

∑
j∈[n]

χi
j · τ(xj) = bi,

for i ∈ [s]. These a∗i , b∗i would pass the check of honest PR. Now in real protocol,
we have that

M̂ ′
i = Kn+i +

∑
j∈[n]

χi
j ·Kj −∆ · a∗i

= (Mn+i +∆xn+i) +
∑
j∈[n]

χi
j(Mj +∆xj)−∆(xn+i − εn+i +

∑
j∈[n]

χi
j(xj − εj))

=Mn+i +
∑
j∈[n]

χi
j ·Mj +∆ · (εn+i +

∑
j∈[n]

χi
j · εj)

= M̂i +∆ · (εn+i +
∑
j∈[n]

χi
j · εj).

Thus, FEQ returns true if and only if

∆ · (εn+i +
∑
j∈[n]

χi
j · εj) = 0,

for all i ∈ [s]. If εn+i +
∑

i∈[n] χ
i
j · εj ̸= 0, from lemma 1, the above equality holds

with probability at most 2−d. Since χi
j ∈ Z2k , for j ∈ [n], εn+i+

∑
j∈[n] χ

i
j ·εj = 0

holds with probability at most 1/2. Combining together, FEQ returns true with
probability at most 2−s+2−d in real execution if η ̸= τ(x)−x, while in simulation,
this will leads to abort. Note that if η is correct, the outputs of honest PR are
computed in the same way in two worlds. Therefore, environment Z can distinguish
the ideal simulation and real execution with advantage at most 2−s + 2−d.

Corrupted PR: SR reads ∆ ∈ GR(2k, d) that A sends to FGR(2k,d)
VOLE in the

Init procedure. SR then sends ∆ to FGR(2k,d)
embVOLE. Every time the Extend-pair

procedure is executed, SR does as follows:
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1. SR records K ∈ GR(2k, d)n+s sent by A. Upon receiving η ∈ Ker(ψ)n from
FGR(2k,d)

embVOLE, SR samples η′ $← Ker(ψ)s and sends η̂ := (η,η′) ∈ Ker(ψ)n+s to A.
2. SR sets K ′ := K + ∆ · η̂. Upon receiving χi ∈ Zn

2k , i ∈ [s] from A, SR

samples b
$← Im(ϕ)s, and computes ai := bi − ηn+i −

∑
j∈[n] χ

i
j · ηj, for i ∈ [s].

Then, SR sends a, b to A.
3. SR reads M̂ ′ that A sends to FEQ. SR computes M̂i := Kn+i+

∑
j∈[n] χ

i
j ·

Kj −∆ · ai, for i ∈ [s]. SR sends M̂ to A (emulating FEQ). If M̂ ′ = M̂ , SR
sends true to A. Otherwise, SR sends abort to A and aborts.

4. SR sends K[1 : n] to FGR(2k,d)
embVOLE.

The indistinguishability between ideal simulation and real execution for cor-
rupted PR is simple. We first consider the view of A. In real protocol, A receives
η ∈ Ker(ψ)n+s. Since x is distributed uniformly at random in GR(2k, d)n+s, η
is distributed uniformly at random in Ker(ψ)n+s. While in simulation, η̂ are
uniformly sampled from Ker(ψ)n+s as well. As for (a, b = τ(a)) in real protocol,
a is masked with x[n+ 1 : n+ s], which makes b have the uniform distribution
on Im(ϕ)s. Thus, (a, b) generated by SR have the same distribution as that in
the real protocol. The final message that A receives from FEQ is M̂ . It can be
easily verified that

M̂ ′
i = Kn+i +

∑
j∈[n]

χi
j ·Kj −∆ · ai =Mn+i +

∑
j∈[n]

χi
j ·Mj = M̂i,

Thus M̂ has the same distribution in both worlds. Further, if FEQ aborts in real
execution, SR will send false to A and aborts as well. Finally, we turn to the
output of the honest PS . In real protocol, xi is conditioned on that τ(xi)−xi = ηi,
for all i ∈ [n], while they have the same properties in ideal simulation. Therefore,
no PPT environment Z can distinguish the ideal simulation and the real execution.
This completes the proof.

C.2 Security of Basic Construction

Theorem 12 (Theorem 2, restated). Protocol Πm,n,t
ZK UC-realizes Fm

ZK in the
FGR(2k,d)

embVOLE-hybrid model with soundness error 2−(d−2) and information-theoretic
security.

Proof. We divide our proof into two parts. First, we consider P is corrupted,
then we consider V is corrupted. In each case, we build a PPT simulator S to
interact with the corrupted party in the ideal world, which can read the corrupted
party’s inputs to functionalities FGR(2k,d)

embVOLE.
Corrupted P: S interacts with A as follows:
1. S samples ∆ $← GR(2k, d) and records (µ,Mµ,M

′
µ), (ν,Mν ,M

′
ν) and

(π,Mπ) that A sends to FGR(2k,d)
embVOLE. Thus, S can immediately obtain the MACs

([µi], [τ(µi)])i∈[n], ([νi], [τ(νi)])i∈[t], [π].
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2. Upon receiving δ from A, S checks δ − τ(δ) = τ(µ)− µ. If the check fails,
aborts. S can locally compute [τ(ωi)] := [τ(µi)] + τ(δi), for i ∈ [n].

3. S runs the rest of the protocol as an honest verifier, using the MACs
generated in previous steps. If the honest verifier outputs true, S computes
(w1,w2, ...,wm) := ψ(τ(ω)) and sets w := (w⊤

1 , ...,w
⊤
m) ∈ Zmn

2k , then S sends w
and the circuit C to Fm

ZK. Otherwise, S sends w := ⊥ and C to Fm
ZK and aborts.

From the simulation, we can see that S behaves like an honest verifier towards
A, therefore, the environment Z can not distinguish the ideal simulation and real
execution from the adversary A’s view. Note that Z has access to the output of
the honest party, the situation remains to be considered is that honest verifier V
accepts the proof while A does not hold m witnesses. Below we show the probability
that V accepts a proof of wrong statements (i.e. the soundness error) is upper
bounded by 1/2d−2.

First we claim that A have to prepare a ω ∈ Im(ϕ)n, which can be one to
one corresponded to m instances of Zn

2k . The proof is direct since the check
δ − τ(δ) = τ(µ)− µ guarantees that

ω = δ + µ = τ(δ) + τ(µ) = τ(δ + µ) = τ(ω).

Next we prove that all the values on the wires in the circuit are correct. It
can be immediately obtained that the values associated with input wires and the
output wires of Add gates are computed correctly, since ϕ, ψ, τ are Z2k-linear.
Thus, we need to consider the correctness of values on the output wires of Mul
gates, which is guaranteed by the correctness of di, for all i ∈ [t] in our protocol
Πm,n,k

ZK . Consider that some of components of d are incorrect, e.g. there is an
error in the i-th Mul gate. Let di := ωα · ωβ − νi + ei, where ei ∈ GR(2k, d). Thus
we have that

Kω̂γ : = Kνi +∆ · di = Kνi +∆ · (ωα · ωβ − νi + ei)

=Mνi +∆ · νi +∆ · (ωα · ωβ − νi + ei)

=Mω̂γ +∆ · (ωα · ωβ) +∆ · ei,

and

Bi : = Kωα
·Kωβ

−∆ ·Kω̂γ

= (Mωα
+∆ · ωα) · (Mωβ

+∆ · ωα)−∆ · (Mω̂γ
+∆ · (ωα · ωβ) +∆ · ei)

= (Mωα ·Mωβ
) +∆ · (ωα ·Mωβ

+ ωβ ·Mωα −Mω̂γ )−∆2 · ei
= A0,i +∆ ·A1,i −∆2 · ei,

which leads to

Z : =
∑
i∈[t]

χi ·Bi +B∗

= X +∆ · Y −∆2 · (
∑
i∈[t]

χi · ei).
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Assume A sends X ′ = X + eX and Y ′ = Y + eY to honest verifier, where
eX , eY ∈ GR(2k, d). V accepts if and only if

Z = X ′ +∆ · Y ′ ⇐⇒ 0 = eX +∆ · eY +∆2 · (
∑
i∈[t]

χi · ei).

χi is sampled by honest verifier after ei is determined, and eX , eY can be
picked by A after knowing χ. If

∑
i∈[t] χi · ei ̸= 0, from lemma 1, we obtain

that the above equation holds with probability at most 2−(d−1). Otherwise, A can
pass the check with probability 1 (just sets eX = eY = 0). Since the coefficients
χi ∈ F2d are sampled uniformly at random, it suffices to consider there exists a
j ∈ [t] such that ej ̸= 0, and ei = 0 for i ̸= j. As Pr[χj = 0] = 1/2d, we obtain
that it occurs with probability at most 2−d.

Finally, we show that if C(wi) = 0, for some i ∈ [m], and all the values on
the wires in the circuit are correct, the probability that A successfully provides a
M ′

ωh
:= Mωh

+ eωh
such that Kωh

= M ′
ωh

+∆ · ϕ(1) is upper bounded by 2−d.
Let r := (C(w1), ..., C(wm)) ∈ {0, 1}m. After executing the protocol, We have

Kωh
=Mωh

+∆ · ϕ(r).

Thus, honest verifier accepts if and only if

Kωh
=M ′

ωh
+∆ · ϕ(1) ⇐⇒ 0 = eωh

+∆ · ϕ(1 − r),

which holds for a random ∆ ∈ GR(2k, d) with probability at most 1/2−d from
lemma 1.

Thus, the overall soundness error is bounded by 2−d+2−(d−1)+2−d = 2−(d−2).
Namely, a PPT Z can distinguish between the real world and the ideal world with
advantage at most 2−(d−2).

Corrupted V: If S receives false from Fm
ZK, then it just aborts. Otherwise,

S interacts with A as follows:
1. In the offline phase: S records ∆ ∈ GR(2k, d) that A sends to FGR(2k,d)

embVOLE in
the Init procedure, also, S records (Kµ,K

′
µ), (Kν ,K

′
ν) and Kπ that A sends to

FGR(2k,d)
embVOLE. Besides, S samples τ(µ) − µ

$← Ker(ψ)n and τ(ν) − ν
$← Ker(ψ)t,

and sends them to A.
2. S samples τ(δ) $← Im(ϕ)n and sets δ := τ(δ)+τ(µ)−µ. S sends δ to A. S

computes Kτ(ωi) := K ′
µi

+∆ · τ(δi), for i ∈ [n]. Besides, S samples ω
$← Im(ϕ)n.

3. For each gate (α, β, γ, T ) ∈ C, in a topological order:
- If T=Add, S computes Kωγ := Kωα +Kωβ

as the honest V would do, and
sets ωγ := ωα + ωβ.

- If T=Mul, and this is the i-th multiplication gate, then S sends di :=
ωα · ωβ − νi to A. S computes Kωγ

:= K ′
νi

+∆ · τ(di), Kω̂γ
:= Kνi

+∆ · di and
Bi := Kωα

·Kωβ
−∆·Kω̂γ

as the honest verifier would do, and sets ωγ := τ(ωα·ωβ).
4. S receives χ ∈ Zt

2k from A.
5. S computes Z :=

∑
i∈[t] χi ·Bi +B∗ ∈ GR(2k, d), where B∗ := Kπ. Then S

samples Y $← GR(2k, d) and sets X := Z −∆ · Y . S sends (X,Y ) to A.
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6. For the single output wire ωh, S already holds Kωh
. S computes Mωh

:=
Kωh

−∆ · ϕ(1), and sends Mωh
to A.

Since GR(2k, d) = Im(ϕ) ⊕ Ker(ψ), the distribution of δ conditioned on δ −
τ(δ) = τ(µ) − µ is equivalent to that of δ := τ(δ) + τ(µ) − µ where τ(δ) are
sampled uniformly at random in Im(ϕ)n. Further, δ is sufficient to perfectly hide
the circuit inputs ω := ϕ(W ) in Im(ϕ)n. Similarly, di perfectly hides the output
value of i-th Mul gate in Im(ϕ). Moreover, X,Y provided by honest prover are
uniformly random thanks to the masks A∗

0, A
∗
1, respectively, under the condition

that Z = X+∆·Y holds. Therefore, Z’s view in real execution is indistinguishable
to that in simulation. This completes the proof.

C.3 Sublinear Communication Variant

Protocol ΠPAC

Let AHE = (KeyGen, Enc, Dec) be an additively homomorphic encryption scheme
over GR(2k, d) with CPA security, degree-restriction and circuit privacy. Let
(Commit, Open) be a commitment scheme. Let G be a PRG, and m be the maximum
degree of the polynomials to be authenticated.

Init: P and V send (Init) to FGR(2k,d)
embVOLE, and V receives ∆ ∈ GR(2k, d).

Poly-Key: On input m:
1. V samples seed $← {0, 1}κ, and computes (com1, unv1)← Commit(seed). Then V
sends com1 to P.
2. V samples Λ $← GR(2k, d) and obtain ciphertexts ⟨Λi⟩ := Enc(sk, Λi; ri) for all
i ∈ [m], where (r0, r1, ..., rm) ← G(seed) and sk ← KeyGen(r0). Then V sends
⟨Λ1⟩, ..., ⟨Λm⟩ to P.
Pre-Gen: On input [u]:
1. For the input MACs [u], suppose P holds u,w ∈ GR(2k, d)n and V holds
w ∈ GR(2k, d)n such that w := v −∆ · u.
2. For each j ∈ [n], on input the j-th polynomial fj(X) =

∑
i∈[0,m] fj,i · X

i ∈
GR(2k, d)[X], P computes a ciphertext ⟨bj⟩ :=

∑
i∈[m] fj,i · ⟨Λ

i⟩+ fj,0 − uj .
3. P computes (com2, unv2)← Commit(⟨b1⟩, ..., ⟨bn⟩), and sends com2 to V.
Gen:
1. V sends (unv1, seed) and Λ to P. P checks Open(com1, unv1, seed) = 1. If the
check fails, P aborts. Then, P computes (r0, r1, ..., rm) ← G(seed) and obtains
sk ← KeyGen(r0). P checks that ⟨Λi⟩ = Enc(sk, Λi; ri) for all i ∈ [m], and aborts if
the check fails. For each j ∈ [n], P sets Mj := wj .
2. P sends (unv2, ⟨b1⟩, ..., ⟨bn⟩) to V. V checks Open(com2, unv2, ⟨b1⟩, ..., ⟨bn⟩) = 1.
If the check fails, V aborts. Then, for j ∈ [n], V computes bj := Dec(sk, ⟨bj⟩), and
sets Kj := vj +∆ · bj . Thus, P and V obtain a PAC [fj(·)], for each j ∈ [n].

Fig. 21: Protocol for generating PACs over GR(2k, d).
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The following theorem shows a reduction from AHE schemes over Galois
rings to AHE schemes over Galois fields, which is very similar to that we build
reusable VOLE over GR(2k, d) from reusable VOLE over F2d in Section 4.1.

Theorem 13. There exists AHE schemes over Galois ring GR(pk, d), if there
exists AHE schemes over Galois field Fpd . In particular, CPA security, degree
restriction and circuit privacy will preserve.

Proof. Let (KeyGen, Enc, Dec) be an AHE scheme over Fpd . We denote the en-
cryption of m ∈ Fpd by ⟨m⟩. a ∈ GR(pk, d) can be uniquely written as a0 + a1 · p+
...+ak−1 ·pk−1, where ai ∈ Fpd , i = 0, 1, ..., k−1. We define the encryption of a as
the tuple (⟨a0⟩, ⟨a1⟩, ..., ⟨ak−1⟩), denoted by ⌊a⌉. The addition of two ciphertexts
is defined as

⌊a⌉+ ⌊b⌉ := (⟨a0⟩+ ⟨b0⟩, ⟨a1⟩+ ⟨b1⟩, ..., ⟨ak−1⟩+ ⟨bk−1⟩).

The scalar multiplication is defined as

α⌊a⌉ : = (α0⟨a0⟩, α0⟨a1⟩, ..., α0⟨ak−1⟩) + (0, α1⟨a0⟩, ..., α1⟨ak−2⟩) + ...+ (0, 0, ..., αk−1⟨a0⟩)

= (α0⟨a0⟩,
1∑

i=0

αi⟨a1−i⟩, ...,
k−1∑
i=0

αi⟨ak−1−i⟩).

It can be verified that the above scheme is an AHE over GR(pk, d), whose CPA
security is straightforward from (KeyGen, Enc, Dec), and one can prove degree
restriction and circuit privacy by contradiction.

Theorem 14 (Theorem 3, restated). Protocol Πm,n,t
slZK UC-realizes function-

ality Fm
ZK that proves circuit satisfiability over Z2k in the FGR(2k,d)

embVOLE-hybrid model
and the random oracle model with soundness error at most 2m2+3

2d
+ negl(κ).

Proof. Since the proof has the similar structure to that in [42], hence we only
explain the difference here. The readers may refer to [42] for more details. Note
that for the BatchCheck procedure, we let V check that f(αi) = τ(g(βi)), i ∈ [t],
which in fact is an equality constraint over Z2k . Apparently, this modification
would not raise any more considerations of the proof. Another main difference
is that we use an ideal functionality FGR(2k,d)

embVOLE which delivers MACs of random

re-embedding pairs (µ, τ(µ)) over Galois rings. Recall that we let FGR(2k,d)
embVOLE

additionally send µ− τ(µ) to V, as explained before in the proof of Theorem 2,
this leakage would not influence the privacy of witnesses over Z2k and it guarantees
S can extract SIMD witnesses correctly if sender is corrupted. Specifically, we
instantiate the DVZK procedure in [42] by the LPZK based approach, namely the
multiplication check procedure in protocol Πm,n,t

ZK . By Lemma 1 and the upper
bound in the Galois field case, the soundness error in Galois ring case is upper
bounded by 2m2+3

2d
+ negl(κ).
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D Missing Proofs of VOLE Protocols

D.1 Security of Basic Construction

Theorem 15 (Theorem 6, restated). If G and G′ are PRGs, then Π
GR(2k,d)
spVOLE

UC-realizes FGR(2k,d)
spVOLE functionality in the (FGR(2k,d)

VOLE ,FOT,FEQ)-hybrid model. In
particular, no PPT environment Z can distinguish the real world execution from
the ideal world simulation except with advantage at most 1/2d + negl(κ).

Proof. We divide our proof into two parts. First, we consider PS is corrupted
and construct a PPT simulator SS , then we consider PR is corrupted and build
a PPT simulator SR as well. Both Simulators interact with the corrupted party
in the ideal world and can read the corrupted party’s inputs to functionalities
FGR(2k,d)

VOLE ,FOT,FEQ.
Corrupted PS: Each time the SP-Extend procedure is going to run, SS acts

as follows:
1. SS reads the values (a, c) that A sends to FGR(2k,d)

VOLE . Upon receiving a′ ∈
GR(2k, d) from A, SS sets β := a′ + a ∈ GR(2k, d) and δ := c.

2. For i ∈ [1, h), SS samples Ki $← {0, 1}κ, and SS samples Kh $← GR(2k, d).
Then SS reads the choices ᾱi ∈ {0, 1}, i ∈ [h] that A sends to FOT, and
sends Ki

ᾱi
:= Ki to A. SS computes α :=

∑
i∈[h] 2

h−i · ai and defines a vec-
tor u ∈ GR(2k, d)n such that uα = β and ui = 0 for i ≠ α. Next, SS runs
GGM.Eval(α, {Ki

ᾱi
}i∈[h]) and obtains {vj}j ̸=α.

3. SS samples g $← GR(2k, d) and sends it to A. Then SS defines a vector
w ∈ GR(2k, d)n such that wα = δ − (g +

∑
i ̸=α vi) and wi = vi for i ̸= α.

4. SS reads the values (x, z) that A sends to FGR(2k,d)
VOLE .

5. Upon receiving {χi}i∈[0,n) and x∗ ∈ GR(2k, d) from A, SS sets x′ := x∗+x ∈
GR(2k, d).

6. SS reads the values VPS that A sends to FEQ. Then SS computes V ′
PS

:=∑
i∈[0,n) χi · wi − z and does as follows:

(a) If x′ = χα ·β, then SS checks whether VPS = V ′
PS

. If so, SS sends true

to A, and sends u,w to FGR(2k,d)
spVOLE. Otherwise, SS sends abort to A and aborts.

(b) If x′ ̸= χα · β, since every a ∈ GR(2k, d) can be represented as a =∑
i∈[0,k) ai · 2i, ai ∈ F2d . Let ida denote the least index such that aida

̸= 0 (define
id0 := k). It can be observed that a is invertible in GR(2k, d) if and only if ida = 0.
Let ε := V ′

PS
− VPS and η := x′ − χα · β, we have that

- If idε < idη, SS sends abort to A and aborts.
- If idε ≥ idη, SS computes ∆′ := ε

2idη
· ( η

2idη
)−1 mod 2k−idη , and sends

a global-key query (Guess, ∆′, k − idη) to FGR(2k,d)
spVOLE. If FGR(2k,d)

spVOLE returns success,

SS sends true to A, and sends u,w to FGR(2k,d)
spVOLE. Otherwise, SS sends abort to

A and aborts.
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The Init procedure can be called only once, and it can be perfectly sim-
ulated by forwarding Init from A to FGR(2k,d)

spVOLE. Thus, we focus on analysing
indistinguishability between the SP-Extend procedures.

SS can record a, c that A sends to FGR(2k,d)
VOLE . From the construction of GGM

tree, it can be observed that K1
0 ,K

1
1 are pseudorandom. Further, we have that

K2
0 ,K

2
1 are pseudorandom as well conditioned on K1

0 or K1
1 . By induction, we

obtain that Ki
ᾱi

is pseudorandom conditioned on {Kj
ᾱj
}j<i, for i ∈ [h]. Therefore,

we claim that {Ki
ᾱi
}i∈[h] are pseudorandom, which indicates that Ki, i ∈ [h]

provided by SS are computationally indistinguishable to those in real execution.
In real protocol, γ is uniformly random in A’s view, since ∆ is uniformly random
and β is a unit. Therefore, g sampled uniformly at random by SS is of the same
distribution to that masked with γ in A’s view. Now it remains to consider the
check step.

The second call (Extend, 1) enables SS to record x, z. In real protocol, honest
verifier PR computes

VPR : =
∑

i∈[0,n)

χi · vi − y

=
∑

i∈[0,n)

χi · wi +
∑

i∈[0,n)

χi · (vi − wi)− y

=
∑

i∈[0,n)

χi · wi + χα · (vα − wα)− (y∗ +∆ · x∗)

=
∑

i∈[0,n)

χi · wi − (y∗ −∆ · x)−∆ · (x∗ + x− χα · β)

= V ′
PS
−∆ · (x′ − χα · β).

If A behaves honestly, then x′ = χα · β will hold and FEQ will return true.
Note that SS can extract α from A’s inputs to FOT, thus SS can check x′ = χα ·β.
If the equation holds, FEQ can be emulated by sending true (abort) to A when
VPS = V ′

PS
(VPS ̸= V ′

PS
), which is the same as in the real protocol.

Otherwise, x∗ sent by A must be incorrect. Let η := x′ − χα · β and ε :=
V ′
PS
− VPS . Therefore, A passes the equality test if and only if

VPS +∆ · η = V ′
PS
⇐⇒ ∆ · η = ε,

where ∆, η, ϵ ∈ GR(2k, d). Although SS does not hold ∆, he can query the
global key to FGR(2k,d)

spVOLE. Since the above equation is over GR(2k, d), there may be no
solutions for ∆, or more than one solutions for ∆. Thus the Global-key Query
is extended to allow queries of "lower bits" of ∆. It is not hard to see that the
simulation matches the real execution in this case.

So, we conclude that Z can not computationally distinguish the ideal simulation
and the real execution from joint view of A and the output of PR.

Corrupted PR: In the Init procedure, SR reads the global key ∆ ∈ GR(2k, d)

that A sends to FGR(2k,d)
VOLE . Then whenever the SP-Extend procedure is going to

run, SR acts as follows:
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1. SR reads b ∈ GR(2k, d) that A sends to FGR(2k,d)
VOLE . SR samples a′ $← GR(2k, d)

and sends a′ to A. Then, SR draws a uniformly random β in the set of units of
GR(2k, d). Next, SR computes γ := b+∆ · a′ and δ := γ −∆ · β.

2. SR reads the values (Ki
0,K

i
1)i∈[h] that A sends to FOT. Upon receiving

g ∈ GR(2k, d) from A, for each α ∈ [0, n), SR defines a vector wα such that
{wα

j }j ̸=α := GGM.Eval(α, {Ki
ᾱi
}i∈[h]) and wα

α := δ − (g +
∑

i̸=α w
α
i ).

3. SR reads the vector y∗ that A sends to FGR(2k,d)
VOLE . SR samples χi

$← GR(2k, d)

for i ∈ [0, n) and x∗
$← GR(2k, d). SR sends ({χi}i∈[0,n), x

∗) to A. Then, SR
computes y := y∗ +∆ · x∗.

4. SR reads VPR that A sends to FEQ. Then SR constructs a set I ⊆ [0, n)
as follows:

(a) For α ∈ [0, n), compute V α
PS

:=
∑

i∈[0,n) χi · wα
i +∆ · χα · β − y.

(b) Append α satisfying V α
PS

= VPR to set I, i.e. I := {α ∈ [0, n) | V α
PS

=
VPR}.

SR sends I to FGR(2k,d)
spVOLE. If it returns abort, SR samples α̂

$← [0, n)\I,
sends (false, V α̂

PS
) to A (emulating FEQ), and then aborts. Otherwise, SR sends

(true, VPR) to A.
5. SR picks an arbitrary α ∈ I and defines v such that vi := wα

i , for i ≠ α

and vα := γ − g −
∑

i ̸=α vi. SR sends v to FGR(2k,d)
spVOLE.

The Init procedure can be called only once, and SR learns ∆ that A sends
to FGR(2k,d)

VOLE . Now we consider the simulation for the SP-Extend procedure.
In real execution, a is uniformly random in A’s view, which perfectly masks

a′ in GR(2k, d). Thus, a′ provided by SR has the same distribution as that in the
real execution. SR learns {(Ki

0,K
i
1)}i∈[h] that A sends to FOT, therefore, SR can

evaluate n punctured GGM trees with one value of the α-th leaf missed, for each
α ∈ [0, n). SR learns y∗ that A sends to FGR(2k,d)

VOLE . The indistinguishability of
χ ∈ GR(2k, d)n is obvious and the next message that A receives from PS or SR is
x∗. Similarly, x∗ is perfectly masked with x since x is uniformly random in A’s
view. Therefore, we obtain the indistinguishability of x∗ between two worlds. What
remains to consider is the simulation for equality test. The set I constructed by
SR corresponds to the selective failure attack on the α∗ of honest PS . This attack
can be formalized as follows: (1) A generates a GGM tree correctly and obtains
({vj}j∈[0,n), {(Ki

0,K
i
1)}i∈[h]), (2) A guesses a set I ⊆ [0, n), (3) Let U denote the

union of the sets {Ki
ᾱi
}i∈[h], for α ∈ I. A keeps the values of U unchanged and

randomizes the remaining values in {Ki
0,K

i
1}i∈[h]. (4) A runs the rest program

as an honest PR. It can be observed that if α∗ ∈ I, then the equality check will
pass, i.e. V α∗

PS
= VPR . This observation guarantees that the set I reconstructed by

SR is identical to that generated by A. Therefore, FGR(2k,d)
spVOLE aborts if and only if

the equality check fails in the real execution. Note that if |I| > 1, SR does not
know the actual α∗. However, SR is required to send vα∗ to FGR(2k,d)

spVOLE, otherwise,
Z may distinguish two worlds from joint view of A and output of PS . We claim
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that
Pr

[
vα ̸= vα′

∣∣∣V α
PS

= V α′

PS

]
≤ 1

2d
.

We have that

V α
PS

= V α′

PS
⇐⇒∑

i∈[0,n)

χi · wα
i +∆ · χα · β − y =

∑
i∈[0,n)

χi · wα′

i +∆ · χα′ · β − y ⇐⇒

∑
i∈[0,n),i̸=α,α′

χi · (wα
i −wα′

i )+χα(∆ · β+wα
α −wα′

α )+χα′(wα
α′ −∆ · β−wα′

α′ ) = 0

Note that ∆,β,wα,wα′
are determined before χ sampled. Therefore, from

lemma 1, we have that

wα
i = wα′

i , for i ∈ [0, n)\{α, α′},

and
∆ · β = wα′

α − wα
α = wα

α′ − wα′

α′

hold except with probability 2−d. Thus we immediately obtain that vα = vα′

holds except with probability 2−d under the condition that V α
PS

= V α′

PS
. Thus, from

above discussion, we conclude that Z can distinguish the ideal simulation and
real execution with advantage at most 2−d. This completes the whole proof.

Theorem 16 (Theorem 7, restated). If the decisional (RG,G, GR(2k, d))-
LPN(m,n, t) with static leakage assumption holds, then Π

GR(2k,d)
VOLE UC-realizes

FGR(2k,d)
qVOLE in the FGR(2k,d)

spVOLE-hybrid model.

Proof. We divide our proof into two parts. First, we consider PS is corrupted
and construct a PPT simulator SS , then we consider PR is corrupted and build
a PPT simulator SR as well. Both Simulators interact with the corrupted party
in the ideal world and can read the corrupted party’s inputs to functionalities
FGR(2k,d)

spVOLE.
Corrupted PS: SS reads the vectors u,w ∈ GR(2k, d)m that A sends to

FGR(2k,d)
spVOLE in the Init procedure. Then whenever Extend procedure is going to run,

SS acts as follows:
1. For i ∈ [t], SS reads ei ∈ GR(2k, d)m (with at most one invertible entry

and zeros everywhere else) and ci ∈ GR(2k, d)m that A sends to FGR(2k,d)
spVOLE. Let

e := (e1, ..., et) ∈ GR(2k, d)n and c := (c1, ..., ct) ∈ GR(2k, d)n.
2. SS computes x := u ·A+ e ∈ GR(2k, d)n and M := w ·A+ c ∈ GR(2k, d)n.

Then SS updates u := x[1 : m] and z := M [1 : m]. Next, SS sends x[m+ 1, n]

and M [m+ 1, n] to FGR(2k,d)
spVOLE.

3. Whenever A sends a global-key query (Guess,∆′, s′) to FGR(2k,d)
spVOLE, SS sends

(Guess,∆′) to FGR(2k,d)
VOLE and forwards the answer from FGR(2k,d)

VOLE to A. If the
answer is abort, SS aborts.
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The indistinguishability between simulation and execution is obvious, since
the outputs of both parties in two worlds are computed in the same way.

Corrupted PR: SR first receives ∆ ∈ GR(2k, d) from A and reads v ∈
GR(2k, d)m that A sends to FGR(2k,d)

spVOLE in the Init procedure. SR sends ∆ to

FGR(2k,d)
VOLE . Then whenever Extend procedure is going to run, SR acts as follows:

1. For i ∈ [t], SR reads the vector bi ∈ GR(2k, d)m that A sends to FGR(2k,d)
spVOLE.

Let b := (b1, ..., bt) ∈ GR(2k, d)n.
2. SR samples a random e := (e1, ..., et) ∈ GR(2k, d)n, where each ei has one

invertible entry and zeros everywhere else. Let {α1, ..., αt} be the invertible entry
in {e1, ..., et}, respectively. For i ∈ [t], SR reads the set Ii ⊆ [0,m) that A sends
to FGR(2k,d)

spVOLE. If αi ∈ Ii, then SR continues and sends success to A. Otherwise,
SR sends abort to A and aborts.

3. SR computes K := v ·A+ b ∈ GR(2k, d)n, and updates v := K[1 : m]. SR

sends K[m+ 1 : n] to FGR(2k,d)
VOLE .

It is not hard to see that e sampled by SR has the same distribution to that
provided by FGR(2k,d)

spVOLE, therefore, the probability that FGR(2k,d)
spVOLE returns success

or abort is identical in real execution and ideal simulation. For the executions
of the Extend procedure, the view of A is simulated perfectly. However, the
distribution of the output x[m + 1 : n] of the honest PS is different to that in
ideal simulation. Thus, environment Z can not distinguish between two worlds if
the the decisional (RG,G, GR(2k, d))-LPN(m,n, t) with static leakage assumption
holds. This completes the proof.

D.2 Security of Two-Round Variant

Theorem 17 (Theorem 8, restated). If G and G′ are PRGs with G′ having
the right half injective property, and Hash : {0, 1}2hκ 7→ {0, 1}κ is a collision
resistant hash function, ΠGR(2k,d)

mpVOLE realizes the functionality FGR(2k,d)
mpVOLE in the

(FGR(2k,d)
gVOLE ,FOT)-hybrid model with malicious security.

Proof. Malicious Sender. The simulator SS acts as follows.
1. SS records the inputs M , c,y ∈ GR(2k, d)t sent to FGR(2k,d)

gVOLE by A.
2. For j ∈ [t] and i ∈ [h], SS records the input ᾱj

i sent to FOT by A, then SS
can recover the values αj , j ∈ [t]. For j ∈ [t], SS computes sj ← GGM.KeyGen(1κ),
and runs GGM.Gen(2h+1, sj) to obtain ({(vj2i, v

j
2i+1, Γ

j
i )}i∈[0,2h), {(K

j
0,i,K

j
1,i)}i∈[h+1]).

SS recomputes Kj
1,h+1 :=

⊕
i∈[0,2h) Γ

j
i . SS emulates FOT by sending Kj

ᾱj
i ,i

to A.

SS sends gj0, g
j
1

$← GR(2k, d) and Kj
1,h+1 to A.

3. For j ∈ [t], SS computes Γ j := Hash(Γ j
0 , ..., Γ

j
2h−1

) and sends it to A.
4. Upon receiving χ, χ0, ..., χ2h−1 ∈ GR(2k, d) from A, for j ∈ [t], SS computes

wj
0,αj

:= Mj − gj0 −
∑

i̸=αj
vj2i and wj

1,αj
:= cj − gj1 −

∑
i ̸=αj

vj2i+1. Next, SS
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computes Wj :=
∑

i ̸=αj
χi(v

j
2i + χ · vj2i+1) + χαj

(wj
0,αj

+ χ · wj
1,αj

). Finally, SS

samples X $← GR(2k, d), and sends X, {Vj :=Wj +X · χαj · yj}j∈[t] to A.

5. SS sets wj
0,i := vj2i, for j ∈ [t], i ∈ [0, 2h), i ≠ αj. SS sets ej ∈ GR(2k, d)2

h

such that ejαj
:= yj, and ei = 0 for i ̸= αj. SS sends (w1

0, ...,w
t
0), (e1, ..., et) to

FGR(2k,d)
mpVOLE.

The messages produced by SS are generated in the same way to that in the
real execution except for {gj0, g

j
1}j∈[t] and V,X. It is not hard to see that these

messages (except V , since V is dependent on X) are uniformly random in A’s view
in the real execution. Besides, SS can correctly extract (e1, ..., et) and compute
(w1

0, ...,w
t
0), which guarantees the indistinguishability of the outputs. Thus, the

real execution and the ideal simulation are indistinguishable.
Malicious Receiver The simulator SR acts as follows.

1. SR records the input ∆, δ that A sends to FGR(2k,d)
gVOLE in the Init phase. Later

in the Extend phase, SR records the input K,a ∈ GR(2k, d)t sent to FGR(2k,d)
gVOLE by

A.
2. For j ∈ [t], i ∈ [0, 2h), SR records the input (Kj

0,i,K
j
1,i) sent to FOT by A.

SR sets αl = l, for l ∈ [0, 2h). Upon receiving {Kj
1,h+1, Γ

j}j∈[t], for l ∈ [0, 2h), SR

runs GGM.Eval′(αl, {Kj

ᾱl
i,i
}i∈[h],K

j
1,h+1) and gets ({(vj,l2i , v

j,l
2i+1)}i ̸=αl , {Γ j,l

i }i∈[0,2h)).

SR computes Γ j
l := Hash(Γ j,l

0 , ..., Γ j,l
2h−1

).

3. For j ∈ [t], SR builds a series of sets Ij := {l ∈ [0, 2h) | Γ j
l = Γ j} ⊆ [0, 2h).

If there exists a j ∈ [t] such that Ij = ∅, SR aborts. SR sends {Ij}j∈[t] to

FGR(2k,d)
mpVOLE. If it aborts, then SR aborts.

4. SR builds a set J := {j ∈ [t] | |Ij | = 1}. If there exists some l ̸= l′ ∈ Ij,
j ∈ [t]\J and i ̸= l, l′ such that vj,l2i ̸= vj,l

′

2i , SR aborts. Thus, for j ∈ [t]\J , SR
can obtain consistent {(vj2i, v

j
2i+1)}i∈[0,2h). Besides, for j ∈ J , suppose Ij = {αj},

then SR can simply set vj2αj = vj2αj+1 = 0 to obtain vj
0,v

j
1.

5. Upon receiving {gj0, g
j
1}j∈[t] from A, SR samples random χ, χ0, ..., χ2h−1

$←
F2d and sends them to A. For j ∈ [t], SR computes βj

0 := gj0−(Kj−
∑

i∈[0,2h) v
j
2i)

and βj
1 := gj1 − (aj −

∑
i∈[0,2h) v

j
2i+1). If there exists a j ∈ [t] such that βj

1 ≠ 0,
but βj

0 + χ · βj
1 = 0, SR aborts. SR computes V̂j :=

∑
i∈[0,2h) χi(v

j
2i + χ · vj2i+1).

6. Upon receiving {Vj}j∈[t] and X from A, for j ∈ [t] with βj
1 ̸= 0, SR tries

to find α̂j ∈ Ij such that V̂j − Vj = χα̂j (βj
0 + χ · βj

1). If such an α̂j does not exist
or is not unique, SR aborts.

7. For j ∈ [t]\J with βj
1 ̸= 0, SR resets Ij := {α̂j}, and sends Ij to FGR(2k,d)

mpVOLE.
If it aborts, then SR aborts.

8. SR sends (v1
0, ...,v

t
0) to FGR(2k,d)

mpVOLE.
We show the probability that honest sender aborts in a real execution is

negligibly close to aborting in the ideal simulation. If PS aborts in the real
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execution due to some j ∈ [t] such that Γ̂ j ̸= Γ j , this will lead to that αj /∈ Ij in
the ideal simulation, which means that SR will abort as well.

Next, we claim the probability that SR aborts in the step 4 of the simulation is
negligible. We prove it by contradiction. If such l ̸= l′ ∈ Ij , j ∈ [t]\J exist, from the
construction of GGM tree, there exists ρ, ρ′ ∈ {0, 1}κ such that (vj,l2i , v

j,l
2i+1, Γ

j,l
i ) =

G′(ρ) and (vj,l
′

2i , v
j,l′

2i+1, Γ
j,l′

i ) = G′(ρ′). Thus, we have that ρ ̸= ρ′. By the right-
half injectivity of G′, we have Γ j,l

i ̸= Γ j,l′

i , which leads to Γ j
l ̸= Γ j

l′ overwhelmingly.
However, Γ j

l = Γ j
l′ = Γ j since l, l′ ∈ Ij. This completes the proof of the above

claim.
If A behaves honestly in the j-th iteration, we have βj

0 = βj
1 = 0. Since χ is

picked uniformly at random in F2d by SR, the probability that βj
0 + χ · βj

1 = 0

with βj
1 ̸= 0 is equal to 1/2d form Lemma 1. By a union bound, SR aborts in the

step 5 of the simulation with probability at most t/2d.
If A sends (ĝj0 := gj0 + βj

0, ĝ
j
1 := gj1 + βj

1) instead of correct (gj0, g
j
1), there will

be a bias χαj (βj
0 + χ · βj

1) for Wj computed by honest PS . Therefore, it can be
observed that if A successfully guesses the αj chosen by honest PS , A can pass
the check of PS by sending Vj := V̂j − χαj (βj

0 + χ · βj
1). On the other hand, if

SR can not find a solution α̂j, the honest PS will abort, no matter what αj he
picks. As the coefficients χ0, ..., χ2h−1 are sampled uniformly at random by SR,
they are pair-wise distinct except with probability at most 1/2d−h.

Therefore, from above discussions, the probability that SR aborts while honest
PS does not abort is bounded by (t/2d + 1/2d−h + negl(κ)). This concludes the
whole proof.
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