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Abstract

We improve the space efficiency of Regev’s quantum factoring algorithm [Reg23] while keep-
ing the circuit size the same. Our main result constructs a quantum factoring circuit using
O(n log n) qubits and O(n3/2 log n) gates. In contrast, Regev’s circuit requires O(n3/2) qubits,
while Shor’s circuit requires O(n2) gates. As with Regev, to factor an n-bit integer N , one runs
this circuit independently ≈

√
n times and apply Regev’s classical post-processing procedure.

Our optimization is achieved by implementing efficient and reversible exponentiation with
Fibonacci numbers in the exponent, rather than the usual powers of 2.

1 Introduction

Shor’s landmark result from 1994 [Sho97] showed us how to factor numbers in quantum poly-
nomial time. In particular, he constructed an Õ(n2)-size quantum circuit that uses O(n log n)

qubits (including ancillas), such that O(1) runs of his circuit followed by polynomial-time clas-
sical postprocessing suffices to factor an n-bit integer. A number of followup works [BCDP96,
VBE96, Cop02, CW00, Bea03, TK06, EH17, Gid17, HRS17, Gid19, GE21] improved the Shor
circuit in several ways, for example by constructing a log-depth implementation [CW00] and by
reducing the number of ancilla qubits to a mere 2n+ 1 [Gid17] (albeit with a larger number of
gates, Θ̃(n5) and Θ̃(n3) respectively).

However, the size of the factoring circuit stood steady at Õ(n2) for nearly three decades,
until Regev recently demonstrated an Õ(n1.5)-size quantum circuit for factoring. Regev shows
how to factor n-bit integers using ≈

√
n (parallel) runs of his factoring circuit. While the total

number of operations remains the same, the smaller Regev circuit is presumably easier to build
and resists decoherence noise better.

A key efficiency consideration in the construction of quantum circuits is their space complex-
ity, namely, the number of qubits including ancillas used by the circuit. (For more discussion
on the importance of reducing space complexity in superconducting architectures for quantum
computation, see [GE21, Gid23].) The number of qubits used in the original Shor circuit was
O(n log n). Several works [BCDP96, VBE96, Bea03, TK06, Gid17, HRS17, Gid19] optimized
the space complexity down to O(n) qubits (and in fact, even 2n + 1). However, none of these
optimizations seems to apply to Regev’s circuit whose space complexity stands at (the obvious)
Õ(n1.5).

In this work, we construct a quantum circuit that asymptotically achieves the best of both
worlds: it has a size of Õ(n1.5) matching Regev’s circuit; and it requires Õ(n) qubits, nearly



matching what is known for optimized versions of Shor’s circuit. We compute the concrete
number of qubits required (see our Theorem 1 below) which, using schoolbook multiplication,
leads us to (12.32 + o(1))n qubits and Õ(n2.5) gates vis-a-vis the results of [BCDP96, VBE96,
Bea03, TK06, Gid17, HRS17] which use 2n+ 1 qubits and Õ(n3) gates.

In a nutshell, a key step in Shor’s algorithm is the computation of the map |x⟩ 7→ |ax mod N⟩
in superposition, where a is a fixed base. The fact that a is fixed allows one to precompute its
powers a, a2, . . . , a2

i

, . . . classically. Once this is done, exponentiation in superposition can be
done with space Õ(n) using fast multiplication [HvdH21] and in-place exponentiation by mul-
tiplying together the appropriate subset of the precomputed values. This technique goes out of
the window in Regev’s new quantum factoring circuit as observed by Ekerå and Gidney [Gid23],
essentially because Regev’s circuit crucially cannot use a fixed base a. Instead, if one tries to
implement the map |a⟩ |x⟩ 7→ |a⟩ |ax mod N⟩ via the classic square-and-multiply algorithm, one
runs into the conundrum of implementing the squaring circuit modulo N . On the one hand,
doing this reversibly and in-place seems as hard as factoring N in the first place. On the other
hand, writing the squared result to a new register consumes extra space; indeed, this is the
source of the O(n3/2) space requirement for Regev’s circuit [Reg23].

We avoid this conundrum with our key technique of Fibonacci exponentation, a method of
exponentiation that avoids modular squaring and instead relies solely on modular multiplication.
We note that some previous works have considered using Fibonacci numbers rather than powers
of two in the exponent [BMT+07, Kle08, Mel07], one of them with the explicit motivation of
achieving fast and reversible exponentiation [Kal17]. While Fibonacci exponentiation seems to
not be of much use in Shor’s circuit, it turns out to be quite powerful in optimizing the space
usage of Regev’s circuit.

We now proceed to describe our results in more detail.

1.1 Our Results

We begin by stating our main theorem, and compare the result to Regev [Reg23] and optimiza-
tions of Shor’s algorithm [Sho97, BCDP96, VBE96, Bea03, HRS17, TK06, Gid17, Gid19]. In a
nutshell, the algorithm by [Reg23] requires O(n3/2) qubits, which we bring down to O(n log n)

while retaining the Õ(n3/2) quantum circuit size. Optimizations of Shor’s algorithm that retain
the Õ(n2) circuit size require O(n log n) qubits to the best of our knowledge; thus, compared to
these results, our algorithm works with the same number of qubits but achieves a O(

√
n) factor

saving in the circuit size (just as [Reg23] does).

Main Theorem 1. Assume there is a quantum circuit that implements the operation

|a⟩ |b⟩ |t⟩ |0S⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0S⟩

with G gates where N, a, b, t are all n-bit integers with 0 ≤ a, b, t < N and 2n−1 ≤ N < 2n,
and S here is the number of ancilla qubits. (We do not make any assumptions about the
circuit’s behaviour on inputs where any of a, b, t are ≥ N .)

Under conjecture 1.1, there exists a classical polynomial-time algorithm that outputs a
non-trivial factor of N using

√
n+ 4 calls to a quantum circuit on

S +

(
C + 2

log ϕ
+ 8 + o(1)

)
n ≈ S + (1.44C + 10.88) · n

qubits using O(n1/2 ·G+ n3/2) gates, where ϕ = (1 +
√
5)/2 is the golden ratio.
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We now state three corollaries of this general theorem. Using the classical O(n log n) mul-
tiplication algorithm due to [HvdH21] and implementing this using quantum unitary operators
(see Appendix C for details) would allow us to set G = S = O(n log n) and obtain the following
corollary:

Corollary 1.1. Under the same assumption as Theorem 1, there is a quantum circuit for
factoring that uses O(n log n) qubits and O(n3/2 log n) gates.

If we want to push the number of qubits needed all the way down to O(n), we can employ the
space-efficient quantum implementation of Karatsuba’s algorithm [KO62] due to Gidney [Gid19]
which uses S = O(n) ancilla qubits and G = O(nlog2 3) gates, yielding the following corollary:

Corollary 1.2. Under the same assumption as Theorem 1, there is a quantum circuit for
factoring that uses O(n) qubits and O(nlog2 3+1/2) gates.

This latter result achieves the same space complexity as Gidney’s version of Shor’s algo-
rithm [Gid19], except with O(

√
n) factor smaller number of gates.

Finally, if we want to use schoolbook multiplication because of its efficiency for integers of
practical length, we can slightly modify the space-efficient quantum implementation of school-
book multiplication due to [RNSL17] (see Appendix C for details about our modification). This
algorithm uses S = 2 ancilla qubits and G = O(n2 log n) gates, yielding the following corollary:

Corollary 1.3. Under the same assumption as Theorem 1, there is a quantum circuit for
factoring that uses (

C + 2

log ϕ
+ 8 + o(1)

)
n ≈ (1.44C + 10.88) · n

qubits and O(n5/2 log n) gates.

We compare these results with previous work on quantum circuits for factoring in Figure 1.
We also detail the various sources of space cost in our algorithm and potential areas for further
optimizations in Section 3.4.

The Number-Theoretic Assumption. We retain all notation from [Reg23] and restate
it here for convenience. Let N ≤ 2n be an n-bit number. Let d =

√
n and b1, . . . , bd be some

small O(log n)-bit integers (e.g. bi is the ith prime number) and let ai = b2i mod N . We use log

to denote the base-2 logarithm throughout this paper. Also, let ϕ denote the golden ratio.
Regev [Reg23] defines the following lattices in d dimensions:

L =

{
(z1, . . . , zd) ∈ Zd :

d∏
i=1

azii ≡ 1 mod N

}
, and

L0 =

{
(z1, . . . , zd) ∈ Zd :

d∏
i=1

bzii ≡ ±1 mod N

}
.

We make the following heuristic assumption, the same as the one made in [Reg23].

Conjecture 1.1. There exists a vector in L\L0 of ℓ2 norm at most T = 2C
√
n, for some

given constant C > 0.

As observed by [Reg23], a simple pigeonhole principle argument shows that there exists a
nonzero vector in L with norm at most 2(1+o(1))

√
n. Following Regev’s heuristic argument hence

suggests that taking C = 1+ϵ should be sufficient. Plugging this into the statement of Theorem
1 suggests that the space complexity of our circuit should be ≈ S + (12.32 + o(1))n.
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Algorithm Mult. algorithm Number of qubits Circuit size
Shor [Sho97] [HvdH21] O(n log n) O(n2 log n)

Shor Schoolbook O(n) O(n3)

Shor [Gid19] O(n) O(nlog2 3+1)

Optimized Shor
Schoolbook 2n+O(1) Õ(n3)

[Bea03, TK06, Gid17, HRS17]
Regev’s algorithm [Reg23] [HvdH21] O(n3/2) O(n3/2 logn)

Our optimization of Regev [HvdH21] O(n log n) O(n3/2 logn)

Our optimization of Regev [Gid19] O(n) O(nlog2 3+1/2)

Our optimization of Regev Schoolbook [RNSL17] (1.44C + 10.88 + o(1))n O(n5/2 log n)

Figure 1: Comparison of our results with previous work. Asymptotically optimal results for either
space or size are highlighted in bold. Note, importantly, that all values here are just for one run
of the circuit. They do not account for the fact that a circuit for Shor’s algorithm only requires
O(log n) independent runs, while a circuit for Regev’s algorithm as well as ours requires

√
n + 4

independent runs.

2 Overview of the Quantum Part of the Algorithm

Our only modification to Regev’s algorithm is in the quantum part; we refer the reader to
[Reg23] for a discussion of the classical post-processing. We summarize the three parts of the
quantum algorithm in the following sections.

Define R = 2(C+2+o(1))
√
n and let D be a power of 2 in [2

√
d ·R, 4

√
d ·R]. Note that D is also

2(C+2+o(1))
√
n. These are the same parameters R and D defined by [Reg23]. Regev defines R

to be 2C
′√n for sufficiently large C ′ and then D with the same definition that we use; the only

difference here is that we explicitly specify C ′ = C + 2 + o(1) in order to nail down the space
complexity of our circuit within 1+o(1) multiplicative error. See Appendix A for a justification
that this choice of C ′ suffices.

To help keep track of our algorithm’s space usage, all lemmas will clearly specify the number
of ancilla qubits needed (if any).

2.1 Constructing a Superposition over Vectors z

This proceeds exactly as in [Reg23]; we simply restate the output of this part and its space and
size guarantees. For s > 0, define the Gaussian function ρs : Rd → R as

ρs(z) = exp(−π||z||2/s2).

Then in this step, the algorithm constructs a discrete Gaussian state |ψ⟩ within 1/poly(d) trace
distance of the state proportional to: ∑

z∈{−D/2,...,D/2−1}d

ρR(z) |z⟩ .

For our purposes, we need the following lemma from [Reg23].
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Lemma 2.1. |ψ⟩ can be constructed in-place (that is, without any ancilla qubits) with

O(d(logD + poly(log d))) = O(n)

gates. The number of qubits needed to store the vector |z⟩ is d logD = (C + 2 + o(1))n.

2.2 A Quantum Oracle to Compute
∏d

i=1 a
zi+D/2
i mod N

Next, the algorithm computes (in superposition)

d∏
i=1

a
zi+D/2
i (mod N)

using a classical procedure (the offset by D/2 in the exponent is to make all exponents non-
negative).

Recall that we use G to denote the number of gates used by our n-bit multiplication circuit;
see the statement of Theorem 1 for a precise description. Then Regev achieves this step with
O(logD ·G) gates by using a repeated squaring procedure, while also exploiting the fact that
the ai’s are small to reduce the number of large-integer multiplications required. Our main
technical improvement is stated in the following lemma; we devote Section 3 to its proof.

Lemma 2.2. As in Theorem 1, let G and S be the number of gates and ancilla qubits
respectively for our multiplication circuit on n-bit integers. Then there exists a quantum
circuit mapping

|z⟩ |0A⟩ 7→ |z⟩ |
d∏

i=1

a
zi+D/2
i mod N⟩ |0A−n⟩ .

Here,

A = S +

(
C + 2

log ϕ
− C + 6 + o(1)

)
n

is the initial number of ancilla qubits. Moreover, this circuit uses O(n1/2 ·G+n3/2) gates.
Therefore, the total space usage here is

S +

(
C + 2

log ϕ
+ 8 + o(1)

)
n

qubits.

2.3 Measurement and QFT

This final stage also proceeds exactly as in [Reg23]. The algorithm measures the register storing∏d
i=1 a

zi+D/2
i (mod N) to collapse the |z⟩ register to a superposition over some coset of L. The

algorithm then applies an approximate QFT [Cop02] to the |z⟩ register and measures to obtain
a vector close to the dual lattice L∗. This is the output of the quantum part of the algorithm.
What we need is the following lemma from [Reg23, Cop02].

Lemma 2.3. The approximate QFT can be computed inplace with circuit size

O(d logD(log logD + log d)) = O(n log n)

gates. The space usage here is the number of qubits needed to store |z⟩, which is d logD =

(C + 2 + o(1))n qubits.
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3 Proof of Lemma 2.2

We construct the quantum oracle that computes the desired mapping in Lemma 2.2.

3.1 Reversible Fibonacci exponentiation

This is the key idea of our optimization. The bottleneck in [Reg23]’s construction of this oracle
is in the use of repeated squaring. As a simple example, suppose we have some n-bit integer
|a⟩ and we wish to compute |a2k mod N⟩ for some k. The natural classical-inspired approach
would be to use repeated squaring as follows:

|a⟩ 7→ |a2 mod N⟩ 7→ |a4 mod N⟩ 7→ . . . 7→ |a2
k

mod N⟩ .

The problem is that none of these operations are easily reversible; computing square roots mod
N is hard, and there is also the fact that squaring mod N is not one-to-one. Thus carrying out
this computation requires storing all of these quantities in separate registers. This leads to an
O(k) blow-up in the space complexity, which appears wasteful.

To get around this, we use the fact that it is much easier to implement reversible multi-
plication than squaring. Concretely, if we could implement an operation resembling |a⟩ |b⟩ 7→
|a⟩ |ab mod N⟩, we could proceed as follows:

|a⟩ |a⟩ 7→ |a⟩ |a2 mod N⟩ 7→ |a3 mod N⟩ |a2 mod N⟩ 7→ |a3 mod N⟩ |a5 mod N⟩ 7→ . . .

We now find Fibonacci numbers rather than powers of 2 in the exponent. For this reason,
previous works have also considered using Fibonacci numbers rather than powers of 2 in the
exponent for fast and reversible exponentiation [BMT+07, Kal17, Kle08, Mel07].

Notice that when using this idea, we will have an extra register lingering around. For exam-
ple, if our goal is to compute |a5 mod N⟩ in one register, this would give us |a3 mod N⟩ in the
other register. We would like to be able to clean this up, but fortunately this is straightforward;
we can copy the final output to a new register, and then uncompute our circuit to clean up all
intermediate qubits. This will just leave us with the inputs and outputs of our computation.
We will use this idea repeatedly in our algorithm.

We now state the critical lemmas that formalize this intuition. As in Theorem 1, we assume
throughout that we have a multiplication circuit that maps

|a⟩ |b⟩ |t⟩ |0S⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0S⟩

where a, b, t are all n-bit integers and 0 ≤ t < N . S hence denotes the number of ancilla qubits
used by the circuit, and we also use G to denote the number of gates in this circuit.

Our lemmas will also make use of some “dirty ancillas” that may not necessarily be in the |0⟩
state. This will allow us to reuse qubits from other parts of our algorithm and cut down on the
number of qubits needed in our circuit. The idea of using dirty ancillas to achieve space savings
was introduced by [HRS17] in relation to implementing Shor’s algorithm with fewer qubits.

The first lemma we need is essentially due to Shor [Sho97].

Lemma 3.1. Let a ∈ [0, N − 1] be an integer coprime to N . Then there exists a circuit
using O(G+ n) gates mapping |x⟩ |0S+n⟩ |g⟩ 7→ |ax mod N⟩ |0S+n⟩ |(−a−1g) mod N⟩ for any
integers x, g that are reduced mod N .

Hence this computation uses and restores S + n clean ancillas, while applying some
reversible transformation to n dirty ancillas that initially store the state |g⟩.
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Proof. We can classically precompute a−1 mod N efficiently using the extended Euclidean al-
gorithm. Now proceed as follows using our quantum multiplication circuit given in Theorem
1:

|x⟩ |0n⟩ |g⟩ |0S⟩ → |x⟩ |a⟩ |g⟩ |0S⟩ (writing in a classical constant using some bit-flips)

→ |x⟩ |a⟩ |(g + ax) mod N⟩ |0S⟩
→ |x⟩ |−a−1 mod N⟩ |(g + ax) mod N⟩ |0S⟩ (writing in a classical constant again)

→ |(x+ (−a−1 · (g + ax))) mod N⟩ |−a−1 mod N⟩ |(g + ax) mod N⟩ |0S⟩
= |(−a−1g) mod N⟩ |−a−1 mod N⟩ |(g + ax) mod N⟩ |0S⟩

→ |(−a−1g) mod N⟩ |a⟩ |(g + ax) mod N⟩ |0S⟩ (writing in a classical constant again)

→ |(−a−1g) mod N⟩ |a⟩ |(g + ax+ (−a−1g · a)) mod N⟩ |0S⟩
= |(−a−1g) mod N⟩ |a⟩ |ax mod N⟩ |0S⟩

→ |(−a−1g) mod N⟩ |0n⟩ |ax mod N⟩ |0S⟩ (writing in a classical constant again)

→ |ax mod N⟩ |0n⟩ |(−a−1g) mod N⟩ |0S⟩

This runs our multiplication circuit three times and does O(n) bit flips and bit swaps, for a
total of O(G+ n) gates. This completes our proof.

We also adapt this idea to the case where a may be a superposition of integers rather than
a classical constant in the next lemma.

Lemma 3.2. There exists a quantum circuit using O(G+ n) gates such that, for all n-bit
integers a, b, g ∈ [0, N − 1] such that a and b are coprime to N , it will map1

|a⟩ |a−1 mod N⟩ |b⟩ |b−1 mod N⟩ |g⟩ |0S⟩ 7→ |a⟩ |a−1 mod N⟩ |ab⟩ |(ab)−1 mod N⟩ |g⟩ |0S⟩ .

Hence this computation uses and restores S clean ancillas and n dirty ancillas.

Proof. The quantum multiplication circuit assumed in Theorem 1 allows us the following com-
putation when 0 ≤ t < N :

|a⟩ |b⟩ |t⟩ |0S⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0S⟩ .

We can also hence use the inverse of this circuit, which will behave as follows when 0 ≤ t < N :

|a⟩ |b⟩ |t⟩ |0S⟩ 7→ |a⟩ |b⟩ |(t− ab) mod N⟩ |0S⟩ .
1We are not concerned about the circuit’s behavior on other basis states.
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We can use these two circuits to proceed as follows.

|a⟩ |a−1 mod N⟩ |b⟩ |b−1 mod N⟩ |g⟩ |0S⟩
→ |a⟩ |a−1 mod N⟩ |b⟩ |b−1 mod N⟩ |(g + ab) mod N⟩ |0S⟩
→ |a⟩ |a−1 mod N⟩ |(b− (a−1 · (g + ab))) mod N⟩ |b−1 mod N⟩ |(g + ab) mod N⟩ |0S⟩

= |a⟩ |a−1 mod N⟩ |(−a−1g) mod N⟩ |b−1 mod N⟩ |(g + ab) mod N⟩ |0S⟩
→ |a⟩ |a−1 mod N⟩ |(−a−1g) mod N⟩ |b−1 mod N⟩ |((g + ab) + a · (−a−1g)) mod N⟩ |0S⟩

= |a⟩ |a−1 mod N⟩ |(−a−1g) mod N⟩ |b−1 mod N⟩ |ab mod N⟩ |0S⟩
→ |a⟩ |a−1 mod N⟩ |(−a−1g + a−1b−1) mod N⟩ |b−1 mod N⟩ |ab mod N⟩ |0S⟩
→ |a⟩ |a−1 mod N⟩ |(−a−1g + a−1b−1) mod N⟩ |(b−1 − (a · (−a−1g + a−1b−1))) mod N⟩ |ab mod N⟩ |0S⟩

= |a⟩ |a−1 mod N⟩ |(−a−1g + a−1b−1) mod N⟩ |g⟩ |ab mod N⟩ |0S⟩
→ |a⟩ |a−1 mod N⟩ |((−a−1g + a−1b−1) + a−1 · g) mod N⟩ |g⟩ |ab mod N⟩ |0S⟩

= |a⟩ |a−1 mod N⟩ |(ab)−1 mod N⟩ |g⟩ |ab mod N⟩ |0S⟩
→ |a⟩ |a−1 mod N⟩ |ab mod N⟩ |(ab)−1 mod N⟩ |g⟩ |0S⟩ .

This runs our multiplication circuit four times and its inverse twice and then does a constant
number of swaps of n-bit registers at the end, for a total of O(G+n) gates. This completes our
proof.

For the next lemma, we quickly set up some notation. Define the Fibonacci numbers by
F0 = 0, F1 = 1, and then Fk = Fk−1 + Fk−2 for k ≥ 2. Let K be maximal such that FK ≤ D.
We have:

K = (1 + o(1)) · logD
log ϕ

= (1 + o(1)) · (C + 2 + o(1))
√
n

log ϕ

= (α+ o(1))
√
n,

where we let α = C+2
log ϕ .

Also, let ψ(a) denote the state |a⟩ |a−1 mod N⟩ for an n-bit integer a coprime to and reduced
modulo N . Each ψ(a) hence requires 2n qubits to store.

Lemma 3.3. There exists a quantum circuit using O(K(G + n)) = O(n1/2(G + n)) gates
such that, for all n-bit integers c1, . . . , cK coprime to and reduced modulo N , it will map

ψ(c1)ψ(c2) . . . ψ(cK) |0S+5n⟩ 7→ ψ(c1)ψ(c2) . . . ψ(cK)ψ(

K∏
j=2

c
Fj−1

j )ψ(

K∏
j=1

c
Fj

j ) |0S+n⟩

(All registers throughout this lemma and its proof work with integers mod N , so we
drop the modN everywhere for convenience.)

Proof. We will use 4n of our ancillas to store two states ψ(x1) and ψ(x2). Thus the state at any
given point in our algorithm will be ψ(c1)ψ(c2) . . . ψ(cK)ψ(x1)ψ(x2) |0S+n⟩. We will update the
values of x1 and x2 throughout the algorithm.

Lemma 3.2 tells us that we can perform the operation ψ(x)ψ(y) |0S+n⟩ 7→ ψ(x)ψ(xy) |0S+n⟩
using O(G + n) gates. We denote this as updating y ← xy and will iteratively use this, as
described in Algorithm 3.1.
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Algorithm 3.1: Fibonacci multi-exponentiation
Data: Initial state ψ(c1)ψ(c2) . . . ψ(cK) |0S+5n⟩
Result: Final state ψ(c1)ψ(c2) . . . ψ(cK)ψ(

∏K
j=2 c

Fj−1

j )ψ(
∏K

j=1 c
Fj

j ) |0S+n⟩
1. Initialize x1 ← 1 and x2 ← 1. This is just a matter of copying some qubits into ancillas, and

the state is now
ψ(c1)ψ(c2) . . . ψ(cK)ψ(x1)ψ(x2) |0S+n⟩ = ψ(c1)ψ(c2) . . . ψ(cK)ψ(1)ψ(1) |0S+n⟩.

2. Repeat the following for j = K,K − 1, . . . , 1 in that order:

• Update x1 ← x1x2 using Lemma 3.2.
• Update x1 ← x1cj using Lemma 3.2.
• Swap x1 and x2 (i.e. swap ψ(x1) and ψ(x2)).

Before we show the correctness of our algorithm, let us quickly analyze its complexity. The
initialization takes O(n) gates. Within the loop, there are O(G+ n) gates from calls to Lemma
3.2 and then O(n) gates to swap x1 and x2. The loop has K iterations, so the total number of
gates is O(K(G+ n)) = O(n1/2(G+ n)).

Now we show that the algorithm runs correctly. The claim is that for all j ≤ K − 1, at
the end of round j, we will have x1 =

∏K
i=j+1 c

Fi−j

i and x2 =
∏K

i=j c
Fi+1−j

i . We show this by
induction.

First we check the base case i.e. the first two rounds where j = K,K − 1. In round K,
(x1, x2) evolves as follows: (1, 1)→ (1, 1)→ (cK , 1)→ (1, cK). Then in round K − 1, it evolves
as follows: (1, cK) → (cK , cK) → (cK−1cK , cK) → (cK , cK−1cK). This is consistent with our
claim for j = K − 1.

For the inductive step, assume the current round is j, and the previous round (indexed by
j + 1) has ended according to our claim. The current state is hence:

(x1, x2) = (

K∏
i=j+2

c
Fi−j−1

i ,

K∏
i=j+1

c
Fi−j

i ).

After the first update, x1 becomes:

K∏
i=j+2

c
Fi−j−1

i ·
K∏

i=j+1

c
Fi−j

i = cF1
j+1 ·

K∏
i=j+2

c
Fi−j−1+Fi−j

i

= cj+1 ·
K∏

i=j+2

c
Fi−j+1

i

=

K∏
i=j+1

c
Fi−j+1

i .

After the second update, it becomes:

cj ·
K∏

i=j+1

c
Fi−j+1

i =

K∏
i=j

c
Fi−j+1

i .

Swapping the registers now gives us the state (x1, x2) = (
∏K

i=j+1 c
Fi−j

i ,
∏K

i=j c
Fi−j+1

i ), complet-
ing our induction.
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After the j = 1 stage, our state is hence (
∏K

i=2 c
Fi−1

i ,
∏K

i=1 c
Fi
i ), as desired.

Note, importantly, that we would not want to use Lemma 3.3 directly in our algorithm;
storing c1, . . . , cK at the same time is an undesirable space overhead. Instead, we will compute
c1, . . . , cK on an as-needed basis and apply the same idea; this way, we only need to store one
of them at any given time. We explain how to do this and how we define the cj ’s in the next
section.

3.2 Combining Fibonacci exponentiation with [Reg23]’s optimization

To use the results from Section 3.1, we want to decompose each of our exponents as a sum of
distinct Fibonacci numbers. Concretely, recall that we want to compute the following expression:

d∏
i=1

a
zi+D/2
i .

So for each i ∈ [d], we would like to write:

zi +D/2 =

K∑
j=1

zi,jFj ,

for zi,j ∈ {0, 1}. It is well-known that this can be achieved with a simple greedy algorithm; see
Appendix B for details. Our first task is to compute these coefficients:

Lemma 3.4. There exists a quantum circuit using O(n3/2) gates mapping the state

|z⟩ |0dK−d logD⟩ |0O(
√
n)⟩ 7→ |zi,j : i ∈ [d], j ∈ [K]⟩ |0O(

√
n)⟩ .

Proof. We repeat the following greedy procedure for each i ∈ [d]. Note that integers here are
computed in absolute terms, rather than modulo N . We need the ability to compute in-place
additions and subtractions on O(

√
n)-bit integers with O(

√
n) ancillas; it was shown by [Dra00]

that this is possible. We also need to be able to compare integers of length O(
√
n), but this

need not be in-place so can also be done with O(
√
n) ancillas.

1. Let t denote the number in the register currently holding zi. First update t ← t + D/2

(so that this register now holds zi +D/2).

2. Set aside K ancillas to hold zi,j for j ∈ [K], so that zi,j = 0 for all j initially.

3. Now for each j = K,K − 1, . . . , 1, check whether t ≥ Fj and write the output of this
comparison to the qubit zi,j . Then use zi,j as a control qubit to conditionally update
t← t− Fj .

4. By Lemma B.1, this greedy algorithm will correctly decompose zi+D/2 as a sum
∑K

j=1 zi,jFj

of distinct Fibonacci numbers, and we will have t = 0 at the end. Hence we have freed up
those logD bits as ancillas to use in later steps.

We have already observed that correctness follows from Lemma B.1. For the runtime, each
step of the innermost loop over j uses O(logD) = O(

√
n) gates. So, each step of the outer loop

over i uses O(K logD) = O(n) gates. Finally, multiplying by d =
√
n yields a gate complexity

of O(n3/2).
Finally, we address space. All individual steps in the loop can clearly be done using O(

√
n)

ancillas (which we can then reuse). Other than that, each step of the loop consumes K ancillas
but then frees up logD ancillas. The total initial ancilla requirement is hence d(K − logD) +

O(
√
n) as desired.
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Now that we can calculate the zi,j ’s, let us write our desired expression in those terms:

d∏
i=1

a
zi+D/2
i =

d∏
i=1

K∏
j=1

a
zi,jFj

i

=

K∏
j=1

(

d∏
i=1

a
zi,j
i )Fj .

We can calculate each
∏d

i=1 a
zi,j
i efficiently following the idea by [Reg23] to exploit the fact that

the ai’s are very small integers:

Lemma 3.5. [Reg23] There exists a quantum circuit using O(
√
n log3 n) gates mapping

|t1⟩ . . . |td⟩ |0Õ(
√
n)⟩ 7→ |t1⟩ . . . |td⟩ |

d∏
i=1

atii ⟩ |0
Õ(

√
n)⟩

Here, the ti ∈ {0, 1} for all i.

Proof. [Reg23] shows that such a computation can be done classically with O(d log3 d) =

O(
√
n log3 n) gates. We can implement this using unitary gates and just use

√
n log3 n = Õ(

√
n)

ancillas for all intermediate values in the circuit. Then we copy the final output |
∏d

i=1 a
ti
i ⟩ to a

fresh register; each ai is O(log d) bits so we need O(d log d) = Õ(
√
n) ancillas and O(d log d) =

O(
√
n log n) gates to do this. Finally, we can just uncompute the original circuit to restore all

ancillas to |0⟩. In total, we have used Õ(
√
n) ancillas and O(

√
n log3 n) gates, as desired.

Combining these ideas allows us to outline the algorithm. Define cj =
∏d

i=1 a
zi,j
i for each

j ∈ [K]. Then we have:

d∏
i=1

a
zi+D/2
i =

K∏
j=1

(

d∏
i=1

a
zi,j
i )Fj

=

K∏
j=1

c
Fj

j .

We can use Lemma 3.5 to compute each cj , and Lemma 3.3 to finally compute this product.
The only missing detail is that of computing c−1

j , which we do as follows:

c−1
j =

d∏
i=1

a
−zi,j
i

= (

d∏
i=1

a−1
i ) ·

d∏
i=1

a
1−zi,j
i .

We can compute the latter expression using Lemma 3.5 since the exponents are now in {0, 1}.
Then we can apply Lemma 3.1 using the classical constant

∏d
i=1 a

−1
i to finish computing c−1

j .
We formally detail all of this in the next section.
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Algorithm 3.2: Quantum oracle for
∏d

i=1 a
zi+D/2
i mod N

Data: Initial state |z⟩ and S + (α− C + 6 + o(1))n ancilla qubits in the |0⟩ state.
Result: Final state comprising |z⟩ |

∏d
i=1 a

zi+D/2
i mod N⟩ and S + (α− C + 5 + o(1))n

qubits in the |0⟩ state.
We will reserve n ancillas for the final step of the algorithm, and for the most part use the
other S + (α− C + 5 + o(1))n ancillas. Call these the primary ancillas.
1. Use Lemma 3.4 to compute and store the values |zi,j⟩ for all i ∈ [d] and j ∈ [K]. Note that

this step also “overwrites” the qubits storing |z⟩. (This consumes
dK − d logD = (α− C − 2 + o(1))n qubits, leaving S + (7 + o(1))n primary ancillas.)

2. Set aside 4n ancillas. These will store our states ψ(x1) and ψ(x2). Initialize x1 ← 1 and
x2 ← 1. (This leaves S + (3 + o(1))n primary ancillas.)

3. Repeat the following for j = K,K − 1, . . . , 1 in that order:

(a) Consider the qubits zi,j′ for i ∈ [d] and j′ ̸= j. There are
d(K − 1) ≥ (α− o(1))n ≥ ( 2

log ϕ − o(1))n > 2n such qubits, and we will not use any of
them for this iteration of the loop. Hence we may take n− 1 of these qubits and
pre-pend one clean qubit in the |0⟩ state to obtain n dirty ancillas. We now have S + 3n

clean primary ancillas available.
(b) Update x1 ← x1x2 using Lemma 3.2. (This temporarily uses and restores S clean

ancillas and n dirty ancillas, which we have.)
(c) Now we prepare the state ψ(cj):

i. Calculate the state |cj⟩ using Lemma 3.5 and store it in an n-bit register. (We now
have S + 2n primary ancillas.)

ii. Calculate the state |
∏d

i=1 a
1−zi,j
i mod N⟩ using Lemma 3.5 and store it in another

n-bit register. (We now have S + n primary ancillas.)
iii. Use Lemma 3.1 with the classical constant

∏d
i=1 a

−1
i mod N to update the register

from the above step to contain |c−1
j mod N⟩. (This will use and then restore all

S + n of our remaining primary ancillas, as well as modifying our n dirty ancillas.)
(d) We now have the state ψ(cj), so we can update x1 ← x1cj using Lemma 3.2. (This will

use and then restore S clean primary ancillas and n dirty ancillas.)
(e) Now we uncompute the state ψ(cj), returning all qubits to |0⟩. This can be done by just

applying in reverse order the inverses of the circuits used to construct this state. (This
will use S + n of our available primary ancillas and then also free up the 2n ancillas
containing ψ(cj), so we are now back to S + 3n primary ancillas. Additionally, this will
return all dirty ancillas to their original value, since the dirty ancillas are only modified
in the construction of ψ(cj) when we use Lemma 3.1.)

(f) Swap x1 and x2 (i.e. swap the registers ψ(x1) and ψ(x2)).

4. Copy the state |x2⟩ (i.e. the first n qubits of ψ(x2)) to our n reserved ancillas. Now
uncompute the entire algorithm up to this point (i.e. apply the inverse circuit); this will
restore the state |z⟩ and reset all primary ancillas to |0⟩.
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3.3 Proof of Lemma 2.2

Our procedure is detailed in Algorithm 3.2. We track the use of ancillas in the algorithm
description.

First we address the correctness of our algorithm. We make some important observations to
justify our use of dirty ancillas:

• At step j in the loop, our algorithm does use any qubit zi,j′ for j′ ̸= j, so the fact that
these qubits might change value during the loop will not affect how x1 and x2 are updated.

• We also need to check that our dirty ancillas are usable in Lemmas 3.1 and 3.2 i.e. that
g ∈ [0, N − 1], where |g⟩ is the value stored by these ancillas. Initially, this is ensured by
the fact that the first bit of g is 0 i.e. g < 2n−1 ≤ N . Additionally, even though Lemma
3.1 modifies g, it replaces g with some other value that is reduced mod N . So g will always
be in [0, N − 1].

• Any application of Lemma 3.2 will preserve the value of these dirty ancillas.

• The one application of Lemma 3.1 when constructing ψ(cj) will modify the dirty ancillas,
but this will be reversed at the end of step j in the loop when uncomputing ψ(cj). Hence
the value of these qubits is ultimately restored at the end of the loop.

Now that we have shown that our use of dirty ancillas does not affect anything, cor-
rectness follows from the proof of Lemma 3.3; at the end of step 3, we will have |x2⟩ =

|
∏K

j=1 c
Fj

j mod N⟩ = |
∏d

i=1 a
zi+D/2
i mod N⟩, and this will be copied into the reserved ancil-

las. Then after step 4, the remaining qubits will be restored to the initial state containing |z⟩
and the primary ancillas set to |0⟩.

Finally, we check the size of our circuit. The steps before the loop use O(n3/2) gates. Now,
for each step of the loop over j:

1. Each application of Lemma 3.2 uses O(G+ n) gates.

2. Computing and later uncomputing the state ψ(cj) uses O(G+ n) gates.

3. The final swap uses O(n) gates.

The loop runs for K iterations, so the total circuit size from the loop will be O(K(G + n)) =

O(n1/2(G + n)) gates. Combining this with the initialization steps yields a circuit of size
O(n1/2 · G + n3/2) up to and including step 3. Step 4 simply doubles this circuit complexity
(due to the uncomputation) with an O(n) overhead to copy |x2⟩. Hence the asymptotic circuit
size is still O(n1/2 ·G+ n3/2), completing the proof of Lemma 2.2.

3.4 Potential Future Space Optimizations

We have shown that Regev’s factoring algorithm can be implemented using just

S +

(
C + 2

log ϕ
+ 8 + o(1)

)
n

qubits, while retaining the asymptotic O(n1/2 · G + n3/2) circuit size. We remind the reader
that here G and S denote the number of gates and the number of ancilla qubits respectively for
our multiplication circuit on n-bit integers.

A natural question is whether this can be optimized further, particularly the constant C+2
log ϕ+8

in the linear term. To this end, we describe the various space costs incurred by our algorithm
below:
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1. αn =
(
C+2
log ϕ + o(1)

)
n qubits are used to store the qubits zi,j for i ∈ [d] and j ∈ [K]. This

is a slight blow-up from the (C + 2 + o(1))n bits that we really need to store all the zi’s.
This does appear inefficient, because at any given point in our algorithm we are only
interested in one particular value of j. However, the natural way to compute the zi,j ’s
involves iterating through each value of i (since we decompose zi + D/2 as a sum of
Fibonacci numbers to obtain the zi,j ’s). A potential workaround would be to find a way
to compute zi,j given i and j in a more efficient way than actually calculating the entire
representation of zi +D/2 as a sum of Fibonacci numbers, but we are not aware of how
to do this.

2. S + n clean ancillas are needed for the multiplication operations given in Lemmas 3.1
and 3.2. This is already quite optimized due to our use of dirty ancillas in these lemmas.
However, we believe this can be brought down to S (which is necessary for us to be able
to use our multiplication circuit).
The only reason we need the extra n ancillas is in Lemma 3.1, which we use with a =

(
∏d

i=1 a
−1
i ) mod N . These n qubits are used to write in a and −a−1 so that we can use our

multiplication circuit to multiply by these integers. We stated our algorithm in this way so
that all our multiplication operations could be carried out via one convenient abstraction.
However, following ideas by Shor [Sho97], it should be possible to instead construct circuits
for “multiplication by a” and “multiplication by −a−1”, thereby baking these values into
the circuit architecture without requiring a and −a−1 to explicitly be written down in
another register. This would save us n qubits of space cost.

3. 4n ancillas are needed to store the “accumulator” states ψ(x1) and ψ(x2). We are not
aware of any approaches to bypass this requirement.

4. 2n ancillas are used to store the state ψ(cj) = |cj⟩ |c−1
j mod N⟩. This is potentially

unnecessary; cj =
∏d

i=1 a
zi,j
i is a product of at most d integers of O(log d) bits each, so cj

only comprises O(d log d) = Õ(
√
n) bits. While the same cannot be said of c−1

j mod N , it
might be possible to instead store

∏d
i=1 a

1−zi,j
i (which also only comprises Õ(

√
n) bits) in

its place, and bake the fixed multiplier (
∏d

i=1 a
−1
i ) mod N into the circuit architecture.

Once again, we used n qubits for each of these registers so that we could maintain a clean
abstraction for multiplication operations, namely multiplying two n-bit integers that are
reduced mod N . It may be possible to improve this if the multiplication algorithm being
used can multiply a small integer with an n-bit integer without padding to make both
integers n bits.

5. Finally, n ancillas are reserved for copying the final output of our quantum oracle, so that
we can uncompute the entire algorithm and clean up intermediate registers. We are not
aware of a way to bypass this.
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A Justifying the choice of R (and hence D)

Let δ =
√
d√
2R

. Then the inequality in the analysis by [Reg23] that requires R to be sufficiently
large is the following (see section 5 of [Reg23]:

(2d+ 4)1/2 · 2d+2 · (d+ 5)1/2 · T < δ−1(4 · 2n)−1/(d+4)/6

⇔ (2d+ 4)1/2 · 2d+2 · (d+ 5)1/2 · 2C
√
n <

√
2R√
d
· (4 · 2

n)−1/(d+4)

6

⇔ log2R > log2(6d
1/2 · (d+ 2)1/2 · 2d+2 · (d+ 5)1/2 · 2C

√
n · 2(n+2)/(d+4))

= o(
√
n) + C

√
n+ (d+ 2) +

n+ 2

d+ 4
)

= o(
√
n) + C

√
n+
√
n+
√
n

= (C + 2 + o(1))
√
n,

thus our choice of R (and hence D) is sufficient.

B Decomposing Positive Integers as a Sum of Fibonacci
Numbers

It was shown by [Zec72] that any positive integer has a unique decomposition as a sum of
Fibonacci numbers, if we enforce that no two of the Fibonacci numbers should be consecutive.
We only need a weaker property, which we restate and prove here:
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Lemma B.1. Consider the following algorithm, that takes as input a non-negative integer
t0 < Fk+1. Initialize t ← t0 and S to be the empty set. Now for j = k, k − 1, . . . , 1, check
whether t ≥ Fj. If it is, update t← t− Fj and add Fj to S.

Then at the end of the algorithm, we will have t = 0 and the elements of S adding to
t0.

Proof. First, observe that the algorithm clearly ensures that t ≥ 0 at all times, and that t and
the elements of S together add to t0. Hence it suffices to show that at the end of the algorithm,
we will have t = 0.

We do this by strong induction on k. The base case k = 1 follows trivially since t < F2 = 1

forces t = 0, so we are already done. We also consider the base case k = 2; in this case we have
t < F3 = 2. If t = 0 then we are already done. Else we have t = 1 = F2. The algorithm will
hence add F2 to S and t will become 0.

Now for the inductive step, consider k > 2. We have two cases:

• If t < Fk, then in the j = k round nothing will happen, and we simply reduce to the k− 1

case.

• If t ≥ Fk, then in the j = k round t will be replaced by t − Fk < Fk+1 − Fk = Fk−1.
Hence nothing will happen in the j = k − 1 round, and at this point we have reduced to
the k − 2 case.

Either way, the conclusion follows by induction.

C Implementation of Our Multiplication Oracle

In Theorem 1 and our algorithm, we assume a quantum multiplication circuit that takes a
specific form, mapping |a⟩ |b⟩ |t⟩ |0S⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0S⟩. However, multiplication
circuits will typically only offer the guarantee that |a⟩ |b⟩ |0n⟩ |0S⟩ 7→ |a⟩ |b⟩ |ab mod N⟩ |0S⟩. In
this section, we show that this does not pose a significant barrier.

We first describe how to take a circuit with the weaker guarantee and construct a circuit
with our specific form, at the expense of n additional ancillas. The key ingredients for our
constructions in this section are the following space-efficient primitives for modular doubling
and addition, due to [RNSL17]:

Lemma C.1. [RNSL17] There exists a circuit using O(n log n) gates mapping |x⟩ |y⟩ |0⟩ |0⟩ 7→
|x⟩ |(x+ y) mod N⟩ |0⟩ |0⟩. Here, x and y are reduced mod N , and each |0⟩ is just one in-
dividual ancilla qubit.

Lemma C.2. [RNSL17] Provided N is odd, there exists a circuit using O(n log n) gates
mapping |x⟩ |0⟩ |0⟩ 7→ |2x mod N⟩ |0⟩ |0⟩. Here, x is once again reduced mod N , and we only
have two ancilla qubits.

Using the addition lemma, we have our first simple result:

Lemma C.3. Suppose we have a quantum circuit using G0 gates that maps

|a⟩ |b⟩ |0n⟩ |0S0⟩ 7→ |a⟩ |b⟩ |ab mod N⟩ |0S0⟩ ,

and S0 ≥ 2. Then there is also a quantum circuit using O(G0 + n log n) gates that maps

|a⟩ |b⟩ |t⟩ |0S0+n⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0S0+n⟩ ,

whenever t is reduced mod N .
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Proof. We proceed as follows:

|a⟩ |b⟩ |t⟩ |0n⟩ |0S0⟩ → |a⟩ |b⟩ |t⟩ |ab mod N⟩ |0S0⟩ (using the given circuit)

→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |ab mod N⟩ |0S0⟩ (using Lemma C.1)

→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0n⟩ |0S0⟩ (using the inverse of the given circuit)

The number of gates is clearly O(G0 + n log n), so this establishes the lemma.

Note in particular that this justifies our application of the multiplication algorithms by
[HvdH21] and [Gid19] to Theorem 1:

• [HvdH21] implies a circuit with G0 = O(n log n) and S0 = O(n log n), so we can take
G = O(G0 + n log n) = O(n log n) and S = S0 + n = O(n log n).

• [Gid19] implies a circuit with G0 = O(nlog2 3) and S0 = O(n), so we can take G =

O(G0 + n log n) = O(nlog2 3) and S = S0 + n = O(n).

Finally, we show how to construct a circuit using schoolbook multiplication where only O(1)

ancillas are needed. [RNSL17] already constructs a circuit mapping |a⟩ |b⟩ |0n⟩ 7→ |a⟩ |b⟩ |ab mod N⟩,
but we want to avoid the n-qubit overhead of the conversion procedure in Lemma C.3. Fortu-
nately, this can be done with just a slight tweak of their shift-and-add construction:

Lemma C.4. Provided N is odd, there exists a quantum circuit using O(n2 log n) gates
that maps

|a⟩ |b⟩ |t⟩ |0⟩ |0⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0⟩ |0⟩ ,
whenever a, b, t are all reduced mod N .

Proof. Label the bits comprising a as a0, a1, . . . , an−1, so that a =
∑n−1

i=0 ai2
i. Then observe

that

ab = (

n−1∑
i=0

ai2
i)b =

n−1∑
i=0

ai · (2ib).

This suggests the following algorithm:

1. Let x, y, z denote the values in the register containing a, b, t respectively. So initially we
have x = a, y = b, z = t.

2. Repeat the following for i = 0, 1, . . . , n− 1:
(a) Use ai as a control bit for the circuit in Lemma C.1 to update z ← (z + aiy) mod N .

We have the necessary two ancillas for this.
(b) Use Lemma C.2 to update y ← 2y mod N . We have the necessary two ancillas for

this.
3. Repeat the following n times: update y ← y/2 mod N . This can be done using the inverse

of the circuit from Lemma C.2. Once again, this only needs two ancillas.

First, note that we make O(n) calls to the circuits in Lemmas C.1 and C.2, implying the gate
complexity of O(n2 log n).

To see correctness, it is straightforward to show by induction that at the end of step i within
the loop in stage 2, we will have:

x = a,

y = 2i+1b mod N, and

z = (t+

i∑
j=0

aj · 2jb) mod N.

18



So at the end of stage 2, we will have x = a, y = 2nb mod N , and z = (t + ab) mod N . Then
after stage 3, y will become b again. The ancillas are returned to 0 in each step, so the final
state after applying our algorithm will be

|x⟩ |y⟩ |z⟩ |0⟩ |0⟩ = |a⟩ |b⟩ |(t+ ab) mod N⟩ |0⟩ |0⟩ ,

as desired.
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