
On the Privacy of Sublinear-Communication
Jaccard Index Estimation via Min-hash Sketching

Seung Geol Choi1, Dana Dachman-Soled2, Mingyu Liang2,3, Linsheng Liu3, and
Arkady Yerukhimovich3

1 United States Naval Academy
2 University of Maryland, College Park

3 George Washington University

Abstract. The min-hash sketch is a well-known technique for low-
communication approximation of the Jaccard index between two input
sets. Moreover, there is a folklore belief that min-hash sketch based pro-
tocols protect the privacy of the inputs. In this paper, we investigate this
folklore to quantify the privacy of the min-hash sketch.
We begin our investigation by considering the privacy of min-hash in a
centralized setting where the hash functions are chosen by the min-hash
functionality and are unknown to the participants. We show that in this
case the min-hash output satisfies the standard definition of differential
privacy (DP) without any additional noise. This immediately yields a
privacy-preserving sublinear-communication semi-honest 2-PC protocol
based on FHE where the hash function is evaluated homomorphically.
To improve the efficiency of this protocol, we next consider an implemen-
tation in the random oracle model. Here, the protocol participants jointly
sample public prefixes for domain separation of the random oracle, and
locally evaluate the resulting hash functions on their input sets. Unfortu-
nately, we show that in this public hash function setting, the min-hash
output is no longer DP. We therefore consider the notion of distributional
differential privacy (DDP) introduced by Bassily et al. (FOCS 2013). We
show that if the honest party’s set has sufficiently high min-entropy then
the output of the min-hash functionality achieves DDP, again without any
added noise. This yields a more efficient semi-honest two-party protocol
in the random oracle model, where parties first locally hash their input
sets and then perform a 2PC for comparison.
By proving that our protocols satisfy DP and DDP respectively, our
results formally confirm and qualify the folklore belief that min-hash
based protocols protect the privacy of their inputs.

1 Introduction

Min-hash sketch. The min-hash sketch is a simple and well-known technique to
produce an unbiased estimate of the Jaccard index [8,32]. The Jaccard index [29]
is a similarity measure between two sets A and B, denoted J(A,B), which is
defined as the fraction of the elements in the intersection of A and B divided
by the number of elements in the union of them. That is, J(A,B) = |A∩B|

|A∪B| .
The Jaccard index has seen wide application for clustering of websites and

documents [8,9], community identification [43], DNA matching [13], and machine
learning [45,30].

However, computing the Jaccard index exactly, especially when the input
sets are large, can be costly. The min-hash sketch allows communication-efficient
approximation. The basic idea behind the min-hash sketch is to apply a random
permutation π to both sets A and B and then to see whether the last item in
both sets (under this permutation) is the same. Since this permutation is applied
over all elements in A ∪B, it is easy to see that the last item will be the same
exactly when the last item over A ∪B is in both A and B. Specifically,

Pr[last item in π(A) = last item in π(B)] =
|A ∩B|
|A ∪B|

= J(A,B)

Thus, to get an unbiased approximation of the Jaccard index, it suffices to repeat
this procedure with sufficiently many random permutations.
Motivation. Due to its simplicity and efficiency, the min-hash sketch has
become a very popular tool to approximate the Jaccard index. Moreover, since
the min-hash sketch only needs to compare the last items in the permuted sets,
it has been a key building block when maintaining privacy of the input sets is
important, e.g., if the input sets represent fingerprints, DNA, or medical records.
There are two classes of solutions for privacy-preserving min-hash. The first class
of solutions (e.g. [13,37,22]) considers how to compute the min-hash in a two-
party setting, where the parties do not trust each other with their private inputs.
The goal of these works is to design secure two-party computation protocols for
computing the min-hash sketch as efficiently as possible, but they generally do
not consider the implication of revealing the final result. The second line of work
(e.g. [46,47,1]) considers how to make the min-hash itself more privacy-preserving.
Specifically, these works consider adding noise to the output of the min-hash
algorithm to guarantee differential privacy (DP) of individual items in the input
sets.

These works serve as the starting point for our paper. We aim to design
protocols for two-party secure estimation of the Jaccard index that additionally
preserve the privacy of individual items inside the input sets. But, unlike prior
work, we make a very important restriction. To minimize the error of the ap-
proximation and to guarantee reproducibility of the results, we do not allow our
protocol to add any additional noise to the output of the min-hash protocol. This
goal forces us to ask the following critical question:

Does the min-hash algorithm itself provide privacy guarantees for its
inputs?

Differential privacy of the min-hash sketch. Somewhat surprisingly, we
show that the answer to this question is yes. Specifically, we show that under
certain application scenarios and restrictions on the input sets, the error of the
min-hash approximation of the Jaccard index is actually sufficient to achieve
differential privacy. Essentially, the error of the sketch acts as noise to protect the

2

privacy of the inputs. Similar observations that sketching algorithms inherently
preserve privacy have previously been shown for the Johnson-Lindenstrauss
sketch [7], the LogLog sketch [12,42], and other sketches [44].

To get an understanding of the underlying privacy of the min-hash protocol,
we first consider a setting with a set of private permutations chosen by the
functionality (or a trusted curator in the standard differential privacy setting)
and unknown to the parties. The functionality then uses these permutations to
find the minimum item in the two sets and output the total number of times
the minimums match. Standard differential privacy in this setting requires that
conditioned on knowledge of A and all but one element of B (denoted by x∗),
the probability that the functionality outputs any value out when x∗ ∈ B versus
when x∗ /∈ B differs by a factor of at most eϵ with all but negligible probability.

We note that min-hash is not differentially private in this setting if A ∩B is
either too large or too small. For example, if |A∩B| = 0 when x∗ /∈ B and 1 when
x∗ ∈ B, then min-hash always outputs 0 in the first case and outputs a count
≥ 1 with noticeable probability in the second. We prove the following theorem
showing that when this is not the case the min-hash output is differentially
private:

Theorem 1 (Informal). If the size of the intersection is a constant fraction of
the size of A and B, then the output of this min-hash protocol is (ϵ, δ)-DP for
negligible δ.

We stress that this theorem crucially relies on the fact that the parties, and
the adversary, do not have any information about the chosen permutations, and
cannot learn the evaluation of the permutations on their own inputs. This, of
course, poses a particular challenge if one wants to deploy this protocol without
relying on a trusted curator or functionality. However, despite this challenge, we
note that using fully-homomorphic encryption [24] to evaluate the permutations
and compare the minimums, it is possible to build a protocol with sublinear
communication. Since it securely realizes the functionality (with semi-honest
security), the protocol would be computational DP [5,17,36,39]. Additionally,
since the error is unbiased and from an easily sampleable distribution, this
protocol is also a secure approximation [23] of the Jaccard index in that it leaks
no information about the input sets beyond the Jaccard index.
Distributional DP in the two-party setting. However, the need to keep
the permutations private in Theorem 1 forces our initial protocol to evaluate the
permutations inside of FHE for each input, resulting in an inefficient protocol in
practice.

Therefore, we consider what happens if we do not keep the permutations
private from the parties. The major benefit of revealing the permutations is that
the parties can then apply them to their own sets locally, and only perform
secure computation to compare the minimum elements and count the number of
matches. Thus, allowing for much simpler protocols with sublinear communication
and only Õ(k) secure gate evaluations where k is the number of permutations
which is far smaller than the input size.

3

Unfortunately, there is a problem with the above approach. It is easy to
see that, if we reveal the permutations, the min-hash protocol is not in fact
differentially private, as defined above. The problem stems from the fact that in
the standard DP setting, we assume that the adversary knows all of the inputs
(in this case, all entries in both sets A and B) except for some input x∗ and wants
to determine, from the output of the computation, whether x∗ was in the other
party’s set. If the permutations are known, then the adversary can reconstruct
the min-hash exactly both for the case when x∗ is in the set and when it is not,
and then see which of these matches the output it received. Since the min-hash
protocol provides a good approximation of the Jaccard index, the adversary will
be able to exactly determine whether or not x∗ ∈ B with noticeable probability.

The above gives a counter-example against the differential privacy of min-hash
in the public permutation setting. However, does it really give rise to a realistic
privacy breach?

The above attack works only if the adversary knows the entirety of both
sets A,B and just tries to distinguish whether x∗ ∈ B or not. Realistically, the
adversary would not know the entire input of the honest party. Indeed, parties
would only want to perform a secure computation on their private inputs in
the first place if they did not already know what the answer would be. In the
context of min-hash, this means that the adversary does not already know a
good portion of the honest party’s input set. More precisely, this motivates the
assumption that given the adversary’s set (and even the intersection between
the two sets), the honest party’s set still has sufficiently high min-entropy. With
this assumption, we turn to the tool of distributional DP (DDP) [4] which allows
us to analyze differential privacy when the distribution of inputs has sufficient
uncertainty.

We begin with a relatively strong assumption on the amount of uncertainty
the adversary has about the honest set. Specifically, we assume that every element
that is not in the intersection is highly unpredictable (i.e., has a high amount
of min-entropy), even conditioned on all the other set elements. Under this
assumption, we prove the following theorem:

Theorem 2 (Informal). If each non-intersecting item has sufficiently high
min-entropy, revealing the hash functions4 together with the min-hash counts
preserves (ϵ, δ)-DDP for negligible δ, as long as the size of the intersection is a
constant fraction of the size of A and B.

Not surprisingly, the proof of this Theorem (given in Section 4.2) leverages
the fact that when each element has individual high min-entropy, hashing each
element acts as a strong randomness extractor, thus resulting in sufficient random
noise for privacy.
DDP over a polynomial-size universe. However, this assumption that every
item has high min-entropy is quite strong. For example, consider the setting
where each item in B is chosen from a polynomial-size universe. In this case,
4 We use cryptographic hash functions to instantiate the permutations in the random

oracle model.

4

while individual items cannot have much min-entropy, the honest party’s set may
still collectively have high min-entropy as long as it is large enough. Thus, for
our third result, we analyze what happens under this weaker assumption that
only the full honest set, instead of each individual item, has high min-entropy.

Note that in this case, we cannot apply the hash function as randomness
extractor technique. This is because in order to guarantee that the randomness
extractor yields output that is negligibly close to uniform, we must lose super-
logarithmic in n bits of entropy from each input. However, in the case we are
currently considering, each element has at most O(log n) bits of min-entropy.
Further, we in fact have no guarantee that each element has individually high
min-entropy (since the elements are not necessarily independent), but only that
the total min-entropy of the non-intersection items is high. Nevertheless, we
show the min-hash protocol still achieves DDP, by proving a new strong chain
rule for min-entropy (see Section 7).

Specifically, we consider the following class of distributions C over secret sets
R of size n:

– Let U be a universe of polynomial size n · ℓ, where ℓ = Ω(n3).
– R is chosen uniformly from all subsets of U of size n.
– Arbitrary leakage L = L(R) is computed on R, we require that the length of

the leakage L is at most |L| ≤ c · n log ℓ, for a fixed constant c ∈ (0, 1).
– We consider the resulting conditional distribution D on R given leakage L.

Theorem 3 (Informal). Assume the set R is drawn from a distribution D ∈ C.
Then the min-hash protocol in the random oracle model preserves (ϵ, δ)-DDP for
negligible δ, as long as the size of the intersection is a constant fraction of the
size of A and B.

On spoiling bits and leakage resilience. Consider a distribution over sets
of n elements R = R1, . . . , Rn, where each Ri is chosen from a universe of size
ℓ ∈ Ω(n). Note that the set R can have min-entropy Ω(n lg(ℓ)) while it can still be
possible that for every i, the marginal distribution over Ri has only constant min-
entropy (see Example 1.1 in [20]). To deal with such situations, Skórski [40] proves
a theorem showing the existence of “spoiling bits.” Namely, given R1, . . . , Rn,
some additional information known as spoiling bits can be released such that,
conditioned on this information, for each i ∈ [n], the distribution of Ri conditioned
on R<i, where R<i denotes (R1, . . . , Ri−1), is nearly flat (in the sense that the
min/max entropy gap is at most a small additive constant). Further, the total
number of spoiling bits that are released is small.

It is not hard to use Skórski’s result to show that if R starts out with
sufficiently high min-entropy then for a large fraction of i (those in the set
V ⊆ [n]), the distribution of Ri conditioned on R<i has high min-entropy of at
least Ω(log(n)), while the remaining indices (those in the set W = [n] \ V)) may
have low min-entropy.

Unfortunately, this result is very brittle in the sense that the flatness conditions
hold only for this particular distribution of R conditioned on the spoiled bits.

5

Specifically, despite the flatness condition being satisfied for this distribution,
the random variables Ri are not independent of one another. Thus, if additional
information is leaked on Rj after the spoiling bits are computed, then the flatness
guarantees may no longer hold for Ri.

In our setting, we require additional leakage {ℓi}i∈W on the elements {Ri}i∈W .
One issue is that the set W (i.e., low min-entropy elements conditioned on the
spoiling bits) is only known after the spoiling bits are computed. This leaves us
with a dilemma:

– Leaking {ℓi}i∈W additionally after the spoiling leakage can destroy the
flatness property.

– On the other hand, if we want leak {ℓi}i∈W before computing the spoiling
bits, we are not able to do so, since we don’t know W yet! We could leak from
all the blocks (R1, . . . , Rn), but then it may destroy the properties needed
from the random variables {Ri}i∈V .

To solve this problem, we prove a new variant of the spoiling lemma that
computes the spoiling bits at the same time as the additional leakage ℓi for i ∈W
is computed so that the spoiling bits also contain {ℓi}i∈W , while still maintaining
the flatness condition. The types of leakage that can be captured are essentially
those such that the leakage ℓi for i ∈ W can be expressed as a function of Ri

and the leakages {ℓj : j > i, j ∈ W}. It turns out that the leakage we need for
our result has this form.

We state our theorem in general terms as we believe it may find further
applications in leakage resilient cryptography. For the formal theorem statement
see Theorem 4.

Adversary model. All of the protocols described above are secure in the
random oracle model against a semi-honest adversary corrupting one of the
parties. Achieving malicious security, especially for the DDP protocol, is an
interesting open question.

Empirical evaluation and reproducible computation. We also perform
empirical evaluation of our protocols corresponding to the first two theorems to
determine the proper parameter ranges for privacy. While Theorem 3 obtains
strictly better parameters than Theorem 2 from an asymptotic perspective, due
to the constants behind the Big-O notation, the guarantees only kick in at large
values of n. On the other hand, our empirical evaluation shows that Theorem 2
can be applicable for practical settings of n. We believe that the large constants
in Theorem 3 are a byproduct of our analysis but are not inherent. Improving
our analysis and optimizing the practical parameters are left as an open problem.

Our results show that in many cases, the min-hash sketch is already sufficient
to achieve differential privacy of the inputs. This result allows us to build low-
error and sublinear communication protocols for approximating the Jaccard
index. Moreover, in addition to preserving privacy, these results are reproducible,
generating the same output if run with the same inputs and the same hash
functions.

6

Finally, this leads to the following encouraging observation. The min-hash has
been in use for a long time, and in that time people have not really considered
whether the results they were computing and storing were privacy preserving. As
we now show that the min-hash sketch itself is DP, this gives evidence that prior
computation may already preserve privacy of the individual inputs.

2 Related Works

Differential privacy (DP). Differential privacy protects the privacy of individ-
uals by limiting an adversary’s ability to learn information about an individual
input from the output of a computation [16,18].

A large body of works have developed differentially private algorithms [19] for
a variety of computations. Most of these works focused on the standard setting
with a trusted curator who has access to all users’ data and aims to respond in a
differentially private manner.

Differential privacy has also been considered in a multi-party setting. In this
setting two common approaches for differential privacy are local-DP, where parties
add noise to their own inputs prior to performing the computation (e.g., [21,31])
or secure computation emulating the trusted curator (e.g., [6])
Optimizing secure computation using differential privacy. Another
direction of work has considered how to use DP to reduce the cost of secure
computation, especially when we aim for DP-style guarantees from the final
output. Beimel et al. [6] first proposed such optimization for the problem of
secure summation. He et al. [28] and Groce et al. [26] applied the differential
privacy relaxation to improve efficiency of set-intersection protocols. Mazloom and
Gordon [34], and Mazloom et al. [35] consider graph-parallel computations and
design more efficient solutions with differential private leakages. Chan et al. [10]
consider classic tasks like sorting, merging, and range-query data structures with
differential privacy relaxation. Gordon et al. [25] consider multiparty shuffle
that allows a differentially private leakage and shows that it suffices to achieve
end-to-end differential privacy in the shuffle model of DP.
Private sketching. Sketching algorithms, or "sketches" are sublinear space
algorithms for approximating certain properties of large inputs or data streams. .
The main idea behind sketching algorithms is to generate a compact summary
data structure that allows for efficient storage, merging, and processing. Some
recent works [7,12,42,44] have additionally observed that sketches can often also
aid in achieving privacy as the inherent loss of information in the sketch can
essentially make the sketch itself be differentially private or to only require a
little additional noise. As observed in e.g., [12] this observation about sketches
can also lead to more efficient secure computation protocols.
Secure Approximation. Secure approximation studies what functions can be
securely approximated without revealing anything beyond the true output [23,27].
While this notion is quite different from that of differentially-private approx-
imation that we consider here, we note that our first (FHE-based) protocol
additionally achieves this.

7

3 Preliminaries

Notations. A function g is negligible, denoted negl(·), if for every positive integer
c, there is an integer nc such that for all n ≥ nc we have g(n) ≤ 1/nc. Let κ
denote the security parameter. Let U denote the universe of input elements. In
this paper, we will consider two input sets A,B ⊆ U . Let nA = |A|, nB = |B|.
Let I = A∩B, nI = |I|. We will also let B+x∗ = B ∪{x∗}. Let Eq be an equality
function; i.e., Eq(a, b) = 1 if a = b and 0 otherwise. For a hash function h and a
set A, we let h(A) := {h(a) : a ∈ A}. Let B(m, p) be the binomial distribution
with m trials and each trial having success probability p.
Hash functions in the random oracle model. We model each hash function
as a random oracle that maps each item to a real value in [0, 1], and the output
of the hash function is long enough to ensure that the probability of any two
different items having a hash collision is negl(κ).
Differential privacy. We first give the definition of the traditional (ϵ, δ)-
differential privacy.

Definition 1 ((ϵ, δ)-indistinguishablity). Two random variables X and Y
are (ϵ, δ)-indistinguishable (denoted as X ≈ϵ,δ Y) if, for all events S, we have

Pr[X ∈ S] ≤ eϵ · Pr[Y ∈ S] + δ, Pr[Y ∈ S] ≤ eϵ · Pr[X ∈ S] + δ.

Definition 2 (Computational (ϵ, δ)-indistinguishablity). Two random vari-
ables X and Y are computationally (ϵ, δ)-indistinguishable (denoted as X

c
≈ϵ,δ Y)

if, for any polynomial time adversary A, it holds

Pr[A(X) = 1] ≤ eϵ · Pr[A(Y) = 1] + δ, Pr[A(Y) = 1] ≤ eϵ · Pr[A(X) = 1] + δ.

Definition 3 ((Computational) (ϵ, δ)-differential privacy). Let X be an
input space and ≃X be a relation capturing the notion of neighboring inputs. Let
M : X → Z be a randomized algorithm that takes input x ∈ X and outputs a
value over Z. We say that the mechanism M is (ϵ, δ)-differentially private if the
following holds:

∀x, x′ ∈ X s.t. x ≃X x′ : M(x) ≈ϵ,δ M(x′).

The mechanism M is (ϵ, δ)-computationally differentially private if ∀x, x′ ∈
X s.t. x ≃X x′ : M(x)

c
≈ϵ,δ M(x′).

Distributional differential privacy (DDP). We adapt the original def-
inition [4] for our purpose to consider a two-party protocol that takes sets
as input more explicitly. Specifically, we consider the following computational
indistinguishability variant for our DDP definition.

Definition 4 (View of a party in a two-party protocol). Given a two-party
protocol Π with parties P1 and P2, let viewΠ

P1
(A,B) denote the view of P1 for the

execution of protocol Π with A and B being the input of P1 and P2 respectively.
In particular, viewΠ

P1
(A,B) consists of the following:

8

– The input A of P1, the randomness that P1 uses, the messages that P1 receives
from P2, and the output of the protocol.

– If the protocol is in the random oracle model, we allow a semi-honest P1 to
make a polynomial number of arbitrary queries to the random oracle and to
add the input/output information to its view.

The view of P2 is defined similarly.

We now define computational DDP for a two-party protocol against an
adversary that can corrupt one of them in an honest-but-curious manner.
Definition 5 (Computational DDP of a two-party protocol). Let X
denote a random variable for two sets over universe U . Let Z denote the random
variable measuring the additional auxiliary information known to the adversary.
A two party protocol Π is computationally (ϵ, δ,∆)-DDP against an adversary
corrupting P1, if for every distribution D ∈ ∆ on (X ,Z), every (X = (A,B), Z)
in the support of (X ,Z) and every x∗ ∈ U , the following holds:(

viewΠ
P1
(A,B), Z

) c
≈ϵ,δ

(
viewΠ

P1
(A,B+x∗), Z

)
.

In the above, (A,B) and Z are sampled from ∆, and each party may use additional
randomness. DDP against an adversary corrupting P2 is defined symmetrically.

Finally, the following lemma upperbounds the tail of a Binomial distribution.
Lemma 1 ([15]). Consider a Binomial distribution B(n, p). We have

Pr
X∼B(n,p)

[X ≥ k] ≤
(
n

k

)
pk.

4 Our Protocols

4.1 Min-Hash Protocol in the Trusted Curator Model

In Figure 1, we describe the standard min-hash protocol in the trusted curator
model (Fcu). In particular, after choosing k random hash functions, the mechanism
computes the number of iterations in which the min-hash of A matches the min-
hash of B.

Theorem 1. For any constant ϵ > 0, if k = k(ϵ, κ) ∈ Ω(κ), nA/k ∈ Ω(κ), nB/k ∈
Ω(κ), and J(A,B) ∈ (0, 1) is a constant independent of κ, then Fcu is (ϵ, δ)-DP
with δ ∈ negl(κ).

While Fcu is described in the trusted curator model, a two-party protocol
realizing it can be constructed without relying on a trusted curator. In particu-
lar, the computation of (uA

1 , . . . , u
A
k) (including all n hash evaluations) can be

performed locally under a (threshold) FHE so that only the encryption of them
may be sent to party B. Then, by computing the remaining steps under FHE
and delivering the result using a threshold decryption, the protocol will securely
realize Fcu in the semi-honest setting. We note that the resulting protocol has
sublinear communication in n since only the k inputs to the comparisons need to
be communicated.

9

Min-Hash in the Trusted Curator Model Fcu

Input: P1 and P2’s input vectors A = (xA
1 , . . . , x

A
nA

) and B =
(xB

1 , . . . , x
B
nB

).

Minhash:

1. Randomly sample k hash functions h1, h2, . . . , hk.
2. For input A, compute the min-hash vector (uA

1 , u
A
2 , . . . , u

A
k) as

follows:
For each iteration j ∈ [k]:

i. For each item xA
i ∈ A, compute yA

i,j = hj(x
A
i).

ii. Compute the min-hash for iteration j; that is, uA
j =

mini{yA
i,j}

3. Likewise, compute another min-hash vector (uB
1 , u

B
2 , . . . , u

B
k) for

input B similarly.
4. Compute c =

∑k
j=1 Eq(u

A
j , u

B
j).

Output: Return c to P1 and P2.

Fig. 1: Min-Hash in the Trusted Curator Model

4.2 Two-party Min-Hash Protocol with DDP

In Figure 2, we describe a two-party protocol πOPH in the random oracle (RO)
model achieving DDP. The protocol is essentially the same as Fcu except for the
following differences:

– Prefixes pre1, . . . , prek are jointly sampled by the parties.
– The hash functions hi for i ∈ [k] are defined as hi(·) := O(prei||·).
– A generic secure two party computation [48,33] is used to hide the information

of uA
i s and uB

i s in the equality check.
– The parties’ output consists of the min-hash output, as well as the pre-fixes

pre1, . . . , prek. This additional information greatly impacts the analysis.

The main benefit of the protocol is that the hash computations can be
computed locally in the clear without FHE.

Distributional Differential Privacy. In Figure 3, we describe the family of
distributions we consider in the context of our min-hash protocol. The distribution
models a situation in which the adversary, having corrupted one of the two parties,
has access to the view of the party and even the actual intersection. However, the
adversary does not know the other party’s input set (except from the intersection).

We assume that each of the non-intersecting elements has high min-entropy.
WLOG, consider an adversary corrupting P1. We can safely ignore the protocol
messages in Step 3 in our analysis, thanks to the security guarantees of secure
two-party computation. Therefore, the view of the adversary will be

viewπPH

P1
(A,B) := (c, h1, . . . , hk).

10

Protocol πO
PH

Input: P1 and P2’s input vectors A = (xA
1 , . . . , x

A
nA

) and B =
(xB

1 , . . . , x
B
nB

).
MinHash:

1. Both parties jointly sample k prefixes pre1, . . . , prek. These are
used to define hash functions h1, h2, . . . , hk, where for i ∈ [k],
hi(·) := O(prei||·).

2. Party 1 takes its input A from which it computes the min-hash
vector (uA

1 , u
A
2 , . . . , u

A
k) exactly as described in Fcu. Likewise, Party

2 computes (uB
1 , u

B
2 , . . . , u

B
k) similarly using its input B.

3. Taking (uA
1 , u

A
2 , . . . , u

A
k) and (uB

1 , u
B
2 , . . . , u

B
k) as input, both par-

ties execute a generic secure-two party computation protocol for
computing c :=

∑k
j=1 Eq(u

A
j , u

B
j).

Output: Return c, pre1, . . . , prek, to P1 and P2.

Fig. 2: The Protocol for Min Hash in the RO Model

Distribution Family ∆PH

This family of distributions is parameterized as follows:

The universe U for the elements in sets A and B; the cardinalities
nA, nB , nI of sets A, B, I = A ∩ B respectively; distribution
DA,I,B′ for sampling (A, I) and B′ = B \A.

Choose (A, I,B′) according to DA,I,B′ , which should satisfy the fol-
lowing requirements:

– |A| = nA, |I| = nI , |B′| = nB − nI , I ⊂ A,A ∩B′ = ∅.

Output:

– The inputs to the parties P1 and P2 are A and B respectively.
– Give I to the adversary as the auxiliary information.

Fig. 3: The family of distributions that we consider in our min-hash protocol

As with the case of Fcu, since the hash functions are chosen at random, we can
apply the same analysis and show that the sensitivity can be upper-bounded by
a small value s. Unlike Fcu, however, when we show the existence of sufficient
noise from the remaining iterations, we need to take the additional leakage into
consideration.
Hashes of non-intersecting items working as a noise. First, since the
hash functions are public, iterations are no longer independent of each other as
needed by the analysis in Section 4.1. We address this issue by employing the
fact that each of the non-intersecting items has high min-entropy. In the random
oracle model, as long as the adversary does not query hash function h on some

11

point x, h(x) is uniformly random to the adversary. Since the non-intersecting
items have high min-entropy, the adversary is negligibly likely to query any of
them to the hash functions, thus guaranteeing independence.

Now, to see how the remaining iterations still hide the sensitivity even with
the public hash functions, let R = B \ I. For the remaining k − s iterations, the
high min-entropy of each element in R will jitter the final count. In particular,
consider the jth hash function hj in the protocol (among the k − s remaining
iterations) and let

vAj = minhj(A), vIj = minhj(I), vRj = minhj(R).

Suppose vAj = vIj . Then, if vRj ≥ vIj , the min-hash uA
j of A will be equal to the

min-hash uB
j of B (both of which are equal to vIj) and the final count c will

be incremented due to this jth iteration. However, if vRj < vIj , then it will be
uA
j ̸= uB

j , and the final count will not be incremented. This way, the distribution
of vRj will jitter the final count. Let nR = nB − nI , and the above discussion can
be formalized into the following definition.

Definition 6 (θ-good iteration). We define a predicate goodθ(hj , A, I, nB) to
be true if and only if the following holds:

minhj(A) = minhj(I), minhj(I) ∈

[
1−

(
1

2
+ θ

)1/nR

, 1−
(
1

2
− θ

)1/nR
]
.

The second condition of the definition requires that minhj(I) is somewhere in
the middle (parameterized by θ ∈ Θ(1)) so that vRj may reduce the final count
with a decent chance, and it may not with a decent chance too. As long as nI/nA

is a constant fraction, there are sufficiently many θ-good iterations, although we
lose some iterations. In particular, if we let kg be the number of good iterations,
we have kg = Θ(k).

Since the hash functions are now public, and therefore minhj(I) is leaked to
the adversary, it turns out that the noise from the kg iterations follows a Poisson
Binomial distribution, which is a generalization of a Binomial distribution where
each trial has a different success probability. However, we can still show that this
distribution works as a good noise to hide the private data. In particular, we
use the techniques of [11] to upper-bound the privacy guarantee as those from a
binomial mechanism (with rather worse parameters compared to Fcu).

Theorem 2. For every constant ϵ > 0, consider protocol πPH in the random
oracle model with k = k(ϵ, κ), where k ∈ Ω(κ). Let R = B \ I, each element of
which has min-entropy at least κ. Let nA/k, nB/k ∈ Ω(κ), and nI/nA ∈ (0, 1) is a
constant independent of κ. Then, protocol πPH is computationally (ϵ, δ,∆PH)-DDP
against an adversary corrupting P1 with δ ∈ negl(κ). DDP against an adversary
corrupting P2 holds when the parameters are set symmetrically.

12

4.3 DDP for Input Sets Chosen from a Poly-sized Universe

Let nR = nB − nI . In this section, we show that πPH satisfies DDP even when
the size of the universe U of size nR · ℓ is polynomial in κ with ℓ = Ω(n3

R), and
the secret set R is chosen from the uniform distribution on U , conditioned on
arbitrary leakage on R of length L, where L ≤ nR(lg ℓ − 3 lg nR − 2). Assume
without loss of generality that the adversary corrupts P1.
Noise: fixed secret set over the choice of hashes. Consider a fixed secret
set R′ ⊂ R = B \ I (we will see how to choose R′ later). Let n = |R| and
n′ = |R′| and consider the probability ER′

r over choice of the hash functions
that R′ contributes noise of −r to the total count c in the min-hash protocol
over a bundle of kb good iterations (we will see how to choose kb later). We
can show that the distribution over r has the following property: There exist
a, b ∈ {0, . . . , kb} such that:

– The probability of obtaining r ̸∈ [a, b] is negligible.
– For every ϵ ∈ [0, 1] and sufficiently large security parameter κ, for every

r ∈ [a, b], we have e−ϵ ≤ Pr[r]
Pr[r+s] ≤ eϵ where s = lg lg κ is a small value

corresponding to the sensitivity.

The above indicates that the distribution over r, when the set R′ is fixed and
the probability is taken over choice of hash functions, is amenable for use as a
noise distribution in a differential privacy context. It turns out ER′

r depends on
only the size of R′ and For every r, we let En′

r denote its probability under the
distribution described above.
Noise: fixed hash over the choice of the secret set. Our main technical
challenge is to show that the properties needed for differential privacy hold even
when we switch quantifiers. Specifically, given a distribution D over sets R′ and
a fixed hash function (modeled as a random oracle), let dr be the probability
over R′ chosen from D that R′ contributes −r to the total count in the min-hash
protocol. We would like to show that for any fixed hash functions, for all r ∈ [a, b],
it holds e−ϵEn′

r ≤ dr ≤ eϵEn′

r . Then, we can meaningfully upper-bound the
distance between dr and dr+s using the property of En′

r described above.
The aforementioned universal quantifier for the hash functions can be slightly

relaxed by requiring the property to hold over the choice of the hash functions
with all but small probability (we will later describe how to compensate the
relaxation by the bundling technique). In particular, let Dr be the random
variable corresponding to probability dr over the choice of hash functions. We
would like to show that with all but small probability over the choice of the hash
functions, for all r ∈ [a, b], it holds e−ϵEn′

r ≤ Dr ≤ eϵEn′

r .
Geometric collision Property. To show the above, our high-level strategy
is to use Chebyshev’s inequality, which gives good concentration bounds on Dr

when Var[Dr] is bounded. Thus, our next goal is to upperbound Var[Dr]. To
do so, we introduce a property of distributions D over sets R′ which we call
the “Geometric Collision Property”. In a nutshell, this property states that the
probability that two sets R′1, R

′
2 drawn independently from D have intersection

13

of size z is at most (1
n0.5)

z for all z ∈ [n′]. We show that Var[Dr] can be bounded
for any distribution over sets R′ that has this property.

Geometric collision property in the face of leakage. It is not hard to see
that the uniform distribution over all sets R′ of size n′ from a universe of size
n′ · ℓ (where ℓ ∈ Ω(n3)) satisfies the “Geometric Collision Property”. It would
seem, therefore, that we could take this as our secret distribution and the analysis
would be complete. Unfortunately, even for the case in which the distribution
is sets of size n′ chosen uniformly at random from the universe, the analysis is
not straightforward. The difficulty stems from the fact that the “noise” in the
protocol is tied to the input itself. Therefore, if information about the input is
leaked in any other part of the protocol, then the noise distribution changes and
may no longer satisfy the required properties. Specifically in our case learning
the number of matches across the two parties’ sets with respect to some of the
hash functions leaks information about the secret set of the honest party (since
the secret set affects those counts).

Strong chain-rule for min-entropy. We first observe that our initial min-
entropy in the distribution over secret sets R is high (approximately 8n

9 lg ℓ+2n)
and that the entire information leaked about R from the counts of the iterations
that are not θ-good is small. We can lower-bound the remaining min-entropy
in D, therefore, using the weak chain rule for min-entropy [14, Lemma 2.2]; if
we want to lower bound the remaining min-entropy with all but 2−κ probability,
however, we need to take a hit of κ in the min-entropy.

Recall that each individual element in R can be viewed as being chosen
from a set of size ℓ and thus has min-entropy of at most lg(ℓ)≪ κ. Thus, after
applying the weak chain rule and losing more than κ bits of min-entropy, we can
have certain elements that have only constant min-entropy, thus implying that
collisions are likely in those positions. So the weak chain rule, while leaking only
a small number of bits overall, can ruin the geometric collision property. Even
worse, the min-entropy definition doesn’t rule out the case in which all elements
of R (i.e. the marginal distributions over each element in R) have only constant
min-entropy, while the total min-entropy in R remains high!

This phenomenon has been previously observed and studied in the litera-
ture [41]. One way to deal with such a counter-intuitive situation is to actually
leak a small amount of additional information, known as “spoiled” bits. This will
lower the total min-entropy in R, but will ensure that a large fraction of blocks
in R still have high min entropy of at least 1.5 lg(n). We extend the techniques
of [41] to produce spoiling leakage with the following properties:

– It can be computed element-by-element, starting from the last element of the
distribution.

– Conditioned on the spoiling leakage, we can simulate the adversary’s entire
view in the protocol (by leaking extra information along with the spoiled
bits), other than the outcome of the random variable r over choice of R,
where R is drawn from the probability distribution that conditions on the
spoiling leakage.

14

– Conditioned on the spoiling leakage, each element Ri either has max-entropy
at most ∼ 1.5 · lg(n) or min-entropy at least ∼ 1.5 · lg(n).

We further show that, due to the high min-entropy of the entire set R, there
must be a constant fraction of blocks R′ with min-entropy at least 1.5 · lg(n). To
reflect the fact that only a constant fraction of elements are guaranteed to have
high min-entropy, the parameter n′ is set to n/3. We now consider the marginal
distribution over R′ (the elements of R with high min-entropy) and show that
the geometric collision property holds with respect to this distribution.
Bundling iterations towards DDP with negligible δ. We are not quite done
yet. By applying Chebyshev we are only able to reduce the failure probability
only to ∼ 1/

√
n, whereas we would like the failure probability to be negligible. In

order to do that, we split the “good” iterations into u bundles, where u is a small
superconstant number, and argue that w.h.p. Chebyshev succeeds for at least
one bundle. Note that the hash functions are independent in each bundle and
so the probability that all u bundles fail should be (1√

n
)u, which is negligible

for superconstant u. For this, we set the parameter kb = kg/u, where kg is the
number of good iterations. The fact that the probability distribution of r over
choice of R is good for at least one bundle (with all but negligible probability) is
sufficient to complete the proof of distributional differential privacy.

Theorem 3. For security parameter κ, every constant ϵ > 0, and every constant
γ ∈ (0, 1), consider protocol πPH in Figure 2 in the random oracle model with
k = k(ϵ, κ), where k ∈ Ω(κ·lg lg κ). Let R = B\I be a set of size nR, with nR/k

2 ∈
Ω(κ). Let the universe U be of size nR · ℓ, where ℓ = Ω(n3

R). Assume the secret
set R is chosen chosen uniformly from all subsets of U of size nR, conditioned
on arbitrary leakage on R of length L, where nR lg ℓ − L ≥ 8nR

9 lg ℓ+ 2nR. Let
|I| ∈ Θ(n). Then the output of πPH achieves computational (ϵ, δ,∆PH)-DDP
with δ ∈ negl(κ) against an adversary corrupting P1. DDP against an adversary
corrupting P2 holds when the parameters are set symmetrically.

5 DP of Fcu: Proof of Theorem 1

Setting the scene. WLOG, we consider two neighboring inputs

(A,B) and (A,B+x∗).

Differential privacy for the case in which x∗ is added into A can be shown
symmetrically. WLOG, let B = (xB

1 , . . . , x
B
nB

) and B+x∗ = (xB
1 , . . . , x

B
nB

, x∗).
Sensitivity. We show how changing the input sets from B to B+x∗ affects the
final count. Let x∗ be the (nB + 1)-th element of B+x∗ . Consider iteration j.
Since we model each hash function hj as a random oracle, (yB1,j , . . . , yBnB+1,j) will
be uniformly distributed. We observe the following:

Consider how the min-hash uB
j is computed. The value x∗ from B+x∗ can

affect the min-hash uB
j (and thereby the final count c), only if yBnB+1,j is

smaller than (yB1,j , . . . , y
B
nB ,j).

15

The probability that yBnB+1,j will be the minimum is 1/(nB+1) by a symmetry
argument. Note the final output is computed as the sum of k of these trials. Let

Sx∗ =

{
j ∈ [k] : yBnB+1,j = min

i∈[nB+1]
{yBi,j}

}
.

Therefore, we consider a binomial distribution as follows

|Sx∗ | ∼ B(k, 1/(nB + 1)),

which represents how many iterations j cause x∗ to be the min-hash uB
j . In other

words, |Sx∗ | captures the sensitivity of min-hash.
The following lemma upper bounds this sensitivity.

Lemma 2. For any {xB
i }i∈[nB] and any x ∈ U , we have Prh1,...,hk

[|Sx| ≥ s] ≤(
e·k

s·(nB+1)

)s
.

Proof. We have Pr[|Sx| ≥ s] ≤
(
k
s

)
·
(

1
nB+1

)s
≤
(
e·k
s

)s · (1
nB+1

)s
. The first

inequality is from Lemma 1. ⊓⊔

Remark. From the above lemma, for k ∈ Θ(κ), nB ∈ Ω(κ2), we have

Pr[|Sx∗ | ≥ lg lg κ] ≤ negl(κ).

This implies that given the parameters above, with overwhelming probability,
there are at most lg lg κ iterations where x∗ changes the min-hash value for B.

Binomial distribution hides the small sensitivity. Let s = lg lg κ and
let p = J(A,B). Let Kx∗ = [k] \ Sx∗ . For the iterations in Kx∗ , the min-hash
matches for both (A,B) and (A,B+x∗) will be identically distributed.

Let cKx∗ denote the match count in iterations Kx∗ . Note that since we model
each hash function as a random oracle, we have

cKx∗ ∼ B(k − s, p).

By applying Lemma 3 below, we conclude that Fcu is differentially private.

Lemma 3. Consider a Binomial distribution B(n, p), where n ∈ Ω(κ) and
p ∈ (0, 1) is a constant independent of κ. Then, for any constant ϵ and s ≤ lg lg κ,
there are a, b ∈ [n] with a < np < b such that

– For any ℓ ∈ [a, b], e−ϵ ≤ Pr[B(n,p)=ℓ]
Pr[B(n,p)+s=ℓ] ≤ eϵ.

– For any ℓ ̸∈ [a, b], Pr[B(n, p) = ℓ] = negl(κ) and Pr[B(n, p)+s = ℓ] = negl(κ).

16

Functionality FO
PH

FO
PH works exactly the same as Fcu except that (1): It internally

samples random prefixes pre1 . . . , prek and in the i-th iteration, hashes
the parties’ input vectors using hi(·) = O(prei||·). (2) It outputs c,
pre1 . . . , prek. Relative to public random oracle O, this allows P1 and
P2 to evaluate h1, h2, . . . , hk.

Fig. 4: The Ideal Functionality for Public Min Hash

6 DDP of πPH: Proof of Theorem 2

WLOG, we consider two neighboring inputs (A,B) and (A,B+x∗). DDP for the
case in which x∗ is added into A can be shown symmetrically.

We prove the theorem by a hybrid argument. We first define the following
ideal functionality FPH in the random oracle (RO) model.

We also define a slightly different ideal functionality F (1)
PH as follows:

– Let F (1)
PH be the same as FPH except that for each xB

i ∈ B \A, each element
in {yBi,j}j is chosen uniformly at random from [0, 1].

We set up the following hybrids. We will argue that for any x∗ ∈ U and over
(A,B, I)← ∆PH, it holds

(viewπPH

P1
(A,B), I)

c
≈ (viewFPH

P1
(A,B), I)

c
≈ (view

F(1)
PH

P1
(A,B), I)

≈ϵ,δ (view
F(1)

PH

P1
(A,B+x∗), I)

c
≈ (viewFPH

P1
(A,B+x∗), I)

c
≈ (viewπPH

P1
(A,B+x∗), I)

for any constant ϵ > 0 and for some δ ∈ negl(κ), as long as each element in B \ I
has high min-entropy.

Thanks to the standard technique of the generic two-party secure computa-
tion [33], the following holds:

viewπPH

P1
(A,B), I)

c
≈ (viewFPH

P1
(A,B), I), viewFPH

P1
(A,B+x∗), I)

c
≈ (viewπPH

P1
(A,B+x∗), I).

Now we show (viewFPH

P1
(A,B), I)

c
≈ (view

F(1)
PH

P1
(A,B), I). Recall that the min-

entropy of each element xB
i with i ∈ B \A is at least κ. Therefore, the probability

that any adversary making at most polynomially many oracle queries queries
any xB

i is negl(κ). Conditioned on the adversary not querying any such xB
i , any

yBi,j for j ∈ [k] is chosen uniformly random from U . The same argument shows

viewFPH

P1
(A,B+x∗), I)

c
≈ (view

F(1)
PH

P1
(A,B+x∗), I).

6.1 DDP of F(1)
PH

From the above discussion, we are only left to show

(view
F(1)

PH

P1
(A,B), I) ≈ϵ,δ (view

F(1)
PH

P1
(A,B+x∗), I).

17

In other words, we need to show

(A, I, h1, . . . , hk, c) ≈ϵ,δ (A, I, h1, . . . , hk, c+x∗),

where c is the final count from F (1)
PH (A,B) and c+x∗ is the final count from

F (1)
PH (A,B+x∗).

In Section 5, we studied the sensitivity of the final count when adding an
element x∗ to B. We show how to leverage the uncertainties of xB

i ∈ R = B \A
so that good iterations work like the needed noise to guarantee DP.

The following lemma shows that in the random oracle model, a random hash
leads to a good iteration with probability pθ, which is constant in our setting
based on the assumption about nA, nI , nR.

Lemma 4. For any A, I, nB and nR = nB − |I|, we have

pθ
def
= Pr

h
[goodθ(h,A, I, nB)] ≥

((
1

2
+ θ

)nA
nR

−
(
1

2
− θ

)nA
nR

)
· nI

nA

Recall that Sx∗ was the random variable that represents the set of iterations
j such that the min-hash uB

j comes from x∗ when P2’s input is B+x∗ . From
Lemma 2, with overwhelming probability |Sx∗ | ≤ lg lg κ).

Now, let Gθ be the set of iterations j in which a θ-good event takes place; i.e.,

Gθ = {j ∈ [k] : goodθ(hj , A, I, nB)} .

Let Kθ = Gθ \ Sx∗ . The following lemma shows that the θ-good events takes
place Θ(κ)-many times, with overwhelming probability.

Lemma 5. Suppose k = Θ(κ), nB = Ω(κ2), and pθ ∈ Θ(1). Let s = |Sx∗ |. Then,
we have

Pr
h1,...,hk

[
|Kθ| >

2

3
(k − s)pθ

]
≥ 1− negl(κ).

Fixing randomness. Recall we aim to show that

(A, I, h1, . . . , hk, c) ≈ϵ,δ (A, I, h1, . . . , hk, c+x∗). (1)

To achieve this goal, we divide the output count into two parts:

– The part corresponding to Kθ, which contains all the θ-good iterations such
that x∗ does not hash to the minimum across B+x∗ .

– The part contributed by all the remaining iterations.

We will first argue that the difference of the second parts for the neighboring
inputs B and B+x∗ is upper-bounded by a small value, following our discussion on
sensitivity in Section 5. Then we will treat the first part as the noise distribution
and derive the privacy guarantee it provides to hide the difference from the
second part.

For a set W ⊂ [k], define its complement as W = [k] \W . In addition, we
introduce the following notations.

18

– For sets V,W , let YV,W
def
= {yBi,j : i ∈ V, j ∈W}.

– For a set W , define cW
def
=
∑

j∈W Eq(uA
j , u

B
j) and

Now, fix A, I, x∗ and h1, . . . , hk. Recall that we are considering F (1)
PH that

satisfy the following condition:

– For each xB
i ∈ B \A, each element in {yBi,j}j is chosen uniformly at random

from [0, 1].

Therefore, even after (A, I, x∗, h1, . . . , hk) is fixed, it holds that YR,[k] are still
uniformly distributed. Moreover, we additionally fix YR,Gθ

, which implies that
only YR,Gθ

is only uniformly random.
Note that fixing A, I, x∗, h1, . . . , hk also allows us to determine which iterations

are θ-good (i.e., Gθ).

Small sensitivity. Given all this, we first show that there for s = lg lg κ,

Pr
YR,Gθ

[∣∣∣cKθ
− c+x∗

Kθ

∣∣∣ > s
]
≤ negl(κ).

To show inequality, noting that Kθ = Gθ ∪ Sx∗ , consider two cases:

– For iteration j ∈ Gθ \ Sx∗ , we have uB
j = u

B+x∗

j . This is because j ̸∈ Sx∗

implies that x∗ doesn’t lead to min-hash. Therefore, such iterations don’t
contribute to the difference of c and c+x∗

.
– For the rest iterations j ∈ Sx∗ , we have |Sx∗ | ≤ s with overwhelming

probability due to Lemma 2, which shows the above equation.

Our goal. Essentially, for any final count q, we are interested in comparing the
two probabilities:

Pr
YR,Gθ

[cKθ
+ cKθ

= q] and Pr
YR,Gθ

[c+x∗

Kθ
+ c+x∗

Kθ
= q].

Note that we have cKθ
= c+x∗

Kθ
because j ∈ Kθ implies j ̸∈ Sx∗ . Therefore,

based on the sensitivity argument shown above, we only need to analyze the
distribution of cKθ

and compare the following two probabilities:

Pr
YR,Gθ

[cKθ
= q] and Pr

YR,Gθ

[cKθ
+ s = q].

Distribution of cKθ
. We abuse notation and denote cj = c{j}. Then, we have

cKθ
=
∑

j∈Kθ
cj . Let YR,j = {yBi,j : i ∈ (nI , nB]}. Note that since we have j ∈ Kθ,

a θ-good event takes place in iteration j, i.e., minhj(A) = minhj(I). This implies
the following:

If minYR,j ≥ minhj(I), we have cj = 1; otherwise we have cj = 0.

19

Let γj = 1−minhj(I). Then, the probability that cj = 1 is (γj)nR , since every
number in YR,j must be be greater than or equal to minhj(I). Let η−θ = 1/2− θ
and η+θ = 1/2 + θ. Note that since j ∈ Gθ, the following holds according to
Definition 6:

(γj)
nR ∈ [η−θ, η+θ].

Therefore, letting pj = (γj)
nR , we have cj ∼ Ber(pj), where Ber denotes the

Bernoulli distribution. Also, recall that every number in YR,j is chosen uniformly
at random from [0, 1] and therefore these Bernoulli distributions are independent
from each other. Therefore, we can apply Lemma 6 below to conclude that
CKθ

≈ϵ,δ CKθ
+ s.

DP of Additive Poisson Binomial distribution. For j ∈ [n], consider
cj ∼ Ber(pj). With pJ = {pj}nj=1, let PB(n, pJ) denote the distribution of∑

j∈[n] cj . This distribution is called a Additive Poisson Binomial distribution.

Lemma 6. Consider an Additive Poisson Binomial distribution PB(n, pJ), where
n ∈ Ω(κ) and for each pj, it holds that pj ∈ [1/2− θ, 1/2 + θ] where θ ∈ (0, 1/2)
is a constant independent of κ. Then, for any constant ϵ and s ≤ lg lg κ, there
are a, b ∈ [n] such that

– For any ℓ ∈ [a, b], e−ϵ ≤ Pr[PB(n,pJ)=ℓ]
Pr[PB(n,pJ)+s=ℓ] ≤ eϵ.

– For any ℓ ̸∈ [a + s, b], Pr[PB(n, pJ) = ℓ] = negl(κ) and Pr[PB(n, pJ) + s =
ℓ] = negl(κ).

7 Strong Chain rule

Our proof of Theorem 3 requires a special case of the following theorem, corre-
sponding to a strong chain rule for specific leakage functions ℓ1(·), . . . , ℓn(·). By
formalizing the properties needed from ℓ1(·), . . . , ℓn(·) for the proof of the special
case to go through, we are able to arrive at the generalization presented in this
section. We state the generalized version of the theorem since we believe it may
find future applications in leakage-resilient cryptography.

Recall that we consider a block-by-block random variable R = (R1, . . . , Rn),
and (potentially randomized) leakage functions ℓ1(·), . . . , ℓn(·) with randomness
ρ1, . . . , ρn. You can think of the blocks as coming in a streaming fashion in order
of R1, R2, . . . , Rn.

Loosely speaking, the properties we require of the leakage functions are that
the i-th leakage ℓi can be computed given Ri, ρi as well as all the outputs of
(ℓi+1, ℓi+2, . . . , ℓn) and that the total number of valid sequences of leakages from
ℓ1(·), . . . , ℓn(·) is sufficiently small (see Property 1 in Theorem 4).

Our theorem below states the existence of a spoiling function f(·) with
certain properties, as well as properties of the random variables (R1, . . . , Rn) and
(ρ1, . . . , ρn) conditioned on the output of the spoiling function f(R).

The properties of (R1, . . . , Rn) and (ρ1, . . . , ρn) are roughly the following: (1)
There exist disjoint sets V,W such that V ∪W = [n] that are determined by
f(R). (2) Blocks {Ri}i∈V have high min-entropy conditioned on f(R). (3) Blocks

20

{Ri}i∈W have small support size (low max-entropy) conditioned on f(R). (4) For
i ∈ V , the random strings ρi are uniform random and independent conditioned
on f(R). (See Properties (5)-(8) in Theorem 4).

The properties of f(·) are roughly the following: (1) The failure probability
(outputting ⊥) is small. (2) As long as the total number of valid sequences of
leakages from ℓ1(·), . . . , ℓn(·) is sufficiently small, the image size of f is small.
This property ensures that we do not lose too much of the total min-entropy of
R by releasing f(R) (3) The leakages {ℓi(·)}i∈W can be computed given f(R).
(See Properties (2)-(4) in Theorem 4)

The main difference between our spoiling lemma and prior ones is that our
min and max entropy guarantees on R = (R1, . . . , Rn) | f(R) hold even with
respect to additional leakage {ℓi}i∈W which is included in the spoiled bits f(R).

Theorem 4 (Block structures with few bits spoiled and leakage). Let
U = U1 × · · · × Un be a fixed universe and R = (R1, . . . , Rn) be a sequence of
(possibly correlated) random variables where each Ri is over Ui (and all are
disjoint) and |Ui| = ℓ for all i. Let ρ1, . . . , ρn be a sequence of uniformly random
strings over {0, 1}m and let ℓ1(·), . . . , ℓn(·) be leakage functions. Then, for any
ϵ ∈ (0, 1), any δ > 0 and any c ∈ [2δ, ℓ/2δ], there exists a spoiling leakage function
f(R) that satisfies the following properties.

1. A sequence β1, . . . , βn is valid if for all i ∈ V , βi = ⊥ and for all i ∈ W ,
βi = ℓi(Ri, ρi, β>i), where β>i = (βi+1, . . . , βn). We require that the number
of valid sequences β1, . . . , βn is at most B.

2. It holds that PrR[f(R) = ⊥] ≤ ϵn.
3. |Im(f)| ≤ B · (2(lg(ℓ) + lg(1/ϵ))/δ)

n.
4. Conditioned on any y ∈ Im(f)\{⊥}, for all i ∈W , the leakage ℓi(Ri, ρi, β>i)

can be computed from y. Here, βj = ⊥ if j ∈ V and βj = ℓj(Rj , ρj , β>j)
otherwise.

5. Let Im(f) be the set of images of f . Every y ∈ Im(f) \ {⊥} specifies two
disjoint sets V and W such that V ∪W = [n].

6. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ V , every element in
distribution Ri | R<i has low probability weight, i.e.,

∀y ∈ Im(f) \ {⊥},∀r s.t. f(r) = y,∀i ∈ V :

Pr

[
Ri = ri

∣∣∣∣∣ R<i = r<i, y

]
≤ 2δ

c
.

7. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈W , it holds that Ri | R<i

has small support size, i.e.,

∀y ∈ Im(f) \ {⊥},∀r s.t. f(r) = y,∀i ∈W :

|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}| ≤ 2δ · c.

8. {ρi}i∈V are distributed independently and uniformly at random conditioned
on f(R).

21

Typically, one would like to set c as large as possible, while ensuring that the
size of V remains above some threshold. The achievable tradeoffs between the
setting of c and the size of V are determined by the min-entropy of R before
the spoiling bits f(R) are released. For our applications, we require c = n1.5 and
|V | ≥ n/3. We show that our min-entropy assumption on R implies that this
parameter setting is achievable in Section F.3.

8 Highlights of Proof of Theorem 3

Due to the lack of space, we highlight only the important parts of the proof of
Theorem 3. The full proof can be found in Appendix.

Remember that the adversary holds set A of size nA. The honest party holds
set B of size nB . The intersection I := A ∩B has size nI . The secret set held by
the honest party R := B \ I has size nR.

We set n′R := nR/3; looking forward, it is the size of a subset R′ ⊂ R, each
of whose elements has high remaining min-entropy even after leakage (that we
will define in the proof) is considered.

8.1 Min-hash Graph

Consider running the min-hash protocol πPH with k iterations such that kg of
them belong to Gθ. For this, we consider all the hash outputs in two different
stages and define the following sets:

H1 = {hj(A+x∗)}kj=1, H2 = {hj(U \A+x∗)}kj=1.

Since we are in the random oracle model, each hash value is chosen uniformly at
random. For our analysis, we construct the following bipartite graph (X ,Y, E),
which we call the min-hash graph, based on the sets A, I and x∗ along with the
hash functions as follows:

MinhashGH1(A, I, x∗, H2):
1. Set X = U \A+x∗ . In other words, the graph considers all potential elements

that could be in B. A distribution of B is equivalent to a distribution of how
to choose nB nodes in X .

2. Use H1 to determine Gθ and set Y = Gθ. In other words, Y contains all good
iterations that could potentially increase the final count.

3. Let pj = minhj(I). Use H2 to determine the set of edges:

E = {(i, j) : (i, j) ∈ X × Y and hj(xi) < pj}.

In other words, existence of an edge (i, j) means that if node i belongs to
input B, iteration j will not contribute to the final count.

4. Output the resulting bipartite graph (X ,Y, E).

22

Fig. 5: Min-hash graph

1 2 3 4 5 6 7 8 9 10 11
h1 0.83 0.25 0.77 0.85 0.93 0.35 0.86 0.92 0.49 0.21 0.5
h2 0.62 0.83 0.27 0.59 0.63 0.26 0.4 0.26 0.72 0.36 0.6
h3 0.68 0.11 0.67 0.29 0.82 0.3 0.62 0.23 0.67 0.35 0.7
h4 0.02 0.43 0.22 0.58 0.69 0.67 0.93 0.56 0.11 0.42 0.8

Table 1: Example Hash Functions

Example. Let the universe be U = [11]. Let A = {1, 2, 3, 4}, I = {2, 3}, x∗ = 11.
Let the threshold range for the θ-good iterations be [0.2, 0.7]. Assume that our
protocol runs in 4 iterations using the hash functions defined in table 1.

Figure 5 shows the constructed min-hash graph. In particular, we have X =
{5, 6, . . . , 10}. We have Y = {h1, h2}; h3 has been ruled out since p3 = h3(2) =
0.11 ̸∈ [0.2, 0.7], and h4 has been ruled out because minh4(A) ̸= minh4(I).
Moreover, we have p1 = h1(2) = 0.25 and p2 = h2(3) = 0.27. Note that
(8, h2) ∈ E , because h2(8) < p2.

8.2 Fixed Subsets of Secret Items and Good Iterations

We use the min-hash graph and analyze DDP of πPH for subsets of secret items
and good iterations. We first fix items and consider a noise distribution over the
choice of hash functions. Extending this, in the next section, we will consider the
noise over a distribution of items.
Edges in a min-hash graph. In the random oracle model, each answer in
H2 is chosen uniformly at random. Therefore, given H1, the probability (over
the choice of H2) that an edge (i, j) forms is exactly equal to pj . Moreover, the
probability that (i, j) forms is independent of the probability that any other edge
in the graph forms.
Distribution of min-hash graphs over the choice of H2. Fix the hash
answers H1 to fix X and Y. Fix any positive integer n̂ ≤ nR and the set T ⊆ Y
of iterations with |T | = k̂ ≤ kg. For a fixed set R̂ ⊂ X of n̂ nodes on the
left, let GR̂Y be the set of all min-hash graphs that cover exactly the set Y ⊆ T .
More formally, given a set of edges E , define the set of destination nodes as
dest(E) = {j : (i, j) ∈ E} respectively. Define the set of all possible min-hash
subgraphs in which the set of destination nodes is exactly Y (from R̂).

GR̂Y = {(R̂, Y, E ′) : E ′ ∈ R̂× Y, dest(E ′) = Y }.

In this section, we are interested in the probability over the choice of the hash
functions that the final count is reduced by exactly r due to the elements of a
fixed set R̂ over the k̂ iterations in T . In particular, we define

ER̂
T,r =

∑
Y⊆T,|Y |=r

∑
G∈GR̂

Y

p(G),

where p(G) is defined as

p(G) = Pr
H2

[G0 ←MinhashGH1
(A, I, x∗, H2);G is a subgraph of G0].

23

As explained above, in the random oracle model, the probability depends only on
the size of the sets R̂ and T (i.e., not the actual identity of the set). Therefore,
we will often use the notation En̂

k̂,r
= ER̂

T,r when |R̂| = n̂ and |T | = k̂.
Observe that En̂

k̂,r
is another way of representing an Additive Poisson Binomial

distribution. That is,
En̂

k̂,r
= Pr[PB(k̂, pJ) = r].

Therefore, based on Lemma 6, we have the following:

Corollary 1. Fix H1. Let s = lg lg κ. For any constant ϵ, and any k̂ ∈ Ω(κ),
there are a, b ∈ [k̂] such that

– For any r ̸∈ [a+ s, b], then E
n′
R

k̂,r
and E

n′
R

k̂,r−s
are both negligible in κ.

– For any r ∈ [a, b], then it holds e−ϵ/3 ≤
E

n′
R

k̂,r

E
n′
R

k̂,r−s

≤ eϵ/3.

8.3 DDP over Distribution with Geometric Collision

Additional notation. In our analysis, we focus on only 1/3-fraction of high
min-entropy elements of the secret set R to deal with the leakage scenario, and
consider the Geometric Collision Property only for this subset of elements, which
we denote by R′.

Consider any min-hash graph G = (X ,Y, E). For any set T of iterations of
size k̂ and any integer r, let IR′,T,r be the indicator random variable that is set
to 1 if set R′ achieves total noise r among the iterations in T .

In this section, we consider a distribution D̃ of the secret set R′. We define
the following measure

DT,r(D̃) := Pr
R′∼D

[IR′,T,r] =
∑
R′

Pr
R′∼D̃

[R′] · IR′,T,r.

Geometric collision property. Observe that DT,r corresponds to the proba-
bility (over D) that R′ contributes to the noise pattern r. We would like to show
the following:

For any fixed H2 and over distribution D, it holds that DT,r and DT,r−1 (and
ultimately DT,r−s) are close, except with the tail case of r whose probability
weight is negligible.

The universal quantifier for H2 in the above can be slightly relaxed so that
the condition holds with all but small probability over the choice of H2. We
observe that the above condition can be captured by showing that DT,r is close
to its mean E

n′
R

k̂,r
(and then taking advantage of the property of En′

R

k̂,r
described

in Corollary 1). This is essentially to show that DT,r is concentrated around its
mean. We could try to apply Chernoff bound to show the concentration property,

24

but we cannot because IR′
i,T,r and IR′

j ,T,r are not necessarily independent if
R′i ∩R′j ≠ ∅. Therefore, we instead use Chebyshev for bounding the tail, which
requires DT,r to have small variance. Towards this goal, we introduce a notion
called geometric collision property.

Definition 7 (Geometric Collision Property). Let D̃ be a distribution over
sets of size n′R. We say that D̃ has the Geometric Collision Property if for all
z ∈ [n′R]

Pr
R′

i,R
′
j∼D̃

[
|R′i ∩R′j | = z

]
≤
(

1
√
nR

)z

.

Based on this property, we show the following lemma.

Lemma 7. Let D be a distribution over sets of size n′R with geometric collision
property. For any set T of size k̂ ∈ Ω(κ), there exist a, b ∈ [k̂], such that with
probability 1−O(k̂·lg

3(κ)√
nR

) over choice of H2, the following holds:

– For all r ̸∈ [a+ s, b], DT,r is negligible, where s = lg lg κ.

– For all r ∈ [a, b], e−ϵ/3En′
R

k̂,r
≤ DT,r ≤ eϵ/3E

n′
R

k̂,r
.

8.4 Distribution with the Geometric Collision Property

Recall that the receiver’s input is chosen from the following distribution:

– For each i ∈ (nI , nB], choose xB
i uniformly at random from the universe Ui.

We assume that for i ̸= j, Ui and Uj are disjoint with the same cardinality
|Ui| = |Uj | := ℓ.

Indeed, the above distribution has the geometric collision property as long as
ℓ ≥ nR ·

√
nR (recall nR = nB − nI). When considering two random sets R′0 and

R′1 of size n′R = nR/3 where their elements are from the above distribution, each
position i will have collision with probability 1/ℓ, so we have

Pr[|R′0 ∩R′1| = z] =

(
n′R
z

)(
1

ℓ

)z

·
(
ℓ− 1

ℓ

)n′
R−z

≤
(
e · n′R
zℓ

)z

≤
(

1
√
nR

)z

.

The main issue is that we need to deal with the leakage stemming from the fact
that the hash functions are public. Therefore, we need to consider a more general
class of distributions that captures the leaked version of the above distribution
and show that they still possess the geometric collision property.

For brevity, we omit the subscript R and denote n = nR and n′ = n′R.
Applying the strong chain rule, we can show that the aforementioned distribution
still contains n′ blocks each of which maintains high min-entropy, even after the
leakage is considered.

25

Lemma 8. We consider a min-hash graph G = (X ,Y, E) constructed from
MinhashGH1

(A, I, x∗, H2), while focusing on a single bundle of good iterations.
Let U = U1 × · · · × Un be a fixed universe and R = (R1, . . . , Rn) be a sequence
of (possibly correlated) random variables where each Ri is over Ui (and all are
disjoint) and |Ui| = ℓ for all i. Let Dleak be a distribution over R that has
min-entropy at least 8n

9 lg(ℓ) + n. Then, there is a spoiling leakage function
f ′G such that with all but negligible probability over R ∼ Dleak, the distribution
D̃ := Dleak | f ′G(R) has the following property:

There exists a set {i1, . . . , in′} of size n′ such that for v ∈ [n′], and any
(ri1 , . . . , riv−1) in the support of D̃([iv − 1]), the random variable Riv ∼
D̃([iv]) | Ri1 = ri1 , . . . , Riv−1 = riv−1 has min-entropy at least 1.5 lg(n).

Given the properties of D̃ stated in Lemma 8, by taking advantage of the n′

high min-entropy blocks, we show that D̃ has the Geometric Collision Property.

Lemma 9. Assume D̃ has the following properties (from the conclusion of
Lemma 8):

– There exists a set {i1, . . . , in′} of size n′ such that for v ∈ [n′], and any
(ri1 , . . . , riv−1) in the support of D̃ (again we abuse notation and consider D̃
to be a distribution over streams R′ = Ri1 , . . . , Rin′), the random variable
Riv ∼ D̃ | Ri1 = ri1 , . . . , Riv−1

= riv−1
has min-entropy at least 1.5 lg(n).

Then D̃ (viewed as a distribution over sets) has the Geometric Collision Property
(see Definition 7).

9 Empirical Evaluation

We conduct empirical evaluations of our protocols to determine the proper
parameter ranges for privacy. Fig. 6 shows the trade-off between ϵ and δ with
respect to different intersection sizes nI and the number of iterations when
nA = nB = 106. In Fig. 7 we show the number of iterations required to achieve
DP or DDP for a given Jaccard index for various values of ϵ, δ both in the curator
setting and in the two-party setting where non-intersecting items have high
min-entropy. Note that we achieve the best privacy claim when the Jaccard index
is around 0.5, where the matching of the hash on two sets is most “uncertain”.
In Fig. 8 we show how the expected error of minhash changes with respect to
the Jaccard index and number of iterations. Note that regardless of the setting,
the output of minhash follows a binomial distribution, with randomness taken
over the choices of hash functions. More specifically, the expected value of this
binomial distribution equals the Jaccard index. Therefore, the expected error of
minhash is exactly the standard deviation of the binomial distribution.

26

Fig. 6: nA = nB = 106. Left: Curator setting. Right: Two-party setting with high
min-entropy

Fig. 7: nA = nB = 106. Left: Curator setting. Right: Two-party setting with high
min-entropy

Fig. 8: Expected error of minhash. Left: Trend with various numbers of iterations.
(We only plot curves with a Jaccrad index up to 0.5, as the expected error is
symmetric around 0.5.) Right: Trend with various Jaccard Index.

27

References

1. Martin Aumüller, Anders Bourgeat, and Jana Schmurr. Differentially private
sketches for jaccard similarity estimation. In Shin’ichi Satoh, Lucia Vadicamo,
Arthur Zimek, Fabio Carrara, Ilaria Bartolini, Martin Aumüller, Björn Þór Jónsson,
and Rasmus Pagh, editors, Similarity Search and Applications - 13th International
Conference, SISAP 2020, Copenhagen, Denmark, September 30 - October 2, 2020,
Proceedings, volume 12440 of Lecture Notes in Computer Science, pages 18–32.
Springer, 2020.

2. Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by sub-
sampling: Tight analyses via couplings and divergences. CoRR, abs/1807.01647,
2018.

3. Gilles Barthe and Federico Olmedo. Beyond differential privacy: Composition
theorems and relational logic for f-divergences between probabilistic programs.
In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg,
editors, ICALP 2013: 40th International Colloquium on Automata, Languages and
Programming, Part II, volume 7966 of Lecture Notes in Computer Science, pages
49–60, Riga, Latvia, July 8–12, 2013. Springer, Heidelberg, Germany.

4. Raef Bassily, Adam Groce, Jonathan Katz, and Adam Smith. Coupled-worlds
privacy: Exploiting adversarial uncertainty in statistical data privacy. In 54th
Annual Symposium on Foundations of Computer Science, pages 439–448, Berkeley,
CA, USA, October 26–29, 2013. IEEE Computer Society Press.

5. Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis:
Simultaneously solving how and what. In David Wagner, editor, Advances in
Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 451–468, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg,
Germany.

6. Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis:
Simultaneously solving how and what. In Crypto 2008, pages 451–468. Springer,
2008.

7. Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-
lindenstrauss transform itself preserves differential privacy. In 53rd Annual Sym-
posium on Foundations of Computer Science, pages 410–419, New Brunswick, NJ,
USA, October 20–23, 2012. IEEE Computer Society Press.

8. A. Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences, International Conference on, page 21. IEEE Computer
Society, 1997.

9. Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. Comput. Networks, 29(8-13):1157–1166, 1997.

10. T.-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. Foundations
of differentially oblivious algorithms. In Timothy M. Chan, editor, 30th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2448–2467, San Diego, CA,
USA, January 6–9, 2019. ACM-SIAM.

11. Wei-Ning Chen, Ayfer Ozgur, and Peter Kairouz. The poisson binomial mechanism
for secure and private federated learning. ICML, 2022.

12. Seung Geol Choi, Dana Dachman-Soled, Mukul Kulkarni, and Arkady Yerukhi-
movich. Differentially-private multi-party sketching for large-scale statistics. Pro-
ceedings on Privacy Enhancing Technologies, 2020(3):153–174, 2020.

13. Emiliano De Cristofaro, Sky Faber, Paolo Gasti, and Gene Tsudik. Genodroid: are
privacy-preserving genomic tests ready for prime time? In Ting Yu and Nikita

28

Borisov, editors, Proceedings of the 11th annual ACM Workshop on Privacy in
the Electronic Society, WPES 2012, Raleigh, NC, USA, October 15, 2012, pages
97–108. ACM, 2012.

14. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM
Journal on Computing, 38(1):97–139, jan 2008.

15. Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization
heuristics. CoRR, abs/1801.06733, 2018.

16. Cynthia Dwork. Differential privacy. In Automata, Languages and Programming:
33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Pro-
ceedings, Part II 33, pages 1–12. Springer, 2006.

17. Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Serge
Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004
of Lecture Notes in Computer Science, pages 486–503, St. Petersburg, Russia,
May 28 – June 1, 2006. Springer, Heidelberg, Germany.

18. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of Cryptography: Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7,
2006. Proceedings 3, pages 265–284. Springer, 2006.

19. Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential
privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–
407, 2014.

20. Stefan Dziembowski, Tomasz Kazana, and Maciej Zdanowicz. Quasi chain rule for
min-entropy. Inf. Process. Lett., 134:62–66, 2018.

21. Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized
aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, pages 1054–1067,
2014.

22. Sky Faber. Variants of privacy preserving set intersection and their practical
applications. PhD Thesis, 2016.

23. Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin Strauss, and
Rebecca N. Wright. Secure multiparty computation of approximations. In Fer-
nando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, ICALP 2001: 28th
International Colloquium on Automata, Languages and Programming, volume 2076
of Lecture Notes in Computer Science, pages 927–938, Heraklion, Crete, Greece,
July 8–12, 2001. Springer, Heidelberg, Germany.

24. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

25. S. Dov Gordon, Jonathan Katz, Mingyu Liang, and Jiayu Xu. Spreading the privacy
blanket: - differentially oblivious shuffling for differential privacy. In Giuseppe
Ateniese and Daniele Venturi, editors, ACNS 22: 20th International Conference
on Applied Cryptography and Network Security, volume 13269 of Lecture Notes
in Computer Science, pages 501–520, Rome, Italy, June 20–23, 2022. Springer,
Heidelberg, Germany.

26. Adam Groce, Peter Rindal, and Mike Rosulek. Cheaper private set intersection
via differentially private leakage. Proc. Privacy Enhancing Technologies (PETS),
2019(3):6–25, 2019.

29

27. Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and Kobbi Nissim. Private
approximation of NP-hard functions. In 33rd Annual ACM Symposium on Theory
of Computing, pages 550–559, Crete, Greece, July 6–8, 2001. ACM Press.

28. Xi He, Ashwin Machanavajjhala, Cheryl J. Flynn, and Divesh Srivastava. Composing
differential privacy and secure computation: A case study on scaling private record
linkage. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communications
Security, pages 1389–1406, Dallas, TX, USA, October 31 – November 2, 2017. ACM
Press.

29. P. Jaccard. Etude comparative de la distribution florale dans une portion des alpes
et du jura. 1901.

30. Bo Jiang, Hamid Krim, Tianfu Wu, and Derya Cansever. Refining self-supervised
learning in imaging: Beyond linear metric. In 2022 IEEE International Conference
on Image Processing, ICIP 2022, Bordeaux, France, 16-19 October 2022, pages
76–80. IEEE, 2022.

31. Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam Smith. What can we learn privately? SIAM Journal on Computing,
40(3):793–826, 2011.

32. Ping Li, Art B. Owen, and Cun-Hui Zhang. One permutation hashing. In Peter L.
Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and
Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States,
pages 3122–3130, 2012.

33. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

34. Sahar Mazloom and S. Dov Gordon. Secure computation with differentially private
access patterns. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications
Security, pages 490–507, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

35. Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. Secure paral-
lel computation on national scale volumes of data. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020: 29th USENIX Security Symposium, pages
2487–2504. USENIX Association, August 12–14, 2020.

36. Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan. Computational
differential privacy. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 126–142, Santa Barbara,
CA, USA, August 16–20, 2009. Springer, Heidelberg, Germany.

37. M. Sadegh Riazi, Beidi Chen, Anshumali Shrivastava, Dan Wallach, and Farinaz
Koushanfar. Sub-linear privacy-preserving near-neighbor search. Cryptology ePrint
Archive, Report 2019/1222, 2019. https://eprint.iacr.org/2019/1222.

38. Igal Sason and Sergio Verdú. Bounds among f-divergences. CoRR, abs/1508.00335,
2015.

39. Elaine Shi, T.-H. Hubert Chan, Eleanor Gilbert Rieffel, and Dawn Song. Distributed
private data analysis: Lower bounds and practical constructions. ACM Trans.
Algorithms, 13(4):50:1–50:38, 2017.

40. Maciej Skórski. Strong chain rules for min-entropy under few bits spoiled. In 2019
IEEE International Symposium on Information Theory (ISIT), pages 1122–1126.
IEEE, 2019.

30

https://eprint.iacr.org/2019/1222

41. Maciej Skorski. Strong chain rules for min-entropy under few bits spoiled. In 2019
IEEE International Symposium on Information Theory (ISIT), pages 1122–1126,
2019.

42. Adam Smith, Shuang Song, and Abhradeep Guha Thakurta. The flajolet-martin
sketch itself preserves differential privacy: Private counting with minimal space.
Advances in Neural Information Processing Systems, 33:19561–19572, 2020.

43. Chayant Tantipathananandh, Tanya Y. Berger-Wolf, and David Kempe. A frame-
work for community identification in dynamic social networks. In Pavel Berkhin,
Rich Caruana, and Xindong Wu, editors, Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Jose,
California, USA, August 12-15, 2007, pages 717–726. ACM, 2007.

44. Lun Wang, Iosif Pinelis, and Dawn Song. Differentially private fractional frequency
moments estimation with polylogarithmic space. In International Conference on
Learning Representations, 2022.

45. Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. Adversarial examples for graph data: Deep insights into attack and defense. In
Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages
4816–4823. ijcai.org, 2019.

46. Ziqi Yan, Jiqiang Liu, Gang Li, Zhen Han, and Shuo Qiu. Privmin: Differentially
private minhash for jaccard similarity computation. CoRR, abs/1705.07258, 2017.

47. Ziqi Yan, Qiong Wu, Meng Ren, Jiqiang Liu, Shaowu Liu, and Shuo Qiu. Locally
private jaccard similarity estimation. Concurr. Comput. Pract. Exp., 31(24), 2019.

48. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, pages 162–167,
Toronto, Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

49. Ferdinand Österreicher. Csiszar’s f-divergence-basic properties. RGMIA Research
Report Collection, 2002.

31

A Hockey stick divergence

We first review hockey stick divergence [38], also known as elementary diver-
gences [49] or α-distance [3]. In this paper, we only consider discrete sample
space, although many of arguments naturally extend to the continuous space.

Definition 8. The hockey-stick divergence between two probability measures P,Q
over Z is defined as:

Dhs
α (X,Y) = sup

S⊆Z
(X(S)− αY (S)) =

∑
z∈Z

[(X(z)− αY (z)]+,

where α ≥ 1 and [x]+ = max{x, 0}.

We observe that the following holds directly from the definition of the hockey-
stack divergence.

Corollary 2. For any probability measures X,Y over Z and for any ϵ, δ, it holds

X ≈ϵ,δ Y if and only if Dhs
eϵ (X,Y) ≤ δ and Dhs

eϵ (Y,X) ≤ δ.

Therefore, the hockey-stick divergence captures the inequalities between
output distributions from neighboring inputs. We use hockey-stick divergence to
analyze the privacy loss.

The hockey-stick divergence as a f-divergence. It is known that the
hockey-stick divergence is a kind of f -divergence [3]. Therefore, the hockey-stick
divergence satisfies the joint convexity and data processing inequality [3,2].

Lemma 10 (Joint convexity). For all 0 ≤ λ ≤ 1 and α ≥ 1, any probability
measures X1, X2, Y1, Y2 satisfy

Dhs
α (λX1 + (1− λ)X2, λY1 + (1− λ)Y2) ≤ λDhs

α (X1, Y1) + (1− λ)Dhs
α (X2, Y2) .

The data processing inequality property guarantees that post-processing
cannot increase the divergence.

Lemma 11 (Data processing inequality.). For any probability measures
X,Y over Z and any function g with domain Z, we have

Dhs
α (g(X), g(Y)) ≤ Dhs

α (X,Y) .

32

B Proof of Lemma 3

We set a = np+s(1−p)·eϵ/s
eϵ/s·(1−p)+p

; we chose a so that n−a
a−s = eϵ/s · 1−pp in order to work

out the following:

PrB(n,p)[a]

PrB(n,p)+s[a]
=

(
n
a

)
pa(1− p)n−a(

n
a−s
)
pa−s(1− p)n−a+s

=
(a− s)!

a!
· (n− a+ s)!

(n− a)!
·
(

p

1− p

)s

<

(
n− a

a− s

)s

·
(

p

1− p

)s

= eϵ.

We also set b = eϵ/s·np
(1−p)+eϵ/s·p ; we chose b so that n−b

b = e−ϵ/s · 1−pp in order to
work out the following:

PrB(n,p)[b]

PrB(n,p)+s[b]
=

(
n
b

)
pb(1− p)n−b(

n
b−s
)
pb−s(1− p)n−b+s

=
(b− s)!

b!
· (n− b+ s)!

(n− b)!
·
(

p

1− p

)s

>

(
n− b

b

)s

·
(

p

1− p

)s

= e−ϵ.

To show the second requirement, it suffices to show that PrB(n,p)[X ≤ a+s] =
negl(κ); the case PrB(n,p)[X ≥ b] holds similarly.

Let µ := np ∈ Θ(κ) and let d = 1 − (a + s)/µ. By applying the Chernoff
bound, we have

Pr
X←B(n,p)

[X ≤ a+ s] = Pr[X ≤ (1− d)µ] ≤ exp(−d2µ/2).

33

To see the asymptotic measure of d, let t = s(1− p) · eϵ/s and then we have
a = µ+t

eϵ/s·(1−p)+p
; Then, we have

d =
µ− a

µ
− s

µ

=
µ(eϵ/s · (1− p) + p)− µ− t

µ · (eϵ/s · (1− p) + p)
− s

µ

≥ µ((1 + ϵ/s) · (1− p) + p)− µ− t

µ · eϵ/s
− s

µ

=
(ϵ/s) · (1− p)

eϵ/s
− t

µ · eϵ/s
− s

µ

≥ (ϵ/s) · (1− p)

eϵ
− t+ s

µ

= Θ(1/ lg lg κ)− Õ(1/κ)

Since we have d = Ω(1
lg lg κ) and µ ∈ Θ(κ), PrX←B(n,p)[X ≤ a+s] is negligible

in κ.

C Proof of Lemma 6

Let η−θ = 1/2 − θ and η+θ = 1/2 + θ. For brevity, we let C denote PB(n, pJ).
For any distribution D, let PD denote the probability measure with respect to D.
We first show that for any ϵ > 0, it holds

Dhs
eϵ (PC , PC+1)

≤ max
(
Dhs

eϵ

(
PB(⌈n2 ⌉,η+θ), PB(⌈n2 ⌉,η+θ)+1

)
,Dhs

eϵ

(
PB(⌈n2 ⌉,η−θ), PB(⌈n2 ⌉,η−θ)+1

))
.

To show the above, we follow a similar structure to the proof of [11, Theorem
3.3], which analyzes the Renyi divergence of a slightly different version of (non-
additive) Poisson binomial mechanism. We also rely on the joint convexity5

(Lemma 10) and data processing inequality (Lemma 11) to upper bound the
hockey-stick divergence of two Poisson binomial distributions with that of two
binomial distributions.

We start with showing that the upper bound of the hockey-stick divergence
is reached at extreme points. The proof is similar to [11, Lemma 3.5].

Lemma 12.

Dhs
eϵ (PC , PC+1) (2)

≤ max
j∈[n]

Dhs
eϵ
(
PB(j,η−θ)+B(n−j,η+θ), PB(j,η−θ)+B(n−j,η+θ)+1

)
, (3)

5 [11] actually uses joint quasi-convexity, which is implied by joint convexity but not
vice versa.

34

Proof. Note that there is λ ∈ [0, 1] such that pn = λ (η−θ) + (1− λ) (η+θ). Let
C−n =

∑n−1
j=1 cj . Denote the convolution Conv(a, a′, b) = a · (1− b) + a′ · b. Then,

we have

Pr[C = ℓ] = Conv(Pr[C−n = ℓ],Pr[C−n = ℓ− 1], pn)

= Conv (Pr[C−n = ℓ],Pr[C−n = ℓ− 1], λ · η−θ + (1− λ) · η+θ)

= λConv(Pr[C−n = ℓ],Pr[C−n = ℓ− 1], η−θ)

+ (1− λ)Conv(Pr[C−n = ℓ],Pr[C−n = ℓ− 1], η+θ)

= λPr[C−n + Ber(η−θ) = ℓ] + (1− λ) Pr[C−n + Ber(η+θ) = ℓ]

In other words, we have

PC = λPC−n+Ber(η−θ) + (1− λ)PC−n+Ber(η+θ).

Now using Lemma 10, we have

Dhs
eϵ (PC , PC+1)

≤ λDhs
eϵ
(
PC−n+Ber(η−θ), PC−n+Ber(η−θ)+1

)
+ (1− λ)Dhs

eϵ
(
PC−n+Ber(η+θ), PC−n+Ber(η+θ)+1

)
≤ max

{
Dhs

eϵ
(
PC−n+Ber(η−θ), PC−n+Ber(η−θ)+1

)
,Dhs

eϵ
(
PC−n+Ber(η+θ), PC−n+Ber(η+θ)+1

)}
Repetitively applying the joint convexity on the remaining n−1 random variables
yields the following

Dhs
eϵ (PY , PY+1) ≤ max

j∈[n]
Dhs

eϵ
(
PNj , PNj+1

)
,

where Nj ∼ B(j, η−θ) + B(n− j, η+θ).

Next, we apply data processing inequality to simplify (3) from above lemma.

Lemma 13. (3) is upper bounded by

max
(
Dhs

eϵ

(
PB(⌈n2 ⌉,η+θ), PB(⌈n2 ⌉,η+θ)+1

)
,Dhs

eϵ

(
PB(⌈n2 ⌉,η−θ), PB(⌈n2 ⌉,η−θ)+1

))
(4)

Proof. The proof is similar to [11, Lemma 3.6]. We apply the data processing
inequality. More specifically, consider two distributions X,Y and then adding a
binomial random variable Z as the post-processing step. Then, the addition of Z
doesn’t increase the divergence. In other words,

Dhs
eϵ (PX , PY) ≥ Dhs

eϵ (PX+Z , PY+Z) .

Now, consider (3) and let j∗ be the index that leads to the maximum.

– If j∗ ≤ n/2, we have

Dhs
eϵ

(
PB(⌈n2 ⌉,η+θ), PB(⌈n2 ⌉,η+θ)+1

)
≥ Dhs

eϵ
(
PB(j∗,η−θ)+B(n−j∗,η+θ), PB(j∗,η−θ)+B(n−j∗,η+θ)+1

)
.

This is because n/2 ≤ n − j∗. In this case, Z = B(j∗, η−θ) + B(n − j∗ −
⌈n2 ⌉, η+θ).

35

– Likewise, if j∗ ≥ n/2, we have

Dhs
eϵ

(
PB(⌈n2 ⌉,η−θ), PB(⌈n2 ⌉,η−θ)+1

)
≥ Dhs

eϵ
(
PB(j∗,η−θ)+B(n−j∗,η+θ), PB(j∗,η−θ)+B(n−j∗,η+θ)+1

)
.

We extend the above to upper bound the hockey-stick divergence between
probability measures differed by an integer amount greater than 1, i.e., PC and
PC+s for s > 1.

Corollary 3. For any ϵ > 0, we have

Dhs
eϵ (PC , PC+s)

≤ max
(
Dhs

eϵ

(
PB(⌈n2 ⌉,η+θ), PB(⌈n2 ⌉,η+θ)+s

)
,Dhs

eϵ

(
PB(⌈n2 ⌉,η−θ), PB(⌈n2 ⌉,η−θ)+s

))
Finally, to give a bound on the divergence, we can apply Lemma 3 to argue

binomial distribution hides the small sensitivity. Specifically, as ⌈n2 ⌉ ∈ Θ(κ) and
s = lg lg κ, we can claim (ϵ, δ)-DDP with δ = negl(κ).

Similarly, it holds that Dhs
eϵ (PC+s, PC) ≤ negl(κ). ⊓⊔

D Proof of Theorem 3

On the definition of a θ-good iteration. We keep the same definition of a
θ-good iteration, except we set the exponent to 1/n′R, instead of 1/nR, where
nA, nB , nI , nR, n

′
R are defined above. In particular,

– minh(A) = minh(I).

– minh(I) ∈
[
1−

(
1
2 + θ

)t
, 1−

(
1
2 − θ

)t], where t =
1

n′R
.

Further, we require θ ≤ 1/10.
Bundle of good iterations Kθ. The total number of iterations in the min-hash
protocol πPH is k = Ω(κ · lg lg κ). We require that nR/k

2 = Ω(κ).
Using Lemma 4, with all but negligible probability, at least Ω(κ · lg lg κ)

iterations are θ-good. Recall that Gθ denotes the set of θ-good iterations, and
Kθ = Gθ \ Sx∗ . We set kg = |Kθ|. Of these kg number of θ-good iterations
(except in Sx∗), we further divide them into u = lg lg κ bundles, each of which
is of size kb = Ω(κ). Those bundles are denoted by Kθ,1, . . . ,Kθ,u. We also let
Kbad := Kθ = Gθ ∪ Sx∗ .
Random variables for the protocol output. Let out+bad be the protocol’s
match count for sets A,B+x∗ w.r.t. the hash functions in Kbad:

out+bad := |{j ∈ Kbad : minhj(A) = minhj(B+x∗)}| .

Likewise, let outbad be the number of matches for sets A and B (instead of B+x∗)
in iterations in Kbad. Similarly, for i ∈ [u], we let out+i and outi denote the output

36

for the i-th bundle, with or without x∗ respectively. Note that out+i = outi, since
we ruled out Sx∗ from Kθ. Note that the final output of the min-hash protocol
for input B+x∗ is equal to out+bad +

∑u
i=1 outi; the final output for input B is

outbad +
∑u

i=1 outi. Let

out = out+bad||outbad||out1|| · · · ||outu.

We also consider the output with the ith bundle missing; that is, for i ∈ [u] let

out−i = out+bad||outbad||out1|| · · · ||outi−1||outi+1|| · · · ||outu.

Upper-bounding leakage from the output. Since |Kbad| and |Kθ,i| are at
most k ∈ poly(κ), we can safely assume that the total number of bits in out is

2 lg |Kbad|+
u∑

i=1

lg |Kθ,i| ≤ (2 + lg lg κ) lg |poly(κ)| ≤ κ.

Distribution of R and its min-entropy. We first consider the original
distribution on P2’s secret set R to be the uniform distribution over all sets of
size nR with each element is chosen from a universe U . The universe U has size
ℓ · nR with ℓ ≥ 4(nR)

3.
Now choose, uniformly at random, a partition {U1, . . . , UnR

} of U where each
|Uj | = ℓ such that the element in the jth slot of R belongs to Uj . These universes
{U1, . . . , UnR

} are leaked in the analysis.
Let D denote the original distribution over the set R, but conditioned on

the leaked information {U1, . . . , UnR
}. The distribution D is equivalent to a

distribution over streams of nR elements, where the element in the i-th slot is
chosen uniformly at random from Ui. Therefore, D has min-entropy nR lg ℓ.

We additionally consider arbitrary leakage f(R) = γ of length L. L is set
such that:

nR lg ℓ− L ≥ 8nR

9
lg ℓ+ 2nR

Available iterations in a bundle. For a fixed set Z ⊆ R, we say that
a set of iterations in the ith bundle Kθ,i is available with respect to Z if
there are no edges from Z to that set. More formally, consider a graph G ←
MinhashGH1

(A, I, x∗, H2) and letting G = (X ,Y, E), we define

AvailG(Kθ,i, Z) := {j ∈ Kθ,i : ∀z ∈ Z : (z, j) ̸∈ E)}.

Intuitively, no elements in the fixed set Z can be minimum hash value in the jth
iteration. In this sense, the iteration j is still available for other elements than
those in Z to become the winner of delivering the minimum hash value.
Existence of a good bundle. We now describe a process for identifying a
“good” bundle of iterations in the sense that given the fixed hash, the distribution
D (after the leakage) satisfies the DP-like property. We show that with all but
negligible probability, process IsAGoodBundle succeeds on at least one bundle
Kθ,i where i ∈ [u].

37

Process IsAGoodBundle(i,out−i,D, A, I, x∗, H1, H2):
1. Consider G←MinhashGH1(A, I, x∗, H2).
2. Let D1,i := D | out−i. In other words, D1,i is the distribution D on R, but

conditioned on the output vector out−i. If D1,i has min-entropy less than
nR lg(ℓ)− L− 2κ then output FAIL1,i and terminate.
We note that by applying [14, Lemma 2.2], the average min-entropy of
D|out−i is at least nR lg ℓ − L − κ, which implies that the min-entropy of
D|out−i is at least nR lg ℓ−L− 2κ ≥ 8nR

9 lg ℓ+ nR with probability 1− 2−κ

(assuming that nR ≥ 2κ). Therefore, the probability that the process outputs
FAIL1,i is at most 2−κ ≤ negl(κ).

3. Due to Lemmas 8 and 9, there is a leakage function fG(R) which leaks
V = {j1, . . . , jn′

R
} such that with all but negligible probability there exists a

distribution with the Geometric Collision Property over sets R′ = {xj ∈ R :
j ∈ V }. If there is no such distribution, output FAIL2,i and terminate. The
leakage function f also leaks T = AvailG(Kθ,i, R\R′). Let D2,i := D1,i|fG(R).

4. If it holds |T | ≤ 1
10 |Kθ,i|, output FAIL3,i and terminate. Let kv = |T |.

5. Using G constructed above, compute

DT,r(D2,i) = Pr
R′∼D2,i

[IR′,T,r].

Check if there are a and b satisfying the following conditions:
– For r ̸∈ [a+ lg lg κ, b], DT,r(D2,i) is negligible in κ.
– For r ∈ [a, b], it holds that e−ϵ/3E

n′
R

kv,r
≤ DT,r(D̃) ≤ eϵ/3E

n′
R

kv,r
.

Output FAIL4,i and terminate, if the above check fails.
6. Output SUCCESS.

SUCCESS with high probability. We already argued that FAIL1,i and FAIL2,i
occur with negligible probability. We now argue that FAIL3,i occurs with negligible
probability. Recall kb = |Kθ,i|.
Lemma 14. Fix H1, A, I, x∗, and consider choosing H2 and constructing G←
MinhashGH1(A, I, x∗, H2). Then, it holds that

Pr
H2

[
|T | ≤ kb

10

]
≤ negl(κ).

Proof. Let n = nR and n′ = n′R for brevity of notation. Recall that n′ = n/3.
Let Xj be an indicator variable that represents whether there is an edge from
(n− n′) nodes to iteration j. Therefore, we have

Pr
H2

[|T | = r] = Pr
H2

 kb∑
j=1

Xj = kb − r

 .

Recall that pj ≤ 1−(η−θ)1/n
′
and Pr[Xj = 1] = 1−(1−pj)n−n

′ ≤ 1−(η−θ)
n−n′
n′ =

1− (η−θ)
2 ≤ 1− (2/5)2. Therefore, we have

m := E

 kb∑
j=1

Xj

 ≤ kb · (1− (η−θ)
2) ≤ 0.84kb

38

Using the Chernoff bound and due to kb ∈ Ω(κ), we have

Pr
H2

[
|T | ≤ kb

10

]
= Pr

H2

 kb∑
j=1

Xj ≥
9

10
kb

 ≤ exp

(
− (0.9kb −m0)

2

2m0

)
= exp(−Ω(κ)).⊓⊔

We now analyze FAIL4,i. In particular, by Lemma 7, for all i ∈ [u], conditioned
on FAIL1,i, FAIL2,i, FAIL3,i not occurring, let

p4 := Pr
H1,H2

[IsAGoodBundle(i,out−i,D, A, I, x∗, H1, H2) = FAIL4,i].

Then, we have p4 ∈ O(kv lg
3(κ)/(nR)

0.5).
Further, observe that conditioned on FAIL1,i, FAIL2,i, FAIL3,i not occurring,

the process outputs FAIL4,i independently of (out−i, R′), since the hash values
in H2 for any iteration are chosen independently of those for the other iterations.
Using the above, since kv/

√
nR = O(1/

√
κ), we have the following:

The process IsAGoodBundle outputs SUCCESS for at least one bundle
with probability 1− pu4 = 1− negl(κ).

Noise distribution. We define a noise distribution Φ and give an analysis of
the hockey stick divergence of Φ(r) and Φ(r − lg lg(κ)).

Definition 9 (Noise distribution Φ). We define Φ(r) as follows:

– Choose H1 and H2 randomly.
– Let i∗ ∈ [u] be the index to the bundle that IsAGoodBundle outputs

SUCCESS.
– For r ∈ [0, kv], output DT,r(D2,i∗), where T = AvailG(Kθ,i∗ , R \R′).
– For r ̸∈ [0, kv], Φ(r) := 0

Lemma 15. The hockey stick divergences Dhs
eϵ (Φ(r), Φ(r − lg lg(κ))) and

Dhs
eϵ (Φ(r − lg lg(κ)), Φ(r)) are both negligible in κ.

Proof. For brevity, for any r, denote Dr := DT,r(D2,i∗). Conditioned on IsA-
GoodBundle outputting SUCCESS with input out−i∗ , we have a and b such
that for r ∈ [a+ lg lg κ, b],

e−ϵ ≤
e−ϵ/3En′

kv,r

eϵ/3En′

kv,r−lg lg(κ)

≤ Dr

Dr−lg lg(κ)
≤

eϵ/3En′

kv,r

e−ϵ/3En′

kv,r−lg lg(κ)

≤ eϵ.

The first and last inequalities are from Lemma 1. The second and third inequalities
are from the condition that the process outputs SUCCESS. The hockey stick
divergence Dhs

eϵ (Φ(r), Φ(r − lg lg(κ))) is therefore at most∑
r ̸∈[a+lg lg κ,b]

Dr ≤ kv · negl(κ) = negl(κ).⊓⊔

Similarly, Dhs
eϵ (Φ(r − lg lg(κ)), Φ(r)) is also negl(κ).

39

Putting it all together. Let c be the final count produced by running protocol
πPH. We consider the probabilities

Pr
H1,H2,D

[c | B+x∗] and Pr
H1,H2,D

[c | B].

We consider only runs of the protocol that yield c and for which there exists
some i∗ ∈ [u] such that the process IsAGoodBundle returns SUCCESS given
out−i∗ as input. We just have argued that such an i∗ exists with all but negligible
probability.

Further, we consider only runs of the protocol for which out+bad − outbad ≤
s = lg lg(κ). By Lemma 2, this also occurs with all but negligible probability, We
will also leak kv = |Avail(Kθ,i∗ , R \R′)|.

Conditioned on the above events, by the definition of the distribution Φ, the
value outi∗ contributes (kv − r) to the final count c with probability p = Φ(r).
Recall that every iteration j in Kθ,i∗ is good, which means minhj(A) = minhj(I),
potentially contributing to the output.

Therefore, assuming none of bad events occur (which happens with over-
whelming probability), by applying Lemma 15, the probability that the ratio of
probabilities of a certain output out for B+x∗ and B is not contained in [e−ϵ, eϵ]
is negl(κ), and therefore we conclude that the protocol satisfies the DDP security.

E Proof of Lemma 7

Notations. When considering the probability of DT,r(D̃) and IR′,T,r over the
choice of H2, then the identity of T doesn’t matter except for its size k̂ = |T |.
Therefore, in this case, we will simply use Dk̂,r(D̃) and IR′,k̂,r Moreover, when it

is clear from the context, we will sometimes omit k̂ and D and say ER′

r = E
n′
R

r

and IR′,r = IR′,k̂,r, and Dr = Dk̂,r(D̃).
We first show the following lemma holds.

Lemma 16. Let D be a distribution over sets of size n′R with geometric collision
property. Fix H1 and consider k̂, θ, a, b specified in Lemma 1 with the same
requirements. Then, we have the following:

Case 1: If r ̸∈ [a+ s, b], then we have

Pr
H2

[
Dk̂,r(D̃) ≤ negl(κ)

]
≥ 1− negl(κ).

Case 2: If r ∈ [a, b], then we have

Pr
H2

[
e−ϵ/3E

n′
R

k̂,r
≤ Dk̂,r(D̃) ≤ eϵ/3E

n′
R

k̂,r

]
≥ 1− (eϵ/3 − 1)−2 · 16 lg

3(κ)
√
nR

.

Then, Lemma 7 follows by taking a union bound over different cases of r. ⊓⊔

40

E.1 Proof of Lemma 16

We also define ρ(R′) := PrR′∼D̃[R
′].

Proof for Case 1. We first consider Case (1). By applying the Case (1) of
Corollary 1, we have E

n′
R

r ∈ negl(κ). Given E
n′
R

r ∈ negl(κ), we show

Pr
H2

[
Dr(D̃) ≤ negl(κ)

]
≥ 1− negl(κ).

Recall that Dr(D̃) =
∑

R′ ρ(R′) · IR′,r. Assume toward the contradiction that
the negation of the statement holds. This means there are polynomials p and q,
and a collection Heavy of R′s such that

Pr
H2

 ∑
R′∈Heavy

ρ(R′) · IR′,r ≥ 1/p(κ)

 ≥ 1/q(κ)

Note that
∑

R′∈Heavy ρ(R
′) ≥ 1/p(κ). Now, since D̃ and H2 are independent,

the above implies that ∑
R′∈Heavy

ρ(R′) Pr
H2

[IR′,r] ≥
1

p(κ)q(κ)
.

However, considering that PrH2
[IR′,r] = E

n′
R

r , which is negligible, the above is a
contradiction.

Proof for Case 2. We will bound Dr =
∑

R′ ρ(R′) · IR′,r using Chebyshev
inequality. For this, we would like to bound the variance of Dr.

We start with showing the following lemma, which will allow us to ignore the
tail when we bound the variance. Below, the value z will correspond to the size
of the intersection of the two sets R′i and R′j .

Lemma 17. Fix H1. Consider a graph G←MinhashGH1
(A, I, x∗, H2). Con-

sider any set T iterations in G such that |T | = k̂. Let Z be a set of left nodes
in G such that |Z| ≤ n′R. Let z = |Z|. Consider the probability (over the choice
of H2) that Z has more than z lg lg κ outgoing edges in G. This probability is
negligible in κ.

Proof (Lemma 17). Let p = 1 − (η−θ)
1/n′

R . We first show that p ≤ 1/n′R.
Recall θ ≤ 1/10, which implies e−1 ≤ 1/2 − θ = η−θ. Therefore, we have
(1 − 1/n′R)

n′
R ≤ e−1 ≤ η−θ, so 1 − 1/n′R ≤ (η−θ)

1/n′
R . Therefore, we have

1− (η−θ)
1/n′

R ≤ 1/n′R.
Let Edges(Z, T) be the set of edges from Z to T . Over the choice of H2, the

probability that each pair in Z × T forms an edge is at most p. Therefore, we
can simply use a Binomial distribution to bound the probability. In particular,

41

with t = lg lg κ we have

Pr
H2

[
|Edges(Z, T)| ≥ zt

]
≤ Pr

[
B(zk̂, p) ≥ zt

]
≤
(
zk̂

zt

)
· pzt

≤
(
zk̂

zt

)
· (1/n′R)zt

≤

(
e · k̂
n′R · t

)zt

.

Since n′R is much larger than k̂, the above probability becomes negligible in κ.

Now we prove the following lemma towards bounding the variance of Dr.

Lemma 18. Fix H1. We set the parameters for k̂, a and b as stated in Lemma 7.
Let R′i, R

′
j be sets of nodes on the left of size n′R such that with |R′i ∩ R′j | = z.

Let ζ = z lg lg κ. Then for all a ≤ r ≤ b, we have

Pr
H2

[IR′
i,r
∧ IR′

j ,r
] = E

H2

[IR′
i,r
· IR′

j ,r
]

≤

(
1 +

ζ · (eζϵ/3 + 1)

η−θzk̂/n
′
R

)(
E

n′
R

r

)2
Proof. Fix R′i, R

′
j with |R′i ∩R′j | = z. Let Z = R′i ∩R′j and X = R′i − Z. Then,

we have

Pr
H2

[IR′
i,r
∧ IR′

j ,r
] =

r∑
m=0

Pr[IX,m ∧ IZ,r−m ∧ IR′
j ,r

]

≤
r−ζ∑
m=0

Pr[IZ,r−m] +

r∑
m=r−ζ+1

Pr[IX,m ∧ IR′
j ,r

]

=

r∑
m=ζ

Pr[IZ,m] +

r∑
m=r−ζ+1

Pr[IX,m] · Pr[IR′
j ,r

]

≤ negl(κ) +
r∑

m=r−ζ+1

Pr[IX,m] · Pr[IR′
j ,r

]

= negl(κ) + E
n′
R

r ·
r∑

m=r−ζ+1

Pr[IX,m].

The second inequality holds due to Lemma 17. It is left to bound Pr[IX,m] for
m ∈ (r − ζ, r]. We observe that the following holds:

Pr
H2

[IX,m] = Pr[IR′
i,m
| IZ,0].

42

In other words, the event that X contributes to noise pattern m is equivalent
to the event that R′i contributes to m conditioned on the intersection having no
contribution.

Therefore, we have

Pr
H2

[IX,m] =
Pr[IR′

i,m
∧ IZ,0]

Pr[IZ,0]
≤

Pr[IR′
i,m
∧ IZ,0]

η−θzk̂/n
′
R

≤
Pr[IR′

i,m
]

η−θzk̂/n
′
R

=
E

n′
R

m

η−θzk̂/n
′
R

.

We now bound E
n′
R

m for m ∈ (r − ζ, r]. Let m∗ := argmaxm{E
n′
R

m : m ∈
(r − ζ, r]}. Using Corollary 1 we have

E
n′
R

m∗ ≤ (eϵ/3)ζ · En′
R

r + negl(κ).

Therefore, we have

Pr
H2

[IR′
i,r
∧ IR′

j ,r
] ≤ negl(κ) + E

n′
R

r ·
r∑

m=r−ζ+1

Pr[IX,m]

≤ negl(κ) + ζ · En′
R

r · Pr[IX,m∗]

= negl(κ) + ζ · En′
R

r · E
n′
R

m∗

η−θzk̂/n
′
R

= negl(κ) + ζ · En′
R

r · e
ζϵ/3E

n′
R

r + negl(κ)

η−θzk̂/n
′
R

≤

(
1 +

ζ · (eζϵ/3 + 1)

η−θzk̂/n
′
R

)(
E

n′
R

r

)2
⊓⊔

Lemma 19. We set the parameters for H1, k̂, a and b as stated in Lemma 7.
Let D̃ be a distribution with the geometric collision property. Then, for every
a ≤ r ≤ b, we have

VarH2 [Dr] ≤
16 lg3(κ)
√
nR

(
E

n′
R

k̂,r

)2
.

Proof. Consider any r ∈ [a, b]. Recall that Dr :=
∑

R′∈Supp(D̃) ρ(R
′) · IR′,r.

43

VarH2
[Dr] =

∑
R′

i,R
′
j

ρ(R′i) · ρ(R′j) · (E[IR′
i,r
· IR′

j ,r
]− E[IR′

i,r
] · E[IR′

j ,r
])

≤
∑

R′
i,R

′
j :|R′

i∩R′
j |≥1

ρ(R′i) · ρ(R′j) · E[IR′
i,r
· IR′

j ,r
]

=

n′
R∑

z=1

Pr
R′

i,R
′
j∼D̃

[|R′i ∩R′j | = z] · E[IR′
i,r
· IR′

j ,r
]

≤
n′
R∑

z=1

(
1
√
nR

)z

·
(
1 +

ζ · (eζϵ/3 + 1)

η−θzk/n
′
R

)
·
(
E

n′
R

r

)2
≤

n′
R∑

z=1

(
1
√
nR

)z

·
(
ζ · eζ + 2

(2/5)ζ/3

)
·
(
E

n′
R

r

)2
≤

n′
R∑

z=1

(
1
√
nR

)z

·
(
8ζ+1

)
·
(
E

n′
R

r

)2
= 8 ·

(
E

n′
R

r

)2
·
n′
R∑

z=1

(
lg3 κ
√
nR

)z

≤ 16 lg3 κ
√
nR

(
E

n′
R

r

)2
.

The first inequality holds because if R′i are R′j are disjoint, then IR′
i,r

and
IR′

j ,r
are independent over the choice of H2, and the relevant terms are canceled

out. The second inequality is due to the geometric collision property of D̃ and
Lemma 18. The third inequality holds with ϵ ≤ 3 since θ < 1/10 and k̂ is much
smaller than n′R. ⊓⊔

Finally, by Chebyshev, we have that for all a ≤ r ≤ b,

Pr
H2

[
Dr /∈ [e−ϵ/3(E

n′
R

k̂,r
), eϵ/3(E

n′
R

k̂,r
)]
]
≤ Pr

[
|Dr − E

n′
R

k̂,r
| ≥ (1− e−ϵ/3) · En′

R

k̂,r

]
≤ Var[Dr]

(1− e−ϵ/3)2 · (En′
R

k̂,r
)2

≤ 16 lg3(κ)

(1− e−ϵ/3)2
√
nR

.

F Distribution with the Geometric Collision Property

In this section, we show that the distributionD2,i described in process IsAGoodBundle
possesses the geometric collision property. Note that the receiver’s input is chosen
from the following distribution:

44

– For each i ∈ (nI , nB], choose xB
i uniformly at random from the universe Ui.

We assume that for i ̸= j, Ui and Uj are disjoint with the same cardinality
|Ui| = |Uj | := ℓ.

Indeed, the above distribution has the geometric collision property as long as
ℓ ≥ nR ·

√
nR (recall nR = nB − nI). When considering two random sets R′0 and

R′1 of size n′R = nR/3 where their elements are from the above distribution, each
position i will have collision with probability 1/ℓ, so we have

Pr[|R′0 ∩R′1| = z] =

(
n′R
z

)(
1

ℓ

)z

·
(
ℓ− 1

ℓ

)n′
R−z

≤
(
e · n′R
zℓ

)z

≤
(

1
√
nR

)z

.

The main issue is that we need to deal with the leakage stemming from the fact
that the hash functions are public. Therefore, we need to consider a more general
class of distributions that captures the leaked version of the above distribution
and show that they still possess the geometric collision property.
Strong chain rule for a special case: achieving flatness through cluster-
ing. Fortunately, a stronger version of the chain rule is known to hold for a special
leakage pattern, i.e., when elements are conditioned in order [41]; very roughly
speaking, for every i, the min-entropy of Ri|(R1, . . . , Ri−1) is essentially the same
as the min-entropy of (R1, . . . , Ri) minus the min-entropy of (R1, . . . , Ri−1) at
the sacrifice of an additional small leakage, which is called a spoiling leakage.

They achieve this by grouping possible sequences with a similar distributional
characteristic into the same cluster. Then, in every cluster, the distribution of
sequences conditioned on that cluster will be essentially flat. Now, the spoiling
leakage corresponds to the cluster identifier. By making every cluster contain
sufficiently many sequences (leading to sufficient min-entropy due to flatness),
the total number of clusters can be small (leading to a short spoiling leakage).
Notes on notations. For brevity, in this section, we omit the subscript from
nR, i.e., we denote n = nR. For any sequence of random variables R = R1, . . . , Rn

(for the secret input R), we denote R<i = R1, . . . , Ri−1 and R≤i = R1, . . . , Ri.
Likewise, we extend such subscript notations and use R>i and R≥i. We use lower
case r = r1, . . . , rn to denote the actual set/sequence.
Strong chain rule for our setting. We first adapt the result in [41] into
our setting, in which itself needs a significant amount of modification. Then,
we argue that a sufficient number of elements still have high min-entropy, even
conditioned on the previous elements. Finally, we show that these high min-
entropy (conditioned) elements provide the geometric collision property.

Theorem 5 (Block structures with few bits spoiled in our setting). We
consider a min-hash graph G = (X ,Y, E) constructed from MinhashGH1

(A, I, x∗, H2),
while focusing on a single bundle Kθ,∗ of iterations.

Let U = U1×· · ·×Un be a fixed universe and R = (R1, . . . , Rn) be a sequence
of (possibly correlated) random variables where each Ri is over Ui (and all are
disjoint) and |Ui| = ℓ for all i. Then, for any ϵ ∈ (0, 1) and any δ > 0, there
exists a spoiling leakage function fG(R) that satisfies the following properties.

45

1. It holds that PrR[f(R) = ⊥] ≤ ϵn.
2. Let Im(f) be the set of images of f . Every y ∈ Im(f) \ {⊥} specifies two

disjoint sets V and W such that V ∪W = [n].
3. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ V , every element in

distribution Ri | R<i has low probability weight, i.e.,

∀y ∈ Im(f) \ {⊥},∀r s.t. f(r) = y,∀i ∈ V :

Pr

[
Ri = ri

∣∣∣∣∣ R<i = r<i, y

]
≤ 2δ

n1.5
.

4. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈W , it holds that Ri | R<i

has small support size, i.e.,

∀y ∈ Im(f) \ {⊥},∀r s.t. f(r) = y,∀i ∈W :

|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}| ≤ 2δ · n1.5.

5. |Im(f)| ≤ n · (2e)n/2 · (n+kb)!
n! · (2(lg(ℓ) + lg(1/ϵ))/δ)

n.
6. AvailG(Kθ,∗, RW) can be computed from f(R), where RW := {Ri : i ∈W}.

F.1 Proof of Theorem 5

By following the general idea of [41], we will build clusters, and the spoiling
leakage will be the cluster identifier. However, we will slightly change the way we
build clusters.
Condition 1. Throughout our proof, we let Pr[ri] denote Pr[Ri = ri] for brevity,
whenever the referred random variable is clear. Before forming the clusters, we
will first like to exclude all sequences r ∈ U = U1 × · · · × Un having a very small
probability PrR[Ri = ri | R<i = r<i] < ϵ/ℓ for any i ∈ [n] and only consider the
remaining U ′ ⊂ U . Specifically, we let f(r) =⊥ for all r /∈ U ′. As we will see later,
this probability lower bound is vital to upper bound |Im(f)|.

Claim. Let U ′ be the set containing all the sequences r such that PrR[Ri = ri |
R<i = r<i] ≥ ϵ/ℓ for all i ∈ [n] . Then, we have Pr[r ∈ U ′] ≥ 1− ϵn.

Proof. For each i ∈ [n], and any r<i ∈ U1 × · · · × Ui−1, we have∑
u∈Ui:PrR[Ri=u|R<i=r<i]<ϵ/ℓ

Pr
R
[Ri = u | R<i = r<i] <

∑
u∈Ui

ϵ/ℓ = ϵ.

Therefore, using a union bound across all i ∈ [n], we have

Pr[r ̸∈ U ′] ≤ ϵ · n.⊓⊔

Building clusters. For each r ∈ U ′, we describe how to compute f(r) =
(f1(r), f2(r), . . . , fn(r)), which will serve as the cluster identifier. Let r(a) denote
a rounding function that rounds a to the closest multiple of δ/2. We say a ≈r a

′

if r(a) = r(a′).

46

For each r, do the following:
1. Let f>n(r) = ⊥ for any r, and initialize W = ∅.
2. For i = n, . . . , 1, do the following:

(a) Let sp1
i (r) denote the surprise of the ith element of r. More formally,

sp1
i (r) = − lg Pr

R
[Ri = ri | R<i = r<i, f>i(R) = f>i(r)].

This surprise measure represents how rare and surprising the event ri
is, conditioned on r<i, f>i(r). In a sense, we will group sequences with
similar surprises into a cluster.

(b) Let sp2
i (r) denote the surprise of the sequences with a similar surprise

level in aggregate.

sp2
i (r) = − lg Pr

R
[sp1

i (R) ≈r sp1
i (r) | R<i = r<i, f>i(R) = f>i(r)].

Note sp1
i (r) ≥ sp2

i (r), since at least sequence r has sp1
i (r) and possibly

more points may approximately share the surprise. Note also that sp2
i (r)

is a deterministic function of sp1
i (r), r<i, f>i(r).

(c) If r(sp1
i (r))− r(sp2

i (r)) ≥ 1.5 lg(n) then let fi(r) = (r(sp1
i (r)), true).

(d) Otherwise, let fi(r) = (r(sp1
i (r)), false, Hi) and add i to W .

Here, Hi is defined as N({ri}) \N(rW), where N refers to the neighbors
(restricted to Kθ,∗) of the input set of nodes in G. In other words,
Hi contains the iterations newly covered by element ri; any iterations
previously covered by rW are ruled out in Hi. In this way, we can reduce
the length of the cluster identifier.

3. Set f(r) = f1(r), . . . , fn(r). Set V = [n] \W .

Conditions 2 and 3. Condition 2 follows from how V is computed in step 3. We
now show that condition 3 holds. In particular, ∀y ∈ Im(f(·))\{⊥},∀r s.t. f(r) =
y,∀i ∈ V we have

Pr[ri | r<i, y] = Pr[ri | r<i, y≥i] =
Pr[ri ∧ r<i ∧ y≥i]

Pr[r<i ∧ y≥i]

=
Pr[ri ∧ r<i ∧ y>i]

Pr[r<i ∧ y>i] Pr[yi | r<i ∧ y>i]

The first equality is due to y<i being a deterministic function of r<i, y≥i.
Similarly, the nominator of the final fraction is due to yi being a deterministic
function of r≤i, y>i. Moreover, yi,2 (i.e., true) can be deterministically computed
from yi,1(i.e., r(sp1

i (r))), r<i, y>i. Therefore, the above is equal to

Pr[ri ∧ r<i ∧ y>i]

Pr[yi,1 | r<i ∧ y>i] Pr[r<i ∧ y>i]
=

Pr[ri | r<i ∧ y>i]

Pr[y1,i | r<i ∧ y>i]
=

2−sp1
i (r)

2−sp2
i (r)
≤ 2δ

n1.5
. (5)

The last inequality holds since i ∈ V , r(sp1
i (r))− r(sp2

i (r)) ≥ 1.5 lg(n).

47

Condition 4. For r, y, i as quantified in the theorem statement, we have

|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}|
= |{ri : Pr[Ri = ri ∧R<i = r<i ∧ y]] ≥ 0}|
= |{ri : Pr[Ri = ri ∧R<i = r<i ∧ yi,1, yi,2, y>i]] ≥ 0}|
≤ |{ri : Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i]] ≥ 0}|

By a similar argument as above, for all ri such that

Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i]] ≥ 0,

it holds

Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i] =
Pr[ri | r<i ∧ y>i]

Pr[yi,1 | r<i ∧ y>i]
=

2−sp1
i (r)

2−sp2
1(r)
≥ 2−δ

n1.5

where the inequality holds since i ∈ W , we know that r(sp1
i (r)) − r(sp2

i (r)) ≤
1.5 lg(n). This means that

|{ri : Pr[Ri = ri|R<i = r<i, y≥i]] ≥ 0}| ≤ 2δ · n1.5.

Condition 5. To bound |Im(f)|, we first upper bound yi,1. Recall that PrR[Ri =
ri | R<i = r<i] ≥ ϵ/ℓ for all i ∈ [n] and r ∈ U ′. Therefore, PrR[Ri = ri | R<i =
r<i, y] ≥ ϵ/ℓ for all i ∈ [n], and ∀r such that f(r) = y.

Therefore, for all r ∈ U ′, i ∈ [n], we have

sp1
i (r) ≤ lg(ℓ) + lg(1/ϵ),

which implies that yi,1 has at most 2(lg(ℓ)) + lg(1/ϵ))/δ different possibilities.
To upper bound the number of possibilities of the remaining parts, it suffices

to upper bound the number of choices for set W of size m, as well as the number
of possibilities for Hi’s in each slot i ∈ W . Clearly, the former is

(
n
m

)
. For

the latter part, note that each iteration appears at most once over all m slots.
Therefore, the problem becomes how we can assign kb different iterations into
m+ 1 positions (with some positions possibly containing none) while assigning
them to the m+ 1th position when they never appear in any slot of W . This is a
well-known problem of stars and bars with m+ 1 variables and sum kb, which
has

(
m+kb

m

)
possibilities. Since we have kb! different orderings for kb iterations,

the upper bound is
(
m+kb

m

)
· (kb!). We have:

|Im(f)| ≤ (2(lg(ℓ) + lg(1/ϵ))/δ)
n

(
n∑

m=0

(
n

m

)(
m+ kb

m

)
· kb!

)

= (2(lg(ℓ) + lg(1/ϵ))/δ)
n

(
n∑

m=0

(
n

m

)
(m+ kb)!

m!

)

≤ n ·
(

n

n/2

)
· (n+ kb)!

n!
· (2(lg(ℓ) + lg(1/ϵ))/δ)

n

≤ n · (2e)n/2 · (n+ kb)!

n!
· (2(lg(ℓ) + lg(1/ϵ))/δ)

n
.

48

Condition 6. Finally, condition 6 follows from the definition of the clustering
procedure. In particular, HW =

⋃
i∈W Hi contains all the iterations that rW

covers. The available set can be computed by Kθ,∗ \ HW . This concludes our
proof.

F.2 Generalization

It can be seen that in the above proof, the only properties that we used of the
additional leakage Hi is that for i ∈W , Hi depends only on Ri, y>i and that the
number of choices for the output of the sequence of leakages [Hi]i∈W is bounded
by some B. Theorem 4 stated in Section 7 is restatement of Theorem 5 with
respect to any such leakage function.

Note that the leakage functions ℓi specified above can model leakage with
respect to a random oracle h, by letting ρi = h(Ri).

F.3 Towards Achieving Geometric Collision Property

Remember that we would like to show that when R is chosen uniformly at random
from universe U then the distribution of these nR = nB − nI elements has the
geometric collision property even with the leakage.

Towards this goal, in this section, by applying Theorem 5 to this distribution,
we show that even with the leakage, there are at least nR/3 elements that
preserves enough min-entropy. In the next section, we show how these elements
with sufficient min-entropy give the geometric collision property. For brevity, we
let n := nR in this subsection and n′ := n′R = nR/3.

Remark 1 (Getting rid of tiny parts). Similar to [41, Remark 2], we can further
require that each cluster should have a probability that is “not too small”.
Therefore, we define a new leakage function f ′ by substituting the ϵ in the above
theorem with ϵ/2, and additionally letting f ′(r) =⊥ for all r such that y ∈ f(r)
and PrR[f(R) = y] < ϵn/(2|Im(f)|) (their total probability is at most ϵn/2), we
obtain the following:

f ′ satisfies all conditions in Theorem 5. Additionally, ∀y ∈ Im(f ′), we
have PrR[f

′(R) = y] ≥ ϵn/(2|Im(f)|).

F.4 Proof of Lemma 8

In Lemma 8, by setting ℓ ≥ 4n3 and assuming sufficient min-entropy of R, we
show that one can ensure more than 1/3 fraction of the blocks having min-entropy
at least 1.5 lg(n), upon leaking the outcome of f ′ and all previous blocks.

49

First notice that with all but ϵn probability, f ′(R) ̸=⊥. Therefore, it suffices
to let ϵ = 2−κ. Then, by setting δ = 1, we have

lg(|Im(f)|) ≤ n · (2e)n/2 · (n+ kb)
kb · (2(lg(ℓ) + lg(1/ϵ))/δ)

n

=

(
lg(n) + n/2 · lg(2e)

)
+ kb · lg(n+ kb) + n · (1 + lg(lg(ℓ) + κ))

< 3n/2 + 2kb lg n+ n(2 + lg κ)

< 0.5n lg n

for sufficiently large n with kb = Ω(κ) and n/k2b = Ω(κ).
Combining the above with Remark 1, we have PrDleak

[f ′(R) = y] ≥ ϵn/(2 ·
20.5n lg(n)) and for every y ∈ Im(f ′) \ {⊥}. Moreover, for every r such that
f ′(r) = y, we have

Pr
D̃
[r] = Pr

Dleak

[r | y] = PrDleak
[r ∧ y]

PrDleak
[y]

≤ 2−(
8n
9 lg ℓ+n)

(ϵn/2) · 2−0.5n lgn
(6)

= 2−(
8
9 log ℓ−0.5 lgn+1)·n · (2/ϵn), (7)

which suggests D̃ has min-entropy at least (89 log ℓ− 0.5 lg n+ 1) · n− lg(2/ϵn).
We argue that the min-entropy of at least n′ = n/3 blocks, conditioned

on the outcome of all prior blocks as well as y, is at least lg(n1.5). Towards a
contradiction, assume otherwise. Let V be the set of blocks with min-entropy at
least lg(n1.5) and let W be the set of blocks with min-entropy less than lg(n1.5)
(as defined in Theorem 5). We will show that if |V | ≤ n/3 there exists a point
r in the support of D̃ such that PrD̃[r] > 2−(

8
9 log ℓ−0.5 lgn+1)·n · (2/ϵn), which

contradicts the min-entropy of D̃.
First, find any value r∗V such that PrD̃[RV = r∗V] ≥ 1

ℓ|V | . Note that r∗V must
exist since the support size of RV is at most ℓ|V |.

Let SW (r∗V) = {r : rV = r∗V ∧ PrD̃[R = r] > 0}.

Pr
D̃
[R ∈ SW (r∗V)] = Pr[RV = r∗V] ≥

1

ℓ|V |
.

Second, we show that |SW (r∗V)| ≤ (2 · n1.5)|W |. Consider any r ∈ SW (r∗V).
Applying the fourth condition of Theorem 5 with δ = 1, condition on any
y ∈ Im(f ′) \ {⊥}, for any i ∈ W and any fixing of R<i = r<i, the number of
elements in the support of Ri | r<i is at most 2 ·n1.5, which implies that |SW (r∗V)|
must be at most (2 · n1.5)|W |, since the positions for V are fixed to r∗V .

Based on the above two arguments, by the averaging argument, there must
be some r∗ ∈ SW (r∗V) for which

Pr
D̃
[R = r∗] ≥ 1

(ℓ)|V |
· 1

(2 · n1.5)|W |
.

50

Therefore, we have

− lg Pr
D̃
[r∗] = |V | lg(ℓ) + |W | lg(2n1.5)

= |V | lg ℓ+ |W |+ 1.5(n− |V |) lg n
≤ n+ |V | lg(ℓ/n) + 1.5n lg n

≤ n+ n/3 lg(ℓ/n) + 1.5n lg n

= n+ n/3 lg(ℓ)− 1/3n lg n+ 1.5n lg n,

where the second to last line follows assuming |V | < n/3.

To reach contradiction to (7), we require that

n+ n/3 lg(ℓ)− 1/3n lg n+ 1.5n lg n ≤
(
8

9
lg ℓ− 0.5 lg n+ 1

)
· n− lg(2/ϵn).

The above is implied by

5/3n lg n ≤ 5/9n lg ℓ− lg(2/ϵn).

When ℓ ≥ 4n3 the above is implied by

5/3n lg n ≤ 5/3n lg n+ 10/3n− lg(2/ϵn),

which is true for n ≥ lg(1/ϵ) = κ. Thus we reach contradiction to (7). We
therefore conclude that |V | ≥ n/3.

F.5 Proof of Lemma 9

Note that we can equivalently view r′ in the support of D̃ as a set of size n′, or
as a stream of elements of length n′, where the element in the i-th block (for
i ∈ [n′]) comes from universe Ui, and {U1, . . . , Un′} are mutually disjoint. Taking
the second view, given r′, r̄′ in the support of D̃, we have that |r′ ∩ r̄′| = z if and
only if there exists some set Z ⊆ [n′] of size z such that (1) the ordered set of
elements in the blocks of r′ indexed by Z (denoted r′Z) is equal to the ordered
set of elements in the blocks of r̄′ indexed by Z (denoted r̄′Z) and (2) the set
of elements in the blocks of r′ indexed by [n′] \ Z (denoted r′

Z
) and the set of

elements in the blocks of r̄′ indexed by [n′] \ Z (denoted r̄′
Z
) are disjoint.

51

We are now ready to analyze the probability that |r′ ∩ r̄′| = z for r′, r̄′ drawn
from D̃, and for z ∈ [n′]:

Pr
r′,r̄′←D̃

[|r′ ∩ r̄′| = z] =
∑

Z⊆[n′],|Z|=z

Pr
r′,r̄′←D̃

[
(r′Z = r̄′Z) ∧

(
r′
Z
∩ r̄′

Z
) = ∅

)]
≤

∑
Z⊆[n′],|Z|=z

Pr
r′,r̄′←D̃

[r′Z = r̄′Z]

≤
∑

Z⊆[n′],|Z|=z

(
1

n1.5

)z

≤
(
e · (n/3)

z

)z

·
(

1

n1.5

)z

≤
(

1

n0.5

)z

.

52

	On the Privacy of Sublinear-Communication Jaccard Index Estimation via Min-hash Sketching

