
Polynomial Time Cryptanalytic Extraction of
Neural Network Models

Adi Shamir1, Isaac Canales-Mart́ınez2, Anna Hambitzer2, Jorge Chavez-Saab2,
Francisco Rodŕıgez-Henŕıquez2, and Nitin Satpute2

1 Weizmann Institute adi.shamir@weizmann.ac.il
2 Cryptography Research Center, Technology Innovation Institute

{isaac.canales,anna.hambitzer,jorge.saab,
francisco.rodriguez,nitin.satpute}@tii.ae

Abstract. Billions of dollars and countless GPU hours are currently
spent on training Deep Neural Networks (DNNs) for a variety of tasks.
Thus, it is essential to determine the difficulty of extracting all the pa-
rameters of such neural networks when given access to their black-box
implementations. Many versions of this problem have been studied over
the last 30 years, and the best current attack on ReLU-based deep neural
networks was presented at Crypto’20 by Carlini, Jagielski, and Mironov.
It resembles a differential chosen plaintext attack on a cryptosystem,
which has a secret key embedded in its black-box implementation and
requires a polynomial number of queries but an exponential amount of
time (as a function of the number of neurons).
In this paper, we improve this attack by developing several new tech-
niques that enable us to extract with arbitrarily high precision all the
real-valued parameters of a ReLU-based DNN using a polynomial num-
ber of queries and a polynomial amount of time. We demonstrate its
practical efficiency by applying it to a full-sized neural network for clas-
sifying the CIFAR10 dataset, which has 3072 inputs, 8 hidden layers with
256 neurons each, and about 1.2 million neuronal parameters. An attack
following the approach by Carlini et al. requires an exhaustive search
over 2256 possibilities. Our attack replaces this with our new techniques,
which require only 30 minutes on a 256-core computer.

Keywords: ReLU-Based Deep Neural Networks · Neural Network Ex-
traction · Polynomial Query and Polynomial Time Differential Attack.

1 Introduction

In this paper, we consider the problem of extracting all the weights and biases
of a Deep Neural Network (DNN), which is queried as a black box to obtain
the outputs corresponding to carefully chosen inputs. This is a long-standing
open problem that was first addressed by cryptographers and mathematicians
in the early nineties of the last century [BR93,Fef94], and then was followed
up one decade later by an adversarial reverse-engineering attack presented by
Lowd and Meck in [LM05]. More recently, since around 2016, this problem has

2 Shamir et al.

enjoyed a steady stream of new ideas by research groups from both industry and
academia [OMR23,JCB+20,RK20,BBJP19,TZJ+16], culminating with an algo-
rithm that Carlini, Jagielski and Mironov presented at Crypto 2020 [CJM20],
which in the general case, requires a polynomial number of queries but an ex-
ponential amount of time. Due to this time complexity, their algorithm was
practically demonstrated only on some toy examples in which the layers of the
showcased networks (beyond the first hidden layer, which is usually easy to ex-
tract) contain at most a few tens of neurons.

The main obstacle that made the Carlini et al. algorithm exponential in
time was their inability to determine one bit of information (namely, a ± sign)
about each neuron in the DNN. This hindrance forced them to use exhaustive
search over all the possible sign combinations in each layer, which is prohibitively
expensive for any realistic network whose width is more than a few tens of
neurons. Our main contribution in this paper is to show how to efficiently find
these signs by a new chosen input attack, which we call neuron wiggling, as well as
two other methods that target the first two hidden layers and the last one. Our
techniques resemble a combination of first-order and second-order differential
cryptanalysis, in which we use a chosen input attack to slightly change the inputs
to the DNN in a small number of carefully chosen directions and observe both
the slope and the curvature produced in the output of the network as a result
of these input changes. However, it differs from standard differential attacks on
digital cryptosystems by using real-valued inputs and outputs rather than bit
strings.

We demonstrate the practical applicability of our algorithm by performing
a sign-recovery attack on a DNN trained to recognize the standard CIFAR10
classes. This DNN has 3072 inputs, 8 hidden layers, 256 neurons per hidden
layer, and about 1.2 million weights. Our techniques replaced the exhaustive
search over 2256 possible combinations of neuronal signs carried out by Carlini
et al. in each layer by a new algorithm which requires only 32 minutes on a
256-core computer to find all the 8 × 256 neuronal signs in the 8 layers of the
network.

Our model of deep neural networks is essentially the same as the one used
by Carlini et al.. We assume that the network is fully connected (with no skip
connections), with r hidden layers of varying width in which each neuron con-
sists of an affine mapping followed by Rectified Linear Units (ReLU) activation
functions. For the sake of simplicity in the analysis of our algorithm, we assume
that all the network weights are real numbers, that arithmetic operations over
real numbers (both by the network and by the attacker) are carried out with
infinite precision in unit time, and that the attacker can perform arbitrarily
small changes in the inputs of the network and observe their corresponding out-
puts with arbitrarily high precision. In practice, it was sufficient to use standard
64-bit floating point arithmetic to extract the full-sized CIFAR10 network, but
higher precision may be required to attack considerably deeper networks due
to the possible accumulation of rounding errors throughout our computations.
However, since our algorithm uses only polynomially many arithmetic opera-

Polynomial Time Cryptanalytic Extraction of Neural Network Models 3

tions, we expect the asymptotic number of bits of precision to also grow only
polynomially with the size of the network.

In our attack (as well as the one by Carlini et al.), it is essential to assume
that the activation function is ReLU-like since we concentrate on the behavior of
the network in the vicinity of critical points, which are defined as inputs in whose
tiny vicinity exactly one ReLU input in one of the layers changes sign. Regardless
of the complexity of the network, we expect the network’s output to abruptly
change its behavior as a result of this ReLU transition, which makes this event
noticeable when we observe the network’s outputs. Such abrupt changes are also
visible when we apply a smooth softmax function to the logits, and thus, our
attack can use outputs which are either the logits produced by the last linear
layer or their softmax values (which translate the logits into a probability distri-
bution over the possible classes). We can generalize the attack to any other type
of activation function that looks like a piecewise linear function (with possibly
more than one sharp bend), such as a leaky ReLU, but not to smooth activa-
tion functions such as a sigmoid which have no critical points. Our attack can
be applied without modifications to convolutional networks since they can be
described as a special form of a fully connected network.

While our analysis and experiments support our claim of efficiency in the
extraction of the weights of large networks, there are several important caveats.
First of all, fully connected networks have certain symmetries which make it im-
possible to extract the exact form of the original network, but only a functionally
equivalent form. For example, we can reorder the neurons of any layer and adjust
the weights accordingly, we can merge two neurons that have exactly the same
weights and biases, we can eliminate any neuron whose output is multiplied by
a weight of zero by all the next layer neurons, or we can multiply all the weights
(including the bias) of a particular neuron by some positive constant c while
multiplying all the weights which multiply the output of that neuron in the next
layer neurons by c−1; all these changes do not change the input/output behavior
of the network, and thus they are invisible to any black-box attack. In addition,
there could be some unlucky events, which we do not expect to encounter but
which will cause our attack to fail. For example, there could be neurons whose
values before the ReLU almost never change sign, and thus our bounded number
of queries will fail to detect any critical point for them.3 Finally, during the at-
tack, we may fail to solve some systems of linear equations if their determinant
is exactly zero, but even the slightest change in the real-valued entries in such a
matrix should eliminate the problem. We thus have to qualify our assertion that
our attack always succeeds, in the same way that most cryptanalytic attacks on

3 We refer to these neurons as almost always-on/off neurons and note that the almost
perfectly linear behavior of such neurons will be simply absorbed by the linear map-
pings in the next layer, which will result in a very close approximation of the original
neural network. In practice, in our networks, always-on neurons were only encoun-
tered immediately after random initialization. After training, however, this kind of
neuron was never encountered, but we did find instances of always-off neurons.

4 Shamir et al.

cryptosystems are in fact heuristics that are not guaranteed to succeed in some
particularly unlucky situations.

It is important to note that when the attacker is only given an (adversarially
chosen) collection of known inputs along with their corresponding outputs, then
a famous result of Blum and Rivest back in 1993 [BR93] shows that just to decide
whether there exists a 2 layer 3 neuron DNN on n inputs which is consistent with
the provided pairs is NP-complete. However, in our case, the attacker can apply
a chosen input attack, and thus he is not likely to suffer from this particular
complexity barrier.

1.1 Our Contributions

Building on the work of [CJM20], we present a black-box attack that permits the
recovery of a functionally equivalent model of a deep neural network that uses
ReLU activation functions. In contrast with the approach presented in [CJM20],
our attack has polynomial time complexity in terms of the number of neurons
in the DNN, and can thus be applied (in principle) to arbitrarily deep and wide
neural networks. In addition, we can easily deal with many types of expanding
neural networks, where [CJM20] struggles.

To make this possible, we develop three new sign recovery techniques. The
first one, called SOE, is based on solving a system of linear equations derived from
observed first derivative values. The Neuron Wiggle method applies differences in
the input to maximally change the value of the neuron of interest. These changes
propagate to the output and a statistical analysis of the output variations allows
recovery of the sign. Finally, the Last Hidden Layer technique is applicable only
to the last layer in the network and employs second-order derivatives to construct
a different system of linear equations whose solution simultaneously yields the
signs of all the neurons in this layer.

We showcase our findings with a practical sign-recovery attack against a
3072-input network with 8 hidden layers and d = 256 neurons per hidden layer
for classifying the CIFAR10 dataset.

1.2 Overview of our Attack

Our attack follows the same strategy as the one presented in [CJM20] by Carlini
et al. Namely, we recover the parameters (i.e., weights and bias of each neuron)
for the first hidden layer and “peel off” that layer. Thus, the attack now reduces
to extracting the parameters of a DNN with one less hidden layer. We then
recover the parameters for the second layer, peel it off, and continue in this
fashion until the last hidden layer. Finally, the parameters for the output layer4

are obtained. After peeling off the first hidden layer, however, we no longer have
full control of the input to the second layer since the first layer is not an invertible

4 By the output layer, we mean the very last layer of the DNN. We assume that this
layer is linear in the sense that it doesn’t contain ReLUs. The output layer is not
counted as a hidden layer of the DNN.

Polynomial Time Cryptanalytic Extraction of Neural Network Models 5

mapping (e.g., no negative numbers can be output by its ReLUs). This lack of
control over the input to the layer is also true for all subsequent hidden layers.

Recovering the parameters of each hidden layer is done in two steps. First, for
each neuron, we recover some multiple of its weights and bias. The sign of this
unknown multiplicative factor is called the sign for the neuron. In the second
step, we find the signs for all the neurons in the current layer; we need them
to find the actual mapping represented by this layer in order to peel it off and
proceed to the next layer. Recovering signs is essential because multiplication
by a positive constant is a symmetry of the network, but multiplication by a
negative constant is not a symmetry due to the nonlinear behavior of the ReLU.

To find the multiple of the parameters, we use the same techniques as in
[CJM20, Sections 4.2 and 4.3.2]. To recover the sign for the neurons in the general
case, Carlini et al. had to use exhaustive search over all the sign combinations
in all the neurons in the current layer, which required an exponential amount of
time. In this work, we introduce three new polynomial-time techniques.

System of equations (SOE). As pointed out in [CJM20], in networks that
are contractive enough, we essentially have full control over the inputs to any of
the layers, and the signs can be easily recovered one by one through a method
they propose, which we refer to as Freeze. Here, we present an alternative method
called SOE , which recovers the signs for all neurons simultaneously by solving
a system of equations. Not only is it more efficient in terms of oracle queries,
but also in time complexity since it solves a single system of equations whereas
Freeze would need to solve one system of equations per neuron. Both Freeze and
SOE are significantly simpler and more efficient than the methods we describe
next but are heavily limited by the contraction requirement and typically are
only applicable to the first few layers.

Neuron Wiggle . Practically, most neural networks do not have contractive-
enough hidden layers. The attack in [CJM20] uses, in this case, a more general
technique that determines the signs by exhaustive search while requiring a poly-
nomial number of oracle queries. As our main result, we present the Neuron
Wiggle technique, which is polynomial in both, time and queries to the oracle.
This is the method of choice for most of the layers in both, contractive or ex-
pansive networks. In this method, we choose a wiggle (i.e., a small change in
a carefully chosen direction) in the input to the network that makes the input
to the ReLU for some targeted neurons experience a large change, while all the
other neurons in the network are expected to experience much smaller changes.
This makes it possible to recover the sign for the targeted neuron, since if the
input to that neuron’s ReLU is negative, the effect of the large change will be
blocked, while if the input to the ReLU is positive, this change will propagate
through this ReLU and the subsequent layers, and eventually cause a change at
the output. By choosing a critical point and wiggling in two opposite directions,
we can detect the direction where the larger output change is present, thereby
recovering the sign. However, some critical points may lead to a wrong deci-
sion on the sign, and thus, we have to repeat it at multiple unrelated inputs to
gather reliable statistical evidence for which wiggles are blocked and which ones

6 Shamir et al.

go through the ReLU. It is important to note that even without knowing the
neuron’s sign, the attacker can easily aggregate all the experiments that are on
the same active/inactive side of the ReLU, and then he can use the statistical
difference between these two clusters to determine which cluster is on the active
and which cluster is on the inactive side of the ReLU.

In our practical attacks, accumulating statistical evidence from 200 input
points was sufficient to recover the correct sign for each neuron, except possibly
in the last hidden layer. The main problem in the last hidden layer is that there
is no randomization present in the function computing the output. That means if
the weight that connects a particular neuron to the output is considerably smaller
than the others, almost no amount of wiggling of the corresponding neuron
will get through to the output. We thus used the neuron wiggle technique to
successfully attack all but the first and last hidden layers of a CIFAR10 network
with 256 neurons per layer.

Last Hidden Layer . Here, we develop a specialized technique to reliably
deal with the last layer, which exploits exactly the same property that made the
neuron wiggling technique less reliable for this layer (namely, the fact that there
is a fixed linear mapping that maps the outputs of these neurons to the final
output). This allows us to construct arbitrarily many linear equations in the
coefficients of this fixed output function by exploring multiple unrelated inputs
to the DNN, and their unique solution simultaneously yields the unknown signs
for all the last layer neurons. This method has lower time and query complexity
than Neuron Wiggle, but its applicability is limited to the last layer.

Organization

The remainder of this paper is organized as follows. In section 2, we present a
brief summary of the state of the art on DNN parameter extraction in the black-
box model. In section 3, we present several basic definitions, and assumptions,
and state the problem to solve. We complete that section by giving an overview of
the approach by Carlini et al. before presenting our own sign-recovery techniques
in section 4. All the practical attacks carried out in this work are presented
in section 5. The concluding remarks are drawn in section 6.

2 Related Work

Model extraction in the context of DNNs aims to obtain its architecture, the
weights, and biases associated with each neuron in the network and, occasion-
ally, the network’s training hyperparameters. Although early work can be traced
back to Fefferman [Fef94] (who proved in 1994 that perfect knowledge of the out-
put of a sigmoid-based network uniquely specifies its architecture and neurons’
weights, and also proved that two neural networks with the same input-output
map are isomorphic up to trivial equivalences), followed by Lowd and Meek
in 2005 [LM05], the most important body of literature on this topic has been

Polynomial Time Cryptanalytic Extraction of Neural Network Models 7

published since 2016, when Tramèr et al. studied the problem of functional equiv-
alence for the case of multi-class logistic regression and the multi-layer percep-
tron. Since then, many attacks have been presented considering different attack
scenarios and security models [DG21,CJM20,MSDH19,RST19,PMG+17,LM05]
(see also [OMR23] for a comprehensive survey).

As discussed in section 1, in this paper, we are primarily interested in a
security model where the only interaction the attacker has with the DNN is
submitting queries to it and observing the corresponding outputs (e.g., accessing
it as a web service). Therefore, the attacker does not have access to the software
or the hardware where the network has been deployed, which rules out side-
channel and/or fault injection attacks as the ones reported in [JMPR22,BBJP19].
Furthermore, the main goal of our attack is to recover a functionally equivalent
model of the network. Such precision is normally out of reach for the hardware
attacks described in [JMPR22].

The state-of-the-art black-box model extraction has been traditionally cen-
tered around DNNs with ReLU activation functions. In the beginning, it was
thought that the most effective way of extracting the model of the networks was
through oracle calls that revealed information about the gradients. In [MSDH19],
this approach was theoretically analyzed and implemented to attack networks
with one hidden layer. An improvement of this work followed quickly afterward
in [JCB+20], offering significant improvements to the functional equivalence of
the extracted model but still constrained to attacks dealing with relatively mod-
est one-layer DNNs and relying on the unrealistic help of an oracle that leaked
the gradients.

Almost simultaneously, Rolnick and Körding presented in [RK20] an ap-
proach that, by only observing the output of the network, was theoretically ca-
pable of extracting the parameters of deeper networks. However, in practice, the
algorithm in [RK20] only worked for two-layer networks. Meanwhile, a similar
strategy was theoretically analyzed in [DG21]. A follow-up work by Carlini et al.
was presented in [CJM20]. In this paper, the authors presented important tech-
nical improvements and devised novel techniques that allowed them to obtain a
much higher precision in the neuron’s parameters extraction while using remark-
ably fewer oracle calls than the previous methods reported in [RK20,JCB+20]
(cf. [CJM20, Table 1]). However impressive the high precision results obtained
by the authors, they only managed to deal with neural networks of no more than
three hidden layers and with a relatively modest number of a few tens of neu-
rons beyond the first layer. The main reason the approach presented in [CJM20]
could not scale up well for larger and deeper networks was that the weights of
the neurons could only be obtained up to a constant of unknown sign. Indeed,
finding the sign for the neurons had a prohibitively exponential cost in time
and has remained until now as one of the two main obstacles towards extracting
deeper and larger neural networks. The second obstacle, also acknowledged by
the authors of [CJM20], is that of dealing with so-called expansive neural net-
works, i.e., networks where the number of neurons in a given inner layer is larger
than the number of inputs to that layer.

8 Shamir et al.

3 Preliminaries

3.1 Basic Definitions and Notation

Informally, a neural network is a collection of connected nodes called neurons.
Neurons are arranged in layers and are connected to those in the previous and
the next layer. Every neuron has a weight associated with each incoming connec-
tion and a bias. We present next several important formal definitions by closely
following the definitions and notation given in [CJM20].

Definition 1. An r-deep neural network is a function f : X → Y composed
of alternating linear layers fi and a non-linear activation function σ acting
component-wise:

f = fr+1 ◦ σ ◦ · · · ◦ σ ◦ f2 ◦ σ ◦ f1.

We focus our study on Deep Neural Networks (DNN) over the real numbers.
Then, X = Rd0 and Y = Rdr+1 , where d0 and dr+1 are positive integers. As
in [CJM20], we only consider neural networks using the ReLU activation function
σ : x 7→ max(x, 0).

Definition 2. The i-th fully connected layer of a neural network is a function
fi : Rdi−1 → Rdi given by the affine transformation

fi(x) = A(i)x+ b(i),

where A(i) ∈ Rdi×di−1 is the weight matrix, b(i) ∈ Rdi is the bias vector of the
i-th layer and di−1, di are positive integers.

Layers in neural networks often have more structure than just a matrix-vector
multiplication as above (e.g., convolutional layers). However, they may admit a
description as a special form of a fully connected layer. We call a network fully
connected if all its layers are fully connected. The first r layers are the hidden
layers, and layer r + 1 is the output layer.

Definition 3. A neuron is a function determined by the corresponding weight
matrix and activation function. Particularly, the j-th neuron of layer i is the
function η given by

η(x) = σ(A
(i)
j x+ b

(i)
j),

where A
(i)
j and b

(i)
j denote, respectively, the j-th row of A(i) and j-th coordinate

of b(i).

Definition 4. Let ℓ = di−1 and A
(i)
j be described as (a1, a2, . . . , aℓ). The signa-

ture of the j-th neuron in layer i is the tuple(
a1
a1

= 1,
a2
a1

, . . . ,
aℓ
a1

)
. (1)

Polynomial Time Cryptanalytic Extraction of Neural Network Models 9

Definition 5. Let V(η;x) denote the value that neuron η takes with x ∈ X before
applying σ. If V(η;x) > 0 then η is active. When V(η;x) = 0, η is critical, and
we call x a critical point for η5. Otherwise, it is inactive. The state of η on
input x (i.e., active, inactive, or critical) is denoted by S(η;x).

Definition 6. Let x ∈ X . The linear neighbourhood of x is the set

{u ∈ X | S(η;x) = S(η;u) for all neurons η in the network }.

Definition 7. The architecture of a fully connected neural network is described
by specifying its number of layers along with the dimension di (i.e., number of
neurons) of each layer i = 1, · · · , r + 1. We say that d0 is the dimension of the
inputs to the neural network, whereas dr+1 gives the number of outputs of the
network. A neural network has N =

∑r
i=1 di neurons.

As in [CJM20], we specify the architecture of a neural network by enumerat-
ing the dimensions of its layers. For example, the eight-hidden-layer network for
classifying the CIFAR10 dataset showcased in this paper has the architecture

3072− 256(8) − 10.

Let Fi denote the function that computes the first i layers of the DNN after
the ReLUs, i.e., Fi = σ ◦ fi ◦ · · · ◦ σ ◦ f1. By definition, all neurons remain in the
same state when evaluating the DNN with an input in the linear neighborhood
of x ∈ X . Following the explanation in [CJM20], for any such point x′, we have
that

Fi(x
′) = I(i)(A(i) · · · (I(2)(A(2)(I(1)(A(1)x′ + b(1))) + b(2)) · · ·+ b(i))

= I(i)A(i) · · · I(2)A(2)I(1)A(1)x′ + β

= Γx′ + β,

where I(j) are 0 − 1 diagonal matrices with a 0 on the diagonal’s k-th entry
when neuron k at layer j is inactive and 1 on the diagonal’s k-th entry when
that neuron is active. That is, in the linear neighborhood of an input x, we can
“collapse” the action of various contiguous layers into an affine transformation.
If we make a change ∆ to the input, we can observe the corresponding change
in the value of the neurons:

Fi(x+∆)− Fi(x) = Γ (x+∆) + β − (Γ (x) + β) = Γ∆.

This ∆ must be such that x+∆ is in the linear neighborhood of x.
Assume that we fully know the first i− 1 layers, and we are currently recov-

ering layer i. Let Fi−1 and Gi+1 represent, respectively, the fully recovered and
non-recovered part of the DNN, i.e.,

f = fr+1 ◦ σ ◦ · · · ◦ σ ◦ fi+1︸ ︷︷ ︸
Gi+1

◦σ ◦ fi ◦ σ ◦ fi−1 ◦ · · · ◦ σ ◦ f1︸ ︷︷ ︸
Fi−1

.

5 Carlini et al.’s “critical point” is “being critical” in our definition. Carlini et al.’s
“witness for a neuron being at a critical point” is “a critical point” in our definition.

10 Shamir et al.

Fig. 1: Representation of the DNN according to the recovered part Fi−1, current
target layer i and unknown part Gi+1.

Then, the neural network can be depicted as in Figure 1. Furthermore, if we
restrict inputs x′ to be in the linear neighbourhood of x, we can collapse Fi−1

and Gi+1 as

Fi−1(x
′) = F (i−1)

x x′ + b(i−1)
x and Gi+1(x

′) = G(i+1)
x x′ + b(i+1)

x ,

respectively. We use the subscript in the collapsed matrices and bias vectors to
indicate that they are defined in the linear neighborhood of x.

Definition 8. We call the j-th row of G
(i+1)
x the output coefficients for the j-th

output of the DNN.

3.2 Problem Statement and Assumptions

The parameters θ of a DNN fθ are the concrete assignments to the weights and
biases. Following the setting in [CJM20], in a model parameter extraction attack,
an attacker generates queries x to an oracle O which returns fθ(x). The goal of

the attacker is to obtain a set of parameters θ̂ such that fθ̂(x) is as similar as
possible to fθ(x).

We focus on the attack presented in [CJM20]. As mentioned in subsection 1.2,
Carlini et al.’s attack recovers the parameters layer by layer in two steps. The
first one finds multiples of the parameters, particularly the signatures of the
neurons as defined in Equation 1. Since the signature consists of ratios of pairs
of weights, negating all these weights simultaneously will preserve the signature
but nonlinearly change the outputs of this neuron’s ReLU. Consequently, before
we can peel off a layer of neurons, we have to determine for each one of its neurons
separately whether the weights and biases are one possible vector of values or its
negated vector. That is, we must get a sign of that neuron’s weight. The second
step recovers these signs for all neurons in the current layer. In this paper, we
specifically focus our attention on the latter half, which was the exponential-time
bottleneck in [CJM20], under the assumption that the signatures are already
known.

The following are the assumptions we have regarding the oracle and the
capabilities of the attacker:

Polynomial Time Cryptanalytic Extraction of Neural Network Models 11

– Full-domain inputs. We can feed arbitrary inputs from X = Rd0 .
– Complete outputs. We receive outputs directly from f without further

processing.
– Fully connected network and ReLU activations. The network is fully

connected, and all activation functions are the ReLU function.
– Fully precise computations. All computations are done with infinite-

precision arithmetic.
– Signature availability and uniqueness. We have access to the signature

of each neuron. Also, we assume that no two signatures are the same.

All but the last one are also assumptions in [CJM20]. Regarding full precision,
we remark that computations by both the oracle and the attacker enjoy this
characteristic. Carlini et al. assume single-output DNNs. However, we allow for
multiple outputs, which enhances the performance of our techniques and is inci-
dentally also more realistic. Finally, if a full attack following [CJM20] using our
sign recovery methods is to be performed, we must also assume knowledge of the
architecture. This assumption is required to apply the methods in [CJM20].

3.3 Carlini et al.’s Differential Attack

We now present a high-level description of the techniques by Carlini et al. [CJM20].

Finding critical points To discover critical points, Carlini et al. analyze the
function induced by a DNN when an input x1 is linearly transformed into another
input x2. For the sake of simplicity and without loss of generality, we will assume
in the following that the network has a single output. Let x1, x2 ∈ Rd0 and
µ : [0, 1] → Rd0 defined as

µ : λ 7→ x1 + λ(x2 − x1)

be the linear transformation of x1 into x2. This induces an output function on
the DNN,

f∗(λ) := f(µ(λ)),

which is a piecewise linear function with first-order discontinuities precisely when
one of the neurons is toggling between active/inactive states. As shown in Fig-
ure 2, we can identify the first-order discontinuities and revert the mapping µ to
recover the point at which the line from x1 to x2 intersects a boundary between
linear neighborhoods, which is a critical point for some neuron.

In practice, it suffices to measure the slope of the graph in Figure 2 at different
points and extrapolate to find the critical point, all while checking that there
are no other abrupt changes in behavior in-between. We refer to section B for
the fully-detailed algorithm.

At this point, we do not yet know to which layer each critical point belongs,
but by sampling enough pairs x1, x2 we expect to eventually find multiple critical
points for every neuron in the network.

12 Shamir et al.

f ∗(λ)

λ

n
ei
gh
.
2

n
ei
gh
.
11

n
ei
gh
.
13

n
ei
gh
.
8

n
ei
gh
.
7

x1 x2

Fig. 2: The input space can be partitioned into linear neighborhoods, and the
output function displays abrupt changes in behavior when moving across their
borders.

Finding signatures The input to the DNN is also the input to the first hidden
layer, and we have full control over it. Let η be a neuron with weights (a1, . . . , aℓ).
Given x∗ ∈ Rd0 a critical point for η, we can query αi,− = ∂f

∂ei
(x∗ − εei) and

αi,+ = ∂f
∂ei

(x∗+ εei), where {ei}d0
i=1 is the canonical basis of Rd0 and ε is a small

real number. Since x∗ is a critical point, only either αi,− or αi,+ will have η in its
active state assuming that ε is sufficiently small so that no other neuron toggles.
The difference αi,+ − αi,− contains the gradient information moving from the
input coordinate i through neuron η and to the output; the gradient information
through all other neurons cancel out. In other words, this difference is a multiple
of ai given by the other layers of the DNN. Dividing out by another coordinate
eliminates the multiplicative factor, i.e., (αi,+ − αi,−)/(αk,+ − αk,−) = ai/ak. If

we fix k = 1, the signature (1) is recovered. We denote by Â
(i)
j the signature of

the j-th neuron in layer i and Â(i) the matrix whose j-th row is Â
(i)
j . Critical

points for the same neuron in the target layer 1 will yield the same signature,
while critical points for neurons in other layers will generate different signatures.
This allows us to decide which signatures correspond to a layer-1 neuron (i.e.,
those signatures appearing with repetitions). See [CJM20] for details on this.

After peeling off layers, we can also determine if a signature corresponds to
a neuron in the current target layer by observing repetitions. However, starting
from layer 2 we no longer have full control of the layer’s input, and applying the
method above is not possible (we cannot change one coordinate at a time). To
overcome this, in layer i > 1, we sample di +1 directions δk ∼ N (0, εId0) ∈ Rd0 ,
and let {yk} = {∂2f(x∗)/∂δ1∂δk}di

k=1 and hk = Fi−1(x
∗ + δk). The signature is

then given by the vector a such that ⟨hk, a⟩ = yk. This, however, yields partial
signatures (since the ReLUs in the previous layer set negative values to zero).
Different critical points for the same neuron yield different partial signatures.

Polynomial Time Cryptanalytic Extraction of Neural Network Models 13

Each partial signature will yield a different set of coordinates and with enough
partial signatures, we can reconstruct the full one.

Finding signs using the freezing method We now consider the problem of
finding the signs of a given layer. If the network is not expanding, this problem is
easy for the first hidden layer. Indeed, for target neuron k in layer i, we can find
a wiggle ∆k in the input space that produces a wiggle ±ek in the first hidden
layer, where ek ∈ Rdi is a basis vector in the k-th direction, by solving a system
of d1 equations in d0 variables given by the first layer’s weight matrix. For any
x in the input space, the outputs of the neural network at x and x + ∆k will
be equal if the k-th neuron is inactive in the linear neighborhood of x (since
the k-th neuron is suppressed by the ReLU whereas all other neurons remain
unchanged by construction), and will be different otherwise. We refer to this
simple sign-recovery technique as Freeze.

There are some scenarios where the same method can be applied to deeper
layers. Note that in the linear neighborhood of any input x, the mapping from
the d0-dimensional input space to the space of values entering layer i is an
affine mapping since there are no ReLUs that flip from active to inactive or vice
versa. The rank of this mapping determines in how many linearly independent
directions we can slightly perturb the inputs to layer i when we consider arbitrary
perturbations of the input x. If the rank is high enough, we can still expect to
find preimages for each of the basis vectors and can apply the Freeze method.

In general, however, our ability to change the inputs to a deep hidden layer is
severely limited, since about half of the neurons in each layer are expected to be
suppressed, and thus, the rank of the affine mapping decreases as we move deeper
into the network. This issue is pointed out in [CJM20], where it is claimed that
the Freeze method can only be applied in networks that are “sufficiently con-
tracting” (that is, layer size should decrease by roughly a factor of 2 in each layer
in order to compensate for the rank loss). In networks that are not sufficiently
contractive, Carlini et al. use instead the much more expensive technique of ex-
haustive search over all the possible sign combinations (as described in [CJM20,
Section 4.4]) that is exponential in time, which makes their attack feasible only
for toy examples of non-contracting networks.

4 Our New Sign-Recovery Techniques

As just mentioned, the diminishing control over the inputs to a layer is a sig-
nificant problem that makes sign recovery in deeper layers harder. To better
understand our proposed solutions, we first describe this problem in greater
detail.

Let x ∈ Rd0 be an input to the DNN. Recall that F
(i−1)
x and G

(i+1)
x are the

collapsed matrices for x corresponding to the already recovered and unknown
part of the DNN, respectively.

14 Shamir et al.

Definition 9. The space of control for layer i around input x, denoted by

V
(i−1)
x , is the range of the linear transformation F

(i−1)
x . The dimension of this

space is called the number of degrees of freedom for layer i with input x and is

denoted by d
(i−1)
x .

The space of control is the vector space containing all possible small changes

at the input to layer i and, by the definition, d
(i−1)
x = rank(F

(i−1)
x). Due to the

ReLUs in layers 1 to i − 1 making neurons inactive, for a fixed x, the number
of degrees of freedom remains equal or decreases with increasing i. To see this,
consider an input x making half of the d neurons in layer 1 be active. The

matrix F
(1)
x would then have rank d/2, and particularly, the rows corresponding

to inactive neurons are the zero vector. If layer two has d′ < d/2 active neurons

(with the same input x), the matrix F
(2)
x has rank d′, and therefore the number of

degrees of freedom is also d′. Now, if d′ ≥ d/2, F
(2)
x has rank d/2 (since the rank

of F
(1)
x cannot be increased when multiplied by another matrix). We have the

same situation for the subsequent layers: the rank can never be increased once
it has decreased. In fact, the number of degrees of freedom at layer i is typically
determined by the minimum number of active neurons per layer among all layers
1 to i− 1, but in some cases, it can be strictly smaller.

(a) (b) (c) (d)

Fig. 3: Intuition for the space of control (Definition 9). Consider a network with
2-dimensional input and two hidden layers with two neurons in each. (a) For the
first hidden layer, the space of control is the full 2-dimensional space. We can
move around the input x0 in any direction. (b) After the first hidden layer, if
one ReLU is positive and the other negative, we lose one dimension of control.
(c) The linear transformation in the second layer will rotate, translate, and scale
the space of control. (d) Therefore, after the ReLU’s in the second layer (if again
one is positive and one negative), we are still left with a one-dimensional space
of control. Note that with no rotation, the space of control collapses into a point
after these two hidden layers.

Consider a DNN with input dimension d and the same width d in all its
hidden layers. Assume further that each neuron has probability 1/2 of being

Polynomial Time Cryptanalytic Extraction of Neural Network Models 15

active. Initially, the number of degrees of freedom is equal to the dimension d of
the input to the DNN. Then, the first hidden layer will have, on average, half of
its neurons active, which drops the number of degrees of freedom at the input
of layer 2 to d/2. We can think of the ReLU’s projecting the space of control
onto a space determined by the active neurons. One may think that half of those
d/2 degrees of freedom will again be lost in the second layer due to the fact
that half of its ReLU’s will be inactive, ending with d/4 degrees of freedom.
However, before going to the ReLUs on that layer, the space of control for layer
2 is typically rotated by A(2). This rotation may make many coordinates survive
the projection of the ReLUs in the second layer. We may still lose some degrees
of freedom, but not as many as half of them in each successive layer. Due to
this effect of the linear transformation, the number of degrees of freedom will
typically stabilize after the first few layers. Figure 3 depicts this phenomenon in a
two-dimensional space, and Table 2 shows the average number of active neurons
and the average number of degrees of freedom in the 8 successive hidden layers
of the actual CIFAR10 network we attack.

We now describe our methods for sign recovery with the loss of degrees of
freedom in mind. Recall that in the context of the attack, when recovering the
signs for layer i, we fully know Fi−1, we know fi up to a sign per neuron, andGi+1

is completely unknown. To simplify our notation, we may drop the subscript x
from the collapsed matrices, space of control, and number of degrees of freedom
if x is clear by the context.

4.1 SOE Sign-Recovery

We first describe a method for sign recovery in cases where the number of de-
grees of freedom is sufficiently large. We refer to the method as SOE since it
relies on solving a System Of Equations. This method is superficially similar to
Freeze, but uses different equations and a different set of variables (in the case
of [CJM20], the variables referred to the direction we have to follow in input
space to freeze all the neurons except the targeted one, while in our SOE tech-
nique the variables refer to the coefficients of the output function Gi+1 at some
randomly selected point x). Our technique is more efficient in both its query
and time complexities since Carlini et al. had to solve a different system of equa-
tions for each targeted neuron, while in our SOE technique, one system of linear
equations can simultaneously provide the signs of all the neurons in the current
layer.

We assume without loss of generality that the network has a single output
(additional outputs can be simply ignored).

As before, let I
(i)
x be the matrix representing the ReLU at layer i on input x.

The equation for the change in output under an arbitrary sequence of changes
in input ∆k, can then be written as

f(x+∆k)− f(x) = G(i+1)
x I(i)x A(i)F (i−1)

x ∆k.

16 Shamir et al.

Let yk = A(i)F
(i−1)
x ∆k and c = G

(i+1)
x I

(i)
x . If the left-hand side is observed

to take values zk through direct queries, the equation can be rewritten as

c · yk = zk,

which can be regarded as a system of equations where c is a vector of variables.
Because of the ReLU, if neuron j is inactive on input x we will necessarily have
cj = 0, so after obtaining di equations, we can solve the system and determine
which neurons are inactive around x and hence the appropriate choice of signs
for the current layer.

Remark 1. In the context of the attack, we can only recover yk up to a global
scaling of each entry (including possibly a sign flip), but this results in a system
of equations where the solution has the same set of variables vanishing.

Oracle Calls/Time This method is optimal in terms of queries since it only
requires di+1 queries to solve a layer of size di (namely, it must query f(x) and
f(x +∆k) for di values of k). Once the queries have been performed, the time
complexity of the attack comes from solving a system of equations, which can
be done in O(d3i) with standard methods.

Limitations Each choice of ∆k produces a new equation, so we attempt to
gather more equations until the system is uniquely solvable. However, the equa-
tions that are obtained may not all be linearly independent. In fact, since the yk
all lay in A(i)(V

(i−1)
x), we will only obtain enough linearly independent equations

if d
(i−1)
x ≥ di. This is likely to be the case if the layer size is steadily contracting

by a factor of 2, but there is an important exception for the first two hidden
layers. Indeed, as long as the network is not expanding, the linear map corre-
sponding to the first hidden layer can usually be inverted. This makes it easy to

find an x at which all first-layer neurons are active and hence d
(1)
x = d1 ≥ d2.

Therefore, the method applies straightforwardly for the first two hidden layers
on the sole condition of non-expansiveness and is likely to succeed in subsequent
layers only if they each contract by a factor close to 2.

4.2 Neuron Wiggle Sign-Recovery

The method presented here does not have the strict constraints on the network’s
architecture as the one above, since its performance gradually degrades as the
number of degrees of freedom diminishes, whereas in SOE the system of equations
abruptly changes from solvable to unsolvable.

Definition 10. A wiggle at layer i is a vector δ ∈ Rdi−1 of differences in the
value of the neurons in that layer.

Polynomial Time Cryptanalytic Extraction of Neural Network Models 17

Recall that the recovered weight matrix for layer i is Â(i) ∈ Rdi×di−1 and

let its k-th row be Â
(i)
k . For a wiggle δ at layer i, neuron k ∈ {1, . . . , di} in

that layer changes its value by ek = ⟨Â(i)
k , δ⟩. Consider one output of the DNN

and let (c1, . . . , cdi
) be its corresponding vector of output coefficients (i.e., its

corresponding row vector in G(i+1)). If we “push” the differences ek through the
remaining layers, the difference in the output is∑

k∈I

ckek, (2)

where I contains the indices of all active neurons at layer i. We want to recover
the sign of neuron j. If this neuron is active, the output difference contains the
contribution of ej . If the neuron is inactive, the ReLU “blocks” ej and it does not
contribute. When cjej is sufficiently large, we can detect whether it is present
in (2) and use this information to recover the sign of the neuron. This is best
achieved when δ is a wiggle that maximizes the change in value for that neuron,
i.e., ∥Â(i)δ∥∞ = |ej |. The crucial property we use here is that maximizing the
size of the wiggle produced by a linear expression does not require knowledge of
its sign - if we negate the expression we get a wiggle of the same size but in the
opposite direction. We now show how to compute such a maximal wiggle and
how to recover the target neuron’s sign.

Compute Target Neuron Wiggle Let δ ∈ Rdi−1 be parallel to Â
(i)
j (i.e.,

all coordinates of δ have either the same or opposite sign to the corresponding

coordinate of Â
(i)
j). Then, all summands in the dot product ⟨Â(i)

j , δ⟩ have the

same sign. If no other row of Â(i) is a multiple of Â
(i)
j , with very high probability

|⟨Â(i)
j , δ⟩| > |⟨Â(i)

k , δ⟩|, for all k ̸= j. That means ∥Â(i)δ∥∞ = |⟨Â(i)
j , δ⟩|. Hence,

the change of value for neuron j can be maximized if the wiggle is parallel to

Â
(i)
j .

Recall that V (i−1) is the space of control for layer i given an input x. We

project Â
(i)
j onto V (i−1) and get δ by scaling this projection to have a sufficiently

small norm ε(i−1); see Figure 4. Finally, we get the input difference ∆ ∈ Rd0 that
generates δ by finding a pre-image of δ under F (i−1).

Recover Target Neuron Sign We want to recover the sign for ηj , the j-th
neuron in layer i. Let x∗ be a critical point for ηj and let ∆ ∈ Rd0 generate
the wiggle δ (at layer i) that maximizes the change in value for that neuron.
Assume the sign of ηj to be positive. Then, the signs of the recovered weights

Â
(i)
j are the same as those of the real weights A

(i)
j . This implies that also the

coordinates of δ have the same sign as those of A
(i)
j and ek = ⟨A(i)

k , δ⟩ has a
positive value. Assume the DNN has a single output. Since x∗ is a critical point
for ηj , evaluating the DNN at x∗ +∆ makes ηj active, thus

f(x∗ +∆)− f(x∗) = cjej +
∑

k∈I\{j}

ckek,

18 Shamir et al.

Space of control

Â
(i)
j

δ
ε

Fig. 4: Computing a wiggle that maximizes the change in the target neuron.

where I contains the indices of all active neurons at layer i. It is necessary that
∆ changes the state of neuron ηj only. Evaluating at x∗ −∆ makes the wiggle δ

have opposite signs to those in A
(i)
j . Then, all differences ek also have opposite

signs (compared to evaluating at x∗ +∆). In this case, ηj becomes inactive and
we have that

f(x∗ −∆)− f(x∗) = −
∑

k∈I\{j}

ckek.

Now assume that ηj has a negative sign. Then, the wiggle δ will have opposite

signs to those in A
(i)
j and following a similar analysis as above, we get that

f(x∗ +∆)− f(x∗) = −
∑

k∈I\{j}

ckek

and
f(x∗ −∆)− f(x∗) = cjej +

∑
k∈I\{j}

ckek.

So, in order to find the sign we need to distinguish whether cjej contributes to
the output difference with x∗ +∆ or x∗ −∆.

Let L = f(x∗ −∆)− f(x∗) and R = f(x∗ +∆)− f(x∗) denote, respectively,
the output difference to the left and right of x∗. We decide cjej appears on the
left, i.e., the sign of the neuron is −1, if |L| > |R|. Otherwise, we decide the sign
to be +1. Since cjej ̸= 0, it is not possible that |L| = |R|.

If cjej and
∑

k ckek have the same sign, then |cjej +
∑

k ckek| > |−
∑

k ckek|
always holds and the decision on the sign is also always correct. If cjej and∑

k ckek have opposite signs, however, an incorrect decision may occur. This
wrong decision happens when |−

∑
k ckek| > |cjej +

∑
k ckek|. Then, it is neces-

sary that |cjej | > 2|
∑

k ckek| to make a correct decision.
Recall that a given input to the DNN defines a particular matrix G(i+1).

That is, different inputs define different coefficients for the output of the DNN.
We refer to this fact as output randomization and exploit it to overcome the
problem of making a wrong sign decision. We find s different critical points for
neuron ηj ; each point defines different output coefficients. We expect that the
majority of these points define coefficients such that cjej and

∑
k ckek fulfill the

conditions for making a correct decision. For each critical point, we compute the

Polynomial Time Cryptanalytic Extraction of Neural Network Models 19

wiggle δ, its corresponding input difference ∆, and make the choice for the sign.
Let s− and s+ denote, respectively, the number of critical points for which the
sign is chosen to be −1 and +1. Also, let the confidence level α for −1 be s−/s
and s+/s for +1. Then, decide the sign to be −1 if s− > s+ and its confidence
level is greater than a threshold α0. If s+ > s− and its confidence level is greater
than α0, decide +1. Otherwise, no decision on the sign is made. When the latter
happens, we may try to recover the sign with additional critical points.

In our experiments in section 5, very few wrong signs were initially produced
by testing 200 critical points for each neuron in the CIFAR10 network; all of
them were known to be problematic due to their low confidence level, and they
are all fixable by testing more critical points. Note that as the number of neurons
in the network increases, we expect the neuron wiggling technique to get even
better since in higher dimensions vectors tend to be more orthogonal to each
other, and thus the ratio between the sizes of the wiggles in the targeted neuron
and in other neurons should increase.

So far, we assumed a single output for the DNN. When it has multiple out-
puts, we can use the Euclidean norm over the vector of outputs to compare L
and R, which is beneficial for this method. This is because each critical point
randomizes the coefficients of multiple outputs, and the probability of multi-
ple outputs having simultaneously “bad” coefficients (which may lead to wrong
decisions) is lower.

Oracle Calls/Time Recall that layer i has di neurons. To recover the sign
of a single neuron, for s critical points, we compute ∆ and compare L with R.
Computing∆ requires no oracle queries: it only requires linear algebra operations

to find a critical point x∗, project Â
(i)
j onto V (i−1) and find ∆. Particularly,

matrix multiplications and matrix inversions. The size of the matrices involved
is given by the number of inputs d0 and the number of neurons di. So, the
time complexity is O(d3) operations, where d = max(d0, di). Comparing L with
R requires querying the oracle on x∗, x∗ − ∆ and x∗ + ∆. Computing L =
∥f(x∗−∆)− f(x∗)∥ and R = ∥f(x∗+∆)− f(x∗)∥ requires O(dr+1) operations,
where dr+1 is the number of outputs of the DNN. Thus, we require 3s queries
and O(sd3) operations for a single neuron. In total, we require 3sdi queries and
O(sdid

3) operations to recover the sign of all neurons in layer i.
Appendix A contains a back-of-the-envelope estimation of the signal-to-noise

ratio for each critical point we test, showing that even in expansive networks we
only require a relatively small number of experiments s to make a good guess.

Limitations We can think of cjej as a signal and
∑

k ckek as noise. We have seen
that when the signs of the signal and the noise are different, we may wrongly
decide the sign of a neuron. This happens when the signal is not big enough
compared to the noise. Particularly, if the number of neurons in layer i is too
large compared to the degrees of freedom (for a particular input x), the signal
may be really weak with respect to the noise. That means this technique may
not work with DNNs which have at least one hidden layer with a large expansion

20 Shamir et al.

factor compared to the smallest hidden layer or the number of inputs. However,
we had no trouble recovering the signs when several successive hidden layers had
twice the number of neurons compared to the dimension of the input space.

Also, this method may not be suitable for DNNs with a small number of
neurons in the target layer. The probability of two random vectors being per-
pendicular decreases in low-dimensional spaces. Therefore, the wiggle for the
target neuron may produce a sensibly large change for other neurons as well
(those with weight vectors somewhat parallel to that of the target neuron). In
this situation, the contribution of the other neurons may counteract that of the
target neuron.

Finally, this method leverages output randomization. There is no output ran-
domization when recovering the last hidden layer. If there are neurons in that
layer with bad (constant) output coefficients, their corresponding sign will al-
ways be incorrectly recovered. The method in the next section exploits this lack
of output randomization to recover the signs in the last hidden layer.

4.3 Last Hidden Layer Sign-Recovery

The method presented here recovers the sign of neurons in the last hidden layer.
The output of the DNN is produced by the affine transformation fr+1 without
subsequent ReLUs. Therefore, in layer r (the last hidden layer), the matrix
G(r+1) is the same for any input x. This means all inputs define the same output
coefficients; equivalently, there is no output randomization for that layer. We use
this fact to recover the signs of the neurons. The output coefficients are recovered
via second derivatives, thus, this method resembles a second-order differential
cryptanalysis.

Assume that the DNN has a single output and let c1, . . . , cdr
be its output

coefficients. Also, let x be an input to the DNN and y(i) be the output of layer
i after the ReLUs, i.e., y(i) = Fi(x). The output of the DNN is given by

f(x) = c1y
(r)
1 + · · ·+ cdry

(r)
dr

+ b(r+1), (3)

where y
(r)
k is the k-th coordinate of y(r) and b(r+1) is the bias of the output layer.

With the recovered matrix Â(r), we can compute the value that neuron k in

layer r takes before the ReLU, i.e., ek = ⟨Â(r)
k , y(r−1)⟩, but we do not know its

sign sk. Let us consider both options. Exactly one of ek or −ek will be positive,
and the other will be negative; the latter would be blocked by the ReLU. So,
σ(ek,−ek) is either (ek, 0) or (0,−ek), depending on whether ek > 0 or ek < 0,
respectively. We know the value ek, so we can compute σ(ek,−ek). Let us write

(ŷ
(r)
k+, ŷ

(r)
k−) = σ(ek,−ek). Now, finding sk is equivalent to deciding whether the

real value y
(r)
k of the neuron after the ReLU is ŷ

(r)
k+ or ŷ

(r)
k−. The contribution to

f(x) in Equation 3 is ckŷ
(r)
k+ when sk = +1, otherwise, it is ckŷ

(r)
k−. Then, that

equation can be rewritten as

f(x) =

dr∑
k=1

ck

(
skŷ

(r)
k+ + (1− s1)ŷ

(r)
k−

)
+ b(r+1).

Polynomial Time Cryptanalytic Extraction of Neural Network Models 21

So, we take random inputs x, construct a system of linear equations, and solve
for the unknowns sk and b(r+1). We must choose at least dr + 1 random inputs
for the system to have a unique solution.

The output coefficients ck can be obtained through a second derivative; the
latter represents the change in the slope of the function. Figure 5 depicts that
the second derivative of the ReLU function σ is the same at a critical point
regardless of the sign of its input. Let x∗ be a critical point for neuron k in layer

y

c > 0

(a) σ(y)

y

c > 0

(b) σ(−y)

Fig. 5: Second derivative c = σ(y+ϵ)−2σ(y)+σ(y−ϵ)
ϵ2 for the ReLU function σ.

i and ∆ be a small-norm vector in the linear neighborhood of x∗. Then,

f(x∗ +∆)− 2f(x∗) + f(x∗ −∆) = ±⟨F (i)
k , ∆⟩ck,

where F
(i)
k is the k-th row of the matrix F (i) defined by x∗ when collpasing

layers 1 to i. The sign above is + when x + ∆ activates the neuron, and it is

− otherwise. If ∆ is parallel to F
(i)
k , ⟨F (i)

k , ∆⟩ > 0 and the neuron is active

with x+∆. Then, dividing the quantity above by ⟨F (i)
k , ∆⟩ yields the coefficient.

When recovering the sign, we do not have access to the real F (i), but we know

F̂ (i) = Â(i)F (i−1). To get the coefficient of neuron k, we choose ∆ as F̂
(i)
k scaled

to have a sufficiently small norm. Getting the output coefficient of a neuron can
be done for any hidden layer. It is only in the last one that the coefficients remain
constant for different points x∗.

Oracle Calls/Time First, for each neuron, we find a critical point and compute
the output coefficient. This requires 3 oracle queries and linear algebra operations
with time complexity O(d3), where d = max(d0, dr). That is 3dr queries and
time complexity O(drd

3) for all dr neurons. Then, constructing the system of

equations requires also O(d3) operations (to compute the values ŷ
(r)
k− and ŷ

(r)
k+

for dr + 1 points) and dr + 1 queries. Finally, solving the system of equations
requires O(d3r) operations and no queries. In total, we require 4dr + 1 queries,
and the time complexity is O(drd

3) operations.

Limitations This technique requires the output coefficients to be constant.
This only happens in the last hidden layer. Therefore, this method is applicable
to that layer only.

22 Shamir et al.

5 Practical Sign Recovery Attacks

This section presents the experimental results of our proposed sign recovery
techniques from section 4. We first do a set of preliminary experiments on “well-
behaved” unitary balanced neural networks of varying sizes (subsection 5.2),
before we recover the real-world CIFAR10 network (subsection 5.3).

Our software implementation is available in6

https://anonymous.4open.science/r/deti-C405

We have executed the majority of our experiments on a DGX A100 server on
a 40GiB GPU. However, our experiments are not GPU intensive and will run
with similar runtimes on most personal computers.

5.1 Implementation Caveats

Infinite Numerical Precision The assumption of infinite numerical precision
cannot be upheld practically, as conventional deep learning packages such as
TensorFlow [ABC+16] only offer a maximal backend floating point precision
of 64 bits. This practical limitation will influence all of our techniques: At infinite
numerical precision, we could create an infinitesimal wiggle to be sure that we
stay within the linear region of the neural network, but the limited floating point
precision forces us to create a wiggle of sufficient magnitude, and this larger-
magnitude wiggle, in turn, can accidentally toggle one of the other neurons.
This requires us to perform a linearity check, which leads to additional oracle
queries (see Appendix B). The limited floating point precision also means that
the small uncertainties in our recovered weights will propagate to larger errors
in our prediction of neuron values at deeper layers. For both SOE and the Last
Hidden Layer method, this means that the system of equations we recover can
have slightly imprecise coefficients, and variables that should be exactly zero may
instead resolve to a relatively small value. For all of the networks we studied, we
found it sufficient to declare a small threshold for what should be considered a
zero, but this line will get increasingly blurry with deeper networks.

Neuron Wiggle: Confidence-level α The neuron wiggle is a statistical
method, and in all following experiments we use s = 200 samples per neuron sign
recovery. The sign recovery result for each neuron has a certain confidence level
α ∈ (0.5, 1.0]. A confidence level of α = 1.0 (α ≈ 0.5) means absolute certainty
(low certainty) in the recovered sign. The vast majority of signs is recovered
correctly (), even if α ≈ 0.5. However, a very small number of signs is re-
covered incorrectly (). We consider decisions with a confidence level below a
cut-off value α0 to be borderline and re-analyze the neurons with α ≤ α0 after
updating the signs for all neurons with high confidence level α > α0. The cut-off
value α0 is chosen adaptively so that the neurons with the least-confident 10%
of all sign-recoveries are reanalyzed (Figure 6(a)).

6 Anonymized for submission.

Polynomial Time Cryptanalytic Extraction of Neural Network Models 23

(a) Neuron Wiggle: Adaptive α0.

256 512 1024 20483072
Input dimension d0

50

100

150

t N
eu
ro
n
W
ig
gl
e
 (

s)

Runtime Scaling

observation
O(d 3

0)

(b) Neuron Wiggle: Runtime scaling.

Fig. 6: (a) illustrates that we reanalyze borderline neurons with low confidence
level α < α0 as explained in Neuron Wiggle: Confidence-level α. (b) shows the
approximately cubic runtime scaling with the neural network input dimension
investigated in Results on d0-256

(8)-10.

5.2 Unitary Balanced Neural Networks

We start with experiments on a set of “well-behaved” toy networks of varying
sizes before tackling a “real-world” CIFAR10 network in the following section.

Methodology Training small networks is sometimes done on artificial datasets,
such as random data in [CJM20]. Instead of training on random data, we pur-
posefully create “well-behaved” networks with the following characteristics: The
weights of each neuron are given by a unit vector chosen uniformly at random.
The bias of each neuron is chosen such that it has a 50% probability of being ac-
tive. Using our unitary balanced networks, we avoid anomalies originating from
the non-deterministic neural network training on random data.

Results on 784-128-1 The largest network presented in [CJM20] is the 784-
128-1 network with around 100k parameters. Using Freeze the time complexity
for the sign recovery can be estimated as O(did

3) = 128×7843 = 235. If Exhaus-
tive Search would have to be used, the time complexity for the sign recovery can
be estimated as O(2di) = 2128. While [CJM20] can still recover the 784-128-1
network in “under an hour”, deeper networks with multiple hidden layers are
untractable due to the sign recovery with exhaustive search. We can recover the
signs of all neurons in the 128 neuron-wide hidden layer with either SOE in
about (6.77±0.04) s, or alternatively, the Last Hidden Layer technique in about
(18.6 ± 0.05) s. In our implementations of SOE and Last Hidden Layer , paral-
lelization and further speed-up are trivially achievable. Note that although the
complexities of the two methods are similar, the execution time of Last Hidden
Layer is mainly determined by the time it takes the algorithm to find the out-
put coefficients, which is in turn dominated by the cost of finding critical points.

24 Shamir et al.

Since these searches are independent, they can be done in parallel with a linear
speedup factor. On the other hand, SOE does not require critical points, which
explains the slight gap in performance.

Results on 100-200(3)-10 This network is a larger version of the 10-20-20-1
network presented in [CJM20]. As this network is expansive, the Freeze tech-
nique and SOE cannot be used, and before our work Exhaustive Search with an
estimated cost of 2200 would have had to be employed for sign recovery. We use
the Neuron Wiggle technique in hidden layers 1 and 2, and the Last Hidden Layer
technique in hidden layer 3. In hidden layer 1 and 2 the Neuron Wiggle recovers
all neuron signs correctly, even the ones with a low confidence level α ≈ 0.5. The
(per-layer parallelizable) execution time per neuron is (16.3±0.4) s, respectively
(18.8±0.5) s. The Last Hidden Layer technique recovers hidden layer 3 in a total
execution time of (35.8± 0.2) s.

Results on d0-256
(8)-10 Before moving on to our “actual” CIFAR10 net-

work (3072-256(8)-10), we investigate the runtime scaling on unitary balanced
networks with varying input dimensions d0 = {256, 512, 1024, 2048, 3072}. Ac-
cording to our time order complexity estimation, we expect a cubic scaling of the
runtime ∼ O(sdid

3) with the input dimension d = max(d0, di). For each network
d0-256

(8)-10, we recover a subset of neurons in hidden layer three. Figure 6(b)
shows an approximately cubic scaling with the shortest sign recovery time of
37 s for d0 = 256, and the longest sign recovery time of 114 s for d0 = 3072.

5.3 CIFAR10 Neural Network

The CIFAR10 Dataset CIFAR10 is one of the typical benchmarking datasets
in visual deep learning. It contains a balanced ten-class subset of the 80 Million
Tiny Images [TFF08]. Each of the ten classes (e.g., airplane, cat, and frog)
contains 32 × 32 pixel RGB images, totaling 50,000 training and 10,000 test
images.

Our CIFAR10 Model Table 1 gives a detailed description of our CIFAR10
model. On the CIFAR10 dataset, we perform a standard rescaling of the pixel
values from 0 . . . 255 to 0 . . . 1. For our model training, we choose typical settings
(the optimizer is stochastic gradient descent with a momentum of 0.9; the loss is
sparse categorical crossentropy; batch size 64), similar to [LMK15]. Our eight-
hidden-layer model shows CIFAR10 test accuracies within the expected range:
Typical test accuracies for densely connected neural networks with pure ReLU
activation functions are around ≈ 0.53 [LMK15]. We note that better test ac-
curacies are achieved using more advanced neural network architectures–beyond
densely connected layers with pure ReLU activation functions. The current state

Polynomial Time Cryptanalytic Extraction of Neural Network Models 25

Table 1: Description of our CIFAR10 model. Each image of the CIFAR10 dataset
has 32 × 32 = 1024 pixels per RGB channel. Accordingly, our model has 3 ×
1024 = 3072 input neurons. Further, it has 10 output neurons, one for each
class in CIFAR10. We arbitrarily chose 256 neurons in each hidden layer. Our
8-hidden-layer CIFAR10 model with around 1.25M parameters is the largest
model we analyze in this manuscript.

model acc. CIFAR10 #(hidden layers) #(hidden neurons) parameters

3072− 256(8) − 10 0.5249 8 2048 1,249,802

Note: Column ‘model’ shows the model configuration with the number of neurons in
the (input layer, hidden layers#(hidden layers), output layer); ‘acc. CIFAR10’ shows the
evaluation accuracy of the model on the 10,000 CIFAR10 test images; ‘#(hidden layers)’
shows the number of hidden layers; ‘#(hidden neurons)’ shows the total number of
hidden layer neurons; ‘parameters’ shows the total number of model weights and biases.

of the art, Google Research’s so-called vision transformer (ViT-H/14), achieves
0.995 test accuracy on CIFAR10 [DBK+20, Table 2].

As mentioned previously, the space of control is essential for the sign recovery,
and here we provide the experimental analysis for our 3072−256(8)−10 CIFAR10
model. Table 2 shows that after a sharp initial drop, the space of control stabilizes
in the deeper layers. This supports our intuition from Figure 3 that a dramatic
fall in the space of control is prevented by the affine transformations.

Table 2: The average number of ReLUs on their positive side in each hidden
layer of our 3072 − 256(8) − 10 CIFAR10 model for 10k random inputs, as well
as the rank of a linearized representation M of the network up to the respective
layer.

i: Layer ID 1 2 3 4 5 6 7 8

#(ON ReLUs) 127±8 80±8 72±8 74±6 82±6 95±6 99±7 100±10

rank(F (i)) 127±8 80±8 71±7 68±6 68±6 68±6 68±6 68±6

We analyzed our CIFAR10 network using our SOE (hidden layers 1 and 2),
Last Hidden Layer (last hidden layer), and Neuron Wiggle (hidden layer three
to penultimate) sign recovery techniques.

Results with SOE and Last Layer Technique Table 3 shows the results
of the sign recovery with the SOE and Last Hidden Layer techniques on our
CIFAR10 model. Since these methods are algebraic, all neuron signs can be
recovered successfully. We collect a system of equations as described in subsec-
tion 4.1 (SOE) and subsection 4.3 (Last Hidden Layer). For SOE , we collect one

26 Shamir et al.

equation per hidden layer neuron (in total 256). Each equation k = 1, . . . , 256
contains the model output difference f(x+∆k)− f(x), and therefore, a total of
256 + 1 oracle calls are necessary. Even in our non-optimized implementation,
the runtimes are well below thirty seconds for the CIFAR10 model. For the Last
Hidden Layer technique, we collect one equation per hidden layer neuron (in
total 256) and one equation per output neuron bias (in total 10).

Table 3: Results of the sign recovery with the SOE and Last Hidden Layer
techniques on our 3072−256(8)−10 CIFAR10 model. Each hidden layer contains
256 neurons. All neuron signs can be recovered successfully ().

SOE Last Hidden Layer

layer ID queries runtime layer ID queries runtime

1,2 256 256+1 (16± 1) s 8 256 256+10 (189± 40) s

Column ‘queries’ contains the number of oracle queries. The runtime is the total exe-
cution time for recovering all neuron signs in seconds. For both, SOE and Last Hidden
Layer , these execution times can be significantly reduced further by parallelizing the
implementation.

Results with the Neuron Wiggle Technique Table 4 shows the results of
the sign recovery with the Neuron Wiggle technique on our CIFAR10 model.
Each neuron sign was recovered using 200 critical points. We find criticals point
for each target neuron by starting from a randomly chosen input image from
the CIFAR10 dataset. As detailed in section 5.1, the neuron wiggle technique is
statistical. We reanalyze borderline neurons with a low confidence level α ≤ α0.
Detailed neuron-by-neuron results for hidden layer 7 (of 8) are shown in sec-
tion C. The mean sign recovery time per neuron in the relevant layers with
layer IDs 2, . . . , 8 is t̄total = (234 ± 44) seconds. Note that the sign recovery of
the 256 neurons within the same hidden layer can be parallelized. Therefore, a
parallelized implementation of our sign recovery algorithm on a suitable 256-core
computer would take around 4 minutes per layer and a total of about 32 minutes
for the 8-hidden layer DNN.

Compared to our preliminary experiments on the unitary balanced networks,
the sign recovery time for the comparable-size CIFAR10 model is almost twice
as long. The detailed analysis in section C shows that the increased execution
time is due to finding critical points: in the actual CIFAR10 network, it takes
around 110 s, while it only took 10 s in the unitary balanced network. Notable
differences to the unitary balanced network are a smaller space of control and
the existence of always-off or almost-always-off neurons, which makes finding
critical points more challenging.

Polynomial Time Cryptanalytic Extraction of Neural Network Models 27

Table 4: Results of the sign recovery with the Neuron Wiggle method on hidden
layers 1, . . . , 8 of our CIFAR10 model 3072-256(8)-10. Each hidden layer contains
256 neurons. The vast majority is evaluated correctly (), even at a low con-
fidence level (α ≈ 0.5). 256 highlights the cases where all neurons are analyzed
correctly, even those with low confidence level α. Borderline neurons with a low
confidence level (α ≤ α0) are re-evaluated. The column fixable contains the
borderline neurons with wrongly recovered signs () and low confidence level.
Zero incorrect decisions () were made with a high confidence level (α > α0).

layerID
α0

(adaptive)
correct

(α > 0.5) and
fixable

(α ≤ α0) and
incorrect

(α > α0) and
runtime

1 0.79 255/256 1/256 0/256 1121 s

2 0.67 254/256 2/256 0/256 185 s

3 0.74 256/256 0/256 0/256 219 s

4 0.74 256/256 0/256 0/256 295 s

5 0.74 256/256 0/256 0/256 201 s

6 0.75 256/256 0/256 0/256 269 s

7 0.70 253/256 3/256 0/256 234 s

8 0.77 252/256 4/256 0/256 384 s

Note that our other two sign recovery techniques are faster for hidden layers 1, 2,
and 8, and we only show the neuron wiggle timing for these layers for the sake of
completeness. The column ’runtime’ refers to the mean runtime per neuron in the
target layer, where the signs of all the neurons in the same layer can be extracted in
parallel on a multicore computer.

6 Conclusions

In this paper, we presented the first polynomial-time algorithm for extracting
the parameters of ReLU-based DNNs from their black-box implementation. We
also demonstrated the practical efficiency of our sign recovery by applying it to a
deep network for classifying CIFAR10 images. We used SOE (i = 1, 2, (16± 1) s
per layer), Neuron Wiggling (i = 3 . . . 7, (234± 44) s per layer) and Last Hidden
Layer (i = 8, (189 ± 40) s). The total required time is about 30 minutes. We
also demonstrated its applicability to several layer deep, expanding networks
whose width was much larger than the number of inputs (where all the previous
techniques based on solving systems of linear equations failed).
Among the many problems left open are:

1. Developing countermeasures and countercountermeasures for our attack.
2. Dealing with the case in which only the class decisions are provided rather

than the exact logits.
3. Dealing with more modern machine learning architectures such as trans-

formers.
4. Dealing with discrete domains such as texts in LLMs where derivatives are

not well defined.

28 Shamir et al.

References

ABC+16. Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 265–283, 2016.

BBJP19. Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN:
reverse engineering of neural network architectures through electromagnetic
side channel. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, Au-
gust 14-16, 2019, pages 515–532. USENIX Association, 2019.

BR93. Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is np-
complete. In Stephen Jose Hanson, Werner Remmele, and Ronald L. Rivest,
editors, Machine Learning: From Theory to Applications - Cooperative Re-
search at Siemens and MIT, volume 661 of Lecture Notes in Computer
Science, pages 9–28. Springer, 1993.

CJM20. Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic ex-
traction of neural network models. In Annual International Cryptology Con-
ference, pages 189–218. Springer, 2020.

DBK+20. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

DG21. Amit Daniely and Elad Granot. An exact poly-time membership-queries
algorithm for extraction a three-layer relu network. CoRR, abs/2105.09673,
2021.

Fef94. Charles Fefferman. Reconstructing a neural net from its output. Revista
Matemática Iberoamericana, 10(3):507–555, 1994.

JCB+20. Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot. High accuracy and high fidelity extraction of neural
networks. In 29th USENIX security symposium (USENIX Security 20),
pages 1345–1362, 2020.

JMPR22. Raphaël Joud, Pierre-Alain Moëllic, Simon Pontié, and Jean-Baptiste
Rigaud. A practical introduction to side-channel extraction of deep neural
network parameters. In International Conference on Smart Card Research
and Advanced Applications, pages 45–65. Springer, 2022.

LM05. Daniel Lowd and Christopher Meek. Adversarial learning. In Robert Gross-
man, Roberto J. Bayardo, and Kristin P. Bennett, editors, Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages
641–647. ACM, 2005.

LMK15. Zhouhan Lin, Roland Memisevic, and Kishore Konda. How far can we go
without convolution: Improving fully-connected networks. arXiv preprint
arXiv:1511.02580, 2015.

MSDH19. Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and Moritz Hardt. Model
reconstruction from model explanations. In danah boyd and Jamie H. Mor-
genstern, editors, Proceedings of the Conference on Fairness, Accountability,
and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019,
pages 1–9. ACM, 2019.

Polynomial Time Cryptanalytic Extraction of Neural Network Models 29

OMR23. Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. I know what you
trained last summer: A survey on stealing machine learning models and
defences. ACM Computing Surveys, 55(14s):1–41, jul 2023.

PMG+17. Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza
Sadeghi, and Xun Yi, editors, Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, AsiaCCS 2017, Abu
Dhabi, United Arab Emirates, April 2-6, 2017, pages 506–519. ACM, 2017.

RK20. David Rolnick and Konrad P. Körding. Reverse-engineering deep relu net-
works. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Pro-
ceedings of Machine Learning Research, pages 8178–8187. PMLR, 2020.

RST19. Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko. Effi-
ciently stealing your machine learning models. In Lorenzo Cavallaro, Jo-
hannes Kinder, and Josep Domingo-Ferrer, editors, Proceedings of the 18th
ACM Workshop on Privacy in the Electronic Society, WPES@CCS 2019,
London, UK, November 11, 2019, pages 198–210. ACM, 2019.

TFF08. Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny im-
ages: A large data set for nonparametric object and scene recognition. IEEE
transactions on pattern analysis and machine intelligence, 30(11):1958–
1970, 2008.

TZJ+16. Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ris-
tenpart. Stealing machine learning models via prediction {APIs}. In 25th
USENIX security symposium (USENIX Security 16), pages 601–618, 2016.

30 Shamir et al.

A The Expected Signal-to-Noise Ratio of Neuron Wiggle
in Unitary Balanced Networks

In this appendix, we perform an approximate back-of-the-envelope analysis of
the relative sizes of the signal and the noise in the neural wiggling technique
described in subsection 4.2 for unitary balanced networks. Recall that, in this
model, the weights of all neurons are unit vectors chosen uniformly at random.
Here, we assume that unit vectors of dimension n have the form (± 1√

n
, . . . ,± 1√

n
).

The input wiggle δ for the i-th layer has tiny norm ε, but to simplify our nota-
tion, we will assume that it has norm 1 since ε is just a common multiplicative
factor in both the signal and the noise.

Let us first analyze the situation where the number of degrees of freedom
at the input to layer i is also n (i.e., the attacker has full control of this input
wiggle). Let u be the weight vector of the target neuron and v the weight vector
of a different neuron in the same layer. Then, ∥⟨u, δ⟩∥ = 1 (since u and δ are unit
vectors in the same direction) and ∥⟨v, δ⟩∥ is expected to be about 1√

n
. To see

the latter, write a unit vector as 1√
n
(±1, . . . ,±1), thus ∥⟨v, δ⟩∥ is 1/n times the

sum of n entries each one of which is either +1 or −1. This sum can be viewed
as a simple random walk whose expected translation distance after n steps is√
n. This yields the estimate that the size of the dot product of two random unit

vectors in n dimensional space is about ∥⟨v, δ⟩∥ = 1√
n
.

Without loss of generality, assume that the target neuron is the first neuron
in the layer. Let ek be the difference for neuron k given the wiggle δ. Then, the
vector of differences for the target layer is

(e1, e2, . . . , en) = (e1, 0, . . . , 0) + (0, e2, . . . , en)

= (1, 0, . . . , 0)︸ ︷︷ ︸
et

+

(
0,± 1√

n
, . . . ,± 1√

n

)
︸ ︷︷ ︸

eo

,

where the second equality holds by the discussion above. The vector et represents
the change in the value for the target neuron, and eo the change in the value for
all other neurons. The norm of et is 1. Notice that eo is very close to being a
unit vector (only the first entry is zero); hence, its norm is close to 1. Then, the
norm of the change in value of the target neuron is similar to the norm of the
changes in value of all the other neurons combined, so the size of the signal is
comparable to the size of the noise at the input to the i-layer ReLU’s, making
the signal easily detectable.

When the attacker has only d degrees of freedom at the input to layer i, the
signal diminishes while the noise remains the same. To model this effect, assume
that in the unit vector (± 1√

n
, . . . ,± 1√

n
) which represents the desired wiggle, the

attacker can optimally choose only the first d signs, while the remaining n − d
signs are randomly chosen. This will reduce the norm of the signal ∥⟨u, δ⟩∥ from
1 to about

√
d/n while keeping the norm of the noise essentially unchanged

(since it is still determined by the dot products of independently chosen random

Polynomial Time Cryptanalytic Extraction of Neural Network Models 31

unit vectors). This represents a very gradual deterioration in the signal-to-noise
ratio as d decreases; for example, when the attacker has only d = n/2 degrees
of freedom, the signal-to-noise ratio is only reduced by a multiplicative factor
of about

√
1/2 = 0.7. While the signal is expected to be a bit smaller than the

noise, it will still be easy to detect after enough samples are taken. This explains
the success of our experiments on expanding networks with three consecutive
layers of 200 neurons while the network had only 100 inputs.

B Finding Critical Points and Determining Linearity

We are interested in finding the points where a piecewise linear function changes
its slope. Particularly, when the function is given by the output of a DNN, each
of these points corresponds to a critical point for a neuron. Here, we show a
method to find these points, and it builds on the ideas presented by Carlini et
al. [CJM20] and Jagielski et al. [JCB+20]. This method improves the robustness
for both finding critical points and detecting false critical points.

Consider one output of the DNN. Given two inputs X1, X2 ∈ Rd0 , we can
think of them as being the boundaries of a closed interval in R. For example, each
point δ ∈ [0, 1] ⊂ R corresponds to X1 + δ(X2 −X1). Thus, we will consider the
DNN to be a function whose inputs are real values in an interval [xα, xβ] ⊂ R.

The main idea is to detect whether there is exactly one critical point in
[xα, xβ]. To do this, compute the point x∗ where the line passing through xα

intersects the line passing through xβ . Compute the expected value of f at that

point, denoted by f̂(x∗). Then, x∗ is a critical point if f̂(x∗) = f(x∗). If multiple
critical points are detected, partition the interval and search recursively within
[xα, xo] and [xo, xβ], where xo = (xα + xβ)/2.

The details are in Algorithm 1. The first part is to check whether f is linear
in [xα, xβ] (lines 1-11). To do this, we first check if f(xo) = (f(xα) + f(xβ))/2.
Checking only this condition fails in the particular case depicted in Figure 7(a).
Thus, we next compare the slopes of the lines passing through xα and xβ . If the
slopes are different, there are multiple critical points. Equality means that they
are either the same line or parallel lines (as in Figure 7(a)). The former case
implies no critical points (i.e., linearity) while the latter implies multiple critical
points within the interval. We distinguish between these cases with the slope of
the lines passing through the left and right side of xo. If f is not linear in [xα, xβ],
we compute a candidate x∗ and check whether it is the only critical point (lines

12-16). This occurs when (i) f(x∗) = f̂(x∗), (ii) the left and right derivatives
of f at x∗ are different and (iii) x∗ ∈ [xα, xβ]. Condition (i) is sufficient if
there is exactly one critical point within [xα, xβ]; see Figure 7(b). When the
interval contains more than one critical point, conditions (ii) and (iii) avoid
erroneously reporting x∗ as one of them in certain cases; see Figures 7(c) and

7(d), respectively. Figure 7(e) shows the scenario when f̂(x∗) ̸= f(x∗). If multiple
critical points are detected, we partition the interval and continue the search.

Our sign recovery techniques require that we evaluate the DNN with input
differences in the linear neighborhood of a given point. With infinite precision,

32 Shamir et al.

Algorithm 1 FindCriticalPoints

Input: xα, xβ , ε ∈ R
Output: Set of critical points
1: xo ←

xα+xβ

2

2: yα ← f(xα), yβ ← f(xβ), yo ← f(xo)

3: if yo =
yα+yβ

2
then

4: mα ← f(xα+ε)−yα
ε

, mβ ←
yβ−f(xβ−ε)

ε

5: if mα = mβ then

6: mα,o ← yo−f(xo−ε)
ε

,mβ,o ← f(xo+ε)−yo
ε

7: if mα,o = mα and mβ,o = mβ then
8: return ∅
9: end if
10: end if
11: end if

12: x∗ = xα +
yβ − yα −mβ(xβ − xα)

mα −mβ

13: f̂(x∗) = yα +mα
yβ − yα −mβ(xβ − xα)

mα −mβ

14: if f(x∗) = f̂(x∗) and f ′
−(x

∗) ̸= f ′
+(x

∗) and x∗ ∈ [xα, xβ] then
15: return {x∗}
16: end if
17: return FindCriticalPoints(xα, x0, ε) ∪ FindCriticalPoints(x0, xβ , ε)

(a) Not a critical point. (b) Critical point. (c) Not a critical point.

(d) Critical point outside
[xα, xβ]. (e) Not a critical point.

Fig. 7: Finding critical points.

Polynomial Time Cryptanalytic Extraction of Neural Network Models 33

we can simply choose an arbitrarily small input difference. However, our imple-
mentation has a limit on the precision of arithmetic operations. As mentioned
in subsection 5.1, this forces us to check for linearity when we evaluate small
differences in the input to ensure that we do not toggle any neuron. We do this
in the same way as explained above.

34 Shamir et al.

C Detailed Results for CIFAR10

Table 5: Detailed neuron-by-neuron results for hidden layer 7 (of 8) in the CIFAR10
model 3072-256(8)-10. We highlight the three cases where the sign recovery gave an
incorrect result (). Note the low confidence level α in these cases. We also highlight
the longest observed recovery time ttotal = 684 s. The mean recovery time is t̄total =
(234± 49) seconds. The median recovery time is t̃total = 220 s, and 75% of all neurons
can be recovered within 227 s.

neuronID real sign s− s+ α correct tcrit. twiggle ttotal

neuron 0 - -:165 +:35 0.82 135 84 221

neuron 1 + -:0 +:200 1.00 130 83 213

neuron 2 - -:198 +:2 0.99 138 83 224

neuron 3 - -:176 +:24 0.88 131 83 216

neuron 4 - -:161 +:39 0.81 132 83 217

neuron 5 + -:0 +:200 1.00 128 83 213

neuron 6 - -:193 +:7 0.96 130 84 216

neuron 7 + -:14 +:186 0.93 148 83 232

neuron 8 - -:200 +:0 1.00 128 83 213

neuron 9 - -:125 +:75 0.62 174 83 258

neuron 10 - -:200 +:0 1.00 129 83 213

neuron 11 - -:195 +:5 0.97 137 83 223

neuron 12 - -:199 +:1 0.99 128 83 214

neuron 13 - -:194 +:6 0.97 133 83 218

neuron 14 + -:1 +:199 0.99 132 83 216

neuron 15 + -:3 +:197 0.98 139 83 227

. .

neuron 108 - -:199 +:1 0.99 133 83 217

neuron 109 + -:105 +:95 0.53 496 83 581

neuron 110 + -:51 +:149 0.74 144 83 230

. .

neuron 108 - -:199 +:1 0.99 133 83 217

neuron 109 + -:105 +:95 0.53 496 83 581

neuron 110 + -:51 +:149 0.74 144 83 230

. .

neuron 116 + -:2 +:198 0.99 152 83 239

neuron 117 - -:87 +:113 0.56 302 83 390

neuron 118 + -:1 +:199 0.99 134 83 219

. .

neuron 245 + -:0 +:200 1.00 132 84 218

neuron 246 - -:177 +:23 0.89 597 83 684

neuron 247 + -:6 +:194 0.97 135 84 222

. .

neuron 251 - -:184 +:16 0.92 153 83 237

neuron 252 - -:200 +:0 1.00 135 84 222

neuron 253 - -:200 +:0 1.00 132 83 217

neuron 254 - -:200 +:0 1.00 132 83 218

neuron 255 - -:195 +:5 0.97 132 84 218

Note: For each neuron, 200 critical points were analyzed for the sign recovery. s±
negative and positive sign votes. Confidence level α. Time to find critical points tcrit.,
and the execution time for the wiggle sign recovery itself twiggle. ttotal = tcrit. + twiggle.

	Polynomial Time Cryptanalytic Extraction of Neural Network Models
	Introduction
	Our Contributions
	Overview of our Attack

	Related Work
	Preliminaries
	Basic Definitions and Notation
	Problem Statement and Assumptions
	Carlini et al.'s Differential Attack
	Finding critical points
	Finding signatures
	Finding signs using the freezing method

	Our New Sign-Recovery Techniques
	SOE Sign-Recovery
	Oracle Calls/Time
	Limitations

	Neuron Wiggle Sign-Recovery
	Compute Target Neuron Wiggle
	Recover Target Neuron Sign
	Oracle Calls/Time
	Limitations

	Last Hidden Layer Sign-Recovery
	Oracle Calls/Time
	Limitations

	Practical Sign Recovery Attacks
	Implementation Caveats
	Infinite Numerical Precision
	Neuron Wiggle: Confidence-level

	Unitary Balanced Neural Networks
	Methodology
	Results on 784-128-1
	Results on 100-200(3)-10
	Results on d0-256(8)-10

	CIFAR10 Neural Network
	The CIFAR10 Dataset
	Our CIFAR10 Model
	Results with SOE and Last Layer Technique
	Results with the Neuron Wiggle Technique

	Conclusions
	The Expected Signal-to-Noise Ratio of Neuron Wiggle in Unitary Balanced Networks
	Finding Critical Points and Determining Linearity
	Detailed Results for CIFAR10

