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Abstract. The security of blockchain protocols is a combination of two
properties: safety and liveness. It is well known that no blockchain pro-
tocol can provide both to sleepy (intermittently online) clients under
adversarial majority. However, safety is more critical in that a single
safety violation can cause users to lose money. At the same time, live-
ness must not be lost forever. We show that, in a synchronous network,
it is possible to maintain safety for all clients even during adversarial
majority, and recover liveness after honest majority is restored. Our so-
lution takes the form of a recovery gadget that can be applied to any
protocol with certificates (such as HotStuff, Streamlet, Tendermint, and
their variants).
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1 Introduction

Eve the Evil Adversary is at it again. She has somehow managed to capture the
majority of the stake on our favorite proof-of-stake blockchain. She’s about to
double-spend: In one transaction, she sends multiplujillion dollars’ worth of na-
tive tokens to one exchange owned by Alice. In another transaction, she sends the
same amount to a different exchange, owned by Bob, spending the exact same
money. Using her adversarial majority of voting power, she causes the chain to
split into two forks. The first fork causes Alice to confirm the first transaction.
The second fork causes Bob to confirm the second transaction. Before the ex-
changes realize what has transpired, Eve has withdrawn the money from both.
As soon as the news hits, the whole community stops transacting: They con-
vene at the bar to analyze what happened and which of the two forks to follow.
They slash the misbehaving adversary, but a fight erupts between Alice and Bob:
Neither of the two conflicting fork choices can make both of them happy.

Here’s a simple idea to avoid such a devastating scenario: Alice and Bob
re-broadcast any chains they receive from the network, and so if conflicts oc-
cur, they are observed by both exchanges. In case of conflict, they each freeze
their operation and await human intervention. If such a deterring strategy is
carefully followed, all honest participants, even those who joined late, always
confirm ledgers consistent with one another, retaining safety even under adver-
sarial majority. This simple trick achieves something remarkable: Our protocol
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Fig. 1: The timeline of recovery from adversarial majority. Safety is required
at all times and liveness must recover once the adversary is removed from the
protocol by an external process and honest majority is restored.

lost liveness during adversarial majority but retains safety even up to a 99%
adversary, as long as everyone (including clients like Alice and Bob) gossips evi-
dence of conflict and slightly delays confirming ledgers. Retaining safety without
liveness makes sense: safety is more important than liveness.

Even though we have achieved safety up to a 99% adversary, the money is
useless if it can never be spent again. We want liveness to eventually recover. To
achieve this, the community who met at the bar uses evidence of misbehavior or
other means to exclude the adversary from the protocol so that honest majority
is restored (Fig. 1). Still, a challenge remains: Regrettably, Alice and Bob may
each freeze their ledger at a different length (Fig. 2a). To unfreeze with human
intervention, the community must make a choice of which ledger to extend. If they
extend the shorter one confirmed by Bob, then Alice, who confirmed a longer
ledger, will be unhappy, as she will lose money. They must therefore extend
the longer one. However, even though Alice knows in her heart that she’s being
truthful, the other honest parties may see conflicting evidence. In particular,
Eve may claim that her view of the ledger is the correct one, and honest parties
who are behind cannot tell the difference (Fig. 2a). The situation is frustrating:
There is a right choice to be made (the longest honest ledger), but this choice
is unknowable, even if we try to resolve the conflict socially (see Sec. 3.2).

It was previously believed [7] that such deadlocks are insurmountable and
that an arbitrary choice must be made during those perilous circumstances. In
this work, we challenge this folklore belief by introducing a new gadget which
transforms existing protocols to allow for recovery after honest majority heals.
The resulting protocol is safe and live under honest majority. When the adver-
sary gains majority (at the moment rmaj, see timeline in Fig. 1) and attempts
to perform an infraction, our protocol freezes to preserve safety. When the com-
munity restores honest majority (for example, by slashing or through a social
mechanism), our protocol recovers in a way that preserves safety. At the moment
of recovery after honest majority heals (rrec in Fig. 1), which must be truthfully
announced as external advice, the protocol computes a new genesis block eval-
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Fig. 2: (a) By freezing the ledger, honest parties report ledgers that are prefixes
of one another. However, Eve may confuse Bob, who holds a shorter ledger, as
to what is its valid honest extension, i.e., the one confirmed by Alice. (b) A
recoverable protocol makes a distinction between confirmed ledgers (solid lines)
and bookmarked ledgers (dashed lines). The longest honestly confirmed ledger is
a prefix of the shortest bookmarked ledger, and all of them are consistent with
each other. The new genesis block can be computed by a majority vote between
the bookmarked ledgers held by the validators (illustrated as machines).

uated based on past evidence. The new genesis block is guaranteed to extend
the longest ledger confirmed by any honest party, even if the adversary presents
confusing evidence. Beyond healing the population and announcing the moment
of recovery, the computation of the new genesis block is automatic and internal
to the protocol.

Crucial to this result is our network model. We make a distinction between
clients and validators: Validators form a set of known online participants taking
actions, such as voting, in the protocol. Clients are unknown and free to join and
leave the network at any time (sleepy clients)1. Contrary to previous work, which
only allowed validators to gossip messages to all parties, we also allow clients to
do so. In other words, any message received by a client will soon be received by
all online parties. This is a more realistic depiction of currently deployed gossip
networks comprised of both clients and validators. The client gossip allows us to
bypass previous impossibility results (see Related Work).
Our contributions. In summary, we make the following contributions:

1. A freezing, always-safe protocol. Our first, extremely simple, protocol is one
that is always safe, but live only up to a 50% adversary. It involves waiting
before confirming a ledger, gossiping evidence of conflict, and freezing on
observing evidence of conflict. Despite its straightforward design, it achieves
something never seen in the literature before: an always-safe protocol which
supports sleepy clients. In the analysis, we note two modeling intricacies: (a)
safety and liveness resilience bounds do not need to be conflated; and (b) in
real gossip networks, clients, too, can gossip messages.

1 Joining and leaving is similar to the sleepy model [32], but with the marked distinc-
tion between sleepy clients and validators.
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2. An always-safe recoverable protocol. Our second protocol achieves safety al-
ways and liveness before adversarial majority, and after the population has
healed from adversarial majority, recovers liveness in a safe manner (as shown
in Fig. 1). Remarkably, the protocol can support sleepy clients who inherit
similar liveness and safety guarantees whenever they are awake. A new mod-
eling aspect is the introduction of rrec, a moment of recovery, in which the
protocol receives trusted external advice that the population has healed,
after which recovery can commence.

Construction overview. Our recoverable protocol constitutes a recovery gad-
get built in a black-box fashion on top of any existing distributed ledger proto-
col (Fig. 3) that provides certificates of confirmation and is secure under honest
majority (such as Sync-Hotstuff [1] and Sync-Streamlet [10]). The internal pro-
tocol Π outputs ledgers that are consumed by the gadget. The gadget delays
these ledgers twice before reporting them to the external user: Once before they
are considered bookmarked ; and, secondly, before they are considered confirmed.
Transactions are only considered confirmed when they are part of the confirmed
ledger. Any conflicting ledgers that appear in the internal protocol at any point
in time are used as a signal to freeze the protocol, and this evidence of infraction
is gossiped to the rest of the network to help everyone safely freeze shortly there-
after too. This simple freezing idea ensures all bookmarked and confirmed ledgers
of different honest parties are mutually consistent, ensuring safety even under
dishonest majority. The relationship between bookmarked and confirmed ledgers
is that the longest confirmed ledger of clients (solid line in Fig. 2b) is behind the
shortest bookmarked ledger of validators (dashed line in Fig. 2b). When the mo-
ment for recovery arrives, and the population of validators (shown as machines
in Fig. 2b) has been healed of dishonest majority (rrec in Fig. 1), the valida-
tors begin a voting phase in which they sign and broadcast their bookmarked
ledgers. Clients listen for votes containing each validator’s bookmarked ledger
and take the prefix of them that is vouched by a majority. This guarantees, due
to honest majority, to lead to a ledger (“new genesis”, left-most honest machine
in Fig. 2b) that contains the longest previously confirmed ledger. Subsequently,
the gadget reboots the internal consensus protocol using the ledger discovered
in this manner as a new starting point, safely recovering liveness.
Paper structure. Our simple “freezing” idea is presented in Sec. 3.1 where we
show that, with client gossip, it achieves safety against up to a 99% adversary. We
give a detailed description of the scenario of Fig. 2b in Sec. 3.2 which motivates
the steps required to design our full recoverable protocol in Sec. 3.3. We prove our
protocol achieves the desired properties in Sec. 4. In Sec. 5, we discuss extensions
to proof-of-stake and partial synchrony.
Related work. The question of achieving resilience against majority adversaries
is not new. Lamport et al. [23] in 1982, and Dolev and Strong [16] in 1983 already
proposed a broadcast protocol achieving both safety and liveness with resilience
up to 100%. Repeated executions make a consensus protocol [6, 21, 11, 20].
Unfortunately, their protocol requires clients to be always online. It is well-known
that with clients who may join and leave, it is impossible to achieve both safety
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Fig. 3: A simplified block diagram of the recovery gadget. The internal protocol
Π is any protocol that is safe and live under honest majority. Ledgers output
by Π or obtained from the network are gossiped to the rest of the network.
The component ∼ remembers the set of all ledgers it ever received at the
input port on its top. On receiving a ledger L at the input port on its left,
this block outputs L if no conflicting ledgers were ever received. On waiting and
checking for conflicts once, a ledger is considered bookmarked. On waiting longer
and checking conflicts again, it is considered confirmed. Clearly, the bookmarked
ledger extends the confirmed ledger.

and liveness with more than 50% resilience [34, 32, 31]. Once safety and liveness
are decoupled, [29, 26] prove that safety resilience of 99% would drive liveness
resilience to 0%. But the results of [29, 26] critically rely on the fact that clients
cannot gossip messages they receive, an unrealistic view of real gossip networks.
By utilizing client gossip, our protocol achieves 99% safety resilience and 50%
liveness resilience. In our model of client gossip, although a client waking up
receives messages sent while it was asleep, it cannot discern the round at which
they were sent. This means our model is weaker than a model with always-online
clients. All the above results, and our work, are for a synchronous network. In
a partially synchronous network, client gossip does not help because gossiped
messages may not be delivered in time. However, we discuss in Sec. 5 how our
gadget preserves 33% security under partial synchrony while recovering from a
99% adversary under synchrony. The different network models and the safety
and liveness resilience achievable and impossible in each model are summarized
in a table in App. B. The technique of waiting and confirming on absence of
conflict is also used by validators in some protocols [1, 10] with 50% resilience,
but client gossip is required to push safety to 99%, and even further changes are
needed to allow recovery.

Situations of temporary adversarial majority and healing have been explored
in both proof-of-work [2] and proof-of-stake [3]. In these treatments, safety and
liveness are both temporarily lost and recovered later, which can, regrettably,
cause a loss of funds. Some works [33, 37] use accountability [19, 36, 30, 18, 13]
to automatically detect some (but not all) kinds of adversaries and remove them



6 Srivatsan Sridhar, Dionysis Zindros, and David Tse

from the set of participants. These works, too, concede safety under adversarial
majority. In contrast, we assume that the adversary is removed, automatically or
manually, and propose the first protocol that is always safe and recovers liveness.

2 Model

Time. Time proceeds in discrete rounds indexed r = 0, 1, 2, . . .. All parties have
synchronized local clocks.
Parties. There are two kinds of parties: validators and clients. At round 0, a
set N of validators awaken and remain awake until they are killed by the envi-
ronment, whereas clients may awaken at any round, stay awake for an arbitrary
number of rounds, and then sleep forever2. We denote rwak

k the round in which
client k awakens (for validators, rwak = 0). The number of validators n = |N | is
known to everyone, whereas the number of clients is unknown.
PKI. Each validator has a public and private key. The public keys of all valida-
tors are known by all parties. All messages sent by a validator are signed using
the validator’s private key.
Distributed ledger protocol. Validators and clients run a distributed ledger
protocol Π. The roles of a validator and client are different. At each round, a
validator reads inputs (called transactions) from the environment and collabo-
rates with other validators with the aim of placing these transactions into a total
order. A client does not receive transactions from the environment, but interacts
with the validators and other clients, and at every round, confirms (outputs) a
sequence of transactions called the ledger. At round 0, the protocol is initialized
with the validator set N and a genesis ledger (which may or may not be empty).
All ledgers output by the protocol must extend the genesis ledger.
Network. Validators and clients can send messages to each other. The network
is synchronous, i.e., a message sent by an honest party at round r is delivered to
honest party p latest by round max{r, rwak

p }+∆. Note that this means when a
client wakes up at round rwak

p > 0, then it soon receives all messages that were
sent to the network before it awoke3, but the adversary may also inject some of
its own messages (similar to the model in [32]). However, different validators or
clients may receive a message at different rounds.

The following aspects of the model are new to this work:
Client gossip. In our network model described above, every honest validator
and client re-broadcasts every message it receives to the rest of the network. In
deviation from previous literature, we even allow clients to gossip messages they
receive, and validators to possibly act on such messages. On the one hand, this
is a more accurate depiction of reality in which communication is facilitated by
a non-eclipsed gossip network comprised of both clients and validators. On the
other hand, this seemingly insignificant change in the network model enables us
2 A client that sleeps for a while and awakens again later is treated as if the client

sleeps forever and a new client is awakened in its place.
3 In practice, this can be achieved by having online parties send all important past

messages, including equivocations, to a newly-joining client.
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to circumvent impossibility results [29, 26].
Time-varying adversarial corruption. Since our work deals with recovering
from adversarial majority, we model an adversary whose corruption level varies
over time. We denote by f(r) the fraction of validators that are corrupted by
the adversary at round r. As seen in Fig. 1, there are two important rounds
chosen by the adversary, adaptively: rmaj (the adversarial majority round) and
rrec > rmaj (the recovery round). Before rmaj, the adversary maintains f(r) < 1

2 ,
while during [rmaj, rrec), the adversary may corrupt f(r) ≥ 1

2 . Honest parties do
not know rmaj.

Only at round rrec, the environment is allowed to kill validators to ensure
that f(rrec) < 1

2 , which we describe in the paragraph below. After rrec, the
adversary may corrupt more validators, but it is assumed that f(r) < 1

2 for
r ≥ rrec. A validator or client, once corrupted, remains corrupted forever, so f(r)
is non-decreasing in r, except at round rrec. Similar to the eventual synchrony
model [17] in which a single transition from asynchrony to synchrony (GST) is
a proxy for alternating periods of asynchrony and synchrony, we use rmaj and
rrec as a proxy for alternating period of honest majority, adversarial majority,
and recovery.

Since, in our model, clients can influence the execution (through client gos-
sip), we also allow the adversary to corrupt any number of clients. The adversary
has access to the internal state of all corrupted parties, including private keys.
Healing honest majority. At round rrec, the environment must kill a number
of validators such that less than 1

2 of the remaining validators are corrupted. This
causes the number of validators n to be updated to a new number of validators
n′ ≤ n. In practice, this cleanup may take place by internal slashing [7] by
the protocol (c.f., tombstoning [35]) or by a social consensus process in which
adversarial validators are removed by the community. This is akin to classic
models of external reconfiguration [38].

At round rrec, the environment sends a special message ⟨recover,N ′⟩ to all
parties announcing that recovery must now commence. This message can only be
sent at round rrec and includes the public keys of the set N ′ of the n′ surviving
validators. This allows the honest parties to update their PKI. This special
message is also sent to all clients that wake up after rrec. An external update
of the PKI is, in fact, a software update that can be realized through a “hard
fork” [5]. Thus, we follow previous literature [12], which modeled coordination
of software updates by a special message sent by the environment announcing
the code of the updated protocol and the moment at which the update takes
effect. In practice, agreement on such an announcement can be achieved by a
community vote external to the protocol [40].
Notation. We use A ⪯ B to denote that sequence A is a (not necessarily strict)
prefix of the sequence B. We use A ∼ B as a shorthand for A ⪯ B ∨ B ⪯ A.
The ledger confirmed by party p at round r is denoted L̂LLr

p.
Security. We define the following properties for the protocol:

Definition 1 (Safety). A distributed ledger protocol Π is safe in a set of
rounds I if for all rounds r, s ∈ I and all honest clients p, q awake at rounds r, s
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respectively, L̂LLr
p ∼ L̂LLs

q.

Definition 2 (Liveness). A distributed ledger protocol Π is live with latency
u in a set of rounds I if for all rounds r ∈ I, if a transaction tx was received
by all honest validators before round r − u, then for all honest clients p with
rwak
p < r − u, tx ∈ L̂LLr

p.

In this work, we develop a protocol that safely recovers from adversarial
majority as defined below.

Definition 3. A distributed ledger protocol Π is said to safely recover from
adversarial majority over an execution of length R if for some finite u, urec, Π
is safe in rounds [0, R] and live with latency u in rounds [0, rmaj)∪(rrec+urec, R].

3 Protocol

In this section, we describe the recovery gadget protocol. As a warmup, we start
with the freezing gadget which preserves safety under adversarial majority, but
does not permit recovery after honest majority heals. The full recovery gadget
builds on this idea and uses the same key components as the freezing gadget.

These gadgets are pieces of code that are meant to be run as an add-on to
a distributed ledger protocol Π that provides safety and liveness under honest
majority. We will call Π the internal protocol. The gadget then specifies actions
that clients and validators perform using the output of Π (see Fig. 4). The gad-
get, when combined with Π, also forms a distributed ledger protocol (validators
input transactions and clients confirm a ledger), that we call the freezing protocol
Π̂ (Fig. 4), that provides safety even under adversarial majority. In other words,
our constructions are by computational reduction4. We will denote the internal
protocol’s output ledger as LLL and the freezing protocol’s as L̂LL.

Both the freezing gadget and recovery gadget apply to protocols that satisfy a
property called certifiability [30, 24]. Several PBFT-style protocols such as Hot-
Stuff [39, 25], Streamlet [10], Tendermint [4], Casper [8], and their synchronous
variants such as Sync HotStuff [1] and Sync-Streamlet [10, Sec. 4] have this prop-
erty. In these protocols, clients confirm a ledger on seeing a certain number of
blocks with quorum certificates, which forms a witness. Any other client, on see-
ing this witness, irrespective of other messages that it may have seen, considers
this ledger to be confirmed. Such protocols have a stronger notion of safety: a
minority adversary cannot create witnesses certifying two conflicting ledgers. In
our gadgets, clients use witnesses to let each other know about conflicting ledgers
that could potentially be confirmed so that they freeze instead of confirming. In
what follows, we consider certifiable protocols that are secure under synchrony
and honest majority, e.g., Sync-HotStuff [1] and Sync-Streamlet [10, Sec. 4].5

4 Formally speaking, because protocols are executed by multiple parties within an
execution, these reductions are more complicated. They can be modelled as a sub-
protocol in the form of an Interactive Turing Machine Instance in the UC setting.

5 These protocols can be made certifiable by having validators broadcast a signature
on their committed/finalized ledgers [26, Sec. 4.2].
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Definition 4 (Certifiable protocol). A distributed ledger protocol Π accom-
panied by a computable functionalityW (the witness producer) and a computable
deterministic non-interactive function C (the witness consumer), is called cer-
tifiable. When a client p invokes W() at round r, it produces a witness w such
that C(w) = LLLr

p.

Definition 5 (Certifiable safety). A certifiable protocol Π accompanied by
W and C is certifiably safe in a set of rounds I if Π is safe in I, and moreover,
if at any round r ∈ I, the adversary outputs a witness w such that C(w) = L,
then for all clients q, for all rounds s ∈ I, L ∼ LLLs

q.

In the following, we will consider any certifiable protocol that is certifiably
safe and live under honest majority (Def. 7), in particular safe and live until
rmaj, as the internal protocol.

3.1 Always Safe: The Freezing Gadget

We begin by introducing our freezing gadget. Whereas the construction is simple,
the result of an always safe protocol is remarkable: Different honest parties can
never reach conflicting conclusions.

Algorithm 1 Freezing Gadget (run by clients)
1: on init(N , Lgenesis)
2: P ← new Π(N , Lgenesis) ▷ instantiate a new Π client
3: S ← ∅ ▷ set of valid ledgers seen so far
4: L̂LL ← Lgenesis ▷ confirmed (output) ledger of the combined protocol Π̂
5: on w output by P.W() once per round or w received from network
6: L← C(w)
7: S ← S ∪ {L}
8: gossip(w)
9: wait(∆) ▷ meanwhile, continue processing other events

10: if L ̸⪯ L̂LL ∧ ∀L′ ∈ S : L ∼ L′ ▷ ledger has grown, no conflicting ledgers
11: L̂LL ← L

The freezing gadget is described in Alg. 1 and is illustrated as a block diagram
in Fig. 4. This gadget, when applied to a certifiable distributed ledger protocol
Π (the internal protocol), produces a distributed ledger protocol Π̂ (the freezing
protocol). The freezing gadget is only run by clients. A client for the freezing
protocol Π̂ internally runs a client for the internal protocol Π (Π in Fig. 4,
Alg. 1 l. 2). All parties are connected to the network (as modeled in Sec. 2).

Each client uses the W() functionality of the certifiable protocol to periodi-
cally output a witness w. It may also receive witnesses in the form of messages
sent by honest or adversarial parties in the network. The client extracts a ledger
L from the witness (Alg. 1 l. 6), adds L to its set of seen ledgers S and gossips the
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Fig. 4: The freezing gadget. The internal protocol Π is any certifiable distributed
ledger protocol. On seeing a ledger L (formally, seeing a witness w such that
C(w) = L) output by Π or from the network, the client gossips L (formally, w)
to the rest of the network, and then waits for ∆ rounds. The conflict resolution
component ∼ remembers the set S of all ledgers it ever received at the input
port on its top. On receiving L at the input port on its left, this component
outputs L if there were no conflicting ledgers in S (see Alg. 1 ll. 10 and 11). The
ledger confirmed by the freezing protocol Π̂ is denoted L̂LL.

witness (Alg. 1 l. 8). The client then waits for ∆ rounds, during which it continues
to process other received witnesses in the same manner (Alg. 1 l. 9). At the end
of the wait, the client confirms the ledger L if it has seen no conflicting ledgers
and if L is longer than its previously confirmed ledger. (Alg. 1 ll. 10 and 11).
Notice that when one client sees conflicting ledgers L,L′, after ∆ rounds, all
clients have added both L and L′ to their respective S sets, and will thereafter
not confirm any new ledger, i.e., they freeze. However, crucially, they continue
to gossip messages and witnesses they see after they have frozen.

The freezing protocol provides safety and liveness until round rmaj and re-
tains safety after rmaj. We prove these properties below. The freezing protocol’s
safety comes entirely from the freezing gadget. See Fig. 5 for a visual summary
of the proof. Liveness during honest majority is a consequence of liveness and
safety of the internal protocol. Liveness of the internal protocol ensures that
new transactions are included in its output. Safety of the internal protocol en-
sures that honest clients do not see witnesses for conflicting ledgers, hence they
eventually confirm all ledgers output by Π.

Lemma 1 (Safety). For any set of rounds I, Π̂ is safe in I.

Proof. See Fig. 5 for reference. Towards contradiction, let r be the smallest round
such that for some s ≥ r, and some honest clients p, q, L̂LLr

p ̸∼ L̂LLs
q. For shorthand,

let L = L̂LLr
p. Then, at round r−∆, client p must have seen a witness w such that

C(w) = L. Client p also gossiped w at round r − ∆, which means that before
the end of round r, client q must have seen w. Thus, client q added L to its set
S before the end of round r. However, since client q confirmed L̂LLs

q ̸∼ L at round
s ≥ r, this is a contradiction to the freezing (Alg. 1 l. 10).
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round
r −∆ r

1 p confirms L
2 p sees L,
gossips L

3 all clients see L,
do not confirm L′ ̸∼ L

Fig. 5: Illustration for the freezing protocol’s safety which is maintained during
adversarial majority (Lem. 1). 1 Suppose that at round r, a client p confirms a
ledger L. 2 The client must have seen L (formally, a witness w) either from the
internal protocol Π or from the network latest by round r−∆, at which point it
must have gossipped L (formally, w). 3 Thus, by round r, all clients must have
seen L and thereafter will never confirm a ledger that conflicts with L.

Lemma 2 (Liveness). If Π is certifiably safe and live with latency uΠ in
rounds [0, rmaj), then Π̂ is live with latency uΠ +∆ in rounds [0, rmaj).

Proof. Let u = uΠ + ∆. Let r < rmaj be any arbitrary round. Suppose that a
transaction tx is received by all honest validators before round r−u. Consider an
honest client p that wakes up before r−u, i.e., rwak

p < r−u. Due to liveness of Π,
at round s = r−u+uΠ , tx ∈ LLLs

p (the ledger output by the internal protocol Π).
At round s, client p runs w ← W() and adds L = C(w) to its set S(Alg. 1 ll. 5
and 6). Recall from Def. 4 that L = LLLs

p. Due to certifiable safety, the set S of
client p, at all rounds before rmaj, contains only ledgers that are consistent with
L. Therefore, at round s+∆ = r, L̂LLr

p ⪰ L ∋ tx (due to Alg. 1 ll. 10 and 11).

3.2 Towards Recovery

Given that all clients have frozen, the protocol must recover liveness after rrec.
One way to do this is for the new validator set after rrec to restart the protocol
from a “new genesis”. However, to maintain safety for all clients, it is required
that the new genesis contains a ledger that extends the previously confirmed
ledgers of all clients. In the scenario described in Fig. 2a, although clients froze to
maintain safety, the protocol cannot recover because honest validators are unable
to decide on such a ledger. A timeline of events leading up to this scenario is
shown in Fig. 6. Due to network delay, different clients see messages at different
rounds and in different orders. As a result, while one client, Alice, confirmed a
longer ledger before freezing, another client, Bob, may have confirmed only a
prefix of Alice’s ledger before freezing (as in Fig. 2a).

Knowing that the freezing protocol provides safety against up to 100% ad-
versary, Alice knows that no other honest client would have confirmed any ledger
that conflicts with the one she confirmed. However, Bob (whose ledger lags be-
hind) sees two conflicting ledgers, L and L′, and does not know which of them
may have been confirmed by honest clients. Bob could attempt to find out by
asking all other clients which ledger they confirmed. However, there might even
be adversarial clients who claim that they confirmed L′ (Eve in Fig. 2a), while
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round

1 Alice sees L

2 Bob sees L,L′,
Bob freezes

3 Alice confirms L

4 Alice sees L′,
Alice freezes

∆
∆

Fig. 6: Timeline of a scenario in which the freezing protocol results in two clients
(Alice and Bob) freezing and the last ledger they confirmed are of different
lengths. 1 First, client Alice sees a witness for a ledger L (in short, we say it “sees
L”). 2 Client Bob also sees L within ∆ rounds. In addition, Bob sees another
ledger L′ which is inconsistent with L. As a result, Bob does not confirm L.
3 Meanwhile, Alice confirms L on waiting ∆ rounds after seeing L. 4 Eventually,
Alice also sees L′ (due to client gossip) and Alice freezes. The result is that Alice
froze after confirming L but Bob froze before confirming L, so they have ledgers
that are consistent but of different lengths (as in Fig. 2a).

honest clients like Alice confirmed L. Bob, based on his view, cannot tell which
client, Eve or Alice, is lying. Since there may be an arbitrary number of ad-
versarial clients, Bob cannot use a majority vote to decide which ledger was
confirmed by honest clients. One might consider running a majority vote on the
set of validators, of whom we know that a majority are honest after round rrec.
However, it might be the case that all validators have a view similar Bob’s, i.e.,
they cannot tell which ledger was confirmed by honest clients. Thus, even if val-
idators were to run an interactive protocol to reach a consensus on which ledger
was confirmed by honest clients, they would not be able to do so. Not knowing
which of the two ledgers to extend with new transactions, validators are unable
to recover the protocol.

3.3 The Recovery Gadget

The recovery gadget (Alg. 2) has two parts. Part 1 is a protocol that is run
at all times and is very similar to the freezing gadget, except that both clients
and validators run the recovery gadget in different ways. Part 1 is designed to
provide a property in addition to safety during adversarial majority that allows
honest validators to know which ledgers honest clients could have potentially
confirmed. Part 2 is a protocol that is performed only during recovery (which is
announced by the environment at round rrec), in which validators collaborate to
decide on a new genesis from which to restart the protocol, and clients restart
their protocol based on the validators’ decision.

In Part 1 (Fig. 3), the code that validators run is identical to that of the
freezing gadget, except that validators don’t consider the output ledger as con-
firmed (recall, only clients confirm ledgers). Instead, they consider a ledger as
‘bookmarked’ (denoted L̃LL) when it is output by the freezing gadget (Fig. 3,
Alg. 2 l. 2). The bookmarked ledgers are internal to the recovery gadget and
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Algorithm 2 Recovery Gadget
1: ▷ Code for validators
2: ▷ Part 1: Same as freezing gadget (Alg. 1 ll. 1 to 11), except replace L̂LL by L̃LL
3: ▷ Part 2 (Recovery):
4: on receiving ⟨recover,N ′⟩ from the environment ▷ received at round rrec
5: Srec ← ∅ ▷ set of messages delivered during recovery
6: broadcast(⟨bookmark, L̃LL⟩)
7: wait(uBC) ▷ wait to deliver bookmarks broadcast by validators in N ′, see l. 12
8: Srec ← {L ∈ Srec : |{L′ ∈ Srec : L′ ⪰ L}| > |N ′|/2}
9: Lrec ← argmaxL∈Srec |L| ▷ longest prefix of ledgers bookmarked by a majority

10: gossip(⟨genesis, Lrec⟩) ▷ declare the new genesis for clients joining after rrec
11: init(N ′, Lrec) ▷ restart with new validator set and new genesis
12: on deliver(⟨bookmark, L⟩) broadcast by V ∈ N ′ ▷ At most one value per V
13: Srec ← Srec ∪ {L}

14: ▷ Code for clients
15: ▷ Part 1: Same as freezing gadget (Alg. 1 ll. 1 to 11), except replace ∆ by 3∆
16: ▷ Part 2 (Recovery):
17: on receiving ⟨recover,N ′⟩ from the environment ▷ received at max{rrec, rwak}
18: recovering← true
19: lock(L̂LL) ▷ forbid future updates to L̂LL
20: Sgen = { }
21: on receiving ⟨genesis, L⟩ from V ∈ N ′ and recovering = true
22: Sgen[L] = Sgen[L] + 1
23: if |Sgen[L]| > |N ′|/2
24: recovering← false
25: Lrec ← L
26: unlock(L̂LL) ▷ permit updates to L̂LL
27: init(N ′, Lrec) ▷ restart with new validator set and new genesis

their role is to assist validators during recovery. The bookmarked ledgers of dif-
ferent validators are consistent before rrec (due to the freezing gadget’s safety).
But the bookmarked ledgers after recovery may not remain consistent with those
before recovery. However, this doesn’t matter since bookmarked ledgers are not
confirmed by any party.

The clients’ code during Part 1 is also identical to the freezing gadget, except
that the client waits 3∆ before confirming a ledger (Alg. 2 l. 15), longer than
the ∆ that validators wait before bookmarking. This is done in order to provide
a property called follow-the-leader. Intuitively, by waiting longer to confirm, a
client ensures that when it confirms a ledger, all honest validators have already
bookmarked it. Thus, at the time of recovery, every honest validator knows that
it is safe to restart the protocol from the bookmarked ledger in its view because it
is an extension of all clients’ confirmed ledgers. Thus, the longest common prefix
of all honest validators’ bookmarks is a safe new genesis (see Fig. 2b). Recall that
L̂LL denotes a client’s confirmed ledger, and L̃LL a validator’s bookmarked ledger.

Definition 6 (Follow-the-leader). A distributed ledger protocol Π has the
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follow-the-leader property if for all rounds r, clients p, and validators v, L̂LLr
p ⪯ L̃LLr

v.

A validator begins running Part 2 of the recovery gadget when it receives
a “recover” message from the environment at round rrec, specifying the new
validator set N ′. At this point, each validator broadcasts their own bookmarked
ledger (Alg. 2 l. 6). Upon receiving these bookmarks, each validator decides the
new genesis Lrec as the longest prefix of ledgers bookmarked by a majority of the
new validator set (ll. 8 and 9). Due to honest majority among the new validator
set, Lrec must extend the longest prefix of all honest validators’ bookmarks.
Finally, the validator gossips a “genesis” message, which is a vote on the new
genesis. Clients, on receiving the “recover” message from the environment, at
round rrec, or upon waking after rrec, freeze their ledgers if they haven’t done so
already (l. 19). Clients then wait for “genesis” messages and set their new genesis
to be one that is included in the “genesis” messages from a majority of N ′. Both
clients and validators restart the protocol with the new genesis and validator set
(ll. 11 and 27).

During this part, we need to ensure that all honest validators compute the
same genesis and that they restart the protocol at the same time. This can be
easily achieved by using any solution to the Byzantine generals problem [23] that
ensures the following properties under honest majority:

1. If an honest validator broadcasts a bookmark (l. 6), all validators deliver
(l. 12) it at the end of uBC rounds.

2. At the end of uBC rounds, all honest validators have delivered the same
set of bookmarks.

3. Each honest validator delivers at most one bookmark per validator.

Solutions to achieve these properties under synchrony are given in [16, 23]. These
properties allow all validators to restart their protocol at the same round and
with the same genesis.

4 Analysis

We prove that if Π is certifiably safe and live (Defs. 2 and 5) under honest
majority, the protocol Π̂ resulting from running the recovery gadget (Alg. 2) on
Π̂ safely recovers from adversarial majority (Def. 3), i.e., it is always safe, live
before rmaj, and live soon after rrec.

Toward proving safety, we first show that the bookmarked ledgers of all
validators at all rounds before rrec are consistent with each other.

Lemma 3. For all rounds r1, r2 < rrec, honest validators v1, v2, L̃LLr1
v1 ∼ L̃LLr2

v2 .

Proof. Follows from Lem. 1 because the validators’ code for bookmarking
ledgers is the same as the code for confirming ledgers in the freezing gadget (see
Alg. 2 l. 2).

Second, we prove that the follow-the-leader property (Def. 6) holds until rrec.
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Lemma 4. For all r < rrec, honest validators v and honest clients p, L̂LLr
p ⪯ L̃LLr

v.

Proof. Consider an honest client p at let L = LLLr
p. Then, p saw a witness w such

that C(w) = L by round r − 3∆. Client p then gossiped w so all validators saw
w by round r − 2∆. Moreover, since p confirmed L, we know that p did not see
w′ such that C(w′) = L′ and L′ ̸∼ L until round r. This means that no validator
saw w′ until round r−∆, because otherwise, the validator would have broadcast
w′ and client p would have seen w′ before round r. Therefore, all validators
bookmark L or a ledger extending it by round r.

As a corollary of Lems. 3 and 4, safety holds for all clients until round rrec.
Due to the follow-the-leader property, we prove that the new genesis computed
by honest validators extends the ledgers confirmed by all honest clients before
rrec.

Lemma 5. For all clients p and all round r < rrec, L̂LLr
p ⪯ Lrec.

Proof. The properties of broadcast and deliver as described in Sec. 3.3 hold.
Since all honest validators deliver the same set of bookmarks, each validator
computes the same Lrec. Let Lcp =

⋂
v∈honest L̃LL

rrec−1
v be the common prefix

of all bookmark ledgers broadcast by honest validators. Since each honest
validators v broadcasts some L̃LLrrec−1

v ⪰ Lcp, due to honest majority among
N ′, fewer than |N ′|/2 delivered bookmarks contain any L̃LL ̸∼ Lcp. Hence,
Lrec ∼ Lcp (see Alg. 2 l. 8). Moreover, Lrec ⪰ Lcp because Lrec is the longest
ledger whose extensions are bookmarked by > |N ′|/2 validators (Alg. 2 l. 9).
Due to Lem. 4, for every client p, L̂LLrrec−1

p ⪯ Lcp. Since confirmed ledgers never
shrink, for every round r < rrec, L̂LLr

p ⪯ L̂LLrrec−1
p . This concludes the proof.

This concludes the proof that safety holds at all times (Thm. 1) since all
ledgers confirmed after rrec will extend all ledgers confirmed before rrec.

Theorem 1. For any set of rounds I, the recoverable protocol Π̂ is safe in I.

Proof. Due to Lems. 3 and 4, for all r, s < rrec and clients p, q, L̂LLr
p ∼ L̂LLs

q.
Suppose clients p and q restart their protocol (Alg. 2 l. 27) at rounds rp, rq ≥ rrec
respectively. Since clients freeze their ledgers at rrec (Alg. 2 l. 19), for all r < rp,
L̂LLr

p ⪯ L̂LLrrec−1
p . Thus, for all r < rp, s < rq, L̂LLr

p ∼ L̂LLs
q. Due to honest majority in

N ′ and since all honest validators in N ′ decide the same Lrec, clients p and q
also decide the same Lrec in Alg. 2 l. 25. Then, L̂LLr

p ∼ L̂LLs
q for r ≥ rp, s ≥ rq as

well. Finally, for r < rp, s ≥ rq, due to Lem. 5, L̂LLr
p ⪯ Lrec ⪯ L̂LLs

q, thus L̂LLr
p ∼ L̂LLs

q.

Liveness before rmaj and after rrec follows from the safety and liveness of Π
during honest majority and the safety of the recovery process (proof in App. A).

5 Discussion

Proof-of-Stake. We described our gadgets in a permissioned setting for sim-
plicity, but they can be extended to a proof-of-stake setting, where N is not a set
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of validators but a stake distribution. Due to our closed-box treatment of the in-
ternal protocol Π, the gadget’s working is unaffected by internal updates to the
stake distribution by Π (Alg. 2 does not use N except during recovery). During
the moment of recovery, analogous to the permissioned setting, the environment
announces a new stake distribution N ′. In addition to proof-of-stake implemen-
tations of Hotstuff, Casper, and Tendermint, proof-of-stake longest chain proto-
cols [22, 15, 14] can also be made certifiable by defining a new confirmation rule
for clients [24]. Thus, our gadget applies to all these protocols.
Partial Synchrony. Consider partially-synchronous PBFT-style protocols
(e.g., Casper [8], Tendermint [4], HotStuff [39]). As long as the adversary cor-
rupts less than one-third of the validators, these protocols are live during periods
of synchrony and safe even during asynchrony. It is easy to see that applying
our recovery gadget to such a protocol does not harm the above guarantees.
When the adversary corrupts more than one-third validators, if the network
is synchronous, our gadget maintains safety and allows for safe recovery of
liveness after the adversary falls below 1/3. However, because our gadget criti-
cally uses synchrony, it does not maintain safety in cases where the network is
asynchronous and the adversary exceeds 1/3 at the same time.
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A Proof Details

Since the recoverable protocol involves initializing a new internal protocol after
recovery, we define what it means for the internal protocol to be certifiably
safe and live during honest majority. This is the property satisfied by existing
certifiable protocols such as Sync-Hotstuff [1] and Sync-Streamlet [10].

Definition 7. A certifiable protocol Π is certifiably safe and live with latency
u under honest majority if when Π is initialized at round r with validator set
N , Π is certifiably safe and live with latency u in [r, r∗) where r∗ ≥ r is the first
round in which at least |N |/2 validators in N are corrupted.

Theorem 2. If Π is certifiably safe and live with latency uΠ under honest ma-
jority, then with u = uΠ + 3∆ and urec = uΠ + uBC + 4∆, for any R, the
recoverable protocol Π̂ is live with latency u in [0, rmaj) ∪ (rrec + urec, R].

Proof. Consider a round r such that r < rmaj or r > rrec+urec. Suppose that all
honest validators receive a transaction tx at round r′ ≤ r − u. Consider a client
p that awakens at round rwak

p ≤ r − u.

– Case 1: r < rmaj. The recoverable client protocol is identical to the freezing
protocol before round rrec, except with a 3∆ wait instead of ∆ (Alg. 2 l. 15).
Thus, using Lem. 2, Π̂ is live with latency uΠ + 3∆ in [0, rmaj).

https://docs.cosmos.network/v0.45/modules/slashing/07\_tombstone.html
https://docs.cosmos.network/v0.45/modules/slashing/07\_tombstone.html
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– Case 2: r > rrec+urec, r′ < rmaj−u. Due to Case 1 and Lem. 5, tx ∈ Lrec. By
round rrec + uBC, all honest validators send a “genesis” message (Alg. 2 l. 10)
and by round max{rrec + uBC, r

wak
p } + ∆ < r, client p receives all honest

“genesis” messages and thus knows Lrec (Alg. 2 l. 25). Subsequently, client p
restarts its protocol and thus, L̂LLr

p ⪰ Lrec ∋ tx.
– Case 3: r > rrec + urec, r′ ≥ rrec + uBC. Note that the instance of Π started

at rrec + uBC is live after rrec + uBC because of honest majority. By round
max{rrec + uBC, r

wak
p } +∆, all clients have restarted the protocol, and thus

following the argument from Case 1, for r > rrec + (uBC + ∆) + uΠ + 3∆,
tx ∈ L̂LLr

p.
– Case 4: r > rrec+urec, r′ ∈ [rmaj−u, rrec+uBC). A transaction sent at such a

round r′ may not be confirmed by any client or bookmarked by any validator
because Π may not be live during this period. To ensure such transactions
are eventually confirmed, validators must carry over pending transactions
that were input before rrec + uBC and consider them as inputs provided to
the new instance of Π at rrec + uBC. Then, following Case 3, tx ∈ L̂LLr

p.

B Comparison with Related Work

See Tab. 1.

Table 1: Safety and liveness resiliences achievable and impossible in commonly
studied models. The safety resilience tS denotes the maximum adversary frac-
tion up to which the protocol is safe. Similarly, the liveness resilience tL is the
maximum adversary fraction up to which the protocol is live. For each model,
we state the pareto-optimal set of resiliences and refer to protocols achieving
these resiliences as well as works proving that higher resiliences are impossible.
From top to bottom, the assumptions in the model weaken and the safety and
liveness resiliences decrease. We also refer to protocols that recover liveness after
a temporary period when the adversary exceeded tL. Note that for rows in which
tS < 1, safety may be lost during recovery.
Model Safety and live-

ness resilience
Protocols Impossibility Recovery

Always-
online clients

tL = tS = 1 [16, 21, 11, 6] No need Trivial

Synchrony
with client
gossip

tS = 1, tL = 1
2

This work
(Sec. 3.1)

Future work This work
(Sec. 3.3)

Classic syn-
chrony (no
client gossip)

tL + tS ≤ 1 (e.g.,
tS = tL = 1

2
)

[27, 22, 15,
14, 1, 10]

[29, 26] [2, 3]

Partial syn-
chrony

2tL + tS ≤ 1 (e.g.,
tS = tL = 1

3
)

[9, 39, 10, 4,
8, 28]

[17, 29, 28] [33]
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