
StaTI: Protecting against Fault Attacks Using
Stable Threshold Implementations

Siemen Dhooghe[0000−0003−0591−7355], Artemii
Ovchinnikov[0000−0002−9035−523X], and Dilara Toprakhisar[0000−0003−4551−6775]

COSIC, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. Fault attacks impose a serious threat against the practical
implementations of cryptographic algorithms. Statistical Ineffective Fault
Attacks (SIFA), exploiting the dependency between the secret data and
the fault propagation overcame many of the known countermeasures.
Later, several countermeasures have been proposed to tackle this attack
using error detection methods. However, the efficiency of the counter-
measures, in part governed by the number of error checks, still remains
a challenge.
In this work, we propose a fault countermeasure, StaTI, based on thresh-
old implementations and linear encoding techniques. The proposed coun-
termeasure protects the implementations of cryptographic algorithms
against both side-channel and fault adversaries in a non-combined at-
tack setting. We present a new composable notion, stability, to protect
a threshold implementation against a formal gate/register-faulting ad-
versary. Stability ensures fault propagation, making a single error check
of the output suffice. To illustrate the stability notion, first, we provide
stable encodings of the XOR and AND gates. Then, we present tech-
niques to encode threshold implementations of S-boxes, and provide sta-
ble encodings of some quadratic S-boxes together with their security and
performance evaluation. Additionally, we propose general encoding tech-
niques to transform a threshold implementation of any function (e.g.,
non-injective functions) to a stable one. We then provide an encoding
technique to use in symmetric primitives which encodes state elements
together significantly reducing the encoded state size. Finally, we used
StaTI to implement a secure Keccak on FPGA and report on its effi-
ciency.

1 Introduction

Cryptographic algorithms that are designed to resist cryptanalytic attacks are
still prone to physical attacks. These attacks target the implementations of
the algorithms when deployed in an embedded device. Such attacks can be
grouped into two categories: (1) passive observation of the device’s behavior
(e.g., power consumption [KJJ99], timing [Koc96], and electromagnetic emana-
tion [GMO01]), and (2) inducing errors in the computation through a physical
means (e.g. clock/voltage glitching [AK97], electromagnetic waves [DDRT12],

and laser injections [Hab65]) and observing the device’s response to the induced
errors.

Side-Channel Analysis (SCA) is a passive attack technique that exploits in-
formation leakage from physical effects, such as timing and power consumption.
Over the years, numerous attacks have been proposed, and countermeasures
protecting against these attacks have been developed. Among the most promi-
nent countermeasures employed to protect against SCA is masking [CJRR99,
ISW03,RBN+15,GMK16]. The idea of masking is to split the secret input into a
number of shares such that each share is statistically independent of the secret.
Consequently, observing all but one shares does not compromise the privacy of
the secret input. Threshold Implementations (TI) by Nikova et al. [NRR06] is
such a technique that is based on secret sharing and threshold cryptography. The
computation is performed by coordinate functions that operate on non-complete
sets of shares of the secret input. TI is designed for hardware implementations,
making it effective even when the circuit is affected by glitches.

In contrast to the passive nature of SCA, fault attacks actively disrupt the
computation. Since the seminal work of Boneh et al. [BDL97] introducing fault
attacks on RSA, numerous attack techniques targeting the physical properties of
the implementations of cryptographic primitives have been developed. To mit-
igate these attacks, various countermeasures have been designed, with redun-
dancy emerging as an extensively employed technique. Redundancy (in time,
area, or information) is utilized to detect whether a fault is injected into a
circuit. Upon fault detection, these countermeasures either suppress or infect
the output, such that it is no longer exploitable by the adversary. Addition-
ally, redundancy can also be leveraged for error correction purposes, such as
majority voting. Another promising approach that has gained significant adop-
tion is the combination of redundancy and masking. These countermeasures,
combining masking and redundancy, were typically considered as secure against
SCA and fault attacks. However, a novel attack, Statistical Ineffective Fault
Attacks (SIFA) [DEK+18] that is performed on non-faulty (i.e., correct) cipher-
texts has been proposed. The attack exploits the dependency between the fault
propagation to the output and the secret values, thereby circumventing simple
redundancy. Building upon this, Dobraunig et al. [DEG+18] used SIFA to over-
come most of the redundancy combined with masking based countermeasures
proposed prior to the introduction of SIFA. Examples of such combined coun-
termeasures include, among others, ParTI [SMG16], CAPA [RMB+18], Private
Circuits II [IPSW06], M&M [MAN+19], Impeccable Circuits [AMR+20,SRM20,
RSM21], and Transform-and-Encode (TaE) [SJR+19], which were designed both
before and after the introduction of SIFA. Taking a different approach, Daemen
et al. [DDE+20] proposed the use of reversible operations to ensure the prop-
agation of the fault to the output, and error detection methods to detect the
faults at the output. However, as noted in [DDE+20], the implementation of such
countermeasures becomes inefficient as the complexity of the protected functions
increase.

2

Contributions. In this paper, we propose a fault attack countermeasure, StaTI,
that extends threshold implementations using linear encoding. In StaTI, extend-
ing the notions of threshold implementations, we propose a new composable no-
tion, stability, that ensures the propagation of the injected faults to the output.
As a result, the injected faults can be detected using a single error detection cir-
cuit at the end. StaTI can be applied to any threshold implementation following
the respective technique proposed in this paper.

We formally define the gate/register-faulting adversary and the respective
security model. Based on these models, we present encodings for the basic build-
ing blocks XOR and AND gates which propagate any injected fault to the out-
put. Consecutively, we propose general methodologies to encode the threshold
implementation of any function that does not propagate the faults, such that
they become secure under the adversary and security models we define. These
methodologies ensure the fault propagation to the output in two different ways:

– Explicitly detecting faults at the input of each encoded function.
– Mapping the faulty inputs of an encoded function to the faulty outputs.

These methodologies provide generic protection against the proposed adversary,
meaning we can defend a function against effective and ineffective faults at the
same time, and the methodology can be applied to any function.

On the basis of the stability notion, we present efficient encoding techniques
for (t+1) share and two share threshold implementations for any degree t func-
tion. Consecutively, to assess the security and the efficiency of our methodology,
we present the stable encodings for the quadratic class Q4

12 and the Keccak S-
box using duplication and the parity code. The duplication of the Keccak S-box
is then used for an FPGA implementation of Keccak-f [1600]. To assess their
security, we make use of VerMFI [ANR18, AWMN20]. Our assessment shows
that StaTI achieves first-order gate/register-faulting security in addition to the
probing security of threshold implementations. Moreover, it brings no additional
latency, and roughly a factor of two overhead in area cost compared to reg-
ular threshold implementations. Lastly, following the encoding techniques for
S-boxes, we provide state-wide encodings to be employed in a symmetric prim-
itive. This technique groups state elements and encode them together reducing
the encoded state size compared to encoding state elements separately.

Outline. In Section 2, we discuss the adversary and security models that StaTI
assumes, and the masking and linear code concepts that StaTI makes use of.
Additionally, we introduce statistical ineffective faults and go over some coun-
termeasures against it. In Section 3, we describe a new property, stability, that
allows efficient encodings while protecting against statistical ineffective faults.
Then, we present stable encodings of the XOR and AND gates in Section 4 based
on the security assumptions made in Section 2. Next, we present general method-
ologies to implement stability for unstable functions in Section 5. We provide a
methodology to obtain stable encodings of t + 1-shared threshold implementa-
tions of degree t functions in Section 6, and examples of two-shared threshold
permutations in Section 7. Then, in Section 8 we provide state-wide encodings

3

that would be employed in a symmetric primitive. Finally, in Section 9 we eval-
uate the security and the performance of the t + 1 and two share encodings of
4-bit quadratic functions and the 5-bit Keccak S-box presented in the appendix.
Moreover, we present a security and performance evaluation of Keccak−f [1600]
protected with StaTI.

2 Preliminaries

In this section, we introduce the probing and the gate/register-faulting adver-
saries together with their respective security models assumed in this work. We
then introduce Boolean masking and linear codes as a countermeasure against
the two adversaries, respectively. Finally, we introduce threshold implementa-
tions protecting the computation against side-channel attacks by masking, and
the fault attack countermeasure proposed by Daemen et al. [DDE+20] protecting
the computation on masked and encoded data using permutations.

2.1 Adversary and Security Models

We consider an adversary with probing and faulting capabilities. The attack
surface is considered as a Boolean circuit that is a directed acyclic graph whose
vertices are Boolean gates, and whose edges are wires. The Boolean circuit takes
an input, has an internal state, and produces an output where the state corre-
sponds to the sharing of the secret data stored in the registers.

Wire Probing. To capture an attacker performing side-channel analysis, we con-
sider the d-probing model as introduced by Ishai et al. [ISW03]. This adversary
can observe at most d wires of the Boolean circuit and these wires are spec-
ified before the circuit is computed. Specifically in this work, we consider the
first-order probing security.

In order to capture the physical effect of glitches on a hardware platform,
we extend the probing model to the glitch-extended robust probing model from
Faust et al. [FGP+18]. In this extended model, a glitch-extended probe allows
obtaining all the registered inputs leading to the gate/wire which is probed.

Considering the security against the probing adversary, we follow a simulation
model as first proposed by Ishai et al. [ISW03]. In order to prove security, a
simulator is created which needs to simulate the probed wire values of the circuit
without having the secret input of the circuit (e.g. the key and the plaintext of
a block cipher). Such a simulation can be successful in case the circuit uses
randomness as a countermeasure. This randomness is not given to the adversary
and, as a result, the simulator can use it to fool the adversary. In practice,
a proof of simulation security comes down to showing the distribution of the
probed wires is independent of the input of the circuit.

4

Gate/Register Faulting. To capture an attacker performing a fault attack, we
consider a k-gate/register-faulting adversary which can replace the outputs of a
total of k gates or registers in the circuit. When considering Boolean circuits, this
means that the adversary can replace a total of k gates or registers to either:
output zero (reset faults); output one (set faults); or flip the output (bitflip
faults). While there is currently no standard adversary model in the literature,
the gate/register-faulting adversary is used in many different works [AMR+20,
SRM20,RSM21]. These works assume an adversary that can fault a number of
wires in a clock cycle. As each wire is an output of a gate or register, the faults
are modeled as modifications on gates or registers. Nevertheless, in this work we
consider the first-order gate/register-faulting security. That is, we consider an
adversary which is capable of replacing one gate or register in the circuit during
the whole computation.

Considering the security models tied to the gate/register-faulting model, we
require that the circuit is correct and private. A circuit is correct against a k-
gate/register-faulting adversary when, over all possible faults, the circuit always
gives back a correct output or an abort signal. A circuit is called private when,
for every fixed injected fault, the probability of the abort signal does not depend
on the secret inputs of the circuit. In fact, similar to the probing model, we
consider a simulation game where the simulator is given the faults and needs to
simulate the abort signal.

2.2 Masking and Encoding

In order to thwart probing and faulting adversaries, we make use of masking
and encoding techniques. Boolean masking is a technique based on splitting
each secret variable x ∈ F2 in the circuit into sx shares x̄ = (x0, x1, . . . , xsx−1)

such that x =
∑sx−1

i=0 xi over F2. A random Boolean masking of a fixed secret
is uniform if all sharings of that secret are equally likely. Before moving on to
encoding a circuit to protect against faults, we describe some linear code notions
that we use in this work.

Definition 1 (Binary linear code). A binary linear [n, k, d]-code C is a vector
subspace over Fn

2 , where n denotes the length, k denotes the rank, and d denotes
the minimum distance of the code which is the minimum Hamming distance
between two distinct codewords of C.

An [n, k, d]-code C maps messages x ∈ Fk
2 to codewords c ∈ C ⊂ Fn

2 and its
error detection capability (i.e., the number of faults which can be detected) is
determined by d.

Definition 2 (Generator matrix and encoding). A matrix G ∈ Fkxn
2 is

said to be a generator matrix for the binary linear [n, k, d]-code C if it consists
of k basis vectors of C with length n. Then, C has an encoding map C : Fk

2 7→ Fn
2

which is a linear transformation of the form x 7→ xG.

More specifically, in this work, we consider systematic codes.

5

Definition 3 (Systematic code). A linear code C is a systematic code if its
generator matrix G is of the form [Ik|P] where Ik is the k × k identity matrix,
and P is some k × (n− k) matrix.

A systematic [n, k, d]-code, denoted by C, is used to encode x ∈ Fk
2 to ⟨x, x′⟩ ∈

Fn
2 where x is the message, and x′ is the check bits such that x′ = xP . Then,

we call ⟨x, x′⟩ a codeword of C. In order to transform ⟨x, x′⟩ to another correct
codeword, at least d bits need to be flipped. Consider an element y ∈ Fn

2 , in case
y ̸∈ C, we call y “faulty”. We make use of the parity check matrix to detect if a
received codeword is faulty or not.

Definition 4 (Parity check matrix). A matrix H ∈ F(n−k)×n
2 is said to be a

parity check matrix of the [n, k, d]-code C such that HcT = 0 if and only if c ∈ C.

When encoding and masking are combined to thwart probing and faulting
adversaries, the order of encoding and masking is important. That is, first en-
coding the state of the cipher and then sharing it, versus first sharing the state of
the cipher and then encoding it are interpreted differently. In this work, we first
share the state of the cipher (denoted by x̄) and then encode the shares (where
the parity bits are denoted by x̄′). For example, a bit x ∈ F2 is first shared into
x0, x1 ∈ F2 such that x0 + x1 = x, and then encoded to ⟨x0, x1, x0, x1⟩ meaning
that each share is duplicated. In the rest of the work, x̃ denotes the shared and
encoded variables, and F̃ denotes the shared and encoded functions.

2.3 Threshold Implementations

In this paper, we use the notions of threshold implementations as introduced
by Nikova et al. [NRR06]. As such, we introduce the notions of correctness,
non-completeness and uniformity.

Correctness ensures that the sum of the output shares yields the desired
output. A shared function is non-complete if each of its coordinate functions
fi operate on data independent from the input secret. This notion has been
extended by Bilgin et al. [BGN+14] to capture each set of d coordinate functions
being jointly non-complete.

Definition 5 (dth-order non-complete [NRR06, BGN+14]). A shared
function is dth-order non-complete if any d coordinate functions fi jointly work
on data independent from the input secret.

The above notion was created as a necessary property to secure maskings
against higher-order univariate attacks including the effect of glitches. The notion
still holds for when the input is linear encoded and masked.

We call, for a fixed secret x, a shared variable X̄ that is assigned to a sharing
x̄ depending on the randomness, is uniform if it is uniformly distributed over
the set of all sharings of x denoted Sh(x).

Definition 6 (Uniform sharing). A shared variable X̄ is uniform when

Pr[X̄ = x̄ | x̄ ∈ Sh(x)] = 1/|Sh(x)| .

6

A shared function is called uniform if, when given a uniform input sharing,
it outputs a sharing which is uniform.

Definition 7 (Uniformity [NRR06]). A shared function F̄ (x̄) = ȳ is uni-
form if ∀x ∈ F, ∀ȳ ∈ Sh(F (x)) :∣∣ {x̄ ∈ Sh(x)

∣∣ F̄ (x̄) = ȳ
} ∣∣ = |Sh(x)|

|Sh(F (x))|
.

Note that in order to verify whether an encoded function is uniform, we
perform the verification only over the correct codewords. In other words, for
encoded and shared variables, Sh(x) is the set of all correct codewords of share
vectors of x.

2.4 Statistical Ineffective Faults and Countermeasures

In this section we summarize Statistical Ineffective Fault Attacks (SIFA) by
Dobraunig et al. [DEK+18, DEG+18] and introduce the strategy proposed by
Daemen et al. [DDE+20] to protect circuits against it on which we base our
countermeasure.

SIFA. SIFA [DEK+18] exploits the dependency between the propagation of an
injected fault and the secret value. Following the initial attack, Dobraunig et al.
exploited SIFA on implementations protected using masking together with sim-
ple error detection [DEG+18], and showed that the combined countermeasures
based on simple redundancy and masking are not sufficient to protect against
SIFA. We distinguish these two attacks as done by Saha et al. [SJR+19]: SIFA-
1 and SIFA-2. SIFA-1 assumes an attacker injecting a statistically biased fault
(i.e., set or reset) to the state variable or linear operations. Whereas, SIFA-2
assumes an attacker injecting an unbiased fault (i.e., bit flip) in the nonlinear
operations like an S-box. With respect to the gate/register fault model, we can
model SIFA-1 and SIFA-2 adversaries as faulting a register that stores the ci-
pher state, or a (gate/register in a) linear operation using set or reset faults, and
faulting a (gate/register in a) nonlinear operation using a bit flip, respectively.
Dobraunig et al. apply SIFA-2 to a TI of AND gate with four shares to show
the impact of SIFA-2 on TI:

q0 = (x2 + x3)(y1 + y2) + y1 + y2 + y3 + x1 + x2 + x3

q1 = (x0 + x2)(y0 + y3) + y0 + y2 + y3 + x0 + x2 + x3

q2 = (x1 + x3)(y0 + y3) + y1 + x1

q3 = (x0 + x1)(y1 + y2) + y0 + x0

A bitflip to the input x0 will be ineffective if only if the shares y0, y1, y2,
and y3 are zero which indicates that the secret input y is zero. That is, the
fault causes a fault-free ciphertext depending on a secret value. Therefore, the
dependence of the fault propagation to a secret value harms the privacy of the
circuit.

7

Combined Countermeasures. Masking and redundancy (linear codes) have been
the main building blocks in countermeasures defeating both fault attacks and
side channel analysis both prior to and after the introduction of SIFA-1 and
SIFA-2. Impeccable Circuits I [AMR+20] and ParTI [SMG16] employ masking
and error detection. Impeccable Circuits II [SRM20] and III [RSM21], DOM-
REP [GPK+21], the countermeasure from Breier et al. [BKHL20], and Com-
bined Private Circuits [FGM+23] employ masking and error correction codes to
output correct ciphertexts despite the fault injection. Impeccable Circuits III
combines error detection and correction to relax the high cost of error correc-
tion codes. TaE [SJR+19] introduces a different approach which consists of two
phases: domain transformation that randomizes the state in each cipher execu-
tion, and using a repetition code to correct errors. Masking and majority voting
are the techniques used in the countermeasure for both phases, respectively.
CAPA [RMB+18] employs a multiparty computation protocol using MAC tags
that performs intermediate checks to ensure the circuit is not disturbed by a
fault injection. Despite its effectiveness against SIFA, CAPA has a high imple-
mentation cost in practice. On the other hand, M&M [MAN+19] being inspired
by CAPA in terms of employing MAC tags, does not protect against ineffective
faults despite the efficiency gain compared to CAPA. We mention other counter-
measures that protect against both fault attacks and side channel analysis such as
RS-mask [RAD20] which randomizes the computation, Bringer et al. [BCC+14]
utilizes orthogonal direct sum masking, Patranabis et al. [PRC+19] uses fault
space transformation, Bhasin et al. [BDF+09] uses dual rail with precharge logic
styles, and Breier et al. [BH17] uses error correction codes. In the work by Dae-
men et al. [DDE+20] a different approach is followed which makes use of Toffoli
gates as basic primitives to implement nonlinear functions. We base our work
on [DDE+20] and explain it further.

Protecting against Statistical Ineffective Faults [DDE+20]. The countermeasure
by Daemen et al. protects against circuit faults which modify the circuit such that
it returns a faulty output for at least one input using Toffoli gates and masking.
The authors propose two countermeasures to achieve protection against SIFA:

– A circuit is recursively split into interconnected subcircuits which consist of
simple operations such as addition and multiplication. Then, each subcircuit
is required to be a permutation such that the injected fault to a subcircuit
needs to propagate to the output of that subcircuit. As a result, due to the
interconnected nature of subcircuits, a single error check at the end of the
composite circuit is enough to detect the fault. In addition, each subcircuit
is required to be non-complete such that the injected fault causing a wrong
output does not depend on any secret value.

– A fault detection circuit for arbitrary circuits is added. Namely, the inputs
of nonlinear nodes are error checked.

The first method bears resemblance to the properties of threshold implemen-
tations as a Boolean function property, namely the requirement for the encoding
to be a permutation.

8

In order to secure a circuit using their methodology, the circuit is separated in
linear functions and Toffoli gates (the gate mapping (a, b, c) ∈ F3

2 to (a, b, c+ab) ∈
F3
2). Each linear function and Toffoli gate is then masked and encoded using a

duplication code.

3 Stability

In this section, we tweak the notions of security from [DDE+20] to allow more
efficient encodings and thereby, introduce the stability notion that ensures the
propagation of the injected faults to the output.

As a first step, we consider a different adversary model compared to the
model by Daemen et al. In their original model, a fault is modeled at the circuit
level as a deviation of the circuit instance from the fact that its output is fully
determined by only its input. A circuit being described as a composition of
basic circuits (i.e., circuits consisting of simple operations such as addition and
multiplication), an adversary can target the entire basic circuit. Then, the fault
modifies the circuit such that it returns a faulty output for at least one input. On
the other hand, in this work as discussed in Section 2.1, we consider faults which
are injected to the output of a gate or a register. We emphasize that the model
we use has been used in many other works such as [AMR+20,SRM20,RSM21].

Since we are discussing threshold implementations, we consider their cir-
cuit representation such that each shared function (register to register) is non-
complete and the functions are jointly uniform. Each input share is given to
several non-complete coordinate functions as depicted in Figure 1.

However, we require an additional property from the circuit representation of
a threshold implementation when considering fault attacks. Namely, we require
that no gate is shared between two coordinate functions, i.e., the coordinate
functions are a partition of the gates used in that stage of the computation. We
call this property fault non-completeness.

Definition 8 (Fault non-completeness). A circuit is fault non-complete if,
per register stage, each gate of the circuit drives only a non-complete set of output
shares.

Fault non-completeness ensures that a fault in a gate only targets one output
share. Thus, the propagation of a fault to the output does not depend on a secret
value. However, as shown in 2.4, this structure alone is not sufficient to secure
the composition of encoded functions.

For a second step, we look at the secure composition of encoded functions.
Recall from the work by Daemen et al. that a circuit can be secured against
SIFA by adding error checks to the circuit or having each subcircuit being a
permutation. We adopt these two methods for Boolean functions similar to the
properties of threshold implementations. We propose a new property, stability,
that provides security against a gate/register-faulting adversary when combined
with correctness, non-completeness, fault non-completeness, and uniformity, (see
Theorem 1) and generalizes the two methods by Daemen et al. into a single
notion.

9

x0

x1

x2

y0

y1

y2

f0

f1

f2

Fig. 1. Example circuit model in hardware for a three shared non-complete function.
Each combinational gate is part of exactly one coordinate function fi.

Definition 9 (Stability). Consider a shared and encoded register-to-register
function F̃ : Fn

2 → Fn
2 and a code C ⊂ Fn

2 . We call F̃ stable if for any x̃ ∈ C and
e ̸∈ C, F̃ (x̃+ e) ̸∈ C.

Stability states that any incorrect input codeword is mapped to an incorrect
output codeword. In particular, a correct and injective shared function (e.g.,
permutations) is stable as it does not map any incorrect codeword to the correct
ones. It is important to note that a stable implementation of a correct and injec-
tive shared function can be considered as a specific instance of TaE [SJR+19].
This is due to the stability naturally exhibited by such functions, and therefore,
they do not require additional measures other than simple masking and encoding
to ensure stability. In this instance, the “Transform” phase is implemented with
TI, and the “Encode” phase is implemented with linear codes.

The above definition is naturally extended when the number of outputs is
different from the number of inputs. In this case, the output linear code differs
from the input one. We cover this case in Section 7 which requires additional
measures besides masking and encoding making it differ from an instance of
TaE.

This notion together with the TI notions additionally provides security over
the serial composition of shared and encoded functions.

Theorem 1. The serial composition of correct, stable, non-complete, fault non-
complete, and uniform shared functions is secure against a probing adversary
and a single gate/register-faulting adversary in a non-combined attack scenario.

Proof. The security against a probe placed in the design follows from the non-
completeness and uniformity properties of threshold implementations and was
proven by Dhooghe et al. [DNR19].

We then consider a single gate/register-faulting adversary. We analyze gate
and register faults separately. From the circuit representation, we know that each
gate belongs to exactly one coordinate function of F̃ (fault non-completeness).
As a result, we allow the adversary to arbitrarily change (fault) this coordinate
function using a gate fault. Since the coordinate function is non-complete, the
output F̃ (x̃) is faulted by an additive difference e which does not depend on
the secret value x. Due to the interconnected nature of the circuit, this faulty
output is either the output of the whole circuit, or an input to the next function.

10

Being the output of the whole circuit does not pose any security problems as
we already proved that the fault does not depend on the secret. If the output
is an input to the next function, then we can model it as a single register fault
on this function. As only one share is affected by the fault, we safely assume
that e ̸∈ C as a single share fault cannot craft a valid encoding. Additionally, a
single register fault does not depend on any secret. Since the circuit is the serial
composition of stable functions, and e ̸∈ C, the fault is propagated to the circuit
output. As a result, the fault is independent of any secret and is detected at the
end of the composite circuit making the circuit abort.

Stability is an independent notion that ensures the propagation of the faults
present in the input to the output in a shared and encoded register-to-register
function. However, Theorem 1 establishes the necessity of additional notions
(e.g., TI notions) for probing and gate/register-faulting security. For instance,
non-completeness ensures that the injected gate faults do not harm the privacy
of the circuit. Consequently, stability cannot be readily extended to other mask-
ing schemes to provide the desired security. That is, additional implementation
constraints should be considered to ensure that any injected gate fault yields an
incorrect output codeword, and its propagation is independent of the secret data.
For example, this can be ensured by utilizing forced independence [AMR+20],
where no gate is shared by two distinct output bits.

Considering the security model presented in Section 2.1, Theorem 1 states
that a stable threshold implementation of a function is correct and private
against a single gate/register-faulting adversary. This implies that the imple-
mented circuit always gives back a correct output or an abort signal over all
possible single gate/register faults. Additionally, for every fixed injected single
fault, the probability of the abort signal does not depend on the secret inputs
of the circuit. Consequently, a stable threshold implementation of a function is
secure against the attacks exploiting the wrong outputs, such as DFA [BS97] or
SFA [FJLT13], as the circuit is correct and does not give wrong outputs. Simi-
larly, a stable threshold implementation of a function is secure against the attacks
exploiting the data dependency of fault activation/propagation to the output,
such as SIFA [DEK+18,HPB22], FTA [SBR+20] or SEFA/SHFA [VZB+22]. This
is attributed to the fact that the implementation is private and the abort signal
is independent of the secret data.

4 Stable Encodings of XOR and AND Gates

The XOR and AND gate comprise the two basic operations over the field F2.
As a result, they are the corner stones in cryptographic circuits (such as in
block ciphers). Nevertheless, these gates (similar to the other basic gates such
as OR or NAND gates) have a fan-in of two and a single output. Thus, it would
not be possible to secure such gates in the framework by Daemen et al. without
increasing the output size or performing intermediate error checks as the masking
and encoding of it can never be injective.

11

In this section, we show that with the notion of stability (Definition 9) it
is possible to secure basic gates without resorting to error checks or adding
additional output wires. More specifically, we provide masked functions for the
XOR and the AND gates encoded with a duplication code.

Consider a naive XOR gate encoded with a duplication code. Take the en-
coded input (a, b, a′, b′) where a = a′ and b = b′ if the input is correctly en-
coded (i.e., the input is a valid codeword). Then, the naive XOR gate computes
(a+b, a′+b′). This encoding of the XOR is not stable as an injected fault vector
e = (1, 1, 0, 0), which is not a valid codeword as (1, 1) ̸= (0, 0), to the input
yields an output which is still a valid codeword as a + 1 + b + 1 = a + b =
a′ + b′. In fact, an XOR gate will always propagate the error to the output as
long as e ̸= (1, 1, 0, 0), (0, 0, 1, 1). Therefore, we propose the following encoded
XOR gate with a duplication code which modifies the output if and only if
e = (1, 1, 0, 0) or (0, 0, 1, 1):

z = a+ b+ (a+ a′)(b+ b′)

z′ = a′ + b′

For the other injected fault vectors that are invalid codewords, no modifi-
cation is done as the naive XOR gate already propagates them to the output.
Therefore, this encoding maps every invalid input codeword to an invalid output
codeword while leaving the correctness of the function unaltered, which makes
it stable.

Similarly, consider a naive AND gate encoded with a duplication code. Given
the input (a, 0, a′, 0), a valid codeword, the gate computes (a · 0, a′ · 0) = (0, 0).
Considering an injected fault vector e = (1, 0, 0, 0), which is not a valid codeword
as (1, 0) ̸= (0, 0), to the input, the output of the gate is still a valid codeword
as (a + 1) · 0 = 0 = a′ · 0. In fact, if one of the inputs is zero, a fault injected
to the other input will not propagate to the output. Therefore, we propose the
following encoded AND gate with a duplication code which propagates the fault
only if one or two of the inputs are zero:

z = ab+ (a+ a′)(b′ + 1) + (b+ b′)(a′ + 1)

z′ = a′b′

For the other injected fault vectors that are invalid codewords, no modifi-
cation is done as the naive AND gate already propagates them to the output.
Therefore, this encoding maps every invalid input codeword to an invalid output
codeword while leaving the correctness of the function unaltered, which makes
it stable.

The stable encoding of the XOR gate is trivially extended to work over
shared inputs and keep its stability. However, the case of a stable shared and
encoded AND gate is more complex and is provided for two-shared threshold
implementation in Section 7.

12

5 General Methodologies for Stability

In this section, we provide methodologies that transform unstable (Definition 9)
encodings into stable encodings without affecting the non-completeness, unifor-
mity, and correctness of the sharings.

5.1 Error Detection of Unstable Functions

Finding a stable encoding for an injective function is trivial using a simple linear
code. However, finding stable encoding for a non-injective function is relatively
challenging. The simplest examples are the XOR and AND gates. In Section 4,
stable encodings for these gates were presented. This is a notable advancement,
but it does not provide us guidance on securing an arbitrary non-injective en-
coding. In this section, we present a general solution to transform an unstable
sharing F̃ to a stable one.

Consider a correct, non-complete, and uniform encoded sharing F̃ of F . We
add a single value to the design denoted by R which holds the current state of
the circuit. Meaning, if R = 0, the state of the circuit is correct and no faults
are present. If R ̸= 0 then a fault was detected. In other words, R expands our
encoded state with additional parity bits. In case these bits are non-zero, then
the state is not a valid codeword. At the end of the circuit’s computation, the
decoder verifies the value of R and aborts in case R ̸= 0. Given this extra value,
making a stable sharing F̃ from F is straightforward. Namely, one can update
the error status of the circuit R, which is initially set to zero, by error checking
the input of F̃ using the parity check matrix H and ORing the result to R.
Consider an encoded value x̃ with its parity check matrix H and the output
error state Rnext, then the following sharing is stable:

F̃ (x̃) = ỹ

Rnext = R ∨Hx̃T

It is clear that the above sharing is stable as any input error or R ̸= 0 causes
Rnext ̸= 0 which means that the output is not a valid codeword of the expanded
linear code.

We note that it is also possible to combine this method with the changing
of the guard’s construction by Daemen [Dae17]. In this case, the construction
ensures both uniformity and stability of a sharing.

5.2 Interpolation

Considering a shared and encoded value x̃ and a function F , we show that via
interpolation it is possible to find a map F̃ which is correct and stable for F .

Consider the list of F ’s correct encoded inputs and outputs, namely (x̃, ỹ) ∈
C2 such that ỹ = F̃ (x̃). Then, consider all invalid input codewords x̃ ̸∈ C and
map them to a fixed invalid output codeword α ̸∈ C. Thus, for every x̃ ̸∈ C,

13

we add (x̃, α) to the previous list of correct input and outputs. The resulting
list goes over all possible encoded inputs. Thus, via interpolation, there exists a
function F̃ which maps every valid codeword x̃ ∈ C to a valid codeword of F̃ (x̃).
In addition, F̃ maps every “faulty” input to a fixed faulty output α. As a result,
F̃ is correct and stable.

There are multiple ways to generate F̃ , namely by mapping incorrect inputs
to different incorrect outputs. The encoded XOR and AND gates from Section 4
are examples of this approach.

Moreover, given a correct and uniform sharing F̄ of F , we can make a sta-
ble encoding of F which remains uniform by mapping the correct shared inputs
to the shared outputs of the uniform function and by mapping the incorrect
input sharings to an incorrect output sharing. However, this method is not guar-
anteed to keep non-completeness. The interpolation technique might create a
high-degree function that is not non-complete. Nevertheless, in Section 6, we
provide a methodology that does ensure the non-completeness when working
with t+ 1 shares for a degree t function.

6 Stable t + 1 Threshold Implementations

In this section, we present a methodology to provide stable encodings of the
traditional t + 1 shared threshold implementations of degree t functions. As
opposed to the methodologies from Section 5, we are now also concerned with
ensuring the threshold implementation properties such as uniformity and non-
completeness.

Linear Functions We consider the case of an invertible linear function L. Con-
sider a systematic linear code C, with G = (I|P) its generator matrix and
H = (−PT |I) its parity check matrix. Using these notations, we transform L to
its stable encoded version L̃. Let P (x) = xP = x′ be the matrix calculating the
parity bits of a message. Then,

L̃ =

(
L 0

P + (P ◦ L) I

)
.

First, the map L̃ is correct since if a message x is encoded as ⟨x, P (x)⟩ then
L̃(⟨x, xP ⟩) = ⟨L(x), P (x) + (P ◦ L)(x) + x′⟩ which is equivalent to the correct
encoding of the output ⟨L(x), (P ◦L)(x)⟩ if there is no fault injected. Second, the
map L̃ is stable since it is a permutation as L is invertible. If a fault is injected to
a gate, then due to the non-completeness, L̃ outputs an invalid encoding which
will be propagated by the next stable function.

The above map is trivially extended to a shared and encoded map by applying
it share by share. As a result, the encoding of linear layers is easy which allows
us to use affine equivalences to classify nonlinear functions where it suffices to
provide non-complete, uniform, and stable sharings of each class.

14

Invertible Nonlinear Functions We extend the above method for linear functions
to nonlinear ones. Given a permutation F and its uniform and non-complete
sharing F̄ . Because F is a permutation and F̄ is uniform, F̄ is a permutation
itself. We encode F̄ as

F̃ =

(
F̄ 0

P̄ + (P̄ ◦ F̄) I

)
,

where P̄ is the parity check function which works share by share.
The above function is still correct since F̃ (⟨x̄, P̄ (x̄)⟩) = ⟨F̄ (x̄), P̄ ◦ F̄ (x̄)⟩.

Similarly, the function is stable since it is invertible, namely

F̃−1 =

(
F̄−1 0

(P̄ ◦ F̄ + P̄) ◦ F̄−1 I

)
.

Moreover, since F̃ maps correct encoded inputs to correct encodings of F̄ ’s out-
puts, the map is still uniform. Finally, F̃ is non-complete since F̄ is non-complete
and, since P̄ works share-wise, P̄ + (P̄ ◦ F̄) + I is also non-complete.

The above method allows us to find stable encodings of threshold implemen-
tations with t+1 shares of a function of degree t for any systematic linear code.
We provide non-complete, uniform, and stable sharings for Q4

12 encoded with a
duplication code and commonly used extended Hamming code in Appendix A.
However, when using fewer shares, a sharing which is both non-complete and
uniform can not be found and thus more specific encodings and sharings are
required. We additionally note that due to the S-box usually being a permu-
tation, simple duplication does not necessarily require the above method to be
implemented, unlike the case with other codes.

7 Stable Two-Share Threshold Implementations

Unlike the t + 1 shared encodings of threshold implementations, we can not
achieve non-completeness and uniformity at the same time with an equal number
of outputs and inputs while operating on two shares. Therefore, we start with
the work of Shahmirzadi and Moradi [SM21a] proposing uniform sharings of the
four-bit quadratic classes which are first-order probing secure, but operate over
two cycles.

We first elaborate on the security requirements of an encoded function over
multiple cycles. Similar to the work of Shahmirzadi and Moradi, a masked func-
tion is required to be first-order probing secure independent of the number of
cycles. Additionally, a masked function is required to be secure against a first-
order register/gate faulting adversary. To guarantee the composability of the
design against probing adversaries, we require that the masked function (over
two cycles) is uniform. Similarly, for the composability against fault attacks, we
require that the encoded function is stable considering both its intermediate and
final outputs.

To encode masked functions with stability, we start by providing an example
of a stable masked AND gate. First, we recall the two shared AND gate from

15

Shahmirzadi and Moradi that is performed in two cycles where a0, a1, b0, b1 are
the input shares, and z0, z1 are the output shares:

Stage 1 Stage 2
x0 = a0b0 + b0
x1 = a0b1 z0 = x0 + x1

x2 = a1b1 z1 = x2 + x3

x3 = a1b0 + b0

(1)

We encode this function with a duplication code by replacing the AND and
XOR gates in Eq. (1) with the stable encodings of them given in Section 4. Then,
the stable two shared AND gate is given as follows.

Stage 1 Stage 2
x0 = a′0b

′
0 + b0 + (a0 + a′0)(b0 + b′0 + 1)

x1 = a′0b1 + (a0 + a′0) + (b1 + b′1)(a0 + 1) z0 = x0 + x1 + (x0 + x′
0)(x1 + x′

1)
x2 = a′1b1 + (a1 + a′1) + (b1 + b′1)(a1 + 1) z1 = x2 + x3 + (x2 + x′

2)(x3 + x′
3)

x3 = a′1b
′
0 + b0 + (a1 + a′1)(b0 + b′0 + 1)

x′
0 = a′0b

′
0 + b′0

x′
1 = a′0b

′
1 z′0 = x′

0 + x′
1

x′
2 = a′1b

′
1 z′1 = x′

2 + x′
3

x′
3 = a′1b

′
0 + b′0

We encoded the stable two shared AND gate using the stable encodings of
the regular XOR and AND gates. As a result, for any injected fault vector e
that is not a valid codeword, the above function will propagate the fault to the
output which is not a valid codeword1.

We provide non-complete, uniform, and stable two shared masked encodings
for Q4

12 using a duplication code and the [8, 4, 4] extended Hamming code in
Appendix B.

8 State-wide Encodings

Until this section, the focus point of this work was to encode small functions
such as S-boxes. In this section, we investigate encoding the entire state of the
primitive to reduce the overall state size compared to encoding all state elements
separately. We note the experimental work by Bartkewitz et al. [BBM+22] shows
that there is a direct relation between the number of parity bits and the practical
security of a design against a laser fault injection. We emphasize that in this
work, we focus on protection against the adversary introduced in Section 2.1
and find techniques to improve the efficiency of the encodings without losing
this protection.

1 The stability of the encoded two shared AND gate is verified for all input and fault
combinations.

16

Consider the linear layer (or a part thereof) of a symmetric primitive repre-
sented as a matrix M . For example, the AES MixColumns matrix is

M =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 .

We encode the state using a systematic linear code C with generator matrix
G = (I|P). In case (xMT)(I|P) = x(MT |P) or when MTP = P , then the
encoded state still consists of valid parity bits after the linear operation. That
means using a code where the P matrix consists of eigenvectors of the transposed
diffusion layer MT with eigenvalue one. Equivalently, P consists of vectors in
the nullspace of (MT −I). If such a code is found, we can encode the state where
the cost of the linear layer comes for free (over the regular shared cost).

As an example, we consider symmetric primitives with a four-by-four state
which shift the rows and applies a linear layer M per column. This struc-
ture is used in a lot of ciphers such as AES [AES01], SKINNY [BJK+16], Mi-
dori [BBI+15], PRINCE [BCG+12], and LED [GPPR11]. We start by considering
a four-by-four state over some vector space Fn

2 :x[0, 0] . . . x[0, 3]
...

. . .
...

x[3, 0] . . . x[3, 3]

 .

Let the state be encoded by applying a linear code C over Fn
2 (such as du-

plication or a parity code) with generator matrix G and consider the encoded
state x[0, 0] . . . x[0, 3] p[0]

...
. . .

...
...

x[3, 0] . . . x[3, 3] p[3]

 ,

where p[i] =
∑3

j=0 x[i, j]G. That is, the state is encoded using the sum of the
encodings of the elements in a single row. Using this encoding, an encoded
ShiftRows operation has no additional overhead as the parity bits do not need to
change. The MixColumns operation also has a reduced cost as it can be directly
applied to the column p[i]. Moreover, the number of parity bits in the state is
reduced by 75% over encoding each cell in the state by C.

It is possible to reduce the above encoding further by finding codes which
commute with the entire linear layer of primitives. Specifically the MixColumns
operation from PRINCE, SKINNY, MIDORI, the Keccak permutation2, and

2 For the Keccak permutation, we abuse the name and consider θ as a “MixColumns”
operation.

17

AES has the property that

(3,3)∑
(i,j)=(0,0)

x[i, j] =

(3,3)∑
(i,j)=(0,0)

y[i, j] ,

with y = xMT , the state after the application of the MixColumns diffusion layer.
More specifically, their MixColumns matrix has the eigenvector (1, 1, 1, 1). As a
result, for a linear code C with generator matrix G,

G

(3,3)∑
(i,j)=(0,0)

x[i, j] = G

(3,3)∑
(i,j)=(0,0)

y[i, j] .

This allows us to encode the entire state using only one extra cell of parity bits
which ensures the encoded ShiftRows and MixColumns operations come at no
additional cost over their shared version.

Unlike the linear layer, getting a linear encoding through a nonlinear brick-
layer function is trickier and needs a different approach. We consider the case
when working with t+1 shares for a degree t function F . Given a non-complete
and uniform sharing F̄ , the following function is a non-complete, uniform, and
stable masking of a row of the state (where the state is encoded row-by-row via
a parity check code)

F̃ =

F̄ 0 0 0 0
0 F̄ 0 0 0
0 0 F̄ 0 0
0 0 0 F̄ 0

P̄ + (P̄ ◦ F̄) P̄ + (P̄ ◦ F̄) P̄ + (P̄ ◦ F̄) P̄ + (P̄ ◦ F̄) I

 ,

with P̄ (·) the parity check function of C, the code over one element of the state.
The above structure is secure, but it does not significantly reduce the cost of the
encoded S-box. Instead, the encoding reduces the state size and eases the cost of
the symmetric primitive’s linear layer. For the case of nonlinear functions over
two shares, we did not find a general construction and thus leave the computation
of the nonlinear layers over two shares as interesting future work.

9 Practical Application to Keccak

In this section, we discuss the stability of the proposed encodings (Appendix A-
D), and their performance.

9.1 Architecture

Keccak [BDPA13] is a cryptographic primitive based on the sponge construction
that allows to absorb and process an input of arbitrary length producing an

18

arbitrary length output. The core of the algorithm is a permutation function
usually referred as Keccak-f [b], where b is a variable state size. The permutation
consists of a number of rounds including four linear layers and one nonlinear layer
(known as χ). We focus on two versions of Keccak-f with state lengths of 1600
and 200 bits for the area benchmarks and floorplanning, respectively. The larger
design consists of 24 rounds, while the lightweight version requires 18 rounds to
complete.

To implement Keccak-f , we applied the duplication code to the entire state.
Since all the functions except for χ are linear permutations, a simple dupli-
cation of those layers satisfies the stability notion regardless of the number of
shares used for the threshold implementations, approximately doubling the area.
Combining the linear layers with the encodings from Appendices C and D, we
obtained stable threshold implementations of Keccak-f [1600] and Keccak-f [200]
with four and two shares. Additionally, for the following experiments, we imple-
mented a duplicated two-shared version without stability resulting in a single
change in the χ compression step. The constructions with two shares require
three register stages to ensure non-completeness, whereas it is sufficient to have
only one for the four-shared design. As a result, we have triple the latency over-
head for the two-shared design. The architectures of all the designs are described
in Verilog.

Finally, we note that the designs were implemented using the KEEP_HIERACHY
option to avoid further circuit optimizations performed by the synthesizer to
achieve fault non-completeness.

9.2 Formally Verifying Fault Security

We perform a tool-assisted verification to ensure our encodings are stable (Defi-
nition 9). Considering the other tools such as Danira [HPB22], we decide to make
use of VerMFI, an open-source tool 3 by Arribas et al. [ANR18,AWMN20] for the
formal verification against the register/gate-faulting adversary from Section 2.1.
The tool receives an HDL design or the netlist of a design. If an HDL design
is given, then the tool obtains its netlist. Then, the tool either verifies the TI
properties (i.e. non-completeness, uniformity), or performs a fault evaluation of
the design using a user specified fault configuration file. After the evaluation, the
tool reports all non-detected faults per input test vector, as well as the ineffective
faults. Note that the tool has a straightforward definition of ineffective faults,
i.e., any fault that causes no change in the ciphertext, whereas we additionally
require a dependency on a secret value.

To verify the stability (i.e., security against register faults), we go over all
incorrect codewords for the input and verify that the faults are propagated to the
output which then can be detected. Using VerMFI, we go over all gate faults in
the design and verify that each fault’s output state (ineffective or not) does not
depend on the input secrets. To confirm this, we simply compare the number of
ineffective faults for each input test vector (i.e. all possible sharings of an input).

3 https://github.com/vmarribas/VerMFi

19

If we obtain the same number of ineffective faults for each unshared input, then
we verify the independence of the faults on the secret values.

We verified the security of the HDL designs of the encodings presented in
Appendix A B, C, and D which includes the nonlinear layer4 of the protected
Keccak implementation described in Verilog using VerMFI. All designs were
verified to be secure against a single register/gate fault.

Verification via Attack Simulation. In addition to the formal verification, we per-
formed an attack simulation on both the stable and fault non-complete Keccak
S-box, and a simple (unstable) duplication of the two-share threshold implemen-
tation by Shahmirzadi and Moradi [SM21a] to demonstrate the security advan-
tages of the stability notion. Specifically, we performed a SIFA-2 simulation on
both implementations. Using VerMFI, we went through all the gates/registers
in the obtained netlist covering all possible inputs and injected bit flip faults
with effectiveness probability equal to one. Only one gate was found to be sus-
ceptible to SIFA-2 in the unstable two-shared Keccak implementation in which
the propagation of the fault to the S-box output is dependent on one of the
unmasked input bits. Meaning, given that a bit flip fault is injected to the “inse-
cure” gate, one can perform a successful SIFA-2 attack that reveals the value of
one of the unmasked input bits with a success probability one. In other words,
if the “insecure” gate out of 169 gates is hit by the fault injection, then one can
perform a successful SIFA-2 attack. Assuming the fault location is randomly
chosen, the success probability of a SIFA-2 attack is 1/169, independent of the
inputs. Conversely, as mentioned earlier in this section, we did not detect any
single susceptible gate in the netlist of the stable fault non-complete two-shared
Keccak implementation. Interestingly enough, we found that enforcing the fault
non-completeness notion on the simple duplication (enforcing each combinato-
rial gate drives a non-complete set of output shares) was enough to prevent the
SIFA attack. We note that this is due to the permutation structure of the Keccak
S-box and its masking. More precisely, since the composition of the two cycles of
the duplicated masked S-box is a permutation, it is also stable. The transition
from the first to the second stage of the masked S-box is unstable, however,
since this is a simple compression layer (consisting only of XORs), it remains
secure against a single gate-fault. As a result, similar to the observations by
Shahmirzadi and Moradi [SM21a] that the notion of uniformity does not need
to hold each cycle, but that it suffices to re-gain uniformity after a number of
cycles, we believe it is possible to relax stability to hold only every couple of
cycles and still ensure the security against a single fault adversary.

9.3 Floorplan Results

We deploy the stable two-shared threshold implementation of Keccak based on
the encoding from Appendix D on FPGA and report on its floorplan. Since the

4 We note that only the nonlinear layer of the Keccak was verified since its linear layer
(or larger parts of the state) would require too much computational complexity from
VerMFI.

20

complexity of compiling the floorplan is expensive, we only provide the floor-
plan of the encoded and masked Keccak-f [200]. We then compare this floorplan
with that of a simple two-shared threshold implementation of Keccak, where the
masking is simply duplicated.

We used a Xilinx Sakura-X board equipped with a Kintex-7 XC7K160T-
1FBGC FPGA. The floorplan was generated using the Xilinx PlanAhead tool
with no placement constraints applied during the ”Placement and Routing”
step. We note that the implementations were synthesized using only the KEEP_-
HIERACHY option. The results are shown in Figure 2.

The floorplan results demonstrate that the simply duplicated two-shared de-
sign neatly separates the state from the duplicated state, whereas the stable
two-shared design mixes both components, because they are interconnected. Fol-
lowing the work from Bartkewitz et al. [BBM+22], this could mean that a single
laser fault can potentially break the stable design when a multi-bit fault is in-
jected, whereas it would be more difficult to do so with the simple duplicated
design.

To demonstrate that stability does not necessarily affect the placement of the
duplicated state, we show that the four-shared stable Keccak design (Figure 2,
bottom) has a floorplan similar to the unstable duplicated design (Figure 2, top-
right). Namely, the four-shared design would be secure against SIFA and provide
more protection against laser faults. A further study into SIFA resistant designs
which properly split the placement of its code-coordinates is left as interesting
future work.

9.4 Benchmarks

In this section, we elaborate on the costs of the protected Keccak which is de-
tailed in Tables 1, 2, 3. With respect to the overhead in time, our countermeasure
does not increase the latency of the unencoded TI. With respect to the overhead
in area, our countermeasure brings roughly a factor of two to three overhead
compared to the unencoded TI depending on the used linear code, plus a single
detection circuit at the end.The costs of the unencoded TI of the Keccak S-box
(i.e., where no linear codes are applied), and the encoded TIs of the Keccak
S-box using StaTI are shown in Table 1. Section 6 refers to the encoded TI of
the Keccak S-box with four shares, and Section 7 refers to the encoded TI of the
Keccak S-box with two shares. We note that the cost calculation does not take
an error detection circuit into account.

We compare our countermeasure with the one by Daemen et al. [DDE+20]
applied on hardware implementations of the Keccak S-box. In the work by Dae-
men et al. it is reported that five masked Toffoli gates ((a, b, c) 7→ (a, b, c+ ab) ∈
F3
2) and two XORs are required to implement the two share Keccak S-box which

consists of 20 AND/AND-NOTs and 22 XORs (Section 3.5 in [DDE+20]). We
adopt this implementation to hardware considering the authors reported that
one shared Toffoli gate requires two cycles in order not to be affected by glitches
(Section 6.4 in [DDE+20]). Therefore, without any parallelism, this pipelined
implementation takes 10 cycles with the area cost of one shared Toffoli gate and

21

Fig. 2. The floorplan results of the two-shared stable (top-left), the two-shared unstable
(top-right) and the four-shared stable (at the bottom) Keccak-f [200]. In red we report
the used logic elements working on the regular state and in green we report the elements
working on the duplicated state.

one XOR. However, with careful parallelism, we predict the implementation to
take four cycles in the best case scenario. These Toffoli gates are then duplicated
to implement the redundancy. Then, the implementation takes 10 cycles and is
expected to require 10 XORs and 8 AND/AND-NOTs.

We then consider the implementation of the Keccak S-box protected using our
countermeasure for both the duplication and the [6, 5, 2]-code from Appendix C
for four shares, and Appendix D for two shares. The four share implementation
of the Keccak S-box takes one cycle, and requires 78 XORs and 30 ANDs. With
simple duplication these numbers increase to 156 XORs and 60 ANDs which sat-
isfies the stability. The four share implementation using the [6, 5, 2]-code takes
again one cycle, and in total requires 145 XORs and 44 ANDs. This implemen-
tation also refers to the technique proposed in Section 8 as all five state elements
are encoded in one element in the encoded state. The two share implementation
of the Keccak S-box takes two cycles, and requires 20 ANDs and 36 XORs. Us-
ing the duplication code, these numbers increase to 50 ANDs and 102 XORs in
total. Likewise, the two share implementation using the [6, 5, 2]-code takes two
cycles, and requires 30 ANDs and 96 XORs in total. This implementation again

22

Table 1. Benchmarks for different protected Keccak S-box implementations using
Nangate 45nm Open Cell Library

Method Cycles # Shares Area (GE) # XORs # ANDs

Daemen et al. 10 2 96 10 8

Unencoded TI 1 4 194.7 78 30
Section 6 + duplication 1 4 389.3 156 60
Section 6 + parity code 1 4 338 145 44

Unencoded TI 2 2 212 36 20
Section 7 + duplication 2 2 497.3 102 50
Section 7 + parity code 2 2 470 96 30

refers to the technique proposed in Section 8 due to the encoding. We compare
all these results in Table 1. Our countermeasure comes at a lower latency cost
(tenfold smaller for four shares, fivefold smaller for two shares), whereas there is
an increase in the area cost (fourfold larger for four shares, sevenfold larger for
two shares) when compared to the countermeasure from [DDE+20]. Moreover,
there is a trade-off when different TIs of Keccak S-box are encoded. Two share
implementations come with higher latency and lower combinational area cost
when compared to four share implementations. However, as the two share TI
implementations take two cycles, in addition to the combinational area, they
bring additional non-combinational area which makes the total area larger than
the four share TI implementations.

Additionally, we consider the implementation of the state-wide encodings
(from Section 8) and compare it with a simple duplication in terms of the over-
head in state size and area in Table 2. We limit our implementation to the χ
function of the Keccak-f [1600] state. When compared to the countermeasure
from Daemen et al., state-wide encoding comes at a fourfold larger area cost
and tenfold smaller latency cost. As already discussed in Section 8, state-wide
encodings do not provide great improvement with respect to the area costs for
the nonlinear layer. However, the state-wide encodings allow a reduction of the
encoded state size and a reduction in the cost of the linear layer.

Table 2. Benchmarks for different encodings of the χ function applied to the Keccak-
f [1600] state using Nangate 45nm Open Cell Library

Method Cycles # Shares State Size (bits) Area (kGE)

Daemen et al. 10 2 3200 30.7

Unencoded TI 1 4 6400 62.3
Section 6 + duplication 1 4 12800 124.6
Section 8 1 4 6500 110

23

We also consider the complete Keccak-f [1600] implementation from Sec-
tion 9.1 to elaborate on the advantages of StaTI over simple duplication. To this
end, we compare the performance numbers (latency and area) for simple dupli-
cated threshold implementations and threshold implementations protected using
StaTI for four and two shares in Table 3. While simple duplication offers protec-
tion against attacks exploiting wrong outputs (e.g., DFA), the incorporation of
StaTI further offers protection against attacks exploiting the data dependency
of fault activation/propagation. Simple duplicated threshold implementations
can also be perceived as instances of TaE [SJR+19]. As previously discussed, a
duplicated threshold permutation (also as a TaE instance) is inherently stable,
and secure against single gate/register-faulting adversary. In case of a two-share
threshold implementation, the compression layer of the S-box necessitates the
utilization of stable XOR gates. Nevertheless, Table 3 shows that in the stable
threshold implementation of the two-share Keccak, there is only a 7.8% increase
in the area when compared to simple duplication. That is, StaTI offers protec-
tion against ineffective faults (i.e., data dependency of the fault) in addition to
effective faults with limited additional costs. For the two-shared threshold im-
plementation, we can consider an implementation with three repetitions on bit
level as an instance of TaE that would provide security against SIFA-2. Exclud-
ing error detection/correction circuits, StaTI would offer more efficient security
against gate/register-faulting adversary.

Table 3. Benchmarks for complete masked Keccak-f [1600] using the Nangate 45nm
Open Cell Library.

Fault Countermeasure # Shares Stable Cycles Area (kGE)

Unprotected [BDN+13] 4 ✗ 24 139.4
Unprotected [SM21b] 2 ✗ 72 125.4

Simple duplication 4 ✓ 24 246.9
Simple duplication 2 ✗ 72 249.5
Section 7 + duplication 2 ✓ 72 271.9

10 Conclusion

In this paper, we extended threshold implementations with the stability no-
tion that addresses the serial composable security against formal gate/register-
faulting adversaries. We proved that an encoding of a threshold implementation
is secure against a gate/register fault if it is serially composed of functions such
that for every wrong codeword addition to the input of a function, the function
outputs a wrong codeword. That is, an encoding of a threshold implementation
is secure if it propagates any fault to the output. Based on stability, we provided
stable encodings for XOR and AND gates that would allow us to build se-
cure encodings for more complex functions. Consecutively, we presented general

24

methodologies to transform any unstable encoding to a stable one. We provided
efficient specific methodologies for t+1 and two-share threshold implementations
of S-boxes. Next, we provided an efficient encoding technique by encoding state
elements together depending on the state structure. Following these methodolo-
gies, we provided encodings for the quadratic class Q4

12 and the Keccak S-box.
We then provided a StaTI protected Keccak-f [1600] implementation on FPGA
and reported on their security and performance evaluation. Comparing the Kec-
cak implementation with the one from [DDE+20], we improved their encodings
in terms of latency with the trade-off in area cost. Concerning formal security,
our designs were verified to be secure against a single gate/register fault by the
VerMFI tool.

To defeat fault attacks exploiting the data dependency of the fault propa-
gation, we designed StaTI such that an injected fault is always propagated to
the output regardless of the secret data. Following a different approach, most
of the state-of-the-art countermeasures employ masking and redundancy, albeit
without ensuring fault propagation, which subsequently necessitates intermedi-
ate error checks/corrections. In contrast, we show that by ensuring the fault
propagation, we can omit the need for intermediate checks. Furthermore, com-
pared to threshold implementations providing provable security against SCA
encoded with duplication to protect against wrong output attacks, StaTI offers
protection against ineffective faults with a low overhead in area cost.

While claiming no security against combined attacks, we note that the sta-
bility notion can prove advantageous in defeating FTA-SCA [SBJ+21] when
combined with the TI notions (i.e., StaTI) for some cases. For example, the sta-
ble two-shared masked encoding for the AND gate (Section 7) exhibits security
against FTA-SCA. This is attributed to the stable encodings of the XOR and
AND gates that are utilized in both cycles, which ensures that any injected fault
is propagated to the masked output. On the other hand, the stable two-shared
masked encoding with duplication for Q4

12 (Appendix B) is not secure against
FTA-SCA. This is because the first cycle of the two-shared TI of Q4

12 does not
require the stable encodings of XOR and AND gates to be utilized, as it already
exhibits a stable behavior, i.e., any injected fault is propagated to at least one of
the output bits. Therefore, when the shares are recombined in the second cycle,
the fault is still ineffective in some output bits which makes it susceptible to
FTA-SCA. However, we believe that replacing the XOR and AND gates with
their stable encodings would yield implementations secure against FTA-SCA.

In this work, we have focused on first-order fault attacks where the adversary
injects a fault in a single gate or register. Regarding higher-order fault attacks,
where multiple gates are attacked, StaTI’s share-wise error detection would be
effective as long as the the faults are injected in a single cycle and do not generate
valid codewords (i.e. by using codes with a larger minimal distance). However,
to secure the case where faults are injected in different cycles, we think that
intermediate error checks (e.g., after each S-box) would be essential to detect
these faults before they become undetectable. Nevertheless, we consider higher-
order fault attacks as future work. Additionally, we have explored the theoretical

25

security of StaTI and verified this on implementations using tools. However,
we leave the practical verification of our countermeasure against various fault
attacks such as laser faults or glitch injections as future work.

Acknowledgements. We thank Svetla Nikova for the helpful discussions. This
work was supported by CyberSecurity Research Flanders with reference number
VR20192203.

References

AES01. Advanced Encryption Standard (AES). National Institute of Standards
and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce,
November 2001.

AK97. Ross J. Anderson and Markus G. Kuhn. Low cost attacks on tamper
resistant devices. In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas,
and Michael Roe, editors, Security Protocols, 5th International Workshop,
Paris, France, April 7-9, 1997, Proceedings, volume 1361 of Lecture Notes
in Computer Science, pages 125–136. Springer, 1997.

AMR+20. Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shah-
mirzadi, Falk Schellenberg, and Tobias Schneider. Impeccable circuits.
IEEE Trans. Computers, 69(3):361–376, 2020.

ANR18. Victor Arribas, Svetla Nikova, and Vincent Rijmen. Vermi: Verification
tool for masked implementations. In 25th IEEE International Conference
on Electronics, Circuits and Systems, ICECS 2018, Bordeaux, France, De-
cember 9-12, 2018, pages 381–384. IEEE, 2018.

AWMN20. Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Crypto-
graphic fault diagnosis using verfi. In 2020 IEEE International Symposium
on Hardware Oriented Security and Trust, HOST 2020, San Jose, CA,
USA, December 7-11, 2020, pages 229–240. IEEE, 2020.

BBI+15. Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, ed-
itors, Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-
ceedings, Part II, volume 9453 of Lecture Notes in Computer Science, pages
411–436. Springer, 2015.

BBM+22. Timo Bartkewitz, Sven Bettendorf, Thorben Moos, Amir Moradi, and Falk
Schellenberg. Beware of insufficient redundancy an experimental evaluation
of code-based FI countermeasures. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(3):438–462, 2022.

BCC+14. Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and
Houssem Maghrebi. Orthogonal direct sum masking - A smartcard friendly
computation paradigm in a code, with builtin protection against side-
channel and fault attacks. In David Naccache and Damien Sauveron, ed-
itors, Information Security Theory and Practice. Securing the Internet of
Things - 8th IFIP WG 11.2 International Workshop, WISTP 2014, Her-
aklion, Crete, Greece, June 30 - July 2, 2014. Proceedings, volume 8501 of
Lecture Notes in Computer Science, pages 40–56. Springer, 2014.

26

BCG+12. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for pervasive computing
applications (full version). IACR Cryptol. ePrint Arch., page 529, 2012.

BDF+09. Shivam Bhasin, Jean-Luc Danger, Florent Flament, Tarik Graba, Sylvain
Guilley, Yves Mathieu, Maxime Nassar, Laurent Sauvage, and Nidhal Sel-
mane. Combined SCA and DFA countermeasures integrable in a FPGA
design flow. In Viktor K. Prasanna, Lionel Torres, and René Cumplido, ed-
itors, ReConFig’09: 2009 International Conference on Reconfigurable Com-
puting and FPGAs, Cancun, Quintana Roo, Mexico, 9-11 December 2009,
Proceedings, pages 213–218. IEEE Computer Society, 2009.

BDL97. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract). In
Walter Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of
Lecture Notes in Computer Science, pages 37–51. Springer, 1997.

BDN+13. Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rij-
men, and Gilles Van Assche. Efficient and first-order DPA resistant imple-
mentations of keccak. In Aurélien Francillon and Pankaj Rohatgi, editors,
Smart Card Research and Advanced Applications - 12th International Con-
ference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
187–199. Springer, 2013.

BDPA13. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak. In Thomas Johansson and Phong Q. Nguyen, editors, Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in
Computer Science, pages 313–314. Springer, 2013.

BGN+14. Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vin-
cent Rijmen. Higher-order threshold implementations. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 326–343,
Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg,
Germany.

BH17. Jakub Breier and Xiaolu Hou. Feeding two cats with one bowl: On de-
signing a fault and side-channel resistant software encoding scheme. In
Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 - The
Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA,
USA, February 14-17, 2017, Proceedings, volume 10159 of Lecture Notes in
Computer Science, pages 77–94. Springer, 2017.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

27

BKHL20. Jakub Breier, Mustafa Khairallah, Xiaolu Hou, and Yang Liu. A counter-
measure against statistical ineffective fault analysis. IEEE Trans. Circuits
Syst., 67-II(12):3322–3326, 2020.

BS97. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In Burton S. Kaliski Jr., editor, Advances in Cryptology -
CRYPTO ’97, 17th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 1997, Proceedings, volume 1294
of Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

CJRR99. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 398–412. Springer, 1999.

Dae17. Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Nao-
fumi Homma, editors, Cryptographic Hardware and Embedded Systems –
CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages
137–153, Taipei, Taiwan, September 25–28, 2017. Springer, Heidelberg,
Germany.

DDE+20. Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Flo-
rian Mendel, and Robert Primas. Protecting against statistical ineffective
fault attacks. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2020(3):508–543, 2020. https://tches.iacr.org/index.
php/TCHES/article/view/8599.

DDRT12. Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria.
Electromagnetic transient faults injection on a hardware and a software
implementations of AES. In Guido Bertoni and Benedikt Gierlichs, editors,
2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven,
Belgium, September 9, 2012, pages 7–15. IEEE Computer Society, 2012.

DEG+18. Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked AES with fault countermeasures. In Thomas Peyrin and Steven D.
Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Pro-
ceedings, Part II, volume 11273 of Lecture Notes in Computer Science,
pages 315–342. Springer, 2018.

DEK+18. Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: exploiting ineffective fault in-
ductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst., 2018(3):547–572, 2018.

DNR19. Siemen Dhooghe, Svetla Nikova, and Vincent Rijmen. Threshold imple-
mentations in the robust probing model. In Begül Bilgin, Svetla Petkova-
Nikova, and Vincent Rijmen, editors, Proceedings of ACM Workshop on
Theory of Implementation Security, TIS@CCS 2019, London, UK, Novem-
ber 11, 2019, pages 30–37. ACM, 2019.

FGM+23. Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann,
Sayandeep Saha, Pascal Sasdrich, and François-Xavier Standaert. Com-

28

https://tches.iacr.org/index.php/TCHES/article/view/8599
https://tches.iacr.org/index.php/TCHES/article/view/8599

bined private circuits - combined security refurbished. Cryptology ePrint
Archive, Paper 2023/1341, 2023. https://eprint.iacr.org/2023/1341.

FGP+18. Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable masking schemes in the
presence of physical defaults & the robust probing model. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2018(3):89–120,
2018. https://tches.iacr.org/index.php/TCHES/article/view/7270.

FJLT13. Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography, Los Alamitos, CA, USA, August 20, 2013, pages 108–118.
IEEE Computer Society, 2013.

GMK16. Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented
masking: Compact masked hardware implementations with arbitrary pro-
tection order. In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors,
Proceedings of the ACM Workshop on Theory of Implementation Security,
TIS@CCS 2016 Vienna, Austria, October, 2016, page 3. ACM, 2016.

GMO01. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2001, Third International Workshop, Paris, France, May 14-
16, 2001, Proceedings, volume 2162 of Lecture Notes in Computer Science,
pages 251–261. Springer, 2001.

GPK+21. Michael Gruber, Matthias Probst, Patrick Karl, Thomas Schamberger, Lars
Tebelmann, Michael Tempelmeier, and Georg Sigl. Domrep-an orthogonal
countermeasure for arbitrary order side-channel and fault attack protec-
tion. IEEE Trans. Inf. Forensics Secur., 16:4321–4335, 2021.

GPPR11. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2011 - 13th Interna-
tional Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-
ings, volume 6917 of Lecture Notes in Computer Science, pages 326–341.
Springer, 2011.

Hab65. D. H. Habing. The use of lasers to simulate radiation-induced transients in
semiconductor devices and circuits. IEEE Transactions on Nuclear Science,
12(5):91–100, 1965.

HPB22. Vedad Hadzic, Robert Primas, and Roderick Bloem. Proving SIFA protec-
tion of masked redundant circuits. Innov. Syst. Softw. Eng., 18(3):471–481,
2022.

IPSW06. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David A. Wagner. Pri-
vate circuits II: keeping secrets in tamperable circuits. In Serge Vaudenay,
editor, Advances in Cryptology - EUROCRYPT 2006, 25th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume
4004 of Lecture Notes in Computer Science, pages 308–327. Springer, 2006.

ISW03. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

29

https://eprint.iacr.org/2023/1341
https://tches.iacr.org/index.php/TCHES/article/view/7270

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 388–397. Springer, 1999.

Koc96. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

MAN+19. Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. M&m: Masks and macs against physical attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):25–50, 2019.

NRR06. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In Peng Ning,
Sihan Qing, and Ninghui Li, editors, ICICS 06: 8th International Confer-
ence on Information and Communication Security, volume 4307 of Lecture
Notes in Computer Science, pages 529–545, Raleigh, NC, USA, Decem-
ber 4–7, 2006. Springer, Heidelberg, Germany.

PRC+19. Sikhar Patranabis, Debapriya Basu Roy, Anirban Chakraborty, Naveen
Nagar, Astikey Singh, Debdeep Mukhopadhyay, and Santosh Ghosh.
Lightweight design-for-security strategies for combined countermeasures
against side channel and fault analysis in iot applications. J. Hardw. Syst.
Secur., 3(2):103–131, 2019.

RAD20. Keyvan Ramezanpour, Paul Ampadu, and William Diehl. Rs-mask: Ran-
dom space masking as an integrated countermeasure against power and
fault analysis. In 2020 IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2020, San Jose, CA, USA, December 7-11,
2020, pages 176–187. IEEE, 2020.

RBN+15. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 764–783. Springer, 2015.

RMB+18. Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel P. Smart. CAPA: the spirit of beaver
against physical attacks. In Hovav Shacham and Alexandra Boldyreva, edi-
tors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part I, volume 10991 of Lecture Notes in Computer Science, pages
121–151. Springer, 2018.

RSM21. Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi, and Amir Moradi. Im-
peccable circuits III. In IEEE International Test Conference, ITC 2021,
Anaheim, CA, USA, October 10-15, 2021, pages 163–169. IEEE, 2021.

SBJ+21. Sayandeep Saha, Arnab Bag, Dirmanto Jap, Debdeep Mukhopadhyay, and
Shivam Bhasin. Divided we stand, united we fall: Security analysis of some
SCA+SIFA countermeasures against sca-enhanced fault template attacks.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and

30

Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part II, volume 13091 of Lecture Notes in Com-
puter Science, pages 62–94. Springer, 2021.

SBR+20. Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploit-
ing fault propagation. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture
Notes in Computer Science, pages 612–643. Springer, 2020.

SJR+19. Sayandeep Saha, Dirmanto Jap, Debapriya Basu Roy, Avik Chakraborti,
Shivam Bhasin, and Debdeep Mukhopadhyay. Transform-and-encode: A
countermeasure framework for statistical ineffective fault attacks on block
ciphers. IACR Cryptol. ePrint Arch., page 545, 2019.

SM21a. Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2021(1):305–342, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/8736.

SM21b. Aein Rezaei Shahmirzadi and Amir Moradi. Second-order SCA security
with almost no fresh randomness. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(3):708–755, 2021.

SMG16. Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti - towards com-
bined hardware countermeasures against side-channel and fault-injection
attacks. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II, volume 9815 of Lecture Notes in Computer Science, pages 302–332.
Springer, 2016.

SRM20. Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Im-
peccable circuits II. In 57th ACM/IEEE Design Automation Conference,
DAC 2020, San Francisco, CA, USA, July 20-24, 2020, pages 1–6. IEEE,
2020.

VZB+22. Navid Vafaei, Sara Zarei, Nasour Bagheri, Maria Eichlseder, Robert Pri-
mas, and Hadi Soleimany. Statistical effective fault attacks: The other side
of the coin. IEEE Trans. Inf. Forensics Secur., 17:1855–1867, 2022.

31

https://tches.iacr.org/index.php/TCHES/article/view/8736
https://tches.iacr.org/index.php/TCHES/article/view/8736

A Three Sharing of Q4
12

The quadratic class Q4
12 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 10, 11] is given as

follows in its algebraic normal form.

Q4
12(a, b, c, d) = x, y, z, w

x = f0(a, b, c, d) = a

y = f1(a, b, c, d) = ac+ b

z = f2(a, b, c, d) = ab+ ac+ c

w = f3(a, b, c, d) = d

Duplication Code For the duplication code, we denote the encoding (x, x′) with
x the original value and x′ its duplicate. Similarly, we denote (x̄, x̄′) the shared
message bits with x̄′ their corresponding parity bits (encoded share-by-share).
Since Q4

12 is a quadratic function, we have t = 2 and thus use three shares to find
a non-complete and uniform sharing. The correct, non-complete, uniform, and
stable sharing Q̄4

12(ā, b̄, c̄, d̄, ā
′, b̄′, c̄′, d̄′) = (x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given below.

x0 = a0

x1 = a1

x2 = a2

y0 = a0c0 + a0c1 + a1c0 + a0 + a1 + c0 + c1 + b0

y1 = a1c1 + a1c2 + a2c1 + a1 + a2 + c1 + c2 + b1

y2 = a2c2 + a2c0 + a0c2 + a0 + a2 + c0 + c2 + b2

z0 = a0b0 + a0b1 + a1b0 + a0c0 + a0c1 + a1c0 + c0

z1 = a1b1 + a1b2 + a2b1 + a1c1 + a1c2 + a2c1 + c1

z2 = a2b2 + a2b0 + a0b2 + a2c2 + a2c0 + a0c2 + c2

w0 = d0

w1 = d1

w2 = d2

32

x′
0 = a′0

x′
1 = a′1

x′
2 = a′2

y′0 = a′0c
′
0 + a′0c

′
1 + a′1c

′
0 + a′0 + a′1 + c′0 + c′1 + b′0

y′1 = a′1c
′
1 + a′1c

′
2 + a′2c

′
1 + a′1 + a′2 + c′1 + c′2 + b′1

y′2 = a′2c
′
2 + a′2c

′
0 + a′0c

′
2 + a′0 + a′2 + c′0 + c′2 + b′2

z′0 = a′0b
′
0 + a′0b

′
1 + a′1b

′
0 + a′0c

′
0 + a′0c

′
1 + a′1c

′
0 + c′0

z′1 = a′1b
′
1 + a′1b

′
2 + a′2b

′
1 + a′1c

′
1 + a′1c

′
2 + a′2c

′
1 + c′1

z′2 = a′2b
′
2 + a′2b

′
0 + a′0b

′
2 + a′2c

′
2 + a′2c

′
0 + a′0c

′
2 + c′2

w′
0 = d′0

w′
1 = d′1

w′
2 = d′2

Extended Hamming Code We consider the systematic [8, 4, 4] extended Hamming
code with the following generator matrix

G[8,4,4] =

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 .

For the Hamming code, we again denote (x, x′) with x the message bits and
x′ the corresponding parity bits. Similarly, we denote (x̄, x̄′) the shared mes-
sage bits with x̄′ their corresponding parity bits (encoded share-by-share). The
correct, non-complete, uniform and stable sharing of Q̄4

12(ā, b̄, c̄, d̄, ā
′, b̄′, c̄′, d̄′) =

(x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given below.

x0 = a0

x1 = a1

x2 = a2

y0 = b0 + a0c0 + a0c1 + a1c0 + a0 + a1 + c0 + c1

y1 = b1 + a1c1 + a1c2 + a2c1 + a1 + a2 + c1 + c2

y2 = b2 + a2c2 + a2c0 + a0c2 + a0 + a2 + c0 + c2

z0 = c0 + a0b0 + a0b1 + a1b0 + a0c0 + a0c1 + a1c0

z1 = c1 + a1b1 + a1b2 + a2b1 + a1c1 + a1c2 + a2c1

z2 = c2 + a2b2 + a2b0 + a0b2 + a2c2 + a2c0 + a0c2

w0 = d0

w1 = d1

w2 = d2

33

x′
0 = a0 + a1 + c0 + c1 + a0b0 + a0b1 + a1b0 + a′0

x′
1 = a1 + a2 + c1 + c2 + a1b1 + a1b2 + a2b1 + a′1

x′
2 = a0 + a2 + c0 + c2 + a2b2 + a2b0 + a0b2 + a′2

y′0 = a0 + a1 + c0 + c1 + a0c0 + a0c1 + a1c0 + b′0

y′1 = a1 + a2 + c1 + c2 + a1c1 + a1c2 + a2c1 + b′1

y′2 = a0 + a2 + c0 + c2 + a2c2 + a2c0 + a0c2 + b′2

z′0 = a0b0 + a0b1 + a1b0 + a0c0 + a0c1 + a1c0 + c′0

z′1 = a1b1 + a1b2 + a2b1 + a1c1 + a1c2 + a2c1 + c′1

z′2 = a2b2 + a2b0 + a0b2 + a2c2 + a2c0 + a0c2 + c′2

w′
0 = a0 + a1 + c0 + c1 + a0b0 + a0b1 + a1b0 + d′0

w′
1 = a1 + a2 + c1 + c2 + a1b1 + a1b2 + a2b1 + d′1

w′
2 = a0 + a2 + c0 + c2 + a2b2 + a2b0 + a0b2 + d′2

34

B Two Sharing of Q4
12

We again consider the Q4
12 quadratic class as defined in Appendix A.

Duplication Code The correct, non-complete, uniform, and stable sharing of the
Q4

12 function Q̄4
12(ā, b̄, c̄, d̄, ā

′, b̄′, c̄′, d̄′) = (x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given over two
cycles below.

Stage 1 Stage 2
k0 = a0 x0 = k0
k1 = a1 x1 = k1
l0 = b0 + a0c0
l1 = a0c1 y0 = l0 + l1 + (l0 + l′0)(l1 + l′1)
l2 = a1c1 y1 = l2 + l3 + (l2 + l′2)(l3 + l′3)
l3 = b1 + a1c0
m0 = c0 + a0b0 + a0c0
m1 = a0b1 + a0c1 z0 = m0 +m1 + (m0 +m′

0)(m1 +m′
1)

m2 = a1b0 + a1c0 z1 = m2 +m3 + (m2 +m′
2)(m3 +m′

3)
m3 = c1 + a1b1 + a1c1
n0 = d0 w0 = n0

n1 = d1 w1 = n1

k′0 = a′0 x′
0 = k′0

k′1 = a′1 x′
1 = k′1

l′0 = b′0 + a′0c
′
0

l′1 = a′0c
′
1 y′0 = l′0 + l′1

l′2 = a′1c
′
1 y′1 = l′2 + l′3

l′3 = b′1 + a′1c
′
0

m′
0 = c′0 + a′0b

′
0 + a′0c

′
0

m′
1 = a′0b

′
1 + a′0c

′
1 z′0 = m′

0 +m′
1

m′
2 = a′1b

′
0 + a′1c

′
0 z′1 = m′

2 +m′
3

m′
3 = c′1 + a′1b

′
1 + a′1c

′
1

n′
0 = d′0 w′

0 = n′
0

n′
1 = d′1 w′

0 = n′
1

35

Extended Hamming Code The correct, non-complete, uniform, and stable sharing
Q̄4

12(ā, b̄, c̄, d̄, ā
′, b̄′, c̄′, d̄′) = (x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given over two cycles below.

Stage 1
k0 = a0
k1 = a1
l0 = b0 + a0c0
l1 = a0c1
l2 = a1c1
l3 = b1 + a1c0
m0 = c0 + a0b0 + a0c0
m1 = a0b1 + a0c1
m2 = a1b0 + a1c0
m3 = c1 + a1b1 + a1c1
n0 = d0
n1 = d1

k′0 = k0 + l0 +m0 + a0 + b0 + c0 + a′0
k′1 = k1 + l1 +m1 + a1 + b1 + c1 + a′1
l′0 = k0 + l0 + n0 + a0 + b0 + d0 + b′0
l′1 = k1 + l1 + n1 + a1 + b1 + d1 + b′1
l′21 = l2 + a0 + a′0 + b′0 + c′0
l′22 = c1 + a′1 + c′1 + d′1
l′31 = l3 + a1 + a′1 + b′1 + c′1
l′32 = c0 + a′0 + c′0 + d′0
m′

0 = k0 +m0 + n0 + a0 + c0 + d0 + c′0
m′

1 = k1 +m1 + n1 + a1 + c1 + d1 + c′1
m′

21 = m2 + b1 + b′1 + c1 + c′1
m′

22 = a0 + a′0 + b′0 + c′0
m′

31 = m3 + b0 + b′0 + c0 + c′0
m′

32 = a1 + a′1 + b′1 + c′1
n′
0 = l0 +m0 + n0 + b0 + c0 + d0 + d′0

n′
1 = l1 +m1 + n1 + b1 + c1 + d1 + d′1

36

Stage 2
x0 = k0
x1 = k1
y0 = l0 + l2 + (l0 + k′0 + l′0 + n′

0)(l2 + l′21 + l′22)
y1 = l1 + l3 + (l1 + k′1 + l′1 + n′

1)(l3 + l′31 + l′32)
z0 = m0 +m2 + (m0 + k′0 +m′

0 + n′
0)(m2 +m′

21 +m′
22)

z1 = m1 +m3 + (m1 + k′1 +m′
1 + n′

1)(m3 +m′
31 +m′

32)
w0 = n0

w1 = n1

x′
0 = x0 + k0 + k′0 + l′21 + l′22 +m′

21 +m′
22

x′
1 = x1 + k1 + k′1 + l′31 + l′32 +m′

31 +m′
32

y′0 = x0 + w0 + k0 + n0 + l′0 + l′21 + l′22
y′1 = x1 + w1 + k1 + n1 + l′1 + l′31 + l′32
z′0 = x0 + w0 + k0 + n0 +m′

0 +m′
21 +m′

22

z′1 = x1 + w1 + k1 + n1 +m′
1 +m′

31 +m′
32

w′
0 = w0 + l0 + n′

0 + l′21 + l′22 +m′
21 +m′

22

w′
1 = w1 + n1 + n′

1 + l′31 + l′32 +m′
31 +m′

32

37

C Four Sharing of χ

The χ function which is the nonlinear operation in Keccak is given as follows in
its algebraic normal form

χ(a, b, c, d.e) = x, y, z, w, q

x = f0(a, b, c, d, e) = de+ a+ d

y = f1(a, b, c, d, e) = ae+ b+ e

z = f2(a, b, c, d, e) = ab+ a+ c

w = f3(a, b, c, d, e) = bc+ b+ d

q = f4(a, b, c, d, e) = cd+ c+ e .

Duplication Code The correct, non-complete, uniform, and stable sharing of
the χ function χ̄(ā, b̄, c̄, d̄, ē, ā′, b̄′, c̄′, d̄′, ē′) = (x̄, ȳ, z̄, w̄, q̄, x̄′, ȳ′, z̄′, w̄′, q̄′) is given
below.

x0 = a0 + c0

x1 = a1 + c1 + (b1 + b2 + b3)(c1 + c2 + c3)

x2 = a2 + c2 + b0(c2 + c3) + c0(b2 + b3) + b0c0

x3 = a3 + c3 + b0c1 + c0b1

y0 = b0 + d0

y1 = b1 + d1 + (c1 + c2 + c3)(d1 + d2 + d3)

y2 = b2 + d2 + c0(d2 + d3) + d0(c2 + c3) + c0d0

y3 = b3 + d3 + c0d1 + d0c1

z0 = c0 + e0

z1 = c1 + e1 + (d1 + d2 + d3)(e1 + e2 + e3)

z2 = c2 + e2 + d0(e2 + e3) + e0(d2 + d3) + d0e0

z3 = c3 + e3 + d0e1 + e0d1

w0 = d0

w1 = d1 + (1 + e1 + e2 + e3)(a1 + a2 + a3)

w2 = d2 + a0 + e0(a2 + a3) + a0(e2 + e3) + e0a0

w3 = d3 + e0a1 + a0e1

q0 = e0 + b0

q1 = e1 + b1 + (a1 + a2 + a3)(b1 + b2 + b3)

q2 = e2 + b2 + a0(b2 + b3) + b0(a2 + a3) + a0b0

q3 = e3 + b3 + a0b1 + b0a1

38

x′
0 = a′0 + c′0

x′
1 = a′1 + c′1 + (b′1 + b′2 + b′3)(c

′
1 + c′2 + c′3)

x′
2 = a′2 + c′2 + b′0(c

′
2 + c′3) + c′0(b

′
2 + b′3) + b′0c

′
0

x′
3 = a′3 + c′3 + b′0c

′
1 + c′0b

′
1

y′0 = b′0 + d′0

y′1 = b′1 + d′1 + (c′1 + c′2 + c′3)(d
′
1 + d′2 + d′3)

y′2 = b′2 + d′2 + c′0(d
′
2 + d′3) + d′0(c

′
2 + c′3) + c′0d

′
0

y′3 = b′3 + d′3 + c′0d
′
1 + d′0c

′
1

z′0 = c′0 + e′0

z′1 = c′1 + e′1 + (d′1 + d′2 + d′3)(e
′
1 + e′2 + e′3)

z′2 = c′2 + e′2 + d′0(e
′
2 + e′3) + e′0(d

′
2 + d′3) + d′0e

′
0

z′3 = c′3 + e′3 + d′0e
′
1 + e′0d

′
1

w′
0 = d′0

w′
1 = d′1 + (1 + e′1 + e′2 + e′3)(a

′
1 + a′2 + a′3)

w′
2 = d′2 + a′0 + e′0(a

′
2 + a′3) + a′0(e

′
2 + e′3) + e′0a

′
0

w′
3 = d′3 + e′0a

′
1 + a′0e

′
1

q′0 = e′0 + b′0

q′1 = e′1 + b′1 + (a′1 + a′2 + a′3)(b
′
1 + b′2 + b′3)

q′2 = e′2 + b′2 + a′0(b
′
2 + b′3) + b′0(a

′
2 + a′3) + a′0b

′
0

q′3 = e′3 + b′3 + a′0b
′
1 + b′0a

′
1

Parity Code The systematic [6, 5, 2] parity code computes the one bit parity for
each 5-bit chunk with the following generator matrix

G[6,5,2] =

1 0 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

 .

We denote the parity bit of the input p which is defined as p = a+b+c+d+e.
Similarly, the parity bit of the output is denoted o such that o = x + y + z +
w+ q. The correct, non-complete, uniform, and stable sharing χ̄(ā, b̄, c̄, d̄, ē, p̄) =
(x̄, ȳ, z̄, w̄, q̄, ō) encoded with the [6, 5, 2] code is given below.

39

x0 = a0 + c0

x1 = a1 + c1 + (b1 + b2 + b3)(c1 + c2 + c3)

x2 = a2 + c2 + b0(c2 + c3) + c0(b2 + b3) + b0c0

x3 = a3 + c3 + b0c1 + c0b1

y0 = b0 + d0

y1 = b1 + d1 + (c1 + c2 + c3)(d1 + d2 + d3)

y2 = b2 + d2 + c0(d2 + d3) + d0(c2 + c3) + c0d0

y3 = b3 + d3 + c0d1 + d0c1

z0 = c0 + e0

z1 = c1 + e1 + (d1 + d2 + d3)(e1 + e2 + e3)

z2 = c2 + e2 + d0(e2 + e3) + e0(d2 + d3) + d0e0

z3 = c3 + e3 + d0e1 + e0d1

w0 = d0

w1 = d1 + (1 + e1 + e2 + e3)(a1 + a2 + a3)

w2 = d2 + a0 + e0(a2 + a3) + a0(e2 + e3) + e0a0

w3 = d3 + e0a1 + a0e1

q0 = e0 + b0

q1 = e1 + b1 + (a1 + a2 + a3)(b1 + b2 + b3)

q2 = e2 + b2 + a0(b2 + b3) + b0(a2 + a3) + a0b0

q3 = e3 + b3 + a0b1 + b0a1

o0 = p0 + b0 + c0 + d0 + e0

o1 = p1 + b1 + c1 + d1 + e1 + (a1 + a2 + a3 + d1 + d2 + d3)(e1 + e2 + e3)+

(b1 + b2 + b3 + d1 + d2 + d3)(c1 + c2 + c3) + (a1 + a2 + a3)(b1 + b2 + b3 + 1)

o2 = p2 + a0 + b2 + c2 + d2 + e2 + (a0 + d0)(e2 + e3) + (c0 + e0)(d2 + d3)+

(b0 + e0)(a0 + a2 + a3) + (b0 + d0)(c0 + c2 + c3) + (a0 + c0)(b2 + b3) + d0e0

o3 = p3 + b3 + c3 + d3 + e3 + a0(b1 + e1) + b0(a1 + c1) + c0(b1 + d1)+

d0(c1 + e1) + e0(a1 + d1)

D Two Sharing of χ

40

Duplication Code The correct, non-complete, uniform, and stable sharing of the
χ function χ̄(ā, b̄, c̄, d̄, ē, ā′, b̄′, c̄′, d̄′, ē′) = (x̄, ȳ, z̄, w̄, q̄, x̄′, ȳ′, z̄′, w̄′, q̄′) is given.

Stage 1 Stage 2
k0 = d0e0 + a0 + d0
k1 = d0e1 x0 = k0 + k1 + (k0 + k′0)(k1 + k′1)
k2 = d1e0 + a1 + d1 x1 = k2 + k3 + (k2 + k′2)(k3 + k′3)
k3 = d1e1
l0 = a0e0
l1 = a0e1 + b0 y0 = l0 + l1 + (l0 + l′0)(l1 + l′1)
l2 = a1e0 + e0 y1 = l2 + l3 + (l2 + l′2)(l3 + l′3)
l3 = a1e1 + b1 + e1
m0 = a0b0
m1 = a0b1 + a0 + c0 z0 = m0 +m1 + (m0 +m′

0)(m1 +m′
1)

m2 = a1b0 + a1 + c1 z1 = m2 +m3 + (m2 +m′
2)(m3 +m′

3)
m3 = a1b1
n0 = b0c0 + a0 + d0
n1 = b0c1 + a0 + b0 w0 = n0 + n1 + (n0 + n′

0)(n1 + n′
1)

n2 = b1c0 w1 = n2 + n3 + (n2 + n′
2)(n3 + n′

3)
n3 = b1c1 + b1 + d1
p0 = c0d0 + e0
p1 = c0d1 + c0 q0 = p0 + p1 + (p0 + p′0)(p1 + p′1)
p2 = c1d0 + a1 + b1 + e1 q1 = p2 + p3 + (p2 + p′2)(p3 + p′3)
p3 = c1d1 + a1 + b1 + c1

k′0 = d′0e
′
0 + a′0 + d′0

k′1 = d′0e
′
1 x′

0 = k′0 + k′1
k′2 = d′1e

′
0 + a′1 + d′1 x′

1 = k′2 + k′3
k′3 = d′1e

′
1

l′0 = a′0e
′
0

l′1 = a′0e
′
1 + b′0 y′0 = l′0 + l′1

l′2 = a′1e
′
0 + e′0 y′1 = l′2 + l′3

l′3 = a′1e
′
1 + b′1 + e′1

m′
0 = a′0b

′
0

m′
1 = a′0b

′
1 + a′0 + c′0 z′0 = m′

0 +m′
1

m′
2 = a′1b

′
0 + a′1 + c′1 z′1 = m′

2 +m′
3

m′
3 = a′1b

′
1

n′
0 = b′0c

′
0 + a′0 + d′0

n′
1 = b′0c

′
1 + a′0 + b′0 w′

0 = n′
0 + n′

1

n′
2 = b′1c

′
0 w′

1 = n′
2 + n′

3

n′
3 = b′1c

′
1 + b′1 + d′1

p′0 = c′0d
′
0 + e′0

p′1 = c′0d
′
1 + c′0 q′0 = p′0 + p′1

p′2 = c′1d
′
0 + a′1 + b′1 + e′1 q′1 = p′2 + p′3

p′3 = c′1d
′
1 + a′1 + b′1 + c′1

41

Parity Code The [6, 5, 2] encoded correct, non-complete, uniform, and stable
sharing χ̄(ā, b̄, c̄, d̄, ē, t̄) = (x̄, ȳ, z̄, w̄, q̄, ō) is given below.

Stage 1 Stage 2
k0, k

′
0 = d0e0 + a0 + d0

k1, k
′
1 = d0e1 x0 = k0 + k1 + (k0 + k′0)(k1 + k′1)

k2, k
′
2 = d1e0 + a1 + d1 x1 = k2 + k3 + (k2 + k′2)(k3 + k′3)

k3, k
′
3 = d1e1

l0, l
′
0 = a0e0

l1, l
′
1 = a0e1 + b0 y0 = l0 + l1 + (l0 + l′0)(l1 + l′1)

l2, l
′
2 = a1e0 + e0 y1 = l1 + l3 + (l2 + l′2)(l3 + l′3)

l3, l
′
3 = a1e1 + b1 + e1

m0,m
′
0 = a0b0

m1,m
′
1 = a0b1 + a0 + c0 z0 = m0 +m1 + (m0 +m′

0)(m1 +m′
1)

m2,m
′
2 = a1b0 + a1 + c1 z1 = m2 +m3 + (m2 +m′

2)(m3 +m′
3)

m3,m
′
3 = a1b1

n0, n
′
0 = b0c0 + a0 + d0

n1, n
′
1 = b0c1 + a0 + b0 w0 = n0 + n1 + (n0 + n′

0)(n1 + n′
1)

n2, n
′
2 = b1c0 w1 = n2 + n3 + (n2 + n′

2)(n3 + n′
3)

n3, n
′
3 = b1c1 + b1 + d1

p0, p
′
0 = c0d0 + e0

p1, p
′
1 = c0d1 + c0 q0 = p0 + p1 + (p0 + p′0)(p1 + p′1)

p2, p
′
2 = c1d0 + a1 + b1 + e1 q1 = p2 + p3 + (p2 + p′2)(p3 + p′3)

p3, p
′
3 = c1d1 + a1 + b1 + c1

t′0 = k0 + l0 +m0 + n0 + p0+ o0 = k1 + l1 +m1 + n1 + p1 + t′0
a0 + b0 + c0 + d0 + e0 + t0

t′1 = k3 + l3 +m3 + n3 + p3+ o1 = k2 + l2 +m2 + n2 + p2 + t′1
a1 + b1 + c1 + d1 + e1 + t1

42

	StaTI: Protecting against Fault Attacks Using Stable Threshold Implementations

