
Zero-Knowledge Functional
Elementary Databases

Xinxuan Zhang1,2[0000−0002−2739−7656] and Yi Deng1,2[0000−0001−5948−0780]

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

{zhangxinxuan, deng}@iie.ac.cn

Abstract. Zero-knowledge elementary databases (ZK-EDBs) enable a
prover to commit a database D of key-value (x, v) pairs and later provide
a convincing answer to the query “send me the value D(x) associated
with x” without revealing any extra knowledge (including the size of D).
After its introduction, several works extended it to allow more expressive
queries, but the expressiveness achieved so far is still limited: only a
relatively simple queries–range queries over the keys and values– can be
handled by known constructions.

In this paper we introduce a new notion called zero knowledge func-
tional elementary databases (ZK-FEDBs), which allows the most gen-
eral functional queries. Roughly speaking, for any Boolean circuit f ,
ZK-FEDBs allows the ZK-EDB prover to provide convincing answers
to the queries of the form “send me all records (x, v) in D satisfying
f(x, v) = 1,” without revealing any extra knowledge (including the size
of D). We present a construction of ZK-FEDBs in the random oracle
model and generic group model, whose proof size is only linear in the
length of record and the size of query circuit, and is independent of the
size of input database D.

Our technical constribution is two-fold. Firstly, we introduce a new
variant of zero-knowledge sets (ZKS) which supports combined opera-
tions on sets, and present a concrete construction that is based on groups
with unknown order. Secondly, we develop a tranformation that tran-
forms the query of Boolean circuit into a query of combined operations
on related sets, which may be of independent interest.

1 Introduction

Zero-knowledge sets (ZKS) are a valuable primitive introduced by Micali et al.
[MRK03], which enable a prover to commit a finite set S and later prove the
membership or non-membership of any element without revealing any extra
knowledge (including the size of the set). An Elementary Database (EDB) D is
a partial function mapping a (sub)set of keys into values (i.e., a set of key-value
pairs (x, v) such that no two pairs have equivalent keys but different values). As

2 Xinxuan Zhang and Yi Deng

described in [MRK03], the concept of ZKS can be extended to the one called zero-
knowledge elementary databases (ZK-EDBs), which allows the prover to commit
an EDB D and later prove that “x belongs to the support of D and D(x) = v” or
that “x does not belong to the support of D” without revealing any knowledge
beyond that. A number of ZK-EDB constructions have since emerged such as
updatable ZK-EDBs [Lis05], independent ZK-EDBs [GM06] and efficient ZK-
EDBs[CFM08, LY10], but, most constructions follow the paradigm of Chase et
al. [CHL+05], which relies on a Merkle tree and mercurial commitment and is
not suitable to support richer queries.

Libert et al. [LNTW19] recently introduced zero-knowledge expressive ele-
mentary databases (ZK-EEDBs) that support the following richer queries: a)
range query [ax, bx], to which prover responds with all records (x, v) ∈ D whose
key x lies within [ax, bx]; b) range query [av, bv], to which prover responds with
all records (x, v) ∈ D whose value v is within the range [av, bv], and c) natural
combination of range query [ax, bx]×[av, bv]. These techniques can be further ex-
ploited to support several other interesting queries such as k-nearest neighbours
and k-minimum/maximum.

Despite the advancements made thus far, the expressivity of the known ZK-
EDBs constructions is still very limited. For example, known constructions can-
not even handle the simple query “send me all records (x, v) ∈ D where the last
bit of value v is zero”, let alone the general Boolean circuit f query that requests
to return all records (x, v) ∈ D satisfying f(x, v) = 1.

Besides the theoretical value in ZK-EDB, enabling general function queries
will have many practical applications. For instance, append-only ZK-EDBs are
recently used to construct Key Transparency (KT) systems [CDGM19, CDG+22],
which maintain an auditable directory of the pairs of user’s ID and their public
keys while securely answer the queries for public key associated with certain ID
in a consistent manner, even when the service provider is untrusted. ZK-EDBs
with more expresive queries can improve the functionality of the KT system,
allowing clients to more flexibly query public keys. Specifically, users can add
labels or other short information to their IDs, such as a CV of a job hunter.
Clients can then send queries to the service provider to obtain all public keys
associated with IDs that meet their requirements, e.g., an HR can query the
service provider to get all job hunters’ public keys whose CVs satisfy certain
requirement.

1.1 Our contribution

In this paper, we introduce a new concept called zero-knowledge functional
elementary databases (ZK-FEDBs), which allows the most general function
queries. Specifically, ZK-FEDBs enable one to commit an elementary database
D of key-value pairs (x, v) ∈ {0, 1}ℓ × {0, 1}ℓ and then, for any Boolean cir-
cuit f : {0, 1}2ℓ → {0, 1}, convincingly answer the query “Send me all records
(x, v) ∈ D satisfying f(x, v) = 1”, without revealing any extra knowledge (in-
cluding the size of D).

Zero-Knowledge Functional Elementary Databases 3

We present a construction of ZK-FEDBs based on groups of unknown orders,
and prove its security in the random oracle model and generic group model.
Its proof size is only linear in the length of record and the size of circuit f ,
independent of the size of input database D. Prior to our approach, the most
expressive queries achievable were limited to range queries over keys and values,
as demonstrated by Libert et al.[LNTW19].

Our technical constribution is two-fold (explained in detail below). Firstly, we
introduce a new variant of zero-knowledge sets (ZKS) which supports combined
operations on sets, and present a concrete construction that is based on groups
with unknown order. Secondly, we develop a tranformation that tranforms the
query of Boolean circuit into a query of combined operations on related sets,
which may be of independent interest.

1.2 Technique Overview

A naive attempt to construct ZK-FEDBs is to use zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARKs). Specifically, one can use a
SNARK-friendly hash function alone or, like most exsisting ZK-EDBs, use a
Merkle tree to create a commitment for the database, and then use zk-SNARKs
to generate proofs for queries. However, almost all zk-SNARKs expose the length
of the witness. And for the commitment methods mentioned above, the wit-
ness must include all records in database to ensure the correctness of function
queries. Therefore, this attempt would fail due to the potential revelation of the
database size. The same issue will also arise when using other general-purpose
zero-knowledge protocols.

RSA accumulator as ZKS and its limitations. Our start point is RSA
accumulator, which is close to ZKS except that it offers no privacy. Let Hprime

be a hash function mapping an element in set S into a prime. RSA accumulator
computes gΠi∈[m]pi to commit set S = {xi}i∈[m], where pi = Hprime(xi).

Now we consider the three basic set operations, i.e, intersection, union and
set-difference, on accumulators. It is a widely used approach to reduce set opera-
tion relations to several simpler set relations [PTT11, GOP+16, ZKP17]. Taking
intersection as an example. Note that, I = S0 ∩ S1 if and only if there ex-
ists J0 := S0\I and J1 := S1\I such that (J0, J1) belongs to disjoint relation
{(J0, J1)|J0∩J1 = ∅}, and both (S0, I, J0) and (S1, I, J1) belong to union among
disjoint relation {(U, J0, J1)| U = J0 ∪ J1 ∧ J0 ∩ J1 = ∅}.

Thus, given three RSA accumulators CI ,CS0
,CS1

to sets I, S0, S1, proving
I = S0 ∩ S1 is equivalent to prove the following statements: there exist accumu-
lators CJ0 ,CJ1 to sets J0 and J1 such that a) the committed sets (J0, J1) belongs
to disjoint relation, and b) the committed sets (S0, I, J0) and (S1, I, J1) belong
to union among disjoint relation. It is easy to verify that these two items a) and
b) are equivalent to the following two conditions respectively:

a′) (CJ0
,CJ1

) belongs to co-prime relations {(C1,C2)|∃a, b ∈ Z s.t. gcd(a, b) =
1 ∧ (C1,C2) = (ga, gb)}.

4 Xinxuan Zhang and Yi Deng

b′) Both (CI ,CJ0) and (CI ,CJ1) belong to co-prime relations, and both (CS0 ,CI ,
CJ0

) and (CS0
,CI ,CJ1

) are DDH tuples.

All of them can be proved easily relying on Boneh’s PoKE (Proof of knowledge of
exponent) protocol and its variants [BBF19]. The other two basic set-operation
relations on accumulators, can also be proved in a similar manners.

As in [XLL07, XLL08], one can achieve privacy and obtain a ZKS scheme by
using randomness r in computing the commitment grΠi∈[m]pi to S. However, the
introduction of randomness would invalidate the proof of basic set-operation re-
lations on commitments. Specifically, for this ZKS, the disjoint relations and the
union among disjoint sets relations on commited sets can no longer be equivalent
to co-prime relations and DDH relations over RSA groups.

Zero-Knowledge Sets with Set-Operation Queries. Our key observation
is that the randomness r in above ZKS scheme can be chosen from small and
bounded range of [0, B]. This leads to that, for sets S0, S1, U satisfying S0∩S1 =
∅, S0 ∪ S1 = U and their commitments CS0 ,CS1 ,CU , we have:

a′′) The greatest common divisor of the exponents of commitments CS0 ,CS1 is
small. We call such a tuple (CS0

,CS1
) as a pseudo-coprime exponent tuple.

b′′) The commitment tuple (CS0
,CS1

,CU) is close to a DDH tuple. We call such
a tuple (CS0 ,CS1 ,CU) as a pseudo-DDH tuple.

We present a series of NIZK protocols to prove the above pseudo-relations.
Though these NIZK protocols achieve somewhat weaker soundness, they are
sufficient for our applications.

We further consider more general combined operations on sets, and regard it
as a “circuit” with gates “intersection”, “union” and “set-difference” in a nat-
ural way. To construct a ZKS supporting combined operations on sets (i.e., a
ZKS that allows prover to convincingly answer the query “send me all records in
Q(S1, · · · , Sm)” for any “circuit” Q and committed sets {Si}i∈[m]), the prover
can use above NIZK proofs to demonstrate that each gate/set-operation is per-
formed honestly.

From Boolean Circuit Queries to Set-Operation.A crucial step toward our
construction of ZK-FEDBs is a transformation that transform a query of Boolean
circuit f over a set S (requesting Soutput := {x|x ∈ S∧f(x) = 1}) into a query of
combined operations Q on related sets Sb

i = {x|x ∈ S ∧ the i-th bit of “x” is b}
(requesting Soutput := Q({Sb

i })).
This transformation proceeds as follows. Let the number of input wires of f

be n. We first associate each input wire i of f with two subsets {Sb
i }b∈{0,1} of

S, which are definded as above. Sequentially, for each gate in f , we associate
its output wire i (i > n) with two subsets {Sb

i }b∈{0,1}, which are defined in the
following way:

– For an AND gate with two input wires a, b and an output wire c, the two
sets associated with wire c are set to be S0

c = S0
a ∪ S0

b and S1
c = S1

a ∩ S1
b .

– For an OR gate with two input wires a, b and an output wire c, the two sets
associated with wire c are set to be S0

c = S0
a ∩ S0

b and S1
c = S1

a ∪ S1
b .

Zero-Knowledge Functional Elementary Databases 5

– For a NOT gate with an input wire a and an output wire b, the two sets
associated with wire c are set to be S0

b = S1
a and S1

b = S0
b .

In the ending, the second set S1
ℓ associated with the output wire ℓ of f is

now a result of a circuit Q of combined operations on the sets {Sb
i } associated

with the input wires, i.e., S1
ℓ = Q({Sb

i }).
One can check that the above resulting set S1

ℓ is exactly the set Soutput :=
{x|x ∈ S ∧ f(x) = 1}. A crucial observation here is that, for each x belonging
to S and each wire i, x ∈ Sb

i if and only if the value of i-th wire of f(x) is b.
Therefore Sb

ℓ is the set of x that makes the output wire of f equaling to b, which
means that S1

ℓ = {x|x ∈ S ∧ f(x) = 1}.
A simple example of transforming f(x) = x̄1 ∧ x̄2 ∨ (¬x̄3) (where x =

x̄1∥x̄2∥x̄3 ∈ {0, 1}3) is shown in Fig.1.

Fig. 1

Finally, we construct ZK-FEDBs using ZKS with set-operation queries and
standard ZK-EDBs. Roughly, we use the former to ensure the correctness of
function queries and the latter to ensure the correctness of associated values.
Furthermore, we construct a constant-size ZK-EDB in conjunction with standard
batch techniques, and achieve a ZK-FEDB with a proof size that is only linear
in the length of the record and the size of the circuit f , and is independent of
the size of the input database D.

1.3 Related Work

Since the notion of ZK-EDB was first introduced by Micali et al.[MRK03], nu-
merous works concentrating on the performance, security, and functionality of
ZK-EDB have been developed.

6 Xinxuan Zhang and Yi Deng

In [CHL+05], Chase et al. introduced the notion of mercurial commitments
and presented a widely used paradigm to construct a ZK-EDB. Mercurial com-
mitments (and thus ZK-EDBs) can be constructed through one-way functions
[CDV06], and efficient mercurial commitments (and thus efficient ZK-EDBs)
can be constructed through DL, Factoring, RSA or LWE assumption [CDV06,
Zhu09, LNTW19]. The notion of q-mercurial commitments were introduced and
developed in [CFM08, LY10, CF13] to further compress the (non-)membership
proof size of ZK-EDBs. Li et al. [LSY+21] introduced concise mercurial subvector
commitments and achieved batch verifiable ZK-EDBs.

There are also several works focusing on developing the security definition
of ZK-EDBs, such as independent ZK-EDBs [GM06] and secure database com-
mitments [CV12]. Prabhakaran and Xue [PX09] put forward statistically hid-
ing set and present its construction from RSA accumulators. Following [PX09],
[XLL07, XLL08] constructed a constant-size ZKS.

Another research point of ZK-EDBs is how to extend its functionality. Os-
trovsky et al.[ORS04] explored generating consistency proofs for queries on a
committed database and present a concrete constrction for range queries over
the keys. Liskov [Lis05] presented updatable ZK-EDBs in the random oracle
model. Ghosh et al. [GOT15] introduced zero-knowledge lists, which allow one
to commit a list and later answer order queries in a convincing manner. Libert et
al. [LNTW19] recently introduced ZK-EEDBs that support richer queries, e.g.,
range queries over the keys and values.

Accumulators (e.g. [BdM93, CL02, CHKO08, Ngu05, DHS15]) are an ex-
tremely well-studied cryptography primitive related to ZKS. Accumulators al-
low representing a set using an accumulation value and later providing (non-
)membership proofs; however, hiding and zero-knowledge properties are not nec-
essary for accumulators. Although Ghosh et al. [GOP+16] and Zhang et al.
[ZKP17] proposed the constructions of zero-knowledge accumulators support-
ing set operations, their schemes only consider collision-freeness security, where
the adversary cannot cheat in a proof for an honestly generated accumulation
value. In contrast, ZKS prevent the adversary from cheating in a proof even for a
maliciously generated commitment. Agrawal and Raghuraman [AR20] proposed
a commitment scheme for databases of key-value pairs. Their scheme does not
provide privacy.

Authenticated data structures (ADS) (e.g., [Tam03, PTT11, NZ15]) also al-
low a trusted database owner to commit its database, and an untrusted server
can answer the queries on behalf of trusted database owners to any clients know-
ing the commitment. However, as a three-party scheme in which the committer
(database owner) is always trusted, ADS is incomparable to ZK-EDB.

Key Transparency (KT) systems (e.g. [MBB+15, TBP+19, HHK+21, TKPS22])
allow service providers to maintain an auditable directory of their users’ pub-
lic keys, producing proofs that all participants have a consistent view of those
keys, and allowing each user to check updates to their own keys. Recently, Chase
et al.[CDGM19] show how to construct privacy-preserving KT systems from ap-

Zero-Knowledge Functional Elementary Databases 7

pend only ZKS and Chen et al.[CDG+22] develop it and achieve post compromise
security.

Recently, there are several works [GW20, ZBK+22, ZGK+22, EFG22] of
lookup arguments studying how to efficiently prove subset relation and achieving
constant proof size. Lookup arguments can be zero-knowledge and can be used
alongside zk-SNARKs to prove that “all records in Doutput satisfy the query
function f and Doutput ⊂ D” without revealing any extra knowledge. However,
constructing ZK-FEDBs from lookup arguments and zk-SNARKs is consider-
ably more challenging. The reason is that, to achieve ZK-FEDBs, one must also
prove that any record in D\Doutput does not satisfy the query function f . Uti-
lizing zk-SNARKs in this context would leak the size of the remaining database
D\Doutput as we discussed in Technique Overview, and therefore leak the size
of D.

1.4 Organization

Preliminaries are described in section 2. In section 3, we introduce several new
building blocks. In section 4 we introduce and construct ZKS with set-operation
queries. In section 5 we show how to transform a Boolean circuit and introduce
the notion of ZK-FEDBs, while also providing a concrete construction. Due
to space constraints, the construction of constant-size standard ZK-EDBs and
several security proofs are deferred to Appendix.

2 Preliminaries

In this paper, we denote by λ the security parameter, by [m] the set {1, 2, · · · ,m}
and by [m1,m2] the set {m1 + 1,m1 + 2, · · · ,m2}. A non-negative function
f : N→ R is negligible if f(λ) = λ−w(1). We use the standard abbreviation PPT
to denote probabilistic polynomial time.

An elementary database D is a set of key-value pairs (x, v) ∈ {0, 1}ℓ×{0, 1}ℓ
such that if (x, v) ∈ D and (x, v′) ∈ D, then v = v′. Here ℓ is a public polynomial
in λ. We denote by Sup(D) the support of D, i.e., the set of x ∈ {0, 1}ℓ for which
∃v such that (x, v) ∈ D. We denote such unique v asD(x), and if x /∈ Sup(D), we
then also write D(x) =⊥. For consistency, for any set S of elements x ∈ {0, 1}ℓ,
we write S(x) = 1 if x ∈ S and write S(x) =⊥ if x /∈ S.

2.1 Zero-Knowledge Elementary Databases and Sets

ZKS allow one to commit a set S and later prove the (non-)membership of any
elements without revealing any extra knowledge (including the size of the set).
The notion of ZKS can be extended to ZK-EDBs, which allow one to commit
an elementary database D. Due to that ZKS can be seen as a special case of
ZK-EDBs, where D(x) = 1 if x ∈ Sup(D), we skip the definition of ZKS here.
Following [MRK03, GM06, LNTW19], we present the following formal definition
of ZK-EDBs:

8 Xinxuan Zhang and Yi Deng

Definition 1 (Zero-Knowledge Elementary Database). A zero-knowledge
elementary database consists of four algorithms (Setup, Com, Prove, Verify):

• δ ← Setup(1λ): On input the security parameter 1λ, Setup outputs a random
string (or a structured reference string) δ as the CRS.

• (com, τ)← Com(δ,D): On input the CRS δ and an elementary database D,
Com outputs a commitment of database com and an opening information τ .

• π ← Prove(δ, com, τ, x, v): On input the CRS δ, the pairing of the com-
mitment and opening information (com, τ), and a key x and its associated
value v (i.e., (x, v) ∈ D or x /∈ Sup(D), v =⊥), Prove outputs a proof π of
v = D(x)

• 0/1 ← Verify(δ, com, x, v, π): On input the CRS δ, commitment com, key-
value pair (x, v) and proof π, Verify either outputs 1 (denoting accept) or 0
(denoting reject).

It satisfies the following three properties:

• Completeness: For any elementary database D and any x,

Pr

[
Verify(δ, com, x,D(x), π) = 1

∣∣∣∣∣δ ← Setup(1λ); (com, τ)← Com(δ,D);

π ← Prove(δ, com, τ, x,D(x))

]
= 1

• Soundness: For any PPT adversary A, there exists a negligible function
negl(·) such that:

Pr

 v ̸= v′ ∧
Verify(δ, com, x, v, π) = 1∧
Verify(δ, com, x, v′, π′) = 1

∣∣∣∣∣ δ ← Setup(1λ);

(com, x, v, v′, π, π′)← A(δ)

 ≤ negl(λ)

• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

[
AOP (δ, stateA, com) = 1

∣∣∣∣∣δ ← Setup(1λ), (D, stateA)← A(δ),
(com, τ)← Com(δ,D)

]
−

Pr

[
AOS (δ, stateA, com) = 1

∣∣∣∣∣(δ, stateδ)← Sim(1λ), (D, stateA)← A(δ),
(com, stateS)← Sim(δ, stateδ)

]
is negligible in λ, where OP and OS are defined as follows:
OP : On input a string x, OP outputs π←Prove(δ, com, τ, x,D(x)).
OS: On input a string x, OS outputs π←Sim(stateS , x,D(x)).

2.2 Groups of Unknown-Order and Assumptions

In this paper, the schemes are constructed on groups of unknown order, for
which the order is difficult to compute for the committer. Groups of unknown
order are a useful tool in the construction of polynomial commitments, integer
commitments, and accumulators, among other aspects.

The strong RSA assumption is a useful assumption for groups of unknown
orders. We introduce it in the following.

Zero-Knowledge Functional Elementary Databases 9

Assumption 1. (Strong RSA Assumption)[BP97, AR20]. The strong RSA as-
sumption states that an efficient adversary cannot compute ℓ-th roots for a given
random group element, where ℓ is an odd prime chosen by the adversary. Specif-
ically, it holds for GGen if for any probabilistic polynomial time adversary A,

Pr

[
uℓ = g and ℓ is an odd prime

∣∣∣∣∣G← GGen(λ), g
$←G,

(u, ℓ) ∈ G× N← A(G, g)

]
≤ negl(λ).

Generic group model. In this paper, we use the generic group model for
groups of unknown order as defined by Damg̊ard and Koprowski [DK02], and as
used in [BBF19]. Portions of the definition of the generic group model are taken
verbatim from [BBF19].

In the generic group model, the group is parameterized by two public integers
A and B, and the group order is sampled uniformly from [A,B]. The group G
is defined by a random injective function σ : Z|G| → {0, 1}l for some l, where

2l ≫ |G|. The group elements are σ(0), · · · , σ(|G|). A generic group algorithm A
is a probabilistic algorithm. Let L be a list that is initialized with the encodings
given to A as input. A can query two generic group oracles. The first oracle O1

samples a random r ∈ Z|G| and returns σ(r), which is appended to the list of
encodings L. The second oracle O2(i, j,±) takes two indices i, j ∈ [p], where p
is the size of L, as well as a sign bit, and returns σ(i± j), which is appended to
L. Note that herein A is not given the order of G.

As shown in [DK02], the strong RSA assumption holds in the generic group
model.

Zero-knowledge protocol for bounded discrete-log. The classical Schnorr
Σ-protocol can be used to prove the discrete-log relation when the exponent is
small (i.e.,RboundedDL = {(u,w, T ;x)|ux = w∧|x| ≤ T}). It only provides a weak
soundness that, a proof for (u,w, T) can convince verifier that (u,w, T) belongs
to a relaxed relation R∗

boundedDL = {(u,w, T ;x, t)|ux = wt∧|x| ≤ 22λT, |t| ≤ 2λ},
which is sufficient for our goal. Following [DF02, CS97, FO97], the construction
is as follows.

Protocol ZKboundedDL (Zero-knowledge protocol for RboundedDL)

Params: G← GGen(λ); Common Input: u,w ∈ G, T ∈ N;
Private Input for P: x ∈ Z

1. P samples r
$←[22λT] and sends z = ur ∈ G to V.

2. V sends challenge c
$←[2λ].

3. P computes s = r + cx and sends s to V.
4. V accepts if us = zwc and s ≤ 22λT .

Fig. 2: Protocol ZKboundedDL [CS97, FO97]

10 Xinxuan Zhang and Yi Deng

Lemma 1. Protocol ZKboundedDL is an honest-verifier statistically zero-knowledge
protocol for RboundedDL, achieving a weak knowledge soundness defined as fol-
lows: There exists an extractor such that for any polynomial p and any prover P∗

convincing verifier of statement (u,w, T) with probability p−1, the extractor can
extract (x′, t) within an expected polynomial time such that |x′| ≤ 22λT, |t| ≤ 2λ

and ux
′
= wt.

Note that the honest-verifier statistically zero-knowledge property of the
above lemma directly follows [DF02]. And the weak knowledge soundness can
be easily proved by rewinding.

Furthermore, above zero-knowledge protocol can be easily extend to multidi-
mensional discrete-log relation with small exponents (i.e., R = {({ui}i∈[n],w, T ;
{xi}i∈[n])|Πi∈[n]u

xi
i = w∧∀i ∈ [n], |xi| ≤ T}), resulting in a similar weak knowl-

edge soundness.

Proof of Knowledge of Exponent (PoKE). Recently, Boneh et al. [BBF19]
introduced a way to present an argument of knowledge protocol for the following
relation.

RPoKE := {(u,w ∈ G;x ∈ Z)|w = ux ∈ Z}

Let P be the prover and V be the verifier. Let Primes(λ) denote the set of odd
prime numbers in [0, 2λ]. Their protocol is as follows:

Protocol PoKE (Proof of knowledge of exponent)

Params: G← GGen(λ), g ∈ G; Common Input: u,w ∈ G;
Private Input for P: x ∈ Z

1. P sends z = gx ∈ G to V.
2. V samples l

$←Primes(λ) and sends l to P.
3. P finds the quotient q ∈ Z and residue r ∈ [l] such that x = ql + r.
P sends Q = uq, Q′ = gq, and r to V.

4. V accepts if r ∈ [l], Qlur = w, and Q′lgr = z.

Fig. 3: PoKE protocol [BBF19]

Theorem 1 ([BBF19] Theorem 3.). Protocol PoKE is an argument of knowl-
edge for the relation RPoKE in the generic group model.

Our constructions will use above PoKE protocol as a subroutine, and that’s
why our results rely on the generic group model. In practice, there are two
common methods used to instantiate groups of unknown order.

RSA group: The multiplicative group Z∗
n of integers modulo a product

n = pq of large primes p and q. Any efficient algorithm that calculates the order
can be transformed into an efficient algorithm factoring n. In addition, we need
to point out that it is difficult to generate the RSA group in a publicly verifiable

Zero-Knowledge Functional Elementary Databases 11

way without exposing the order. Therefore, we need a trusted party to generate
the group.

Class group: The class group of an imaginary quadratic order with discrim-
inant ∆ where −∆ is a prime and ∆ ≡ 1 mod 4. As an important property, one
can choose a security class group Cl(∆) by choosing the “good” discriminant ∆
randomly without a trusted party. For more details, one can refer to Buchmann
and Hamdy’s survey [BH01] and Straka’s accessible blog post [Str19] for more
details.

At the end of this section, we provide several simple lemmas used for our
construction.

Lemma 2. For any positive integers a, A, and B satisfying B > A, we have:

Dist({x $←Za}, {x mod a|x $←[A,B]}) ≤ a

B −A

where Dist indicates the statistical distance between distributions.

Lemma 3. For any integers s1,s2 and positive integers a,A,B satisfying B > A,
gcd(s1, s2) = 1, we have:

Dist({x $←Za}, {xs1 + ys2 mod a|x, y $←[A,B]}) ≤ 3a

B −A

where Dist indicates the statistical distance between distributions.

Lemma 4. For any multiplicative group G and group elements g, h ∈ G, if there
exists coprime integers a, p satisfying ga = hp, then one can easily compute h′

satisfying g = h′p from a, p, g and h.

The proofs of the above three lemmas are shown in Appendix.A.

3 New Building Blocks

This section introduces several building blocks that we use in our construction. It
comprises of two parts. In the first part, we present a new variant of Boneh et al.’s
zero-knowledge protocol for multidimensional discrete-log relation and lightly
modify the standard ZKS scheme [PX09, XLL07, XLL08]. In the second part,
we construct two new zero-knowledge protocols for pseudo-coprime exponent
relation and pseudo-DDH relation over the groups of unknown orders.

3.1 Zero-Knowledge Protocol for Multidimensional Discrete-log
and Standard ZKS Scheme

In [BBF19], Boneh et al. combined the classical Schnorr Σ-protocol and the
batched PoKE protocol to present a zero-knowledge argument of knowledge pro-
tocol (called Protocol ZKPoKRep) for the relationRmultiDL = {({ui}i∈[n],w; {xi}i∈[n])

12 Xinxuan Zhang and Yi Deng

|Πi∈[n]u
xi
i = w}. Their protocol satisfies soundness only when {ui}i∈[n] is a base

specified in the CRS. However, our constructions require the prover to generate
such a set {ui}i∈[n].

Therefore, we construct a new variant of Boneh et al.’s protocol. We call
it Protocol ZKmultiDL. Compared to the origin protocol, the prover in our new
protocol uses n PoKE protocols to prove the relation zwc = Πi∈[n]u

si
i . Here,

we require the prover to send usii additionally, which doesn’t affect the proof of
statistical honest verifier zero-knowledge. This allows the extractor to extract
si even when {ui}i∈[n] is generated by the prover. As a result, we obtain a
zero-knowledge protocol for RmultiDL where {ui}i∈[n] can be generated by the
prover. However, this benefit comes at a price: This protocol only satisfies a
weak knowledge soundness that a valid proof can convice the verifier that the
statement belongs to a relaxed relation R∗

multiDL = {({ui}i∈[n],w; {xi}i∈[n], t)|
Πi∈[n]u

xi
i = wt, |t| ≤ 2λ}. The concrete construction is shown in Fig.4.

Protocol ZKmultiDL (Zero-knowledge protocol for RmultiDL)

Params: G← GGen(λ), B ≥ |G|; Common Input: {ui}i∈[n],w ∈ G;
Private Input for P: {xi}i∈[n]

1. P samples ri
$←[22λB] for each i ∈ [n] and sends z = Πi∈[n]u

ri
i ∈ G

to V.
2. V sends challenge c

$←[2λ].
3. P computes si = ri + cxi for each i ∈ [n] and sends ûi = usii to V.
4. P and V run PoKE(u, ûi; si), and V output 1 if and only if all PoKE

accept and Πi∈[n]ûi = zwc.

Fig. 4: Protocol ZKmultiDL[BBF19]

Lemma 5. In the generic group model, Protocol ZKmultiDL is an honest-verifier
statistically zero-knowledge protocol for RmultiDL, achieving a weak knowledge
soundness defined as follows: There exists an extractor such that for any prover
P∗ convincing the verifier of statement ({ui}i∈[n],w) with inverse-polynomial
probability, the extractor can extract ({x′

i}i∈[n], t) within an expected polynomial

time such that |t| ≤ 2λ and Πi∈[n]u
x′
i

i = wt.

proof sketch. The honest-verifier statistically zero-knowledge property can be
proved in the same manner as [BBF19] and the weak knowledge soundness fol-
lows Lemma.1 (the extension version for multidimensional DL) and the argument
of knowledge property of PoKE (used for extracting si) directly.

A complete proof is shown in Appendix.B.
In the remainder of this paper, we only use the protocol ZKmultiDL for the

cases when n = 1 or 2. For convinience, we shall refer to these protocols as ZKDL

Zero-Knowledge Functional Elementary Databases 13

and ZK2DL. Additionally, we denote their non-interactive versions obtained via
the Fiat-Shamir heuristic as NIZKDL and NIZK2DL.

Standard zero-knowledge sets. Here we introduce the construction of stan-
dard ZKS in [PX09, XLL07, XLL08], but with some modifications. Instead of
using RSA groups, we now use general groups of unknown orders. Furthermore,
we use ZKDL and ZK2DL as sub-routine zero-knowledge protocol.

Let Hprime be a hash function that upon inputting a string outputs a large
prime. And letRDL = {(u,w;x)|ux = w},R2DL = {(u1, u2,w;x1, x2)|u1x1u2

x2 =
w}. The modified construction is shown below.

Standard zero-knowledge set scheme

Setup(1λ): On input the security parameter 1λ, Setup generates the
description of an unknown-order group G← GGen(λ) and a random

group element g
$←G. Let B be the upper bound of G (i.e., B ≥ |G|).

Sample the description of a hash function Hprime that on input a
string, outputs a random prime larger than 28λB3. Output CRS
δ = (G, g, B,Hprime).

Commit(δ, S): On input the set S = {x1, · · · , xm}, Commit hashes them
into large primes, i.e., for i ∈ [m], pi ← Hprime(xi). Then Commit

samples r
$←[2λB], and outputs the commitment C = grΠi∈[m]pi and the

open information τ = (r, p1, · · · , pm, S).

Prove(δ, (C, τ), x, S(x)): Parse the input τ as (r, p1, · · · , pm, S).
a) If S(x) = 1, which means that x ∈ S, p = Hprime(x) ∈ {p1, · · · , pm},

Prove outputs the proof π ← NIZKDL(g
p,C; rΠi∈[m]pi/p).

b) If S(x) =⊥, which means that x /∈ S, p = Hprime(x) /∈ {p1, · · · , pm}
and gcd(p, rΠi∈[m]pi) = 1, Prove finds a, b such that
ap+ brΠi∈[m]pi = 1 and outputs π ← NIZK2DL(g

p,C, g; a, b).

Verify(δ,C, x, S(x), π): If S(x) = 1, check whether π is a valid NIZKDL

proof for statement (gp,C) ∈ RDL. If S(x) =⊥, check whether π is a
valid NIZK2DL proof for statement (gp,C, g) ∈ R2DL. Verify outputs 1 if
the check passes and outputs 0 otherwise.

Fig. 5: Protocol ZKS

Theorem 2. The protocol constructed in Fig.5 is a ZKS scheme in the generic
group model and random oracle model.

The proof follows from [PX09, XLL07, XLL08]. We present a detailed proof
in Appendix.C.

14 Xinxuan Zhang and Yi Deng

Remark 1. One can use the batch technique put forward in [BBF19] to batch
the (non-)membership proofs. For example, to prove that x′

1, · · · , x′
t ∈ S, the

prover hashes them into primes p′1, · · · p′t by Hprime and then generates the proof

π ← NIZKDL(g
Πi∈[t]p

′
i ,C; rΠi∈[m]pi/Πi∈[t]p

′
i). To prove that x′

1, · · · , x′
t /∈ S, the

prover hashes them into primes p′1, · · · p′t by Hprime and finds a, b ∈ Z such that

aΠi∈[t]p
′
i + brΠi∈[m]pi = 1, and then outputs π ← NIZK2DL(g

Πi∈[t]p
′
i ,C, g; a, b).

3.2 Zero-Knowledge Protocols for Pseudo-Coprime Exponent
Relation and Pseudo-DDH Relation

As shown in the technique overview subsection, due to the introduction of ran-
domness in ZKS commitment, the basic set-operation relations on committed
set can only be reduced to pseudo-coprime exponent relation and pseudo-DDH
relation over group elements. Here pseudo-coprime exponent relation means that
the greatest common divisor of the exponents of two group elements are small
and pseudo-DDH relation means that a group element triple is close to a DDH
tuple.

In this subsection, we construct two new zero-knowledge protocols for these
two relations. Similar to Schnorr Σ-protocol, both protocols only provide a weak
knowledge soundness, which are sufficient for our construction of ZKS with set-
operation query.

Zero-knowledge protocol for pseudo-coprime exponents relation. Let
u, v be ZKS commitments to sets X,Y respectively, i.e., u = gruΠx∈XHprime(x),
v = grvΠx∈Y Hprime(x). If X∩Y = ∅, it yields that the exponents of u, v are almost
coprime. We call such a tuple (u, v) as a pseudo-coprime exponents tuple and
denote the pseudo-coprime exponents relation as follows:

Rcoprime =

{
(u, v, T ; a1, a2)

∣∣∣∣∣ gcd(a1, a2) ≤ T ∧
u = ga1 , v = ga2

}

We provide a zero-knowledge protocol for Rcoprime in Fig.6. This protocol
only satisfies a weak soundness that, a valid proof can convince the verifer that
the statement belongs to a relaxed relation R∗

coprime = {(u, v, T ; t1, t2, c)|c ≤
24λBT ∧ ut1vt2 = gc}.

Lemma 6. In the generic group model, ZKcoprime is an honest-verifier statis-
tically zero-knowledge protocol for Rcoprime, achieving a weak knowledge sound-
ness defined as follows: There exists an extractor such that for any prover P ∗ con-
vincing the verifier with inverse-polynomial probability over statement (u, v, T),
the extractor can extract t1, t2, c ∈ Z within an expected polynomial time such
that |c| ≤ 24λBT and ut1vt2 = gc.

Proof. Completeness is obvious.
Weak knowledge soundness follows from the weak knowledge sound-

ness of ZKboundedDL and ZK2DL. Specifically, the weak knowledge soundness of
ZKboundedDL allows us to extract x, t ∈ Z satisfying that |x| ≤ 23λBT, |r′| ≤ 2λ

Zero-Knowledge Functional Elementary Databases 15

Protocol ZKcoprime (Zero-knowledge protocol for Rcoprime)

Params: G← GGen(λ), B ≥ |G|; Common Input: u, v ∈ G, T ∈ Z;
Private Input for P: a1, a2 ∈ Z

1. P finds integers t1, t2 such that t1a1 + t2a2 = gcd(a1, a2). P samples

r
$←[2λB] and sends Q = gr gcd(a1,a2) = urt1vrt2 to V.

2. P and V run ZKboundedDL(g,Q, 2
λBT ; r gcd(a1, a2)) and

ZK2DL(u, v,Q; rt1, rt2)

Fig. 6: Protocol ZKcoprime

and Qr′ = gx. And the weak knowledge soundness of ZK2DL enables the extrac-

tion of t′1, t
′
2, r

′′ ∈ Z such that |r′′| ≤ 2λ and Qr′′ = ut
′
1vt

′
2 . With this, we obtain

ur
′t′1vr

′t′2 = gr
′′x. By setting t1 = r′t′1, t2 = r′t′2, c = r′′x, we obtain ut1vt2 = gc

and |c| ≤ 24λBT .

The simulator Sim of the honest-verifier statistically zero-knowledge

property can be constructed as follows: Sim samples r1, r2
$←[2λB], sets Q =

ur1vr2 , and then simulates the remaining zero-knowledge protocol to conclude
the simulation.

Due to that both ZKboundedDL and ZK2DL are honest-verifier statistically
zero-knowledge, we only need to prove that the distributions of (u, v,Q) gener-
ated by the simulator and the honest prover are statistically indistinguishable.
In other words, we need to show the following: For any fixed u = ga1 , v = ga2 ,

the statistical distance of the distributions {gr gcd(a1,a2)|r $←[2λB]} and {ur1vr2 =

gr1a1+r2a2 |r1, r2
$←[2λB]} is exponentially small.

Let b be the order of ggcd(a1,a2), i.e., b = Ord(ggcd(a1,a2)) ≤ B. From Lemma.2,

{r mod b|r $←[2λB]} is exponentially close to the uniform distribution over Zb.

Therefore the distribution {gr gcd(a1,a2)|r $←[2λB]} is exponential close to the dis-

tribution {(ggcd(a1,a2))r|r $←Zb}. From Lemma.3, {r1 · a1

gcd(a1,a2)
+ r2 · a2

gcd(a1,a2)

mod b|r1, r2
$←[2λB]} is exponentially close to the uniform distribution over Zb.

Therefore, we have that the distribution {gr1a1+r2a2 |r1, r2
$←[2λB]}, which equals

{(ggcd(a1,a2))
r1· a1

gcd(a1,a2)
+r2· a2

gcd(a1,a2)
mod b|r1, r2

$←[2λB]}, is also exponentially

close to the distribution {(ggcd(a1,a2))r|r $←Zb}. This concludes the lemma.

Zero-knowledge protocol for pseudo-DDH relation. Let u, v,w be ZKS
commitments to sets A,B,C, i.e., u = gruΠx∈AHprime(x), v = grvΠx∈BHprime(x),
w = grwΠx∈CHprime(x). If C = A ∪ B and A ∩ B = ∅, it yields that the tuple
(u, v,w) is close to a DDH tuple. We call such a tuple (u, v,w) as a pseudo-DDH

16 Xinxuan Zhang and Yi Deng

tuple and denote the pseudo-DDH relation as follows:

Rpseudo−DDH =

(u, v,w, T ;x, y, a1, a2, a3)

∣∣∣∣∣∣∣
|a1|, |a2|, |a3| ≤ T ∧

gcd(xy,Π
2λ|G|
i=1 i) = 1 ∧

u = ga1x, v = ga2y,w = ga3xy

 .

In above relation, we require that the integers x and y are products of large
primes (the second condition), which is necessary for our distance analysis in
the proof of zero-knowledge property. We provide a zero-knowledge protocol
for Rpseudo−DDH in Fig.7, which partially relies on Boneh et al’s protocol.
This protocol only satisfies a weak soundness that, a valid proof can convince
the verifer that the statement belongs to a relaxed relation R∗

pseudo−DDH =

{(u, v,w, T ;x, y, {ai, ci}i∈[3])| |a1|, |a2|, |a3| ≤ 24λBT, |c1|, |c2| ≤ 26λB2, |c3| ≤
28λB3 ∧ uc1 = ga1x, vc2 = ga2y,wc3 = ga3xy}.

Protocol ZKpseudo−DDH (Zero-knowledge protocol for Rpseudo−DDH)

Params: G← GGen(λ), B ≥ |G|; Common Input: u, v,w ∈ G, T ∈ Z;
Private Input for P: a1, a2, a3, x, y ∈ Z

1. P samples r1, r2
$←[22λB] and sends u′ = gr1x, v′ = gr2y,w′ = gr1r2xy

to V.
2. V sends l1

$←Primes(λ), l2
$←Primes(λ).

3. P finds the quotient q1, q2 ∈ Z and residue t1 ∈ [l1], t2 ∈ [l2] such
that r1x = q1l1 + t1 and r2y = q2l2 + t2. P sends Q1 = gq1 , Q′

1 = v′q1

and Q2 = gq2 , t1 and t2 to V.
4. V checks t1 ∈ [l1], t2 ∈ [l2], Q

l1
1 g

t1 = u′, Q
′l1
1 v′t1 = w′, and

Ql2
2 g

t2 = v′.

5. P samples ru, rv, rw
$←[2λB] and sends

u′′ = ur1ru , v′′ = vr2ry ,w′′ = wr1r2rw to V.
6. P and V run ZKboundedDL(u, u

′′, 23λB2; r1ru),
ZKboundedDL(u

′, u′′, 2λBT ; a1ru), ZKboundedDL(v, v
′′, 23λB2; r2rv),

ZKboundedDL(v
′, v′′, 2λBT ; a2rv), ZKboundedDL(w,w

′′, 25λB3; r1r2rw)
and ZKboundedDL(w

′,w′′, 2λBT ; a3rw).

Fig. 7: Protocol ZKpseudo−DDH

Lemma 7. In the generic group model, ZKpseudo−DDH is an honest-verifier
statistically zero-knowledge protocol for Rpseudo−DDH , achieving a weak knowl-
edge soundness defined as follows: There exists an extractor such that for any
prover P∗ convincing the verifier with inverse-polynomial probability over state-
ment (u, v,w, T), the extractor can extract x, y, a1, a2, a3, c1, c2, c3 ∈ Z such that

Zero-Knowledge Functional Elementary Databases 17

|a1|, |a2|, |a3| ≤ 24λBT |c1|, |c2| ≤ 26λB2, |c3| ≤ 28λB3, and uc1 = ga1x, vc2 =
ga2y,wc3 = ga3xy.

Proof. Completeness is obvious.
Weak knowledge soundness can be prove through the weak knowledge

soundness of ZKboundedDL and the knowledge extractor of PoKE. It is worth not-
ing that steps 2 through 4 in our protocol are the same as in Boneh et al.’s PoDDH
protocol [BBF19], which roughly consists of two PoKE protocols. We can use
the knowledge extractor provided in [BBF19] to extract x, y satisfying u′ = gx,
v′ = gy and w′ = gxy. Meanwhile, the weak knowledge soundness of ZKboundedDL

allows us to extract au, cu, a
′
u, c

′
u from the first two ZKboundedDL protocols such

that |cu|, |c′u| ≤ 2λ, |au| ≤ 25λB2, |a′u| ≤ 23λBT and uau = u′′cu , u′a
′
u = u′′c

′
u .

Hence, we have uauc
′
u = ga

′
ucux. By setting c1 = auc

′
u, a1 = a′ucu, we obtain

|c1| ≤ 26λB2, |a1| ≤ 24λBT and uc1 = ga1x. Using the same strategy, we can
extract c2, c3, a2, a3, thus meeting our goal.

The simulator Sim of honest-verifier statistically zero-knowledge prop-

erty can be constructed as follows: Initially, Sim samples r1, r2
$←[22λB] and sets

u′ = gr1 , v′ = gr2 ,w′ = gr1r2 . In step 3, Sim finds the quotient q1, q2 ∈ Z and
residue t1, t2 such that r1 = q1l1+t1 and r2 = q2l2+t2, and then applies the same

action as an honest prover. Subsequently, Sim samples ru, rv, rw
$←[2λB], sets

u′′ = ur1ru , v′′ = vr2rv ,w′′ = wr1r2rw , and simulates the ZKboundedDL protocols
to conclude the simulation.

Due to the honest-verifier statistically zero-knowledge of ZKboundedDL, we
only need to prove that for any fixed statement (u, v,w, T) and challenges l1, l2
(note that l1, l2 ≤ 2λ), the distributions of (u′, v′,w′,Q1,Q

′
1,Q2, t1, t2, u

′′, v′′,w′′)
generated by the simulator and the honest prover are exponentially close. We
denote these two distributions by Dsim and DP respectively. Thus, for any fixed
statement (u, v,w, T) and challenges l1, l2, we have the following:

Dsim = {(gr1 , gr2 , gr1r2 , g⌊r1/l1⌋, (gr2)⌊r1/l1⌋, g⌊r2/l2⌋, r1 mod l1,

r2 mod l2, u
r1ru , vr2rv ,wr1r2rw)|r1, r2

$←[22λB], ru, rv, rw
$←[2λB]}

DP = {(gr1x, gr2y, gr1r2xy, g⌊r1x/l1⌋, (gr2y)⌊r1x/l1⌋, g⌊r2y/l2⌋, r1x mod l1,

r2y mod l2, u
r1ru , vr2rv ,wr1r2rw)|r1, r2

$←[22λB], ru, rv, rw
$←[2λB]}

Denote f(r1, r2, ru, rv, rw) := (gr1 , gr2 , gr1r2 , g⌊r1/l1⌋, (gr2)⌊r1/l1⌋, g⌊r2/l2⌋, r1
mod l1, r2 mod l2, u

r1ru , vr2rv ,wr1r2rw). As a key observation, f(r1, r2, ru, rv, rw) =
f(r1 mod l1|G|, r2 mod l2|G|, ru mod |G|, rv mod |G|, rw mod |G|). We thus have
thatDsim = {f(r1 mod l1|G|, r2 mod l2|G|, ru mod |G|, rv mod |G|, rw mod |G|)|
r1, r2

$←[22λB], ru, rv, rw
$←[2λB]}. Let x′ (resp. y′) be the element in Z|G| sat-

isfying xx′ ≡ 1 mod |G| (resp. yy′ ≡ 1 mod |G|). This is possible due to
gcd(xy, |G|) = 1. Then, we obtain thatDP = {f(r1x mod l1|G|, r2y mod l1|G|, rux′

mod |G|, rvy′ mod |G|, rwx′y′ mod |G|)|r1, r2
$←[22λB], ru, rv, rw

$←[2λB]}. From
Lemma.2 and the fact that gcd(x, l1|G|) = 1, gcd(y, l2|G|) = 1, we have that both
of the distributions Dsim and DP are exponentially close to the distribution

18 Xinxuan Zhang and Yi Deng

{f(r1, r2, ru, rv, rw)|r1
$←Zl1|G|, r2

$←Zl2|G|, ru, rv, rw
$←Z|G|}, which concludes

the proof.

Note that boths of the protocols provided in this subsection are constant-
round public-coin protocols. One can use the Fiat-Shamir heuristic to obtain the
non-interactive version of these zero-knowledge protocols. These non-interactive
protocols satisfy zero-knowledge property and the same weak knowledge sound-
ness property in the random oracle model. We denote these two non-interactive
protocols as NIZKcoprime and NIZKpseudo−DDH .

4 Zero-Knowledge Set with Set-Operation Queries

In this section, we introduce the notion of ZKS with set-operation queries, which
is the key ingredient for achieving our end goal of ZK-FEDBs. Moreover, we pro-
vide a concrete construction of ZKS with set-operation queries based on groups
of unknown orders.

4.1 Definition

Informally, ZKS with set-operation queries allow one to commit to several sets
{Si}i∈[m], and then convincingly answer a) the (non-)membership queries and
b) for any combined operation Q represented as a “circuit” of unions, intersec-
tions and set-differences, the queries in the form as “send me all records x in
Q(S1, · · · , Sm),” without revealing any extra knowledge. The formal definition
of ZKS with set-operation queries is as follows:

Definition 2 (ZKS with Set-Operation Queries). A ZKS with set-operation
queries consists of six algorithms, (Setup, Com, Prove,Verify,SO.Prove,SO.Verify),
where Setup, Com, Prove,Verify are in the same form as a standard ZKS and

• π ← SO.Prove(δ, c̃om, τ̃ ,Q, Soutput): On input the CRS δ, the list of set com-
mitments and the associated opening information c̃om = (com1, · · · , comm),
τ̃ = (τ1, · · · , τm) where (comi, τi) ∈ Com(δ, Si), a combined operation Q, and
the output set Soutput, SO.Prove outputs a proof π of Soutput = Q(S1, · · · , Sm).
• 0/1← SO.Verify(δ, c̃om,Q, Soutput, π): On input the CRS δ, the list of com-
mitments c̃om, the combined operation Q, the output Soutput, and the proof
π, SO.Verify either outputs 1 (denoting accept) or 0 (denoting reject).

and satisfies the following properties:

• Completeness: Completeness consists of two parts,

a) For any set S and any x,

Pr

[
Verify(δ, com, x, S(x), π)=1

∣∣∣∣∣δ←Setup(1λ); (com, τ)←Com(δ, S);

π ← Prove(δ, com, τ, x, S(x))

]
=1

Zero-Knowledge Functional Elementary Databases 19

b) For any sets {Si}i∈[m] and any combined operation Q which takes m sets
as input and outputs one set, let Soutput = Q(S1, · · · , Sm), and thus

Pr

SO.Verify(δ, c̃om,Q,
Soutput, π) = 1

∣∣∣∣∣∣∣
δ ← Setup(1λ);

∀i ∈ [m], (comi, τi)← Com(δ, Si);

π←SO.Prove(δ, c̃om, τ̃ ,Q, Soutput)

=1

where c̃om = (com1, · · · , comm) and τ̃ = (τ1, · · · , τm).

• Function Binding: For any PPT adversary A, the probability that A wins
the following game is negligible:

1. The challenger generates a CRS δ by running Setup(1λ) and gives δ to
the adversary A.

2. The adversary A outputs a set of commitments {comi}i∈[m] and the
following tuples:

(a) A series of (non-)membership query-proof tuples {(com′
j , xj , vj , πj)}j∈[n1],

where com′
j ∈ {comi}i∈[m] (supposing that com′

j = comtj).
(b) A series of set-operation query-proof tuples {(c̃omj ,Qj , S

′
j , π

′
j)}j∈[n2],

where c̃omj is a list of commitments contained in {comi}i∈[m] (sup-
posing that c̃omj = (comtj1 , comtj2 , · · ·)).

3. The adversary A wins the game if the following hold:

(a) For each j ∈ [n1], Verify(com
′
j , xj , vj , πj) = 1

(b) For each j ∈ [n2], SO.Verify(c̃omj ,Qj , S
′
j , π

′
j) = 1.

(c) There do not exist sets {Si}i∈[m] satisfying Stj (xj) = vj for each j ∈
[n1] and Qj(S̃j) = S′

j for each j ∈ [n2], where S̃j = (Stj1 , Stj2 , · · ·).
• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

AOP (δ, stA, {comi}i∈[m])=1

∣∣∣∣∣∣∣
δ ← Setup(1λ),

({Si}i∈[m], stA)← A(δ),
for i ∈ [m], (comi, τi)←Com(δ, Si)

−
Pr

AOS (δ, stA, {comi}i∈[m])=1

∣∣∣∣∣∣∣
(δ, stδ)← Sim(1λ),

({Si}i∈[m], stA)← A(δ),
({comi}i∈[m], stS)←Sim(δ,m, stδ)

is negligible in λ, where OP and OS are defined as follows:

OP : On input (comi, x) for some i∈ [m], OP outputs π←Prove(δ, comi, τi, x, Si(x)).
On input (c̃om,Q) where c̃om = (comt1 , · · · , comtn) for some t1, · · · , tn ∈
[m], OP outputs π ← SO.Prove(δ, c̃om, τ̃ ,Q,Q(St1 , · · · , Stn)) where τ̃ =
(τt1 , · · · , τtn). In other cases, OP outputs ⊥.

OS: On input (comi, x) for some i∈ [m], OS outputs π←Sim(δ, com, stS , x, Si(x)).
On input (c̃om,Q) where c̃om = (comt1 , · · · , comtn) for some t1, · · · , tn ∈
[m], OS outputs π ← Sim(δ, c̃om, stS ,Q,Q(St1 , · · · , Stn)). In other cases,
OS outputs ⊥.

20 Xinxuan Zhang and Yi Deng

4.2 Construction of ZKS with Set-Operation Queries

This subsection describes our construction of a ZKS scheme with set-operation
queries. Our construction builds on the standard ZKS descirbed in Section.3.1.
The Setup,Commit,Prove,Verify algorithms remain the same as Fig.5, and we only
show how to construct SO.Prove and SO.Verify algorithms.

Combined Operations. In this paper, we denote a combined operation Q by
a “circuit” of intersection “∩”, union “∪”, and set-difference “\”. Firstly, we
demonstrate how to prove a basic set operation (namely the intersection, union
or set-difference) on committed sets.

Algorithm for Intersection. Here we present a non-interactive protocol to
prove that a commitment CI commits to the intersection of two sets committed
in CS1

and CS2
. Our protocol satisfies a special-purpose knowledge soundness,

which roughly ensures the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CI , then the extractor can generate membership proofs show-
ing that x belongs to the sets committed in CS1

and CS2
.

– If one can generate a non-membership proof showing that x does not be-
long to the set committed in CI , then the extractor can generate a non-
membership proof showing that x does not belong to either the set commit-
ted in CS1

or the set committed in CS2

Follow the fact that, for any S1 and S2, proving I = S1 ∩S2 only requires to
show that I is a subset of S1 and S2, and J1 = S1\I, J2 = S2\I are disjointed. We
construct the zero-knowledge protocol Intersection-NIZK shown in Fig. 8. For any
set S = {x1, · · · , xm}, we denote byHprime(S) = {Hprime(x1), · · · ,Hprime(xm)}.

Lemma 8. Intersection-NIZK is a zero-knowledge protocol, achieving a special
purpose knowledge soundness defined as follows: There exists an extractor E =
(E1, E2) such that for any prover P∗ convincing the verifier with inverse-polynomial
probability over input (δ,CS1

,CS2
,CI), E

P∗

1 can extract w in expected polynomial
time such that the following holds:

1. On input w, ga ∈ G and prime p ∈ Z satisfying p ≥ 28λB3 and CI = gpa,
E2(w, (ga, p)) can output gb and gc such that CS1 = gpb and CS2 = gpc .

2. On input w and a, b, p ∈ Z such that prime p ≥ 28λB3 and Ca
I · gbp = g,

E2(w, (a, b, p)) can output a′, b′ ∈ Z such that Ca′

S1
· gb′p = g or Ca′

S2
· gb′p = g.

Proof. Completeness directly follows the stucture of ZKS commitment, there-
fore we skip it here.

The simulator of the zero-knowledge property only needs to generate CJ1
=

gr1 and CJ2 = gr2 by sampling r1, r2
$←[2λB], and generate π1, π2, π3 using the

simulator of NIZKpseudo−DDH and NIZKcoprime. Then the zero-knowledge prop-
erty follows from the fact that the distributions of CJ1

,CJ2
generated by the

simulator are statistically indistinguishable from those generated by an honest
prover and the zero-knowledge property of NIZKpseudo−DDH and NIZKcoprime.

Zero-Knowledge Functional Elementary Databases 21

Protocol Intersection-NIZK

Common Input: δ = (G, g, B,Hprime), CS1 ,CS2 ,CI ;
Private Input for Prover: S1, S2, I, τS1 , τS2 , τI satisfying that
(CS1

, τS1
) ∈ Commit(δ, S1); (CS2

, τS2
) ∈ Commit(δ, S2);

(CI , τI) ∈ Commit(δ, I) and S1 ∩ S2 = I.

Prover:
1. Generate the commitments CJ1

and CJ2
to the sets J1 = S1\I and

J2 = S2\I.
2. Run π1 ← NIZKpseudo−DDH(CI ,CJ1

,CS1
, 2λB) and

π2 ← NIZKpseudo−DDH(CI ,CJ2 ,CS2 , 2
λB) using the required witness

contained in the opening information.
3. Run π3 ← NIZKcoprime(CJ1

,CJ2
, 2λB) using the required witness

contained in the opening information.
4. Output π = (CJ1

,CJ2
, π1, π2, π3)

Verifier: Output 1 iff. the proofs contained in π are valid.

Fig. 8: Protocol Intersection-NIZK

The proof of the special purpose knowledge soundness is as follows.
From the weak knowledge soundness of NIZKpseudo−DDH , E1 can extract

w1 = (x, y, a1, a2, a3, c1, c2, c3) such that |a1|, |a2|, |a3| ≤ 25λB2, |c1|, |c2| ≤
26λB2, |c3| ≤ 28λB3, and Cc1

I = ga1x,Cc2
J1

= ga2y,Cc3
S1

= ga3xy; and w2 =

(x′, y′, a′1, a
′
2, a

′
3, c

′
1, c

′
2, c

′
3) such that |a′1|, |a′2|, |a′3| ≤ 25λB2, |c′1|, |c′2| ≤ 26λB2,

|c′3| ≤ 28λB3, and C
c′1
I = ga

′
1x

′
,C

c′2
J2

= ga
′
2y

′
,C

c′3
S2

= ga
′
3x

′y′
. From the weak

knowledge soundness of NIZKcoprime, E1 can extract w3 = (t1, t2, c) such that
|c| ≤ 25λB2 and Ct1

J1
Ct2
J2

= gc. Here, E1 outputs w = (CJ1
,CJ2

, w1, w2, w3).
Nextly, we show how E2 works to conclude the proof:

1. On input w, ga ∈ G and prime p ∈ Z satisfying p ≥ 28λB3 and CI = gpa, E2

firstly parses w as (CJ1
,CJ2

, w1, w2, w3) and parses w1 as (x, y, a1, a2, a3, c1,
c2, c3). Since Cc1

I = ga1x, it follows that gc1pa = ga1x. We claim that p|a1x,
otherwise, from Lemma.4, an attacker could easily find a p-root of g and
break the strong RSA assumption. Since p is a prime larger than a1, it
follws that p|x and Cc3

S1
= ga3xy = (ga3xpy)p where xp = x/p ∈ Z. As

gcd(p, c3) = 1, from Lemma.4, E2 can easily compute gb from (c3, g
a3xy/p)

such that CS1 = gpb . Using the same strategy, E2 can also compute gc such
that CS2 = gpc .

2. On input w and a, b, p ∈ Z satisfying that p is a prime larger than 28λB3 and
Ca
I ·gbp = g, E2 firstly parses w as (CJ1

,CJ2
, w1, w2, w3) and further parses w1

as (x, y, a1, a2, a3, c1, c2, c3). We claim that gcd(p, x) = 1, since it is known
that Ca

I ·gbp = g and Cc1
I = ga1x; otherwise, an attacker could easily break the

strong RSA assumption. If gcd(p, y) = 1 (or equivalently, gcd(p, a3xy) = 1),
E2 can easily find integers α, β satisfying αp + βa3xy = 1, and output

22 Xinxuan Zhang and Yi Deng

a′ = βc3 and b′ = α such that Ca′

S1
· gb′p = Cβc3

S1
gαp = gβa3xygαp = g. Simi-

larly, parsing w2 = (x′, y′, a′1, a
′
2, a

′
3, c

′
1, c

′
2, c

′
3), if gcd(p, y

′) = 1, E2 can also

compute a′, b′ ∈ Z such that Ca′

S2
·gb′p = g. The construction of E2 concludes

by claiming that at least one of the gcd(p, y) = 1, gcd(p, y′) = 1 must hap-
pen. Otherwise, an attacker could easily break the strong RSA assumption
as follows: Since p is a large prime and gcd(p, y) ̸= 1, gcd(p, y′) ̸= 1, it follows

that p|y, p|y′. Then, from Lemma.4 and the fact Cc2
J1

= ga2y,C
c′2
J2

= ga
′
2y

′
, it

can compute h1, h2 such that CJ1 = hp1 and CJ2 = hp2. Subsequently, from
Lemma.4 and the fact Ct1

J1
Ct2
J2

= gc where w3 = (t1, t2, c), it can compute h
such that hp = g, breaking the strong RSA assumption.

Algorithm for Union. Herein we present a non-interactive protocol to prove
that a commitment CU commits to the union of two sets committed in CS1

and CS2 . Our protocol satisfies a special-purpose knowledge soundness, which
roughly ensures the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CU , the extractor can generate a membership proof showing
that x belongs to the set committed in either CS1

or CS2
.

– If one can generate a non-membership proof showing that x does not belong
to the set committed in CI , then the extractor can generate non-membership
proofs showing that x does not belong to the sets committed in CS1 and CS2 .

We construct the zero-knowledge protocol Union-NIZK in Fig. 9.

Lemma 9. Union-NIZK is a zero-knowledge protocol, achieving a special purpose
knowledge soundness defined as follows: There exists an extractor E = (E1, E2)
such that for any prover P∗ convincing the verifier with inverse-polynomial prob-
ability over input (δ,CS1

,CS2
,CI), E

P∗

1 can extract w within an expected time
such that the following hold:

1. On input w and ga ∈ Z and prime p satisfying p ≥ 28λB3 and CU = gpa,
E2(w, (g

a, p)) can output gb such that CS1 = gpb or CS2 = gpb .
2. On input w and a, b, p ∈ Z such that prime p ≥ 28λB3 and Ca

U · gbp = g,

E2(w, (a, b, p)) can output a′, b′, a′′, b′′ ∈ Z such that Ca′

S1
· gb′p = g and

Ca′′

S2
· gb′′p = g.

The proof of this lemma is similar to Lemma.8. We defer it to Appendix.D.

Algorithm for Set-Difference. We present a non-interactive protocol to prove
that the differenceD between two sets S1, S2 committed in CS1

and CS2
(i.e.,D =

S1\S2) is committed in CD. Our protocol satisfies a special-purpose knowledge
soundness, which roughly ensures the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CD, the extractor can generate a membership proof showing
that x belongs to the set committed in CS1 and a non-membership proof
showing that x doesn’t belong to the set committed in CS2

.

Zero-Knowledge Functional Elementary Databases 23

Protocol Union-NIZK

Common Input: δ = (G, g, B,Hprime), CS1 ,CS2 ,CU ;
Private Input for Prover: S1, S2, U, τS1 , τS2 , τU satisfying that
(CS1

, τS1
) ∈ Commit(δ, S1); (CS2

, τS2
) ∈ Commit(δ, S2); (CU , τU) ∈

Commit(δ, U) and S1 ∪ S2 = U .

Prover
1. Generates the commitment CI ,CJ1

,CJ2
to the sets

I = S1 ∩ S2, J1 = U\S1, J2 = U\S2.
2. Run π1 ← NIZKpseudo−DDH(CI ,CJ1

,CS2
, 2λB) using the required

witness contained in the opening information.
3. Run π2 ← NIZKpseudo−DDH(CS1 ,CJ1 ,CU , 2

λB) and
π3 ← NIZKpseudo−DDH(CS2

,CJ2
,CU , 2

λB) using the required
witness contained in the opening information.

4. Output π = (CI ,CJ1
,CJ2

, π1, π2, π3)

Verifier: Output 1 iff. the proofs contained in π are valid.

Fig. 9: Protocol Union-NIZK

– If one can generate a non-membership proof showing that x does not belong
to the set committed in CD, the extractor can generate a non-membership
proof showing that x does not belong to the set committed in CS1

or a
membership proof showing that x belongs to the set committed in CS2

.

We construct the zero-knowledge protocol Difference-NIZK in Fig. 10.

Lemma 10. Difference-NIZK is a zero-knowledge protocol, achieving a special
purpose knowledge soundness defined as follows: There exists a extractor E =
(E1, E2) such that for any prover P∗ convincing the verifier with inverse-polynomial
probability over input (δ,CS1

,CS2
,CD), EP∗

1 can extract w such that the following
holds:

1. On input w, ga ∈ G and prime p ∈ Z such that p ≥ 28λB3 and CD = gpa,
E2(w, (ga, p)) can output gb and a, b such that CS1

= gpb and Ca
S2
gpb = g.

2. On input w and a, b, p ∈ Z such that prime p ≥ 28λB3 and Ca
D · gbp = g,

E2(w, (a, b, p)) can output ga or a′, b′ such that CS2
= gpa or Ca′

S1
· gb′p = g.

The proof of this lemma is similar to Lemma.8, and we defer it to Ap-
pendix.D.

Algorithm for Combined Operations. Using above algorithms, we now con-
struct the SO.Prove and SO.Verify algorithms to conclude the construction of
ZKS with set-operation queries. Remind that a combined operation Q is a cir-
cuit comprised of gates and wires. Each gate corresponds to an intersection,
union, or set difference operation. Just like in Boolean circuits, when given a
string as input, each wire in Boolean circuit has a deterministic bit in {0, 1}.

24 Xinxuan Zhang and Yi Deng

Protocol Difference-NIZK

Common Input: δ = (G, g, B,Hprime), CS1 ,CS2 ,CD;
Private Input for Prover: S1, S2, SD, τS1 , τS2 , τD satisfying that
(CS1

, τS1
) ∈ Commit(δ, S1); (CS2

, τS2
) ∈ Commit(δ, S2); (CD, τD) ∈

Commit(δ,D) and S1\S2 = D.

Prover:
1. Generate the commitments CI ,CJ to the sets I = S1 ∩ S2, J = S2\I.
2. Run π1 ← NIZKpseudo−DDH(CI ,CD,CS1

, 2λB) and
π2 ← NIZKpseudo−DDH(CI ,CJ ,CS2

, 2λB) using the required witness
contained in the opening information.

3. Run π3 ← NIZKcoprime(CD,CS2 , 2
λB) using the required witness

contained in the opening information.
4. Output π = (CI ,CJ , π1, π2, π3)

Verifier: Output 1 iff. the proofs contained in π are valid.

Fig. 10: Protocol Difference-NIZK

Each wire in the set-operation circuit corresponds to a deterministic set when
provided with a specific input.

Therefore, to prove that a combined operation Q on (committed) sets is
performed honestly, we only need to show that each gate in Q is performed
honestly, i.e., for each gate corresponding a basic set operation, the (committed)
set corresponding to the output wire is the result of applying this set operation
to the (committed) sets corresponding to the input wires.

Without loss of generality, assume that the gates of Q are numbered based
on their execution order. That is to say, the input wires of the gate i are either
the output wire of some gate j < i or an input wire of Q, and the output wire
of the last gate is also the output wire of Q. The protocol is shown in Fig.11:

Theorem 3. The algorithms (Setup, Com, Prove,Verify) in Fig.5 together with
the algorithms (SO.Prove,SO.Verify) in Fig.11 consist a ZKS with set-operation
queries in the generic group model and random oracle model.

Proof. Completeness is oblivious.
To prove the function binding property, we will show the existence of a

extractor E satisfying that, for any PPT adversary A generating a series of valid
query-proof tuples with a noticeable probability, E can either extract a series
of sets satisfying all queries or break the strong RSA assumption. Here, E is
constructed as follows.

1. First, E invokes A to obtain m commitments, C1, · · · ,Cm. Then, E initial-
izes 2m+1 sets, labeled as S0, S1, S

′
1, · · · , Sm, S′

m. Here, S0 is used to record
all the elements x appearing in the query-proof queries generated by A (in-
cluding the elements in the output set of a set-operation query). In addition,

Zero-Knowledge Functional Elementary Databases 25

Algorithm for Verifiable Combined Operations

SO.Prove(δ, c̃om, τ̃ ,Q, Soutput): On input the CRS δ, the list of
commitments and the associated opening information
c̃om = (C1, · · · ,Cm), τ̃ = (τ1, · · · , τm) where (Ci, τi) ∈ Com(δ, Si), a
combined operation Q and the target output set Soutput. SO.Prove runs
as follows.
1. Recover the sets {Si}i∈[m] from the opening information. Regard Q

as a “circuit” and let l be the number of gates. Run Q(S1, · · · , Sm)
to obtain the sets S′

1, · · · , S′
l corresponding to the output wires of l

gates in Q (note that S′
l = Soutput). Generate the commitments

C′
1, · · · ,C

′
l to the sets S′

1, · · · , S′
l . (Note that the sets corresponding

to the input wires of circuit are already committed by {Ci}i∈[m].)
2. For each gate i, suppose Sai

, Sbi are the sets corresponding to its
input wires, Sci is the set corresponding to its output wire and
Cai ,Cbi ,Cci are their commitments.
(a) If the gate corresponds to “interaction”, SO.Prove runs

πi ← Intersection-NIZK(δ,Cai
,Cbi ,Cci).

(b) If the gate corresponds to “union”, SO.Prove runs
πi ← Union-NIZK(δ,Cai ,Cbi ,Cci).

(c) If the gate corresponds to “set-difference”, SO.Prove runs
πi ← Difference-NIZK(δ,Cai

,Cbi ,Cci).
3. Output π = (C′

1, · · · ,C
′
l, π1, · · · , πl, τ

′
l), where τ ′l is the opening

information of C′
l.

SO.Verify(δ, c̃om,Q, Soutput, π): Parse π as (C′
1, · · · ,C

′
l, π1, · · · , πl, τ

′
l).

Regard Q as a “circuit” in the same way as the prover. For each gate i,
suppose Cai

,Cbi are the commitments that commit to the sets
corresponding to the input wires and Cci is the commitment that
commits to the set corresponding to the output wire. If this gate
corresponds to “interaction” (resp. “union”, “set-difference”), check
whether πi is a valid Intersection-NIZK (resp. Union-NIZK,
Difference-NIZK) proof over the statement δ,Cai

,Cbi ,Cci . Use τ ′l to
check whether C′

l is a commitment to the set Soutput. Output 1 iff. all
checks pass.

Fig. 11: Protocol for Verifiable Combined Operations

for any i ∈ [m], Si is the sets of elements that, believed by E, are contained
in the set committed in Ci; S

′
i is the sets of elements that, believed by E,

are not contained in the set committed in Ci. Here, E invokes A to obtain
the query-proof tuples and adds all appearing elements to S0.

2. For each membership proof proving that x belongs to the set committed in
Ci, E adds x to Si, and extracts and records the tuple (x, gx, p,Ci) from
the proof such that gpx = Ci and p = Hprime(x). (The extraction of the

26 Xinxuan Zhang and Yi Deng

tuple is trivial). We call such a tuple as membership tuple. For each non-
membership proof proving that x does not belong to the set committed in Ci,
E adds x to S′

i, and extracts and records (x, a, b, p,Ci) such that Ca
i g

pb = g
and p = Hprime(x). We call such a tuple as non-membership tuple. Furth-
more, for each set-operation query-proof tuple, E uses the extractors E1

of Intersection-NIZK, Union-NIZK and Difference-NIZK to extract the corre-
sponding w.

3. For each element x ∈ S0, E applies the following. For each set-operation
query-proof tuple, if x belongs to the output set Soutput whose commitment
is C′

l, E can obtain a membership tuple (x, gx, p,C
′
l) from proof. On the

other hand, if x does not belong to the output set, then E can obtain a non-
membership tuple (x, a, b, p,C′

l). According to the special purpose knowledge
soundness of Intersection-NIZK, Union-NIZK, and Difference-NIZK, for each
gate, when given a (non-)membership tuple associated to the output wires
(we call a (non-)membership tuple associated to a wire if the commitment
in this tuple is the one committing to the set corresponding to this wire),
one can extract one or two (non-)membership tuples associated to the input
wires. E can hence recursively obtain a series of tuples associated to input
wires of the combined operation. As a result, for each obtained tuple of the
form (x, g′, p,Ci), E adds x to Si, and for each obtained tuple of the form
(x, a, b, p,Ci), E adds x to S′

i.

4. If there are no contradictions (that is, there are no elements x and i ∈
[m] such that x ∈ Si ∧ x ∈ S′

i), then E outputs S1, · · · , Sm. Otherwise, it
means that there exists (x, gx, p,Ci) and (x, a, b, p,Ci) such that gpx = Ci and
Ca
i g

pb = g, breaking the strong RSA Assumption.

Now we only need to show that the sets S1, · · · , Sm outputted by E satisfy
all queries. From step 2, we can see that these sets already satisfy the (non-
)membership queries. As for set-operation queries, we need to show that: For
each set-operation query-proof (Ct1 , · · · ,Ctk ,Q, Soutput, π), Q(St1 , · · · , Stk) =
Soutput.

Let l be the number of the gates of Q, parse π as (C′
1, · · · ,C

′
l, π1, · · · , πl, τ

′
l).

Run Q(St1 , · · · , Stk) to obtain the sets S′
1, · · · , S′

l correspnding to the output
wires of the gates in Q (thus, S′

l = Q(St1 , · · · , Stk)). Denote by (S′′
1 , · · · , S′′

k+l) =

(St1 , · · · , Stk , S
′
1, · · · , S′

l) and (C′′
1 , · · · ,C

′′
k+l) = (Ct1 , · · · ,Ctk ,C

′
1, · · · ,C

′
l). Re-

mind that E will extract lots of tuples associated to the wires in Q in step 3.
Here, we recursively prove the following statements are true for each i ∈ [k+ l]:

For each x ∈ S0, if E used to extract a tuple of the form (x, g′, p,C′′
i) in step

3, then x ∈ S′′
i ; And if E used to extract a tuple of the form (x, a, b, p,C′′

i) in
step 3, then x /∈ S′′

i .

Firstly, from the definition of S1, · · · , Sm, above statements are true for
i ∈ [k]. Suppose above statements are true for i ∈ [k + t − 1]. Then for gate
t with sets S′′

j1
, S′′

j2
(j1, j2 ≤ k + t − 1) corresponding to the input wires, if the

gate corresponding to “interactive” and (x, ga, p,C
′′
k+t) (resp. (x, a, b, p,C

′′
k+t)) is

extracted, then from the knowledge soundness of Intersection-NIZK, (x, gb, p,C
′′
j1)

Zero-Knowledge Functional Elementary Databases 27

and (x, gc, p,C
′′
j2) (resp. (x, a

′, b′,C′′
j1) or (x, a

′, b′,C′′
j2)) are extracted by E. Since

j1, j2 ≤ k + t − 1, it follows that x ∈ S′′
j1
, x ∈ S′′

j2
(resp. x /∈ S′′

j1
or x /∈ S′′

j2
),

and therefore x ∈ S′′
k+t = S′′

j1
∩ S′′

j2
(resp. x /∈ S′′

k+t = S′′
j1
∩ S′′

j2
). The case

that gate t corresponds to “union” or “set-difference” can be proved similarly.
Therefore above statement is also true for i = k + t. Recursively, the above
statements are true for each i ∈ [k + l]. Note that S′′

k+l is the output set. Re-

mind that if x ∈ Soutput (resp. x /∈ Soutput), E will extract (x, g′, p,C′′
l+k) (resp.

(x, a, b, p,C′′
l+k)), which means that x ∈ S′′

k+l (resp. x /∈ S′′
m+l). Therefore we have

Q(St1 , · · · , Stk) = S′
l = S′′

k+l = Soutput, which concludes the proof of function
binding.

For the zero-knowledge property, due to that the distribution of the ZKS
commitment is statistically indistinguishable from {gr|r ← [2λB]}, the simulator
can sample element from {gr|r ← [2λB]} as the commitments and then use the
simulators of Intersection-NIZK, Union-NIZK and Difference-NIZK to conclude the
simulations.

Remark 2. One can use the randomness r′l applied in the commitment C′
l to

replace the opening information τ ′l , which is also sufficient to check whether C′
l

is a commitment to Soutput. Therefore the proof size of a set-operation query is
only linear in the size of combined operation Q and the length of elements in S.

5 Zero-Knowledge Functional Elementary Databases

This section consists of three parts. Firstly, we discribe the difinition of ZK-
FEDBs. Secendly, we show how to transform a Boolean circuit query into a set-
operation query on related sets. Finally we show how to construct a ZK-FEDBs
from standard ZE-EDBs and ZKS with set-operation queries.

5.1 Definition of Zero-Knowledge Functional Elementary Databases

Informally, a ZK-FEDB allows one to commit an elementary database D of key-
value pairs (x, v) and then, for any Boolean circuit f , convincingly answer the
queries in the form of “send me all records (x, v) in D satisfying f(x, v) = 1”. Here
we write the output database as D(f) (i.e., D(f) = {(x, v) ∈ D|f(x, v) = 1})
and regard the membership queries (supported by the standard ZK-EDB) as a
type of special function query.

Definition 3 (Zero-Knowledge Functional Elementary Databases). A
Zero-Knowledge Functional Elementary Database consists of four algorithms
(Setup, Com, Prove, Verify),

• δ ← Setup(1λ): On input a security parameter 1λ, Setup outputs a random
string (or a structured reference string) δ as the CRS.
• (com, τ) ← Com(δ,D): On input a CRS δ and an elementary database D,
Com outputs a commitment of database com and opening information τ .

28 Xinxuan Zhang and Yi Deng

• π ← Prove(δ, com, τ, f,Doutput): On input the CRS δ, the database commit-
ment and the associated opening information (com, τ), a Boolean circuit f ,
and the target output Doutput, Prove outputs a proof π for Doutput = D(f).

• 0/1 ← Verify(δ, com, f,Doutput, π): On input the CRS δ, the commitment
com, the boolean circuit f , the target output Doutput and the proof π, Verify
accepts or rejects.

It satisfies the following three properties:

• Completeness: For any elementary database D and any Boolean circuit f ,

Pr

[
Verify(δ, com, f,D(f), π) = 1

∣∣∣∣∣δ ← Setup(1λ); (com, τ)← Com(δ,D);

π ← Prove(δ, com, τ, f,D(f))

]
= 1

• Function binding: For any PPT adversary A, the probability that A wins
in the following game is negligible:
1. The challenger generates a CRS δ by running Setup(1λ) and gives δ to

adversary A.
2. The adversary A outputs a commitment com and a series of function

query-proof tuples {(fi, Di, πi)}i∈[n].
3. The adversary A wins the game if the following hold: a) For each i ∈ [n],

Verify(δ, com, fi, Di, πi) = 1 and b) there does not exist a database D
satisfying D(fi) = Di for each i ∈ [n].

• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

[
AOP (δ, stA, com) = 1

∣∣∣∣∣δ ← Setup(1λ), (D, stA)← A(δ),
(com, τ)← Com(δ,D)

]
−

Pr

[
AOS (δ, stA, com) = 1

∣∣∣∣∣(δ, stδ)← Sim(1λ), (D, stA)← A(δ),
(com, stS)← Sim(δ, stδ)

]
is negligible in λ. where OP and OS are defined as follows:
OP : On input a Boolean circuit f , OP outputs π←Prove(δ, com, τ, f,D(f)).
OS: On input a Boolean circuit f , OS outputs π←Sim(stS , f,D(f)).

5.2 Circuit Transformation

In this subsection, we show how to transform a Boolean circuit query into a
set-operation query.

Roughly, we construct a deterministic algorithm that on input a Boolean
circuit f output a combined operation Q (a ‘circuit’ of unions, intersections and
set-differences) such that, for any database D, the set of keys belonging to the
output database of querying Boolean circuit f , (i.e., {x|∃v, (x, v) ∈ D∧f(x, v) =
1}) equals to the output of combined operation Q on the corresponding related
sets {Sb

i }b∈[0,1],i∈[n], which are defined as follows:

Sb
i = {x ∈ Sup(D)| the i-th bit of “x||v” is b}.

Zero-Knowledge Functional Elementary Databases 29

The construction of above deterministic algorithm is as follows.
Algorithm Q ← Tran(f): On input the boolean circuit f : {0, 1}n → {0, 1},
Tran(f) outputs Q, a combined operation having an input of 2n sets (S0

1 , S
1
1 ,

· · · , S0
n, S

1
n), and outputs a set S′. Here, Q is constructed as follows:

Tran first associates the i-th input wires of f with the two sets (S0
i , S

1
i).

Supposing that f contains l gates (n1, · · · , nl), without loss of generality, we
require the input wires of ni to be either the input wires of f or the output wires
of gates (n1, · · · , ni−1), and the output of gate nl is also the output of f . Then
for i from 1 to l, we have the following:

1. If gate ni is “AND” gate, and the sets associated with the two input wires
are (S0

input1, S
1
input1), (S

0
input2, S

1
input2), then denote the sets associated with

the output wire as (S1
input1 ∩ S1

input2, S
0
input1 ∪ S0

input2).
2. If gate ni is “OR” gate, and the sets associated with the two input wires are

(S0
input1, S

1
input1), (S

0
input2, S

1
input2), then denote the sets associated with the

output wire as (S1
input1 ∪ S1

input2, S
0
input1 ∩ S0

input2).
3. If gate ni is “NOT” gate, and the sets associated with the two input wires

are (S0
input, S

1
input), then denote the sets associated with the output wire as

(S1
input, S

0
input).

Supposing that (S0, S1) are the sets associated with the output wire of gate nl,
Q outputs S1.

Denote by Sup the algorithm that on input a key-value database D =
{(x1, v1), · · · , (xm, vm)}, outputs the set of keys belonging to D, i.e., Sup(D) =
{x1, · · · , xm}. We then have the following:

Lemma 11. Tran is a deterministic algorithm satisfying that for any Boolean
circuit f and any key-value databases D,

Q(S0
1 , S

1
1 , · · · , S0

n, S
1
n) = Sup(D(f))

where Sb
i = {x ∈ Sup(D)| the i-th bit of “x||v” is b}, Q = Tran(f) and D(f) =

{(x, v) ∈ D|f(x, v) = 1}.

proof sketch. Suppose S0
i , S

1
i are the sets associated to the i-th wire de-

fined as in Tran (remind that for input wire i ∈ [2n], Sb
i = {x ∈ Sup(D)| the

i-th bit of “x||v” is b}), then one can conclude the correctness of above lemma
by recursively checking that for each wire i in f , Sb

i = {x|∃v s.t. (x, v) ∈ D ∧
the value of the i-th wire of f(x, v) is b}, which means thatQ(S0

1 , S
1
1 , · · · , S0

n, S
1
n) =

{x|∃v s.t. (x, v) ∈ D∧the value of the output wire of f(x, v) is 1} = Sup(D(f)).

5.3 Construction

In this section, we present a construction of the ZK-FEDB from a standard
ZK-EDB (SetupD,ComD,ProveD,VerifyD) and a ZKS with set-operation queries
(SetupS ,ComS ,ProveS ,VerifyS ,SO.ProveS ,SO.VerifyS).

The construction of ZK-FEDBs is shown in Fig.12.

30 Xinxuan Zhang and Yi Deng

Zero-Knowledge Functional Elementary Databases

Setup(1λ): On input the security parameter 1λ, Setup generates
δD ← SetupD(1λ) and δS ← SetupS(1

λ). Output CRS δ = (δD, δS).

Commit(δ,D): On input the database D and δ = (δD, δS), Commit runs
(CD, τD)← ComD(δD, D). For each b ∈ {0, 1}, i ∈ [2l], denote by
Sb
i = {x ∈ Sup(D)| the i-th bit of x||v is b}. Commit Sb

i using the ZKS
scheme, i.e., (Cb

i , τ
b
i)← ComS(δS , S

b
i). Output the commitment

C = (CD, {Cb
i}b∈{0,1},i∈[2l]) and the open information

τ = (τD, {τ bi }b∈{0,1},i∈[2l]).

Prove(δ, C, τ, f,D(f)): Prover transforms Boolean circuit f into a
combined operations Q using the algorithm Tran. Run
πQ ← SO.ProveS(δS , {Cb

i}, {τ bi },Q, Sup(D(f))). For each
x ∈ Sup(D(f)), run πx ← ProveD(δD, CD, τD, x,D(x)) and for
b ∈ {0, 1}, i ∈ [2l], run πb

x,i ← ProveS(δS ,C
b
i , τ

b
i , x, S

b
i (x)). Output

π = (πQ, {πx, π
b
x,i}x∈Sup(D(f)),b∈{0,1},i∈[2l]).

Verify(δ, C, f,D(f), π): Parse C as (CD, {Cb
i}b∈{0,1},i∈[2l]), parse the

input π as (πQ, {πx, π
b
x,i}x∈Sup(D(f)),b∈{0,1},i∈[2l]) and run Q = Tran(f).

Output 1 iff. the following checks pass:
1. SO.VerifyS(δS , {C

b
i},Q, Sup(D(f)), πQ) = 1

2. For each x ∈ Sup(D(f)), VerifyD(δD, CD, x,D(x), πx) = 1.
3. For each x ∈ Sup(D(f)) and b ∈ {0, 1}, i ∈ [2l],

VerifyS(δS ,C
b
i , x, S

b
i (x), π

b
x,i) = 1

Fig. 12: ZK-FEDB

Theorem 4. The scheme shown in Fig.12 is a zero-knowledge functional ele-
mentary database scheme.

Proof. The completeness follows from Lemma.11 directly.

To prove the function binding property, we will show that, supposing there
exists a PPT adversary A that on input a random CRS δ, outputs a com-
mitment C and a series of valid query-proof tuples {fi, Di, πfi}i∈[t] such that
Verify(δ, C, fi, Di, πfi) = 1 with noticeable property. Then D = ∪i∈[t]Di is a
database satisfying D(fi) = Di.

First, we claim that D is indeed a database (that is, for each x ∈ Sup(D),
there is at most one value v satisfying (x, v) ∈ D), otherwise, one can break the
soundness of the ZK-EDB scheme (SetupD,ComD,ProveD,VerifyD).

Second, we claim that for each i ∈ [t], D(fi) = Di. Denote by Sb
i = {x ∈

Sup(D)| the i-th bit of x||v is b}. From the function binding of ZKS with set-

Zero-Knowledge Functional Elementary Databases 31

operation queires, we know that there exists sets S′b
i satisfying the first and

third checks of the verifier in each proof, which means the following:

1. Qi(S
′0
1 , S′1

1 , · · · , S′0
n , S′1

n) = Sup(Di) where Qi = Tran(fi).

2. For each i ∈ [2l] and x ∈ Sup(D), x ∈ S
′bx,i

i and x /∈ S
′1−bx,i

i where bx,i is
the i-th bit of x||D(x).

From the second property above, we have Sb
i = S′b

i ∩ Sup(D). Now, from the
first property, we have that Qi(S

0
1 , S

1
1 , · · · , S0

2l, S
1
2l) = Qi(S

′0
1 ∩ Sup(D), S′1

1 ∩
Sup(D), · · · , S′0

2l∩Sup(D), S′1
2l∩Sup(D)) = Di∩Sup(D) = Di. From Lemma.11,

we have D(fi) = Di, which concludes the proof.

The zero-knowledge property directly follows the zero-knowledge property
of ZK-EDB and ZKS with set-operation queries.

Performance. As shown in Remark.1, our ZKS scheme supports standard batch
technique. In Appendix.E, we additionally present a construction of ZK-EDB,
which achieves constant-size batched proofs. When utilizing this ZK-EDB and
our ZKS, and using the standard batch technique, the performance of our ZK-
FEDB is as follows:

Prover’s work Verifier’s work Communication

Commit O(ℓ|D|)EXT+O(|D|)h N/A O(ℓ)G

Query
O(ℓ|D|+ |D||f |)EXT
+O(|D|+ ℓ+ |f |)h

O(ℓ+ |f |)EXT
+O(|Doutput|+ ℓ+ |f |)h O(ℓ+ |f |)G

Table 1: Performance of our ZK-FEDB

where ℓ is the bit length of record, |D| and |Doutput| denote the size of committed
database and output database respectly, |f | is the size of query function (for
example, a search query can be expressed as a circuit of l AND gates, while a
range query can be expressed as a circuit containing no more than 2ℓ AND/OR
gates), G represents a group element, h denotes hashing to a prime and EXT is
a λ-bit exponentiation.

Furthermore, by utilizing Boneh et al.’s PoE protocol to reduce the veri-
fier’s computation cost, the proof size is approximately (28ℓ+ 122|f |)G and the
verify cost is approximately (24ℓ + 131|f |)EXT + (3ℓ + 43|f | + |Doutput|)h. We
hope our work will stimulate more research in this field and bring more efficient
constructions of ZK-FEDB.

Applications. Our construction of the ZK-FEDB can be used to construct a
Key Transparency system via [CDGM19]’s paradigm. It is easy to see that our
construction also satisfies the append-only property. The resulting Key Trans-
parency system achieves enhanced functionality, which enables clients to query
public keys in a more flexible manner.

32 Xinxuan Zhang and Yi Deng

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable suggestions. We are supported by the National Natural Science Foun-
dation of China (Grant No. 62372447 and No. 61932019) and Beijing Natural
Science Foundation (Grant No. M22003).

References

[AR20] Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value commit-
ments for blockchains and beyond. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020, LNCS 12493, pages
839–869. Springer, 2020.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for ac-
cumulators with applications to iops and stateless blockchains. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology -
CRYPTO 2019, LNCS 11692, pages 561–586. Springer, 2019.

[BdM93] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A de-
centralized alternative to digital sinatures (extended abstract). In Advances
in Cryptology - EUROCRYPT 1993, LNCS 765, pages 274–285. Springer,
1993.

[BH01] Johannes Buchmann and Safuat Hamdy. A survey on iq cryptography.
In Kazimierz Alster, Jerzy Urbanowicz, and Hugh C. Williams, editors,
Public-Key Cryptography and Computational Number Theory: Proceedings
of the International Conference organized by the Stefan Banach Inter-
national Mathematical Center Warsaw, Poland, September 11-15, 2000,
pages 1–16, Berlin, New York, 2001. De Gruyter.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-
stop signature schemes without trees. In Walter Fumy, editor, Advances
in Cryptology - EUROCRYPT 1997, LNCS 1233, pages 480–494. Springer,
1997.

[CDG+22] Brian Chen, Yevgeniy Dodis, Esha Ghosh, Eli Goldin, Balachandar Kesa-
van, Antonio Marcedone, and Merry Ember Mou. Rotatable zero knowl-
edge sets: Post compromise secure auditable dictionaries with application
to key transparency. In Advances in Cryptology – ASIACRYPT 2022,
pages 547––580, Berlin, Heidelberg, 2022. Springer-Verlag.

[CDGM19] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Mal-
vai. Seemless: Secure end-to-end encrypted messaging with less trust. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security - CCS 2019, pages 1639––1656, New York, NY, USA,
2019. ACM.

[CDV06] Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commit-
ments: Minimal assumptions and efficient constructions. In Shai Halevi
and Tal Rabin, editors, Theory of Cryptography - TCC 2006, LNCS 3876,
pages 120–144. Springer, 2006.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their appli-
cations. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-Key
Cryptography - PKC 2013, LNCS 7778, pages 55–72. Springer, 2013.

Zero-Knowledge Functional Elementary Databases 33

[CFM08] Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge
sets with short proofs. In Nigel P. Smart, editor, Advances in Cryptology
- EUROCRYPT 2008, LNCS 4965, pages 433–450. Springer, 2008.

[CHKO08] Philippe Camacho, Alejandro Hevia, Marcos A. Kiwi, and Roberto Opazo.
Strong accumulators from collision-resistant hashing. In Tzong-Chen Wu,
Chin-Laung Lei, Vincent Rijmen, and Der-Tsai Lee, editors, Information
Security, 11th International Conference - ISC 2008, LNCS 5222, pages
471–486. Springer, 2008.

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and
Leonid Reyzin. Mercurial commitments with applications to zero-
knowledge sets. In Ronald Cramer, editor, Advances in Cryptology - EU-
ROCRYPT 2005, LNCS 3494, pages 422–439. Springer, 2005.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials. In Moti Yung,
editor, Advances in Cryptology - CRYPTO 2002, LNCS 2442, pages 61–76.
Springer, 2002.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups (extended abstract). In Burton S. Kaliski, editor, Advances in
Cryptology - CRYPTO 1997, LNCS 1294, pages 410–424. Springer, 1997.

[CV12] Melissa Chase and Ivan Visconti. Secure database commitments and uni-
versal arguments of quasi knowledge. In Reihaneh Safavi-Naini and Ran
Canetti, editors, Advances in Cryptology - CRYPTO 2012, LNCS 7417,
pages 236–254. Springer, 2012.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commit-
ment scheme based on groups with hidden order. In Yuliang Zheng, editor,
Advances in Cryptology - ASIACRYPT 2002, LNCS 2501, pages 125–142.
Springer, 2002.

[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting crypto-
graphic accumulators, additional properties and relations to other prim-
itives. In Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA 2015,
LNCS 9048, pages 127–144. Springer, 2015.

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root ex-
traction and signature schemes in general groups. In Lars R. Knudsen,
editor, Advances in Cryptology - EUROCRYPT 2002, LNCS 2332, pages
256–271. Springer, 2002.

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for
fast lookups. Cryptology ePrint Archive, Paper 2022/1763, 2022. https:

//eprint.iacr.org/2022/1763.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge pro-
tocols to prove modular polynomial relations. In Burton S. Kaliski, edi-
tor, Advances in Cryptology - CRYPTO 1997, LNCS 1294, pages 16–30.
Springer, 1997.

[GM06] Rosario Gennaro and Silvio Micali. Independent zero-knowledge sets. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, ed-
itors, Automata, Languages and Programming, 33rd International Collo-
quium, ICALP 2006, LNCS 4052, pages 34–45. Springer, 2006.

https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763

34 Xinxuan Zhang and Yi Deng

[GOP+16] Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos, Roberto Tamassia,
and Nikos Triandopoulos. Zero-knowledge accumulators and set algebra.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
- ASIACRYPT 2016, LNCS 10032, pages 67–100. Springer, 2016.

[GOT15] Esha Ghosh, Olga Ohrimenko, and Roberto Tamassia. Zero-knowledge
authenticated order queries and order statistics on a list. In Tal Malkin,
Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis,
editors, Applied Cryptography and Network Security - ACNS 2015, LNCS
9092, pages 149–171. Springer, 2015.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified poly-
nomial protocol for lookup tables. Cryptology ePrint Archive, Paper
2020/315, 2020.

[HHK+21] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and

Raluca Ada Popa. Merkle2: A low-latency transparency log system. In
42nd IEEE Symposium on Security and Privacy, SP 2021, pages 285–303.
IEEE, 2021.

[Lis05] Moses D. Liskov. Updatable zero-knowledge databases. In Bimal K. Roy,
editor, Advances in Cryptology - ASIACRYPT 2005, LNCS 3788, pages
174–198. Springer, 2005.

[LNTW19] Benôıt Libert, Khoa Nguyen, Benjamin Hong Meng Tan, and Huaxiong
Wang. Zero-knowledge elementary databases with more expressive queries.
In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography - PKC
2019, LNCS 11442, pages 255–285. Springer, 2019.

[LSY+21] Yannan Li, Willy Susilo, Guomin Yang, Tran Viet Xuan Phuong, Yong
Yu, and Dongxi Liu. Concise mercurial subvector commitments: Defini-
tions and constructions. In Joonsang Baek and Sushmita Ruj, editors,
Information Security and Privacy - ACISP 2021, LNCS 13083, pages 353–
371. Springer, 2021.

[LY10] Benôıt Libert and Moti Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In Daniele Micciancio,
editor, Theory of Cryptography - TCC 2010, LNCS 5978, pages 499–517.
Springer, 2010.

[MBB+15] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten,
and Michael J. Freedman. CONIKS: Bringing key transparency to end
users. In 24th USENIX Security Symposium (USENIX Security 15), pages
383–398, Washington, D.C., 2015. USENIX Association.

[MRK03] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science - FOCS’03, pages 80–91. IEEE Computer Society, 2003.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In
Alfred Menezes, editor, Topics in Cryptology - CT-RSA 2005, LNCS 3376,
pages 275–292. Springer, 2005.

[NZ15] Moni Naor and Asaf Ziv. Primary-secondary-resolver membership proof
systems. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of
Cryptography - TCC 2015, LNCS 9015, pages 199–228. Springer, 2015.

[ORS04] Rafail Ostrovsky, Charles Rackoff, and Adam Smith. Efficient consistency
proofs for generalized queries on a committed database. In Josep Dı́az,

Zero-Knowledge Functional Elementary Databases 35

Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,
Languages and Programming- ICALP 2004, LNCS 3142, pages 1041–1053,
Berlin, Heidelberg, 2004. Springer.

[PTT11] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos.
Optimal verification of operations on dynamic sets. In Phillip Rogaway,
editor, Advances in Cryptology - CRYPTO 2011, LNCS 6841, pages 91–
110. Springer, 2011.

[PX09] Manoj Prabhakaran and Rui Xue. Statistically hiding sets. In Marc Fis-
chlin, editor, Topics in Cryptology - CT-RSA 2009, LNCS 5473, pages
100–116. Springer, 2009.

[Str19] Michael Straka. Class groups for cryptographic accumulators, 2019. https:
//www.michaelstraka.com/posts/classgroups/.

[Tam03] Roberto Tamassia. Authenticated data structures. In Giuseppe Di Battista
and Uri Zwick, editors, Algorithms - ESA 2003, LNCS 2832, pages 2–5.
Springer, 2003.

[TBP+19] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos
Papamanthou, Nikos Triandopoulos, and Srinivas Devadas. Transparency
logs via append-only authenticated dictionaries. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFengWang, and Jonathan Katz, editors, Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, pages 1299–1316. ACM, 2019.

[TKPS22] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath T. V. Setty.
Transparency dictionaries with succinct proofs of correct operation. In 29th
Annual Network and Distributed System Security Symposium, NDSS 2022.
The Internet Society, 2022.

[XLL07] Rui Xue, Ninghui Li, and Jiangtao Li. A new construction of zero-
knowledge sets secure in random oracle model. In The First International
Symposium on Data, Privacy, and E-Commerce - ISDPE 2007), pages
332–337, 2007.

[XLL08] Rui Xue, Ninghui Li, and Jiangtao Li. Algebraic construction for zero-
knowledge sets. J. Comput. Sci. Technol., 23(2):166–175, 2008.

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca
Nitulescu, and Mark Simkin. Caulk: Lookup arguments in sublinear time.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2022, pages 3121–3134. ACM, 2022.

[ZD23] Xinxuan Zhang and Yi Deng. Zero-knowledge functional elementary
databases. Cryptology ePrint Archive, Paper 2023/156, 2023.

[ZGK+22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and
Carla Ràfols. Baloo: Nearly optimal lookup arguments. Cryptology ePrint
Archive, Paper 2022/1565, 2022.

[Zhu09] Huafei Zhu. Mercurial commitments from general rsa moduli and their
applications to zero-knowledge databases/sets. In 2009 Second Interna-
tional Workshop on Computer Science and Engineering, volume 2, pages
289–292, 2009.

[ZKP17] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. An ex-
pressive (zero-knowledge) set accumulator. In 2017 IEEE European Sym-

https://www.michaelstraka.com/posts/classgroups/
https://www.michaelstraka.com/posts/classgroups/

36 Xinxuan Zhang and Yi Deng

posium on Security and Privacy (EuroS&P), pages 158–173, 2017.

Zero-Knowledge Functional Elementary Databases 37

Supplementary Material

A The proofs of Lemma.2, Lemma.3 and Lemma.4

Lemma.2 For any positive integers a, A and B satisfying that B > A, we have
that:

Dist({x $←Za}, {x mod a|x $←[A,B]}) ≤ a

B −A

where Dist means the statistical distance between distributions.

Proof. For any integer t ∈ Za, we have that Pr[x = t|x $←Za] = 1/a and

Pr[x mod a = t|x $←[A,B]] = ⌊(B−A)/a⌋
B−A or ⌊(B−A)/a⌋+1

B−A ∈ [1a −
1

B−A , 1
a + 1

B−A].
Therefore we have that

Dist({x $←Za}, {x mod a|x $←[A,B]})

=Σt∈[a]|Pr[x = t|x $←Za]− Pr[x mod a = t|x $←[A,B]]| ≤ a

B −A
.

Lemma. 3 For any integers s1,s2 and positive integers a, A, B satisfying that
B > A, gcd(s1, s2) = 1, we have that:

Dist({x $←Za}, {xs1 + ys2 mod a|x, y $←[A,B]}) ≤ 3a

B −A

where Dist means the statistical distance between distributions.

Proof. For any t ∈ Za, denote by St the set of pairs (x, y) ∈ Z2
a satisfying that

xs1 + ys2 ≡ t mod a. Due to that gcd(s1, s2) = 1, there exists integers b1, b2
such that b1s1 + b2s2 = 1. Therefore, for each i ∈ Za,

(tb1 + is2 mod a)s1 + (tb2 − is1 mod a)s2 ≡ t mod a

and thus, for each i ∈ Za, (tb1 + is2 mod a, tb2 − is1 mod a) ∈ St.

Further more, for each i ̸= j in Za, it follows that (tb1+ is2 mod a, tb2− is1
mod a) ̸= (tb1 + js2 mod a, tb2 − js1 mod a) (remind that gcd(s1, s2) = 1).
Therefore for any t ∈ Za, |St| ≥ a. Recall that ∪t∈Za

St ⊂ Z2
a, it follows that

a2 ≤ Σt∈Za
|St| ≤ |Z2

a| = a2. Therefore, for any t ∈ Za, |St| = a.

Now, for any t ∈ Za, it follows that

Pr[xs1 + ys2 mod a = t|x, y $←[A,B]]

=Σ(x′,y′)∈St
Pr[x ≡ x′ mod a, y ≡ y′ mod a|x, y $←[A,B]].

38 Xinxuan Zhang and Yi Deng

Above probability lies in range [a(1a −
1

B−A)2, a(1a + 1
B−A)2]. Therefore, if

B −A > a, we have that

Dist({x $←Za}, {xs1 + ys2 mod a|x, y $←[A,B]})

=Σt∈Za
|Pr[x = t|x $←Za]− Pr[xs1 + ys2 mod a = t|x, y $←[A,B]]|

≤ 2a

B −A
+ (

a

B −A
)2 ≤ 3a

B −A
.

In the other hand, if B − A ≤ a, it follows that Dist({x $←Za}, {xs1 + ys2

mod a|x, y $←[A,B]}) ≤ 1 ≤ 3a
B−A . The lemma is conclude.

Lemma. 4 For any multiplicative group G and group elements g, h ∈ G, if there
exists coprime integers a, p satisfying that ga = hp, then one can easily compute
h′ satisfying that g = h′p from a, p, g and h.

Proof. Due to that gcd(a, p) = 1, we can easily compute integers t1, t2 such that
t1a + t2p = 1. Thus we have that ga = hp ⇒ gat1 = hpt1 ⇒ gat1+pt2 = hpt1gpt2

⇒ g = (ht1gt2)p. Then, set h′ = ht1gt2 and we have g = h′p.

B The proof of Lemma.5

Proof. Completeness is obvious.

The weak knowledge soundness follows that: Given an acceptable proof
obtained from the prover, from the argument of knowledge property of PoKE,
one can extract {si}i∈[n] satisfying zwc = Πi∈[n]u

si
i . Rewind to step 2 and repeat

with fresh random challenge until obtain another acceptable proof. Again, from
the argument of knowledge property of PoKE, one can extract {s′i}i∈[n] satisfying

zwc′ = Πi∈[n]u
s′i
i for different challenge c′. Therefore, we have that wc−c′ =

Πi∈[n]u
si−s′i
i , which concludes the weak knowledge soundness.

The simulator of honest-verifier statistically zero-knowledge property
is constructed as follows: On input random challenges c, ℓi (where ℓi is the chal-
lenge of the i-th PoKE) and statement ({ui}i∈[n],w = Πi∈[n]u

xi
i), the simu-

lator Sim chooses si
$←[22λB] for each i ∈ [n] and computes ûi = usii and

z = Πi∈[n]û/w
c. Then Sim runs PoKE(ui, ûi; si) with challenge ℓi honestly to

conclude the simulation.

Therefore, for any fixed {ui}i∈[n],w, c, {ℓi}i∈[n], the distribution of the simu-

lation transcript TranSim is {(({ui}i∈[n],w), {usii }i∈[n], c,TranPoKEi
)|s← [22λB]},

where TranPoKEi
= (gsi , ℓi, u

⌊si/ℓi⌋
i , g⌊si/ℓi⌋, si mod ℓi). And the distribution of

the real world transcript TranReal is {(({ui}i∈[n],w), {usii }i∈[n], c,TranPoKEi
)|ri ←

[22λB], si = ri + cxi}, where TranPoKEi
= (gsi , ℓi, u

⌊si/ℓi⌋
i , g⌊si/ℓi⌋, si mod ℓi).

Denote by F({si}i∈[n]) = (({ui}i∈[n],w), {usii }i∈[n], c, (g
si , ℓi, u

⌊si/ℓi⌋
i , g⌊si/ℓi⌋, si

Zero-Knowledge Functional Elementary Databases 39

mod ℓi)). We have the following:

TranSim = {F({si}i∈[n])|∀i ∈ [n], si ← [22λB]}
TranReal = {F({si}i∈[n])|∀i ∈ [n], ri ← [22λB], si = ri + cxi}

As an important observation, F({si}i∈[n]) = F({si mod li|G|}i∈[n]). As a result,

to prove that TranSim
s
≈TranReal, we only need to prove that for each i, {si

mod li|G| |si ← [22λB]}
s
≈{si mod li|G| |ri ← [22λB], si = ri + cxi}, which

follows from Lemma.2.

C The proof of Theorem.2

Proof. Completeness is obvious.
Soundness follows that: Suppose there exists an adversary A breaking the

soundness property, which means that, upon inputting a random CRS δ, A can
output (C, x, v, v′, π, π′) such that with a noticeable probability, v ̸= v′ (without
loss of generality, we assume that v = 1 and v′ =⊥) and Verify(δ,C, x, v, π) =
Verify(δ,C, x, v′, π′) = 1.

Let p = Hprime(x). Then, from the weak knowledge soundness of NIZKDL,
one can extract (a, t) such that |t| ≤ 2λ and gap = Ct. From Lemma.4 and
gcd(p, t) = 1, one can compute h s.t. C = hp. From the weak knowledge soundness

of NIZK2DL, one can extract (a′, b′, t′) such that |t′| ≤ 2λ and (gp)a
′
Cb′ = gt

′
. We

therefore have (ga
′
hb

′
)p = gt

′
. Again, from Lemma.4 and gcd(p, t′) = 1, one can

easily compute h′ s.t. h′p = g, breaking the strong RSA assumption. Therefore,
in the generic group model (where strong RSA assumption holds [DF02]), the
weak knowledge soundness concludes.

Zero-knowledge property follows the zero-knowledge property of NIZKDL

and NIZK2DL. Upon inputting a random CRS δ, the simulator Sim samples r ←
[2λB] and outputs the commitment C = gr. To simulate the proof, Sim directly
runs the simulator of NIZKDL and NIZK2DL. From Lemma.2, the distribution of
simulated commitment {gr|r ← [2λB]} is statistically indistinguishable from the
uniform distribution over group ⟨g⟩. In addition, for any set S = {x1, · · · , xm}
and (p1, · · · , pm) = (Hprime(x1), · · · ,Hprime(xm)), the distribution of honest
commitment {grΠi∈[m]pi |r ← [2λB]} is also statistically indistinguishable from
the uniform distribution over group ⟨g⟩ (note that gcd(Πi∈[m]pi, Ord(g)) = 1,

and therefore gΠi∈[m]pi is still a generator of the group ⟨g⟩). As a result, the
distributions of the simulated and honest commitments are statistically indistin-
guishable. Together with the zero-knowledge property of NIZKDL and NIZK2DL,
no PPT adversary can tell the simulator apart from the honest committer and
prover, which concludes the proof.

D The proof of Lemma.9 and Lemma.10

In this section, we prove the security of protocols Union-NIZK and Difference-NIZK.

40 Xinxuan Zhang and Yi Deng

Proof of Lemma.9:
Completeness directly follows the stucture of ZKS commitment.
The simulator of the zero-knowledge property only needs to generate CJ1

=
gr1 , CJ2

= gr2 and CI = gr3 by sampling r1, r2, r3 ← [2λB], and generate
π1, π2, π3 using the simulator of NIZKpseudo−DDH . Then the zero-knowledge
property follows from the fact that the distributions of CJ1 ,CJ2 ,CI = gr3 gen-
erated by the simulator are statistically indistinguishable from those generated
by an honest prover and the zero-knowledge property of NIZKpseudo−DDH .

The proof of the special purpose knowledge soundness is as follows.
From the weak knowledge soundness of NIZKpseudo−DDH , E1 can extract

w1 = (x, y, a1, a2, a3, c1, c2, c3) such that |a1|, |a2|, |a3| ≤ 25λB2, |c1|, |c2| ≤
26λB2, |c3| ≤ 28λB3, and Cc1

I = ga1x,Cc2
J1

= ga2y,Cc3
S2

= ga3xy; w2 = (x′, y′, a′1, a
′
2,

a′3, c
′
1, c

′
2, c

′
3) such that |a′1|, |a′2|, |a′3| ≤ 25λB2, |c′1|, |c′2| ≤ 26λB2, |c′3| ≤ 28λB3,

and C
c′1
S1

= ga
′
1x

′
,C

c′2
J1

= ga
′
2y

′
,C

c′3
U = ga

′
3x

′y′
; and w3 = (x′′, y′′, a′′1 , a

′′
2 , a

′′
3 , c

′′
1 , c

′′
2 , c

′′
3)

such that |a′′1 |, |a′′2 |, |a′′3 | ≤ 25λB2, |c′′1 |, |c′′2 | ≤ 26λB2, |c′′3 | ≤ 28λB3, and C
c′′1
S2

=

ga
′′
1 x

′′
,C

c′′2
J2

= ga
′′
2 y

′′
,C

c′′3
U = ga

′′
3 x

′′y′′
. Here, E1 outputs w = (CJ1 ,CJ2 ,CU , w1, w2, w3).

Nextly, we show how E2 works to conclude the proof:

1. On input w, ga ∈ G and prime p ∈ Z satisfying p ≥ 28λB3 and CU = gpa, E2

firstly parses w as (CJ1 ,CJ2 , w1, w2, w3) and parses w2 as (x
′, y′, a′1, a

′
2, a

′
3, c

′
1,

c′2, c
′
3). Since C

c′3
U = ga

′
3x

′y′
, it follows that g

c′3p
a = ga

′
3x

′y′
. We claim that

p|a′3x′y′, otherwise, from Lemma.4, an attacker could easily find a p-root of
g and break the strong RSA assumption. Since p is a prime larger than a′3, it

follows that p|x′ and/or p|y′. If p|x′, from C
c′1
S1

= ga
′
1x

′
and gcd(p, c′1) = 1, E2

can easily compute gb by Lemma.4 such that CS1
= gpb . If p|y′, E2 can simi-

larly compute gc such that CJ1
= gpc . Parse w1 as (x, y, a1, a2, a3, c1, c2, c3),

then it follows that gpc2c = Cc2
J1

= ga2y. We claim that p|y, otherwise,
from Lemma.4, an attacker could break the strong RSA assumption. As
Cc3
S2

= ga3xy and gcd(p, c3) = 1, E2 can easily compute gd such that CS2 = gpd.

2. On input w and a, b, p ∈ Z satisfying that p is a prime larger than 28λB3 and
Ca
U · gbp = g, E2 firstly parses w as (CJ1 ,CJ2 , w1, w2, w3) and parses w2 as

(x′, y′, a′1, a
′
2, a

′
3, c

′
1, c

′
2, c

′
3). Since C

c′3
U = ga

′
3x

′y′
, it follows that gcd(p, x′) = 1,

otherwise, from Lemma.4 and Ca
U · gbp = g, an attacker could easily find a

p-root of g and break the strong RSA assumption. Then, gcd(p, a′1x
′) = 1,

and E2 can easily find integers α, β satisfying αp + βa′1x
′ = 1, and then

C
c′1β
S1

gαp = g. Setting a′ = βc′1 and b′ = α, then Ca′

S1
· gb′p = g. In the same

strategy, E2 can compute a′′, b′′ from w3 such that Ca′′

S2
· gb′′p = g, which

concludes the proof.

Proof of Lemma.10:
Completeness directly follows the stucture of ZKS commitment.
The simulator of the zero-knowledge property only needs to generate CI =

gr1 and CJ = gr2 by sampling r1, r2 ← [2λB], and generate π1, π2, π3 using
the simulator of NIZKpseudo−DDH and NIZKcoprime. Then the zero-knowledge

Zero-Knowledge Functional Elementary Databases 41

property follows from the fact that the distributions of CJ1 ,CJ2 generated by the
simulator are statistically indistinguishable from those generated by an honest
prover and the zero-knowledge property of NIZKpseudo−DDH and NIZKcoprime.

The proof of the special purpose knowledge soundness is as follows.

From the weak knowledge soundness of NIZKpseudo−DDH , E1 can extract
w1 = (x, y, a1, a2, a3, c1, c2, c3) such that |a1|, |a2|, |a3| ≤ 25λB2, |c1|, |c2| ≤
26λB2, |c3| ≤ 28λB3, and Cc1

I = ga1x,Cc2
D = ga2y,Cc3

S1
= ga3xy; and w2 =

(x′, y′, a′1, a
′
2, a

′
3, c

′
1, c

′
2, c

′
3) such that |a′1|, |a′2|, |a′3| ≤ 25λB2, |c′1|, |c′2| ≤ 26λB2,

|c′3| ≤ 28λB3,and C
c′1
I = ga

′
1x

′
,C

c′2
J = ga

′
2y

′
,C

c′3
S2

= ga
′
3x

′y′
. From the weak

knowledge soundness of NIZKcoprime, E1 can extract w3 = (t1, t2, c) such that
c ≤ 25λB2 and Ct1

DCt2
S2

= gc. Here, E1 outputs w = (CD,CS2
, w1, w2, w3).

Nextly, we show how E2 works to conclude the proof:

1. On input w, ga ∈ G and prime p ∈ Z satisfying p ≥ 28λB3 and CD = gpa, E2

firstly parses w as (CJ1
,CJ2

, w1, w2, w3) and parses w1 as (x, y, a1, a2, a3, c1, c2,
c3). Since C

c2
D = ga2y, it follows that gc2pa = ga2y. We claim that p|a2y, other-

wise, from Lemma.4, an attacker could easily find a p-root of g and break the
strong RSA assumption. Since p is a prime larger than a2, it follows that p|y
and Cc3

S1
= ga3xy = (ga3xy/p)p. As gcd(p, c3) = 1, E2 can easily compute gb

by Lemma.4 such that CS1
= gpb . Meanwhile, parse w3 as (t1, t2, c), it follows

that gpt1a Ct2
S2

= Ct1
DCt2

S2
= gc. Since C

c′3
S2

= ga
′
3x

′y′
, we have gcd(p, a′3x

′y′) = 1,

otherwise, from Lemma.4 and gpt1a Ct2
S2

= gc, an attacker could easily break
the strong RSA assumption. Then, E2 can efficiently find α, β ∈ Z such that
αp + βa′3x

′y′ = 1. By setting a′ = βc′3, b
′ = α, E2 outputs a′, b′ such that

Ca′

S2
gb

′p = g.

2. On input w and a, b, p ∈ Z satisfying that p is a prime larger than 28λB3

and Ca
D · gbp = g, E2 firstly parses w as (CJ1

,CJ2
, w1, w2, w3) and parses w1

as (x, y, a1, a2, a3, c1, c2, c3). Since Cc2
D = ga2y, it follows that gcd(p, y) = 1,

otherwise, from Lemma.4 and Ca
D · gbp = g, an attacker could easily find

a p-root of g and break the strong RSA assumption. There are two cases,
p ∤ x or p|x. When p ∤ x, it follows that gcd(p, a3xy) = 1. E2 can efficiently
compute α, β ∈ Z such that αp + βa3xy. By setting a′ = βc′3, b

′ = α, E2

outputs a′, b′ such that Cβc3
S1

gαp = g. When p|x, it follows that Cc1
I = ga1x =

(ga1x/p)p. From Lemma.4, E2 can compute ga such that CI = gpa. Parse w2

as (x′, y′, a′1, a
′
2, a

′
3, c

′
1, c

′
2, c

′
3), it follows that g

c′1p
a = C

c′1
I = ga

′
1x

′
. Thus, p|x′,

otherwise an attacker could easily break the strong RSA assumption. Then

one have that C
c′3
S2

= ga
′
3x

′y′
= (ga

′
3x

′
py

′
)p, and therefore, from Lemma.4, E2

can efficiently compute gb such that CS2
= gpb .

E Constant-Size Zero-Knowledge Elementary Databases

In this section, we present a standard ZK-EDB scheme achieving constant com-
mitment and proof size from groups of unknown orders.

42 Xinxuan Zhang and Yi Deng

Standard zero-knowledge elementary database scheme

Setup(1λ): On input the security parameter 1λ, Setup generates the
description of an unknown-order group G← GGen(λ) and a random

group element g
$←G. Suppose B is the upper bound of G (i.e.,

B ≥ |G|). Sample the description of a hash function Hprime that on
input a string, outputs a random prime larger than 2λ+ℓB. Output
CRS δ = (G, g, B,Hprime).

Commit(δ,D): On input the set D = {(xi, vi)}i∈[m] where for each

i ∈ [m], (xi, vi) ∈ {0, 1}l × {0, 1}l, Commit hashes keys into large
primes, i.e., for each i ∈ [m], pi ← Hprime(xi). Denote by
t = Σi∈[m]vi ·Πj ̸=ipj · (Πj ̸=ip

−1
j mod pi) such that t mod pi = vi.

Sample r, r′←[2λB] uniformly, and output the commitment
C = (c1, c2) = (grΠi∈[m]pi , gt+r′Πi∈[m]pi) and the open information
τ = (r, r′, p1, · · · , pm, D).

Prove(δ, (C, τ), x,D(x)): Parse the input τ as (r, r′, p1, · · · , pm, D).
• If D(x) = v ̸=⊥, it follows that p = Hprime(x) ∈ {p1, · · · , pm}.
Prove runs π1←NIZKDL(g

p, c1; rΠi∈[m]pi/p), π2←NIZKDL(g
p, c2 · g−v;

(t+ rΠi∈[m]pi − v)/p) and outputs π = (π1, π2).
• If D(x) =⊥, which means that p = Hprime(x) /∈ {p1, · · · , pm} and
gcd(p, rΠi∈[m]pi) = 1, Prove finds a, b such that ap+ brΠi∈[m]pi = 1,
and outputs π ← NIZK2DL(g

p, c1, g; a, b).

Verify(δ, C, x,D(x), π): If D(x) = v ̸=⊥, check whether π consists of two
valid NIZKDL proofs for statement (gp, c1) and (gp, c2 · g−v). If
D(x) =⊥, check whether π is a valid NIZK2DL proof for statement
(gp, c2, g) ∈ R2DL. Output 1 iff. the check pass.

Fig. 13: Protocol ZK-EDB

Theorem 5. The protocol constructed in Fig.13 is a secure ZK-EDB scheme in
the generic group model and random oracle model.

proof sketch. The proof of the above theorem is similar to that of Theorem.2.
The completeness is oblivious and the zero-knowledge property follows the
zero-knowledge property of NIZKDL and NIZK2DL and the fact that the distri-
bution of c1, c2 is statistically indistinguishable from the uniform distribution
over group ⟨g⟩.

Because c1 is actually a ZKS for set Sup(D), from the soundness of ZKS
scheme, no adversary can prove that x ∈ Sup(D) and x /∈ Sup(D) simulta-
neously. Now, suppose there exists an adversary that can simultaneously prove
(x, v) ∈ D and (x, v′) ∈ D, and v ̸= v′. It then means that the adversary can
generate two valid proofs NIZKDL for statements (gp, c2 · g−v), (gp, c2 · g−v′

),

Zero-Knowledge Functional Elementary Databases 43

where p = Hprime(x). From the weak knowledge soundness of NIZKDL, one can

extract (a, b), (a′, b′) such that b, b′ ≤ 2λ, gpa = (c2 ·g−v)b and gpa
′
= (c2 ·g−v′

)b
′
.

We then have (gab
′−a′b)p = g(v

′−v)bb′ . Furthermore, since gcd(p, (v′− v)bb′) = 1,
an attacker could easily find a p-root of g and break the strong RSA assumption,
which concludes the proof.

Remark 3. One can use the batch technique put forward in [BBF19] to batch
the (non-)membership proofs. For example, to prove that (x′

1, v
′
1), · · · , (x′

t, v
′
t) ∈

D, the prover hashes the keys into primes p′1, · · · p′t by Hprime and generates

the proof π = (π1, π2), π1 ← NIZKDL(g
Πi∈[t]p

′
i ,C; rΠi∈[m]pi/Πi∈[t]p

′
i), π2 ←

NIZKDL(g
p, c2 · g−ṽ; (t + rΠi∈[m]pi − ṽ)/Πi∈[t]p

′
i)) where ṽ is the least integer

that satisfies ṽ ≡ v′i mod Πi∈[t]p
′
i) for each i ∈ [t]. To prove that x′

1, · · · , x′
t /∈

Sup(D), the prover hashes them into primes p′1, · · · p′t by Hprime and finds
integers a, b such that aΠi∈[t]p

′
i + brΠi∈[m]pi = 1, and then outputs π ←

NIZK2DL(g
Πi∈[t]p

′
i ,C, g; a, b).

	Zero-Knowledge Functional Elementary Databases

