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Abstract. This paper formally analyzes two major non-profiled deep-
learning-based side-channel attacks (DL-SCAs): differential deep-learning
analysis (DDLA) by Timon and collision DL-SCA by Staib and Moradi.
These DL-SCAs leverage supervised learning in non-profiled scenarios.
Although some intuitive descriptions of these DL-SCAs exist, their for-
mal analyses have been rarely conducted yet, which makes it unclear
why and when the attacks succeed and how the attack can be improved.
In this paper, we provide the first information-theoretical analysis of
DDLA. We reveal its relevance to the mutual information analysis (MIA),
and then present three theorems stating some limitations and impossi-
bility results of DDLA. Subsequently, we provide the first probability-
theoretical analysis on collision DL-SCA. After presenting its formaliza-
tion with a proposal of our distinguisher for collision DL-SCA, we prove
its optimality. Namely, we prove that the collision DL-SCA using our
distinguisher theoretically maximizes the success rate if the neural net-
work (NN) training is completely successful (namely, the NN completely
imitates the true conditional probability distribution). Accordingly, we
propose an improvement of the collision DL-SCA based on a dedicated
NN architecture and a full-key recovery methodology using multiple neu-
ral distinguishers. Finally, we experimentally evaluate non-profiled (DL-
)SCAs using a newly created dataset using publicly available first-order
masked AES implementation. The existing public dataset of side-channel
traces is insufficient to evaluate collision DL-SCAs due to a lack of sub-
stantive side-channel traces for different key values. Our dataset enables
a comprehensive evaluation of collision (DL-)SCAs, which clarifies the
current situation of non-profiled (DL-)SCAs.

Keywords: Side-channel attack (SCA)· Collision SCA · Deep learning
· Non-profiled attack · Optimal distinguisher · Symmetric cipher.
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1 Introduction

1.1 Background

Deep-learning-based side-channel attack. Recently, deep-learning-based side-channel
attacks (DL-SCAs) have been extensively studied and developed [9,23,36,37,50,
57,60]. DL-SCA is known to be a powerful SCA on cryptographic modules. Actu-
ally, it has been shown that DL-SCA can achieve high performance in recovering
the secret key [35] and distinguishing the input [57,60] even on implementations
with SCA countermeasures, such as masking and random delay. In addition,
some previous works showed that an optimal SCA in terms of success rate can
be realized using the true conditional probability distribution of a secret inter-
mediate value given a side-channel trace [24,26,27]. This indicates that DL-SCA
can achieve such an optimal attack if the attacker can train a neural network
(NN) model perfectly, as one of the goals of DL is to approximate the true condi-
tional probability distribution. Currently, investigating the theory and practice
of DL-SCAs is essential to understand the threat of SCAs against cryptographic
implementation.

Profiled vs. non-profiled SCAs. DL-SCA was initially presented and has been
mainly developed as a profiled attack [36]. The template attack [11] is the first
profiled attack, which estimates the characteristics of side-channel leakage (i.e.,
the conditional probability distribution) from a profiling device, and then esti-
mates secret key using the side-channel leakage from the target device in the
attack phase. DL-SCA is advantageous because DL is currently known to be a
strong tool to estimate the characteristics as a conditional probability. In com-
parison to the template attack, it requires neither specific assumptions nor de-
tailed knowledge of the target device. A major drawback of profiled attacks is
the requirement of a profiling device in which the attacker can know or con-
trol the secret key.3 Thus, the applicational scope and scenario of DL-SCAs
are limited in comparison to non-profiled attacks (e.g., differential/correlation
power analysis (DPA/CPA) [7, 28]), although some literature has shown and
discussed the possibility and potential of profiling attacks in practical scenarios
(e.g., [16, 45,67]).

Differential deep-learning-based analysis (DDLA). In [58], Timon developed a
non-profiled SCA using supervised DL, called differential deep-learning analy-
sis (DDLA). Thereafter, several studies have been devoted to the improvement
of DDLA performance (e.g., [1, 17, 18, 25, 30–33, 62, 65]). Currently, DDLA-type
attack is one of the most promising non-profiled DL-SCAs ever known. It was

3 In this study, we define an SCA as a profiled attack if the SCA requires a profiling
device in which the attacker can know or control the secret key. Conversely, we
define an SCA as a non-profiled attack if it neither requires such a profiling device
nor controls the secret key of the target device. Even non-profiled attacks may train
a model, but the training dataset is acquired from the target device without knowing
nor controlling the secret key.
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demonstrated in [15,58] that DDLA can recover the secret key with fewer traces
than CPA, which is the most popular non-profiled attack. It was also shown that
DDLA is highly robust to translation of side-channel trace caused by, for exam-
ple, jitter or random delay-based countermeasure. However, theoretical analysis
of DDLA has not been well established: the efficiency of DDLA has not been
proven explicitly nor analytically and how much DDLA exploits the advantage
of DL is unclear. Additionally, it is unclear when, how, and why the DDLA
works effectively. For example, major SCAs usually have a higher performance
if the signal-to-noise ratio (SNR) of side-channel leakage measurement is higher.
However, it is not always true for DDLA, as mentioned in Section 3.

Collision DL-SCA. In [54], Staib and Moradi presented another non-profiled
SCA with supervised DL, namely collision DL-SCA. It is a DL-based variant
of conventional collision SCAs such as correlation-enhanced power analysis col-
lision attacks (CEPACA) [39] and moments-correlating collision DPA (MCC-
DPA) [41]. In the collision DL-SCA, the attacker trains an NN to infer a plaintext
from side-channel leakage of an Sbox computation, then estimates the difference
between key values of the profiled byte and other bytes. The collision DL-SCA
has been demonstrated to achieve a successful key recovery from a software (i.e.,
serialized) implementation. However, there exists no formal analysis of their at-
tack methodology (e.g., why, when, and how the attack succeeds), although some
intuitive descriptions of the attack methodology are available. Furthermore, due
to a lack/limitation of a public dataset adequate for collision SCA evaluation,
a comprehensive performance evaluation of collision (DL-)SCAs has been diffi-
cult. For example, success rate [55] is a common metric to evaluate and compare
SCAs; however, in [54], the existing public dataset is insufficient for collision
SCAs to evaluate the success rate due to limited traces for different/various key
values. Thus, formal analyses and comprehensive performance evaluations on
the collision DL-SCA would clarify its advantage in terms of both theoretical
and practical perspectives.

1.2 Our contributions

This paper provides the first formal study on non-profiled DL-SCAs, namely,
DDLA and collision DL-SCA. In addition, we propose a performance improve-
ment of collision DL-SCA by designing a dedicated NN architecture and key
estimation method. The contributions of this study are fourfold.

Information-theoretical analyses on DDLA. Although some literature
demonstrated the advantage of DDLA over major non-profiled SCAs (e.g., CPA),
limited theoretical analyses on DDLA are available, which makes it challenging
to prove its validity, optimality, and conditions for attack success. This paper first
provides a formal analysis of DDLA through some proofs from an information-
theoretical perspective. Our theorems reveal its relevance of MIA, and claim
some limitations and impossibility results of DDLA.
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Probability-theoretical analysis on collision DL-SCA. We formalize the
collision DL-SCA from a probability-theoretical perspective. This formalization
allows us to theoretically explain why the attack succeeds, clarify its applicability,
and prove its optimality. This is the first formal analysis on collision DL-SCA.

Improvement of collision DL-SCA. We propose a method to improve the
collision DL-SCA on the basis of our formal analyses. Our analyses reveal that
there is a more efficient distinguisher for collision DL-SCAs than the conventional
method presented in [54]. In addition, we propose a novel NN architecture to
decrease the number of side-channel measurements required for training (equiv-
alently that for attacking), which allows the collision DL-SCA to recover the
secret key with fewer traces than the conventional method.

Comprehensive success rate evaluation. We demonstrate the validities of our
theories through some experimental attacks on the same AES implementation on
ARM Cortex-M4 as ASCAD, which is one of the most common public datasets
in evaluating DL-SCA [4]. In this paper, we call it ASCAD implementation.
So far, we have had difficulty in evaluating collision SCAs due to a lack of
public datasets containing a sufficient number of side-channel traces for different
key values4. Thus, we newly create a dataset using ASCAD implementation
to comprehensively evaluate the success rate of collision SCAs. The evaluation
results confirm the improvement of our collision DL-SCA and clarify the current
situation of non-profiled (DL-)SCA.

The source code and dataset used in our experiment are publicly available
at [blinded for the review].

1.3 Existing studies on non-profiled DL-SCA

In this study, we focus on a non-profiled DL-SCA on symmetric cipher (espe-
cially, AES), although DL-SCA on public key cryptography has also been actively
studied (e.g., [10, 19,34,42,43,52,57,60,63,64,69]).

As aforementioned, DDLA is a major non-profiled DL-SCA, which was fol-
lowed by many studies such as [1, 17, 18, 25, 30–33, 62, 65]. Such DDLA variants
have attempted to improve the DDLA performance by using several unique
techniques, such as the preprocess of side-channel trace, noise reduction, multi-
output NN (or multi-task NN), and advanced NN architecture/training methods.
Nevertheless, they basically train NNs towards the same (or very similar) goal
as the original DDLA; hence, the utilized distinguisher is essentially equivalent
to DDLA. While the experimental and engineering aspects of the distinguisher
have been extensively studied, its theoretical effectiveness and optimality are yet
to be well established.

In contrast to DDLA and its variants using supervised learning, another
non-profiled DL-SCA using unsupervised learning has been presented in [48,49],

4 Although the ASCAD dataset includes a variable-key dataset, the number of traces
for each key value is too small to evaluate collision SCAs.
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called SCAUL and SCARL. The method first trains an autoencoder on side-
channel traces, then performs clustering on the autoencoder outputs with a
guess of the secret key, and finally estimates a correct key as the candidate
with the highest score in the clustering. This type of non-profiled DL-SCA is
evaluated only on non-protected implementation; its effectiveness and extension
for protected (e.g., masked) implementation are unknown.

Recently, a new collision DL-SCA has been presented in [54]. The collision
DL-SCA utilizes supervised learning in a way different from DDLA. That is,
the conditional probability distribution estimated by the collision DL-SCA is
different from DDLA, and the distinguishers are also essentially different from
each other. However, its theoretical validity is still unknown because of a lack
of analysis, discussion, and formal proof. In addition, its performance in terms
of success rate and the number of traces for full-key recovery have not been
comprehensively evaluated in the literature compared with the conventional non-
profiled SCAs, due to a lack of appropriate public datasets. Therefore, this paper
provides formal analyses and comprehensive performance evaluations for our
proposed DL-SCA.

1.4 Paper organization

The rest of this paper is organized as follows: Section 2 introduces DL-SCA.
Section 3 and Section 4 provide formal analyses on DDLA and collision DL-SCA,
respectively. Section 5 presents improvements of collision DL-SCA accordingly.
Section 6 conducts a performance evaluation of major non-profiled (DL-)SCAs,
namely, CPA, collision SCAs, and DDLAs, and compares our improved collision
DL-SCA with the conventional one. Finally, Section 7 concludes this paper.

2 Preliminaries

2.1 Notation

A calligraphic letter (e.g., X ) represents a set; an uppercase variable (e.g.,
X) represents a random variable over the corresponding set (i.e., X for X );
and a lowercase variable (e.g., x) is an element of the corresponding set (i.e.,
x ∈ X ), unless defined otherwise. Pr denotes a probability measure. Through-
out this paper, p denotes the true density or mass function, and q denotes
the probability density or mass function represented by an NN. For example,
the true probability mass function of discrete random variables X and Y is
pX,Y (x, y) = Pr(X = x, Y = y). We may omit the subscripted random variables
if the random variables of the probability distribution are obvious. For example,
we may write p(x, y) instead of pX,Y (x, y). Let E denote the expectation opera-
tor. For example, EXf(X) denotes the expectation of f(X) in terms of X, where
f : X → R is a (measurable) function. The conditional probability distribution
is denoted by pX|Y (x | y) = p(x | y).

LetX denote a random variable of a side-channel trace. A side-channel traces
is represented as a multi-dimensional real vector x ∈ X ⊂ Rmt , where mt ∈ N
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is the number of sample points. This study focuses on SCAs on block ciphers,
particularly AES. Let nk be the bit length of the partial key, and let nt be the
bit length of the partial plaintext and ciphertext. The secret intermediate value
is denoted as z = ϕ(k, t) ∈ Z = {0, 1}nz , where ϕ is a selection function5, integer
nz denotes the bit length of z, a bit string k ∈ K = {0, 1}nk is a key, and a bit
string t ∈ T = {0, 1}nt is public information, such as plaintexts and ciphertexts.
Their random variables are also defined in the aforementioned manner. Here, let
K denote the random variable of a key. T and K are assumed to have uniform
distributions. If we require to specify the key value for Z, we write Z(k) = ϕ(k, T ).
We assume that we have the Markov chain (T,K) → Z → X. In this paper, we
consider a case that the selection function ϕ is a bijection when the input/output
t or the partial key k is fixed, which is true in many major SCAs (e.g., SCA on
AES software implementation). This assumption indicates that the distribution
of Z is independent of the key used. Many practical selection functions can be
proven to satisfy this condition. For example, a typical selection function for
each byte of software AES implementation (i.e., Z = Sbox(K⊕T )) satisfies this
condition.

2.2 Overview of profiled DL-SCA

This subsection briefly reviews profiled DL-SCAs closely related to non-profiled
DL-SCAs. A profiled DL-SCA has two phases: profiling and attack phases.
During the profiling phase, we train an NN to model the conditional distri-
bution corresponding to the device leakage characteristics. Let Sp = { (Xl, Zl) |
1 ≤ l ≤ mpro } be a training dataset used in the profiling phase, Xl denotes
the side-channel trace (e.g., power consumption and electromagnetic radiation)
of the l-th observation, Zl denotes the corresponding intermediate value, and
|Sp| = mpro is the number of traces used in the profiling phase. We assume
that X1,X2, . . . ,Xmpro and Z1, Z2, . . . , Zmpro are independent and identically
distributed (i.i.d) random variables over X and T , respectively. Let θ ∈ Rnθ
be the NN model parameters, where nθ is the dimension of the parameters.
The profiling phase aims to estimate the optimal model parameters θ̂ using the
training dataset Sp. The optimal parameters are usually given by solving the
minimization problem of the cross entropy (CE) loss function, defined as

CE(θ) = −EZ,X log q(Z | X; θ) = −
∫ ∑

z

pZ,X(z,x) log q(z | x; θ) dx, (1)

where Z and X are the random variables of a label z and a trace x, respectively,
and qθ represents the conditional probability distribution modeled by the NN
with the parameters θ.

5 In this paper, we assume that ϕ does not consist in a leakage function (e.g., Hamming
weight). The selection function is defined to specify the intermediate value (including
the register transition related to it), which is utilized in the SCA. Selection and
leakage functions are distinctly considered.
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CE(θ) in Equation (1) takes the minimum value if and only if pZ|X = q(· |
· ; θ) [6, 22]. We can obtain a model that approximates the true distribution p if

we can determine the optimal parameters θ̂ that make CE(θ̂) sufficiently small;
however, we cannot calculate Equation (1) because it contains the integral and
summation of the unknown probability distribution p. Therefore, in general, we
approximate CE(θ) using the training data Sp as follows:

CE(θ) ≈ L(θ) = − 1

mpro

mpro∑
l=1

log q(Zl | Xl; θ). (2)

The approximated CE in Equation (2) is called negative log-likelihood (NLL).
The NLL is expected to converge in probability to CE(θ) as mpro → ∞ for fixed
qθ, according to the weak law of large numbers.

During the attack phase, we estimate the secret key k∗ of the target device
using the trained model. Let Sa = { (Xi, Ti) | 1 ≤ i ≤ matk } be a dataset used
during the attack phase, where |Sa| = matk is the number of attack traces, Xi

is the side-channel trace at the i-th observation, and Ti is the corresponding
plaintext or ciphertext. During the attack phase, we calculate the NLL for each

hypothetical key candidate k ∈ K using the intermediate value Z
(k)
i calculated

from Ti as

L(k)(θ̂) = − 1

matk

matk∑
i=1

log q(Z
(k)
i | Xi; θ̂). (3)

Thereafter, the correct key is estimated to be the key candidate with the smallest
NLL value. This is equivalent to approximate computing and comparing

CE(k)(θ) = −E log q(Z(k) | X; θ̂),

for each key candidate k.
For simplicity, we henceforth denote the number of traces by m instead of

matk and mpro, if obvious.

3 Information-theoretical analyses on DDLA

3.1 Overview

After introducing DDLA in Section 3.2, we formalize it in Section 3.3, and then
discuss the three problems associated with the DDLA from an information-
theoretical perspective. (i) DDLA must require some information loss in the
leakage function for a successful attack (Section 3.4). (ii) Simultaneous estima-
tion of the leakage function and correct key during the attack phase is impos-
sible (Section 3.5). Finally, (iii) DDLA does not work in the ideal case for the
attacker at all, where the side-channel leakage contains no noise and the secret
intermediate values unboundedly leak out from side-channel traces (Section 3.6).
These analyses reveal some limitations and impossibility results of the DDLA,
as concretely claimed in the last paragraph of each subsection entitled “Intuitive
meanings.” Some proofs of this section are described in Section D.
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3.2 Introduction to DDLA

DDLA is a major and pioneering non-profiled DL-SCA [58]. In non-profiled
attacks, the attacker attempts the key recovery solely from an attack dataset
because the profiling dataset (or training dataset) is unavailable in the scenarios.
The DDLA employs a leakage function from the secret intermediate value to a
leakage g : Z → Y, where Y is a set of leakage values (e.g., Hamming weight
(HW) and least/most significant bit (LSB/MSB)). In DDLA, we train an NN
that estimates Y (k) from X for each key candidate k (meaning that we train
|K| NNs). The attacker estimates the correct key as a candidate that minimizes
the loss function, because it is supposed that the NN training with a correct key
guess would be the best in inferring the secret intermediate value Y (k).

It should be noted that a major known drawback of DDLA is to require a huge
computational cost, because it performs the NN training for each key candidate.
In the case of AES, the attacker/evaluator should perform the NN training 256
times for a key byte. This indicates that DDLA requires 4,096 = 256 × 16 NN
trainings, which incurs a non-negligibly high computational cost.

3.3 Formalization

Let g : Z → Y be a leakage function, where Z is the set of all the intermediate
values and Y is the set of all the leakage values. Existing studies on DDLA used
the LSB, MSB, and HW of the intermediate value as the (hypothetical) leakage
function g. Note that we never assume any relation between the leakage function
g and the side-channel information X. For example, some prior works [13, 47]
assume that there exists a true leakage function gtrue and that the side-channel
information can be represented as X = gtrue(Z

(k∗)) + N , where N is some
noise. In contrast, we do not even assume such a true leakage function exists. In
this paper, we consider the leakage function to be a function that the attacker
hypothetically uses for convenience to extract from the intermediate values the
information necessary for DDLA to succeed. Therefore, the leakage function
does not necessarily have to represent the physical leakage information, and can
be any function such that the DDLA is successful. For example, a DDLA on
the first-order masked implementation with the LSB of the intermediate value
succeeds even though the side-channel traces would not contain sample points
proportional to the LSB value [58].

Although any performance metrics, such as accuracy and a loss value, can
be used to perform DDLAs, we focus on DDLAs with the CE loss function to
simplify our analysis. This means that the DDLA attacker identifies the correct

key candidate k which minimizes the loss function −
∑
i log q(Y

(k)
i | Xi; θ

(k)). In
this section, we suppose that the attacker is assumed to use an infinite number of
traces for attacks and perfectly train the NN models (i.e., we have q(·, ·; θ(k)) =
p(·, ·)), since we are interested in understanding the limit of the DDLA capability.
Thus, the estimated key in DDLA with a leakage function g is denoted as

k̂ = argmin
k

−EY (k),X log pY |X(Y (k) | X).
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Recall that, for any fixed correct key k, the intermediate value Z(k) is uniformly
distributed because T is supposed to be distributed uniformly. Therefore, the
distribution of the leakage Y (k) = g(Z(k)) is independent of the key value, and
its entropy H(Y (k)) should be constant for any k. This indicates that the DDLA
estimates the correct key as

k̂ = argmin
k

−E log pY |X(Y (k) | X)

= argmax
k

(
H(Y (k))−H(Y (k) | X)

)
= argmax

k
I(Y (k);X). (4)

Equation (4) reveals that the DDLA is a variant of mutual information analysis
(MIA), in which the attacker identifies the key candidate that maximizes the
mutual information I(Y (k);X) [20]. In fact, the DDLA has the same restrictions
of the MIA as we will show in the following subsections. In the following, we
analyze the mutual information.

For the analyses, we introduce a functional representation of a partial key
difference. Recall that a selection function ϕ : K × T → Z is assumed to be a
bijection when a secret key k or an input t is fixed, which implies that ϕ(k, ·)
has an inverse function ϕ−1(k, ·) for any fixed key k. This assumption holds for
many practical AES implementations as discussed in Section 4.6. We denote
ϕk = ϕ(k, ·) and ϕ−1

k = ϕ−1(k, ·). Then, we define the functional form of the key
difference as follows.

Definition 1. Let (k, k′) ∈ K×K be a secret key pair. The key difference of the
key pair (k, k′) is defined by δk,k′ = ϕ−1

k ◦ ϕk′ , where ◦ denotes the composition
operator.

We may omit the subscripts of δk,k′ if they are unimportant for understanding.
Here, the key difference is defined as a bijection function δ instead of a value.
This abstract definition is because we do not assume a concrete structure for the
selection function. In fact, this definition is an extension of the traditional key
difference. For example, as in AES, if the selection function ϕ(k, t) is given by
Sbox(k ⊕ t) for any t, we have

δk,k′(t) = ϕ−1
k ◦ ϕk′(t) = Sbox−1(Sbox(t⊕ k′))⊕ k = t⊕ k ⊕ k′. (5)

Equation (5) indicates that the form of the key difference δ is determined by the
value of XORed keys k⊕k′. Thus, the function δ(·) represents the key difference
as a function (note that a one-to-one correspondence exists between δ(·) and the
key difference value).

Then, we introduce the following assumption for the key differences.

Assumption 1 Let k1, k2, k3 ∈ K be any partial keys. There exists a partial key
k4 ∈ K such that ϕ−1

k1
◦ ϕk2 = ϕ−1

k3
◦ ϕk4 holds.



10 A. Ito et al.

The assumption guarantees the existence of a key difference starting from k3,
which corresponds to the key difference between any key pair k1 and k2. This is
true for many selection functions of major ciphers. For example, if the selection
function is given by ϕk(t) = Sbox(k⊕t) as in AES, the partial key k4 = k1⊕k2⊕k3
satisfies the assumption. Note that this assumption is equivalent to the key
independence condition (KIC) presented by Ito et al. in [26]. This assumption
is natural because the number of key differences |{ϕ−1

k1
◦ ϕk2 | k1, k2 ∈ K}| is

equal to that of the key candidates |K|, as shown in Proposition 1. The proof of
Proposition 1 is described in Section D.1.

Proposition 1. From Assumption 1, we have |{ δk1,k2 = ϕ−1
k1

◦ ϕk2 | k1, k2 ∈
K}| = |K|.

3.4 Unavoidable information loss in leakage function

Similary to MIAs, the performance of DDLA depends greatly on the choice of
leakage function g. For example, if the side-channel trace contains little infor-
mation on the MSBs of the intermediate values, the MSBs should not be used
as the leakage function. The leakage function g should be chosen appropriately
depending on what information on the intermediate values is contained in the
side-channel traces. This is obvious from the fact that, the larger the amount
of mutual information I(Y (k∗);X) for the correct key k∗, the more likely the
DDLA will select the correct key, as shown in Equation (4). For an inappro-
priate leakage function g, the mutual information value I(Y (k∗);X) would be
small. Conversely, the mutual information value would be large if an appropriate
function is used. Therefore, intuitively, the leakage function g should be selected
such that the mutual information I(Y (k∗);X) is maximized.

However, we reveal below that this intuition is not necessarily correct; that
is, a leakage function g that maximizes I(Y (k∗);X) sometimes results in a trivial
success rate (as low as a random guess), and g must cause an information loss for
a successful DDLA. Specifically, we will show the following two facts. The first is
that the mutual information I(Y (k∗);X) is maximized when the leakage function
g is injective (Proposition 2). This seems to imply that the most powerful attack
can be conducted using an injective leakage function. However, this is not true.
In other words, we then show that the DDLA with an injective leakage function
always fails regardless of the relation between the side-channel information X
and the intermediate value Z (Theorem 1). Therefore, an injective function must
not be used as the leakage function in DDLA.

It should be noted that similar facts are already known in previous studies
on formal analysis of MIA [13,47]. These previous studies on MIA needed some
assumptions like a specific form for leakage (e.g., X = g(Z(k∗))+N holds, where
N is noise) to prove these facts. However, such assumptions are not essential
for DDLAs because they can succeed regardless of whether such assumptions
hold. Actually, it has been shown that DDLA can successfully retrieve the secret
key from the implementations with some countermeasures such as masking and
random delay [58], where the assumptions would not hold. Therefore, we will
prove these facts in a more general case than in the previous studies.
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To this end, we prove that the mutual information I(Y (k∗);X) is maximized
if g is an injective function, which loses no information on intermediate values.

Proposition 2. The mutual information I(Y (k∗);X) is maximized if the leak-
age function g is an injection.

Proof. Let Im g := g(Z) be the image of the functions g. Because g is an injective
function from Z to Y, the function g′ : Z ∋ z 7→ g(z) ∈ Im g whose codomain
is restricted in the image Im g is a bijection function over this image. Therefore,
the equality I(X;Y (k∗)) = I(X;Z(k∗)) holds.

Proposition 2 states that using an injective function as the leakage function g
can extract most information about the intermediate values in the side-channel
traces. Here, the leakage function g can take any injective function; the identity
function of Z → Y is the simplest one (note that Z = Y in this case). An identity
function is an attractive choice in a non-profiled SCA such as DDLA, where the
attacker is assumed to have no information about the target device. However,
Theorem 1 implies that DDLA with an injective leakage function always results
in a trivial success rate.

Theorem 1. Let g be a leakage function. If g is an injective function, then it
holds that

I(Y (0);X) = I(Y (1);X) = · · · = I(Y (|K|−1);X).

The proof of this theorem is described in Section D.2.

Intuitive meanings: Theorem 1 states that DDLA with an injective leakage
function cannot distinguish the correct key and any wrong key at all from the
mutual information I(Y (k);X) (i.e., the value of loss function). In other words,
the DDLA cannot achieve a non-trivial success rate unless the leakage function g
is not injective. Thus, the leakage function g in DDLA must incur an information
loss on the intermediate value Z(k∗) for a successful attack. This information loss
would cause a degradation of the success rate of key recovery, compared to an
optimal attack that fully exploits the leakage.

3.5 Optimization difficulty of DDLA

The problem pointed out in Section 3.4 arises because DDLA is successful only
if I(Y (k∗);X) > I(Y (k);X) for any key candidate k ∈ K \ {k∗}. In other words,
in DDLA, it is mandatory to choose a hypothetical leakage function g such that
the attacker can distinguish the mutual information of the correct key from
other key candidates, rather than a hypothetical leakage function that maxi-
mizes the mutual information of the correct key. Namely, a leakage function
g that maximizes I(Y (k∗);X) −maxk ̸=k∗ I(Y

(k);X) should be used in DDLA.
Indeed, the recent study [13] pointed out the importance of the difference in mu-
tual information and provided some interesting analyses of the difference. In this



12 A. Ito et al.

study, we want to analyze whether the appropriate hypothetical leakage model
g and the secret key k∗ can simultaneously estimated in terms of the difference
I(Y (k∗);X)−maxk ̸=k∗ I(Y

(k);X). Note that this point is not discussed in [13].
Naturally, the leakage function g strongly depends on how secret information is
leaked from the device, and it would be difficult to find such g in a non-profiled
scenario. In fact, Theorem 2 states that estimating the appropriate leakage func-
tion g and the correct key k∗ is impossible, even if an infinite number of traces
are available for the attack.

Theorem 2. Define a function hg(k) = I(g(Z(k));X)−maxk′ ̸=k I(g(Z
(k′));X).

Let k1 and k2 be any two different keys. There exist two functions g1 = argmaxg hg(k1)
and g2 = argmaxg hg(k2) such that hg1(k1) = hg2(k2).

The proof of Theorem 2 is described in Section D.3.

Intuitive meanings: Theorem 2 states that, for any key candidate k, there
exists a leakage function g that maximizes I(Y (k);X) − maxk′ ̸=k I(Y

(k′);X),

and the value of the mutual information I(Y (k);X) −maxk′ ̸=k I(Y
(k′);X) has

an identical maximum value independent of k. Therefore, in DDLA, no methods
are available for finding the correct key and the leakage function g simultane-
ously. Thus, DDLA essentially requires some knowledge or assumption on leakage
characteristics to determine an appropriate g, although it is a non-profiled at-
tack. This indicates that the performance of DDLA depends on the preciseness
of the assumption on leakage to determine g, in contrast to profiled DL-SCA
and collision DL-SCA. In Section 6, we demonstrate that the choice of g (LSB
or MSB) significantly impacts the success rate, which reveals the instability of
DDLA as a non-profiled SCA.

3.6 Contradiction of DDLA

In this section, we prove that DDLA always fails in an ideal situation for the
attacker, where the side-channel leakage contains no noise and is unbounded,
such that the intermediate value can be uniquely identified from the side-channel
trace.

If a function f exists such that Z(k∗) = f(X) holds with probability 1,
we say that the intermediate value Z(k∗) can be uniquely identified from the
side channel trace X. Obviously, a usual SCA attacker (e.g., CPA, DPA, and
even simple power analysis (SPA)) trivially wins in the key recovery in the
ideal situation with such an unbounded leakage. However, if such a function f
exists, then I(Z(k);X) = H(Z(k∗)) holds for any k. Hence, the DDLA cannot
distinguish the correct and any wrong keys, regardless of the leakage function g,
as shown in Theorem 3. The proof of this theorem is shown in Section D.4.

Theorem 3. Assume that there exists a function f such that Z(k∗) = f(X)
holds with probability 1. Then, for any leakage function g, it holds that

I(Y (0);X) = I(Y (1);X) = · · · = I(Y (|K|−1);X) = H(g(Z(k∗))).
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Intuitive meanings: Theorem 3 states that DDLA has the contradiction as
an SCA: it does not always work at all in an ideal situation for the attacker,
in which other usual SCAs trivially win. This indicates that the DDLA is not
always optimal in terms of success rate. In addition, this also indicates that, for a
successful DDLA, side-channel leakage must contain some noise and be bounded
in some way, and it is an open problem what types of noise/bound improve or
deteriorate the performance of DDLA. This implies that the DDLA performance
is not always improved when the device is more leaky, in contrast to usual SCAs.
Thus, its theoretical and practical advantages over other non-profiled SCAs still
remain unclear.

4 Formal analyses on collision DL-SCA

4.1 Overview

Staib and Moradi proposed a collision DL-SCA, which is one of the non-profiled
SCA based on supervised learning in [54]. In the literature, its performance was
experimentally evaluated; however, the theoretical and formal aspects of collision
DL-SCA were not discussed, and the conditions for its applicability and the
optimality of the attack are unclear. In this section, we show its formal analyses
through three items. First, we introduce a formal definition of collision DL-SCA
distinguisher (Section 4.3). In the formal definition, we propose a distinguisher
almost the same as but slightly different from the one proposed in [54] to achieve
an optimal distinguisher. Then, we prove the optimality of our collision DL-SCA
distinguisher, which establishes our distinguisher as a better choice than the one
proposed in [54] (Section 4.4). This optimality proof shows sufficient conditions
for the application of collision DL-SCA (Section 4.5). Finally, we investigate the
applicability of collision DL-SCA to various AES implementations (Section 4.6).

4.2 Description of collision DL-SCA

We first review the collision DL-SCA proposed by Staib and Moradi in [54].
Although their proposal included a leakage identification method, we only focus
on their distinguisher in this paper.

In a non-profiled scenario, the attacker does not know the secret key k′ of
a byte when the attacker prompts to perform an NN training. To calculate the
label (i.e., intermediate value Z) for the training of NN, we need the correct key
value k′ actually used on the device. This indicates the attacker cannot train an
NN to imitate pZ′|X′ in a non-profiled scenario. To avoid this problem, the basic
idea of the collision DL-SCA is to train an NN to predict plaintext/ciphertext
T ′ for a given side-channel trace X ′ and unknown fixed key k′.6 Thus, the

6 When training a DNN-based classifier, we usually perform model training such that
it approximates a conditional probability distribution. In this case, the model is ex-
pected to approximate the conditional probability pT |X to predict T for a given X.
However, this is not true because side-channel leakages depend not only on plain-
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collision DL-SCA utilizes the conditional probability distribution pT ′|X′,K′ for
an unknown fixed key k′ instead of pZ′|X′ . Because the attacker knows the
plaintext/ciphertext in a usual non-profiling scenario, the attacker can perform
an NN training to imitate the probability distribution using a dataset (X ′m, T ′m)
acquired from the target device, while the attacker does not know the value of
k′.

The collision DL-SCA focuses on another Sbox with a key value k, and esti-
mates the difference between k′ and k as δ = k′⊕k.7 Namely, consider (Xm, Tm)
as an attack dataset of another partial plaintext and the corresponding Sbox
leakage with another correct key k. Staib and Moradi proposed an estimation
method of the partial key difference δ = k′ ⊕ k according to the probabilities of
T ⊕ δ as follows:

d(Xm, Tm; θ̂) = argmax
δ

∑
i

q(Ti ⊕ δ | Xi; θ̂), (6)

where q(· | ·; θ̂) is the probability distribution modeled by the NN with the

trained model parameter θ̂, which approximates the true conditional distribution
pT ′|X′,K′ . For example, in the case of SCA on AES, we would consider k′ as the
first partial byte of the key, while k is of other bytes. The reason why the key
difference δ can be predicted by using the conditional distribution pT ′|X′,K′ is
explained in Section 4.3.

4.3 Formal definition of collision DL-SCA

We first explain the attack procedure of the collision DL-SCA from a probability-
theoretical perspective for the sake of formalization. Let T ′, Z ′, k′, and X ′ be
a plaintext/ciphertext, secret intermediate value, partial key, and side-channel
trace, respectively. Also, let T , Z, k, and X be another byte of the plain-
text/ciphertext, secret intermediate value, partial key, and their side-channel
trace, respectively. In collision DL-SCA, we train an NN that infers T ′ from X ′.
As mentioned in Section 2, we assume that the Markov chain (T ′, k′) → Z ′ → X ′

holds, which corresponds to the NN training. A Markov chain in the opposite
direction X ′ → Z ′ → (T ′, k′) also holds, which corresponds to the NN inference.
Here, if we input X to the trained NN, the corresponding Markov chain forms
(T, k) → Z → X → Ẑ → (T̂ , k′), where Ẑ and T̂ are the estimations of Z and
T , respectively. Here, the former chain (T, k) → Z → X represents a physical
phenomenon of Z leaking through X, while the latter chain X → Ẑ → (T̂ , k′)

text/ciphertexts T but also on the secret key k used in the device due to the Markov
chain (k, T ) → Z → X. Therefore, the adversary trains the model to approximate
the conditional probability distribution pT |X,K , even if the adversary only uses the
plaintext/ciphertext T and the side-channel trace X.

7 In this study, we define a key difference by the functional form ϕ−1
k′ ◦ ϕk. How-

ever, this subsection describes the original collision DL-SCA proposed by Staib and
Moradi [54]; hence, we denote δ = k′⊕ k instead of the functional form according to
the original work.
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represents the NN inference. In this chain, Ẑ and T̂ are estimated by assuming
that k′ is used for the secret key (although it is not true and k′ is actually used),
because the NN trained with a different byte is used for inference. Therefore, the
value of T̂ is basically inequivalent to that of T because of the difference between
k and k′ (except for the case that k = k′). Regarding the relation between T̂ and
T , it should hold that Z = Ẑ,8 which is followed by ϕ(T, k) = ϕ(T̂ , k′). There-
fore, letting δk′,k = ϕ−1

k′ ◦ ϕk, we have T̂ = δ(T ), which represents an collision
SCA. Here, we can estimate the key difference δ because the adversary knows
the plaintext T , and T̂ is inferred by the trained NN.

We then formalize the attack procedure aforementioned and define the colli-
sion DL-SCA distinguisher. As mentioned, an attacker first trains an NN to infer
plaintext/ciphertext T ′ from a side-channel trace X ′ for an unknown fixed key
k′. Let pT ′|X′,K′(T | X, k′) be the true distribution to be modeled by the NN.
Here, the conditioning on K ′ indicates that the side-channel traces are acquired
when the partial key K ′ = k′ is used on the cryptographic device. Thus, the
secret key k′ is not given as input to the model. Let q(T | X; θ) denote the NN
to imitate pT ′|X′,K′(T | X, k′) with parameters θ. In the training phase, the at-

tacker finds the parameters θ̂ such that pT ′|X′,K′(T | X, k′) ≈ q(T | X; θ̂). The
NN is trained in the same way as the ordinal NLL-based training in the profiled
DL-SCA. After training, the attacker estimates the key difference δ = ϕ−1

k′ ◦ ϕk
using the trained NN q(· | ·; θ̂). For this, the attacker inputs the side-channel
trace X corresponding to another byte with a key k. If the NN has no estima-
tion errors, then T̂ = δ(T ) holds as aforementioned. Therefore, even if the NN

inference contains errors, the NN output q(t | X; θ̂) is likely to be maximized
when t = δk′,k(T ). Thus, we define the distinguisher d : Xm × T m → {0, 1}nk

with likelihood function as

d(Xm, Tm) = argmax
δ∈D

∏
i

q(δ(Ti) | Xi; θ̂)

= argmax
δ∈D

∑
i

log q(δ(Ti) | Xi; θ̂), (7)

where D = { δk′,k | k′, k ∈ K} is a set of the key difference candidates. Note that
our distinguisher in Equation (7) is given by the product of the probabilities
although Staib and Moradi’s distinguisher in Equation (6) is represented by the
sum of the probabilities. The reason for the different form of our distinguisher
is that, as shown later, ours is the optimal distinguisher whereas Staib and
Moradi’s distinguisher is not. In Equation (7), the attacker identifies the correct
partial key difference according to the maximum likelihood among at most |K|2
candidates. If we assume that the selection function satisfies Assumption 1, the
number of the key difference candidates can be reduced to |K| because we have

8 If the NN is ideally accurate such that the inference result is always correct, then
Z = Ẑ holds. However, in practice, the NN includes some inference errors, which
indicates the need for a maximum likelihood estimation using multiple traces to
enhance the inference accuracy.
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|D| = |K|. It should be noted that the distinguisher defined in Equation (7) uses
the log-likelihood, while the previous study in [54] used the sum of probabilities.
In Section 4.4, we prove that our distinguisher is better in terms of the optimal
distinguisher.

Software AES implementation For example, in the case of the software AES
implementation, the selection function is given by ϕ(t, k) = Sbox(t⊕ k). There-
fore, we have the key difference δk,k′(t) = k ⊕ k′ ⊕ t. Thus, Equation (7) can be
rewritten as

d(Xm, Tm) = argmax
k⊕k′

∑
i

log q(k ⊕ k′ ⊕ Ti | Xi; θ̂).

Note that the number of key difference candidates does not depend on the secret
key k because Assumption 1 holds.

4.4 Optimality of our distinguisher

This section describes the relationship between the collision DL-SCA and an
optimal distinguisher. The collision DL-SCA utilizes an NN that approximates
pT ′|X′,K′(T | X, k′); hence, the collision DL-SCA is validated from the perspec-
tive of optimality if we can construct an optimal distinguisher using pT ′|X′,K′(T |
X, k′). This is given by Theorem 4.9

Theorem 4 (Optimal distinguish rule in estimating partial key dif-
ference). Let Xm and Tm be side-channel traces and corresponding plain-
texts used for the attack, respectively. Assume that we have a Markov chain
(K,Tm) → (Zm, Tm) → (Xm, Tm) → K̂ as in [12], where K is a partial key,
Z is an intermediate value, and K̂ is an estimated key. Side channel leakage
from each byte is assumed to occur independently and follow the same distribu-
tion. Suppose that Assumption 1 holds. Let k′ be a secret key of another byte.
Let ∆ be a random variable for key difference δ in a functional form. Then, a
distinguisher

d(Xm, Tm) = argmax
δ

∑
i

log pT |X,K(δ(Ti) | Xi, k
′)

is optimal in estimating ∆.

The proof of Theorem 4 is described in Section D.5. Theorem 4 theoretically
validates the collision DL-SCA with our distinguisher in Equation (7) and implies
that the collision DL-SCA would achieve a success rate as high as an optimal
attack if the NN can sufficiently approximate pT ′|X′,K′(T | X, k′). In addition,
the collision DL-SCA would have an SR as optimal as the profiled DL-SCA,
if the number of traces available for the attack is sufficiently large to imitate
pT ′|X′,K′(T | X, k′).

9 In the theorem, the distinguisher is given by the conditional probability pT |X,K not
pT ′|X′,K′ . However, it does not matter because we have pT |X,K = pT ′|X′,K′ as
(T ′,X ′,K′) can be seen as an independent copy of (T,X,K).
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Fig. 1: Results of collision DL-SCAs and template attack (TA) on simulation
data.

Experimental verification of optimality. We performed an experimental attack of
our distinguisher using simulated side-channel traces to validate its optimality.
In the simulation, we generated side-channel traces as X = HW(Z) +N , where
HW(Z) is the Hamming weight of Z and N is a zero-mean Gaussian noise. For
comparison, we also performed the template attack (TA) [11], which has been
proven to be optimal in [24] if the noise is an additive Gaussian as in this sim-
ulation. We also compare them with the collision DL-SCA of Staib and Moradi
in [54], which uses a sum of probabilities in Equation (6) as a distinguisher. We
used a three-layer NN consisting of an input and hidden layers with 256 units
and an output layer to model the probability distribution pT ′|X′,K′(T | X, k′).
The ELU and softmax functions were used as the activation functions of the
intermediate and the last layers, respectively. Ten million and one million traces
were generated for training the model and estimating the secret key, respectively.
Figure 1 shows the simulation result: the number of required traces to achieve
an 80% SR by our distinguisher using q(T | X, θ̂) and the TA for different noise
variances. In Figure 1, the horizontal axis denotes the standard deviation for the
noise. We confirmed that our distinguisher achieved the SR for a given number
of traces, which was almost the same as that of the TA, as the curves for TA
and Ours were fairly consistent. In addition, our distinguisher and TA achieve
higher performance (i.e., achieve a success rate of 80% with fewer attack traces)
than the Staib–Moradi collision DL-SCA. This simulation experimentally vali-
dated the optimality of our distinguisher using pT ′|X′,K′(T | X, k′), as stated
by Theorem 4.

4.5 Conditions for attack applicability

The applicability of the collision DL-SCA depends on the following two condi-
tions:

– The selection function ϕ(k, t) must be represented by a bijection for any fixed
t or any fixed k and ϕ(k, t) should satisfy Assumption 1, which is equivalent
to the key-independence condition (KIC) [26].
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– The side-channel leakages for each Sbox computation are i.i.d and must be
separable in the time domain.

These are sufficient conditions for our optimality proof shown in Section 4.4.
The first condition is related to the selection function. Some major selection

functions are not bijection (as discussed in Section 4.6) although they satisfy As-
sumption 1. However, the attack would be still applicable if a bijective redundant
form of the selection function exists. It is sufficient for the attack applicability
that we can decompose the non-bijective selection function as ϕ = β ◦αk, where
α : K× T ∋ (k, t) 7→ α(k, t) ∈ T is a bijection for any fixed k or any fixed t and
β : T → Z is a surjection function. For simplicity, we often write αk(t) instead
of α(k, t). If the selection function can be decomposed into such a form, the first
condition is satisfied by regarding α and β as a selection function and a part of
a leakage function, respectively. We discuss the attack applicability in terms of
the selection function or its redundant form in Section 4.6.

The second condition indicates that it is necessary that the side-channel
leakage for the j-th byte Sbox computation contains only information about
the j-th byte, but never contains information about other bytes (i.e., the side-
channel leakage for the j-th byte is independent of other bytes). This is because
we should use distinct traces for NN training and δ estimation for each byte. It
depends on the target implementation whether this condition holds, as described
in Section 4.6 (which is actually true for some major AES implementations).

In addition, as mentioned in [54], for the applicability, each Sbox is computed
serially such that the side-channel traces can be separated for each Sbox compu-
tation in the time domain. On the one hand, Sbox evaluation using a (masked)
lookup table (including ASCAD implementation [4]) and bit- and share-slicing
Sbox evaluation [2, 51], which are majorly used for masking, satisfy this condi-
tion. Hence, they can be targeted by the collision DL-SCA. On the other hand,
the collision DL-SCA is inapplicable to Sbox evaluation using a technique called
byte-slicing [29,53], which processes several Sboxes in parallel by storing multiple
bytes into a register.

4.6 Concrete examples of AES

We hereafter consider an attack on various AES implementations, although the
collision DL-SCA is applicable to other block ciphers in general. Let T [j], K[j],
and Z[j] denote the j-th byte partial plaintext, secret key, and Sbox output,
where Z[j] = Sbox(T [j] ⊕ K[j]). Without loss of generality, let k = k[1], indi-
cating that we use the first byte to train an NN for example.

Software implementation. In attacking a software implementation of AES, the
selection function is usually given by

ϕ(K[j], T [j]) = Sbox(T [j]⊕K[j]). (8)

Apparently, this selection function is a bijection for any fixed t or any fixed k,
and meets Assumption 1; hence, the collision DL-SCA is applicable to this case
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in terms of the selection function. Here, the key difference is given by k ⊕ k′

because δ(t) = ϕ−1
k ◦ ϕK[j](t) = k ⊕ K[j] ⊕ t for all t. Thus, a bijective map

δ 7→ k ⊕ k′ exists.

Byte-serial hardware implementation. Byte-serial hardware is a common archi-
tecture for low-area implementation, and has been frequently employed with
masking, especially Threshold Implementation (TI) (e.g., [5,14,40,56,59]). Byte-
serial hardware usually processes each byte from the first- to sixteenth-byte10,
and the leakage function is given by XOR of two consecutive bytes, representing
a byte-wise register switching. Therefore, in attacking byte-serial hardware, the
selection function frequently consists of two consecutive bytes of plaintext and
key and is defined as

ϕ(K[j],K[j + 1], T [j], T [j + 1]) = Sbox(T [j]⊕K[j])⊕ Sbox(T [j + 1]⊕K[j + 1]).

(9)

To check the applicability of the collision DL-SCA, we examine whether this
selection function can be decomposed into two functions αk and β. In this case,
the applicability holds as we consider a 16-bit bijective redundant form of ϕ in
Equation (9) like ϕ = β ◦ αK[j]∥K[j+1], where

αK[j]∥K[j+1](T [j] ∥ T [j + 1]) = Sbox(T [j]⊕K[j]) ∥ Sbox(T [j + 1]⊕K[j + 1])

= S((T [j] ∥ T [j + 1])⊕ (K[j] ∥ K[j + 1])),

and the function β consists of a XOR operation between Sbox(T [j]⊕K[j]) and
Sbox(T [j+1]⊕K[j+1]). Here · ∥ · denotes a bit concatenation and S(·) is here
a bijection function consisting of two parallel Sboxes (and this function also
meets Assumption 1 as this function essentially consists of two parallel Sboxes
corresponding to Equation (8)). Thus, the collision DL-SCA would be applicable
to byte-serial hardware implementations in principle from the perspective of the
selection function.

However, it is still very challenging in practice to mount the collision DL-SCA
to byte-serial hardware implementations. The difficulty is posed by the fact that
the leakage of other bytes (out of target in estimating δ[j]) would always exist
in the hardware and may contribute to the side-channel leakage, in contrast to
software implementations. Thus, we require a highly accurate points-of-interest
selection without leakage related to the computation of profiling bytes. In addi-
tion, for especially masked byte-serial hardware, the Sbox circuit is frequently
pipelined (for the functional decomposition for an efficient TI realization [44]),
which indicates several Sboxes are processed in parallel during multiple clock
cycles. The effect of the aforementioned facts on the collision DL-SCA is un-
clear. Thus, although it would be feasible in principle, the practical feasibility

10 Some architectures do not necessarily process them in the ascending/descending
order (e.g., [40]).
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evaluation with state-of-the-art points-of-interest selection methods is important
for future work.

Round-based hardware implementation. We first discuss the applicability to a
round-based hardware implementation in terms of the selection function. Typical
SCAs on round-based AES hardware focus on the register transition between the
ciphertext and final-round input. In this case, the selection function is given by

ϕ(K[j], C[j], C[j′]) = Sbox−1(C[j]⊕K[j])⊕ C[j′],

where C[j] denotes the j-th byte partial ciphertext, and j′ is determinied by
j and ShiftRows (for j = 1, 5, 9, and 13, j = j′). As well as the byte-serial
implementation, we consider its 16-bit redundant form as

αK[j]∥0(C[j] ∥ C[j′]) = Sbox−1(C[j]⊕K[j]) ∥ C[j′]⊕ 0,

regarding 0 as a fixed eight-bit virtual key. On the one hand, this selection
function ϕ has a bijective redundant form α (here, T is given as C) if j ̸= j′

(and the selection function, in this case, meets Assumption 1). On the other
hand, α is not bijection for a fixed K[j], if j = j′ (it was proven in [26] that the
KIC (condition related to Assumption 1) is not met for bytes with j = j′ (i.e.,
j = 1, 5, 9, and 13)). The collision DL-SCA is not applicable to this case. In fact,
the distribution of ϕ′(K[j], C[j], C[j′]) changes depending on the value of K[j],
which indicates that we cannot calculate the NLL for δ using the probability
distribution pC|X,K(C | X, k∗). Thus, in the sense of the selection function,
the collision DL-SCA is applicable to 12 bytes of round-based AES hardware
implementation.

However, from the perspective of side-channel leakage separation, the col-
lision DL-SCA is inapplicable to the round-based AES hardware implementa-
tion even for bytes meeting the aforementioned conditions, because round-based
hardware computes 16 bytes simultaneously in parallel, and their leakages are
not separable into X[1],X[2], . . . ,X[16] in the time domain. Extension of the
collision DL-SCA to such an implementation remains a future work.

5 Improvement of collision DL-SCA

5.1 Overview

We present profiling and full-key recovery methods to improve the performance
of collision DL-SCAs, which correspond to the NN training and inference, re-
spectively. For the profiling, we propose a novel dedicated NN architecture to
utilize side-channel traces of all bytes for training the NN. Thereafter, we pro-
pose a method to increase the full-key recovery success rate by effectively using
the 16 classifiers obtained by our training method.
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Fig. 2: Our NN architecture.

5.2 Dedicated NN architecture

In Section 4.4, we validated the importance of imitating the true conditional
probability distribution as precisely as possible to achieve an optimal attack. The
preciseness of the imitation heavily depends on the number of traces available for
the NN training. However, in the non-profiled scenario of collision DL-SCAs, the
number of training traces is equivalent to the number of attack traces. Thus, the
number of training traces is highly limited in the collision DL-SCA (compared to
the profiled DL-SCA), which indicates that it may be a bottleneck in achieving
a higher success rate. To address this problem, we present an improved collision
DL-SCA using a dedicated NN architecture that can utilize 16 times more traces
for training the feature extraction part than the conventional collision DL-SCA
strategy.

Our basic idea is to unify the feature extraction parts of each NN q(T | X; θj)
and to train the unified part using all side-channel traces from 16 bytes. Figure 2
illustrates an overview of the proposed NN architecture, which consists of a
feature extractor fω to extract the information on intermediate values from side-
channel traces and classifiers gψj

to estimate the j-th byte plaintext from the
extracted features. Here, ω and (ψj)

16
j=1 are the model parameters of the feature

extractor and classifiers, respectively. The number of classifiers in our model
should equal that of all Sboxes. Let S = {(Xl[j], Tl[j]) | 1 ≤ l ≤ m, 1 ≤ j ≤ 16}
be a training dataset, whereXl[j] and Tl[j] denote the l-th side-channel trace and
plaintext/ciphertext of j-th byte, respectively. Given an l-th trace (Xl[j])

16
j=1,

the proposed model predicts T̂j by the following procedures.

1. For every j ∈ {1, 2, . . . , 16}, we input the trace Xl[j] to the feature extractor
fω and obtain the latent vector Hj = fω(Xl[j]).

2. We obtain the estimated value T̂j by inputting the extracted feature Hj

to the classifier gψj
. The estimation result is obtained as the probability

distribution of T̂j because the softmax function is used for the activation
function of the last layer of the classifier gψj

(Hj).

Thus, the proposed NN architecture shares the same feature extractor for in-
ference of the plaintext/ciphertext information of all bytes. This allows feature
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Algorithm 1 Proposed DL-SCA on AES with multiple neural distinguishers

Input: Side-channel traces xm = (x[1],x[2], . . . ,x[16])m and plaintexts tm =
(t[1], t[2], . . . , t[16])m

Output: Estimated correct key k̂ = (k̂[1], k̂[2], . . . , k̂[16])
1: (θ̂j)

16
j=1 ← TrainNN(xm, tm);

2: for j = 1 to 16 do
3: for each j′ ̸= j do

4: δ̂[j, j′]← arg max
δ

∑
i

log q(ti[j
′]⊕ δ | xi[j

′]; θ̂j);

5: end for
6: end for
7: for j = 1 to 16 do
8: for each k∗ ∈ K = {0, 1}8 do
9: k̂← (δ̂[j, 1]⊕ k∗, δ̂[j, 2]⊕ k∗, . . . , δ̂[j, 16]⊕ k∗); ▷ Let δ̂[j, j′] = 0 for j = j′

10: if Verify(k̂) = true then
11: return k̂;
12: end if
13: end for
14: end for
15: return ⊥;

extractor training to be performed using 16 times more traces in our training
method than the conventional collision DL-SCA strategy. To train our model,
we use the NLL loss function defined by

L(θ̂, (ψ̂j)
16
j=1) = − 1

m

∑
l

∑
j

log Pr
(
gψ̂j

(fω̂(Xl[j])) = Zl[j]
)
, (10)

where Pr(gψ̂j
(fω̂(Xl[j])) = Zl[j]) is the estimated probability (i.e., confidence)

of Tl[j] given the trace Xl[j]. In the training of our model, we obtain the trained

model parameters ω̂ and (ψ̂)16j=1 by minimizing Equation (10). In the following,

let q(T | X; θ̂j) be the probability distribution modeled by our NN with the

trained parameters θ̂j = (ω̂, ψ̂j).

5.3 Algorithmic description of our collision DL-SCA with improved
full-key recovery strategy

We need a full-key recovery of the target cipher to break a cryptosystem. This
indicates that we need a simultaneous success of the partial key recovery of 16
bytes to break the system, which is more challenging than recovering a partial
key. For example, CPA is a deterministic algorithm that estimates the secret
key from samples of side-channel traces and plaintext (or ciphertext). In an
unlucky case where many side-channel traces for a byte contain much noise, the
CPA requires more traces for correct key recovery. The full-key recovery by CPA
requires the number of traces to be as many as such an unlucky case among 16
CPA trials for a full-key recovery.
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This is the same for the proposed DL-SCA. However, we can use an arbitrary
byte j for the leakage profiling to model pZ|X,K(Z | X, k[j]), although we used
the first byte for the leakage profiling as pZ|X,K(Z | X, k[1]) for the explanation
in Section 4.6. In other words, the attacker can perform the NN training using the
j-th byte side-channel trace for each j to mount the proposed DL-SCA 16 times
(in the case of AES). Here, it is sufficient for the attacker to succeed in only one
full-key recovery among 16 repetitions of the proposed DL-SCA. Such multiple
trials would mitigate the negative effects of unlucky cases, due to the stochastic
aspects of NN training and sampling (i.e., measurements of side-channel traces,
including noise). Thus, we can improve the full-key recovery success rate using
multiple neural distinguishers, where we select the best byte for the profiling
among 16 bytes.

Algorithm 1 illustrates the proposed DL-SCA on AES with 16 neural dis-
tinguishers. In Line 1, “TrainNN” is the NN training to obtain the trained NN
parameters θ̂j for all bytes. This requires trainings of one feature extractor and
16 classifiers as aforementioned, which is sufficiently feasible and requires far
less cost than DDLA. In Line 4, we estimate the partial key difference δ[j, j′]
for each j and j′ (j ̸= j′) using the proposed distinguisher with trained NN.

Here, δ̂[j, j′] denotes the partial key difference between the j-th and j′-th bytes,

estimated using the NN with θ̂j . Note that δ̂[j, j′] = 0 for j = j′ trivially holds.
Although δ[j, j′] = δ[j′, j] must hold for true values, it does not necessarily hold

that δ̂[j, j′] = δ̂[j′, j] for their estimations due to the stochastic aspects of NN
training and sampling. After the estimation, we perform a brute-force on the es-
timated key differences and the profiled key value to identify the correct full key.
Namely, for (δ̂[j, 1], δ̂[j, 2], . . . , δ̂[j, 16]) which are estimated using θ̂j , we guess the

j-th byte partial key k[j] to obtain an estimated full key k̂. These calculations
are completed with a complexity of 212 = 28 × 16, which is sufficiently feasible.
In Line 10, we verify the estimated full key in some way (e.g., encryption using

the estimated key) as Verify(k̂), which returns true or false. If true, Algorithm 1
returns the estimated correct key. If we find no correct key, Algorithm 1 returns
⊥ as an attack failure.

6 Experimental validation

6.1 Dataset and experimental setup

In this section, we demonstrate the validity and effectiveness of the improved
collision DL-SCA through a comprehensive performance evaluation on a dataset
created by the authors using the ASCAD AES implementation. ASCAD is a
dataset of side-channel traces acquired from a first-order masked AES software
implementation on an eight-bit microcontroller, and is one of the most popular
public datasets for evaluating (profiled) DL-SCAs. Unfortunately, ASCAD basi-
cally consists of side-channel traces for a fixed key. Although there is a variable-
key training dataset, it only consists of approximately 800 traces for each key
value, which is too few to evaluate collision SCAs. In addition, the ASCAD
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fixed-key dataset uses an identical secret key for both training and test datasets,
which indicates that we can evaluate only a case of k∗ = k; a success of such
an attack does not necessarily validate the collision SCAs. Thus, it is difficult to
evaluate the collision (DL-)SCAs using ASCAD. Although there are some other
publicly open datasets for evaluating (DL-)SCA as listed in [46, Table 1], all of
them are unsuitable for evaluating collision SCAs due to the same reason.

Therefore, we created a dataset by ourselves to evaluate collision (DL-)SCAs
with more attack traces in estimating δ. We compiled the source code of the
masked AES software provided by ANSSI11 that is used in ASCAD [4] and imple-
mented it on an Atmel Xmega128D4-AU eight-bit microcontroller. We acquired
its side-channel traces for 16 different keys. The target device was mounted on
a ChipWhisperer CW308 UFO baseboard. The ChipWhisperer CW1200 cap-
ture box generated the base clock, and the clock frequency was set to 50MHz.
The microcontroller is connected to a Keysight DSOX6004A oscilloscope with a
sampling rate of 20GSamples/s.

6.2 Evaluation targets

For the implementation of our method, we employed an NN architecture based
on the one presented in [66] because we experimentally found that it achieved the
highest performance for most cases among NN architectures proposed in TCHES
(e.g., [68]). Specifically, the last layer of the architecture was used as the classifier,
while other layers were used as the feature extractor. Therefore, we used an
architecture with 16 copies of the final layer in the architecture by Wouters et
al . We set the learning rate, batch size, and the number of epochs to 1e−3,
1,000, and 300, respectively. Among 300 epochs, the model parameters with the
best attack performance were chosen using the method proposed by Ito et al.
in [27].12 We normalized the side-channel traces using “feature standardization”
presented by Wouters et al. in [66].

As evaluation/comparison targets, we used the second-order CPA [7], MCC-
DPA [41], and the original collision DL-SCA in [54] as major non-profiled (and
collision) SCAs. For completeness, Section C.1 describes the higher-order CPA
we performed. We also evaluate DDLA [58] and a state-of-the-art DDLA variant
in [25]. We used the architecture proposed in [66] for all the comparative analysis.
Here, we chose different hyperparameters for each method such that it works
well (meaning that we searched for the best hyperparameters of each method
experimentally as far as we could). For DDLAs [25,58], we set the learning rate,
batch size, and the number of epochs as 1e−3, 1,000, and 50, respectively. For the
original collision DL-SCA, we set the learning rate, batch size, and the number
of epochs as 5e−3, 50, and 50, respectively.

11 https://github.com/ANSSI-FR/secAES-ATmega8515
12 To reduce the computation costs, we used an evaluation method with the validation

set, which would result in an increase in the number of traces for attacks. However,
such an evaluation method is unnecessary in a real attack if the computational costs
can be ignored because the attacker can perform the attacks with learned parameters
for all epochs.

https://github.com/ANSSI-FR/secAES-ATmega8515
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Fig. 3: Evaluation results of non-profiled SCAs.

In contrast, we did not evaluate other types of non-profiled collision SCAs
(e.g., [21]) and DL-SCA (e.g., SCAUL [49]), because their extension to masked
implementation (including ASCAD) is unknown13.

6.3 Evaluation result

Figure 3 reports the full-key recovery SRs of the aforementioned non-profiled
SCAs, where “Multi-DDLA” is the DDLA variant by Hoang et al. in [25]. In
Figure 3, “This work w/o our arch.” and “This work w/ our arch.” mean the
results of attack results using our distinguisher shown in Theorem 4 without
and with the proposed architecture, respectively. For the collision DL-SCAs, we
trained the NN to imitate pZ|X,K(Z | X, k[j]) using the same number of traces
as attack traces, because the number of traces required for successful attacks is
equivalent to the number of training traces in a real non-profiled scenario. The
empirical SRs of CPA, and MCC-DPA were evaluated using 100 trials with the
bootstrap method (i.e., resampling from samples). We evaluated the attack SR
of collision DL-SCAs according to the following procedure. Let j be the byte of
the Sbox to be used to train the model, and let j′ be another byte of the Sbox
to be attacked. Let δ[j, j′] be the key difference between these bytes. First, we
estimated δ[j, j′] using a model trained on the side-channel traces of the j-th
byte. This was performed in the same way as conventional profiled DL-SCAs.
This estimation was repeated 100 times in this paper to empirically calculate
SRj,j′ for estimating the key difference δ[j, j′]. Next, we computed the probability
SRj =

∏
j′ ̸=j SRj,j′ that we successfully estimate the key differences δ[j, j′] for

all j′ ̸= j. In Algorithm 1, the attack succeeds if we successfully estimate the key
differences for all the bytes using the model trained for any one byte. Therefore,
the overall SR is given by 1−

∏
j(1−SRj). In this study, we calculated the overall

13 In fact, we applied SCAUL to ASCAD as it is, but we found that it did not work
well.
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SR 50 times, and averaged them for an accurate estimation of the overall SR.
DDLAs were evaluated using 50 trials with 2K, 4K, 6K, . . . , and 30K traces
(i.e., with increments of 2K) due to its high computational cost. For DDLAs,
we used the LSB and MSB as the leakage functions to investigate the impact of
the leakage function selection on the attack performances. Since the MCC-DPA
also requires a heavy computation, it was evaluated with 2K, 4K, 6K, . . . , and
30K traces as well.

First, we compare our collision DL-SCAs with the original one. From Fig-
ure 3, we confirm that the performance of the collision DL-SCA with likelihood-
based distinguisher in Theorem 4 is slightly better than that of the original
collision DL-SCA [54]. This is because our distinguisher is optimal, as proven
by Theorem 4, unlike the conventional sum-based distinguisher. In addition,
Figure 3 also shows that the collision DL-SCA with our NN architecture outper-
forms that without our NN architecture, which indicates that the training of the
NNs becomes more efficient by using the feature extractor shared by all bytes.

Next, we focus on the results of DDLAs. The performance improvement of
the multi-DDLAs over DDLAs is negligibly small in Figure 3, which is not very
surprising. Although the multi-DDLA trains 256 key candidates at a time in a
single model, it does not provide any new information to the model; thus, it is
natural that the performance is not improved. We also confirm that the per-
formance of the DDLAs heavily depends on the leakage function (i.e., LSB or
MSB herein). The attacks succeeded when MSB was used as a leakage function,
whereas we observed no attack success when LSB was used. This indicates that
the adversary must choose the leakage function suitable for the target device.
However, choosing the leakage function is not easy because Section 3.5 states
there is no way to determine an appropriate leakage function without informa-
tion on the correct key. Therefore, we confirm the instability of DDLA as a
non-profiled SCA. In this aspect, collision DL-SCA is superior to DDLA, as its
performance is independent of the choice of leakage function.

Finally, we focus on the non-DL-based methods: MCC-DPA and CPA. The
MCC-DPA requires more traces than CPA and improved collision DL-SCA.
Note that, in the evaluation of MCC-DPA, we employed an improved full-key
recovery in a manner similar to the multiple distinguishers in the improved
collision DL-SCA. So far, the MCC-DPA and CEPACA have been evaluated
and utilized on hardware implementations (e.g., [5, 38, 40, 41]), but there have
been few studies for them on software implementations. Their (in)effectiveness
in software implementation would pose an open problem. CPA had the highest
performance among the methods in this experiment. However, to perform CPA,
it is necessary to know in advance the countermeasures (e.g., random delay and
masking) taken on the target device. In contrast, DDLA and collision DL-SCA
learn information about the target device by training a model, allowing them
to perform attacks without detailed knowledge of the countermeasures of the
device under attack. For example, successful CPA on an implementation with
random delay countermeasures requires compensation for misalignment, while
DDLA and collision DL-SCA do not. Note that although it has been pointed out
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in previous studies of MIA [3, 61] that the appropriate attack method changes
depending on the attacker’s knowledge, this is the first study to clearly point
out that the same is true for DDLA and collision DL-SCA.

We summarize our experimental results as follows:

1. Among various DL-based methods, collision DL-SCA has strict applicability
conditions, as discussed in Section 4.5, while DDLA can attack various im-
plementations. DDLA can also achieve high performance if an appropriate
leakage function is chosen.

2. DDLA has some limitations discussed in Section 3, and its performance
strongly depends on the leakage function, which leads to instability as a
non-profiled SCA. Contrarily, collision DL-SCA does not require a choice of
leakage function, and thus provides a stable performance.

3. CPA is a classic but still powerful attack. However, it is less flexible than non-
profiled DL-SCAs and requires more information about the target device.

7 Concluding remarks

This paper formally analyzes non-profiled DL-SCAs, namely DDLA and collision
DL-SCA. Owing to few formal studies, their theoretical validity and practical ad-
vantages were unclear. In this study, we first presented a formalization of DDLA,
which reveals its relation to MIA. We then presented three theorems, which state
some limitations and impossibility results of DDLA. Subsequently, we provided
probability-theoretical analyses on a collision DL-SCA. Furthermore, we pro-
posed a distinguisher slightly different from the existing one, and proved its
optimality in terms of SR. Our analyses revealed some important conditions for
the applicability and success of the attack. Accordingly, we propose an improve-
ment of the collision DL-SCA by means of an optimal distinguished, an NN
architecture dedicated to it, and a full-key recovery methodology using multiple
neural distinguishers. For validation, we conducted an experimental evaluation
of major non-profiled (DL-)SCAs using a newly created dataset using ASCAD
implementation, which is sufficient to comprehensively evaluate collision SCAs.
As a result, we confirmed the validity of our improved collision DL-SCA, in-
stability of DDLA, and strength of CPA. The experimental result clarified the
current situation of non-profiled SCAs.

Theorem 4 implies that the improved collision DL-SCA can achieve a success
rate as optimal as the profiled DL-SCA, if we can use the attack traces as many
as possible. Theorem 4 motivates the study on DL-SCA for a severe assessment
of side-channel resistance in both profiled and non-profiled scenarios, for im-
plementations to which the collision DL-SCA is applicable. Moreover, we will
further improve the collision DL-SCA with the help of techniques to leverage
DL on a small dataset, such as oversampling, data augmentation, pre-training
(usage of pre-trained models), meta/transfer-learning, and fine-tuning.
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mance of non-profiled differential deep learning attacks against an AES encryption
algorithm protected using a correlated noise generation based hiding countermea-
sure. In: Design, Automation & Test in Europe Conference & Exhibition (DATE).
pp. 614–617 (2020). https://doi.org/10.23919/DATE48585.2020.9116387

2. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.X., Strub, P.Y.:
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10. Carbone, M., Conin, V., Cornélie, M.A., Dassance, F., Dufresne, G., Dumas, C.,
Prouff, E., Venelli, A.: Deep learning to evaluate secure RSA implementations.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(2),
132–161 (2019)

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: International Workshop on
Cryptographic Hardware and Embedded Systems. pp. 13–28. LNCS (2002)

12. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most
successful. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019, Issue 2, 49–79 (2019). https://doi.org/10.13154/tches.v2019.i2.
49-79, https://tches.iacr.org/index.php/TCHES/article/view/7385

13. Cristiani, V., Lecomte, M., Maurine, P.: Revisiting mutual information anal-
ysis: Multidimensionality, neural estimation and optimality proofs. Journal of
Cryptology 36(4), 38 (2023). https://doi.org/10.1007/s00145-023-09476-0,
https://doi.org/10.1007/s00145-023-09476-0

14. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: International Conference on Cryptographic

https://doi.org/10.23919/DATE48585.2020.9116387
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1109/TIFS.2017.2697401
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.13154/tches.v2019.i2.49-79
https://doi.org/10.13154/tches.v2019.i2.49-79
https://tches.iacr.org/index.php/TCHES/article/view/7385
https://doi.org/10.1007/s00145-023-09476-0
https://doi.org/10.1007/s00145-023-09476-0


Formal Analysis of Non-profiled Deep-learning Based Side-channel Attacks 29

Hardware and Embedded Systems. LNCS, vol. 9813, pp. 194–212. Springer Berlin
Heidelberg (2016)

15. De Meyer, L.: Recovering the CTR DRBG state in 256 traces. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020(1), 37–65 (2019),
https://tches.iacr.org/index.php/TCHES/article/view/8392

16. Dinu, D., Kizhvatov, I.: EM analysis in the IoT context: Lessons learned from an
attack on thread. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems 2018(1), 73–97 (2018). https://doi.org/10.13154/tches.v2018.

i1.73-97, https://tches.iacr.org/index.php/TCHES/article/view/833
17. Do, N.T., Hoang, V.P., Doan, V.S.: A novel non-profiled side channel attack based

on multi-output regression neural network. Journal of Cryptographic Engineering
(2023). https://doi.org/10.1007/s13389-023-00314-4

18. Do, N.T., Le, P.C., Hoang, V.P., Doan, V.S., Nguyen, H.G., Pham, C.K.: MO-
DLSCA: Deep learning based non-profiled side channel analysis using multi-output
neural networks. In: International Conference on Advanced Technologies for Com-
munications (ATC). pp. 245–250 (2022). https://doi.org/10.1109/ATC55345.

2022.9943024
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44. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. Journal of Cryptology 24(2), 292–321 (2011)

45. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power analysis and
templates in the real world. In: International Workshop on Cryptographic Hard-
ware and Embedded Systems. LNCS, vol. 6917, pp. 207–222 (2011)

https://doi.org/10.1007/s13389-023-00312-6
https://doi.org/10.1109/ACCESS.2022.3140446
https://doi.org/10.1109/ACCESS.2022.3140446
https://eprint.iacr.org/2020/396
https://eprint.iacr.org/2020/396
https://doi.org/10.1109/ACCESS.2021.3072653
https://doi.org/10.1109/ACCESS.2021.3072653
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1


Formal Analysis of Non-profiled Deep-learning Based Side-channel Attacks 31

46. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: Deep learning-based
physical side-channel analysis. ACM Computing Surveys 55(11), 1–35 (2023)

47. Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual informa-
tion based side channel analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.A.,
Vergnaud, D. (eds.) Applied Cryptography and Network Security. pp. 499–518.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

48. Ramezanpour, K., Ampadu, P., Diehl, W.: SCARL: Side-channel analysis with
reinforcement learning on the ascon authenticated cipher. arXiv:2006.03995 (2020),
https://doi.org/10.48550/arXiv.2006.03995

49. Ramezanpour, K., Ampadu, P., Diehl, W.: SCAUL: Power side-channel analysis
with unsupervised learning. IEEE Transactions on Computers 69(11), 1626–1638
(2020). https://doi.org/10.1109/TC.2020.3013196

50. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems (2021)

51. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael encryption implementation with composite field arithmetic. In: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems. pp. 171–184.
Springer Berlin Heidelberg (2001)

52. Saito, K., Ito, A., Ueno, R., Homma, N.: One truth prevails: A deep-learning
based single-trace power analysis on RSA-CRT with windowed exponentiation.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2022(4),
490–526 (2022)

53. Schwave, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4. In: Selected
Areas in Cryptography—SAC 2016. LNCS, vol. 10532, pp. 180–194 (2016)

54. Staib, M., Moradi, A.: Deep learning side-channel collision attack. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2023(3), 422–444
(2023)

55. Standeart, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Advances in Cryptology—Eurocrypt 2009.
Lecture Notes in Computer Science, vol. 5479, pp. 443–461 (2009)

56. Sugawara, T.: 3-share threshold implementation of AES S-box without fresh ran-
domness. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(1), 123–145 (2019)

57. Tanaka, Y., Ueno, R., Xagawa, K., Ito, A., Takahashi, J., Homma, N.: Multiple-
valued plaintext-checking side-channel attacks on post-quantum KEMs. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2023(3) (2023)

58. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(2), 107–131 (2019)

59. Ueno, R., Homma, N., Aoki, T.: Toward more efficient DPA-resistant AES hard-
ware architecture based on threshold implementation. In: International Workshop
on Constructive Side-Channel Analysis and Secure Design. Lecture Notes in Com-
puter Science, vol. 10348, pp. 50–64 (2017)

60. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of
re-encryption: A generic power/EM analysis on post-quantum KEMs. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 1, 296–322 (2022)

61. Veyrat-Charvillon, N., Standaert, F.X.: Mutual information analysis: How, when
and why? In: Cryptographic Hardware and Embedded Systems - CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-9, 2009, Pro-
ceedings. Lecture Notes in Computer Science, vol. 5747, pp. 429–443. Springer

https://doi.org/10.48550/arXiv.2006.03995
https://doi.org/10.1109/TC.2020.3013196


32 A. Ito et al.

(2009). https://doi.org/10.1007/978-3-642-04138-9_30, https://www.iacr.

org/archive/ches2009/57470430/57470430.pdf

62. Vijayakanthi, G., Mohanty, J.P., Swain, A.K., Mahapatra, K.: Differential metric
based deep learning methodology for non-profiled side channel analysis. In: IEEE
International Symposium on Smart Electronic Systems (iSES). pp. 200–203 (2021).
https://doi.org/10.1109/iSES52644.2021.00054

63. Weissbart, L., Chmielewski,  L., Picek, S., Batina, L.: Systematic side-channel anal-
ysis of curve25519 with machine learning. Journal of Hardware and System Security
(4), 314–328 (2020)

64. Weissbart, L., Picek, S., Batina, L.: One trace is all it takes: Machine learning-
based side-channel attack on EdDSA. In: International Conference on Security,
Privacy, and Applied Cryptography Engineering (SPACE). pp. 86–105. LNTCS
(2019)

65. Won, Y.S., Han, D.G., Jap, D., Bhasin, S., Park, J.Y.: Non-profiled side-channel
attack based on deep learning using picture trace. IEEE Access 9, 22480–22492
(2021). https://doi.org/10.1109/ACCESS.2021.3055833

66. Wouters, L., Arribas, V., Gierlichs, B., Praneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020(3), 147–168 (2020)

67. Wouters, L., Van den Herrewegen, J., Garcia, F.D., Oswald, D., Gierlichs, B.,
Preneel, B.: Dismantling DST80-based immobiliser systems. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020(2), 99–127 (2020)

68. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2020(1), 1–36 (2019), https://tches.iacr.org/index.
php/TCHES/article/view/8391

69. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Efficiency through diversity in
ensemble models applied to side-channel attacks – a case study on public-key algo-
rithms –. IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES) (3), 60–96 (2021)

https://doi.org/10.1007/978-3-642-04138-9_30
https://www.iacr.org/archive/ches2009/57470430/57470430.pdf
https://www.iacr.org/archive/ches2009/57470430/57470430.pdf
https://doi.org/10.1109/iSES52644.2021.00054
https://doi.org/10.1109/ACCESS.2021.3055833
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391


Formal Analysis of Non-profiled Deep-learning Based Side-channel Attacks 33

A Optimal distinguisher

SCA can be formulated using a distinguisher, which is denoted by a function
d : Xm × T m → K. A distinguisher calculates the rank of each key candidate
using a score function from side-channel traces, and estimates the correct key
as a candidate with the highest score. For example, correlation power analysis
(CPA) uses Pearson’s correlation coefficient as the score. DL-SCA described in
Section 2.2 uses the NLL. A distinguisher is called optimal if it maximizes the
success rate (SR). Studies on optimal distinguishers are crucial from both the-
oretical and practical perspectives, as a common goal of studies on SCAs is to
improve/maximize the SR. The concept of optimal distinguishers was initially
presented by Heuser et al. in [24]. As the formal definition of the optimal distin-
guisher is not explicitly described in [24], in this paper, the optimal distinguisher
is formally defined as follows:

Definition 2 (Optimal distinguisher). For attack traces Xm = (X1,X2, . . . ,Xm)
and inputs Tm = (T1, T2, . . . , Tm), the success rate of a distinguisher d : Xm ×
T m → K is defined as SRm(d) = Pr(K = d(Xm, Tm)), where m is the num-
ber of attack traces. A distinguisher dopt is optimal if we have SRm(dopt) =
supd SRm(d).

According to [24, Theorem 1], an optimal distinguisher is given by

dopt(X
m, Tm) = argmax

k
Pr(K = k | Xm, Tm).

Heuser et al. also proved that the optimal distinguisher is given as

dopt(X
m, Tm) = argmax

k

∑
i

log pX|T,K(Xi | Ti, k), (11)

where pX|T,K is the true probability distribution to be estimated in the template
attack [11]. Therefore, the optimal distinguisher in Equation (11) validates the
template attack. Ito et al. further proved in [26,27] that optimal distinguisher is
equivalent to

dopt(X
m, Tm) = argmax

k

∑
i

log pZ|X(Z
(k)
i | Xi) = argmin

k
L(k), (12)

where L(k) is the NLL calculated using pZ|X(Z(k) | X) for k. Equation (12)
validates the DL-SCA using NLL in Equation (3), as pZ|X is the probability
distribution to be modeled in DL-SCA.

B Collision SCA

Collision SCA estimates the partial key difference [39]. Let k[j] denote the j-th
partial key byte (j ∈ {1, 2, . . . , 16}). The partial key difference between the j-th
and j′-th byte is defined as δ[j, j′] = k[j] ⊕ k[j′]. The collision SCAs estimate
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δ[j, j′] instead of k[j], which enables the non-profiling attacker to leverage the
power of profiled SCAs. To the best of the authors’ knowledge, there are two
types of collision SCAs.

Let g be a leakage function, such as the HW. Recall that the AES Sub-
Bytes consist of 16 parallel Sboxes. Let Z[j](k[j]) be the j-th byte Sbox output.
The first type of collision SCA estimates the partial key difference by finding
a difference δ such that g(Z[j](k[j])) = g(Z[j′](k[j

′]⊕δ[j,j′])) [8]. Namely, given
a leakage function g, the attacker uses the hypothetical power consumption
of g(Z[j](k[j])) and g(Z[j′](k[j

′])). Although the attacker does not know k[j]
and k[j′], attacker guesses δ[j, j′] alternatively such that Sbox(T [j] ⊕ k[j]) =
Sbox(T [j′] ⊕ k[j′] ⊕ δ[j, j′]) from the leakage. In [21], Glowacz and Grosso con-
structed a collision SCA of this type with an optimality proof under some as-
sumptions on the leakage function. However, the performance of such collision
SCAs heavily depends on the quality of the leakage function g, related to pX|Z ,
which indicates that this collision SCA still requires profiling for the leakage
function or specific assumption on the leakage in a non-profiling scenario. In ad-
dition, its extensions to higher-order attacks still remain as an open problem [21].

Another type is called (tweaked) CEPACA [39], which is followed by MCC-DPA
in [41]. In the MCC-DPA, the attacker determines a profiling byte. The MCC-DPA
creates a power model using the profiling byte to attack other bytes in a similar
manner to CPA. Namely, for the profiling byte, the attacker computes a d-th or-
der centerized moment of a leakage (for univariate analysis) or an expectation of
the product of d leakages (for d-variate analysis) for each plaintext value. Then,
the attacker estimates the partial key difference between the profiling and target
bytes in a manner like CPA using the aforementioned moments/expectations as
a power model. In this paper, we consider the MCC-DPA as a major state-of-
the-art counterpart of non-profiled higher-order collision SCA, as its advantage
over CEPACA has been shown in [41]. This type of collision SCA has been ex-
tended to a DL-based variant, namely collision DL-SCA [54], as described and
discussed in Section 4. See Section C for the details and formal description of
CEPACA and MCC-DPA.

C Conventional higher-order non-profiled SCAs

C.1 Correlation power analysis (CPA)

Consider that, for a univariate analysis (i.e., in attacking hardware implemen-
tation), side-channel trace consists of one leakage point, while, for a d-variate
analysis (i.e., in attacking masked software implementation like the experiment
in this paper), trace consists of d leakage points. If the attacker does not know
the point-of-interest, the attacker should perform the following procedure for all
possible (d-combination of) sample points. For univariate analysis on a (d− 1)-st
order masked hardware, let L be the leakage at a point-of-interest included in
the side-channel trace, and let Li be its i-th measurement. For d-variate analysis

on a (d− 1)-st order masked implementation, let L(e) (and L
(e)
i ) be the leakage
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at the e-th point-of-interest (i.e., leakage of e-th share) as well. The d-th order

univariate attecker then converts Li to Si = (Li − EL)d for each i, while the d-th
order d-variate attacker converts (L

(1)
i , L

(2)
i , . . . , L

(d)
i ) to Si =

∏d
e=1(L

(e)
i −EL(e))

as well. Let Z(k) = ϕ(T, k) be the secret variable for k, where ϕ is the selection
function such as Sbox(T ⊕ k). Let g be a leakage function such as the Hamming
weight. Then, the attacker estimates k using the empirical Pearson’s correlation
coefficient ρ̂ as

k̂ = argmax
k

∣∣∣ρ̂(g(Z(k)), S
)∣∣∣

= argmax
k

∣∣∣∣∣∣∣∣
∑
i

(
g(z

(k)
i )− Eg(Z(k))

)(
si − ES

)
√∑

z(k)

(
g(z(k))− Eg(Z(k))

)2√∑
i

(
si − ES

)2
∣∣∣∣∣∣∣∣ .

C.2 Correlation-enhanced power analysis collision attacks
(CEPACA)

Suppose that side-channel trace consists of one leakage point for a univariate
analysis (i.e., in attacking hardware implementation) while trace consists of d
leakage points for a d-variate analysis (i.e., in attacking masked software imple-
mentation)14. In the CEPACA, the attacker has side-channel leakage for each
Sbox computation. For univariate analysis on a (d− 1)-st order masked hard-
ware, let L[j] be the leakage at a point-of-interest from j-th Sbox included in
the side-channel trace, and Li[j] be its i-th measurement. For d-variate anal-

ysis on a (d− 1)-st order masked implementation, let L(e)[j] (and L
(e)
i [j]) be

the leakage at the e-th point-of-interest (i.e., leakage of e-th share) as well15.
For each j, the attacker creates 256 sets of side-channel traces according to the
value of plaintext. Then, for each set and for each j, the d-th order univariate
attacker first computes the d-th order centerized moment of each sample point
as E

[
(L[j]− EL[j])d

]
; the d-th order d-variate attacker computes the expecta-

tion of a product of d leakages as E
[∏d

e=1(L
(e)[j]− EL(e)[j])

]
. Let µ̂dj (t) be its

empirical computation result for the j-th Sbox and for plaintext t ∈ {0, 1}8 in a
d-th order attack. Let δ[j, j′] denote the difference between j-th and j′-th partial

14 In practical attacks, an attacker should select the leakage point from side-channel
traces. Here, for the ease of explanation, we assume here that the attacker has already
identified the point(s)-of-interest.

15 Herein, we consider that a standard (d− 1)-st order masked software uses d shares
and processes them in a serial manner, although there are some different one such
as [2]
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keys. The attacker estimates δ[j, j′] using Pearson’s correlation coefficient ρ as16

δ̂[j, j′] = argmax
δ

∣∣ρ (µ̂dj (T ⊕ δ), µ̂dj′(T )
)∣∣

= argmax
δ

∣∣∣∣∣∣∣∣
∑
t

(
µ̂dj (t⊕ δ)− ET

[
µ̂dj (T )

] )(
µ̂dj′(t)− ET

[
µ̂dj′(T )

])√∑
t

(
µ̂dj (t)− ET

[
µ̂dj (T )

] )2√∑
t

(
µ̂dj′(t)− ET

[
µ̂dj′(T )

])2
∣∣∣∣∣∣∣∣ .

C.3 Moments-correlating collision DPA (MCC-DPA)

In the MCC-DPA, the attacker computes µ̂dj (t) for each t using the j-th Sbox
leakage, which is used as a kind of power model. The attacker first determines
a profiling byte index j, and computes µ̂dj (t) as the d-th order centerized mo-
ment for each t and for the determined j in the same manner as CEPACA.
For each j′ ̸= j, the d-th order univariate attacker then converts Li[j

′] to

Si[j
′] = (Li[j

′]− EL[j′])d for each i, while the d-th order d-variate attacker

converts (L
(1)
i [j′], L

(2)
i [j′], . . . , L

(d)
i [j′]) to Si[j

′] =
∏d
e=1(L

(e)
i [j′] − EL(e)[j′]) as

well. In the attack phase, the MCC-DPA attacker estimates δ[j, j′] using the
empirical Pearson’s correlation coefficient ρ̂ as

δ̂[j, j′] = argmax
δ

∣∣ρ̂ (µ̂dj (T [j]⊕ δ), S[j′]
)∣∣

= argmax
δ

∣∣∣∣∣∣∣∣
∑
i

(
µ̂dj (ti[j]⊕ δ)− ET

[
µ̂dj (T )

] )(
si[j

′]− ES[j′]
)

√∑
t

(
µ̂dj (t)− ET

[
µ̂dj (T )

] )2√∑
i

(
si[j′]− ES[j′]

)2
∣∣∣∣∣∣∣∣ .

D Proofs

D.1 Proof of Proposition 1

Let Dk1 = { δk1,k2 | k2 ∈ K} be a set of key differences for a partial key k1.
First, we prove |Dk1 | = |K|. From the definition, we obviously have |Dk1 | ≤ |K|;
thus, it suffices to check whether |Dk1 | ≥ |K| holds. For any different partial
keys k2 and k3, it does not hold that ϕ−1

k1
◦ ϕk2 = ϕ−1

k1
◦ ϕk3 . This is because,

if ϕ−1
k1

◦ ϕk2 = ϕ−1
k1

◦ ϕk3 holds, then we have ϕk2 = ϕk1 ⇔ k2 = k1, which is
a contradiction. Therefore, there exists an injective function K → Dk1 , and we
have |Dk1 | ≥ |K|. Thus, it holds that |Dk1 | = |K|.

Next, we prove that Dk1 = Dk2 holds for any pair of k1 and k2. We consider
a case where k1 ̸= k2 because it obviously holds in the case of k1 = k2. First, we
prove that Dk1 ⊂ Dk2 . For any key difference ϕ−1

k1
◦ ϕk ∈ Dk1 , a partial key k′

16 In literature, δ is added to secret key k, but not plaintext t. We add δ to t for the
ease of explanation, as they are mathematically equivalent in the case of AES.
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exists such that ϕ−1
k1

◦ ϕk = ϕ−1
k2

◦ ϕk′ ∈ Dk2 from Assumption 1. Therefore, it
holds that Dk1 ⊂ Dk2 . Similarly, we can have Dk2 ⊂ Dk1 , and thus Dk1 = Dk2
holds.

For a fixed key k, we have { δk1,k2 | k1, k2 ∈ K} =
⋃
k1
Dk1 = Dk, which

indicates that |{ δk1,k2 | k1, k2 ∈ K}| = |K|, as required.

D.2 Proof of Theorem 1

Let k1 and k2 be any two different partial keys. We assume that g is a bijective
function because g can be regarded as a bijective function by restricting its
codomain to its image. We have Y (k1) = g(ϕk1(T )) and Y (k2) = g(ϕk2(T )),
which is followed by

Y (k1) = g ◦ ϕk1 ◦ ϕ−1
k2

◦ g−1(Y (k2)).

Thus, we have I(Y (k1);X) = I(Y (k2);X) because the function g◦ϕk1 ◦ϕ−1
k2

◦g−1

is a bijection. Since this holds for any keys k1 and k2, the mutual information
I(Y (k);X) is a constant independent of the value of k.

D.3 Proof of Theorem 2

First, we prove that, for any leakage function g1, there exists a function g′1
such that hg1(k1) = hg′1(k2) holds. Let g = g1 ◦ ϕk1 ◦ ϕ−1

k2
. Here, we have

I(g(Z(k2));X) = I(g1 ◦ ϕk1 ◦ ϕ−1
k2

(Z(k2));X) = I(Y (k1);X). For any k ̸= k2,
it holds that

I(g(Z(k));X) = I(g1 ◦ ϕk1 ◦ ϕ−1
k2

(Z(k));X).

From Assumption 1, there exists k3 ∈ K such that ϕk1 ◦ ϕ−1
k2

= ϕk3 ◦ ϕ−1
k . Thus,

we have I(g(Z(k));X) = I(g1(Z
(k3));X). As k3 takes all key candidate values

except for k1 according to the value of k, we have maxk′ ̸=k2 I(g(Z
(k′));X) =

maxk′ ̸=k1 I(g2(Z
(k′));X). From the above, we have

hg(k2) = I(g(Z(k));X)− max
k′ ̸=k2

I(g(Z(k′));X)

= I(g1(Z
(k1));X)− max

k′ ̸=k1
I(g1(Z

(k′));X)

= hg1(k1).

Thus, we conclude hg1(k1) = hg′1(k2) by letting g′1 = g1 ◦ ϕk1 ◦ ϕ−1
k2

.
Next, we prove that there exist two functions g1 = argmaxg hg(k1) and

g2 = argmaxg hg(k2) such that hg1(k1) = hg2(k2). As aforementioned, for g1,
there exists a function g′1 such that hg1(k1) = hg′1(k2). Similarly, for g2, there
exists a function g′2 such that hg2(k2) = hg′2(k1). From the definition of g1 and
g2, we have {

hg′2(k1) ≤ hg1(k1) = hg′1(k2),

hg′1(k2) ≤ hg2(k2) = hg′2(k1).
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Therefore, since hg′2(k1) ≤ hg1(k1) ≤ hg′2(k1) holds, we conclude that hg1(k1) =
hg′2(k1) = hg2(k2), as required.

D.4 Proof of Theorem 3

Let Im g := g(Z) be the image of the functions g. Because g is an injective
function from Z to Y from the assumption, the function g′ : Z ∋ z 7→ g(z) ∈ Im g
whose codomain is restricted in the image Im g is a bijection function over this
image. Therefore, the equality I(X;Y (k∗)) = I(X;Z(k∗)) holds.

D.5 Proof of Theorem 4

Fixing any partial key k′, a map k 7→ ϕ−1
k′ ◦ ϕk = δ is a bijection (that is, k and

δ are one-to-one for a fixed k′) from Assumption 1. We have a Markov chain
(∆,Tm) → (K,Tm) → (Zm, Tm) → (Xm, Tm) → K̂ → ∆̂, where ∆̂ = ϕ−1

k′ ◦ϕK̂
is an estimation of ∆ = ϕ−1

k′ ◦ ϕK . Therefore, according to [24, Theorem 1], a
distinguisher

d(Xm, Tm) = argmax
δ

∑
i

log p∆|Xm,Tm(δ | Xm, Tm)

is optimal in estimating the difference ∆. Let f be a function k′ 7→ ϕk′ . We then
have

d(Xm, Tm) = argmax
δ

p∆|Xm,Tm(δ | Xm, Tm)

= ϕ−1
k′ ◦ f

(
argmax

k
pϕ−1

k′ ◦ϕK |Xm,Tm(ϕ−1
k′ ◦ ϕk | Xm, Tm)

)
= ϕ−1

k′ ◦ f
(
argmax

k
pϕK |Xm,Tm(ϕk | Xm, Tm)

)
= ϕ−1

k′ ◦ f
(
argmax

k
pK|Xm,Tm(k | Xm, Tm)

)
= ϕ−1

k′ ◦ f

(
argmax

k

∑
i

log pZ|X(ϕk(Ti) | Xi)

)
.

Here, (Z,X) is independent of K if T is not given. Thus, the optimal distin-
guisher is equivalent to

d(Xm, Tm) = ϕ−1
k′ ◦ f

(
argmax

k

∑
i

log pZ|X,K(ϕk(Ti) | Xi, k
′)

)

= ϕ−1
k′ ◦ f

(
argmax

k

∑
i

log pT |X,K(ϕ−1
k′ ◦ ϕk(Ti) | Xi, k

′)

)
= argmax

δ

∑
i

log pT |X,K(δ(Ti) | Xi, k),

as required.
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