
Not Just Regular Decoding:
Asymptotics and Improvements of

Regular Syndrome Decoding Attacks

Andre Esser 1∗ and Paolo Santini 2

1 Technology Innovation Institute, UAE
andre.esser@tii.ae

2 Marche Polytechnic University, Italy
p.santini@univpm.it

Abstract. Cryptographic constructions often base security on structured problem
variants to enhance efficiency or to enable advanced functionalities. This led to the
introduction of the Regular Syndrome Decoding (RSD) problem, which guarantees
that a solution to the Syndrome Decoding (SD) problem follows a particular block-wise
structure. Despite recent attacks exploiting that structure by Briaud and Øygarden
(Eurocrypt ’23) and Carozza, Couteau and Joux (CCJ, Eurocrypt ’23), many questions
about the impact of the regular structure on the problem hardness remain open.
In this work we initiate a systematic study of the hardness of the RSD problem starting
from its asymptotics. We classify different parameter regimes revealing large regimes
for which RSD instances are solvable in polynomial time and on the other hand regimes
that lead to particularly hard instances. Against previous perceptions, we show that a
classification solely based on the uniqueness of the solution is not sufficient for isolating
the worst case parameters. Further we provide an in-depth comparison between SD
and RSD in terms of reducibility and computational complexity, identifying regimes
in which RSD instances are actually harder to solve.
We provide the first asymptotic analysis of the CCJ algorithm, establishing its worst
case decoding complexity as 20.141n. We then introduce regular-ISD algorithms by
showing how to tailor the whole machinery of advanced Information Set Decoding (ISD)
techniques from attacking SD to the RSD setting. The fastest regular-ISD algorithm
improves the worst case decoding complexity significantly to 20.112n. Eventually, we
show that also with respect to suggested parameters regular-ISD outperforms previous
approaches in most cases, reducing security levels by up to 40 bits.

Keywords: Hardness Classification, Information Set Decoding, Code-Based Cryptography

1 Introduction

The Syndrome Decoding Problem (SDP) is one of the most fundamental problems in coding
theory, and as such finds frequent applications as security foundation in cryptographic
constructions. Given the parity-check matrix H of a linear code, a vector (the syndrome) s
and an integer w the SDP asks to recover a vector e of Hamming weight w satisfying He = s.
∗ Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –

Project-ID MA 2536/12

https://orcid.org/0000-0001-5806-3600
https://orcid.org/0000-0003-0631-3668

In recent years, to enable the design and increase the efficiency of (advanced) cryptographic
constructions based on SDP, such as signatures [CCJ23a], efficient MPC [HOSS18], Vector
Oblivious Linear Evaluation (VOLE) [BCGI18], Pseudorandom Correlation Generators
(PCGs) [BCG+19b,BCG+20] or correlated Oblivious Transfer (OT) [BCG+19a,YWL+20],
often a structured version of the problem is considered, known as Regular Syndrome Decoding
(RSD) problem. Initially introduced in the context of the FSB hash function [AFS05], in this
variant, the error vector e is known to be regular, i.e., it consists of w consecutive, equally
sized chunks, each of weight exactly one.

Intuition suggests that the introduction of such regular structure decreases the problem
hardness, but such intuition might not hold universally true. For example in the related
LPN (or LWE) setting [HKL+12,LPR10], even after years of study, attacks on structured
ring-variants are essentially the same as on their non-structured counterparts. A first attempt
at the translation of concepts used in Information Set Decoding (ISD) attacks against SD
to the regular case was given in the security analysis of [HOSS18]. However, the authors
eventually concluded that those attacks even if tailored to the RSD setting obtain about
the same complexity as direct SD attacks. Generally, the security analysis of RSD-based
constructions has predominantly been performed in an adhoc manner and supported the
assumption that the most efficient attacks on RSD remain the same as those on SD. A more
focused study was then performed in [LWYY22], which, however, also finds standard ISD
attacks to perform best for most of the suggested parameters.

Recently then, Briaud and Øygarden [BØ23] showed that the regular structure allows to
model the problem as a quadratic system of equations, which in turn allows the application
of algebraic solvers. They show that for many of the parameters found in the literature
this approach yields the best running time. At the same time Carozza, Couteau and Joux
(CCJ) [CCJ23a] designed a new signature scheme exploiting the regular structure of the
RSD solution to obtain reduced signature sizes. In the full version of their work [CCJ23b]
the authors give a first hardness classification of the RSDP in comparison to the SDP: Based
on the uniqueness of the solution the authors identify three regimes in which they find
either the SDP or the RSDP to be harder, while in the third regime both problems seem
incomparable. Additionally, the authors designed a new algorithm based on enumerating the
searched error vector in a meet-in-the-middle fashion. The authors state that this approach
for many parameters obtains large improvements over the state of the art.

Those recent works made big steps towards classifying the hardness of RSD by showing
that algorithms can indeed be tailored to exploit the regular structure. However, especially
from a theoretical perspective the effect of the regular structure on the problem hardness
remains largely unclear. Naturally, there arise questions about the equivalence of both
problems, which were briefly touched in [CCJ23a], or about the amount of structure that
can be induced until the problem hardness collapses. Further, in terms of computational
hardness, Information Set Decoding algorithms are usually the best strategy to solve the
SDP. However, so far it is not known to which extend those can be tailored to exploit the
regular structure in case of RSD.

Our Contribution In this work we initiate the systematic study of the hardness of the regular
syndrome decoding problem. We start this investigation from a theoretical viewpoint that
allows us to isolate instances for which RSD is hard and for which its hardness collapses. This

2

first asymptotic treatment then forms the foundation for a more comprehensive comparison
between the hardness of SD and RSD for different parameter regimes. In the second part
of this work we then show that against previous perceptions [HOSS18,CCJ23a] essentially
all advanced techniques from ISD algorithms in the non-regular case, can be tailored to the
RSD setting resulting in new regular-ISD algorithms, outperforming the state-of-the-art in
the asymptotics as well as in concrete numbers.

Towards a rigorous hardness classification. We first present our results on the general
hardness of the RSD problem. In particular, we show that there exist large regimes of
parameters for which RSD instances are solvable in polynomial time. One of these regimes
is a direct consequence of the introduced structure: The known block-wise structure of the
solution gives rise to additional linear equations decreasing the dimension of the underlying
code. Once the codes dimension is small enough, one can solve for e in polynomial time via
basic linear algebra. Note that this is in direct contrast to the SD problem, which is known
to be exponentially hard for any parameters that yield a unique solution, i.e., parameters
below the Gilbert-Varshamov (GV) bound.

This motivates the question for which parameters RSD remains hard and, in particular,
for which parameters it reaches the worst case. Carozza et al. [CCJ23a] identified an RSD
uniqueness-bound similar to the Gilbert-Varshamov bound in the SD case and gave a
classification of RSD’s hardness based on this bound. In this context we show that the
uniqueness bound alone unlike the GV-bound in the SD case, does not allow to classify the
hardest instances in the RSD case. We then study how to isolate worst case instances and
are able to identify a regime of parameters which includes the worst case instances, with
respect to the proposed regular-ISD algorithms.

Furthermore, in our classification we identify large regimes in which RSD instances are
actually harder to solve than SD instances with respect to the best algorithms. This is in
contrast to the intuitive perception that exploiting the regular structure by switching from
SD to RSD instances in cryptographic constructions inevitably leads to a decreased security
level. Moreover, when comparing the complexity of the best algorithms on SD and RSD for
their respective worst case parameters, we find that RSD is harder for all code rates larger
than (about) 1

2 and that RSD instances obtain a far larger absolute complexity. This effect
is illustrated in Fig. 1 in which we compare regular-ISD performance on RSD worst case
instances against ISD performance on SD worst case instances.

Eventually, we show that the complexity of SD and RSD with respect to the best
algorithms converges for small w. More, precisely as soon as w is sublinear in the code length
the complexity for solving both problems differs only by second order terms.

The regular-ISD approach. The second main contribution of this work is the design of
regular-ISD algorithms. In all algorithms we first encode the regularity into the parity-check
matrix, which essentially results in w additional rows. These linear equations have also been
exploited in the algebraic attack by Briaud and Øygarden [BØ23] and in the enumeration
routine by Carozza, Couteau and Joux [CCJ23a]. However, we show that the particular
structure of these equations requires additional care in the analysis and, actually, prevents
the use of some of those equations within the CCJ algorithm.

We provide the first asymptotic analysis of the CCJ algorithm which establishes an
asymptotic baseline for algorithms solving the RSD problem on worst case instances with a

3

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

k/n

tim
e

ex
po

ne
nt

c
in

T
=

2c
n

ISD on SD [BM18]
CCJ on RSD [CCJ23a]
regular-ISD on RSD (this work)

Fig. 1: Comparison of running time of best ISD algorithm on SD worst case instances and best
regular-ISD algorithm (Section 4.4) or resp. CCJ algorithm on RSD worst case instances.

complexity of 20.141n. We are then able to drastically improve this initial complexity to 20.112n

by tailoring the whole machinery of ISD techniques to the regular setting. A comparison
between the complexity of the CCJ algorithm and the regular-ISD approach for all rates is
illustrated in Fig. 1.

ISD algorithms usually apply a permutation to the columns of the parity-check matrix
to obtain a permuted instance HP with solution P−1e and then hope for a specific weight
distribution on P−1e. However, as observed in [CCJ23a] random permutations destroy the
regular structure on the solution and might, hence, prevent further exploitation. We therefore
restrict to a specific set of regular permutations, similar to a technique described in [HOSS18],
which exploits the regular structure to enhance the success probability of obtaining the
desired weight distribution. Moreover, any such regular permutation maintains a certain
regular structure on the permuted solution, which we then exploit in order to improve
the commonly applied enumeration subroutine of ISD procedures. We show that the use
of regular permutations enables to leverage all linear equations encoding the regularity of
the solution, regardless of their specific structure. Eventually, we show how to incorporate
the most advanced concepts of representations [MMT11, BJMM12] and nearest-neighbor
search [MO15,BM18] into regular-ISD procedures.

We also provide a concrete cost analysis of the regular-ISD techniques as well as the CCJ
algorithm and evaluate their complexity on parameter sets provided in the literature. In
Table 4 we give the complexity of the different approaches on selected parameter sets. As
can be observed regular-ISD obtains large significant bit-security reductions of up-to 40 bits,
showing that most of the depicted sets fall below the targeted security threshold. However,
generally, we find that constructions based on RSD followed a (over-) conservative parameter
selection procedure, such that even considering regular-ISD, most parameter sets still obtain
comfortable margins (of up to 270 bits).

Outline. In Section 2 we cover necessary basics on coding theory, the SD and the RSD
problem. Subsequently, in Section 3 we provide a systematic classification of the hardness of
RSD, in particular in comparison to its non-regular counterpart. In Section 4 we present the

4

source (n, k, w) previous best regular-ISD

[HOSS18] (1280, 860, 80) 132 114

[LWYY22]

(210, 652, 57) 90 76
(210, 652, 106) 129 113
(212, 1589, 172) 135 109
(214, 3482, 338) 135 118
(216, 7391, 667) 139 126

[CCJ23a] (1842, 825, 307) 193 153

Table 1: Bit security for selected instances considering regular-ISD in comparison to previous best
approaches.

regular-ISD algorithms and provide their asymptotic analysis. At the end of that section
we also give the analysis of the CCJ algorithm and an asymptotic comparison to previous
approaches. Eventually, in Section 5, we present results on the performance of regular-ISD
algorithms on suggested parameters.

Artifacts. We provide all used source code, including proof of concept implementations
of the regular-ISD algorithms, numerical optimizations for asymptotic exponents as well
as implementations of the concrete complexity formulas in the git repository github.com/
Memphisd/Regular-ISD.

2 Preliminaries

We denote by F2 the binary finite field. Vectors (resp., matrices) are indicated with bold
lowercase (resp., uppercase) letters. Vectors are viewed interchangeably as rows and columns.
The Hamming weight of a vector x corresponds to the number of its non-null entries and is
denoted |x|. For a set of coordinates I we denote by xI the projection of x on the coordinates
indexed by I. For an integer a we let [a] := {1, . . . , a}.

By a linear code C ⊆ Fn
2 , we refer to a linear subspace of the ambient space Fn

2 . Typical
code parameters are the length n, the dimension k = κn, for κ ∈ [0; 1] being the code rate, and
the co-dimension n−k = (1−κ)n (also called redundancy). Any linear code can be compactly
represented by a parity-check matrix, that is, a full rank H ∈ F(n−k)×n

2 which serves as a
basis for the null space of the code: a vector c ∈ Fn

2 is a codeword if and only if Hc = 0.
Linear codes are invariant under changes of basis, i.e., H and SH, with S ∈ F(n−k)×(n−k)

2
being non singular, are parity-check matrices for the same code.

We say that a set J ⊆ {1, · · · , n} of size k is an information set for a code C if any
two distinct codewords c, c′ ∈ C are different in at least one of the coordinates indexed by
J . This is equivalent to the columns of H which are not indexed by J forming a full rank
(n − k) × (n − k) matrix.

For any vector e ∈ Fn
2 which is not a codeword, we have He = s ̸= 0. The vector s ∈ Fn−k

q

is called a syndrome. The same syndrome correspond to multiple vectors: for any non null
c ∈ C , e and e + c have the same syndrome. Decoding a given syndrome into an arbitrary

5

github.com/Memphisd/Regular-ISD
github.com/Memphisd/Regular-ISD

vector in Fn
2 can be done by basic linear algebra. However, the problem becomes hard if the

vector is required to have low Hamming weight, leading to the Syndrome Decoding Problem
(SDP).

Definition 2.1 (Syndrome Decoding (SD)). Let k, n, w ∈ N such that k, w ≤ n. Given
H ∈ F(n−k)×n

2 and s ∈ Fn−k
2 , find a vector e ∈ Fn

2 of Hamming weight w such that He = s.
We refer to the SDP problem with parameters (n, k, w) as SDP(n, k, w).

Motivated by cryptographic constructions we always assume the existence of at least one
solution, while the expected amount of solutions is given by

S = Number of weight-w vectors
Number of syndromes =

(
n

w

)
2−(n−k).

The best solvers for SDP(n, k, w) are ISD algorithms. The first algorithm of this class is due
to Prange [Pra62] and finds a solutions to the SDP(n, k, w) in time

T = Õ
((

n
k

)

S ·
(

n−k
w

)
)

. (1)

The hardest instances of SDP are those where w is chosen as the maximum value which
still leads to a unique solution. This is the case if w is equal to the Gilbert-Varshamov
(GV) distance, which asymptotically gives w = ωn, where ω = h−1(1 − κ) and h(x) :=
−x log2(x) − (1 − x) log2(1 − x) is the binary entropy function.

Regular Syndrome Decoding. For a vector e ∈ Fn
2 we say it is b-regular of weight w ≤ n

b if it
can be written as e =

(
e1, e2, · · · , e n

b

)
, where each ei has length b and Hamming weight at

most one. Furthermore, we simply call a weight-w vector e regular if b = n
w , i.e., each ei is of

Hamming weight exactly one.
Requiring that the solution to SDP is regular, one obtains the Regular Syndrome Decoding

Problem (RSDP).

Definition 2.2 (Regular Syndrome Decoding (RSD)). Let k, n, w ∈ N such that
k, w ≤ n

2 . Given H ∈ F(n−k)×n
2 and s ∈ Fn−k

2 , find a regular vector e ∈ Fn
2 of Hamming

weight w such that He = s. We refer to the RSD problem with parameters (n, k, w) as
RSD(n, k, w).

The constraint w ≤ n
2 is implied by the fact that the solution has to be regular.

3 Hardness Classification

In this section we present results on the general hardness of the RSD problem and draw
direct comparison to the SD problem. We start by recalling and formalizing the required
conditions to expect uniqueness of the solution in the RSD case.

6

3.1 Uniqueness bound

The uniqueness bound for RSD marks, analogous to the GV bound in the SD case, the
transition to instances with multiple solutions. Any set of parameters satisfying this bound
is expected to have at most one solution. The bound reads

(n

w

)w

≤ 2n−k,

where the left side specifies the amount of regular vectors of weight w, i.e., the search space
size, while the probability that a random element of the search space satisfies all parity
equations is 2−(n−k), leading to the term on the right.

Note that since k = κn, w = ωn and, hence, n/w = 1/ω, the above bound can be rewritten
as −ω log2(ω) ≤ 1 − κ. Therefore, once κ is known, one can determine the maximum value
of ω for which uniqueness of the RSD solution (statistically) holds.

Observe that −ω log2(ω) reaches its maximum at ω = e−1 with a maximum value of
(e · ln 2)−1 ≈ 0.5307. This implies that for any code rate κ ≤ 1 − (e · ln 2)−1 ≈ 0.4693, the
inequality is satisfied for any value of ω. We summarize this in the following proposition.

Proposition 3.1 (Uniqueness bound for RSD). Let k = κn, w = ωn. We expect a
unique solution to RSD(n, k, w) if

−ω log2(ω) ≤ 1 − κ.

For κ < 1 − (e · ln 2)−1, the inequality is satisfied for any choice of 0 < ω ≤ 0.5.

The fact that for sufficiently small code rate, uniqueness is guaranteed regardless of ω is a
remarkable difference to the GV bound in the SD case. Later we show that, also with respect
to the hardness classification of instances, the RSD uniqueness bound and the GV bound in
the SD case behave differently. Indeed, while the GV bound classifies the hardest instances,
at least with respect to known algorithms worst RSD parameters do not always match the
uniqueness bound.

3.2 Instances Solvable in Polynomial Time

In this section, we identify two large regimes of parameters for which RSD is solvable in
polynomial time. One of those regimes is, analogous to the SD case, related to a large amount
of existing solutions; instead, the other regime is specific to the regular structure of the RSD
problem. Let us start with the RSD specific regime.

Encoding Regularity Note that a solution e to the RSD problem is a concatenation of
w unit vectors of length b := n/w. Therefore, for each i ∈ {1, · · · , w}, we can include the
parity-check equation ⟨hi, e⟩ = 1 where

hi =
(

0, 0, · · · , 0︸ ︷︷ ︸
(i−1)b

, 1, 1, · · · , 1︸ ︷︷ ︸
b

, 0, 0, · · · , 0︸ ︷︷ ︸
(w−i)b

)
.

7

Considering all these additional equations, we obtain a new parity-check matrix H′ with
n − k + w rows and n columns, structured as

H′ =

H
1 1 · · · 1

1 1 · · · 1
. . .

1 1 · · · 1

b b b

w (2)

Analogously, we update the syndrome as s′ = (s, 1, 1, · · · , 1) ∈ Fn−k+w
2 . This results in

a new RSD instance (H′, s′) where the parity-check matrix H′ corresponds to a code of
smaller dimension k′ = k − w (so, smaller rate κ′ = κ − w/n), while maintaining the same
co-dimension n − k and same solution e, i.e., it still holds that H′e = s′.

This encoding of the regular structure leads to a polynomial regime whenever the new
parity check matrix H′ contains more than n rows.

Theorem 3.1. Whenever w ≥ k, RSD(n, k, w) is solvable in polynomial time with high
probability.

Proof. After encoding the regularity, the RSD solution is a solution to a linear system
containing n − k + w equations and n unknowns, represented by the parity check matrix and
the syndrome (H′, s′). Whenever n − k + w ≥ n, which is equivalent to w ≥ k, the system
contains more equations than unknowns.

Note that for random H′ such a system is solvable in polynomial time with high probability.
Therefore, consider the case of w = k, i.e., H′ being a square matrix. The corresponding
system is solvable in polynomial time whenever H′ has rank at least n − ε with ε = O(log n).
Fulman and Goldstein [FG15, Eq. (1)] have shown that this happens with high probability.

The statement of the theorem follows by observing that for our precise choice of H′ this
probability is even higher. Indeed, we have H′ =

(
H
B

)
, where the w × n matrix B contains

the extra parity-check equations and H is a random (n − k) × n matrix. Note that H′ is not
of full rank if either B or H contain linearly dependent rows or if the space generated by the
rows of H intersects with the space generated by the rows of B.

However, for our choice of H′, unlike the random case, all rows of B are linearly independent
by construction. ⊓⊔

Remark 3.1 (Full Rank H′). In case when H′ is square, asymptotically, for the considered
case of w = Θ(n), the matrix behaves as a random matrix with respect to invertibility.
Indeed, the additional w parity-check equations are linearly independent, that is, generate a
space B with dimension w. So, H′ has full rank whenever the rows of H have full rank r
and generate a space which intersects trivially with B. This happens with probability

(
2n − 2w

2n

)(
2n − 2w+1

2n

)
· · ·
(

2n − 2w+n−k−1

2n

)
=

n−w∏

i=1
1 − 2−i n→∞−−−−→ 0.2887,

which converges to the same limit as for random H′.

8

Amount of Solutions Intuitively and similar to the SD case, RSD becomes easy whenever
there are too many solutions. We specify this regime of parameters in the following theorem.
Theorem 3.2. Whenever k

n ≥ 1
2 and w > n − k, RSD(n, k, w) is solvable in expected

polynomial time.

Proof. Note that the expected amount of solutions to a random RSD instance is S = (n
w)w

2n−k .
Further, the later introduced Theorem 4.1 states the expected running time for solving
RSD(n, k, w) (up to polynomial factors) as

T =
(
1 − k−w

n

)−w

S
.

Therefore as long as T ≤ 1 which is equivalent to
(

1 − k − w

n

)w

≥ 2n−k

(
n
w

)w , (3)

RSD is solvable in expected polynomial time. Using w ≥ n − k we lower bound the left hand
side of Eq. (3) as

(
1 − k − w

n

)w

≥
(

1 − 2k − n

n

)n−k

=
(

2(1 − k

n
)
)n−k

, (4)

as long as 2k − n ≥ 0, which is equivalent to k
n ≥ 1

2 as stated in the theorem. Now using
w ≥ n − k, we upper bound the right hand side of Eq. (3) as

2n−k

(
n
w

)w ≤ 2n−k

(
n

n−k

)n−k
=
(

2(1 − k

n
)
)n−k

. (5)

Finally, observe that (4)≥(5) , which is trivially fulfilled, implies Eq. (3). ⊓⊔

Comparison to the Non-Regular Case In the case of SD instances over F2 it is well
known that those are solvable in polynomial time whenever

n − k

2 ≤ w ≤ n + k

2 .

The corresponding algorithm simply solves the system restricted to the first (n − k) × (n − k)
submatrix of H. This solution has expected weight (n − k)/2. Note that arbitrary columns
from the last k columns of H can be added to the syndrome prior to solving the system in
order to increase the solution weight up to a maximum of (n − k)/2 + k = (n + k)/2.

In Fig. 2 we compare the regimes of parameters for which instances are solvable in
polynomial time in the RSD and the SD case. The figure visualizes that Theorem 3.2 relates
to a similar regime as the polynomial instances regime in the SD case, enclosed completely
in the region of parameters that give rise to many solutions. In contrast, Theorem 3.1 relates
to the whole regime of parameters lying in the upper gray shaded triangle. Note that for
all included instances the solution is guaranteed to be unique. This shows that a hardness
classification solely based on the uniqueness of the solution is not sufficient in the RSD case.
Moreover, this raises the question about the worst case parameters in term of weight for
RSD instances.

9

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

multiple

solutions

RSD solvable in polynomial time

Theorem 3.1

Theorem 3.2

w/n

1
−

k
/
n

(a) RSD parameter regimes

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

m
ul

tip
le

so
lu

tio
ns

SD solvable in
polynomial time

w/n

(b) SD parameter regimes

Fig. 2: Parameter regimes for RSD and SD, where gray shaded area marks instances solvable in
polynomial time, while colored shaded area marks instances where multiple solutions exist. Dashed
lines depict uniqueness bound and GV bound respectively.

3.3 Worst Case Instances

In the following we answer the question for the worst case weight of RSD instances. That
is, given a dimension k = κn of a linear code, which w∗ = ω∗n leads to the hardest RSD
instance RSD(n, k, w∗).

From the SD case it is known that the hardest instances are those matching the GV
bound. However, for RSD we know from Proposition 3.1 that not for every choice of κ a
corresponding ω matching the uniquness bound exists.

Worst Case for SD Instances Note that there is no proof that SD instances matching
the GV bound form indeed the worst case. However, there is an intuitive argument, which is
further supported by all known algorithms reaching their worst case running time for those
instances.

As long as the weight stays below the GV bound the solution is unique. Now, for increasing
weight, the search space grows exponentially in n, rendering the problem more difficult. On
the other hand if the weight exceeds the GV bound there exist exponentially many solutions,
which makes the problem easier. Therefore it is assumed that the hardest instances are those
whose weight matches the GV bound.

The Case of RSD In the RSD case the same argument fails, as even if the solution is
unique, increasing ω gives rise to more equations encoding the regularity, which may render
the problem easier.

In fact, we find that the worst case weight for the regular-ISD algorithms presented in
Section 4 grows initially (almost) linear with the dimension as ω∗ ≈ c · κ, with c ≈ 1/2.
This trend continues until c · κ exceeds the uniqueness bound, from where ω∗ is equal to the
uniqueness bound. We visualize the worst case weight ωlow for the most basic regular-ISD
algorithm in Fig. 3.

10

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4
1/e

1 − 1
e·ln 2

rate κ

re
la

tiv
e

w
ei

gh
t

ω

Uniqueness bound κ/2 ωlow

Fig. 3: Worst case weight ωlow of most basic regular-ISD algorithm (see Algorithm 1 and Theorem 4.1).
From κ ≥ 0.51 onwards ωlow matches the uniqueness bound.

Algorithm dependence. Moreover, we find that the precise weight that leads to the worst
case depends on the considered algorithm. This behavior is similar to the worst case rate
in the SD case, where the exact rate which maximizes the running time is algorithm
dependent. Usually, it lies around 1/2, but seems to be decreasing for more advanced
procedures. Most recent improvements reach their worst case running time for a rate as low
as κ∗ = 0.42 [BM18,CDMHT22,Ess22].

We observe a similar behavior for regular-ISD algorithms where the worst case weight
seems to approach κ/2 for more advanced procedures in the regime κ ≤ 1/2. The most
advanced regular-ISD algorithms almost exactly reach ω∗ = κ/2 in that regime. Note that
the translation of this behavior from the worst case rate in the SD case to the worst case
weight in the RSD case is likely to be explained by the regularity encoding equations. Those
set the rate in direct dependence to the weight as the new dimension after encoding regularity
is k′ = k − w.

Worst case weight. Let UB(κ) denote the weight ω ≤ e−1 matching the RSD uniqueness
bound if such an ω exists. We find that the worst case relative weight ω∗ for RSD instances
for all considered algorithms satisfies

ωlow ≤ ω∗ ≤ min
(κ

2 + ε, UB(κ)
)

,

for a very small constant ε. Remember that for κ ≥ 0.51 it holds that ωlow = UB(κ),
implying ω∗ = UB(κ). Generally, considering ε = 0 the right side of the inequality gives a
well approximation of the worst case weight of all studied algorithms. This weight is also
visualized in Fig. 3.

Note that this shows that even for the regime where there exist parameters matching the
uniqueness bound, this bound does not suffice to classify the worst case weight. For example,
for a rate of κ = 0.47, we find that the worst case weight is always smaller than ω∗ ≤ 0.235
which is far from the uniqueness bound which would imply a weight of roughly 0.349.

11

3.4 Hardness Comparison to the Non-Regular Case

In this section we compare the hardness of RSD and SD directly. The goal is to identify those
parameter regimes in which SD instances are strictly harder to solve than RSD instances
and vice versa, if such exist. Also for regimes that do not allow such a strict separation
we investigate which problem is harder with respect to known algorithms. In this case we
consider for RSD the regular-ISD algorithms presented in the subsequent Section 4.

Classification Based on the Amount of Solutions A first step towards a rigorous
hardness classification of RSD was made recently in [CCJ23a], where the authors identify
three regimes in dependence on the amount of existing solutions. For each regime the authors
argue which problem is harder, identifying one regime in which SD is harder, one in which
RSD is harder and one in which both problems are incomparable. However, a proper definition
of problem A being harder than problem B is missing. For some regimes the authors argue
about the existence of polynomial reductions while for others they argue about possible
algorithmic speedups. In the following we recall those regimes and give a slightly different
categorization.

We compare both problems in those regimes with respect to reducibility as well as the
asymptotic complexity of known algorithms to solve those problems.

Unique solutions. This first regime corresponds to parameters which yield a unique solution
to both problems, i.e., to a weight below the GV bound.

Note that RSD always polynomially reduces to SD. This reduction permutes the columns
of the parity-check matrix to obtain a randomly distributed solution, i.e., it calls the SD
solver on input (HP, s) with solution P−1e, where P is a random permutation matrix. On
the other hand, there is no polynomial reduction from SD to RSD known in this regime.

Further, since the RSD problem allows to encode the regularity and, as we show in
Section 4, allows for many other speedups, algorithms that exploit RSD specifics are strictly
faster than those solving plain SD in this regime.

Multiple Solutions. This regime corresponds to parameters which yield multiple solutions
to RSD as well as SD. Precisely, this regime corresponds to weights exceeding the RSD
uniqueness bound and is visualized as the red shaded area in Fig. 2a. Note that in this regime
for any given SD instance there exist regular solutions. Therefore one can apply any RSD
solver to the given SD instance finding one of those valid regular solutions. This implies that
SD polynomially reduces to RSD in this regime.

However, this reduction works vice-versa as for any RSD instance there exist non-regular
solutions and, further, there still exist a reduction from RSD to SD regardless of the amount
of solutions. Therefore in terms of polynomial reducibility RSD and SD are equivalent in
this regime.

Due to the different amount of solutions to the problems and the effect of the reduction on
those amounts, it is not immediately possible to derive a strict separation on the asymptotic
complexity of algorithms solving both problems in this regime. Nevertheless, we find that
for weights exceeding the uniqueness bound either both problems are solvable in polynomial
time, i.e., they are equally hard, or RSD is indeed harder with respect to the best known
algorithms.

12

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

SD
strictly
harder

RSD
harder

SD and RSD
polynomial

RSD
polynomial

w/n

1
−

k
/
n

GV bound Uniqueness bound

Fig. 4: Hardness comparison between RSD and SD with respect to known algorithms.

Unique RSD but multiple SD solutions The third regime corresponds to the case where SD
has multiple solutions while the RSD solution is still unique. That means, the weight of those
instances exceeds the GV bound but still lies below the uniqueness bound. In this regime
RSD reduces to SD via the outlined reduction but not vice versa.

In terms of asymptotic complexity of algorithms solving both problems again a strict
separation is not possible. Similar to the regime where both problems have multiple solutions
the effect of those can not be quantified directly. We find that this regime contains parameters
that lead to harder SD instances as well as harder RSD instances with respect to known
algorithms.

Classification Based on Known Algorithms In the following we compare the hardness
of RSD and SD based on the asymptotic complexity of known algorithms.

We illustrate in Fig. 4 the different parameter regions and their corresponding hard-
ness classification. We mark the region in which RSD is solvable in polynomial time (see
Theorems 3.1 and 3.2) as a gray shaded area framed by a solid gray line. The GV bound
and the RSD uniqueness bound are depicted as blue and red dashed lines. The blue shaded
area corresponds to weights below the GV bound, in which SD is strictly harder than RSD.
The area below the uniqueness bound marks the regime of parameters that yield multiple
solutions to both problems. The purple region corresponds to the area in which also SD is
solvable in polynomial time.

Finally, the green shaded region marks the regime in which we find RSD to be harder
than SD. Here the area extending the purple region to a triangle, separated by the dotted
line includes parameters for which SD is solvable in polynomial time, while RSD instances
remain exponentially hard. The rest of the green area corresponds to parameters where
both problems are exponentially hard and we find RSD instances to be harder than SD
instances based on known algorithms. For this classification we compare the running time of
the basic ISD algorithm by Prange in the SD case (see Eq. (1)) against the running time
of the permutation-based regular-ISD algorithm (see Algorithm 1 and Theorem 4.1). Note
that, we also performed this comparison for the most advanced versions of ISD [BM18] and

13

regular-ISD (Algorithm 3) but the picture remains almost the same with a slight increase
of the green area. This indicates that the RSD case benefits slightly more from advanced
techniques, as an enlarging of the green area corresponds to instances that are closer to the
SD worst case (the GV bound) and further away from the RSD worst case, which is for most
of the parameters in this region the RSD uniqueness bound.

Note that the white unfilled area between the green and blue area corresponds to
parameters where we find SD to be harder with respect to known algorithms.

Comparison for Worst Case Parameters. Fig. 4 shows that there are regimes in which
RSD is harder than SD if comparing the problems with the same parameterization. However,
in cryptographic constructions parameters are usually chosen considering the individual
problem properties. Schemes based on SD would craft parameter sets that are specifically
well suited for SD and analogously for RSD. Therefore we compare in following the hardness
of SD and RSD for their respective worst case instances. Again, this comparison is with
respect to known algorithms, where in Fig. 5 we compare the running time of the fastest ISD
algorithm in the SD case by Both-May against the best regular-ISD algorithm (Algorithm 3).
We observe that for small rates SD instances following worst case parameters are generally

0 0.2 0.4 0.6 0.8 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

k/n

tim
e

ex
po

ne
nt

c
in

T
=

2c
n

SD complexity
RSD complexity

Fig. 5: Comparison of complexity of Both-May algorithm [BM18] on SD instances and regular-ISD
algorithm (Algorithm 3) on RSD instances, where instances match respective worst case parameters.

harder with respect to known algorithms. However, interestingly, for all rates κ > 0.49 RSD
instances following worst case parameters are harder to solve.

Comparison for Small Error Weight What is not captured visually in Fig. 4 is that the
quotient of the time complexity to solve the respective SD and RSD instances TSD/TRSD
approaches 1 for w/n → 0. Note that this does not contradict the “SD strictly harder” regime,
as for any constant w we find TSD/TRSD > 1. But still, it is an indication that the smaller the
solution weight, the closer both problems become in terms of computational complexity. In
fact, for w constant, any random permutation of the columns of H corresponds to a regular

14

solution with inverse polynomial probability. In turn this yields a polynomial reduction from
SD to RSD. However, since both problems are solvable in polynomial time if w is a constant
the reduction is not very meaningful.

In the following we show that with respect to ISD and regular-ISD algorithms both
problems are solvable in same asymptotic running time as long as w = o(n) is sublinear in n.
Therefore note that in the SD case for w = o(n), a result by Canto-Torres and Sendrier [TS16]
proves that all known ISD algorithms obtain the same asymptotic running time of

TSD =
(

1 − k

n

)−(w+o(w))

.
On the other hand Theorem 4.1 states the running time (for any w) of the permutation-

based regular-ISD algorithm as

TRSD = Õ
((

1 − k − w

n

)−w
)

. Let k = κn with constant κ and w = o(n) sublinear, then 3

TSD

TRSD
=
(
1 − k−w

n

)w

(
1 − k

n

)w =
(

1 + w

n(1 − κ)

)w

= 2w·
(

w
n(1−κ) ln(2) +o(w

n)
)

= 2o(w). (6)

This shows that both complexities differ only by second order terms.

4 Regular Information Set Decoding

In this section we describe the regular-ISD algorithms that exploit the regular structure of
the RSD solution and provide their asymptotic analysis.

The most advanced algorithms following the regular-ISD approach incorporate most mod-
ern techniques, including permutations, enumeration, representations and nearest-neighbor
search tailored to the regular setting. For didactic reasons we provide an incremental de-
scription embedding one technique at a time, following a similar evolution as the ISD
literature.

In the analysis, we ignore all rounding issues by performing computations with non-integer
values if necessary. We show in Section 4.6 that these rounding issues affect the asymptotic
complexity only very mildly.

4.1 Permutation-Based Regular-ISD

This first algorithm aims to find an error-free information set of the solution e by random
selection or permutation of coordinates.
3 From Taylor’s expansion, for x = o(1), we get log2(1 + x) = x

ln(2) +O(x2) = x
ln(2) + o(x). In our

case, since w = o(n), we get w/n = o(1).

15

Error-free information sets. An error-free set for e corresponds to a set J such that eJ = 0.
Knowledge of such a set reveals the error vector e if it is an information set. Therefore,
let PJ ∈ Fn×n

2 describe any permutation matrix that permutes eJ to the back of PJe, i.e.,
PJe = (e1, eJ) ∈ Fn−k

2 × Fk
2 .4 In that case we have

He = (HP−1
J)(PJe) = (HP−1

J)(e1, eJ) = H1e1 + H2eJ = H1e1 = s, (7)

where we write (HP−1
J) = (H1H2) with H1 ∈ F(n−k)×(n−k)

2 and H2 ∈ Fk×(n−k)
2 . Note that

H2eJ = 0 since eJ = 0, as J represents an error-free information set. Now, as long as H1 is
invertible we can compute e1 = H−1

1 s and the solution as e = P−1
J (e1, 0k). Note that H1

being invertible is the exact definition of J being an information set, and it happens for
random H with constant probability over the choice of J .

The early ISD algorithm by Prange finds the error-free information set by sampling
random permutations P, computing e′

1 = H−1
1 s and checking if |e′

1| = w, in which case it
outputs the solution P−1(e′

1, 0k), otherwise it starts over with a new permutation.

Regular Permutations. However, random permutations disregard the regular structure of the
error and might lead to a decrease in the probability that H1 is invertible. Therefore, note
that the equations added due to regularity are sparse and any permutation P that permutes
all columns belonging to a single block to H2, i.e., to the back of the matrix, leads to an H1
containing zero rows, making it non-invertible.

In order to circumvent this problem and to take advantage of the regular structure of
the solution, we modify how permutations are sampled. Namely, we ensure that for every
permutation the matrix H2 is formed by selecting v = k′

w columns from each block. Further,
to enable later improvements the v columns taken from each block form again a consecutive
block in H2. More formally, we define a v-regular permutation as follows.

Definition 4.1 (Regular Permutation). Let e = (e1, . . . , ew) be a regular vector of
weight w. For an integer v and a permutation matrix P let

Pe = (e′
1, . . . , e′

w, e′′
1 , . . . , e′′

w),

with e′
i ∈ F

n
b −v
2 and e′′

i ∈ Fv
2. We call P a v-regular permutation if each e′

i and each e′′
i is

formed only by coordinates from ei.

The algorithm now samples permutations uniformly from the set of v-regular permutations
until an error-free information set is found. The pseudocode of the overall algorithm is given
in Algorithm 1.

Theorem 4.1 (Permutation-based Regular-ISD). Algorithm 1 solves RSD(n, k, w) in
expected time and memory

T = Õ
((

1 − k−w
n

)−w

S

)
and M = Õ (1) ,

where S is the amount of existing solutions.
4 Recall that J being an information set also implies |J | = k.

16

Algorithm 1: Permutation-based Regular-ISD
Input : Parity-check matrix H′ ∈ F(n−k)×n

2 , syndrome s′ ∈ Fn−k
2 , weight w

Output : Regular vector e ∈ Fn
2 of weight w, such that He = s

1 Let k′ := k − w , v := k′/w

2 Obtain H ∈ F(n−k′)×n
2 , s ∈ Fn−k′

2 from (H′, s′) by encoding regularity
3 repeat
4 Sample random v-regular permutation matrix P
5

(
H1, H2

)
← HP

6 if H1 is non-singular then
7 e1 ← H−1

1 s
8 if |e1| = w and e1 is regular then
9 return P−1(e1, 0k′)

Proof. The correctness follows from the previous argumentation on error-free information
sets. Therefore note that as long as v = k′/w < n/w − 1 which is equivalent to k/n ≤ 1 and
hence strictly fulfilled, there always exist v-regular permutations that yield Pe = (e1, 0k′).

The algorithms complexity is the time per iteration divided by the success probability
per iteration. First note, that the time spend in each iteration is polynomial, and hence,
subsumed in our use of the Landau notation.

An iteration is successful if the chosen permutation distributes the whole support of e to
the first n − k′ coordinates of Pe and if H1 is invertible. Note that H1, due to our restriction
to regular permutations has a similar structure as H′ from Eq. (2). Therefore, it is invertible
with constant probability as detailed in Remark 3.1. Further, for b = n/w the probability of
the permutation distributing the weight as desired is

q := Pr
[
Pe = (e1, 0k′

)
]

=
((

b−1
v−1
)

(
b
v

)
)w

=
(

1 − v

b

)w

=
(

1 − k′

n

)w

. (8)

Therefore note that the permutation has to distribute the single non-zero entry per block to
the H1 part, which happens with probability (b−1

v−1)
(b

v)
= 1− v

b per block, while there are w blocks.
Note that in case of S existing solutions the probability of the permutation distributing the
weight as desired for at least one of the solutions is about q · S.

Therefore the running time of Algorithm 1 is

T = Õ
((

1 − k−w
n

)−w

S

)
,

since k′ := k − w. All stored objects are matrices of size polynomial in n, therefore the
memory complexity is polynomial, i.e., M = Õ (1). ⊓⊔

4.2 Enumeration-Based Regular-ISD
We now extend Algorithm 1 by a meet-in-the-middle enumeration procedure that further
exploits the regular structure of the error. Therefore we allow for a certain weight p, later to

17

be optimized, within the coordinates of the information set J , i.e., we search for a set J such
that |eJ | = p.

Finiasz-Sendrier modelling We follow a modeling by Finiasz and Sendier [FS09] that increases
the size of the set J to |J | = k + ℓ with ℓ being another optimization parameter. Let PJ

again be a permutation matrix such that PJe = (e1, eJ) ∈ Fn−k−ℓ
2 ×Fk+ℓ

2 , now with |eJ | = p.
Further let Q ∈ F(n−k)×(n−k)

2 be a matrix such that

QHP−1
J =

(
In−k−ℓ H1

0 H2

)
, with H1 ∈ F(n−k−ℓ)×(k+ℓ)

2 and H2 ∈ Fℓ×(k+ℓ)
2 .

This modeling allows to re-write the syndrome equation as

QHe = QHP−1
J PJe = (e1 + H1eJ , H2eJ) = (s1, s2) = Qs, (9)

with s1 ∈ Fn−k−ℓ
2 and s2 ∈ Fℓ

2.
This implies that once such a set J is known the solution can be found by enumerating

all possible values for eJ , i.e., all vectors x ∈ Fk+ℓ
2 of weight p that satisfy H2x = s2. Among

those values there must be one x = eJ for which H1x + s2 = e1. Even if e1 is not known,
this x can be efficiently determined by checking if |H1x + s2| = |e1| = w − p. Eventually the
solution can again be reconstructed as P−1

J (e1, eJ).

Regular Enumeration. For finding a suitable permutation that encodes such a set J we again
use the sampling of regular permutations as in Algorithm 1. Recall, that this ensures that
any permutation P permutes exactly v := (k′ + ℓ)/w columns of each block to a consecutive
block within the last k′ + ℓ columns of HP−1. Note that such permutations P reflect the
regular structure to Pe = (e1, e2) ∈ Fn−k′−ℓ

2 ×Fk′+ℓ
2 in the sense that e2 consists of w blocks

of length v each having either weight 0 or weight 1. Put differently, if P encodes such a set J ,
e2 is v-regular of weight p (see Definition 4.1). Similarly, in that case e1 is (n/w − v)-regular
of weight w − p.

We enumerate possible candidates for eJ in a meet-in-the-middle fashion taking into
account the implied regularity. Therefore we write eJ = (z1, z2), with z1, z2 ∈ F(k′+ℓ)/2

2 ,
allowing to rewrite H2eJ = s2 as

H′
2z1 = H′′

2z2 + s2, (10)

where H2 = (H′
2, H′′

2). We then enumerate all possible zi in lists Li, where we only consider
those of certain regularity. The full procedure is detailed in pseudocode in Algorithm 2.

Analysis of Algorithm 2. The correctness of the algorithm follows again from the previous
argumentation. Therefore observe that once the permutation encodes a set J , z1, z2 from
Eq. (10) form v-regular vectors of length- (k′ + ℓ)/2 and weight p/2, which are exhaustively
enumerated in the lists L1, L2.

The expected running time of the algorithm is, analogous to Algorithm 1, the time spend
in each iteration divided by the success probability per iteration. The time per iteration is
dominated by the construction of the three lists L1, L2 and L. Lists L1 and L2 enumerate all
v-regular vectors z1, z2 of length (k′ +ℓ)/2 and weight p/2, where v := (k′ +ℓ)/w. This implies

18

Algorithm 2: Enumeration-based Regular-ISD
Parameters : ℓ ≤ n− k + w and p ≤ w
Input : Parity-check matrix H′ ∈ F(n−k)×n

2 , syndrome s′ ∈ Fn−k
2

Output : Regular vector e ∈ Fn
2 of weight w, such that He = s

1 let k′ := k − w, v := (k′ + ℓ)/w

2 Obtain H ∈ F(n−k′)×n
2 , s ∈ Fn−k′

2 from (H′, s′) by encoding regularity
3 repeat

// Permutation and Gaussian Elimination
4 Sample a random v-regular permutation matrix P

5

(
In−k′−ℓ H1

0 H2

)
← QHP−1 , with H1 ∈ F(n−k′−ℓ)×(k′+ℓ)

2 , H2 ∈ Fℓ×(k′+ℓ)
2

6 (s1, s2)← Qs with s1 ∈ Fn−k′−ℓ
2 and s2 ∈ Fℓ

2

// Enumeration

7 Li ← {zi | zi ∈ F(k′+ℓ)/2
2 is v-regular of weight p/2}, i = 1, 2

8 L ← {(z1, z2) ∈ L1 × L2 | H2(z1, z2) = s2}
9 for e2 ∈ L do

10 e1 ← H1e2 + s1
11 if |e1| = w and e1 is regular then
12 return P−1(e1, e2)

that |L1| = |L2| =
(

w/2
p/2
)
vp/2. The list L then contains all pairs of elements (z1, z2) ∈ L1 × L2

that satisfy Eq. (10). This list can be constructed in time linear in the involved list sizes,
leading to a time per iteration of Tit = Õ (max(|L1|, |L2|, |L|). The expected size of L is
E[|L|] = |L1×L2|

2ℓ .
An iteration is successful whenever the permutation distributes the weight on Pe =

(e1, z1, z2) such that both z1 and z2 are of weight p/2. This happens with probability

q = Pr [|z1| = |z2| = p/2] =
(

w/2
p/2

)2 (v

b

)p (
1 − v

b

)w−p

. (11)

Therefore note that the probability of a block of length v in z1, resp. z2, being of weight one
is (b−1

v−1)
(b

v)
= v

b and correspondingly it is of weight zero with probability
(
1 − v

b

)
. Now there

are
(

w/2
p/2
)

ways how the p/2 weight-1 blocks can be distributed among the w/2 blocks of z1
or z2, respectively.

In total this leads to a running time of

T = Tit/q = Õ

max
((

w/2
p/2
)
vp/2,

(
w
p

)
vp/2ℓ

)

(
w
p

) (
v
b

)p (1 − v
b

)w−p

 .

19

Note that here we use the fact that
(

w/2
p/2
)2

= Θ̃
((

w
p

))
. The memory complexity is M =

Õ (|L1|) = Õ
((

w/2
p/2
)
vp/2

)
, as elements of |L| can be checked on the fly for leading to a

solution.

4.3 Representation-based Regular-ISD

Contrary to previous assumptions [CCJ23a], we show in this section how the enumeration
procedure can be further improved by the use of a technique known as representations.

Representations. While we assume a certain familiarity of the reader with the representation
technique5, let us briefly recall its main idea in the non-regular case. A vector e ∈ Fn

2
of weight-p satisfying He = s is split in the sum of two vectors x1, x2 ∈ Fn

2 of weight
px := p/2 + εx for a small εx that has to be optimized. Therefore we write e = x1 + x2. Note
that there are multiple choices for the x1, x2 in that equation, called representations of e.
Precisely, there are

Rx =
(

p

p/2

)(
n − p

εx

)

many such representations. The technique builds on the observation that finding one of
those representations reveals e and, hence, aims at enumerating a 1/Rx-fraction of all
representations. This is achieved by only considering those representations which satisfy

Hx1 = rx and Hx2 = s[ℓx] + rx, (12)

where ℓx := log Rx and rx ∈ Fℓx
2 is chosen arbitrarily. Note that the probability for any

representation satisfying Eq. (12) is Pr [Hx1 = rx] = 2−ℓx , as Hx1 = rx together with
He = s implies the second part of the equation.

While the values for x1 and x2 could now, as in the previous section, be enumerated in
a meet-in-the-middle fashion based on the identities from Eq. (12), the technique becomes
most effective if applied recursively. Therefore, the xi are split again into the sum of vectors
yj . More precisely, we write x1 = y1 + y2 and x2 = y3 + y4, where the yi ∈ Fn

2 are of
weight py = px/2 + εy for a εy that has to be optimized. Again each such x1 and x2 have
Ry =

(
px

px/2
)(

n−px
εy

)
representations as (y1, y2) and (y3, y4) respectively. Therefore again

constraints on the exact form of the matrix-vector product Hyi are introduced to only
enumerate a 1/Ry fraction of those representations, still ensuring all xi are constructed.
Precisely, letting ℓy := log Ry and ry ∈ Fℓy

2 the algorithm enforces

Hy1 = ry and Hy2 = (rx)[ℓy] + ry , as well as (13)
Hy3 = ry and Hy4 = (s + rx)[ℓy] + ry. (14)

Analogously to the first application of the technique, for any representation (y1, y2) Eq. (13)
is satisfied with probability 2−ℓy giving the desired fraction of representations, as the second
part of each equation is implied by the first part in conjunction with Eq. (12). Analogously,
the same holds for a representation (y3, y4) and Eq. (14).
5 For an introduction we refer to [HJ10,MMT11].

20

Regular Representations. The representation enhanced algorithm for the regular case follows
a similar initial construction as Algorithm 2. As such, it uses the same modelling by Finiasz-
Sendrier and samples the same kind of regular permutations. The adaptation lies in the
enumeration procedure, i.e., the way we enumerate eJ . Recall that eJ is a v-regular vector of
length k′ + ℓ and weight p, with v := (k′ + ℓ)/w, satisfying the identity HeJ = s2. In order
to embed representations into the regular enumeration we split eJ = x1 + x2 in the sum of
two v-regular vectors of same length k′ + ℓ but weight px = p/2 + εx. Therefore we maintain
the regular structure in the addends xi, which reduces the search space for the enumeration,
while still obtaining multiple representations. Note that the number of representations in
such a modelling becomes

Rx =
(

p

p/2

)(
w − p

εx

)
· vεx . (15)

As in the non-regular case the first binomial coefficient counts the possibilities how the p
weight-1 blocks can be distributed equally over the addends x1 and x2. The second coefficient
counts the possibilities to position the remaining εx non-zero blocks in which the weight
cancels. Note that each canceling block offers v possibilities to place its weight, which leads to
the final factor. We apply the technique recursively, splitting x1 = y1 + y2 and x2 = y3 + y4,
where we let yi be v-regular vectors of length k′ + ℓ and weight py = px/2 + εy. The vectors
yi are then enumerated in a meet-in-the-middle fashion based on the identities from Eqs. (13)
and (14). A pseudocode description of the full procedure is given in Algorithm 3.

Analysis of Algorithm 3. The correctness of the procedure follows from the correctness
of Algorithm 2 and the argumentation above. Therefore observe that for the enumeration
procedure we enforce the necessary constraints rx, ry of correct length ℓx := log Rx, ℓy :=
log Ry, where

Ry =
(

px

px/2

)(
w − px

εy

)
· vεy , (16)

analogous to Eq. (15). Hence, the enumeration recovers all candidates for eJ in the final lists,
i.e., all v-regular vectors of weight p satisfying HeJ = s2, implying that eJ is found once a
correct permutation is encountered.

The running time is the number of iterations divided by the success probability of each
iteration. An iteration is successful if the permutation distributes the weight as desired, which
we already saw happens with probability q (see Eq. (11)).

The cost per iteration is dominated by the enumeration procedure, that is the construction
of the lists. In the initial lists Li, i = 1, . . . , 8 all v-regular vectors of length (k′ + ℓ)/2 and
weight py/2 are enumerated. Therefore those lists are of size |Li| =

(
w/2
py/2

)
vpy/2. The lists Lyj

are constructed from pairs from lists L2j−1, L2j by enforcing a constraint on ℓy coordinates
and is therefore of expected size |Lyj

| = |Li|2/2ℓy . The construction of this list is linear in
the size of the Li and the list Lyj

itself, hence it can be performed in time

Ty = Õ (max(|Li|, |Lyi
|)) .

Lists Lxj
are similarly constructed from pairs of the lists Ly2j−1 , Ly2j

by enforcing a constraint
on ℓx coordinates. However, note that since every such pair satisfies Eq. (13) (resp. Eq. (14))
it already satisfies the first (resp. second) part of Eq. (12) on ℓy coordinates. Hence only a

21

Algorithm 3: Representation-based Regular-ISD
Parameters : ℓ ≤ n− k + w, p ≤ w, εx ≤ k − w + ℓ− p and εy ≤ k − w + ℓ− p/2− εx

Input : Parity-check matrix H′ ∈ F(n−k)×n
2 , syndrome s′ ∈ Fn−k

2
Output : Regular vector e ∈ Fn

2 of weight w, such that He = s

1 let k′ := k − w, v := (k′ + ℓ)/w, px := p/2 + εx and py := px/2 + εy
2 let ℓx = log Rx and ℓy = log Ry for Rx, Ry as in Eqs. (15) and (16)
3 Obtain H ∈ F(n−k′)×n

2 , s ∈ Fn−k′

2 from (H′, s′) by encoding regularity
4 repeat

// Permutation and Gaussian Elimination
5 Sample a regular permutation matrix P ∈ Rv

6

(
In−k′−ℓ H1

0 H2

)
← QHP−1 , with H1 ∈ F(n−k′−ℓ)×(k′+ℓ)

2 , H2 ∈ Fℓ×(k′+ℓ)
2

7 (s1, s2)← Qs with s1 ∈ Fn−k−ℓ
2 and s2 ∈ Fℓ

2

// Enumeration

8 sample rx ∈ Fℓx
2 ,ry ∈ Fℓy

2

9 Li ← {zi | zi ∈ F(k′+ℓ)/2
2 is v-regular of weight py/2}, i = 1, . . . , 8

10 let ry1 = ry3 := ry, ry2 = (rx)[ℓy] + ry and ry4 = (s2 + rx)[ℓy] + ry

11 Lyi ← {(z2i−1, z2i) ∈ L2i−1 × L2i | H2(z2i−1, z2i) = ryi}, i = 1, 2, 3, 4

12 let rx1 := rx and rx2 = (s2)[ℓx] + rx

13 Lxi ←
{

y2i−1 + y2i | yj ∈ Lyj ∧H2(y2i−1 + z2i) = ryi

}
, i = 1, 2

14 LeJ ←
{

x1 + x2 | xj ∈ Lxj ∧H2(x1 + x2) = s2
}

15 for eJ ∈ L do
16 e1 ← H1eJ + s1
17 if |e1| = w and e1 is regular then
18 return P−1(e1, eJ)

new constraint on ℓx − ℓy coordinates is introduced. The construction of list Lxj
therefore

comes at a cost of
Tx = Õ

(
max(|Lyi |, |Lyi |2/2ℓx−ℓy)

)
.

Observe that not all the |Lyi
|2/2ℓx−ℓy constructed elements satisfying the corresponding

part of Eq. (12), have the correct number of non-zero blocks px. This happens in the case
when not exactly εx blocks cancel in the addition of elements from the lists Ly2j−1 , Ly2j . We
then discard elements that do not form v-regular vectors of weight px. Due to the choice of
constraint-sizes, which ensures that each v regular vector of weight px satisfying Eq. (12) is
constructed, after discarding ill-formed elements the lists Lxj

are of size |Lxj
| =

(
w
px

)
vpx/2ℓx

Eventually, the final list LeJ
can analogously to list Lxj be constructed in time

TeJ
= Õ

(
max(|Lxj |, |Lxj |2/2ℓ−ℓx

)
.

22

Therefore note that any sum e′
J of elements from lists Lx1 , Lx2 already satisfies the equation

H2e′
J = s2 on ℓx out of ℓ coordinates (compare to Eq. (12)).

The time complexity of the full algorithm is therefore given by

T = Õ
(
q−1 · max(Ty, Tx, TeJ

)
)

= Õ

max
((

w/2
py/2

)
vpy/2,

(
w
py

)
vp

y/2ℓy ,
(

w
py

)2
v2py/2ℓx+ℓy ,

(
w
px

)2
v2px/2ℓ+ℓx

)

(
w
p

) (
v
b

)p (1 − v
b

)w−p

 ,

while the memory complexity is equal to the sizes of Li, Ly, Lx, i.e., M =
Õ (max(|Li|, |Ly|, |Lx|)).

Since for ISD algorithms in the SD context the optimal recursion depth of the repre-
sentation technique differs, we also computed the complexity increasing the depth by one.
However, this variant did not allow to obtain further improvements.

4.4 Nearest-Neighbor-Based Regular-ISD

Finally, we achieve a further improvement over Algorithm 3 by leveraging nearest-neighbor
search techniques similar to [MO15].

Nearest-Neighbor-based ISD. Therefore note, that so far Algorithm 3 exploits only the
relation H2eJ = s2 to find the solution, i.e., the second part of Eq. (9). May and Ozerov
observed, that the first part of this equation, namely H1eJ + e1 = s1, can be interpreted as a
nearest-neighbor identity and in turn be exploited in the candidate search for eJ . Therefore
note that if eJ = x1 + x2, then the equation can be rewritten as

H1x1 = H1x2 + s1 + e1.

In other words H1x1 is equal to H1x2 + s1 up to the addition of e1. Now, since e1 is known
to have low Hamming weight those values are actually close.

Therefore, once two lists Lx1 , Lx2 with candidates for x1, x2 are constructed one can
apply a nearest neighbor search to find those elements x′

1, x′
2 for which it holds that H1x′

1 ≈
H1x′

2 + s1.

Integrating Nearest-Neighbor search into Algorithm 3. We embed the nearest-neighbor search
in the same way. Therefore we exchange line 14 in Algorithm 3 with an application of a
nearest neighbor search routine that computes LeJ

as

LeJ
= {x1 + x2 : xi ∈ Lxi

∧ |H1(x1 + x2) + s2| = w − p}.

Note that we do not require the identity H2eJ = s2 in the construction of LeJ
anymore.

Therefore, we set ℓ = ℓx, which ensures that the identity is already satisfied on all coordinates
for any sum of elements from Lx1 , Lx2 . The only change in the complexity of the adapted
algorithm in comparison to Algorithm 3 is with regards to the time to construct LeJ

, which
now becomes

TeJ
= Õ

(
max(|Lxj |, N (|Lx1 |, n − k − ℓ, w − p))

)
.

23

Here N (|Lx1 |, n − k′ − ℓ, w − p) describes the complexity of the nearest neighbor routine
by May-Ozerov [MO15, Theorem 1] (or see [EKZ21, Theorem 1] for a generalization). In
our case this routine finds all pairs of elements from the two lists of size |Lx1 | containing
length-(n − k′ − ℓ) vectors that sum to weight-(w − p) vectors.

Remark 4.1 (Regular Nearest-Neighbor Search). We note that the difference between H1x1
and H1x2 + s1 is e1, i.e., a (n − k′ − ℓ)/w-regular vector of weight w − p. So far we do not
exploit this structure in the nearest neighbor search. Internally, the May-Ozerov nearest
neighbor search already applies a permutation to both lists that ensures a certain regular
distribution of the difference. More precisely, the algorithm ensures that the difference e1 is
formed by blocks of length v of same weight, where the precise choice of v depends on the
analysis, but a common choice is log2(k′ + ℓ). Note that enforcing such a distribution comes
at a subexponential runtime overhead subsumed in the asymptotic notation (since lists are of
exponential size). How to further exploit the regular structure when v is constant to obtain
an asymptotic speedup is non-obvious. However, the second order terms in the complexity
of the May-Ozerov algorithm can certainly be reduced if the difference is guaranteed to be
regular.

4.5 Asymptotic Complexity Comparison

In this section we compare the theoretical runtime exponent of the different improvements
against the state-of-the-art. Therefore note, that the asymptotic complexity of all presented
algorithms can be expressed as 2c(κ,ω)n, where c is a constant depending on the constant
rate κ and the constant relative weight ω, where k = κn and w = ωn.

Obtaining the runtime exponent. We obtain the constant c by a standard procedure in
the context of ISD algorithms. That is by straightforward application of the well-known
approximation

(
a
b

)
= Θ

(
2ah(b/a)), to the previously stated runtime formulas, where h denotes

the binary entropy function. Technically, the function c also depends on the optimization
parameters, such as ℓ and p in the case of Algorithm 2. We then model those parameters
to be linear in n, i.e. ℓ = cℓn and p = cpn, where cℓ, cp are constants. For given κ, ω, we
then numerically minimize c(κ, ω) by the choice of cℓ, cp. A python script performing the
necessary numerical optimization is available at github.com/Memphisd/Regular-ISD.

State-of-the-art. Recently, Briaud and Øygarden [BØ23] presented an algorithm modelling the
RSD problem as a multivariate-system. While their algorithm outperforms other approaches
for certain, concrete parameters, its asymptotic scaling is unclear. We therefore compare
against this approach in Section 5 where we consider concrete complexities. At the same
time Carozza, Couteau and Joux [CCJ23a] presented an algorithm that is based on an
enumeration approach. In the following, we briefly recall this algorithm and establish its
asymptotic complexity.

Asymptotic of the Carozza-Couteau-Joux Algorithm The CCJ algorithm follows
a pure enumeration strategy. Therefore, the algorithm relies on a similar technique as the
Finiasz-Sendier modelling. The solution e = (e1, e2) ∈ Fn−k−ℓ

2 ×Fk+ℓ
2 is split in two parts, for

24

github.com/Memphisd/Regular-ISD

some optimization parameter ℓ. Analogously to Eq. (9) this allows to rewrite the syndrome
equation as

He =
(

In−k−ℓ H1
0 H2

)
(e1, e2) = (H1e2 + e1, H2e2 = (s1, s2) = s. (17)

The algorithm then enumerates all candidates x for e2 exploiting its regularity. Among those
candidates it recovers the one x = e2 that satisfies |H1x + s1| = |e1| = w(1 − k+ℓ

n).
The authors of [CCJ23a] suggest to add the regularity encoding equations prior to the

modelling from Eq. (17). However, we note that adding equations that have support only on
their last k + ℓ coordinates does not improve the enumeration procedure. This is because the
enumeration on those coordinates is already restricted to regular vectors which satisfy those
equations by construction. More precisely, since adding equations decreases the dimension of
the code, we need to ensure that

n − (k + ℓ − i) ≤ i · b = i · n

w
⇔ i ≤ n − k

n/w − 1 =
(

1 − w

n

)−1
(

1 − k + ℓ

n

)
w.

This inequality is equivalent to all added vectors having support only on their first n−k−ℓ+i
coordinates, i.e., the part which is not enumerated. The updated parity check matrix therefore
corresponds to a code with dimension k̃ = k −

(
1 − w

n

)−1 (1 − k+ℓ
n

)
w.

For the enumeration the algorithm uses a meet-in-the-middle strategy, enumerating
n/w-regular vectors e′

2, e′′
2 of length (k̃ + ℓ)/2, where e2 = (e′

2, e′′
2). Therefore the enumerated

lists are of size L =
(

n
w

)w(k̃+ℓ)
2n . Similar to the Finiasz-Sendrier modelling the algorithm then

finds all pairs between the lists that satisfy

H2(e′
2, 0) = H2(0, e′′

2) + s2.

On expectation there are L2/2ℓ pairs satisfying the above identity, leading to a running time
of

TCCJ = Õ
(
max

(
L, L2/2ℓ

))
,

while the memory complexity is linear in the list size, i.e., MCCJ = Õ (L).

Improvement by Nearest-Neighbors. Carozza, Couteau and Joux further applied the idea
of nearest neighbor search in the spirit of [MO15]. In particular, this corresponds to the
choice of ℓ = 0 while using only the nearest neighbor identity H1e2 = e1 + s from the
modelling in Eq. (17) for the subsequent matching of lists. In the parameter selection of their
signature scheme they assume this regular nearest-neighbor search can be performed at no
cost. While this leads to conservative parameters it does not yield a constructive algorithm.
In the following we use the May-Ozerov nearest-neighbor search to perform this matching.
Even though we do not exploit the regular structure, we obtain improvements over the pure
enumeration variant. Note that the equations that can be added in this case are k − k̃ as
before, now with the choice ℓ = 0. Further, the nearest-neighbor search comes at a cost of
N := N

(
L, n − k̃,

(
1 − k̃

n

)
w
)

(compare to Section 4.4), which results in a runtime of

TNN = Õ (max (L, N)) . (18)

25

Algorithm κ ω cT (κ, ω) cM (κ, ω)

CCJ 0.57 0.1659 0.1404 0.1404
CCJ-MO 0.58 0.1575 0.1281 0.1054

Perm 0.60 0.1421 0.1256 0.0000
Enum 0.60 0.1421 0.1225 0.0287
Rep 0.59 0.1496 0.1130 0.0714
Rep-MO 0.57 0.1659 0.1117 0.0852

Table 2: Maximum runtime and corresponding memory exponents for different RSD algorithms.
Runtime resp. memory are of the form 2cT (κ,ω)n and and 2cM (κ,ω)n. Maximum time is obtained for
stated κ and ω.

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

rate κ = k/n

tim
e

ex
po

ne
nt

c
in

T
=

2c
n

Perm Enum
Rep Rep-MO

(a) Comparison of regular-ISD from Section 4.

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

rate κ = k/n

CCJ CCJ-MO
Rep-MO

(b) Comparison against other algorithms.

Fig. 6: Comparison of worst case time complexity exponents for RSD algorithms.

Asymptotic Comparison In the following we compare the worst case decoding complexity
of the different regular-ISD algorithms from Section 4 against the state-of-the-art. The
worst case complexity corresponds to the runtime exponent maximized over all rates for
the respective worst case weight ω∗, i.e., maxκ c(κ, ω∗). In the comparison we refer to the
regular-ISD algorithms as Perm (Section 4.1), Enum (Section 4.2), Rep (Section 4.3)
and Rep-MO (Section 4.4), where Rep-MO is the nearest neighbor enhanced variant of
Rep. Further with CCJ we refer to the Carozza-Couteau-Joux algorithm [CCJ23a] and by
CCJ-MO to the nearest-neighbor enhanced variant of the CCJ algorithm instantiated via
the May-Ozerov nearest-neighbor search routine. In Table 2 we compare the obtained worst
case time complexity exponents (and the corresponding memory) for the different algorithms.

We find that CCJ-MO imporoves on CCJ in both, time and memory. Overall the
regular-ISD algorithms from Section 4 obtain the best time complexities. Notably, Perm
offers a polynomial memory instantiation while outperforming non-regular-ISD approaches.
Among regular-ISD approaches we observe a similar behavior as for ISD algorithms in the SD
case, where advanced algorithms obtain the time improvements by spending higher amounts
of memory. However, even the fastest regular-ISD instantiation uses much less memory than
the CCJ-style algorithms.

26

In Fig. 6 we compare the time complexity exponent for all possible choices of the rate
(for the respective worst case weight). On the left we compare the regular-ISD algorithms.
Interestingly for rates 0.45 ≤ κ ≤ 0.55 Rep outperforms Rep-MO. Since this is in contrast
to similar nearest-neighbor search improvements in the SD case, it is a strong indication that
the used nearest-neighbor routine is suboptimal for the regular case. We pose it as a further
reasearch direction to investigate advanced procedures when the distance is known to be
regular.

On the right, i.e. in Fig. 6b, we compare the CCJ-style algorithms against Rep-MO.

4.6 The Asymptotic Effect of Rounding Issues

In the previous section, for simplicity we ignored all rounding issues. Precisely, we performed
computations with a block size of b = n/w and we assumed that the (information) set J is
formed by the same amount of v = |J|

w coordinates from each block. However, since |J | and
w are linear in n and, hence, b and v are constant, this actually requires n

w and |J|
w to be

integers.
As both constants are raised to a power linear in n, compare e.g. to Eq. (8), the rounding

might affect the asymptotics. In the following we show that a tweak of the analysis, that
works entirely with integer values affects the asymptotic runtime exponent for Perm (see
Algorithm 1 and Theorem 4.1) only marginally.

Obtaining integer block size. First, for given integers k = κn and corresponding worst case
weight w∗ = ω∗n we obtain a valid RSD(ñ, k̃, w∗) instance with integer block size and unique
solution by letting

b =
⌈

1
ω

⌉
, ñ = w∗ · b and k̃ = ⌈κ · ñ⌋. (19)

The new instance obtains rate k̃ very close to κ but has a slightly lower relative weight
w∗

n′ ≤ ω∗, guaranteeing a unique solution. Overall, we expect this to decrease the obtained
complexity exponent slightly as the relative weight does not match the worst case anymore.

Sampling the information set. In case w does not divide k, v = k′

w = k
w − 1 is not an integer

and, hence, the information set J cannot be formed by the same amount of coordinates from
all blocks. In such cases, we select

⌊
k′

w

⌋
coordinates from some blocks, while

⌈
k′

w

⌉
from others.

Consequently the success probability of sampling an error-free information set J changes.
Let wf and wc denote the number of blocks from which we select

⌊
k′

w

⌋
and

⌈
k′

w

⌉
coordi-

nates, respectively. Since our selection involves all blocks, and the total amount of selected
coordinates needs to add to |J | = k′, we obtain the relations

wf + wc = w and wf

⌊
k′

w

⌋
+ wc

⌈
k′

w

⌉
= k′,

which together imply

wf = w −
(

k′ − w

⌊
k′

w

⌋)
and wc = k′ − w

⌊
k′

w

⌋
.

27

The modified success probability then becomes (compare to Eq. (8))

q̃ =
(

1 − ⌊k′/w⌋
b

)wf (
1 − ⌈k′/w⌉

b

)wc

.

This leads to a modified time complexity of T̃ = Õ
(

1
q̃

)
= 2c̃n. Let

⌊
k′

w

⌋
= k′

w − ε, for some

ε ∈ [0; 1] and, hence,
⌈

k′

w

⌉
= k′

w − ε + 1. Then we can rewrite q̃ as follows

q̃ =
(

1 − k′/w − ε

b

)w−
(

k′−w
(

k′
w −ε

)) (
1 − k′/w − ε + 1

b

)k′−w
(

k′
w −ε

)

= (1 − κ + (1 + ε)ω)w(1−ε) (1 − κ + εω)εw
.

Hence, it follows that

c̃ = 1
n

log2(1/q̃1) = ω(1 − ε) log2 (1 − κ + (1 + ε)ω) + εω log2(1 − κ + εω), (20)

The joint effect on the runtime exponent. We now compare the exponent obtained in the
theoretical analysis and the exponent obtained after resolving rounding issues. The theoretical
exponent can be obtained from Theorem 4.1 as

c := 1
n

log2 T = ω log2(1 − κ + ω).

For obtaining the latter, we first update the instance parameters to obtain integer blocksize
and then consider the modified sampling of the information set. A formula for this exponent
is obtained by substituting n, ω, κ in Eq. (20) by the parameters of the updated instance
ñ, ω̃ = w/ñ, κ̃ = k̃/ñ from Eq. (19).

In Fig. 7a we report the relative difference c̃/c − 1 between both exponents. We observe
that for low rates resolving rounding issues leads to an increase in time complexity while for
larger rates the complexity decreases. This is due to the initial adaptation of the instance
parameters. For small rates κ with correspondingly small worst case weight ω∗ the initial
rounding of the block size leads only to a small deviation from the worst case relative weight.
For larger rates and larger ω∗ the deviation becomes more significant. In those cases the
decreased difficulty of the initial instance compensates for the lower success probability
caused by the rounding on v = k′/w. The highest increase by about 2.44% is obtained for a
rate of κ = 0.46

In Fig. 7b we visualize the absolute value of the obtained exponents. Since the rate
which achieves the maximum relative difference does not align with the worst case rate, the
influence on the worst case complexity of Perm is far smaller than 2.44%. In fact we obtain
a new worst case complexity exponent marginally increased by an additive 0.00083 (0.66%)
of c̃∗ = 0.1263 obtained for rate κ∗ = 0.597.

Similar, but more technical computations can be performed for the other versions Enum,
Rep and Rep-MO. However, we do not expect the picture to change and leave it for future
work to determine the exact deviation. Note that our proof concept implementation of Enum
provided with the other source code matches the theoretical predictions closely, supporting
similar insignificant deviations due to rounding.

28

0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0.00

0.02

k/n

re
la

tiv
e

di
ffe

re
nc

e
c̃
−

c
c

(a) Relative difference

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

k/n

co
m

pl
ex

ity
ex

po
ne

nt

c̃
c

(b) Absolute value

Fig. 7: Comparison of complexity exponent c obtained via Theorem 4.1 vs. c̃ incorporating rounding
issues

5 Concrete Complexity of Regular-ISD

We now consider the algorithms introduced in the previous section and derive their concrete
time complexity. For all algorithms, the time complexity is of the form Tit/q, where Tit is
the cost per iteration and q is the success probability. Notice that closed form expressions
for q have already been provided in Section 4. In order to derive estimates for the concrete
cost per iteration, we consider that each Gaussian elimination (as well as Partial Gaussian
elimination) takes time (n−k′)2n and that merging two lists L1 and L2 on an ℓ bit constraint
takes time |L1| + |L2| + |L1×L2|

2ℓ . Further, we assume that all the auxiliary operations, as
computing the lists elements or checking the weight after a merge, come at a computational
overhead of n.6 Taking these considerations into account, deriving concrete expressions for
Tit becomes a simple exercise. For the sake of completeness, we report the full expressions in
Appendix A.

We do not consider Rep-MO and CCJ-MO in the concrete comparison, since the May-
Ozerov nearest-neighbor routine is known to inherit large polynomial overheads [MO15,
EKZ21].

Bit-Security Estimates for RSD Parameters In the following we provide a discussion
on the performance of the different algorithms on the parameters suggested in the literature.
We compare CCJ [CCJ23a], the recently proposed algebraic attacks by Briaud and Øygarden
[BØ23], as well as classical ISD attacks not tailored to the regular case against the regular-ISD
approach from Section 4. Note that Briaud and Øygarden do not provide an estimation
script to estimate arbitrary instances. We therefore include their estimates only for those
parameters provided in their original work. For the estimation of classical ISD attacks, if not
provided in the work suggesting the parameters, we rely on the CryptographicEstimators
6 More precise estimates would make assumptions on the specific implementation of the algorithm

and make the analysis more involved for an insignificant difference.

29

(n, k, w)
previous approaches regular-ISD

ISD Algebraic CCJ Perm Enum Rep
[LWYY22] [BØ23] [CCJ23a] Section 4

(210, 652, 106) 164 146 129 133 115 113
(212, 1589, 172) 135 136 160 131 110 109
(214, 3482, 338) 135 140 204 140 118 118
(216, 7391, 667) 139 141 249 149 126 127

(218, 15336, 1312) 144 123 274 150 126 128
(220, 32771, 2467) 148 126 335 164 138 141
(222, 64770, 4788) 149 103 360 165 140 143

(210, 652, 57) 94 101 90 94 77 76
(212, 1589, 98) 86 103 115 96 78 78
(214, 3482, 198) 91 106 143 103 84 85
(216, 7391, 389) 96 108 171 110 90 92
(218, 15336, 760) 101 104 192 114 93 97
(220, 32771, 1419) 106 98 216 119 98 103
(222, 64770, 2735) 108 103 233 123 103 108

Table 3: Comparison of RSD solvers on large weight (top) and small weight (bottom) instances
from [LWYY22].

library [EVZB23], which incorporates an extension of the syndrome decoding estimator by
Esser and Bellini [EB22].

The literature suggests a big variety of different parameters. While we provide a discussion
about all of them we display in the tables sometimes only a selection of them for clarity.
However, we provide the estimates of all suggested parameters together with our source code
at github.com/Memphisd/Regular-ISD.

For the concrete parameters, whenever the code length n is not a multiple of w, the
solution is known to be of the form e = (e′, 0n−w·b) for b = ⌊n/w⌋, where e′ is a regular
vector of length w · b and weight w. The known zeros, as well as the corresponding columns
of the parity check-matrix can be safely discarded. This affects both the code length (which
becomes wb) and dimension (which becomes wb − (n − k)), hence, the co-dimension remains
unchanged with n − k.

Parameters Suggested in [LWYY22] In Table 3 we provide the estimated bit complexity
of the different approaches on parameters suggested in the context of PCG constructions.
Notice that the code parameters on the top and bottom of the table are the same, but the
values of w are different; therefore, we distinguish between large weight (top) and small
weight (bottom) instances.

We observe that, for almost all instances, regular-ISD either outperforms previous ap-
proaches or obtains a similar running time. The only instances for which this is not the
case are the very low rate instances with higher weight (bottom of top half), for which the
algebraic attack obtains the best performance. In general, regular-ISD obtains the highest
gains if rate and relative weight are moderately large (see first rows of top and bottom halves).
In case rate and relative weight decrease, we find that the performance of regular-ISD and
standard ISD get closer (see last rows of top and bottom halves). This effect can be especially

30

github.com/Memphisd/Regular-ISD

source (n, k, w)
previous approaches regular-ISD

ISD CCJ Perm Enum Rep
[EB22] [CCJ23a] Section 4

[HOSS18, Table 1]
(GMW-style)

(245760, 245460, 15) 127 124 179 127 140
(40960, 40660, 20) 126 126 172 126 129
(7680, 7380, 30) 127 131 166 132 132
(1280, 860, 80) 134 132 137 117 114

[YWL+20, Table 5] (609728, 36288, 1269) 147 343 164 140 143
(10805248, 589760, 1319) 155 492 176 157 164

[CCJ23a, pp. 560] (1842, 825, 307) 289 193 178 156 153

Table 4: Comparison of different approaches on selected instances from the literature.

observed in the bottom half of Table 3 which includes the small weight instances. Recall,
that we have shown in Section 3.4 that the complexities of Perm and general ISD algorithms
converge for small relative weight. The bit-security results seem to further indicate that, as
in the SD case [TS16], enumeration improvements become less effective for small weight,
since also the complexities of Enum and Rep converge to those of ISD.

Parameters Suggested in [HOSS18] The authors of that work propose 32 different
parameter sets for two different MPC protocols, all targeting 128-bit security.

The first twelve sets relate to the first MPC protocol (labeled GMW-style in [HOSS18]).
Among those are seven parameters with high rate κ ≥ 0.96 and small relative weight ω ≤ 0.004.
For those regular-ISD is roughly on par with either CCJ or standard ISD. However, we
find that some of those parameter sets even when considering only ISD do only roughly
match the claimed security, which we show in Table 4. For the remaining four parameter
sets with high rate we find huge margins of more than 110 bits. The parameters with rate
κ < 0.96 use larger (but still small) weight ω < 0.016. For those sets regular-ISD obtains
slight improvements, but still those sets enjoy a comfortable margin of at least 10 bits. A
notable exception is the parameter set (1280, 860, 80), which is the only set using moderate
relative weight of ω = 80/1280 = 0.0625. For this set regular-ISD lowers the bit-security from
132 to 115 and therefore below the security target of 128-bit.

The next twenty suggested parameters relate to the second MPC protocol, labeled
BMR-style in [HOSS18]. Most of the parameters again use high rate, low weight with some
exceptions. Especially, for those exceptions regular-ISD improves on previous techniques,
lowering estimates by up to 11 bits. However, we find that still all sets but two incorporate
huge margins of 60 to 270 bits. The two outliers obtain margins of 18 and 39 bit.

Parameters Suggested in [BCG+19a] The authors suggest in that work sixteen different
parameter sets for a correlated OT application, eight aiming at 80-bit security and eight
aiming for 128-bit. All parameter sets follow rate κ ∈ { 1

2 , 3
4 }, in combination with very low

relative weight ω ≤ 0.0063. Due to the low relative weights, we find that regular-ISD and ISD
algorithms perform roughly on par. All parameters satisfy the security goals, while for 80-bit
instances we find margins between 8 to 29 bits and for 128-bit instances we find margins
ranging from 10 to 42 bits.

31

Parameters Suggested in [YWL+20] This work uses two parameter sets within a
correlated OT construction. For the set used within the setup, regular-ISD lowers the bit-
security estimate from 147 to 140 bit, while for the second parameter set classic ISD leads to
a security estimate of 155 bit as shown in Table 4.

Parameters Suggested in [CCJ23a] The authors use a single parameter set for their
MPC-in-the-Head based signature construction. The regular-ISD approach lowers the bit-
security estimate notably by 40 bits from 193 to 153 bits (see Table 4). Originally, this
parameter set aims at 128-bit of security. However, the authors followed a conservative
parameter selection in which they considered the running time of CCJ-MO assuming the
nearest neighbor search routine comes at no additional cost (corresponding to N = L in
Eq. (18)). Note that while here this led to conservative parameters, in general this is not
guaranteed. We find several parameters for which regular-ISD significantly outperforms such
an “optimistic” version of Rep-MO.

References

AFS05. Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A family of fast syndrome based
cryptographic hash functions. In Progress in Cryptology–Mycrypt 2005: First Inter-
national Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia, September
28-30, 2005. Proceedings 1, pages 64–83. Springer, 2005.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November 2019. doi:
10.1145/3319535.3354255.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 489–518. Springer, Heidelberg, August 2019. doi:10.1007/
978-3-030-26954-8_16.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators from ring-LPN. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
387–416. Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56880-1_14.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 896–912. ACM Press, October 2018. doi:10.1145/3243734.3243868.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 520–536. Springer, Heidelberg, April 2012. doi:10.1007/978-3-642-29011-4_
31.

BM18. Leif Both and Alexander May. Decoding linear codes with high error rate and its
impact for LPN security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018, pages 25–46. Springer,
Heidelberg, 2018. doi:10.1007/978-3-319-79063-3_2.

32

https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-319-79063-3_2

BØ23. Pierre Briaud and Morten Øygarden. A new algebraic approach to the regular syndrome
decoding problem and implications for PCG constructions. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 391–422.
Springer, Heidelberg, April 2023. doi:10.1007/978-3-031-30589-4_14.

CCJ23a. Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures from regular
syndrome decoding in the head. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part V, volume 14008 of LNCS, pages 532–563. Springer, Heidelberg,
April 2023. doi:10.1007/978-3-031-30589-4_19.

CCJ23b. Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures from regular
syndrome decoding in the head. Cryptology ePrint Archive, Paper 2023/1035, 2023.
https://eprint.iacr.org/2023/1035. URL: https://eprint.iacr.org/2023/1035.

CDMHT22. Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-Pierre Tillich.
Statistical decoding 2.0: Reducing decoding to LPN. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 477–507.
Springer, Heidelberg, December 2022. doi:10.1007/978-3-031-22972-5_17.

EB22. Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In Goichiro Hanaoka,
Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS,
pages 112–141. Springer, Heidelberg, March 2022. doi:10.1007/978-3-030-97121-2_
5.

EKZ21. Andre Esser, Robert Kübler, and Floyd Zweydinger. A faster algorithm for finding
closest pairs in hamming metric. In Mikolaj Bojanczyk and Chandra Chekuri, editors,
41st IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume
213 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSTTCS.2021.20.

Ess22. Andre Esser. Revisiting nearest-neighbor-based information set decoding. Cryptology
ePrint Archive, Report 2022/1328, 2022. https://eprint.iacr.org/2022/1328.

EVZB23. Andre Esser, Javier Verbel, Floyd Zweydinger, and Emanuele Bellini.
CryptographicEstimators: a software library for cryptographic hardness esti-
mation. Cryptology ePrint Archive, 2023.

FG15. Jason Fulman and Larry Goldstein. Stein’s method and the rank distribution of random
matrices over finite fields. 2015.

FS09. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-
based cryptosystems. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 88–105. Springer, Heidelberg, December 2009. doi:10.1007/
978-3-642-10366-7_6.

HJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 235–256.
Springer, Heidelberg, May / June 2010. doi:10.1007/978-3-642-13190-5_12.

HKL+12. Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof Pietrzak.
Lapin: An efficient authentication protocol based on ring-LPN. In Anne Canteaut,
editor, FSE 2012, volume 7549 of LNCS, pages 346–365. Springer, Heidelberg, March
2012. doi:10.1007/978-3-642-34047-5_20.

HOSS18. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys:
A new approach to efficient multi-party computation. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 3–33.
Springer, Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_1.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23. Springer, Heidelberg, May / June 2010. doi:10.1007/978-3-642-13190-5_
1.

33

https://doi.org/10.1007/978-3-031-30589-4_14
https://doi.org/10.1007/978-3-031-30589-4_19
https://eprint.iacr.org/2023/1035
https://eprint.iacr.org/2023/1035
https://doi.org/10.1007/978-3-031-22972-5_17
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.20
https://eprint.iacr.org/2022/1328
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1

LWYY22. Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of LPN over any integer
ring and field for PCG applications. Cryptology ePrint Archive, Report 2022/712, 2022.
https://eprint.iacr.org/2022/712.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 107–124. Springer, Heidelberg, December 2011. doi:
10.1007/978-3-642-25385-0_6.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 203–228. Springer, Heidelberg,
April 2015. doi:10.1007/978-3-662-46800-5_9.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5):5–9, 1962.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Post-Quantum Cryptography, pages 144–161. Springer, 2016.

YWL+20. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–1626. ACM
Press, November 2020. doi:10.1145/3372297.3417276.

A Concrete Time Complexity Formulas

In this section we provide for completeness the concrete runtime formulas for the regular-ISD
algorithms Perm, Enum and Rep, as well as the formula for CCJ.

Permutation-based Regular-ISD The most time consuming operation of one iteration
of Algorithm 1 is the Gaussian elimination. All the other operations (e.g., applying the
permutation and checking the weight of e1) are less costly and can, hence, be neglected, so
that Tit = n(n − k′)2.

Enumeration-based Regular ISD In each iteration, the algorithm performs one partial
Gaussian elimination and creates two lists with size |L1| = |L2| =

(
w/2
p/2
)
vp/2, with v := k′+ℓ

2
and k′ = k − w. The lists are then merged into L, with average size |L| = |L1|22−ℓ. Putting
everything together, we have that the cost of each iteration is

Tit = n
(
(n − k′)2 +

(
|L1| + |L2| + |L|

))

= n

(
(n − k′)2 + ·

(
w/2
p/2

)
vp/2 ·

(
2 +

(
w/2
p/2

)
vp/22−ℓ

))
.

The optimal time complexity is achieved when |L| ≈ |L1|, which implies

ℓ ≈ log |L1| = log2

((
w/2
p/2

))
+ p

2 log2

(
k′ + ℓ

2

)
.

34

https://eprint.iacr.org/2022/712
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1145/3372297.3417276

Representation-based ISD Again we have v = k′+ℓ
w . For each level, we recall the number

of lists and their average sizes.
- Creating the initial lists: the algorithm starts with 8 lists Li, each with the same size

|L1| =
(

w/2
py/2

)
vpy/2.

- Obtaining Lyi
, i = 1, · · · , 4: each list Lyi

is obtained as the merge of two of the initial
lists, searching for collisions in ℓy coordinates. The average number of collisions, which
also corresponds to the average size of each Lyi , is

|Lyi | = |L1|22−ℓy =
(

w/2
py/2

)2
vpy2−ℓy .

- Obtaining Lxi , i = 1, 2: each of these lists is the merge of a pair of lists Lyi . The average
number of collisions is

Ny = |Ly1 |22−(ℓx−ℓy) = |L1|42−2ℓy2−(ℓx−ℓy) =
(

w/2
py/2

)4
v2py2−(ℓx+ℓy).

After collisions are filtered for the desired weight px, the expected number of elements in
each list Lxi

is

|Lxi
| =

((
w/2
px/2

)
vpx/2

)2
· 2−ℓx =

(
w/2
px/2

)2
vpx · 2−ℓx .

Here we take into account that only elements balanced elements, i.e., elements with px/2
non-zero blocks on the first and second half of their coordinates can be constructed. This
fact was previously disregarded as it is subsumed in the Landau notation.

- Obtaining LeJ
: the expected number of produced collisions is

Nx = |Lxi |22−(ℓ−ℓx) =
(

w/2
px/2

)4
v2px2−(ℓ+ℓx).

Putting everything together, we get

Tit = n(n − k′)2 + n ·
(
8|L1| + 4|Ly1 | + 2Ny + 2|Lx1 | + Nx

)
.

Substituting each of the above terms, we get

Tit = n(n − k′)2 + n ·
(

8
(

w/2
py/2

)
vpy/2 + 4

(
w/2
py/2

)2
vpy2−ℓy + 2

(
w/2
py/2

)4
v2py2−(ℓx+ℓy)

+ 2
(

w/2
px/2

)2
2−ℓx +

(
w/2
px/2

)4
v2px2−(ℓ+ℓx)

)

Recall that px = p/2 + εx and py = px/2 + εy. Furthermore, ℓx ≈ log Rx and ℓy ≈ log Ry,
where7

Rx =
(

p/2
p/4

)2((w − p)/2
εx/2

)2
vεx and Ry =

(
px/2
px/4

)2((w − px)/2
εy/2

)2
vεy .

7 Here we again account for the fact that we can construct only balanced elements, due to the
meet-in-the-middle enumeration.

35

CCJ algorithm In this algorithm, lists have size |L1| = |L2| =
(

n
w

)w(k̃+ℓ)
2n , where k̃ =

k −
(
1 − w

n

)−1 (1 − k+ℓ
n

)
w. The average number of collisions is |L| = |L1| · |L2| · 2−ℓ =

(
n
w

)w(k̃+ℓ)
n 2−ℓ, so that the cost of one iteration is

Tit = n(n − k̃)2 + n ·
(n

w

)w(k̃+ℓ)
2n ·

(
2 +

(n

w

)w(k̃+ℓ)
2n 2−ℓ

)
.

36

	Not Just Regular Decoding: Asymptotics and Improvements of Regular Syndrome Decoding Attacks

