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Abstract. Most existing accumulation/folding schemes focus on im-
plementing Incrementally Verifiable Computation (IVC). Proof-carrying
Data (PCD), as a generalization of IVC, enables sequential computation
performance by multiple distrusting parties, thereby offering a robust
primitive tool in real-world applications. However, building non-uniform
PCD from folding schemes faces many technical challenges, particularly
in handling cross items and preserving zero knowledge.
This paper introduces KiloNova, a non-uniform PCD system with zero-
knowledge properties derived from generic folding schemes. Motivated
by HyperNova (Kothapalli et al. ePrint 2023), we derive an invariant of
the Customizable Constraint System with linear claims on circuits and
inputs to avoid cross items. With the new constraint system, we pro-
pose a generic folding scheme for multiple instances of different circuits
and ensure the zero-knowledge property with various effective methods.
Consequently, we build a non-uniform ZK-PCD scheme from the generic
folding scheme and improve its performance with some optimization tech-
niques, such as circuit aggregation and decoupling. We propose a new
construction for ZK-PCD that does not use a ZK argument system and
has little influence on the complexity. The theoretical evaluation shows
our non-uniform ZK-PCD scheme outperforms previous models. A single
multi-scalar multiplication dominates the prover cost at each step. The
recursive circuit is dominated by O(log(n)) random-oracle-like hashes
and O(k) scalar multiplications, where n is the circuit input length and
k is the instance number at each step.

1 Introduction

Recently, there has been a surge of interest in the realization of Incremental Ver-
ifiable Computation (IVC), a cryptographic primitive that runs sequential com-
putations [1] while allowing efficient verification of the execution at any point.
As a generalization of IVC to directed acyclic graphs, the Proof-Carrying Data
(PCD) enables multiple distrusting parties to perform computations sequentially.
This property endows PCD as a more powerful tool in multi-party applications
such as distributed computation [2, 3] and blockchain technology [4–6]. Mean-
while, the ability to handle multiple instances in each round provides a broader
spectrum of tradeoffs for system performance, as discussed in Protogalaxy [7].



Several effective constructions based on accumulation/folding schemes have
been proposed for IVC in recent studies [8–10]. However, for PCD, these con-
structions become inefficient due to the introduction of cross items by multiple
instances. Additionally, as proposed by one of the most significant applications,
the zk-EVM project proposes new requirements for handling non-uniform cir-
cuits and providing zero-knowledge (ZK), which are difficult to meet with pre-
vious IVC/PCD schemes.

Batch Verification. The traditional approach for constructing IVC/PCD em-
ploys a general-purpose SNARK to iteratively validate the SNARK from the
previous step at the current stage. This requires implementing the whole veri-
fication logic in the recursive circuit, which incurs a significant overhead. A re-
cent line of work proposes and improves the idea of batch verification to reduce
the costly verification in building IVC/PCD, including Halo [11], BCMS20 [12],
BCLMS21 [13], Nova [8], HyperNova [9], Protostar [10], etc. The fundamental
concept behind these schemes leverages the homomorphic property to accumu-
late or fold the verification of each sequential step into a single instance and
“defer” them to the verifier, who conducts the batch verification at the final
step. We briefly review these approaches and give a rough classification based
on their explicit implementations in Figure 1.
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Fig. 1: Overview of existing batch verification schemes.

The main block in blue outlines the common process of building a ZK proof
system. The resulting schemes exhibit varying performance levels, depending
on the stage at which batching occurs. Generally speaking, for instances in the
earlier stages, such as Nova [8], Protostar [10], and our work, the interactions
between the prover and the verifier are relatively simple, with fewer computations
and a smaller recursive circuit. Most of the expensive computation is deferred to
the final verifier (or decider in the accumulation scheme). Conversely, as instances
in the later stages are already transformed into oracles (for example, through
commitment schemes), such as BCMS20 [12] and BCLMS21 [13], they are more
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likely to be holomorphic. As a result, these approaches become more flexible to
fold multiple instances with different circuits and easier to add ZK properties.

Related work and challenges. Based on the overview above, we illustrate the
challenges of constructing a PCD scheme from the folding scheme technique. To
construct a PCD, Halo [11] and its following-up schemes [14, 15] use recursive
SNARKs based on efficient polynomial IOPs (Sonic [16] and Plonk [17]). To fur-
ther reduce the recursion overhead, BCMS20 [12] and BCLMS21 [13] introduce
atomic accumulation and split accumulation schemes to accumulate the expen-
sive part of the verification of SNARK proofs (BCLMS21 removes the succinct
requirement). However, these are only designed for R1CS relations. Up until
now, few approaches have achieved PCD based on Nova’s folding scheme [8] due
to the excessive cross items introduced when folding multiple instances. To the
best of our knowledge, the only work that explicitly constructs PCD from the
folding scheme is [18], which extends HyperNova to PCD with some optimiza-
tion for proving complexity. Unfortunately, it cannot deal with the non-uniform
circuits for zk-EVM and fails to provide ZK property.

In order to validate universal machine executions, SuperNova [19] realizes a
non-uniform IVC by enhancing Nova [8] with a selector for the list of prede-
fined functions (i.e., instructions). Protostar [10] introduces a more expressive
accumulation/folding scheme for special sound protocols supporting Plonkish re-
lations, presenting a non-uniform IVC. Its major drawback lies in the exponential
growth in the number of cross items with the number of instances, which hinders
the construction of PCD from Protostar. Protogalaxy [7] reduces the cost when
folding multiple instances by leveraging the property of a Lagrange base, thus
making the recursion overhead tolerable for multi-instance situations. Though
Protogalaxy seems to be a promising candidate for constructing non-uniform
PCD, it still faces practical obstacles when considering explicit construction,
such as the efficiency of generating Lagrange bases and proving the correctness
of folding under Lagrange bases in the recursive circuit.

In addition to the difficulties in supporting non-uniform circuits, adding ZK
property into folding-based IVC/PCD schemes is also a challenging problem.
Most existing schemes only focus on the application of IVC, which involves only
one prover. Consequently, they only provide ZK IVC proof for the final verifier,
while the ZK property for steps between two nodes in the PCD system is not
mentioned.

From the above analysis, we derive our primary research questions:

– Can we build an efficient PCD from folding schemes?
– Can we leverage the PCD to handle non-uniform circuits for zk-EVM?
– Can we incorporate the ZK property into the obtained PCD?

1.1 Our Approach

We answer all questions above positively and present KiloNova, a non-uniform
PCD with ZK property from generic folding schemes. Our approach improves and
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generalizes HyperNova [9], an IVC from multi-folding schemes for Customizable
Constraint System (CCS) instances [20]. The main techniques are listed below.

(1) Relaxed CCS relation with efficient proofs. Motivated by the ideas in Nova [8]
and HyperNova [9], we introduce a new relaxed CCS relation to enable our IVC
scheme to deal with non-uniform circuits. Similar to the linearized committed
CCS relation in HyperNova, this new relation is also reduced from the original
CCS relation [20] by running an “early stopping” version of SuperSpartan as in
[9]. The difference is that our protocol runs an extra round of sum-check protocol
than HyperNova, which stops right before the Oracle queries at the last step of
the sum-check protocol. This modification provides the verifier with independent
linear claims of the inputs and circuit constraints, enabling folding efficiently
without cross items. We denote the new relation as atomic CCS relations and
present corresponding special sound protocols.

(2) Generic folding scheme with ZK property. Based on the atomic CCS rela-
tions, we consider the folding process for multiple committed CCS or atomic
CCS instances. Generally speaking, the folding scheme executes a special sound
protocol for each instance in parallel and aggregates their sum-check protocols
into one, except for the final queries. The remaining expensive query operations
are folded into one instance, and the verification is “deferred” to the final ver-
ifier. Therefore, in each step of the recursive circuit, the prover only needs to
claim the query results without proving their validity and fold them with a linear
number of field operations.

Regarding the ZK property, we ensure the privacy of witnesses in each step
of folding using varying techniques for different operations. First, we adopt an
existing approach to ensure ZK for sum-check protocols [21]. Second, for the
Oracle query results, i.e., the output claims of sum-check protocols, we apply
the random padding scheme in [22] to avoid extra computation resulting from
the non-linearity parts in CCS relations. Finally, we use a masking instance that
is folded with other instances to ensure the ZK of the folded instance.

(3) Non-uniform ZK-PCD with decoupled circuits. We propose a non-uniform
PCD that enables runtime circuit selection with the proving cost and recur-
sive overhead independent of the sizes of “uninvoked” circuits. Additionally, we
propose two optimization techniques to improve the performance of the PCD
system. The first aggregates multiple claims on atomic CCS matrices into one,
reducing the recursive circuit for the subsequent node and the communication of
different nodes in the PCD system. The second runs an extra IVC in parallel to
outsource the verification of the folded structure (folded atomic CCS matrix) to
a more powerful third party, thereby reducing the proving cost for the nodes in
the PCD system. To add the ZK property, we modify the existing PCD scheme
with split recursive circuits, allowing the prover to preserve ZK for the witness by
the ZK folding scheme rather than apply a ZK argument system. This new con-
struction offers the first known approach to implementing ZK-PCD from folding
schemes. It can also be applied to IVC systems built from multi-folding schemes.
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Table 1: Functionality comparison between existing accumulation/folding schemes

Schemes Language Non-uniform Multi-Folding ZK

Nova [8] R1CS No No No

SuperNova [19] R1CS Yes No No

HyperNova [9] CCS No No/Yes in [18] No

BCLM21 [13] R1CS Yes Yes Yes

Protostar [10] SPS Yes Expensive No

Protogalaxy [7] SPS Yes Yes No

KiloNova CCS Yes Yes Yes

1.2 Performance Evaluation

We first compare the functionality of our approach with most of the known accu-
mulation/folding schemes in Table 1. Our work proves in the same CCS language
of HyperNova, which is expressive to generalize Plonkish, R1CS, and AIR with-
out overheads simultaneously. Other expressive schemes, such as Protostar [10]
and Protogalaxy [7], apply special sound protocols (SPS) that can express CCS
language. In addition, our scheme efficiently supports both the non-uniform cir-
cuits and multi-folding, which are only known to be practical in BCLMS21 [13]
and Protogalaxy [7]. However, no known construction allows the ZK property
based on Protogalaxy. Although the BCLMS21 provides the same functionali-
ties as our scheme, it is constructed from the spilt accumulation instead of the
folding scheme, leading to a greater recursive overhead due to group operations.

Next, we compare the performance of our generic folding scheme with several
recently proposed ones. Due to the different functionalities of these schemes, our
first comparison involves an IVC system in CCS relations, where the system
folds one new instance in each step and does not support non-uniform circuits
and ZK property. The theoretical complexities of the IVC systems are given in
Table 2. Note that the performance of our solution is commensurate with that of
HyperNova. For degree d CCS instances with m×n circuit matrices, the prover
needs to compute a multi-scalar multiplication with |wit| G operations, where
|wit| denotes the number of non-zero elements in the witness. For the recursive
part, our scheme performs log n more random-oracle-like hashes than Hyper-
Nova due to the additional log n rounds in the second sum-check protocol. The
performance of ProtoStar equals our computation, while its recursive overhead
is minimal with only O(1) hashes.

Moreover, when a non-uniform PCD system that folds several instances with
different CCS structures is invoked, KiloNova significantly outperforms other
schemes. For HyperNova, its multi-folding scheme can only fold multiple in-
stances with the same CCS structure. Its direct application to non-uniform PCD
will generate O(m ·n2) additional cross items. For ProtoStar, it has been pointed
out by Eagen et al. [7] that its performance drastically degenerates when han-
dling multiple instances due to the verifier degree exponentially increasing with
instance number as O(dk).
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Table 2: Performance comparison between different IVC schemes

Criteria KiloNova HyperNova Protostar

P native
|wit| G

O(|wit|d log2 d) F
|wit| G

O(|wit|d log2 d) F
|wit| G

O(|wit|d log2 d) F

P recursive
1 G

logm+ logn RO
O(d logm) F

1 G
logm RO

O(d logm) F

3 G
O(1) RO

(d+O(1)) F

To manifest the statement above, we further evaluate the performance of non-
uniform PCD built from KiloNova and compare it with existing PCD schemes.

Comparison with BCLM21. Bunz et al. introduce a PCD scheme in BCLM21
[13] from the split accumulation scheme. Different from the folding scheme, this
scheme accumulates the proof of a NARK for R1CS relations. Consequently,
the verification cost of the obtained PCD scheme is relatively high, requiring
10 multi-scalar multiplication (MSM) of size m, while KiloNova only requires 1
MSM. In terms of prover cost and recursive overhead, BCLM21 needs to handle
O(r) group operations with a larger coefficient than our scheme. However, it
avoids logarithmic random oracle queries. Notably, BCLM21 does not support
d-degree circuits and lookup operations.

Comparison with Protogalaxy. Recently, another effective accumulation scheme
named Protogalaxy [7] has been proposed. As the following-up work of Proto-
star [10], Protogalaxy reduces the cross items from O(ds) to O(ds) when fold-
ing s non-uniform instances by replacing the challenges with Lagrange bases.
Moreover, the non-interactive folding scheme in Protogalaxy only requires O(1)
random oracle queries. While Protogalaxy appears promising for constructing
non-uniform PCD, it faces challenges in explicit constructions, such as the in-
efficiency of generating Lagrange bases, high prover costs, and large recursive
circuit sizes due to the evaluations of Lagrange bases. Notably, in the latest
version of Protogalaxy, the prover and verifier complexity of the accumulation
scheme has been reduced to linear and logarithmic, respectively, in scenarios
with large s through optimizations based on sum-check protocols. Our scheme
initially achieves the same performance in all cases. Besides, the authors of Pro-
togalaxy neither provide explicit constructions for non-uniform PCD nor add
ZK properties, whereas KiloNova explicitly addresses these aspects.

2 Preliminaries

2.1 Notations

In this paper, we use λ to denote the security parameter. Accordingly, negl(λ)
denotes an unspecified function that is negligible in λ. We denote by [n] the set
{1, ..., n} ⊆ N. Let F denote a finite field, e.g., Fp is a prime field for a large
prime p. The bold-type lower-case letters denote vectors, e.g., a ∈ Fn is a vector
of elements a1, ..., an ∈ F. a[i] is also used to denote the i-th element of a when
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the element is not specified with a concrete value. To represent a set, we use
{ai}ni=1 as a short-hand for {a1, ..., an}. For a finite set S, let x ←$ S denote
sampling x from S uniformly at random.

2.2 Definitions for Polynomials

We recall some basic definitions for polynomials from [23] as follows. Let f(·) :
Fn → F be a multivariate polynomial with n input elements over F, its degree
d is defined as the maximum degree over all monomials in f(·). Moreover, the
degree of a polynomial in a specified variable xi is the maximum exponent that
xi takes in any of the monomials in f(·). Particularly, a multivariate polynomial
is a multilinear polynomial if the degree of the polynomial in each variable is
at most one. To keep consistent with our notation for vectors, we use f(x) to
denote the polynomial f(·) with the specified input variable as vector x. Next,
we state the lemmas used in our paper.

Lemma 1 (Multilinear extensions [24]). Let f(·) : {0, 1}n → F be a func-
tion that maps n-bit elements into an element of F. A multilinear extension
of f(·) is a unique multilinear n-variate polynomial f̃(·) : Fn → F such that
f̃(x) = f(x) for all x ∈ {0, 1}n, which is computed as follows.

f̃(x) =
∑

e∈{0,1}n
f(e) · ẽq(x,a),

where ẽq(x,a) =
∏n

i=1(xi · ei + (1− xi) · (1− ei)).

Lemma 2 (Schwartz-Zippel lemma [25]). Assume f(·) : Fn → F as a non-
zero n-variate polynomial of degree at most d. Then on any finite set S ⊆ F,

Prx←$Sn [f(x = 0) ≤ d/|S|],

where x is a randomly sampled vector from Sn and |S| denotes the size of S.

2.3 Sum-check Protocol

The sum-check protocol is an interactive proof proposed by Lund et al. [26]. It
has long attracted the attention of practitioners for its desirable performance,
especially in a recent study on proof systems with linear proving time [23, 27].
Here, we only briefly review it. More technical details can be referred to [23].

Assume f(·) : Fn → F as an n-variate low-degree polynomial with the highest
degree of d for each variable. The prover wants to convince the verifier of the
following claim:

sum =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

f(x1, ..., xn). (1)

If the prover sends the polynomial f(·) directly, the verifier can compute the
above sum by evaluating the polynomial on 2n different inputs. The sum-check
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protocol provides us with a more efficient probabilistic algorithm with linear
verification complexity. Generally speaking, the verifier chooses a random vec-
tor r ∈ Fn as the challenges for the n-round interactions with the prover.
At the final step, the verifier outputs a claim about the evaluation f(r), i.e.,
c ← Πsc(f, n, d, sum, r). If c = f(r) holds, then the verifier is convinced of the
claim about the sum of f(·) in Equation (1).

According to previous work [23, 26], the sum-check protocol satisfies both
completeness and soundness properties, and its communication cost takes O(n·d)
element of F.

2.4 Polynomial Commitment Scheme

We adapt the definition of the polynomial commitment scheme from [BFS20].

Definition 1 (Polynomial commitment (PC)). A polynomial commitment
(PC) scheme for multilinear polynomials is defined as a tuple of four protocols
PC = (Gen,Commit,Open,Eval):

– Gen(1λ, ℓ) → pp: takes as input ℓ (the number of variables in a multilinear
polynomial); produces public parameters pp.

– Commit(pp, f) → C: takes as input an ℓ-variate multilinear polynomial f :
Fℓ → F; produces a commitment C.

– Open(pp, C, f) → b: verifies the opening of commitment C to the ℓ-variate
multilinear polynomial f ; outputs b ∈ {0, 1}.

– Eval(pp, C,x, y, ℓ, f)→ b is a protocol between a PPT prover P and verifier
V. Both V and P hold a commitment C, the number of variables ℓ, a scalar
y ∈ F, and x ∈ Fℓ. P additionally knows an ℓ-variate multilinear polynomial
f . P attempts to convince V that f(x) = y. At the end of the protocol, V
outputs b ∈ {0, 1}.

A PC is an extractable polynomial commitment scheme for multilinear poly-
nomials over a finite field F if it satisfies completeness, binding, and knowledge
soundness properties as defined in Appendix A.1.

Definition 2. A polynomial commitment scheme for multilinear polynomials
PC = (Gen,Commit,Open,Eval) is additively homomorphic if for all ℓ and public
parameters pp produced from Gen(1λ, ℓ), and for any f1, f2 : Fℓ → F, Commit(pp, f1)+
Commit(pp, f2) = Commit(pp, f1 + f2).

2.5 Proof-Carrying Data

In this paper, we adopt the definition of PCD from [13, 18]. Several necessary
terminologies are defined before presenting the definition.

Definition 3. A transcript T is a directed acyclic graph with each vertex u ∈
V (T) labeled by local data z

(u)
loc and each edge e ∈ E(T) labeled by a message

z(e) ̸= ⊥. The output o(T) of a transcript T is a message z(e) where e = (u, v)
is the lexicographically-first edge such that v is a sink.
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Definition 4. A vertex u ∈ V (T) is φ-compliant for φ ∈ F if for all outgoing
edges e = (u, v) ∈ E(T):

– (base case) if u has no incoming edges, φ(z(e), z
(u)
loc ,⊥, ...,⊥) accepts,

– (recursive case) if u has incoming edges e1, ..., em, φ(z(e), zloc(u) , z(e1), ..., z(em))
accepts.

We say that T is φ-compliant if all of its vertices are φ-compliant.

Definition 5 (Proof-Carrying Data [18]). A proof-carrying data scheme for
a class of compliance predicates F is a tuple of algorithms PCD = (G,K,P,V)
where

– G(1λ) → pp on input security parameter λ, samples and outputs public pa-
rameter pp.

– K(pp, φ)→ (pk, vk) on input public parameter pp and a compliance predicate
φ ∈ F, outputs a prover key pk and a verifier key vk.

– P(pk, z, zloc, {zi, Πi}ri=1)→ Π on input public key pk, message z of the out-
going edge, local data zloc, messages {zi}i∈[r] of incoming edges and their
corresponding proofs {Πi}i∈[r], outputs a new proof Π to attest the correct-
ness of z.

– V(vk, z,Π)→ 0/1 on input verifier key vk, message z and proof Π, outputs
0/1 to reject or accept.

A proof-carrying data scheme PCD should satisfy the perfect completeness,
knowledge soundness, and zero-knowledge properties. The formal definitions are
given in Appendix A.2.

2.6 Customizable Constraint Systems

The customizable constraint system (CCS) is an intermediate representation
of arithmetic circuits introduced by Setty et al. [20], which can simultaneously
generalize R1CS, Plonkish, and AIR without overheads. However, directly im-
plementing the CCS relation into a ZK proof is neither straightforward nor effi-
cient. For modern SNARKs, practitioners usually combine a polynomial IOP [28]
with a polynomial commitment scheme [29]. Therefore, encoding the CCS re-
lation into low-degree polynomials and committing them correspondingly will
accommodate it to a more friendly form for building ZK proofs. To fulfill these
requirements, we give the definition of a committed CCS relation following Hy-
perNova [9] in this part. The formal definition of original CCS relations in [20]
is given in Appendix A.3 due to page limitation.

Consider a CCS structure SCCS = (m,n,N, l, t, q, d, {Mj}j∈[t], {Si}i∈[q], {ci}i∈[q]).
Let sx = logm and sy = log n. We interpret each Mj (for j ∈ [t]) as functions

with the following signature: {0, 1}sx × {0, 1}sy → F. For j ∈ [t], let M̃j denote

the MLE of Mj i.e., M̃j is the unique multilinear polynomial in sx+sy variables
such that

M̃j(x,y) = Mj(x,y),∀x ∈ {0, 1}sx ,y ∈ {0, 1}sy .
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Similarly, for a purported witness wit ∈ Fn−l−1, let w̃ denote the unique MLE
of wit viewed as a function. WLOG, let |wit| = l + 1. For ease of exposition, a
CCS instance is split into a fixed “structure” S that describes constraints and a
“context” consisting of the public input and output and other public parameters
depending on concrete instances. Note that we use the different notion “context”
from [9,20] for clarity. The definition is given below.

Definition 6 (Committed CCS). Let PC = (Gen,Commit,Open,Eval) de-
note an additively-homomorphic polynomial commitment scheme for multilinear
polynomials over a finite field F. Denote the public parameters of size bounds as
m,n,N, l, t, q, d ∈ N where n = 2 · (l + 1) and pp← Gen(1λ, sy). The committed
customizable constraint system (CCCS) relation RCCCS is defined as follows.

– An RCCCS structure S consists of:

• a sequence of sparse multilinear polynomials in sx+sy variables {M̃j}j∈[t]
such that they evaluate to a non-zero value in at most N = Ω(m) loca-
tions over the Boolean hypercube {0, 1}sx × {0, 1}sy .

• a sequence of q multisets {Si}i∈[q], where an element in each multiset is
from the domain {1, ..., t} and the cardinality of each multiset is at most
d.

• a sequence of q constants {ci}i∈[q], where each constant is from F.
– An RCCCS context is (C, io) where C is a commitment to a multilinear poly-

nomial in sy − 1 variables and io ∈ Fl.

– An RCCCS witness consists of a multilinear polynomial w̃it in sy−1 variables.

An RCCCS instance (structure-context tuple) is satisfied by an RCCCS witness if

Commit(pp, w̃it) = C and if for all x ∈ {0, 1}sx ,

∑
i∈[q]

ci

∏
j∈Si

 ∑
y∈{0,1}log m

M̃j(x,y) · z̃(y)

 = 0, (2)

where z̃(y) is an sy-variate multilinear polynomial such that z̃(y) = ˜(wit, 1, io)
for all y ∈ {0, 1}sy .

3 Building Blocks

In this section, we describe several essential building blocks for the design of Kilo-
Nova. First, we extend the multi-folding scheme introduced in HyperNova [9] to
support non-uniform circuit scenarios. The new model is referred to as a generic
folding scheme. Next, we instantiate a special sound protocol for proving the
committed CCS relation in Section 2.6. To fold committed CCS instances with
different structures (i.e., non-uniform circuits), we further propose a “relaxed”
relation called atomic CCS relation. A special sound protocol of the new relation
is instantiated as well.
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3.1 Generic Folding Schemes

Recall that a folding scheme [KST22] for a relation R is a protocol between a
prover and a verifier that reduces the task of checking two instances in R with
the same structure S into the task of checking a single folded instance in R also
with structure S. Then in HyperNova, the authors introduce a generalization
of folding schemes as multi-folding schemes, which can fold two collections of
instances in relations R(1) and R(2) with the same structure S respectively.

This paper extends the multi-folding scheme to allow it to fold relations
with different structures. Concretely, a generic folding scheme is defined with
respect to a set of relations {R(i)}ℓi=1 with different structures {S(i)}ℓi=1 and size
parameters {s(i)}ℓi=1. It is an interactive protocol between a prover and a verifier
in which the prover and the verifier reduce the task of checking a collection of
s(i) instances in R(i) for all i ∈ [ℓ] (

∑
i∈[ℓ] s

(i) instances in total) into the task of
checking a single folded instance in R∗ with structure S∗. We formally define it
below.

Definition 7 (Generic folding schemes). Consider relations {R(i)}ℓi=1 over
public parameters, structures, instance, and witness tuples such that each R(i)

has distinct structure S(i). A generic folding scheme for {(R(i), s(i))}ℓi=1 consists
of a PPT generator algorithm G, a deterministic encoder algorithm K, and a pair
of PPT algorithms P and V denoting the prover and the verifier respectively, with
the following interface:

– G(1λ)→ pp: on input security parameter λ, samples public parameters pp.

– K(pp, {S(i)}ℓi=1) → (pk, vk): on input pp, and common structures {S(i)}ℓi=1

among the instances to be folded, outputs a prover key pk and a verifier key
vk.

– P(pk, {S(i), ctx(i),wit(i)}ℓi=1) → (S∗, ctx∗,wit∗): on input ℓ vectors of con-
texts {ctx(i)}ℓi=1, where each vector ctx(i) is in R(i) with a distinct structure

S(i), and corresponding vector of witnesses wit(i) for i ∈ [ℓ], outputs a folded
context-witness pair (ctx∗,wit∗) in a new relations R∗ with structure S∗.

– V(vk, {S(i), ctx(i)}ℓi=1)→ (S∗, ctx∗): on input ℓ vectors of contexts {ctx(i)}ℓi=1,
outputs a folded context ctx∗ in a new relations R∗ with structure S∗.

Let Πfold denote the interaction between P and V. Then treat Πfold as a func-
tion that takes as input ((pk, vk), {(S(i), ctx(i),wit(i))}ℓi=1) and run the interac-

tion on prover input (pk, {(S(i), ctx(i),wit(i))}ℓi=1) and verifier input (vk, {S(i), ctx(i)}ℓi=1).
At the end of interaction Πfold outputs (ctx

∗,wit∗) where ctx∗ is the verifier’s out-
put folded context, and wit∗ is the prover’s output folded witness.

We slightly abuse the denotation (pp,S(i), ctx(i),wit(i)) ∈ R(i) of in vector

form to represent that (pp,S(i), ctx(i)j ,wit
(i)
j ) ∈ R(i) for all j ∈ [s(i)]. A generic

folding scheme for {R(i)}ℓi=1 satisfies the following requirements.

11



1. Perfect Completeness: For all PPT adversaries A, we have that

Pr

(pp, S∗, ctx∗,wit∗) ∈ R∗
∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
{S(i), ctx(i),wit(i)}ℓi=1 ← A(pp),
{(pp,S(i), ctx(i),wit(i)) ∈ R(i)}ℓi=1,
(pk, vk)← K(pp, {S(i)}ℓi=1),

(S∗, ctx∗,wit∗)← Πfold((pk, vk), {S(i), ctx(i),wit(i)}ℓi=1)

 = 1.

2. Knowledge Soundness: For any expected polynomial-time adversaries A
and P∗, Π∗fold is ran by P∗,V, there is an expected polynomial-time extractor
Ext such that for all randomness ρ

Pr

{(pp,S(i), ctx(i),wit(i)) ∈ R(i)}ℓi=1

∣∣∣∣∣∣
pp← G(1λ),
({S(i), ctx(i)}ℓi=1, st)← A(pp, ρ),
{wit(i)}i∈[ℓ] ← Ext(pp, ρ)

 ≈

Pr

(pp,S∗, ctx∗,wit∗) ∈ R∗
∣∣∣∣∣∣∣∣
pp← G(1λ),
({S(i), ctx(i)}ℓi=1, st)← A(pp, ρ),
(pk, vk)← K(pp, {S(i)}ℓi=1),
(S∗, ctx∗,wit∗)← Π∗fold((pk, vk), {S(i), ctx(i)}ℓi=1, st)

 .

3. Efficiency: The communication costs and V’s computation are lower in the
case where V participates in the generic folding scheme and then checks a witness
sent by P for the folded instance than in the case where V checks witnesses sent
by P for each of the original instances.

A generic folding scheme is secure in the random oracle model if the above
requirements hold when all parties are provided access to a random oracle.

Definition 8 (Honest Verifier Zero-knowledge). Let trace(Πfold, input) de-
note the non-deterministic function which takes as input an interaction function
Πfold and a prescribed input input, and produces an interaction transcript between
P and V on input input. A generic folding scheme (G,K,P,V) for {R(i), s(i)}ℓi=1

satisfies zero-knowledge if there exists a PPT simulator Sim such that for all
PPT adversaries A

Pr

(pp, {S(i), ctx(i)}ℓi=1, tr)

∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
({S(i), ctx(i),wit(i)}ℓi=1)← A(pp),
{(pp,S(i), ctx(i),wit(i)) ∈ R(i)}ℓi=1,
(pk, vk)← K(pp, {S(i)}ℓi=1),

tr← trace(Πfold, ((pk, vk), {S(i), ctx(i),wit(i)}ℓi=1)



∼= Pr

(pp, {S(i), ctx(i)}ℓi=1, tr)

∣∣∣∣∣∣∣∣
(pp, τ)← Sim(1λ),
({S(i), ctx(i)}ℓi=1, st)← A(pp, ρ),
{(pp,S(i), ctx(i),wit(i)) ∈ R(i)}ℓi=1,
tr← Sim(pp, {S(i), ctx(i)}ℓi=1, τ)

 .

Definition 9 (Non-interactive). A generic folding scheme (G,K,P,V) is non-
interactive if the interaction between P and V consists of a single message from
P to V. This single message is denoted as P’s output and as V’s input.

12



Definition 10 (Public coin). A generic folding scheme (G,K,P,V) is called
public coin if all the messages sent from V to P are sampled from a uniform
distribution.

3.2 Atomic CCS Relations

In this section, we first introduce a relaxed CCS relation called atomic CCS is
amenable to constructing folding schemes for multiple instances with different
structures. Different from the committed CCS relations or linearized commit-
ted CCS in [9], this new variant is satisfied with linear constraints on matrices
and context-witness pairs, respectively. Therefore, folding multiple atomic CCS
instances under different matrices does not produce any cross items.

Definition 11 (Atomic CCS). Let PC = (Gen,Commit,Open,Eval) denote
an additively-homomorphic polynomial commitment scheme for multilinear poly-
nomials over a finite field F. Denote the public parameters of size bounds as
m,n,N, l, t ∈ N where n = 2 · (l + 1) and pp ← Gen(1λ, sy − 1). The atomic
customizable constraint system (ACCS) relation RACCS is defined as follows.

– An RACCS structure S consists of a sequence of sparse multilinear polynomi-
als in sx+ sy variables {M̃j}j∈[t] such that they evaluate to a non-zero value
in at most N = Ω(m) locations over the Boolean hypercube {0, 1}sx×{0, 1}sy .

– An RACCS context is (C, v0, io, rx, ry, v1, ..., vt, vz) where v0 ∈ F, io ∈ Fl, rx ∈
Fsx , ry ∈ Fsy , vz ∈ F, vj ∈ F for all j ∈ [t], and C is a commitment to a
multilinear polynomial in sy − 1 variables.

– An RACCS witness consists of a multilinear polynomial w̃it in sy−1 variables.

An RACCS instance (structure-context tuple) is satisfied by an RACCS witness

if Commit(pp, w̃it) = C, vz = z̃(ry) and if for all j ∈ [t], the equation vj =

M̃j(rx, ry) holds, where M̃j(x,y) is an (sx+ sy)-variate multilinear polynomial,

z̃(y) is an sy-variate multilinear polynomial such that z̃(y) = ˜(wit, v0, io) for all
y ∈ {0, 1}sy .

SuperSpartan [20] introduces an efficient scheme for proving the committed
CCS relations based on sum-check protocols. We utilize this scheme with an
“early stop” to obtain claims on the evaluations of matrices and the context-
witness pair for a committed CCS instance. The process is described as a special
sound protocol ΠCCCS in Appendix B due to space constraints. With this primi-
tive, we can rewrite any committed CCS instance into the atomic CCS instance.

Nevertheless, we are not ready to build a folding scheme because it is not
feasible to fold multiple atomic instances with contexts of different random vec-
tors rx, ry. To amend this, we further devise another special sound protocol
for atomic committed relations. Our idea is motivated by HyperNova [9], which
runs an MLE and a sum-check protocol to substitute the random vectors of
linearized committed CCS instances for new ones. We illustrate this with a sim-
ple example: assuming a claim (constraint) f̃(ry) = v on ry, the prover runs a

13



MLE to rewrite f̃(ry) to g̃(y) = ẽq(ry,y) · f̃(y), and engages in a sum-check
protocol with the verifier to show

∑
y g̃(y) = sum with randomness r′y. Finally,

the prover produces a new claim as f̃(r′y) = v′. By checking that v′ = e · v,
where e = ẽq(ry, r

′
y), the validity of the original claim can be guaranteed by the

soundness of the sum-check protocol.

Special Sound Protocol ΠACCS = (P,V) for relation RACCS

1. V : Sample γ ←$ F, and send to P.
2. V : Sample r′

x ←$ Fsx .

3. P : Compute z̃(y) = (w̃it, 1, io).

4. Sum-check#1. cx ← Πsc(f, sx, d+ 1, sumx) with random r′
x where:

f(x) =
∑

j∈[t] γ
j · ẽq(rx,x) ·

(∑
y∈{0,1}sy ẽq(ry,y) · M̃j(x,y)

)
.

5. P : Compute {σj}j∈[t] and send to V, where:

σj =
∑

y∈{0,1}sy ẽq(ry,y) · M̃j(r
′
x,y), for all j ∈ [t].

6. V : Compute e1 ← ẽq(rx, r
′
x), and abort if:

cx ̸= e1 ·
∑

j∈[t] γ
j · σj .

7. V : Sample δ ←$ F, and send to P.
8. V : Sample r′

y ←$ Fsy .

9. Sum-check#2. cy ← Πsc(g, sy, d+ 1, sumy) with random r′
y where:

g(y) =
∑

j∈[t] δ
j · ẽq(ry,y) · M̃j(r

′
x,y) + δt+1 · ẽq(ry,y) · z̃(y).

10. P : Compute ϵ, {θj}j∈[t] and send to V, where for all j ∈ [t]:

ϵ = z̃(r′
y), θj = M̃j(r

′
x, r

′
y).

11. V : Compute e2 ← ẽq(ry, r
′
y), and abort if:

cy ̸= e2 · (
∑

j∈[t] δ
j · θj + δt+1 · ϵ).

12. P : Open the witness w̃it.

13. V : Check that

(1) Commit(pp, w̃it) = C ,

(2) ϵ = z̃(r′
y), θj = M̃j(r

′
x, r

′
y).

Based on the observations above, we build a special sound protocol ΠACCS

friendly for the folding schemes. The prover and verifier run a series of interac-
tions in the protocol to substitute the random vectors rx, ry in the atomic CCS
instance. Specifically, the prover runs MLE nestedly on x,y for each Mj(rx, ry).

The obtained polynomial isMj(x) = ẽq(rx,x)·
(∑

y∈{0,1}sy ẽq(ry,y) · M̃j(x,y)
)
.
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With the random challenge γ sampled by the verifier at step 1, the prover
constructs an aggregated polynomial f(x) as the linear combinations of each
Mj(x). Then the prover and verifier run the first sum-check protocol on f(x)
at step 4 with the random vector rx, where the sumx equals to

∑
j∈[t] γ

j · vj . If
the sum-check#1 is correctly executed, the claims on matrices are updated to
σj =

∑
y∈{0,1}sy ẽq(ry,y) · M̃j(r

′
x,y) for j ∈ [t] with the new random vec-

tor r′x at step 5. Furthermore, the prover and verifier run the second sum-
check protocol on the aggregated polynomial g(y) at step 9, where sumy =∑

j∈[t] δ
j · σj + δt+1 · vz. This subprotocol substitutes the random vector ry for

M̃j(y) = ẽq(ry,y) ·M̃j(r
′
x,y), j ∈ [t] and z̃(y) = ẽq(ry,y) · z̃(ry). The remaining

process runs similarly. Finally, the protocol transforms the original atomic CCS
into a new one on r′x, r

′
y.

For the security of the proposedΠACCS, it retains completeness and soundness
as the ΠCCCS does. We omit the security proof since it can be covered by the
proofs for our generic folding scheme in Appendix C.

4 Generic Folding Scheme for CCS

4.1 High-level Ideas

This section describes a multi-folding scheme for committed CCS or atomic CCS
instances with different structures, i.e., a generic folding scheme. Its aim is to fold
these input instances into one atomic CCS instance. For better understanding,
one can first imagine running ZK protocol for each instance independently and
then applying aggregation technique for their intermediate steps, e.g., sum-check
protocols and polynomial evaluations.

We use Figure 2 to further illustrate our idea. Given polynomials {f (i)(x)}ni=1

derived from the input committed CCS or atomic CCS instances, the prover can
fold them into one polynomial f(x) by a challenge value γ given by the verifier.
Then they can run the first sum-check protocol for f(x) on the random vector
rx. By fixing the input x as value rx, we further derive polynomials {g(i)(y)}ni=1.
Then, the prover and verifier run the same aggregation with challenge δ and the
sum-check protocol on ry. Finally, the prover sends the claim to the evaluations

of polynomials {M̃ (i)
j }j∈[t] and z̃(i) for each i-th instance. A folding operation is

executed on all the claims above to obtain a folded atomic CCS instance.
To build such a folding scheme, our starting point is to consider the simplest

case of folding two instances. Practically, there are three combinations of input
instances to be folded:

– two committed CCS instances,
– one committed CCS instance and one atomic CCS instance, or
– two atomic CCS instances.

Note that if two instances share the same relation form (case 1 or 3), their
protocols run in the same process, which implies a straightforward aggregation
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instances to be folded

polynomial aggregation

polynomial aggregation

…

…
fold

folded instance

CCCS CCCS ACCCS

…

Sum-check #1 on

Sum-check #2 on

Fig. 2: Generic Folding Scheme

for sum-check protocols and yields a folding scheme naturally. Therefore, we only
need to focus on the second case for simplicity.

In particular, we provide a folding scheme for two instances in specific re-
lations R and R′, where R and R′ are RACCS and RCCCS relations with differ-
ent structures S and S ′ respectively. Specifically, S and S ′ share the same size
bounds m,n,N, l, t, but contain different multilinear polynomials, {M̃j}j∈[t] and
{M̃ ′j}j∈[t], respectively. The main protocol for the folding scheme is presented in
the next subsection.

To further enable a generic folding, we handle multiple instances in partial
and combine all claims. The atomic CCS structure allows us to fold multiple
instances without cross items since RACCS is linear. For structures with different
size bounds, we can use a simple padding scheme to ensure the same size. Since
all these techniques are quite straightforward, we omit the detailed description
of the generic folding for simplicity.

4.2 Main Protocol

Construction 1 (Folding scheme for committed CCS). Let PC = (Gen,Commit,
Open,Eval) denote an additively homomorphic polynomial commitment scheme
for multilinear polynomials. The generator and the encoder are defined as follows.
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G(1λ → pp) :

1 : Sample size bounds m,n,N, l, t, q, d ∈ N with n = 2 · (l + 1).

2 : ppPC ← Gen(1λ, logn− 1).

3 : Output (m,n,N, l, t, q, d, ppPC).

K(pp,S,S ′)→ (pk, vk) :

1 : Parse S to obtain {M̃j}j∈[t].

2 : Parse S ′ to obtain {M̃ ′
j}j∈[t], {S′

i}i∈[q], {c′i}i∈[q].

3 : pk← (pp, ({M̃j}j∈[t], {M̃ ′
j}j∈[t], {S′

i}i∈[q], {c′i}i∈[q])).

4 : vk← ⊥.
5 : Output (pk, vk).

To distinguish, we mark the parts corresponding to the committed CCS in-
stance in blue text. The verifier V takes an atomic CCS context (C, v0, io, rx, ry, {vj}j∈[t], vz)
and a committed CCS context (C ′, io′). The prover P, in addition to the two con-

texts, takes witnesses w̃it and w̃it
′
. Let sx = logm, sy = log n, z̃ = ˜(wit, v0, io),

and z̃′ = ˜(wit′, 1, io′). The prover and the verifier proceed as follows.

1. V → P: V samples γ ←$ F, α←$ Fsx , and sends them to P.
2. V: Sample r′x ←$ Fsx .

3. P: Compute z̃(y) = (w̃it, v0, io), z̃
′(y) = (w̃it

′
, 1, io′).

4. V ↔ P: Run the sum-check protocol#1 cx ← Πsc(f, sx, d + 1, sumx, r
′
x),

where:

sumx :=
∑
j∈[t]

γj · vj ,

f(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt ·Q(x),

Lj(x) := ẽq(rx,x) ·

 ∑
y∈{0,1}sy

ẽq(ry,y) · M̃j(x,y)

 , j ∈ [t],

Q(x) := ẽq(α,x) ·

∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

.

5. P → V: ({σj}j∈[t], {σ′j}j∈[t]), where:

σj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y),∀j ∈ [t],

σ′j =
∑

y∈{0,1}sy
M̃ ′j(r

′
x,y) · z̃′(y),∀j ∈ [t].
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6. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(α, r′x), and abort if:

cx ̸=

∑
j∈[t]

γj · e1 · σj

+

γt · e2 ·
∑
i∈[q]

c′i ·
∏
j∈Si

σ′j

.

7. V → P: V samples δ ←$ F, and sends it to P.
8. V: Sample r′y ←$ Fsy .
9. V ↔ P: Run the sum-check protocol#2 cy ← Πsc(g, sy, d + 1, sumy, r

′
y),

where:

sumy :=
∑
j∈[t]

δj · σj + δt+1 · vz + δt+1 ·
∑
j∈[t]

δj · σ′j ,

g(y) :=
∑
j∈[t]

δj ·Rj(y) + δt+1 · S(y) + δt+1 ·
∑
j∈[t]

δj · Tj(y),

Rj(y) = ẽq(ry,y) · M̃j(r
′
x,y),∀j ∈ [t],

S(y) = ẽq(ry,y) · z̃(y),
Tj(y) = M̃ ′j(r

′
x,y) · z̃′(y),∀j ∈ [t].

10. P → V: (ϵ, ϵ′, {θj}j∈[t], {θ′j}j∈[t]), where:

ϵ = z̃(r′y),

ϵ′ = z̃′(r′y),

θj = M̃j(r
′
x, r
′
y),∀j ∈ [t],

θ′j = M̃ ′j(r
′
x, r
′
y),∀j ∈ [t].

11. V → P: V samples η ←$ F and sends it to P.
12. V: Compute e3 ← ẽq(ry, r

′
y), and abort if:

cy ̸=
∑
j∈[t]

δj · e3 · θj + δt+1 · e3 · ϵ+ δt+1 ·
∑
j∈[t]

δj · θ′j · ϵ′

13. V,P: Output the folded atomic CCS structure S∗ containing

M∗j = Mj + η ·M ′j

for all j ∈ [t] and its context (C∗, v∗0 , io
∗, r∗x, r

∗
y , {v∗j }j∈[t], v∗z), where r∗x =

r′x, r
∗
y = r′y, and for all j ∈ [t]:

C∗ ← C + η · C ′,
v∗0 ← v0 + η · 1,
io∗ ← io+ η · io′,
v∗j ← θj + η · θ′j ,
v∗z ← ϵ+ η · ϵ′.
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14. P : Output the folded witness wit+ η · wit′.

Theorem 1. (Folding scheme for committed CCS). Construction 1 is a public
coin folding scheme for (R,R′) with perfect completeness and knowledge sound-
ness.

The proof of Theorem 1 is given in Appendix C.

4.3 Adding ZK

In this part, we further discuss how to add ZK property to the folding scheme
above. A straightforward idea is directly adding a masking value for the witness
wit That is, the prover runs the protocol with ρ · wit +w instead of wit, where
w ∈ Fn−l−1. Although this technique can ensure proving the validity of fold-
ing without leaking any information about the witness, the prover needs to do
the extra computation, especially when folding committed CCS instances. We
illustrate this point with the following example. Assume the prover wants to run
the sum-check#1 on a committed CCS instance with a masking vector w. The
target polynomial is written as:

f(x) = ẽq(α,x) ·

∑
i∈[q]

ci ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃j(x,y) · Z̃(y)

 ,

where Z̃(y) = ˜(ρ · wit+w, 1, io). Since the masking vector w is sampled ran-
domly, the above target polynomial no longer equals zero. To ensure the equation
holds, the prover has to compute the sum of the new polynomial f(x), which
takes computation of O(N + tm + qmd log2 d) F-ops. This seems not a serious
problem when folding with only one committed CCS instance because the sum
of a masked atomic CCS instance can be easily computed with an evaluation
of w̃(ry). However, when dealing with multiple committed CCS instances, the
prover needs to execute the above computation repeatedly for each.

To alleviate the prover’s computation, we propose a more efficient approach
for our scheme by separating the ZK problem into three parts and solving them
independently.

(1) ZK for prover claims. We first consider shielding the witness wit among
the verification of the claims. The verifier learns no information about wit except
its validity to the CCS instance from steps 5, 6, and 10-12. As mentioned above,
the non-linearity part of the CCS relation prevents us from directly masking
the witness as ρ · wit +w. Here, we utilize an approach in [22] by Bootle et al.
to randomize the claims, which will not introduce extra cost for non-linearity
parts. Generally speaking, the claims in steps 5 and 10 can be regarded as linear
combinations of private values in wit. According to the result given by Bootle et
al., if we pad the witness with as many non-zero random values as the number
of combinations it receives, then all the responses will be uniformly random and
reveal no information.
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Again, we take the CCS relation in Equation (3) as an example. With a
randomly sampled vector r = [rj ]

t
j=1, rj ∈ F2, it can be padded as

∑
i∈[q]

ci · ⃝j∈Si

[
Mj O
O Ij

]
· (z, r) = (0,

∑
i∈[q]

ci · ⃝j∈Sirj),

where O denotes zero matrix, Ij is a 2× 2t matrix with an 2× 2 identity matrix
I in the j-th position as

Ij = [O, ..., O︸ ︷︷ ︸, I, O, ..., O].

j − 1

So far, the ZK property of the committed CCS instance is retained against
2t queries of the linear combination of wit. To accommodate it to our folding
scheme, we further write the above equation into the multilinear polynomial
form as follows:

∑
i∈[q]

ci

∏
j∈Si

∑
y∈{0,1}sy+2

(M̃j(x,y) + Ĩj(x,y)) · (z̃(y) + r̃j(y))


=

∑
y∈{0,1}sy+2

∑
i∈[q]

ci · ⃝j∈Si
r̃j(y),

for all x ∈ {0, 1}sx+2, where

Ĩj(x,y) = x1 · · ·xsx · (xsx+1 · ysy+1 + xsx+2 · ysy+2),

r̃j(y) = y1 · · · ysy · (rj [0] · ysy+1 + rj [1] · ysy+2).

(2) ZK for sum-check protocols. Preserving the privacy of wit among the
claims sent by the prover is not enough to ensure the ZK property of the whole
folding scheme. Note that the sum-check protocols#1 and #2 in steps 4 and 9
are not shielded. Thus, the responses in the protocol also leak the information
of wit. To amend this problem, we refer to a previous work by Chiesa [21],
which presents a ZK sum-check protocol to mask the coefficients of the target
polynomial with a random polynomial of the same size. Briefly, we can first
sample a random vector fr(x) with the same variables and individual degrees of
f(x), and run the sum-check protocol with ρ · f(x) + fr(x) accordingly, where
ρ ∈ F is a challenge. The following equation holds for sum-check#1 in step 4,

ρ · sumx +∆sumx =
∑

x∈{0,1}sx+2

(ρ · f(x) + fr(x)),

where ∆sumx is computed as
∑

x∈{0,1}sx+2 fr(x) and sent to the verifier at
the beginning. For simplicity, we denote the ZK sum-check protocol as c ←
Πzksc(f, n, d, sum, r).
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(3) ZK for folding. The previous two techniques can guarantee the ZK prop-
erty of most processes in Construction 1 except the final folding operation in
step 14. Note that the prover outputs the folded witness wit + η · wit′ without
randomization. To solve this problem, the masking value w ∈ Fn−l−1 mentioned
at the beginning of this subsection has to be introduced. The difference is that
only one w is needed because the privacy in the previous steps is already pre-
served. Therefore, the prover only needs to take the masking value as another
committed CCS instance with empty structure S, empty io and commitment
C = Commit(pp, w̃), and runs the folding scheme accordingly, where O denote
m× n zero matrix.

Besides, we also want to mention a trick for saving the computation of the
sum of w̃. The polynomial f(x) aggregates the masking value with all other in-
stances together. According to the proving algorithm for the sum-check protocol
proposed in [30], it is handy to acquire the sum of f(x) from the bookkeeping
table. Thus, we can obtain the sum of w̃ by subtracting sums of other instances,
i.e.,

∑
j∈[t] γ

j ·vj ·vz for atomic CCS instance and 0 for committed CCS instance,

from
∑

x∈{0,1}sx without actually computing the concrete evaluations.

Due to page limitations, we do not present the complete ZK version scheme
here. The techniques mentioned above will be included in the non-interactive
version in the following subsection, and the security proof of ZK is given in
Appendix C.

4.4 Putting Everything Together

Applying the Fiat-Shamir transformation to the above protocol makes obtaining
a non-interactive generic folding scheme in the random oracle model feasible
while preserving the ZK property.

Construction 2 (Non-interactive generic folding scheme with ZK property).
We construct a non-interactive folding scheme with ZK property as zk-NIFS,
which consists of 4 PPT algorithms (G,K,P,V). Let H be the random oracle,
PC = (Gen,Commit,Open,Eval) denote an additively-homomorphic polynomial
commitment scheme for multilinear polynomials. Assume the scheme takes input
as multiple CCS instances including

–
∑

i∈[ℓ1] s
(i) atomic CCS instances in a set of relations {R(i)}i∈[ℓ1] with dif-

ferent structures {S(i)}i∈[ℓ1], where each relation R(i) corresponds to s(i)

instances. Let s1 =
∑

i∈[ℓ1] s
(i), each atomic CCS instance is consists of

(S(k), ctx(k),wit(k)), where ctx(k) = (C(k), v
(k)
0 , io(k), r

(k)
x , r

(k)
y , {v(k)j }j∈[t], v

(k)
z )

for all k = 1, ..., s1.

–
∑ℓ1+ℓ2

i=ℓ1+1 s
(i) committed CCS instances in a set of relations {R(i)}ℓ1+ℓ2

i=ℓ1+1 with

different structures {S(i)}ℓ1+ℓ2
i=ℓ1+1, where each relation R(i) corresponds to s(i)

instances. Let s2 =
∑ℓ1+ℓ2

i=ℓ1+1 s
(i), each committed CCS instance is consists of

(S(k), ctx(k),wit(k)), where ctx(k) = (C(k), io(k)) for all k = s1 + 1, ..., s1 + s2
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Denote s = s1 + s2, we use i, k to index the relations (structures) {R(i)}i∈[ℓ]
and contexts {ctx(k)}k∈[s] respectively. By applying Fiat-Shamir transformation
to the ZK sum-check protocol mentioned in Section 4.3, we obtain the proving
algorithm FS[Πzksc].P with output transcript as ts = (c,∆sum, {mj}j∈[s], r) and
the verifying algorithm FS[Πzksc].V with output 1 for validity.

Here, we only present zk-NIFS.P, zk-NIFS.V to highlight the differences com-
pared to Section 4.2.

zk-NIFS.P((pk, vk), {S(i)}i∈[ℓ], {ctx(k)}k∈[s], {wit(k)}k∈[s]) :
1 : Randomly sample {r(k) ∈ F2t}k∈[s],w ∈ Fn−l−1.

2 : Generate instance ctx(0) with w.

3 : Pad each z(k) with r(k), update sumx.

4 : Generate claims on sums of w̃(y), {r̃(k)(y)}sk=0.

5 : Pad each M
(i)
j with Ij .

6 : γ,α← H({ctx(k)}sk=0), construct polynomial f .

7 : Run sum-check#1 as tsx ← FS[Πzksc].P(f, sx, d+ 1, sumx).

8 : Generate claims on {σ(k)
j }

s,t
k=0,j=1.

9 : δ ← H(tsx, {σ(k)
j }

s,t
k=0,j=1), construct polynomial g..

10 : Run sum-check#2 as tsy ← FS[Πzksc].P(g, sy, d+ 1, sumy).

11 : Generate claims on {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1.

12 : η ← H(tsy, {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1).

13 : Set vectors for each instance ctx(k), k = 0, ..., s as

v(k) := ({M (k)
j }j∈[t], C

(k), v
(k)
0 , io(k), {θ(k)j }j∈[t], ϵ

(k),wit(k)).

14 : v∗ :=

s∑
k=0

ηk · v(k), M∗
j :=

∑
i∈[ℓ]

ηi ·M (i)
j ,∀j ∈ [t].

15 : Set folding proof as

pf := (ctx(0), γ,α, r′
x, tsx, {σ

(k)
j }

s,t
k=0,j=1, δ, r

′
y, tsy, {ϵ(k)}sk=0, {θ

(k)
j }

s,t
k=0,j=1).

16 : Output ({M∗
j }j∈[t],v

∗, pf).

Complexity. Denote the random oracle for sum-check protocol as Hsc.
The folding scheme prover

– asks logm+ log n queries to Hsc and logm+ 2 queries to H;
– computes sum-check protocols (steps 7,8,10,11 in zk-NIFS.P) with

O(s1(N + tm) + s2(N + tm + qmd log2 d)) F-ops for all s1 atomic CCS
instances and s2 committed CCS instances where
• for each atomic CCS instance, runs O(N+ tm) F-ops according to the

standard linear-time-sum-check techniques [30],
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• for each committed CCS instance, runs O(N + tm+qmd log2 d) F-ops
according to the technique in SuperSpartan [20];

– performs s G-ops to combine {C(k)}sk=0;

– performs O(ℓN+s(n+t)) F-ops to combine {M (i)
j }

ℓ,t
i,j=1 and field elements

in {v(k)}sk=0.

zk-NIFS.V((pk, vk), {S(i)}i∈[ℓ], {ctx(k)}k∈[s], pf) :
1 : Check the validity of sumx with claims on w̃(y), {r̃(k)(y)}sk=0.

2 : Pad each M
(i)
j with Ij .

3 : γ,α← H({ctx(k)}sk=0).

4 : Check sum-check#1 as 1
?
= FS[Πzksc].V(tsx, sx, d+ 1, sumx).

5 : Check claims on {σ(k)
j }

s,t
k=0,j=1 with cx, γ,α.

6 : δ ← H(tsx, {σ(k)
j }

s,t
k=0,j=1).

7 : Check sum-check#2 as 1
?
= FS[Πzksc].V(tsy, sy, d+ 1, sumy).

8 : Check claims of {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1 with cy, δ.

9 : η ← H(tsy, {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1).

10 : Set vectors for each instance ctx(k), k = 0, ..., s as

v(k) := ({M (k)
j }j∈[t], C

(k), v
(k)
0 , io(k), {θ(k)j }j∈[t], ϵ

(k),wit(k)).

11 : Check v∗ :=

s∑
k=0

ηk · v(k), M∗
j :=

∑
i∈[ℓ]

ηi ·M (i)
j , ∀j ∈ [t].

The folding scheme verifier

– asks logm+ log n queries to Hsc and logm+ 2 queries to H;

– checks sum-check protocols (steps 4,5,7,8 in zk-NIFS.V) with
O(s1(d logm + log n) + s2(dq + d logm + log n)) F-ops for all s1 atomic
CCS instances and s2 committed CCS instances;

– performs s G-ops to combine {C(k)}sk=0;

– performs O(ℓN+s(n+t)) F-ops to combine {M (i)
j }

ℓ,t
i,j=1 and field elements

in {v(k)}sk=0.

The communication complexity is O(d logm+ log n).

With an efficient technique for matrix lookup introduced in the next section,
the computation for combining the matrices can be reduced. Thus, for input two
instances, the prover time of NIFS is dominated by O(s(N + tm + qmd log2 d))
F-ops, O(s) G-ops and O(logm + 2 log n) RO queries, the verification time is
dominated by O(s(dq+d logm+log n)) F-ops, O(s) G-ops and O(logm+2 log n)
RO queries.
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5 KiloNova: Non-uniform ZK-PCD Scheme

This section explains how to build a non-uniform ZK-PCD scheme from the
above-mentioned generic folding scheme. To begin with, we discuss the opti-
mization technique used to reduce the overhead for handling structure folds in
the non-uniform PCD scheme in Section 5.1. Based on this technique, we further
construct a ZK-PCD scheme from the non-interactive generic foldings scheme
with ZK property in Section 5.2.

5.1 Optimization Techniques

First, we explain the complexity problem caused by structure folds and highlight
the necessity of applying our optimization techniques. Note that in existing non-
uniform accumulation/folding schemes, such as Protostar and Protogalaxy [7,10]
and our scheme, the structures of different instances need to be folded and then
verified in the recursive circuit. Take our generic foldings scheme as an exam-
ple, the prover zk-NIFS.P needs to compute the linear combination of matrices

{M (i)
j }i∈[ℓ] for all j = [t], leading to O(ℓ · t ·N) F operations in total. The same

applies to the folding scheme verifier zk-NIFS.V, which also needs to check the
validity of the folded structure by computing the linear combinations. On the
one hand, the verification should be written into the recursive circuit. According
to Nova [8], a new instance for representing the recursive circuit needs to be
generated as output, consequently deteriorating the situation for the next node.
On the other hand, the matrices of the folded instance and new instance should
be sent to the next node in the PCD system, raising a high communication cost.

Obviously, this problem will raise serious efficiency concerns in the PCD
scheme, especially when the prover needs to fold multiple instances with different
structures among mutually untrusted nodes. Prior to presenting our solutions,
we introduce two observations.

Observation 1. We can reduce the size of folded instances with a linear com-
bination of matrix claims. Assume an output atomic CCS instance contains ma-
trices {M∗j }j∈[t] and corresponding claim values {v∗j }tj=1 in the generic folding
scheme. Essentially, instead of checking each claim independently, we can check
one claim with random linear combinations of the matrices and values. Taking
a randomly sampled challenge ζ, the prover computes M∗ =

∑t
j=1 ζ

j ·M∗j and

v∗ =
∑t

j=1 ζ
j · v∗j checked by the following equation

M̃∗(rx, ry) =

t∑
j=1

ζj · M̃∗j (rx, ry) =
t∑

j=1

ζj · vj = v∗.

Therefore, the tmatrices and values of an atomic CCS instance can be aggregated
into one matrix and one value, respectively. The matrix number of the folded
instance sent to the next node is reduced from t to 1.

The security of the folding scheme still holds. Here, we only give a sketch
proof of the knowledge soundness. Assume the original folding scheme zk-NIFS
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satisfies knowledge soundness. Thus, there exists an extractor Ext runs in polyno-
mial time for zk-NIFS, which succeeds in extracting witness with non-negligible
probability ϵ. For the new aggregated folding scheme, an extractor Ext′ can
also be constructed by calling Ext. The extractor Ext′ invokes Ext to obtain t
transcripts, each with different challenge ζ(i), i = 1, .., t. By interpolating, the
extractor can compute the matrices {M∗j }j∈[t] and values {v∗j }tj=1 from the lin-

ear combined M∗ and v∗. It is naive to argue that Ext′ runs in polynomial time.
For the advantage Ext′ succeeds with probability (ϵ − negl(λ)) · (1 − negl(λ)).
This is because given that Ext does not abort, the probability that different
challenges are sampled with less than d+1

√
|F| rewinds, i.e., ζ(1) ̸= · · · ≠ ζ(t), is

(1−O(1)/ d+1
√
|F|) · ϵ · (1− d+1

√
|F|

d
/|F|).

Observation 2. The verification of structure folds can be decoupled from the
generic folding scheme. In our folding scheme, the prover folds the structures by
computing the linear combinations of public matrices, and the verifier repeats
the same process. We observe that this subprotocol is independent of other steps
in the folding scheme. Thus, the prover can prove the structure folds by run-
ning another proof scheme or outsourcing to a third party (since the matrices are
public). Although this result is kind of counter-intuitive, we argue that this mod-
ification does not contradict the security definitions. According to the knowledge
soundness defined for the generic folding scheme in Section 3.1, the malicious
prover is only required to output a valid folded instance of (S∗, ctx∗,wit∗) satis-
fying the atomic CCS relations. The extractor needs to check the correctness of
the claims on M∗j , z

∗ with vj , vz for j ∈ [t], and then extract witnesses. There-
fore, the knowledge soundness does not ensure the correctness of folding the
structure. In other words, if the extractor can extract witnesses wit(i) satisfying
the structure S(i) for all i, then there must be a folded structure S∗∗ satisfied by
the correctly folded witness wit∗. The consistency of S∗∗ and S∗ can be verified
by anyone with access to public structures S(i), i ∈ [t].

As a result, we can safely remove the verification of structure folds from the
original folding algorithm. This observation also applies to other non-uniform
folding schemes such as Protostar and Protogalaxy [7, 10]. Now, our task be-
comes constructing another efficient scheme for checking the structure folds in
the PCD system. Our solution is to apply another IVC system for this compu-
tation. According to observation 1, the linear combined matrices {M∗j }tj=1 can

be further aggregated with another linear combination as M∗ =
∑t

j=1 ζ
j ·M∗j .

Therefore, the candidate IVC system only requires folding two matrices with
the same computation. Meanwhile, the IVC does not need to be ZK because the
matrices are all public. We believe an IVC system instantiated from Nova [8] is
sufficient for this task. Although this approach can not reduce the overall recur-
sion overhead, it can shift part of the computations from the nodes in the PCD
system to a third party with more computational resources.

Technically, the extra IVC for structure folds runs parallelly with the PCD
system, taking challenges from the node and computing the linear combination
of matrices accordingly. The function for each incremental computation is repre-
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sented as the minimum operation as zi+1 = F (zi, ρ,M) = ρ · zi +M , where ρ is
the weight for linear combination (i.e., the challenge in PCD), M is the matrix
to be folded. Next, we describe the concrete construction of the PCD part.

5.2 Construting ZK-PCD from a generic folding scheme

This part constructs ZK-PCD from our non-interactive ZK generic folding scheme.
If the ZK property is not considered, one can directly adapt the scheme in [18]
to build a PCD from the folding scheme. However, a technical gap exists when
we try to achieve ZK for the PCD scheme. According to the conclusion in [12],
a ZK-PCD is built from an accumulation scheme (folding schemes in our pa-
per) and an argument system (SNARK in [13] or NARK in [13]) for proving the
recursive circuit, both of which are required to satisfy ZK property. Unfortu-
nately, in the construction of [18], the PCD prover only computes and outputs a
committed CCS instance satisfying the recursive circuit instead of a proof from
the argument system. Adding ZK property to the committed CCS instance will
introduce extra prover cost, as discussed in Section 4.3.

Therefore, we need to find a more efficient approach to realize the ZK-PCD.
The general idea is modifying the original construction for the PCD scheme
in [18] by splitting the recursive circuit into two parts. To state the problem
clearly, we describe the predicates represented by the recursive circuit as follows

1. Check that the compliance predicate φ(z, zloc, z1, ..., zs) satisfies.

2. Check that the hash values for all input instances with non-empty zk, k ∈ [s]
are valid.

3. Run the zk-NIFS.V algorithm to check the validity of the folded instance.

4. Compute the hash value for the folded instance.

Note that the predicates 3 and 4 will not leak information about zloc, z1, ..., zs
since the generic folding scheme already achieves ZK. Thus, we only need to
preserve the privacy of the witness zloc, z1, ..., zs for predicates 1 and 2 (z is
public). Thankfully, predicates 1 and 2 do not require the output of folding
scheme zk-NIFS.P, which means that they can be checked before the prover
runs zk-NIFS.P. We can split the circuit for the predicate into two parts as
R0,R1 and handle them respectively in different steps. As a result, the prover
first computes the instance (ctx0,wit0) for R0, then folds it with other input
instances. In the circuit R1, the validity of the folded instances CTX is checked.
And the prover computes another instance for R1. The idea is illustrated in the
figure below.

Compared to the original construction, the PCD prover only needs to run
the folding scheme with one more instance for R0, which adds negligible cost
to its asymptotic complexity. We also show that this modification does not con-
tradict the securities of the PCD scheme in Appendix D. Moreover, the same
modification can be applied to the construction of ZK-IVC as long as they are
built from a multi-folding scheme.
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Fig. 3: Modifided Recursive Cricuit for ZK-PCD.

Construction 3 (A PCD from Generic Folding Schemes). Let zk-NIFS be the
non-interactive generic folding scheme with ZK property for committed CCS and
atomic CCS relations {R(i)}i∈[ℓ]. Let (ctx⊥,wit⊥) be a default trivially satisfy-
ing atomic CCS context-witness pair for any structure and public parameters.
According to the definition of PCD, we can construct a scheme consisting of
polynomial-time algorithms PCD = (G,K,P,V) for a class of compliance pred-
icates F. Besides, we assume all the structures used below are valid, which is
guaranteed by the extra IVC for proving the structure folds.

Denote a compliance predicate φ with a cryptographic hash function Hash,
we first define the circuits R0 and R1 realizing the recursion on s inputs of
{zk,CTXk, ctxk}sk=1.

0/1← R0(h; (z, zloc, {zk,CTXk, ctxk}k∈[s], vk′)):
1 : Check that the compliance predicate φ(z, zloc, z1, ..., zs) accepts.

2 : For all k ∈ [s] such that zk ̸= ⊥, check that ctxk.io = Hash(vk′, zk,CTXk),

where ctxk.io is the public IO of ctxk.

3 : If the above checks hold, output 1; otherwise, output 0.

Since R0 can be computed in polynomial time, it can be represented as a RCCCS

structure s0. Let

(s0, ctx0,wit0)← trace(R0, (h, (z, zloc, {zk,CTXk, ctxk}k∈[s], vk′))

denote the satisfied RCCCS instance for the execution of the circuit R0 on input
(h, (z, zloc, {zk,CTXk, ctxk}k∈[s], vk′)).

0/1← R1(h; ({CTXk, ctxk}k∈[s], ctx0, vk′,CTX, Π)):

1 : If zk = ⊥ for all k ∈ [s], check that h = Hash(vk′, z,CTX) and ctx0 = CTX, else check that

(a) CTX = zk-NIFS.V ′(vk′, {CTXk, ctxk}k∈[s], ctx0, Π).

(b) h = Hash(vk′, z,CTX).

2 : If the above checks hold, output 1; otherwise, output 0.
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Since R1 can be computed in polynomial time, it can be represented as a RCCCS

structure s. Let

(s, ctx,wit)← trace(R0, (h, ({CTXk, ctxk}k∈[s], ctx0, vk′,CTX, Π))

denote the satisfied RCCCS instance for the execution of the circuit R1 on input
(h, ({CTXk, ctxk}k∈[s], ctx0, vk′,CTX, Π)).

Now, we can define the algorithms (G,K,P,V) for the PCD scheme.

pp← G(1λ):
1 : Compute and output pp′ ← zk-NIFS.G(1λ).

(pk, vk)← K(pp, φ):
1 : Compute (pkfs

′, vkfs
′)← zk-NIFS.K′(pp′, Rφ).

2 : Output (pk, vk)← ((φ, pkfs
′), (φ, vkfs

′)).

Π ← P(pk, z, zloc, {zk, Πk}sk=1):

1 : For k ∈ [s], parse Πk as satisfied atomic CCS instance (Sk,CTXk,WITk) and

satisfied committed CCS instance (sk, ctxk,witk)).

2 : (s0, ctx0,wit0)← trace(R0, (h, (z, zloc, {zk,CTXk, ctxk}k∈[s], vk
′))

3 : If zk = ⊥ for all k ∈ [s], then set (CTX,WIT, pf) := (ctx0,wit0,⊥), else compute

(S,CTX,WIT, pf)← zk-NIFS.P ′(pkfs, {Sk,CTXk,WITk}k∈[s], {sk, ctxk,witk}sk=0).

4 : Compute h← Hash(vkfs
′, z,CTX).

5 : (s, ctx,wit)← trace(R1, (h, ({CTXk, ctxk}k∈[s], ctx0, vkfs
′,CTX, pf))).

6 : Output Π := ((S,CTX,WIT), (s, ctx,wit)).

0/1← V(vk, z,Π):

1 : Parse Π as ((S,CTX,WIT), (s, ctx,wit)).

2 : Check that ctx.io = Hash(vkfs
′, z,CTX).

3 : Check that WIT is a satisfied RACCS witness to CTX and wit is a satisfied

RCCCS witness to ctx.

4 : If the above checks hold, output 1; otherwise, output 0.

Theorem 2. Construction 3 is a PCD scheme with perfect completeness, knowl-
edge soundness, and zero knowledge.

The proof of Theorem 2 is presented in Appendix D. We present the evalu-
ation of complexity below.
Complexity. Denote the random oracle for sum-check protocol as Hsc.

The recursive cost at each step contains
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– computing the compliance predicate φ;
– computing r times pf hash function Hash;
– invoking zk-NIFS.V ′ with 2 logm+ log n random oracle queries, O(s(dq+

d logm+ log n)) F-ops and s G-ops.

The native prover at each step cost contains

– invoking zk-NIFS.P ′ with 2 logm+ log n random oracle queries, O(s(N +
tm+ qmd log2 d)) F-ops and s G-ops;

– computing 1 time of hash function Hash;
– computing two satisfying committed CCS instances for the execution of
R0,R1, which is dominated by computing the commitment of witness
wit0,wit with O(n) G-ops.

The proof Π consists of an atomic CCS instance (S,CTX,WIT) and a com-
mitted CCS instance (s, ctx,wit), which are linear in the size of Rφ. While ac-
cording to previous work in Nova [8] and HyperNova [9], we can fold these two
instances with zk-NIFS.P and apply a general SNARK (the folded instance is
already ZK) to prove their validity. For example, instantiating a polynomial IOP
based on Bulletproofs polynomial commitment schemes [31] for (S,CTX,WIT)
and (s, ctx,wit) can reduce the proof size to O(logm).

The PCD verifier cost contains

– invoking zk-NIFS.V for two instances with 2 logm + log n random oracle
queries, O((dq + d logm+ log n)) F-ops and 2 G-ops;

– verification of polynomial commitments withO(log n) random oracle queries
and O(n) G-ops;

– verification of the IVC system for structure folds with O(mn) F-ops.
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A Formal Definitions

A.1 Security Definitions for Polynomial Commitment

A PC is an extractable polynomial commitment scheme for multilinear polyno-
mials over a finite field F if it satisfies completeness, binding, and knowledge
soundness properties as defined in Appendix A.

1. Completeness. PC has completeness if for all ℓ-variate multilinear polynomial
g ∈ F[ℓ],

Pr

[
Eval(pppc,C,ℓ,r,v;f ) = 1
∧f(r) = v

pppc ← Setup(1λ,ℓ);
C ← Commit(pppc, f)

]
= 1.

2. Binding. PC has binding if for any PPT adversary A, size parameter ℓ > 1,

Pr

[
b1 = b1 ̸= 0
∧f0 ̸= f1

pppc ← Setup(1λ,ℓ); (C, f0, f1)← A(pppc);
b0 ← Open(pppc, C, f0); b1 ← Open(pppc, C, f1)

]
≤ negl(λ).

3. Knowledge soundness. PC has knowledge soundness if given pppc ← Setup(1λ, ℓ),
Eval is a succinct argument of knowledge for NP relation

REval(pppc) = {(C, r, v; f) : f ∈ F[ℓ] ∧ f(r) = v ∧ Open(pppc, C, f1) = 1}.

A.2 Security Definitions for PCD

A proof-carrying data scheme PCD should satisfy the perfect completeness,
knowledge soundness, and zero-knowledge properties.

1. Perfect Completeness. PCD has perfect completeness if for every adversary
A,

Pr

 V(vk, z,Π) = 1

pp← G(1λ);
(φ, z, zloc, {zi, Πi}ri=1)← A(pp);

(pk, vk)← K(pp, φ);
φ ∈ F;φ(z, zloc, {zi}ri=1) = 1;

∀i ∈ [r], zi = ⊥ or V(vk, zi, Πi) = 1;
Π ← P(pk, z, zloc, {zi, Πi}ri=1)

 = 1.

2. Knowledge soundness. PCD has knowledge soundness (w.r.t. an auxiliary
input distribution D) if for every expected polynomial time adversary P∗,
there exists an expected polynomial time extractor ExtP∗ such that for every
set Z,

Pr

 φ ∈ F
∧(pp, ai, φ, ◦(T), ao) ∈ Z
∧T is φ-compliant

pp← G(1λ);
ai← D(pp);

(φ,T, ao)← ExtP∗(pp, ao)

 ≥
Pr

 φ ∈ F
∧(pp, ai, φ, ◦, ao) ∈ Z
∧V(vk, ◦, Π) = 1

pp← G(1λ);
ai← D(pp);

(φ, ◦, Π, ao)← P∗(pp, ai);
(pk, vk)← K(pp, φ)

− negl(λ).
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3. Zero Knowledge. PCD has (statistical) zero knowledge if there exists a prob-
abilistic polynomial-time simulator Sim such that for every polynomial-size
honest adversary A the distributions below are computationally indistin-
guishable:  (pp, Π)

pp← G(1λ);
(φ, z, zloc, [zi, Πi]

r
i=1)← A(pp);

(pk, vk)← K(pp, φ);
Π ← P(pk, φ, z, zloc, [zi, Πi]

r
i=1)

 and

 (pp, Π)
(pp, τ)← Sim(1λ);

(φ, z, zloc, [zi, Πi]
r
i=1)← A(pp);

Π ← Sim(pp, φ, z, τ)

 .

A.3 Definitions for CCS Relation

Definition 12 (CCS [20]). We define the customizable constraint system (CCS)
relation RCCS as follows.
An RCCS structure S consists of:

– size bounds m,n,N, l, t, q, d ∈ N where n > l.
– a sequence of matrices {Mj ∈ Fm×n}j∈[t] with at most N = Ω(max(m,n))

non-zero entries in total;
– a sequence of q multisets {Si}i∈[q], where an element in each multiset is from

the domain {1, ..., t} and the cardinality of each multiset is at most d.
– a sequence of q constants {ci}i∈[q], where each constant is from F.

An RCCS instance consists of public input and output io ∈ Fl.
An RCCS witness consists of a vector wit ∈ Fn−l−1.
An RCCS instance (structure-context tuple) (S, io) is satisfied by an RCCS witness
wit if ∑

i∈[q]

ci · ⃝j∈Si
Mj · z = 0, (3)

where z = (wit, 1, io) ∈ Fm, Mj · z denotes matrix-vector multiplication, ⃝
denotes the Hadamard product between vectors, and 0 is an m-sized vector with
entries equal to the additive identity in F.

B Special Sound Protocol for Committed CCS

This part describes special sound protocols for the committed CCS relation
RCCCS. The basic idea is to commit the special sound protocol in SuperSpartan
[20]. Different from the general-purpose protocol described in Protostar [10], the
special sound protocol we used is specified for concrete CCS relations because
the relation itself is already expressive enough. Note that Protostar also covers
CCS relations with their special sound protocol to manifest expressiveness. While
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their protocols are not based on sum-check protocols. And the performance of
the final scheme is still restricted by the accumulation scheme they proposed.

We instantiate a protocol with a series of interactions between two parties
(P,V), checking the validity of relation RCCCS by running sum-check protocols
on the target multi-variate polynomials. The running steps of the protocol are
given in ΠCCCS below.

The protocol shows that the prover and verifier run a protocol to check
whether a committed CCS instance is valid. Specifically, the prover wants to
convince that Equation (2) holds for all x ∈ {0, 1}sx . To check this equation
with sum-check protocol, a trick is introduced in Spartan [23]: if multiply each
value with a corresponding term ẽq(α,x) with random chosen α, then their sum
equals to zero only when all values equal to zero with high probability (Lemma
3 in Appendix A). We formalize the trick as a lemma below:

Denote F̃ (x) as

F̃ (x) =
∑
i∈[q]

ci

∏
j∈Si

 ∑
y∈{0,1}log m

M̃j(x,y) · z̃(y)

 .

Denote Q̃(t) as

Q̃(t) =
∑

x∈{0,1}s
F̃ (x) · ẽq(t,x),

where ẽq(t,x) =
∏s

i=1(ti · xi + (1− ti) · (1− xi)). Note that Q(t) is a multivari-

ate polynomial evaluates to F̃ (t) for all t ∈ {0, 1}s. Therefore, Q(t) is a zero-

polynomial if and only if F̃ (x) evaluates to zero everywhere on x ∈ {0, 1}s (that
is, the CCS relation is satisfied). To check whether Q(t) is a zero-polynomial,
it is sufficient to query its value on a random input t = α with an acceptable
soundness error.

Lemma 3. Prα{Q(α) = 0 | ∃x ∈ {0, 1}s s.t. F̃ (x) ̸= 0} ≤ logm/|F|.

Proof. Refers to the proof of Lemma 4.3 in Spartan [23].

As a result, the prover runs the first sum-check protocol in step 4 on the
polynomial f(x) with the randomness α, rx given by the verifier in step 1 and
2, where sumx = 0.

To evaluate f(rx), the verifier needs to know the value of
∑

y∈{0,1}sy M̃j(x,y)·
z̃(y) for all j ∈ [t], which can be reduced to another sum-check problem. Thus,
the prover makes t separate claims to the sums on y ∈ {0, 1}sy to the verifier
in step 5. The verifier checks two facts accordingly: (1) cx in sum-check#1 is
consistent with the above claims (step 6), and (2) the t claims are valid.
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Special Sound Protocol ΠCCCS = (P,V) for relation RCCCS

1. V : Sample α←$ Fsx and send to P.
2. V : Sample rx ←$ Fsx .

3. P : Compute z̃(y) = ˜(wit, 1, io).

4. Sum-check#1. cx ← Πsc(f, sx, d+ 1, sumx) with rx where:

f(x) = ẽq(α,x) ·
(∑

i∈[q] ci ·
∏

j∈Si

(∑
y∈{0,1}sy M̃j(x,y) · z̃(y)

))
.

5. P : Compute {σj}j∈[t] and send to V, where for all j ∈ [t]:

σj =
∑

y∈{0,1}sy M̃j(rx,y) · z̃(y).

6. V : Compute e← ẽq(α, rx), and abort if:

cx ̸= e ·
∑

i∈[q] ci ·
∏

j∈Si
σj .

7. V : Sample δ ←$ F, and send to P.
8. V : Sample ry ←$ Fsy .

9. Sum-check#2. cy ← Πsc(g, sy, d+ 1, sumy) with ry where:

g(y) =
∑

j∈[t] δ
j · M̃j(rx,y) · z̃(y).

10. P : Compute ϵ, {θj}j∈[t] and send to V, where for all j ∈ [t]:

ϵ = z̃(ry), θj = M̃j(rx, ry).

11. V : Abort if:

cy ̸=
∑

j∈[t] δ
j · θj · ϵ.

12. P : Open the witness w̃it.

13. V : Check that

(1) Commit(pp, w̃it) = C

(2) ϵ = z̃(ry), θj = M̃j(rx, ry).

The first fact is verified directly in step 6. For the second fact, a naive ap-
proach is to run t more times the sum-check protocol in parallel for t claims. A
more elegant solution aggregates these claims by linear combination with weights
[δ1, ..., δt] generated from a random δ. Consequently, the prover and verifier can
run the sum-check protocol only once on the aggregated multi-variate polynomial
g(y) in step 9 with the randomness ry and sumy =

∑
j∈[t] δ

j ·σj . Likewisely, the

prover makes claims to t evaluations {Mj(rx, ry)}tj=1 and one evaluation z̃(ry)
in steps 10. The verifier checks accordingly by running step 11 and computing
the evaluations in step 13.
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The security properties of the protocol ΠCCCS are guaranteed as follows:

– Completeness. ΠCCCS satisfies perfect completeness property.
– Knowledge Soundness. ΠCCCS is a knowledge sound protocol for RCCCS if the

commitment scheme Commit() satisfies the binding property. To prove it, let
ExtCCCS be the PPT extractor for the protocol ΠCCCS. By rewinding the ma-
licious prover P∗ twice with different challenges ρ, ρ′, ExtCCCS can compute a

witness wit′ satisfying: (1) Commit(pp, w̃it
′
) = C guaranteed by the binding

property of commitment scheme and (2) the CCS relation guaranteed by
the soundness of sum-check protocol [26] and Schwartz-Zippel lemma. By
applying the union bound, we claim that the soundness error of ΠCCCS is at
most O(d · logm+ t+ log n)/|F|.

C Security Proofs of Folding Scheme

In this section, we present the formal security proofs of our generic foldings
scheme, including perfect completeness, knowledge soundness, and honest verifier
zero-knowledge. For the former two properties, we mainly refer to the proof of
the HyperNova [9].

Lemma 4. (Perfect Completeness). Construction 1 satisfies perfect complete-
ness.

Proof. Consider public parameters pp = (m,n,N, l, t, q, d, ppPC) ← G(1λ) and
let sx = logm and sy = log n. Consider arbitrary structures

S = {M̃j}j∈[t] ← A(pp),

S ′ = {M̃ ′j}j∈[t], {S′i}i∈[q], {c′i}i∈[q] ← A(pp).

Consider prover and verifier key (pk, vk)← K(pp,S,S ′). Suppose the prover and
verifier are provided an atomic CCS context

(C, v0, io, rx, ry, {vj}j∈[t], vz),

and a committed CCS context
(C ′, io′).

1. Sum-check protocol#1 : suppose the prover is additionally provided the corre-

sponding satisfying witnesses w̃it and w̃it
′
. Since the input atomic CCS context-

witness pair is satisfying, we have, for z̃ = ˜(wit, v0, io), that

vj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(rx,y)

=
∑

x∈{0,1}sx
ẽq(rx,x) ·

 ∑
y∈{0,1}sy

ẽq(ry,y) · M̃j(x,y)


=

∑
x∈{0,1}sx

Lj(x),∀j ∈ [t].
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Moreover, since the input committed CCS context-witness pair is satisfying, we

have, for z̃′(y) = ˜(wit′, 1, io′)(y), that

0 =
∑
i∈[q]

c′i ·
∏
j∈S′

i

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

 ,∀x ∈ {0, 1}sx .

Treating the right-hand side of the above equation as a polynomial in x, because
it is multilinear and vanishes on all x ∈ {0, 1}sx , we have that it must be the
zero polynomial. Therefore, we have, for α sampled by the verifier, that

0 =
∑
i∈[q]

c′i ·
∏
j∈S′

i

 ∑
y∈{0,1}sy

M̃ ′j(α,y) · z̃′(y)


=

∑
x∈{0,1}sx

ẽq(α,x) ·

∑
i∈[q]

c′i
∏
j∈S′

i

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)


=

∑
x∈{0,1}sx

Q(x).

For γ sampled by the verifier, by linearity, we have that

∑
j∈[t]

γj · vj =
∑

x∈{0,1}sx

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)


=

∑
x∈{0,1}sx

f(x).

Therefore, by the perfect completeness of the sum-check protocol, we have for
e1 = ẽq(rx, r

′
x), e2 = ẽq(α, r′x) and

σj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y),∀j ∈ [t],

σ′j =
∑

y∈{0,1}sy
M̃ ′j(r

′
x,y) · z̃′(y),∀j ∈ [t],

that

cx = f(r′x)

=

∑
j∈[t]

γj · Lj(r
′
x)

+ γt+1 ·Q(r′x)

=

∑
j∈[t]

γj · e1 · σj

+ γt+1 · e2 ·
∑
i∈[q]

c′i ·
∏
j∈S′

i

σ′j .
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2. Sum-check protocol#2 : According to the results of sum-check protocol#1, for
z̃(x), z̃′(x) and sampled r′x, we have

σj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y)

=
∑

y∈{0,1}sy
Rj(y),∀j ∈ [t],

vz =
∑

y∈{0,1}sy
ẽq(ry,y) · z̃(y)

σ′j =
∑

y∈{0,1}sy
M̃ ′j(r

′
x,y) · z̃′(y),

=
∑

y∈{0,1}sy
Tj(y),∀j ∈ [t].

For δ sampled by the verifier, by linearity, we have that∑
j∈[t]

δj · σj + δt+1 · vz + δt+1 ·
∑
j∈[t]

δj · σ′j

=
∑
j∈[t]

δj ·Rj(y) + δt+1 · S(y) + δt+1 ·
∑
j∈[t]

δj · Tj(y)

=
∑
j∈[t]

g(y).

Therefore, by the perfect completeness of the sum-check protocol, we have for

ϵ = z̃(r′y),

ϵ′ = z̃′(r′y),

θj = M̃j(r
′
x, r
′
y),∀j ∈ [t],

θ′j = M̃ ′j(r
′
x, r
′
y),∀j ∈ [t],

that

cy = g(r′y)

=
∑
j∈[t]

δj ·Rj(r
′
y) + δt+1 · S(y) + δt+1 ·

∑
j∈[t]

δj · Tj(r
′
y)

=
∑
j∈[t]

δj · e3 · θj + δt+1 · ϵ+ δt+1 ·
∑
j∈[t]

δj · θj · ϵ′.

The above two steps imply that the verifier will not abort. Now, consider the
atomic CCS context obtained from R′ as

(C ′, 1, io′, r′x, r
′
y, {θ′j}j∈[t], ϵ′).
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By the precondition that the committed CCS context (C ′, io′) is satisfied by w̃it
′

and by the definition of {θ′j}j∈[t], ϵ′ we have that this new atomic CCS context

is satisfied by the witness w̃it
′
.

Therefore, for random η sampled by the verifier, and folded structure S∗
with {M∗j = Mj + η ·M ′j}tj=1, folded context C∗ = C + η · C ′, v∗0 = v0 + η · 1,
io∗ = io+ η · io′, v∗j = θj + η · θ′j , v∗z = ϵj + η · ϵ′j , we have that the output folded
atomic CCS context

(C∗, v∗0 , io
∗, r′x, r

′
y, {v∗j }j∈[t], v∗z).

is satisfied by the witness w̃it
∗
← w̃it + η · w̃it

′
under the structure S∗ by the

linearity and the additive homomorphism property of the commitment scheme.

Lemma 5. (Knowledge Soundness). Construction 1 satisfies knowledge sound-
ness.

Proof. Consider an adversary A that adaptively picks the structures and con-
texts, and a malicious prover P∗ that succeeds with probability ϵ. Let pp ←
G(1λ). Suppose on input pp and random tape η, the adversary A picks two
structures

S = {M̃j}j∈[t],

S ′ = {M̃ ′j}j∈[t], {S′i}i∈[q], {c′i}i∈[q].

a new committed CCS context

ctx = (C, v0, io, rx, ry, {vj}j∈[t], vz),

and committed CCS context

ctx′ = (C ′, io′),

and some auxiliary state st.

1. Extraction Algorithm: we construct an expected-polynomial time extractor
Ext that succeeds with probability ϵ − negl(λ) in obtaining satisfying witnesses
for the original contexts as follows.

39



Ext(pp, ρ):

1 : Obtain the output tuple from A:

(S,S ′, ctx, ctx′, st)← A(pp, ρ).

2 : Compute (pk, vk)← K(pp,S,S ′).

3 : Run the folding interaction#1

(S∗
1 , ctx

∗
1, w̃it

∗
1)← ⟨P∗,V⟩((pk, vk),S,S ′, ctx, ctx′, st)

once with the final verifier challenge η1 ←$ F.

4 : Abort if (pp,S∗
1 , ctx

∗
1, w̃it

∗
1) /∈ RACCS.

5 : Run the folding interaction#2

(S∗
2 , ctx

∗
2, w̃it

∗
2)← ⟨P∗,V⟩((pk, vk),S,S ′, ctx, ctx′, st))

with a different verifier’s final challenge η2 ←$ F while maintaining the same

prior randomness. Keep doing so until (pp,S∗
2 , ctx

∗
2, w̃it

∗
2) ∈ RACCS.

6 : Abort if η1 = η2 or S∗
1 ̸= S∗

2 .

7 : Interpolating points (η1, w̃it
∗
1) and (η2, w̃it

∗
2), retrieve the witness polynomials

w̃it and w̃it
′
such that for i ∈ {1, 2}

w̃it+ ηi · w̃it
′
= w̃it

∗
i .

8 : Output (w̃it, w̃it
′
).

We first demonstrate that the extractor Ext runs in expected polynomial time.
Observe that Ext runs the folding interaction#1 once, and if it does not abort,
keeps rerunning the folding interaction#2 until P∗ succeeds. Let W denote the
event that the extractor does not abort in step 4, and W̄ denotes that the event
W does not happen. Define the number of folding interactions Ext runs in total
as a variable X (i.e., number of rewinds). We can calculate its expectation as

E[X] = Pr[W ] ·(1+ 1

Pr[⟨P∗,V⟩ succeeds]
)+Pr[W̄ ] ·1 = ϵ ·(1+ 1

ϵ
)+(1−ϵ) ·1 = 2.

Therefore, we have that the extractor runs in the expected polynomial time.
2. Advantage Analysis: We now analyze Ext’s success probability. We must

demonstrate that Ext succeeds in producing w̃it and w̃it
′
such that

(pp,S, ctx, w̃it) ∈ RACCS and (pp,S ′, ctx′, w̃it
′
) ∈ RCCCS

, with probability ϵ− negl(λ).
To do so, we first show that the extractor successfully produces some output

(i.e., does not abort) in less than 3
√
|F| rewinding steps with probability ϵ −

negl(λ). Indeed, by the malicious prover’s success probability, we have that the
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extractor does not abort in step (4) with probability ϵ. Given that the extractor
does not abort in step (4), by Markov’s inequality, we have that the extractor
rewinds more than 3

√
|F| times with probability

Pr[X ≥ 3
√
|F|] ≤ E[X]

3
√
|F|

=
2

3
√
|F|

,

where X is the random variable of the number of running folding interactions.
Thus, the probability that the extractor does not abort in step (4) and requires
less than 3

√
|F| rewinds is (1− 2/ 3

√
|F|) · ϵ.

Now, suppose that the extractor does not abort in step (4) and requires
less than 3

√
|F| rewinds. This ensures that the extractor tests at most 3

√
|F|

values for η. Since the challenges are sampled uniformly in random form |F|, the
probability that ρ(1) ̸= ρ(2) is 1− 3

√
|F|

2
/|F|. Therefore, assuming 3

√
|F|

2
≥ 2, we

have that the probability the extractor successfully produces some output under
3
√
|F| rewinding steps is

Pr[X < 3
√
|F|] · Pr[ρ(1) ̸= ρ(2)] = (1− 2

3
√
|F|

) · ϵ · (1−
3
√
|F|

2

|F|
)

= (1− 2
3
√
|F|
−

3
√
|F|

2

|F|
+

2

|F|
)

= ϵ− negl(λ).

Next, if the extractor does not abort, we show that the extractor succeeds
in producing satisfying witnesses with probability 1 − negl(λ). This brings the
overall extractor success probability to (ϵ− negl(λ)) · (1− negl(λ)).

For i ∈ {1, 2}, let ctx∗i = (C∗i , v
∗
0,i, io

∗
i , r
∗
x,i, v

∗
1,i, ..., v

∗
t,i, v

∗
z,i). We first show

that the retrieved polynomials are valid openings to the corresponding com-

mitments in the instance. For i ∈ {1, 2}, since w̃it
∗
i is a satisfying witness, by

construction,

Commit(pp, w̃it) + ηi · Commit(pp, w̃it
′
)

= Commit(pp, w̃it+ ηi · w̃it
′
)

= Commit(pp, w̃it
∗
i )

= C∗i

= C + ηi · C ′.

Interpolating, we have that

Commit(pp, w̃it) = C, (4)

Commit(pp, w̃it
′
) = C ′. (5)

Next, we must argue that w̃it and w̃it
′
satisfy the remainder of the instances

(S, ctx) and (S ′, φ′) respectively.
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Consider {θj}j∈[t], {θ′j}j∈[t] and ϵ, ϵ′ sent by the prover which by the extrac-
tor’s construction are identical across all executions of the interaction. By the
verifier’s computation we have that for i ∈ {1, 2} and all j ∈ [t]

vj,i = θj + ηi · θ′j , (6)

vz,i = ϵ+ ηi · ϵ′. (7)

Now, because w̃it
∗
i is a satisfying witness, for i ∈ {1, 2} we have for all j ∈ [t]

that

vj,i = M̃∗j,i(r
′
x, r
′
y),

vz,i = z̃∗i (r
′
y),

where M̃∗j,i = M̃j + ηi · M̃j , z̃
∗
i = ˜(wit∗i , v

∗
0,i, io

∗
i ) = z̃ + η · z̃′.

Meanwhile, according to equations (6) and (7), for i ∈ {1, 2} and j ∈ [t], we
have

θj + ηi · θ′j = vj,i = M̃j(r
′
x, r
′
y) + ηi · M̃ ′j(r′x, r′y),

ϵ+ ηi · ϵ′ = vz,i = z̃(r′y) + ηi · z̃′(r′y),

where z̃ = ˜(witi, v0,i, ioi) and z̃′ = ˜(wit′, 1, io′). Interpolating, we have that, for
all j ∈ [t]

θj = M̃j(r
′
x, r
′
y),

θ′j = M̃ ′j(r
′
x, r
′
y),

ϵ = z̃(r′y),

ϵ′ = z̃′(r′y).

Thus, because the verifier does not abort in step 11, we have that

cy =
∑
j∈[t]

δj · e3 · θj + δt+1 · e3 · ϵ+ δt+1 ·
∑
j∈[t]

δj · θ′j · ϵ′

=
∑
j∈[t]

δj · ẽq(ry, r′y) · θj + δt+1 · ẽq(ry, r′y) · ϵ+ δt+1 ·
∑
j∈[t]

δj · θ′j · ϵ′

=
∑
j∈[t]

δj · ẽq(ry, r′y) · M̃j(r
′
x, r
′
y) + δt+1 · ẽq(ry, r′y) · z̃(r′y) + δt+1 ·

∑
j∈[t]

δj · M̃ ′j(r′x, r′y) · z̃′(r′y)

=
∑
j∈[t]

δj ·Rj(r
′
y) + δt+1 · S(r′y) + δt+1 ·

∑
j∈[t]

δj · Tj(r
′
y)

= g(r′y),
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by the soundness of the sum-check protocol#2, this implies that with probability
1−O(d · sy)/|F| = 1− negl(λ) over the choice of r′y,

∑
j∈[t]

δj · σj + δt+1 · vz + δt+1 ·
∑
j∈[t]

δj · σ′j

=
∑

y∈{0,1}sy
g(y)

=
∑

y∈{0,1}sy

∑
j∈[t]

δj ·Rj(y) + δt+1 · S(y) + δt+1 ·
∑
j∈[t]

δj · Tj(y)


=

∑
j∈[t]

δj ·
∑

y∈{0,1}sy
Rj(y) + δt+1 ·

∑
y∈{0,1}sy

S(y) + δt+1 ·
∑
j∈[t]

δj ·
∑

y∈{0,1}sy
Tj(y).

By the Schwartz-Zippel lemma [Sch80], this implies that with probability 1 −
O(t)/|F| = 1− negl(λ) over the choice of δ, for all j ∈ [t], we have

σj =
∑

y∈{0,1}sy
Rj(y) =

∑
y∈{0,1}sy

ẽq(ry,y) · M̃j(r
′
x,y),

vz =
∑

y∈{0,1}sy
S(y) =

∑
y∈{0,1}sy

ẽq(ry,y) · z̃(y),

σ′j =
∑

y∈{0,1}sy
Tj(y) =

∑
y∈{0,1}sy

M̃ ′j(r
′
x,y) · z̃′(y).

Thus, because the verifier does not abort in step 5, we have that

cx =

∑
j∈[t]

γj · e1 · σj

+

γt+1 · e2 ·
∑
i∈[q]

c′i ·
∏
j∈Si

σj


=

∑
j∈[t]

γj · ẽq(rx, r′x) · σj

+

γt+1 · ẽq(α, r′x) ·
∑
i∈[q]

c′i ·
∏
j∈Si

θj


=

∑
j∈[t]

γj · ẽq(rx, r′x) ·
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y)


+

γt+1 · ẽq(α, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}sy

M̃ ′j(r
′
x,y) · z̃′(y)


=

∑
j∈[t]

γj · Lj(r
′
x) + γt+1 ·Q(r′x)

= f(r′x),
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by the soundness of the sum-check protocol#1, this implies that with probability
1−O(d · sx)/|F| = 1− negl(λ) over the choice of r′x,∑

j∈[t]

γj · vj + γt+1 · 0 =
∑

x∈{0,1}sx
f(x)

=
∑

x∈{0,1}sx

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)


=

∑
x∈{0,1}sx

γj ·

∑
j∈[t]

Lj(x)

+ γt+1 ·
∑

x∈{0,1}sx
Q(x).

By the Schwartz-Zippel lemma [Sch80], this implies that with probability 1 −
O(t)/|F| = 1− negl(λ) over the choice of γ, for all j ∈ [t], we have

vj =
∑

x∈{0,1}sx
Lj(x),

0 =
∑

x∈{0,1}sx
Q(x).

Therefore,

vj =
∑

x∈{0,1}sx
Lj(x)

=
∑

x∈{0,1}sx
ẽq(rx,x) ·

 ∑
y∈{0,1}s

ẽq(ry,y) · M̃j(x,y)


= M̃j(rx, ry).

This implies that w̃it is a satisfying witness to (S, ctx). Finally, we have that

0 =
∑

x∈{0,1}sx
Q(x)

=
∑

x∈{0,1}sx
ẽq(α,x) ·

∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)


=

∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(α,y) · z̃′(y)

 .

By the Schwartz-Zippel lemma, this implies that with probability 1 − sx/|F| =
1− negl(λ) over the choice of α, we have that for all x ∈ {0, 1}sx

0 =
∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

 .
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This implies that w̃it
′
is a satisfying witness to (S ′, ctx′). Thus, if the extractor

does not abort, it succeeds in producing satisfying witness w̃it, w̃it
′
with proba-

bility 1− negl(λ).

Lemma 6. (Honest Verifier Zero Knowledge). Construction 1 satisfies honest
verifier zero knowledge.

Proof. Consider an adversary A that adaptively picks the structures and con-
texts. Let pp← G(1λ). Suppose on input pp, the adversaryA picks two structures

S = {M̃j}j∈[t],

S ′ = {M̃ ′j}j∈[t], {S′i}i∈[q], {c′i}i∈[q],

a new committed CCS context-witness pair

(ctx,wit) = (C, v0, io, rx, ry, {vj}j∈[t], vz,wit),

and committed CCS context-witness pair

(ctx′,wit′) = (C ′, io′.wit).

With the keys generated by (pk, vk) ← K(pp,S,S ′), the non-deterministic
function trace produces an interaction transcript tr between honest P and V of
Πfold on input ((pk, vk), (ctx, ctx′), (wit,wit′)).

Next, we construct a PPT simulator Sim producing the trace t̂r with indis-
tinguishable distribution from tr with the input of (pp, {(S,S ′), (ctx, ctx′), ρ).

To begin with, the simulator inputs a random challenge η̂ to aggregate the
structures and contexts accordingly to obtain the folded structure Ŝ∗ containing

M̂j
∗
= η̂ ·Mj + η̂2 ·M ′j

for all j ∈ [t], and part of the folded context ˆctx
∗
containing

v̂0
∗ ← η̂ · v0 + η̂2 · 1,

îo
∗ ← η̂ · io+ η̂2 · io′.

v̂j
∗ ← η̂ · vj + η̂2 · v′j ∀j ∈ [t],

To simulate the trace t̂r, the simulator samples a random vector in Fn− l − 1

as ŵit
∗
, and compute the commitment on the random witness w in the masking

instance as
Ĉ ′′ = Commit(pp, ŵit

∗
)− η̂ · C − η̂2 · C ′.

The commitment Ĉ∗ = Commit(pp, ŵit
∗
) is added to the context ˆctx

∗
.

By sampling another random value as v̂z
∗, the simulator computes the value

ϵ̂′′ for the claim on v̂z
′′ of the masking instance as

ϵ̂′′ = v̂z
∗ − η̂ · ϵ̂− η̂2 · ϵ̂′,
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where ϵ̂ = vz, ϵ̂
′ = v′z. The v̂z

∗ is then added to the context ˆctx
∗
.

Denote θ̂j = vj , θ̂j
′
= v′j , θ̂j

′′
= ⊥ Now, we have obtained the claims on

matrices and context-witness pairs for three instances as follows

ϵ̂ = z̃(r′y),

ϵ̂′ = z̃′(r′y),

ϵ̂′′ = z̃′(r′y),

θ̂j = M̃j(r
′
x, r
′
y),∀j ∈ [t],

θ̂j
′
= M̃ ′j(r

′
x, r
′
y),∀j ∈ [t].

Note that the matrices for making instance can be set equal to either {Mj}j∈[t]
or {M ′j}j∈[t]. The above values are indistinguishable from those in tr.

According to the conclusion given by Chiesa et al. in [21], the Sim can invoke
another efficient simulator Simsc to simulate an indistinguishable trace tr2 for
sum-check#2 based on the claims above.

By running the similar process as above, the Sim can simulate another indis-
tinguishable trace tr1 for sum-check#1 based on the claims given in tr2.

Finally, the Sim outputs a valid trace t̂r constructed from ϵ̂, ϵ̂′, ϵ̂′′, θ̂j , θ̂j
′
, θ̂j
′′

and tr1, tr2. Obviously, the Sim can be executed in polynomial time.

D Security proofs of PCD scheme

We refer to the security proofs of completeness and knowledge soundness to [18].

Lemma 7 (Perfect Completeness). Construction 3 satisfies perfect com-
pleteness.

Proof. For public parameter pp, consider arbitrary adversarially chosen messages
(φ, z, zloc, {zi, Πi}k∈[s]) satisfying

φ ∈ F;φ(z, zloc, {zk}k∈[s]) = 1;

∀k ∈ [s], zk = ⊥ or V(vk, zk, Πk) = 1,

such that the perfect completeness precondition is satisfied. We show that given
Π ← P(pk, z, zloc, {zk, Πk}k∈[s]), the verifier algorithm passes, i.e., V(vk, z,Π) =
1 with probability 1.

Specifically, there are two cases:

– If zk = ⊥ for all k ∈ [s], the prover runs the algorithm honestly, and the
compliance φ(z, zloc, z1, ..., zs) holds by the preconditions. The circuitR0 can
be constructed accordingly and a satisfied RCCCS instance is as

(s0, ctx0,wit0)← trace(R0, (h, (z, zloc, {zk,CTXk, ctxk}k∈[s], vk′))
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Then the prover sets (CTX,WIT, pf) accordingly to (ctx0,wit0,⊥) and com-
putes h = Hash(vk′mathsffs, z,CTX). And the circuit R1 can be constructed
accordingly and a satisfied RCCCS instance is as

(s, ctx,wit)← trace(R1, (h, ({CTXk, ctxk}k∈[s], ctx0, vk′,CTX, Π)).

Besides, ctx.io = H(vk′, z,CTX). As a result, V(vk, z,Π) = 1 with probability
1.

– If ∃k ∈ [s] such that zk ̸= ⊥, by the perfect completeness precondition,
{CTXk,WITk}k∈[s] are satisfiedRACCS context-witness pairs, {ctxk,witk}k∈[s]
are satisfied RCCCS context-witness pairs, and ctxk.io = H(vk′, zk,CTXk).
The prover runs the algorithm honestly, and the compliance φ(z, zloc, z1, ..., zs)
holds by the preconditions. The circuit R0 can be constructed accordingly
and a satisfied RCCCS instance is as

(s0, ctx0,wit0)← trace(R0, (h, (z, zloc, {zk,CTXk, ctxk}k∈[s], vk′))

Then, the prover runs the generic foldings scheme for {Sk,CTXk,WITk}k∈[s],
{sk, ctxk,witk}sk=0. By the perfect completeness of the generic folding scheme,
we have that (CTX,WIT) is a satisfied RCCCS context-witness pair. The cir-
cuit R1 can be constructed accordingly and a satisfied RCCCS instance is
as

(s, ctx,wit)← trace(R1, (h, ({zk,CTXk, ctxk}k∈[s], ctx0, vk′,CTX, Π)).

Besides, ctx.io = H(vk′, z,CTX). As a result, V(vk, z,Π) = 1 with probability
1.

In conclusion, we show that Construction 3 has perfect completeness.

Lemma 8 (Knowledge Soundness). Construction 3 satisfies knowledge sound-
ness.

Proof. Given a fixed set Z, pp ← G(1λ) and auxiliary input ai ← D(pp), the
polynomial time adversary P∗ succeeds in producing valid transcript (φ, ◦, Π, ao)
with non-negligible probability ϵ. We aim to show that it is feasible to construct
an extractor ExtP∗ on input (pp, ai), succeeds in outputting (φ,T, ao) with prob-
ability ϵ− negl(λ), where φ ∈ F, (pp, ai, φ, ao) ∈ Z and T is φ-compliant.

According to [13], it is convenient to assume the transcript T as a d-depth
tree, where d is the depth of φ. Among the tree T, each node u with local
data z(u)loc has a unique outgoing edge labelled with z(u) and a proof Π(u)

for the correctness of z(u). The extractor ExtP∗ is constructed inductively by
constructing a sequence of extractors Ext0, ...,Extd. For i ∈ 0, ..., d, Exti outputs
a (i + 1)-depth tree Ti. Basically, we define Ext0(pp, ai) runs (φ, ◦, Π, ao) ←
P∗(pp, ai) and outputs (φ,T0, ao), where T0 contains only one node labeled with
(◦, Π).

Then assume we already have extractor Exti−1. To construct Exti, an adver-
sary P∗i−1 for the non-interactive generic folding scheme needs to be constructed
first.
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P∗i−1(pp, ai, ρ):
1 : Compute (φ,Ti−1, ao)← Exti−1(pp, ai). If Ti−1 is not a tree of depth i, abort.

2 : For each node u ∈ LTi−1(i), denote its label as (z(u), Π(u)).

3 : Parse Π(u) as ((CTX(u),WIT(u)), (ctx(u),wit(u))).

4 : Obtain ({CTX(u)
k , ctx

(u)
k , z

(u)
j }k∈[s], ctx0, pf

(u)) from wit(u).

5 : Let Li−1 := {u ∈ LTi−1(i) | ∃k ∈ [s], z
(u)
k ̸= ⊥}.

6 : Output

({
{CTX(u)

k , ctx
(u)
k }k∈[s], ctx

(u)
0 ,CTX(u),WIT(u), pf(u)

}
u∈Li−1

, (φ,Ti−1, ao)

)
.

where LTi−1
(i) denotes the set of nodes of T at depth i. According to the

knowledge soundness of the generic folding scheme, we can construct another

extractor ExtP∗
i−1

. On input v ∈ Li−1, ExtP∗
i−1

outputs {WIT
(u)
k ,wit

(u)
k }k∈[s] and

wit
(u)
0 with non-negligible probability, where {CTX(u)

k ,WIT
(u)
k }k∈[s] are satisfied

atomic CCS context-witness pairs and {ctx(u)k ,wit
(u)
k }sk=0 are satisfied committed

CCS context-witness pairs.
Based on P∗i−1,ExtP∗

i−1
, we can further construct Exti as follows.

(φ,Ti, ao)← Exti(pp, ai):

1 : Compute

({
{CTX(u)

k ,WIT
(u)
k }k∈[s], {ctx(u)k ,wit

(u)
k }

s
k=0

}
u∈Li−1

, (φ,Ti−1, ao)

)
← ExtP∗

i−1
(pp, ai, ρ). If Ti−1 is not a tree of depth i, abort.

2 : Retrieve {wit(u)}u∈LTi−1
(i) from the internal state of P∗

i−1 and obtain z
(u)
loc , {z

(u)
k }k∈[s]

from wit(u).

3 : Append z
(u)
loc to the label of u ∈ LTi−1(i).

4 : For each node u ∈ Li−1, let Lu := {k ∈ [s] | z(u)k ̸= ⊥}. Construct Ti of depth i+ 1

from Ti−1 by adding, for each node u ∈ Li−1, (z
(u)
k , Π

(u)
k ) to the label of its child k ∈ Lu,

where Π
(u)
k =

(
(CTX

(u)
k ,WIT

(u)
k ), (ctx

(u)
k ,wit

(u)
k )

)
.

5 : Output (φ,Ti, ao).

We claim that for i ∈ {0, 1, ..., d}, the extractor Exti(pp, ai) outputs (φ,Ti, ao)
in expected polynomial time such that with probability ϵ−negl(λ), the following
conditions hold

– φ ∈ F, (pp, ai, φ, ◦(Ti), ao) ∈ Z;
– Ti is φ-compliant up to depth i;
– for all u ∈ LTi

(i+ 1), V(vk, z(u), Π(u)) = 1.

The correctness of the above claim can be proved by induction.

– (Base case.) Since Ext0(pp, ai) runs (φ, ◦, Π, ao)← P∗(pp, ai), it satisfies the
conditions above.

48



– (Inductive hypothesis.) Assume that the extractor Exti−1 satisfies the above-
mentioned conditions.

– (Inductive step.) Based on the hypothesis, we show that Exti also satisfies
the conditions by the following discussion.

The inductive hypothesis ensures that Exti−1 satisfies with probability ϵ−negl(λ),
that φ ∈ F, (pp, ai, φ, ◦(Ti−1), ao) ∈ Z, Ti−1 is φ-compliant up to the depth i−1,
and for all u ∈ LTi−1(i), V(vk, z(u), Π(u)) = 1. By the correctness of algorithm
V, we have

– (1) {(CTX(u),WIT(u)), (ctx(u),wit(u))}u∈LTi−1(i)
are satisfied context-witness

pairs.

Since Ti−1 is φ-compliant, by the construction ofR0,R1 and hash function Hash,
we have

– (2) for u ∈ LTi−1
(i), φ(z(u), z

(u)
loc , z

(u)
1 , ..., z

(u)
s ) accepts;

– (3) for u ∈ Li−1, CTX
(u) = zk-NIFS.V ′(vk′, {CTX(u)

k }k∈[s], {ctx
(u)
k }sk=0, pf

(u));

– (4) for u ∈ Li−1, ctx
(u)
k .io = Hash(vk′, z

(u)
k ,CTX

(u)
k ) ∀k ∈ [s].

(2) implies that Ti is φ-compliant up to depth i and φ ∈ F, (pp, ai, φ, ◦(Ti), ao) ∈
Z. (1) and (3) imply that there exists efficient construction of P∗i−1 that succeeds
in producing folded pairs {CTX(u),WIT(u)}u∈Li−1 with probability ϵ − negl(λ).

Then there exists an efficient extractor ExtP∗
i−1

outputting {{WIT
(u)
k }k∈[s], {wit

(u)
k }sk=0}u∈Li−1

guaranteed by the knowledge soundness of generic foldings scheme. (1)-(4) imply
that V(vk, z(u), Π(u)) = 1 holds for all u ∈ L(T )i(i+1). Therefore, the hypothesis
for Exti also holds.

In conclusion, we prove that Construction 3 is knowledge-sound.

Lemma 9 (Zero Knowledge). Construction 3 satisfies zero knowledge.

Proof. We prove that the PCD scheme is zero-knowledge by constructing a prob-
abilistic polynomial-time simulator Sim as

Sim(1λ):

1 : Compute (ppfs, τfs)← Simfs(1
λ).

2 : Output (pp = ppfs, τ = τfs).

Sim(pp, φ, z, τ):

1 : Obtain {Sk,CTXk}k∈[s], {sk, ctxk}sk=0 from public R1.

2 : Compute (S,CTX,WIT, pf)← Simfs(ppfs, {S
(k),CTX(k)}k∈[s], {s(k), ctx(k)}sk=0, τ).

3 : Compute h← Hash(vk′fs, z,CTX).

4 : Output (s, ctx,wit)← trace(R1, (h, ({CTXk, ctxk}k∈[s], ctx0, vk
′
fs,CTX, pf))).
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