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Abstract. In this paper, we explore the cost of vectorization for multi-
plying polynomials with coefficients in Zq for an odd prime q, as exem-
plified by NTRU Prime, a postquantum cryptosystem that found early
adoption due to its inclusion in OpenSSH.
If there is a large power of two dividing q − 1, we can apply radix-2
Cooley–Tukey fast Fourier transforms to multiply polynomials in Zq[x].
The radix-2 nature admits efficient vectorization. Conversely, if 2 is the
only power of two dividing q − 1, we can apply Schönhage’s and Nuss-
baumer’s FFTs to craft radix-2 roots of unity, but these double the num-
ber of coefficients.
We show how to avoid the doubling while maintaining the vectorization
friendliness with Good–Thomas, Rader’s, and Bruun’s FFTs. In partic-
ular, in sntrup761, the most common instance of NTRU Prime we have
q = 4591, and we exploit the existing Fermat-prime factor of q − 1 for
Rader’s FFT and power-of-two factor of q + 1 for Bruun’s FFT.
Polynomial multiplications in Z4591[x]/

〈
x761 − x− 1

〉
is still a worth-

while target because while out of the NIST PQC competition, sntrup761
is still going to be used with OpenSSH by default in the near future.
Our polynomial multiplication outperforms the state-of-the-art vector-
optimized implementation by 6.1×. For ntrulpr761, our keygen, encap,
and decap are 2.98×, 2.79×, and 3.07× faster than the state-of-the-
art vector-optimized implementation. For sntrup761, we outperform the
reference implementation significantly.

Keywords: Good–Thomas FFT · Rader’s FFT · Bruun’s FFT · NTRU
Prime · Vectorization

1 Introduction

At PQCrypto 2016, the National Institute of Standards and Technology (NIST)
announced the Post-Quantum Cryptography Standardization Process for re-
placing existing standards for public-key cryptography with quantum-resistant
cryptosystems. For lattice-based cryptosystems, polynomial multiplications have



been the most time-consuming operations. Recently standardized [AAC+22]
Dilithium, Kyber, and Falcon wrote number–theoretic transforms (NTTs) into
their specifications in response.

OpenSSH 9.0 defaults to NTRU Prime4. However, in NTRU Prime the poly-
nomial ring doesn’t allow NTT-based multiplications naturally. State-of-the-art
vectorized implementations introduced various techniques extending coefficient
rings, or computed the results over Z. In each of these approaches, empirically
small-degree polynomial multiplications is always an important bottleneck. We
study the compatibility of vectorization and various algorithmic techniques in
the literature and choose the ARM Cortex-A72 implementing the Armv8-A ar-
chitecture 5 for this work. We are interested in vectorized polynomial multiplica-
tions for NTRU Prime. [BBCT22] showed that a vectorized generic polynomial
multiplication takes ∼ 1.5× time of a “generic by small (ternary coefficients)”
one with AVX2. [BBCT22] applied Schönhage and Nussbaumer to ease vector-
ization. Schönhage and Nussbaumer double the sizes of the coefficient rings and
lead to a larger number of small-degree polynomial multiplications. We explain
how to avoid the doubling with Good–Thomas, Rader’s, and Bruun’s FFTs.

We implement our ideas on Cortex-A72 implementing Armv8.0-A with the
vector instruction set Neon. However, we emphasize that our approaches are
built around the notion of vectorization and not a specific architecture.

1.1 Contributions

We summarize our contributions as follows.

– We formalize the needs of vectorization commonly involved in vectorized
implementations.

– We propose vectorized polynomial multipliers essentially quartering and
halving the number of small-dimensional polynomial multiplications after
FFTs.

– We propose novel accumulative (subtractive) variants of Barrett multiplica-
tion absorbing the follow up addition (subtraction).

– We implement the ideas with the SIMD technology Neon in Armv8.0-A on
a Cortex-A72. Our fastest polynomial multiplier outperforms the state-of-
the-art optimized implementation by a factor of 6.1×.

– In addition to the polynomial multiplication, we vectorize the sorting net-
work, polynomial inversions, encoding, and decoding subroutines used in
ntrulpr761 and sntrup761. For ntrulpr761, our key generation, encap-
sulation, and decapsulation are 2.98×, 2.79×, and 3.07× faster than the
state-of-the-art optimized implementation. For sntrup761, we outperform
the reference implementation significantly.

4 https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.
5 ARMv8-A, which naturally comes with the SIMD technology Neon, is currently the
most prevalent architecture for mobile devices and is used for all Apple hardware.

https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2


1.2 Code

Our source code can be found at https://github.com/vector-polymul-ntru-ntrup/
NTRU_Prime under the CC0 license.

1.3 Structure of this Paper

Section 2 goes through the preliminaries. Section 3 surveys FFTs. Section 4
describes our implementations. We show the performance numbers in Section 5.

2 Preliminaries

Section 2.1 describes the polynomials rings in NTRU Prime, Section 2.2 de-
scribes our target platform Cortex-A72, and Section 2.3 describes the modular
arithmetic.

2.1 Polynomials in NTRU Prime

The NTRU Prime submission comprises two families: Streamlined NTRU Prime
and NTRU LPRime. Both operate on the polynomial ring Zq[x]/⟨xp − x− 1⟩
where q and p are primes such that the ring is a finite field. We target the poly-
nomial multiplications for parameter sets sntrup761 and ntrulpr761 where q =
4591 and p = 761. One should note that sntrup761, which is used by OpenSSH,
uses a (Quotient) NTRU structure, and requires inversions in Z3[x]

/〈
x761 − x− 1

〉
and Z4591[x]

/〈
x761 − x− 1

〉
. We refer the readers to the specification [BBC+20]

for more details. With no other assumptions on the inputs, we call a polynomial
multiplication “big by big”. If one of the inputs is guaranteed to be ternary,
we call it “big by small”. We optimize both although the former is required
only if we apply the fast constant-time GCD [BY19] to the inversions in the key
generation of sntrup761. The fast constant-time GCD is left as a future work.

2.2 Cortex-A72

Our target platform is the ARM Cortex-A72, implementing the 64-bit Armv8.0-
A instruction set architecture. It is a superscalar Central Processing Unit (CPU)
with an in-order frontend and an out-of-order backend. Instructions are first
decoded into µops in the frontend and dispatched to the backend, which con-
tains these eight pipelines: L for loads, S for stores, B for branches, I0/I1 for
integer instructions, M for multi-cycle integer instructions, and F0/F1 for Single-
Instruction-Multiple-Data (SIMD) instructions. The frontend can only dispatch
at most three µops per cycle. Furthermore, in a single cycle, the frontend dis-
patches at most one µop using B, at most two µops using I0/I1, at most two
µops using M, at most one µop using F0, at most one µop using F1, and at most
two µops using L/S [ARM15, Section 4.1].

https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime
https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime


We mainly focus on the pipelines F0, F1, L, and S for performance. F0/F1
are both capable of various additions, subtractions, permutations, comparisons,
minimums/maximums, and table lookups 6. However, multiplications can only
be dispatched to F0, and shifts to F1. The most heavily-loaded pipeline is clearly
the critical path. If there are more multiplications than shifts, we much prefer
instructions that can use either pipeline to go to F1 since the time spent in F0

will dominate our runtime. Conversely, with more shifts than multiplications, we
want to dispatch most non-shifts to F0. In practice, we interleave instructions dis-
patched to the pipeline with the most workload with other pipelines (or even L/S)
— and pray. Our experiment shows that this approach generally works well. In
the case of chacha20 implementing randombytes for benchmarking [BHK+22],
we even consider a compiler-aided mixing of I0/I1, F0/F1, and L/S7. The idea
also proved valuable for Keccak on some other Cortex-A cores [BK22, Table 1].

SIMD registers. The 64-bit Armv8-A has 32 architectural 128-bit SIMD reg-
isters with each viewable as packed 8-, 16-, 32-, or 64-bit elements ( [ARM21,
Fig. A1-1]), denoted by suffixes .16B .8H, .4S, and .2D on the register name,
respectively.

Armv8-A vector instructions.

Multiplications. A plain mul multiplies corresponding vector elements and re-
turns same-sized results. There are many variants of multiplications: mla/mls
computes the same product vector and accumulates to or subtracts from the
destination. There are high-half products sqdmulh and sqrdmulh. The former
computes the double-size products, doubles the results, and returns the up-
per halves. The latter first rounds to the upper halves before returning them.
There are long multiplications s{mul,mla,mls}l{,2}. smull multiplies the cor-
responding signed elements from the lower 64-bit of the source registers and
places the resulting double-width vector elements in the destination register. It
is usually paired with an smull2 using the upper 64-bit instead. Their accu-
mulating and subtracting variants are s{mla,mls}l{,2}. We will not use the
unsigned counterparts u{mul,mla,mls}l{,2}.

Shifts. shl shifts left; sshr arithmetically shifts right; srshr rounds the results
after shifting. We won’t use the unsigned ushr and urshr.

Additions/subtractions. For basic arithmetic, the usual add/sub adds/subtracts
the corresponding elements. Long variants s{add,sub}l{,2} add or subtract the

6 There are some exceptions, including addv, smaxv, sadalp. We are not using them
in this paper and refer to [ARM15] for more details.

7 We write some assembly and only obtain comparable performance. So we keep the
implementations with intrinsics instead for readability.



corresponding elements from the lower or upper 64-bit halves and signed-extend
into double-width results8.

Permutations. Then we have permutations — uzp{1,2} extracts the even and
odd positions respectively from a pair of vectors and concatenates the results
into a vector. ext extracts the lowest elements (there is an immediate operand
specifying the number of bytes) of the second source vector (as the high part)
and concatenates to the highest elements of the first source vector. zip{1,2}
takes the bottom and top halves of a pair of vectors and riffle-shuffles them into
the destination.

2.3 Modular Arithmetic

Algorithm 1 Barrett reduction.

This is [BHK+22, Algorithm 11].
Input: a = a.

Output: a = a−
⌊

a
⌊
2eR
q

⌉
2eR

⌉
q ≡ a mod ±q.

1: sqdmulh t, a,
⌊

2eR
q

⌉
2: srshr t, t, #(e+ 1)
3: mls a, t, q

Algorithm 2 Barrett multiplication.

This is [BHK+22, Algorithm 10].
Input: a = a.

Output: a = ab−
⌊

a
⌊
bR
q

⌉
2

R

⌉
q ≡ ab mod ±q.

1: sqrdmulh t, a,

⌊
bR
q

⌉
2

2

2: mul a, a, b
3: mls a, t, q

Let q be an odd modulus, and R be the size of the arithmetic. We describe
the modular reductions and multiplications for computing in Zq. Barrett reduc-

tion [Bar86] reduces a value a by approximating a mod ±q with a−
⌊

a·⌊ 2eR
q ⌉

2eR

⌉
(cf.

Algorithm 1). For multiplying an unknown a with a fixed value b, we compute

ab −
⌊

a⌊ bR
q ⌉2

R

⌉
q ≡ ab mod ±q (Barrett multiplication [BHK+22]) where ⌊⌉2 is

the function mapping a real number r to 2
⌊
r
2

⌉
(cf. Algorithm 2). We give novel

multiply-add/sub variants of Barrett multiplication in Algorithms 3–4. Algo-
rithm 3 (resp. 4) computes a representation of a+ bc (resp. a− bc) by merging
a mul with an add (resp. a sub) into an mla (resp. mls), saving 1 instruction.

8 There are several options for signed-extending vector elements — saddl{,2} and
ssubl{,2} which go to either F0/F1, sxtl{,2} to F1, and smull{,2} going to F0.



Algorithm 3 Barrett mla.

Input: a = a.

Output: a = a+ bc−
⌊

b
⌊
cR
q

⌉
2

R

⌉
q.

1: sqrdmulh t, b,

⌊
cR
q

⌉
2

2

2: mla a, b, c
3: mls a, t, q

Algorithm 4 Barrett mls.

Input: a = a.

Output: a = a− bc+

⌊
b
⌊
cR
q

⌉
2

R

⌉
q.

1: sqrdmulh t, b,

⌊
cR
q

⌉
2

2

2: mls a, b, c
3: mla a, t, q

3 Fast Fourier Transforms

We go through the mathematics behind various fast Fourier transforms (FFTs)
and emphasize their defining conditions. This section is structured as follows.
Section 3.1 reviews the Chinese remainder theorem for polynomial rings and dis-
crete Fourier transform (DFT). We then survey various FFTs, including Cooley–
Tukey in Section 3.2, Bruun and its finite field counterpart in Section 3.3, Good–
Thomas in Section 3.4, Rader in Section 3.5, and Schönhage and Nussbaumer in
Section 3.6. We use number–theoretic transform (NTT) as a synonym of FFT.

3.1 The Chinese Remainder Theorem (CRT) for Polynomial Rings

Let n =
∏

l nl, and gi0,...,ih−1
∈ R[x] be coprime polynomials for all indices

(il)l=0···h−1 where 0 ≤ il < nl. The CRT gives us a chain of isomorphisms

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉
∼= · · · ∼=

∏
i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉 .
Multiplying in

∏
i0,...,ih−1

R[x]
/〈

gi0,...,ih−1

〉
is cheap if the polynomial modulus

is small. If the isomorphism chain is also cheap, we improve the polynomial mul-

tiplications in R[x]
/〈∏

i0,...,ih−1
gi0,...,ih−1

〉
. For small nl’s, it is usually cheap

to decompose a polynomial ring into a product of nl polynomial rings.
Transformations will be described with the words “radix”, “split”, and “layer”.

We demonstrated below for h = 2. Suppose we have isomorphisms

R[x]

/〈∏
i0,i1

gi0,i1

〉
η0∼=

∏
i0

R[x]

/〈∏
i1

gi0,i1

〉
η1∼=

∏
i0,i1

R[x]
/〈

gi0,i1

〉
where i0 ∈ {0, . . . , n0−1} and i1 ∈ {0, . . . , n1−1}. We call η0 a radix -n0 split and
an implementation of η0 a radix-n0 computation, and similarly for η1. Usually,



we implement several isomorphisms together to minimize memory operations.
The resulting computation is called a multi-layer computation. Suppose we im-
plement η0 and η1 with a single pair of loads and stores, and η0 and η1 both
rely on X, a shape of computations, then the resulting multi-layer computation is
called a 2-layer X. If additionally n0 = n1, the computation is a 2-layer radix -n0

X, and similarly for more layers.

3.2 Cooley–Tukey FFT

In a Cooley–Tukey FFT [CT65], we have ζ ∈ R, ωn ∈ R a principal nth root

of unity, n coprime to char(R), and gi0,...,ih−1
= x − ζω

∑
l il

∏
j<l nj

n ∈ R[x].
Since

∏
i0,...,ih−1

gi0,...,ih−1
= xn − ζn, the efficiency of multiplying polynomials

in R[x]/⟨xn − ζn⟩ boils down to the efficiency of the isomorphisms indexed by
il’s. Furthermore, it is a cyclic NTT if ζn = 1.

3.3 Bruun-Like FFTs

[Bru78] first introduced the idea of factoring into trinomials gi0,...,ih−1
when n is

a power of two — to reduce the number of multiplications in R while operating
over C. [Mur96] generalized this to arbitrary even n. For our implementations,

we need the results on factoring x2k + 1 ∈ Fq[x] when q ≡ 3 (mod 4) [BGM93]
and composed multiplications of polynomials in Fq[x] [BC87]. Factoring xn − 1
over Fq is actively researched [BGM93,Mey96,TW13,MVdO14,WYF18,WY21].

Review: the original Bruun’s FFT (R = C). We choose gi0,...,ih−1
=

x2 −
(
ζω

∑
l il

∏
j<l nj

n + ζ−1ω
−

∑
l il

∏
j<l nj

n

)
x + 1 so x2n − (ζn + ζ−n)xn + 1 =∏

i0,...,ih−1
gi0,...,ih−1

. This provides us an alternative factorization for x4n − 1 =

(x2n − 1)(x2n + 1) by choosing ζn = ω4. For a complex number with norm 1,
since the sum of its inverse and itself is real, we only need arithmetic in R to

reach
∏

i0,...,ih−1
C[x]

/〈
gi0,...,ih−1(x)

〉
.

R = Fq where q ≡ 3 (mod 4). We need Theorem 1 for our implementations.

Theorem 1 ( [BGM93, Theorem 1]). Let q ≡ 3 (mod 4) and 2w be the

highest power of two in q + 1. If k < w, then x2k + 1 factors into irreducible

trinomials x2 + γx+1 in Fq[x]. Else (i.e., k ≥ w) x2k +1 factors into irreducible

trinomials x2k−w+1

+ γx2k−w − 1 in Fq[x].

Given f0,f1 ∈ Fq[x], we define their “composed multiplication” as (f0 ⊙ f1) :=∏
f0(α)=0

∏
f1(β)=0 (x− αβ) where α, β run over all the roots of f0,f1 in an

extension field of Fq.We need the following from [BC87]:

Lemma 1 ( [BC87, Equation 8]).
∏

i0
f0,i0⊙

∏
i1
f1,i1 =

∏
i0,i1

(
f0,i0 ⊙ f1,i1

)
holds for any sequences of polynomials f0,i0 ,f1,i1 ∈ Fq[x].



Lemma 2 ( [BC87, Equation 5]). If f0 =
∏

α(x − α) ∈ Fq[x], then for any
f1 ∈ Fq[x], we have f0 ⊙ f1 =

∏
α αdeg(f1)f1(α

−1x) ∈ Fq[x].

Lemma 3. Let r be odd, xr−1 =
∏

i0
(x−ωi0

r ) ∈ Fq[x], and x2k−1 =
∏

i1
f i1 ∈

Fq[x]. We have x2kr − 1 =
∏

i0

(
x2k − ω2ki0

r

)
=

∏
i0,i1

ω
i0deg(f i1

)
r f i1(ω

−i0
r x).

Proof. First observe x2kr − 1 = (xr − 1)⊙
(
x2k − 1

)
9. By Lemma 1, this equals∏

i0

(
(x− ωi0

r )⊙
(
x2k − 1

))
=

∏
i0,i1

(
(x− ωi0

r )⊙ f i1

)
.According to Lemma 2,

(x−ωi0
r )⊙

(
x2k − 1

)
= x2k −ω2ki0

r and (x−ωi0
r )⊙ f i1 = ω

i0deg(f i1
)

r f i1(ω
−i0
r x)

as desired.

In summary, by Lemma 3 we have the following isomorphisms:

Fq[x]〈
x2kr − 1

〉 ∼=
Fq[x]〈∏

i0

(
x2k − ω2ki0

r

)〉 ∼=
Fq[x]〈∏

i0,i1
ω
i0deg(f i1

)
r f i1(ω

−i0
r x)

〉 .
Radix-2 Bruun’s butterflies and inverses. Define Bruunα,β as follows:

Bruunα,β :

{
R[x]

⟨x4+(2β−α2)x2+β2⟩ → R[x]
⟨x2+αx+β⟩ ×

R[x]
⟨x2−αx+β⟩

a0 + a1x+ a2x
2 + a3x

3 7→ ((â0 + â1x), (â2 + â3x))

where {
(â0, â1) =

(
a0 − βa2 + αβa3, a1 + (α2 − β)a3 − αa2

)
,

(â2, â3) =
(
a0 − βa2 − αβa3, a1 + (α2 − β)a3 + αa2

)
.

We compute (a0 − βa2, a1 + (α2 − β)a3, αa2, αβa3), swap the last two values
implicitly, and do an addition-subtraction (cf. Figure 1). Notice that we can
use Barrett mla and Barrett mls whenever a product is followed by only one
accumulation (a1 +

(
α2 − β

)
a3) or subtraction (a0 − βa2).

Fig. 1: Bruun’s butterfly. (â0, â1, â2, â3) = Bruunα,β(a0, a1, a2, a3).

a0

a1

a2

a3

â0

â1

â2

â3

2Bruun−1
α,β :

{
R[x]

⟨x2+αx+β⟩ ×
R[x]

⟨x2−αx+β⟩ → R[x]
⟨x4+(2β−α2)x2+β2⟩

((â0 + â1x), (â2 + â3x)) 7→ 2a0 + 2a1x+ 2a2x
2 + 2a3x

3

9 ∀ coprime q0, q1,
{
ωi0
q0ω

i1
q1 |0 ≤ i0 < q0, 0 ≤ i1 < q1

}
=

{
ωi
q0q1 |0 ≤ i < q0q1

}
in the

splitting field of xq0q1 − 1.



correspondingly defines the inverse, where{
2(a0, a1) = (â0 + â2 + (â3 − â1)α

−1β, â1 + â3 − (â0 − â2)α
−1β−1

(
α2 − β

)
),

2(a2, a3) = ((â3 − â1)α
−1, (â0 − â2)α

−1β−1).

We compute (â0 + â2, â1 + â3, â0 − â2, â3 − â1), swap the last two values im-
plicitly, multiply the constants α−1, β, α−1β−1, and

(
α2 − β

)
, and add-sub (cf.

Figure 2). Both Bruunα,β and 2Bruun−1
α,β take 4 multiplications.

Fig. 2: Bruun’s Inverse butterfly. (2a0, 2a1, 2a2, 2a3) = 2Bruun−1
α,β(â0, â1, â2, â3).

â0

â1

â2

â3

2a0

2a1

2a2

2a3

We will use three special cases of Bruun’s butterflies.

Bruun√
2,1: The initial split of x2k +1 is Bruun√

2,1. Since β = α2−β = 1, we

only need two multiplications by ×
√
2.

Bruunα,±1: We avoid multiplying with β = ±1 inBruunα,±1 and 2Bruun−1
α,±1.

Bruun
α,α

2

2

: We save no multiplications, but only use 2 constants α and α2

2

instead of 4. It is used in the split of x2k + ω2ki
r for an odd r.

3.4 Good–Thomas FFTs

A Good–Thomas FFT [Goo58] converts cyclic FFTs and convolutions into multi-
dimensional ones for coprime nl’s. For the polynomial ring R[x]/⟨xn − 1⟩ , we im-
plement R[x]/⟨xn − 1⟩ ∼=

∏
i0,...,ih−1

R[x]
/〈

x−
∏

l ω
il
nl

〉
with a multi-dimensional

FFT induced by the equivalences x ∼
∏

l ul and ∀l, unl

l ∼ 1. Formally, we have

R[x]]

⟨xn − 1⟩
∼=

R[x, u0, . . . , uh−1]〈
x−

∏
l ul, u

n0
0 − 1, . . . , u

nh−1

h−1 − 1
〉

∼=
∏

i0,...,ih−1

R[x, u0, . . . , uh−1]〈
x−

∏
l ul, u0 − ωi0

n0 , . . . , uh−1 − ω
ih−1
nh−1

〉 ∼=
∏

i0,...,ih−1

R[x]〈
x−

∏
l ω

il
nl

〉 .
We illustrate the idea for h = 2, n0 = 2, and n1 = 3. Let P(14) be the

permutation matrix exchanging the 1st and the 4th rows. We write the size-6



FFT matrix as follows:

P(14)


1 1 1 1 1 1
1 ω6 ω2

6 ω3
6 ω4

6 ω5
6

1 ω2
6 ω4

6 1 ω2
6 ω4

6

1 ω3
6 1 ω3

6 1 ω3
6

1 ω4
6 ω2

6 1 ω4
6 ω2

6

1 ω5
6 ω4

6 ω3
6 ω2

6 ω6

P(14) =


1 1 1 1 1 1
1 ω4

6 ω2
6 1 ω4

6 ω2
6

1 ω2
6 ω4

6 1 ω2
6 ω4

6

1 1 1 ω3
6 ω3

6 ω3
6

1 ω4
6 ω2

6 ω3
6 ω6 ω5

6

1 ω2
6 ω4

6 ω3
6 ω5

6 ω6

 =

(
1 1
1 −1

)
⊗

1 1 1
1 ω4

6 ω2
6

1 ω2
6 ω4

6

 .

3.5 Rader’s FFT for Odd Prime p

Suppose ωp ∈ R for an odd prime p. [Rad68] introduced how to map a polynomial∑
i aix

i ∈ R[x]/⟨xp − 1⟩ to the tuple (âj) :=
(∑

i aiω
ij
p

)
∈

∏
i R[x]

/〈
x− ωi

p

〉
with a size-(p − 1) cyclic convolution. Let g be a generator of Z∗

p and write

j = gk and i = g−ℓ. Then âgk − a0 = âj − a0 =
∑p−1

i=1 aiω
ij
p =

∑p−2
ℓ=0 ag−ℓωgk−ℓ

p

for k = 0, . . . , p− 2.

The sequence
(∑p−2

ℓ=0 ag−ℓωgk−ℓ

p

)
j=0,...,p−2

is the size-(p− 1) cyclic convolu-

tion of sequences
(
ag−i

)
i=0,...,p−2

and
(
ωgi

p

)
i=0,...,p−2

. For example, let p = 5.

We have (1, 2, 3, 4) = (24, 2, 23, 22) and
â2 − a0
â4 − a0
â3 − a0
â1 − a0

 =


ω5 ω2

5 ω4
5 ω3

5

ω3
5 ω5 ω2

5 ω4
5

ω4
5 ω3

5 ω5 ω2
5

ω2
5 ω4

5 ω3
5 ω5



a3
a4
a2
a1

 .

3.6 Schönhage’s and Nussbaumer’s FFTs

Instead of isomorphisms based on CRT, we sometimes compute chains of monomor-
phisms and determine the unique inverse image from the product of two images.
Given polynomials a, b ∈ R[x]/⟨g⟩ where g is a degree-n0n1 polynomial, we
introduce y = xn1 , and write a and b as polynomials in R[x, y]/⟨xn1 − y, g0⟩
where g0|y=xn1 = g(x). In other words, a(y) :=

∑n0−1
i0=0

(∑n1−1
i=0 ai+i0n1

xi
)
yi0 ∈

R[x, y]/⟨xn1 − y, g0⟩ . We recap transforms when R[x, y]/⟨xn1 − y, g0⟩ does not
naturally split.

We want an injection R[x]/⟨xn1 − y⟩ ↪→ R̄ such that R[x, y]/⟨xn1 − y, g0⟩ ↪→
R̄[y]

/
⟨g0⟩ is a monomorphism with R̄[y]

/
⟨g0⟩ ∼=

∏
j R̄[y]

/〈
g0,j

〉
. A Schönhage

FFT [Sch77] is when g0|(yn0 − 1), and R̄ = R[x]/⟨h⟩ with h|Φn0
(x) (the n0-th

cyclotomic polynomial). E.g., “cyclic Schönhage” for powers of two n0, n1 = n0

4 ,
g0 = yn0 − 1, and h = x2n1 + 1 is:

R[x]

⟨xn0n1 − 1⟩
∼=

R[x]
⟨xn1−y⟩ [y]

⟨yn0 − 1⟩
↪→

R[x]
⟨x2n1+1⟩ [y]

⟨yn0 − 1⟩
≜

R̄[y]

⟨yn0 − 1⟩
∼=

∏
i

R̄[y]

⟨y − xi⟩
.



We can also exchange the roles of x and y and get Nussbaumer’s FFT [Nus80].
We map R[x, y]/⟨xn1 − y, g0⟩ ↪→ R[x, y]/⟨h, g0⟩ for g0|Φ2n1

(y) and h|(x2n1−1).
This can be illustrated for powers of two n0 = n1, h = x2n1−1, and g0 = yn0+1:

R[x]

⟨xn0n1 + 1⟩
∼=

R[x, y]

⟨xn1 − y, yn0 + 1⟩
↪→

R[y]
⟨yn0+1⟩ [x]

⟨x2n1 − 1⟩
≜

R̃[x]

⟨x2n1 − 1⟩
∼=

∏
i

R̃[x]

⟨x− yi⟩
.

Our presentation is motivated by [Ber01, Section 9, Paragraph “High–radix
variants”] and [vdH04, Section 3].

4 Implementations

In this section, we discuss our ideas for multiplying polynomials over Z4591. For
brevity, we assume R = Z4591 in this section. The state-of-the-art vectorized
“big by big” polynomial multiplication in NTRU Prime [BBCT22] computed
the product in R[x]

/〈
(x1024 + 1)(x512 − 1)

〉
with Schönhage and Nussbaumer.

This leads to 768 size-8 base multiplications where all of them are negacyclic
convolutions. [BBCT22] justified the choice as follows:

. . . since 4591 − 1 = 2 · 33 · 5 · 17, no simple root of unity is avail-
able for recursive radix-2 FFT tricks. . . . They ( [ACC+21]) performed
radix-3, radix-5, and radix-17 NTT stages in their NTT (defined in
R[x]

/〈
x1530 − 1

〉
). We instead use a radix-2 algorithm that efficiently

utilizes the full ymm registers (for vectorization) in the Haswell archi-
tecture.

We propose transformations (essentially) quartering and halving the number
of coefficients involved in base multiplications for vectorization. Our first trans-
formation computes the result in R[x]

/〈
x1536 − 1

〉
. We apply Good–Thomas

with ω3 ∈ R for a more rapid decrease of the sizes of polynomial rings, Schönhage
for radix-2 butterflies, and Bruun over R[x]

/〈
x32 + 1

〉
. This leads to 384 size-8

base multiplications defined over trinomial moduli. Our second transformation
computes the result in R[x]

/〈
x1632 − 1

〉
. We show how to incorporate Rader for

radix-17 butterflies and Good–Thomas for the coprime factorization 17 ·3 ·2. For
computing the size-16 weighted convolutions, we split with Cooley–Tukey and
Bruun for R[x]

/〈
x16 ± ωi

102

〉
. Since no coefficient ring extensions are involved,

this leads to 96 size-8 base multiplication with binomial moduli, 96 size-8 base
multiplications with trinomial moduli, and six size-16 base multiplications with
binomial moduli.

Section 4.1 formalizes the needs of vectorization, and Section 4.2 goes through
our implementation Good--Thomas for big-by-small polynomial multiplications.
We then go through big-by-big polynomial multiplications. Section 4.3 goes
through our implementation Good--Schönhage--Bruun, and Section 4.4 goes
through our implementation Good--Rader--Bruun.



4.1 The Needs of Vectorization

We formalize “the needs of vectorization” to justify how we choose among trans-
formations. In the literature, power-of-two-sized FFTs are oftenly described as
easily vectorizable. In this paper, we explicitly state and relate them to the de-
signs of vectorization-friendly polynomial multiplications. Our definition is based
on our programming experience.

We assume that a reasonable vector instruction set should provide the fol-
lowing features accessible to programmers:

– Several vector registers each holding a large number of bits of data. Com-
monly, each register holds 2k bits.

– Several vector arithmetic instructions computing 2k-bit data from 2k-bit
data while regarding each 2k-bit data as packed elements.
• If input and output are regarded as packed 2k

′
-bit data, we call the

instruction a single-width instruction.
• If input is regarded as packed 2k

′−1-bit data and output is regarded as
packed 2k

′
-bit data, we call the instruction a widening instruction.

• If input is regarded as packed 2k
′
-bit data and output is regarded as

packed 2k
′−1-bit data, we call the instruction a narrowing instruction.

The terminologies “widening” and “narrowing” come from [ARM21]. For a k′ ≤
k, we are interested in the number of elements v = 2k−k′

contained in a vector
register. Intuivitely, we want to compute with minimal number of data shuffling
while maintaining the vectorization feature: if we want to add up several pairs
(ai, bi) of elements, we assign (ai) to one vector register and (bi) to another
one and issue a vector addtion, similarly for subtractions, multiplications, and
bitwise operations. We formalize this intuition for algebra homomorphisms.

Let π be a platform-dependent set of module homomorphisms. We’ll specify
π = π(neon) in the case of Neon shortly. Let f be an algebra homomorphism.
We call f “vectorization friendly” if f is a composition of homomorphisms of the
form g⊗idv⊗d for g an algebra homomorphism, d a composition of elements from
π. Since g⊗ idv operates over several chunks of v-sets, we need no permutations
for this part. For the set π, we define it with the matrix view for simplicity. π is
defined as the set of module homomorphisms representable as a v′ × v′ diagonal
matrix or a size-v′ cyclic/negacyclic shift for v′ a multiple of v.

In this paper, we start with R[x]
/〈

g
(
xv′

)〉
∼= R[y]

/〈
xv′ − y, g(y)

〉
for v′

a multiple of v and transform accordingly.

4.2 Good–Thomas FFT in “Big×Small” Polynomial Multiplications

We recall below the design principle of vectorization–friendly Good–Thomas
from [AHY22], and describe our implementation Good--Thomas for the “big by
small” polynomial multiplications. For a cyclic convolution R[x]/⟨xvn0n1 − 1⟩
where n0 and n1 coprime, and v a multiple of the number of coefficients in a
vector, one introduces the equivalences xv ∼ uw, un0 ∼ wn1 ∼ 1. Usually, one



picks n0 and n1 carefully for fast computations. In the simplest form, one picks
n0 as a power of 2 and n1 = 3. Our Good--Thomas computes the polynomial
multiplication in Z[x]

/〈
x1536 − 1

〉
with (v, n0, n1) = (4, 128, 3) where v = 4

comes from the fact that each Neon SIMD register holds four 32-bit values.
After reaching Z[x, u, w]

/〈
x4 − uw, u3 − 1, w128 − 1

〉
, we want to compute size-

3 NTT over u3 − 1 and size-128 NTT over w128 − 1. It suffices to choose a large
modulus q′ with a principal 384-th root of unity. We choose q′ as a 32-bit modulus
bounding the maximum value of the product in Z[x]

/〈
x1536 − 1

〉
. Obviously, our

Good--Thomas supports any “big-by-small” polynomial multiplications with size
less than or equal to 1536.

4.3 Good–Thomas, Schönhage’s, and Bruun’s FFT

This section describes our Good--Schönhage--Bruun. We briefly recall the AVX2-
optimized “big by big” polynomial multiplication by [BBCT22]. They computed
the product in R[x]

/〈
(x512 − 1)(x1024 + 1)

〉
. They first applied Schönhage as

follows.

R[x]

⟨(x512 − 1)(x1024 + 1)⟩
∼=

R[x]
⟨x32−y⟩ [y]

⟨(y16 − 1)(y32 + 1)⟩

↪→
R[x]

⟨x64+1⟩ [y]

⟨(y16 − 1)(y32 + 1)⟩
∼=

∏
i=0,1,3,j=0,...,15

R[x]
⟨x64+1⟩ [y]

⟨y − x2i+8j⟩
.

They then applied Nussbaumer for multiplying in R[x]
⟨x64+1⟩ as follows.

R[x]

⟨x64 + 1⟩
∼=

R[x]
⟨x8−z⟩ [z]

⟨z8 + 1⟩
↪→

R[x]
⟨x16−1⟩ [z]

⟨z8 + 1⟩
∼=

R[z]
⟨z8+1⟩ [x]

⟨x16 − 1⟩
∼=

∏
k=0,...,15

R[z]
⟨z8+1⟩ [x]

⟨x− zk⟩
.

The vectorization-friendliness of Schönhage is obvious. In principle, Nussbaumer
is vectorization-friendly since it shares the same computation as Schönhage after
transposing.

Truncated Schönhage vs Good–Thomas and Schönhage. We first discuss
an optimization of Schönhage if there is a principal root of unity with order
coprime to the one defining Schönhage.

How it works, mathematically. In R = Z4591, we know that there is a principal
3rd root of unity ω3 ∈ R. Instead of computing in R[x]

/〈
(x512 − 1)(x1024 + 1)

〉
,

we apply Schönhage and Good–Thomas FFTs to R[x]
/〈

x1536 − 1
〉
. By defini-

tion, if ω is a principal 2k-th root of unity, then ω3ω is a principal 3 · 2k-th root
of unity. Let’s define R̄ = R[x]

/〈
x32 + 1

〉
. We introduce a principal 32-th root

of unity ω32 = x2 as follows:

R[x]

⟨x1536 − 1⟩
∼=

R[x]
⟨x16−y⟩ [y]

⟨y96 − 1⟩
↪→ R̄[y]

⟨y96 − 1⟩
.



Then ω3ω32 is a principal 96-th root of unity implementing R̄[y]
/〈

y96 − 1
〉 ∼=∏

i=0,1,2,j=0,...,31 R̄[y]
/〈

y − ωi
3ω

j
32

〉
. However, one should not implement this

isomorphism with Cooley–Tukey FFT. Observe that multiplication by ω32 =
x2 requires negating and permuting whereas multiplication by ω3 requires ac-
tual modular multiplication. Cooley–Tukey FFT requires one to multiply ωi

3ω
j
32

which is unreasonably complicated while optimizing for i, j ̸= 0. We apply Good–
Thomas FFT implementing R̄[y]

/〈
y96 − 1

〉 ∼= R̄[y]
/〈

y − uw, u3 − 1, w32 − 1
〉
.

Obviously, we only need multiplications by powers of ω3 and ω32 and not ω3ω32.
See Table 1 for an overview of available approaches.

Table 1: Approaches for computing the size-1536 product of two polynomials
drawn from R[x]

/〈
x761 − x− 1

〉
.

Approach Domain Image Twiddle factors

Truncated Schönhage [BBCT22] R[x]

⟨(x1024+1)(x512−1)⟩

(
R[x]

⟨x64+1⟩

)48

x2i

Cooley–Tukey and Schönhage R[x]

⟨x1536−1⟩

(
R[x]

⟨x32+1⟩

)96

ωi
3x

2j

Good–Thomas and Schönhage R[x]

⟨x1536−1⟩

(
R[x]

⟨x32+1⟩

)96

ωi
3, x

2j

How it works, concretely. We detail the implementation as follows.

– We transform the input array in[761] into a temporary array out[3][32][32],

where out[i][j][0-31] is the size-32 polynomial in R[x]

⟨x32+1,u−ωi
3,w−x2j⟩ . Con-

cretely, we combine the permutations of Good–Thomas and Schönhage as
out[i][j][k] = in[(16(64i+ 33j) mod 96)+k] if (16(64i+ 33j) mod 96)+
k < 761 and zero otherwise. This step is the foundation of the implicit per-
mutations [ACC+21].

– For input small, we start with the 8-bit form of the polynomial. Since co-
efficients are in {±1, 0}, we first perform five layers of radix-2 butterflies
without any modular reductions. The initial three layers of radix-2 butter-
flies are combined with the implicit permutations. For the last two layers of
radix-2 butterflies, we use ext if the root is not a power of x16. For the last
layer of radix-2 butterflies, we merge the sign-extension and add-sub pairs
into the sequence saddl, saddl2, ssubl, ssubl2. We then apply one layer
of radix-3 butterflies based on the improvement of [DV78, Equation 8]. We
compute the radix-3 NTT (v̂0, v̂1, v̂2) of size-32 polynomials (v1, v2, v3) as:

v̂0 = v0 + v1 + v2,

v̂1 = (v0 − v2) + ω3(v1 − v2),

v̂2 = (v0 − v1)− ω3(v1 − v2).



Algorithm 5 Radix-2 butterfly with symbolic root x2.

Input: Size-32 8-bit polynomials a = a0 + a1x16, b = b0 + b1x16, where a0, a1, b0, b1
are SIMD registers containing: 

a0 = a7|| · · · ||a0,
a1 = a15|| · · · ||a8,
b0 = b7|| · · · ||b0,
b1 = b15|| · · · ||b8.

Output: a0+ a1x16 = (a+ bx2) mod (x32 + 1), b0+ b1x16 = (a− bx2) mod (x32 + 1)

1: ext v0.16b, b0.16b, b1.16b, #14 ▷ v0 = b29|| · · · ||b14
2: neg b1.16b, b1.16b

3: ext v1.16b, b1.16b, b0.16b, #14 ▷ v1 = b13|| · · · ||b0||(−b31)||(−b30)
4: sub b0.16b, a0.16b, v0.16b

5: sub b1.16b, a1.16b, v1.16b ▷ b0+ b1x16 = (a− x2b) mod (x32 + 1)
6: add a0.16b, a0.16b, v0.16b

7: add a1.16b, a1.16b, v1.16b ▷ a0+ a1x16 = (a+ x2b) mod (x32 + 1)

– For the input big, we use the 16-bit form and perform one layer of radix-3
butterflies followed by five layers of radix-2 butterflies. This implies only 1536
coefficients are involved in radix-3 butterflies instead of 3072 as for the input
small. We first apply one layer of radix-3 butterflies and two layers of radix-
2 butterflies followed by one layer of Barrett reductions while permuting
implicitly for Good–Thomas and Schönhage. Then, we perform three layers
of radix-2 butterflies and another layer of Barrett reductions.

Nussbaumer vs Bruun. Next, we discuss efficient polynomial multiplications
in R[x]

/〈
x32 + 1

〉
. [BBCT22] applied Nussbaumer to R[x]

/〈
x64 + 1

〉
. We state

without proof that applying Nussbaumer to R[x]
/〈

x32 + 1
〉
results in 8 polyno-

mial multiplications in R[z]
/〈

z8 + 1
〉
. We instead apply Brunn’s FFT resulting

in multiplications in rings R[x]
/〈

x8 + αx4 + 1
〉
for 4 different α. Since

x32 + 1 = (x16 + 1229x2 + 1)(x16 − 1229x2 + 1)

= (x8 + 58x4 + 1)(x8 − 58x4 + 1)(x8 + 2116x4 + 1)(x8 − 2116x4 + 1),

we apply Bruun1229,1 followed by Bruun58,1 and Bruun2116,1. We have slower
FFT and base multiplications, but we do only half as many as in [BBCT22]. See
Table 2 for comparisons.



Table 2: Approaches for multiplying in R[x]
/〈

x64 + 1
〉
and R[x]

/〈
x32 + 1

〉
.

Approach Domain Image Twiddle factors

Nussbaumer [BBCT22] R[x]

⟨x64+1⟩

(
R[z]

⟨z8+1⟩

)16

zi

Nussbaumer R[x]

⟨x32+1⟩

(
R[z]

⟨z8+1⟩

)8

z2i

Bruun R[x]

⟨x32+1⟩
∏

i=0,1

∏ R[x]

⟨x8±αix4+1⟩ Elements in R.

Then, we perform 96 · 4 = 384 size-8 base multiplications and compute the
inverses of Bruun’s, Schönhage’s, and Good–Thomas FFT.

4.4 Good–Thomas, Rader’s, and Bruun’s FFT

In the previous section, we replace Nussbaumer with Bruun. This section shows
how to replace Schönhage with Rader while computing in R[x]

/〈
x1632 − 1

〉
. We

name the resulting computation Good--Rader--Bruun.

Schönhage vs Rader-17. We first observe that the Schönhage in [BBCT22]
reduced a size-1536 problem to several size-64 problems. We are looking for a
multiple of 17 close to 1536

64 = 48. We choose 51 since one can define a size-
51 cyclic NTT nicely over Zq and optimize further by extending the size-51
cyclic NTT to size-102. For the size-102 cyclic NTT, we apply the 3-dimensional
Good–Thomas FFT by identifying (ω17, ω3, ω2) = (ωe0

102, ω
e1
102, ω

e2
102) as the prin-

cipal roots of unity where (e0, e1, e2) is the unique tuple satisfying ∀a ∈ Z102, a ≡
e0(a mod 17) + e1(a mod 3) + e2(a mod 2) (mod 102). Algorithm 6 is an illus-
tration. Radix-2 and radix-3 computations are straightforward. For the radix-17
cyclic FFT, we apply Rader’s FFT. Algorithm 7 illustrates the multi-dimensional
cyclic FFT. Obviously, the above computation is vectorization–friendly.

Algorithm 6 Good–Thomas, in practice merged with Algorithm 7.

Inputs: src[1632].
Outputs: poly NTT[17][3][2][16].

1: for i = 0, . . . , 1631 do
2: Let t = i/16.
3: poly NTT[t mod 17][t mod 3][t mod 2][i mod 16] = src[i].
4: end for



Algorithm 7 FFTs over chunks of 16 coefficients.

Inputs: poly NTT[17][3][2][16].
Outputs: poly NTT[17][3][2][16].

1: for i3 ∈ {0, . . . , 15} do
2: for i1 ∈ {0, 1, 2} , i2 ∈ {0, 1} do
3: rader-17 (poly NTT[0-16][i1][i2][i3]).
4: end for
5: for i0 ∈ {0, . . . , 16} do
6: radix-(3, 2) (poly NTT[i0][0-2][0-1][i3]).
7: end for
8: end for

Generalize Bruun over x2k

+ c for c ̸= ±1. The composed multiplica-
tion over a finite field shows that the remaining factorization follows the same
pattern of factorizing R[x]

/〈
x16 ± 1

〉
. The isomorphism R[x]

/〈
x16 − ω2i

102

〉 ∼=∏
R[x]

/〈
x8 ± ωi

102

〉
is obvious. Since we also have

∏
i R[x]

/〈
x16 − ω2i+1

102

〉 ∼=∏
i R[x]

/〈
x16 + ω2i

102

〉
by permuting, it suffices to understand the isomorphisms

defined on R[x]
/〈

x16 + ω2i
102

〉
. Applying Lemma 3, we have R[x]

/〈
x16 + ω2i

102

〉 ∼=∏
R[x]

/〈
x8 ±

√
2ω128i

102 x4 + ω256i
102

〉
.

Finally, the remaining computing task is multiplication in R[x]
/〈

x8 + αx4 + β
〉

for some α, β ∈ R. We extend the idea of [CHK+21, Algorithm 17] by altering
between multiplying in R[x] and reducing modulo x8 + αx4 + β.

5 Results

We present the performance numbers in this section. We focus on polynomial
multiplications, leaving the fast constant-time GCD [BY19] as future work.

5.1 Benchmark Environment

We use the Raspberry Pi 4 Model B featuring the quad-core Broadcom BCM2711
chipset. It comes with a 32 kB L1 data cache, a 48 kB L1 instruction cache,
and a 1 MB L2 cache and runs at 1.5 GHz. For hashing, we use the aes,
sha2, and fips202 from PQClean [KSSW] without any optimizations due to
the lack of corresponding cryptographic units. For the randombytes, [BHK+22]
used the randombytes from SUPERCOP which in turn used chacha20. We
extract the conversion from chacha20 into randombytes from SUPERCOP and
replace chacha20 with our optimized implementations using the pipelines I0/I1,
F0/F1. We use the cycle counter of the PMU for benchmarking. Our programs
are compilable with GCC 10.3.0, GCC 11.2.0, Clang 13.1.6, and Clang 14.0.0.
We report numbers for the binaries compiled with GCC 11.2.0.



Table 3: Overview of polynomial multiplications in ntrulpr761/sntrup761.

Armv8-A Neon x86 AVX2

Implementation Cycles Implementation Cycles

Big-by-small polynomial multiplications

Good--Thomas 47 696 [BBCT22] 16 992

[Haa21] 242 585

Big-by-big polynomial multiplications

Good--Rader--Bruun 39 788 [BBCT22] 25 113

Good--Schönhage--Bruun 50 398

5.2 Performance of Vectorized Polynomial Multiplications

Table 3 summarizes the performance of vectorized polynomial multiplications.

Table 4: Detailed Good--Schönhage--Bruun cycle counts including reducing to
Z4591[x]

⟨x761−x−1⟩ .

Good--Schönhage--Bruun

Operation Count Cycles Total cycles

polymul - - 50 398

Good-Schönhage-3-2x2 1 1 708 1 708

Schönhage-3x2 3 1 246 3738

Good-Schönhage-5x2 1 1 527 1 527

Radix-3 1 2 084 2 084

Bruun 24 291 6 984

Trinomial-8x8 12 1 115 13 380

Bruun inverse 12 409 4 908

Schönhage-2x4 inverse 3 1 304 3 912

Good-Schönhage-2-3 inverse 1 7 653 7 653

For NTRU Prime, our Good--Rader--Bruun performs the best. It is fol-
lowed by Good--Thomas and Good--Schönhage--Bruun. Notice that Good--

Rader--Bruun requires no extensions or changes of coefficient rings. The clos-
est instances in the literature regarding vectorization are the Good--Thomas

and Schönhage--Nussbaumer by [BBCT22], and Good--Thomas by [Haa21].
[BBCT22]’s, [Haa21], and our Good--Thomas compute “big by small” polyno-
mial multiplications. We outperform [Haa21] Good--Thomas by a factor of 6.1×
since they implemented the base multiplications with scalar code using the C



% operator. On the other hand, [BBCT22]’s Schönhage--Nussbaumer and our
Good--Schönhage--Bruun compute “big by big” polynomial multiplications. Re-
garding the impact of switching “big by small” to “big by big”, [BBCT22]’s
Schönhage--Nussbaumer takes 25113

16992 ≈ 147.79% cycles of their own Good--

Thomas [BBCT22, Section 3.4.2] while our Good--Schönhage--Bruun takes only
50398
47696 ≈ 105.67% cycles of our own Good--Thomas. Essentially, this demon-
strates the benefit of vectorization-friendly Good–Thomas and Bruun over trun-
cated [vdH04] Schönhage and Nussbaumer.

Table 5: Detailed cycle counts of Good--Rader--Bruun, excluding reductions to
Z4591[x]

/〈
x761 − x− 1

〉
.

Good--Rader--Bruun

Operation Count Cycles Total

polymul - - 37 475

Good-Rader-17 24 407 9 768

Radix-(3, 2) 2 2 339 4 678

CT 2 570 1 140

Bruun 2 838 1 676

Weighted-8x8 12 244 2 928

Trinomial-8x8 12 328 3 936

CT−1 1 592 592

Bruun−1 1 989 989

Weighted-16x16 1 1 019 1 019

Radix-(3, 2)−1 1 2 341 2 341

Good-Rader-17−1 12 543 6 516

We also provide the detailed cycle counts of the polynomial multiplications.
For the “big by big” polynomial multiplications in sntrup761/ntrulpr761, Ta-
ble 5 details the numbers of Good--Rader--Bruun and Table 4 details the num-
bers of Good--Schönhage--Bruun.

5.3 Performance of Schemes

Before comparing the overall performance, we first illustrate the performance
numbers of some other critical subroutines. Most of our optimized implementa-
tions of these subroutines are not seriously optimized except for parts involving
polynomial multiplications. We simply translate existing techniques and AVX2-
optimized implementations into Neon. Table 6 summarizes the performance of
inversions, encoding, and decoding.



Table 6: Performance of inversions, encoding, and decoding in NTRU Prime.

Operation Ref Ours

sntrup761/ntrulpr761

Rq recip3 116 353 545 5 811 777

R3 recip 127 578 811 587 407

Rq encode 17 753 2 084

Rq decode 31 715 3 914

Rounded encode 14 707 3 145

Rounded decode 31 832 3 445

crypto sort uint32 186 867 21 659

Inversions, sorting network, encoding, and decoding. For sntrup761,
we need one inversion over Z4591 and one inversion over Z3. We bitslice the
inversion over Z3, and identify and vectorize the hottest loop in the inversion over
Z4591. Additionally, we translate AVX2-optimized sorting network, encoding,
and decoding into Neon. Notice that inversions over Z2, Z3, and Z4591, sorting
networks, encoding, and decoding are implemented in a generic sense. With fairly
little effort, they can be used for other parameter sets.

Performance of sntrup761/ntrulpr761. Table 7 summarizes the overall per-
formance. For ntrulpr761, our key generation, encapsulation, and decapsulation
are 2.98×, 2.79×, and 3.07× faster than [Haa21]. For sntrup761, we outperform
the reference implementation significantly. Finally, Table 8 details the perfor-
mance.

Constant-time concerns. There are no input-dependent branches in our code.
Our program is constant-time only if one believes the documentation [ARM15].
The source code from [Haa21] and Armv8-A works [NG21, BHK+22], indicate
the requirement of the same assumption. In the most relevant documented Neon
implementations, our code is constant-time, but this is never strictly guaran-
teed10 even with Data-Independent Timing (DIT). If ARM decides to extend
the domain of DIT to relevant multiplication instructions used in this paper,
our code is guaranteed to be constant-time once the DIT flag is set. Further-
more, literally all the lattice-based post-quantum cryptosystems will be benefit
from this since the constant-time concerns arise from the basic building blocks
implementing modular multiplications.

10 ARM’s DIT flag, according to https://developer.arm.com/documentation/

ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing, does not
guarantee the high half multiplications sqrdmulh and sqdmulh to be constant-time.

https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing


Table 7: Overall cycles of sntrup761/ntrulpr761.

sntrup761

Operation Key generation Encapsulation Decapsulation

Ref 273 598 470 29 750 035 89 968 342

Good--Rader--Bruun 6 333 403 147 977 158 233

Good--Thomas 6 340 758 153 465 182 271

Good--Schönhage--Bruun 6 345 787 163 305 193 626

ntrulpr761

Operation Key generation Encapsulation Decapsulation

Ref 29 853 635 59 572 637 89 185 030

[Haa21] 775 472 1 150 294 1 417 394

Good--Rader--Bruun 260 606 412 629 461 250

Good--Thomas 269 590 422 102 471 014

Good--Schönhage--Bruun 272 738 436 965 499 559
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A Detailed Performance Numbers

Table 8: Detailed performance numbers of sntrup761 and ntrulpr761 with
Good--Rader--outer. Only performance-critical subroutines are shown.

sntrup761 ntrulpr761

Operation Cycles Operation Cycles

crypto kem keypair 6 608 843 crypto kem keypair 260 714

ZKeyGen 6 570 571 ZKeyGen 247 413

XKeyGen 243 391

KeyGen 6 565 316 KeyGen 112 786

Rq recip3 5 811 777

R3 recip 587 407

Rq mult small 39 829 Rq mult small 39 829

sort 22 369 sort 21 243

randombytes 86 932 randombytes 44 713

aes 127 203

Rq encode 2 084 Rounded encode 3 145

sha2 13 207 sha2 16 386

crypto kem enc 150 081 crypto kem enc 408 856

ZEncrypt 49 656 ZEncrypt 384 047

XEncrypt 375 011

Encrypt 41 135 Encrypt 82 564

Rq mult small 39 829 Rq mult small (2×) 2× 39 829

aes 253 597

sort 21 773

sha2 2 914

Rq decode 3 914 Rounded decode 3 445

Rounded encode 3 145 Rounded encode 3 145

randombytes 45 109

sha2 29 713 sha2∗ 26 548

sort 21 659

crypto kem dec 158 590 crypto kem dec 456 141

ZDecrypt 88 548 ZDecrypt 47 653

Decrypt 83 999 XDecrypt (defined as Decrypt) 43 460

Rq mult small 39 829 Rq mult small 39 829

R3 mult 42 059

Rounded decode 3 445 Rounded decode 3 445

ZEncrypt 49 656 ZEncrypt 384 047

sha2 18 111 sha2∗ 16 982

∗ The numbers of sha2 cycles of XEncrypt are included.


	Algorithmic Views of Vectorized Polynomial Multipliers – NTRU Prime

