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Abstract. Circuit privacy is an important notion in Fully Homomorphic
Encryption (FHE), well-illustrated by the Machine Learning-as-a-Service
scenario. A scheme is circuit private (first defined in Gentry’s PhD The-
sis) if an adversary cannot learn the circuit evaluated on a ciphertext from
the computation result. In this work, we first show that the BGV FHE
scheme by Brakerski, Gentry and Vaikuntanathan (ITCS’12) is compu-
tationally circuit private in a semi-honest context, and then present an
extended construction to make it computationally circuit private against
a malicious adversary. We achieve this without resorting to expensive
mechanisms such as noise flooding. Instead, we argue carefully about the
ciphertext and noise distributions that are encountered in BGV.

In more detail, we consider the notion of circuit privacy along four di-
mensions: whether the adversary is internal or external (i.e. does the
adversary hold the secret key or not), and in a semi-honest and mali-
cious setting. Our starting point is Gentry’s definition, which we change
from statistical to computational indistinguishability. Doing so allows us
to prove that the BGV scheme is computationally circuit-private in a
semi-honest setting to an external adversary out of the box.

We then propose a new definition by extending Gentry’s definition to an
internal adversary. This is appropriate since the scenario that the client
is the adversary (and therefore has access to the decryption key) is a
realistic one. Further, we remark that our definition is strictly stronger
than Gentry’s – our definition requires that a scheme be circuit private
according to Gentry’s definition and additionally, the distribution of the
ciphertext noise in all ciphertexts to be computationally indistinguish-
able. Given this new definition, and using previous results of Costache,
Nürnberger and Player (CT-RSA’23), we show that slight modifications
to the BGV scheme will make it fulfill this new definition. Finally, we
show how to extend these results to a malicious setting if we require that
the client attaches proofs of well-formedness of keys and ciphertexts.
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1 Introduction

Fully Homomorphic Encryption (FHE) allows one to perform arbitrary computa-
tions on encrypted data while keeping the data private. Gentry proposed the first
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construction in 2009 [Gen09] and since then, many improvements and construc-
tions have been proposed [BGV12, Bra12, CKKS17, CGGI16, CGGI17, DM14,
FV12,GSW13]. One of the most popular applications is Machine-Learning-as-a-
Service (MLaaS): a client would like to query a model on their data; however,
they do not want to provide their data in the clear to the server that holds the
model. On the other hand, the server does not want the client to learn the model.
FHE provides the first part, keeping the client’s data private. The second part,
the requirement that the client learns nothing about the model from seeing the
resulting ciphertext except for what it learns from the decrypted result, is an
additional property called circuit privacy. This property is also fundamental out-
side of MLaaS scenarios; for example, it allows the construction of more efficient
MPC protocols, as detailed in [Klu22].

Circuit privacy was first considered in Gentry’s PhD thesis [Gen09], and has
since then been the subject of active research [AGHV22,BdMW16,DD22,DS16,
Klu22,KS23,OPP14].

1.1 Related Work

Different approaches for achieving circuit privacy have been proposed. The first
was the noise flooding technique proposed by Gentry in his PhD Thesis [Gen09].
He achieved this by adding encryptions of 0 with large noise. The drawback of
this technique is that, in order to ensure correct decryption after noise flood-
ing, the parameters must be increased to allow for the extra noise, leading to
inefficient schemes. Indeed, [KS23] show for the CKKS scheme [CKKS17] that if
no special properties of the CKKS scheme are considered, and the adversary is
assumed to have the secret key, the noise that needs to be added makes the
scheme impractical.

The second approach to obtain circuit privacy is to use bootstrapping. Ducas
and Stehlé propose a method they call ciphertext sanitization [DS16] that re-
moves all information about operations carried out on the ciphertext, at the
prize of requiring repeated executions of bootstrapping. [AGHV22] show that
sanitization even leads to a circuit private scheme when the ciphertext is mali-
ciously generated, but the keys are honestly generated. Since there are only a
few schemes (TFHE [CGGI16,CGGI17],FHEW [DM15]) that have an efficient boot-
strapping operation, this technique has a considerable impact on the scheme’s
practicality.

A third approach is to look at specific schemes and to leverage their prop-
erties. This is the approach we use in this paper. The work of [BdMW16]
and [Klu22] make use of the special noise growth of third generation schemes
such as TFHE and GSW [GSW13]. Through careful noise analysis, they show how
to make the scheme circuit private by only adding a small amount of noise.
These constructions are naturally very dependent on the specific nature of the
schemes considered, and a careful analysis needs to be applied in order to as-
certain how, or if, this can be carried over to other schemes. The line of work
of [OPP14] and [DD22] use yet another approach. They do not consider one
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particular scheme but give a general construction from building blocks. In-
deed, [OPP14] shows that combining a compact non-circuit private FHE scheme
with a non-compact circuit private HE scheme allows one to obtain a malicious
circuit private FHE scheme. [DD22] extend this construction and make it multi-
hop through an information-theoretic construction, allowing for a slightly weaker
definition of circuit privacy.

All of the above works consider what we call statistical circuit privacy. In
different set-ups and flavors, they require the distribution of all ciphertexts or
the distribution of their noise to be statistically indistinguishable from some
distribution. All except for the work of [KS23] define circuit privacy via the
ciphertext distribution: a scheme is circuit private if the distribution of any
ciphertext is statistically close to another pre-defined distribution. If a scheme is
secure, and an adversary cannot perform decryptions, ciphertexts are the only
information they have access to. Therefore, the above all assume the scenario
of an external adversary. However, in a circuit privacy scenario, the adversary
may be a client interacting with a server, and therefore, the adversary may hold
the secret key. [KS23] look at this scenario and the additional information the
adversary can learn, particularly through the noise distribution in the ciphertext.

1.2 Contributions

In this work, we consider the notion of circuit privacy along four dimensions:
whether the adversary is internal or external – this refers to whether the adver-
sary is assumed to have access to the secret key or not, respectively. We also
consider the semi-honest and malicious scenarios, corresponding to whether we
assume the keys and ciphertexts are honestly generated, respectively.

In this work, we study all possible scenarios: an external adversary, an ad-
versary holding the secret key, semi-honest circuit privacy and malicious circuit
privacy. We will follow a different approach from the ones detailed above. In-
stead of focusing on achieving statistical circuit privacy, we look at the weakest
relaxation of this definition that BGV [BGV12] can achieve in its plain version.

We first show that BGV is circuit private against an external adversary if we
relax from a statistical to a computational security definition. The obvious ad-
vantage of this approach is that this property can be obtained without the need
to modify the scheme and therefore allows, with no efficiency loss, to obtain a
version of circuit privacy that is sufficiently strong in most cases. In scenarios
where computational security is sufficient, we can maintain the scheme’s capa-
bilities. This is in contrast to having to resort to noise flooding and ciphertext
sanitization techniques, which have a significant negative impact on the scheme’s
performance. We obtain computational circuit privacy for free.

Next, we consider an adversary that holds the secret key and can observe
the ciphertext noise to learn information about the circuit. By strategically us-
ing modulus switching, we show that BGV is circuit private against an adversary
possessing the secret key. Here again, we do not require any noise to be added or
bootstrapping to be applied. However, the scheme’s capabilities are slightly re-
duced compared to plain BGV since we need to force modulus switching at certain
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points, which leads to a loss of levels. Additionally, we must introduce stricter
trade-offs between the parameters and the number of additions and multiplica-
tions by a constant that can be carried out. Here, a multiplication by a con-
stant refers to a plaintext-ciphertext multiplication (as opposed to a ciphertext-
ciphertext multiplication). We discuss this in more detail in Section 3.3.

Lastly, we show that BGV still achieves circuit privacy in both scenarios against
a malicious adversary if appropriate commitments and proofs of shortness, linear
relation, and multiplication are added. We informally present the definitions that
we will use throughout this paper in the next subsection and will give a more
detailed overview of this paper in Section 1.5.

1.3 Discussion of the results

Our main contributions can be summarised as follows. Firstly, we provide the
first clear differentiation of circuit privacy along two dimensions mentioned above
(interval vs external adversary, semi-honest vs malicious setting). Secondly, we
show that BGV is circuit private according to a computational version of Gen-
try’s definition (see Definition 14). Building on that, we propose a definition of
circuit privacy that is semi-honest with an internal adversary. We provide the
first construction of a circuit private BGV, both according to the computational
variant of Gentry’s definition and the new definition we propose, without resort-
ing to expensive mechanisms such as noise flooding or repeated bootstrapping.
We also provide the first malicious circuit private construction for BGV.

We remark that our proof strategy (showing the computational variant of
Gentry’s definition holds by showing BGV ciphertexts are RLWE samples) will
never work in a statistical indistinguishability setting, as FHE relies on the com-
putational hardness of RLWE and not statistical. In fact, it is not possible to
instantiate FHE by relying on the statistical hardness of RLWE.

Relying on computational assumptions only is not a concern in practice,
providing data and circuit privacy at the same security level. The only setting
where this relaxation would matter is if the parameters for the instantiated BGV
scheme are too weak, and the adversary would break circuit privacy without
worrying about the privacy of its data. However, the server should ensure the
parameters are set appropriately to guarantee the privacy of its secret circuit.

Finally, we provide an overview of different notions of circuit privacy and how
those relate to one another, which may be of independent interest. For reasons
of space, these can be found in Supplementary Material A.

1.4 Definitions of Circuit Privacy

The term circuit privacy can be ambiguous since many different statistical,
simulation-based, and game-based definitions have been proposed over the past
years, capturing slightly different aspects. We give an overview of these defini-
tions and the relations among them in Supplemental Material A. All those def-
initions follow the blueprint given by Gentry’s definition [Gen09], stated again
in Definition 1. We show in the Supplemental Material that this definition is the
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strongest if the adversary does not hold the secret key; therefore, it is the one
we use as a baseline in this work.

Definition 1 ( [Gen09]). We say that a homomorphic encryption scheme E =
(KeyGen, Enc, Eval, Dec) is (statistically) circuit private for circuits in CE , if for
any key set (sk, pk, evk) output by KeyGen(1λ), for any function f on plaintexts
that has a corresponding circuit Cf ∈ CE and any fixed ciphertexts ct1, . . . , ctk
that are the encryption by EncE(·, pk) of plaintexts m1, . . . ,mk respectively, the
following holds for the distributions over the random coins in EncE(·, pk) and
EvalE(·, Cf , evk):

∆(EncE(f(m1, . . . ,mk), pk), EvalE(ct1, . . . , ctk, Cf , evk)) ≤ negl(λ).

1.5 Non-technical overview of the paper

We proceed to describe in detail the structure of this paper. The results in this
paper all stem from two key observations: first, if the inputs into an operation in
BGV are Ring Learning With Error (RLWE) samples, so are the outputs; second,
as observed in [CNP23b], modulus switching strips away all information about
prior operations on the ciphertext.

To use the first observation, we relax Gentry’s definition to a computational
one. The formal definition will be given in Section 3.1; the informal definition is
stated below.

Definition 2 (Informal). Let E be a homomorphic encryption scheme for cir-
cuits CE . E is called computationally circuit private, if for a function f and its
corresponding circuit Cf ∈ CE for fixed ciphertexts ct1, . . . , ctk encrypting mes-
sages m1, . . . ,mk and keys pk, evk the distributions over the random coins in
Enc(·, pk) and Eval(·, Cf , evk) are computationally indistinguishable. If E is a
leveled scheme, it is said to be leveled computationally circuit private, if this def-
inition holds when Enc(f(m1, . . . ,mk), pk) and Eval(ct1, . . . , ctk, Cf , evk) are
at the same level. A scheme is said to be maliciously computationally (leveled)
circuit private if the above holds, even if we do not assume the ciphertexts and
keys to be honestly generated.

This definition requires any ciphertext to be computationally indistinguish-
able from uniform random in the ciphertext space, and we show that BGV fulfils
this definition since it is based on the RLWE problem. In more detail, we show
that a fresh BGV ciphertext is an RLWE sample and, by the RLWE problem,
computationally indistinguishable from uniform random in the ciphertext space.
Applying the admissible operations in BGV does not change this; the ciphertexts
remain RLWE samples and, therefore, computationally indistinguishable from
uniform random in the ciphertext space. It follows that BGV is computationally
circuit private according to our new definition.

In Section 3.2, we extend the above definition also to consider the noise. That
is to say, we now additionally assume that the adversary holds the secret key,
i.e. we assume the adversary to be internal.
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In Section 3.3, we show that we can achieve this new definition by strategically
applying modulus switching. It was observed in [CNP23b] that if the noise of a
ciphertext is below a certain threshold, modulus switching reduces the ciphertext
noise to simply a rounding noise, independent of the circuit evaluated on the
ciphertext. We show how to guarantee that the noise in any ciphertext will always
be below this threshold. We do so by introducing restrictions on the scheme’s
parameters and the number of additions and multiplications by a constant that
can be carried out. We can ensure that a final modulus switching at the end
of an evaluation strips the noise of the ciphertext of all information from prior
evaluations. Therefore, this variant of BGV is computationally circuit private,
even if the adversary possesses the secret key. This result may at first seem
contradictory to the findings in [KS23], where it is stated that CKKS can only be
made circuit private against an adversary holding a secret key if a large amount
of noise is added. However, our proof very strongly relies on the properties of
modulus switching, which is an operation that can be found in BGV, but not in
CKKS. The authors of [KS23] do not consider the re-scaling operation in CKKS,
which would be the best equivalent to modulus switching in BGV. Therefore,
substantial differences between the results are expected.

In Section 5, we finally show that the proofs from Section 3 carry through
even when ciphertexts and public keys are assumed to be maliciously generated,
as long as appropriate commitments and proofs of shortness, multiplication, and
linear relations are added to the ciphertexts and keys upon generation. Therefore,
BGV fulfils both definitions – assuming an internal and an external adversary –
of circuit privacy in a malicious context.

2 Preliminaries

2.1 Notation

Let v ∈ R × . . . × R be a vector of ring elements from R. In a slight abuse of
notation, we denote by v[i] the i−th element of v. The notation [·]q denotes re-
duction modulo q (coefficient-wise, when applied to a polynomial). The notation
⌈·⌋ denotes rounding to the nearest integer (coefficient-wise, when applied to a
polynomial), while ⌈·⌋t denotes coefficient-wise rounding to the next integer that
has the same value modulo t. Unless otherwise specified, log denotes log2.

For any distribution D we write x ← D to denote the fact that x has been

drawn from D. For any set S, x
$← S denotes the fact that x has been sampled

uniformly at random from S.

Let f be any function on plaintexts. Then we denote by Cf the corresponding
homomorphic circuit. That is, Cf denotes the adaptation of f to the homomor-
phic domain, which includes fixing an order of operations, and noise management
operations such as modulus switching. We observe that even though we may have
∀x : f(x) = f ′(x) for functions f, f ′, we may not necessarily have Cf = Cf ′ .
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2.2 Algebraic Background

Let xn + 1 be the 2nth cyclotomic polynomial, and consider the polynomial
ring R = Z[x]/(xn + 1). To represent polynomials in R as vectors, we use the

coefficient embedding. For a polynomial a ∈ R, where a =
∑n−1

i=0 aix
i, the value

of its coefficient embedding is the vector (a0, . . . , an−1).
We denote by ∥p∥∞ the infinity norm of the coefficient embedding of p. For

a, b ∈ R and for γR the expansion factor [LM06] of R, it holds that

||ab||∞ ≤ γR||a||∞||b||∞.

For an n-dimensional power of two cyclotomic ring R we have γR = n.

2.3 Mathematical Background

In order to measure the distance between two distributions, we will make use of
the statistical distance. It is defined as follows.

Definition 3. Let (Ω,E) be a measurable space and let D0 and D1 be distributions
defined over this space. The statistical distance ∆(·, ·) between D0 and D1 is
defined as

∆(D0,D1) = sup
e∈E
|D0(e)−D1(e)|.

It is possible to think of ∆ as being the largest distance the two distributions
can have from one another for a given event E.

We make use of the characteristic function to incorporate information about
the level of a ciphertext. We will use this in the noise estimates.

Definition 4. The characteristic function on a set A is defined as follows

χA(x) =

{
1 , if x ∈ A

0 , otherwise.

2.4 The BGV FHE Scheme

We first recall the decision variant of the RLWE problem [LPR10].

Definition 5 (Definition 4 in [BGV12]). For the security parameter λ let R be a
power of two cyclotomic ring. Let q = q(λ) ≥ 2 be an integer and let Rq = R/qR.
Let χ be a distribution over R. The RLWEd,λ,χ problem is to distinguish the
following two distributions: in the first distribution (ai, bi) is sampled uniformly

randomly from R2
q. In the second distribution, s

$← Rq is drawn uniformly and

(ai, bi) is sampled by drawing ai
$← Rq, ei ← χ and setting bi = ais + ei. The

RLWE assumption is, that the RLWEd,λ,χ problem is infeasible.
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In schemes based on the RLWE problem, s is drawn from a secret key dis-
tribution S. Typically, this distribution is chosen to be ternary with a specified
Hamming weight.

Following [CNP23b], [HS20], we define the BGV scheme [BGV12] as a levelled
FHE scheme based on the RLWE problem [LPR10]. The ciphertext space is
Rq = Zq[x]/(x

n + 1), where q is the ciphertext modulus. The plaintext space is
Rt = Zt[x]/(x

n+1), where t is the plaintext modulus. Messages and ciphertexts
will be considered as polynomials in Rt and Rq, respectively.

The BGV scheme is parametrised by the following:

– The ring dimension n
– The plaintext modulus t
– The length L of the moduli chain QL ≫ . . . ≫ Q0, where Qi|Qi+1 for
i ∈ {0, . . . , L− 1}

– The decomposition base D = {D⋆
1 , . . . , D

⋆
L}, with D⋆

j =
j−1∏
h=1

Dh, where the

Dh are such that Qi =
ℓ∏

h=1

– The decomposition parameter ℓ
– The security parameter λ
– The secret key distribution S
– The error distribution χ

BGV consists of the algorithms KeyGen, Encrypt, Decrypt, Add, AddConst,
MultConst, Automorphism, PreMult, ReLinearize, KeySwitch and ModSwitch,
defined as follows.

KeyGen(1λ): Draw s← S and set (1, s) := sk as the secret key. Sample a
$← RQL

and e← χ. Set pk = (pk[0], pk[1]) := ([−as− te]QL
, a) as the public key. Let

sk′ = (s′0, . . . , s
′
k) be another secret key. The evaluation keys for switching a

ciphertext with respect to sk′ to a ciphertext with respect to sk = (1, s) is de-

fined as follows. For j ∈ {0, . . . , k} and i ∈ {0, . . . , ℓ} sample aij
$← RQL

and
eij ← χ and set evkj := ([−aijs− teij +D⋆

i s
′
i]QL

, aij). Return (sk, pk, evk).

Encrypt(pk, m): Let m ∈ Rt be a message. Let Qi, i ∈ {0, . . . , L} be the mod-
ulus in the moduli chain of the current level. Sample u← S and e1, e2 ← χ.
Return ct = (ct[0], ct[1]) := ([m+ pk[0]u+ te1]Qi

, [pk[1]u+ te2]Qi
).

Decrypt(sk,ct): Return m′ = [[< ct, sk >]Qi
]t.

ModSwitch((ct,Qi),Qj): Let ct = (ct[0], ct[1]) be at level i. Return ctms :=(⌊
Qj

Qi
ct[0]

⌉
t
,
⌊
Qj

Qi
ct[1]

⌉
t

)
, where

⌊
Qj

Qi
ct[i]

⌉
t
denotes the rounding of the

coefficients of the scaled ciphertext such that ct and ctms encrypt the same
message modulo t.
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KeySwitch(ct, sk′, evk): Let ct′ be a ciphertext with respect to sk′ = (s0, . . . , sk).
Recall sk = (1, s). Define T ⊆ {1, . . . , k} to be the set such that for i ∈ T
s′i = 1 or s′i = s. Define ct′j [i] via

ct′[i] =

ℓ∑
j=1

ct′j [i]D
⋆
j .

For i ∈ {0, . . . , k} \ T compute

(ct(i)[0], ct(i)[1]) =

 ℓ∑
j=1

(ct′j [i]evkj [i][0], ct
′
j [i]evkj [i][1])


kQi

.

For i ∈ T compute

(ct(i)[0], ct(i)[1]) = (kct′[i], 0) if s′i = 1

(ct(i)[0], ct(i)[1]) = (0, kct′[i]) if s′i = s.

Return (ct[0], ct[1]) =

[(
k∑

i=0

ct(i)[0], ct(i)[1]

)]
kQi

.

Add(ct0, ct1): Bring ct0, ct1 to the same level by modulus switching the ci-
phertext at the higher level to the lower level. Return ct := ([ct0[0] +
ct1[0]]Qi

, [ct0[1] + ct1[1]]Qi
).

AddConst(ct, c ∈ RQi
): Return ct := ([ct[0] + c]Qi

, ct[1]).

MultConst(ct, c ∈ RQi
\ {0}): Return ct := ([c · ct[0]]Qi

, [c · ct[1]]Qi
).

Mult(ct0, ct1, evk): Bring ct0, ct1 to the same level by modulus switching the
ciphertext at the higher level to the lower level.
Calculate ctpre-mult = (ctpre-mult[0], ctpre-mult[1], ctpre-mult[2]) :=

([ct0[0]ct1[0]]Qi , [ct0[0]ct1[1]+ct0[1]ct1[0]]Qi , [ct0[1]ct1[1]]Qi).Define ctpre-mult
j [2]

such that

ctpre-mult[2] =

ℓ∑
j=1

ct
pre-mult
j [2]D⋆

j .

Compute

ct := k(ctpre-mult[0], ctpre-mult[1])+

ℓ∑
j=1

(ctpre-mult
j [2]evk2[j][0], ct

pre-mult
j [2]evk2[j][1]).

Output
ctmult = ModSwitch((ct, Qsp), Qi−1).

Automorphism(ct, σ): Let σ ∈ Aut(RQi) be an automorphism on RQi .
Compute ct := KeySwitch((σ(ct[0]), σ(ct[1])), evk). Return

ctauto = ModSwitch((ct, Qsp), Qi−1).
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2.5 Noise of a BGV Ciphertext

Since the adversary knows the messagem, we will work with the noise rather than
the critical quantity [CS16]. This allows to simplify the proofs, as the distribution
of the noise is centered at zero (and that of the critical quantity is not).

Definition 6. We define the noise νi(ct) of a ciphertext encrypting m at level
i ∈ {0, . . . , L} as

νi : R2
Qi
→ RQi

ct 7→ [< ct, sk >]Qi −m,

2.6 Commitments

We will now define commitments to be used in the maliciously secure scheme
defined and instantiated in Section 5. Informally, a commitment scheme is a
cryptographic protocol that allows a party called Sender to commit to a value
and send it to a party called Receiver, while keeping that value hidden. The
Sender can then open the commitment to the Receiver at a later stage.

Definition 7 (Commitment Scheme). A commitment scheme consists of the al-
gorithms Setup,Com,Open defined as follows:

Setup(1λ) Takes as input the security parameter λ, and outputs a commitment
key ck.

Com(ck, x) Takes as input the commitment key ck and a message x, samples
randomness r, and outputs a commitment com← Com(ck, x, r) and opening
op = (x, r).

Open(ck, com, op) Takes as input the commitment key ck, a commitment com
and an opening op, and verifies that com = Com(pk, op). It outputs 1 if the
relation holds and 0 otherwise.

A commitment scheme should satisfy the following two security properties.

Definition 8 (Hiding). A commitment scheme is said to be hiding if, for all com-
mitment keys ck← Setup(1λ) and honestly sampled randomness r, the distribu-
tions of two commitments Com(ck, x, r) and Com(ck, x′, r) are indistinguishable
to an adversary given the public key, messages x and x′ chosen by the adversary,
and only one of the commitments.

Definition 9 (Binding). A commitment scheme is said to be binding if, for all
commitment keys ck← Setup(1λ) and (potentially maliciously created) commit-
ment com← Com∗(ck, x, r), an adversary cannot compute another valid opening
op′ = (x′, r′) with different messages x ̸= x′.

We remark that a commitment scheme can be either both computationally
hiding and binding, computationally hiding and statistically binding, or the op-
posite, but not both statistically hiding and binding at the same time.
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2.7 Zero-Knowledge Proofs

Let L be a language and R a relation on L. Then, x is an element in L if
there exists a witness w such that (x,w) ∈ R. We define a non-interactive proof
zero-knowledge proof (NIZK) as follows.

Definition 10 (NIZK). A non-interactive proof zero-knowledge proof for a re-
lation R consists of the three algorithms Setup,Prove,Verify:

Setup(1λ) Takes as input the security parameter λ, and outputs a common ref-
erence string crs.

Prove(crs, x, w) Takes as input the common reference string crs, a statement x
and a witness w, and outputs a proof π for the relation (x,w) ∈ R on L.

Verify(crs, x, π) Takes as input the common reference string crs, a statement x
and a proof π, and either accepts (outputs 1) or rejects (outputs 0).

We require the following security properties for a NIZK.

Definition 11 (Completeness). A NIZK is said to be complete if, for all crs←
Setup(1λ) and π ← Prove(crs, x, w), Verify(crs, x, π) returns 1 when (x,w) ∈ R.
That is, the verification algorithm always accepts if the statement is indeed true.

Definition 12 (Soundness). A NIZK is said to be sound if, for all crs← Setup(1λ)
and π ← Prove∗(crs, x, ·), Verify(crs, x, π) returns 0 except with negligible proba-
bility when (x,w) ̸∈ R. That is, the verification algorithm never accepts if the
statement is false.

Definition 13 (Zero-Knowledge). An NIZK is said to be (honest-verifier) zero-
knowledge if, for all crs ← Setup(1λ), a simulator SIM on input (crs, x) can
produce a proof π′ that is indistinguishable to an honestly generated proof π ←
Prove(crs, x, w) for each relation (x,w) ∈ R on L.

3 A Semi-Honest Circuit Private Variant of BGV

In this section we consider the semi-honest scenario, that is we assume the keys
and the ciphertexts to be honestly generated. In Section 3.1 we give a formalized
version of Definition 2 as stated in the introduction, and adapt it to a leveled
setting. We then prove that BGV is computationally circuit private following this
definition, assuming the adversary does not hold the secret key. In Section 3.2 we
show that this definition is not strong enough if the adversary holds the secret
key: then it can learn information about the circuit from the noise distribution,
even if the underlying scheme is computationally circuit private. We therefore
propose a new definition of computational circuit privacy that takes the noise
distribution into account and show that this is naturally fulfilled by BGV too.
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3.1 BGV is Circuit Private

Based on Gentry’s original definition, we propose the following definition of
computational circuit privacy.

Definition 14. Let E = (KeyGen, Enc, Eval, Dec) be a homomorphic encryption
scheme for circuits in CE . Let λ be a security parameter. We say E is compu-
tationally circuit private if for any (sk, pk, evk) ← KeyGen(1λ), for any func-
tion f on plaintexts that has a corresponding circuit Cf ∈ CE and any fixed
ciphertexts ct1, . . . , ctk that are an encryption by Enc(·, pk) of m1, . . . ,mk the
two distributions over the random coins in Enc(·, pk) and Eval(·, Cf , evk) of
Enc(f(m1, . . . ,mk), pk) and Eval(ct1, . . . , ctk, Cf , evk) are computationally in-
distinguishable. We say that E is maliciously computationally circuit private if
the keys and the ciphertexts may be maliciously generated.

Since BGV is a scheme that is mostly used in leveled mode, the following
definition is more natural.

Definition 15. We say that a homomorphic encryption scheme
E = (KeyGen, Enc, Eval, Dec) is leveled computationally circuit private if Defini-
tion 14 holds if Enc(f(m1, . . . ,mk), pk) and Eval(ct1, . . . , ctk, Cf , evk) are at
the same level.

If a bootstrappable leveled scheme fulfils Definition 15 it can also be made to
fulfil Definition 14: if it fulfils Definition 15, the output of a circuit at level i will
be indistinguishable from a fresh encryption at level i. Assume the bootstrapping
function outputs a ciphertext at level j, and define the encryption function to
encrypt at the same level j. Then, the levelled scheme fulfils Definition 14. We
note that this is at the cost of losing levels during encruption and needing to
bootstrap after an evaluation, even if the noise level or application does not call
for it. Since the only information that is leaked by using the leveled definition is
partial information about the circuit’s depth, it seems more natural to apply the
leveled definition to schemes in leveled mode. Therefore, this is the definition we
will use for the first part of this section.

We prove the following theorem, which is the main result of this section.

Theorem 1 (Computational Circuit Privacy). Let BGV be the scheme as defined
in Section 2.4. Then BGV is leveled circuit private according to Definition 15.

Proof. Let ct = (ct[0], ct[1]) be a BGV ciphertext. From the decryption function
of BGV, we have [m + te′]Qi

= [ct[0] + ct[1]s]Qi
, where te′ ∈ RQi

is some error
polynomial. Therefore, we can express ct[0] modulo Qi as ct[0] = m−ct[1]s+te′

and ct as

ct = (m− ct[1]s+ te′, ct[1]). (1)

In this form, we can easily see that ct is an RLWE sample whenever ct[1]
is computationally indistinguishable from uniform random in RQi . The RLWE

12



problem furthermore guarantees that if ct[1] is of the form as+ e for a
$←− RQi

public, s ∈ RQi
secret and e ← χ a secret error polynomial drawn from some

error distribution χ, it is computationally indistinguishable from uniform ran-
dom in RQi

. Therefore, we proceed as follows. We first show that a fresh ci-
phertext is an RLWE sample. We then show that, applying the allowed oper-
ations to a BGV ciphertext that is an RLWE sample gives an output such that
the second component again is of the form “as + e” or otherwise (computa-
tionally) indistinguishable from uniform random. Therefore, the output ctout
is again an RLWE sample. Thus, it is computationally indistinguishable from
uniform random in (RQi

)2. We use this to show that all intermediary and final
results in a homomorphic computation using BGV are RLWE samples. There-
fore, all ciphertexts are computationally indistinguishable from uniform random
and thus also from one another. Therefore, we have that Enc(f(m1, . . . ,mk), pk)
and Eval(ct1, . . . , ctk, Cf , evk) for any cti = Enc(mi, pk), i ∈ {0, . . . , k} and
Cf ∈ CBGV, are computationally indistinguishable from uniform random at their
respective level and therefore also from one another. Thus BGV fulfils Defini-
tion 15. We will proceed to prove these claims.

Let ctfresh be a fresh ciphertext. By the security proof of BGV, a fresh cipher-
text is an RLWE sample.

Let cti = (cti[0], cti[1]), i ∈ {0, 1} be two fresh BGV ciphertexts, and there-
fore RLWE samples, encrypted with respect to the same public key, where
cti[1] = aui + tei,1. We now look at how the allowed operations affect the
distribution of ct[1].

Add: Let ctadd = Add(ct0, ct1). We have

ctadd[1] = [ct0[1] + ct1[1]]Qi = [a(u0 + u1) + t(e0,1 + e1,1)]Qi .

Then, a
$←− RQi

, s := u0 + u1 ← S + S := S ′, and e := te0,1 + te1,1 ←
tχ + tχ := χ′. Since the RLWE problem does not specify the nature of χ
and S, ctadd[1] is of the form as+ e and therefore computationally indistin-
guishable from uniform random.

AddConst: Let ctAddConst = AddConst(ct0, const) = (ct0[0] + const, ct0[1]).
Since ctAddConst[1] = ct0[1], it is trivially computationally indistinguishable
from uniform random.

MultConst: Let ctMultConst = MultConst(ct0, const ̸= 0). Since ctMultConst[1] =

[const · ct0[1]]Qi = [a · const · u0 + t · const · e0,1]Qi we have a
$←− RQi , s :=

const · u0 ← const · S := S ′ and e := t · const · e0,1 ← t · const · χ := χ′.
Therefore, ctMultConst[1] is of the form ”as+ e” and computationally indis-
tinguishable from uniform random.

13



Mult: Let ctMult = Mult(ct0, ct1). Define ct′[0] = [ct0[0]ct1[0]]Qi
, ct′[1] =

[ct0[0]ct1[1] + ct0[1]ct1[0]]Qi
, ct′[2] = [ct0[1]ct1[1]]Qi

. We have

ctMult[1] =[kct′[1] +

ℓ∑
j=1

ct′j [2]a2j [1]]kQi

=[k(ct0[0]ct1[1] + ct0[1]ct1[0]) +

ℓ∑
j=1

ct′j [2]a2j [1]]kQi

=[ak(m0u1 − 2asu0u1 − 2etu0u1 + e0,1tu1 + e1,1stu0 +m1u0

+ e1,1tu0 − e0,1stu0)

+ tk(e1,1m0 − ee1,1tu0 + e0,1e1,1t+ e0,1m1 − ee0,1u1 + e0,1e1,1t)

+

ℓ∑
j=1

ct′j [2]a2j [1])]kQi .

Then, we have a
$←− RQi

, e := tk(e1,1m0 − ee1,1tu0 + e0,1e1,1t + e0,1m1 −

ee0,1u1 + e0,1e1,1t) +
ℓ∑

j=1

ct′j [2]a2j [1]) ← χ′ and s := k(m0u1 − 2asu0u1 −

2etu0u1 + e0,1tu1 + e1,1stu0 + m1u0 + e1,1tu0 − e0,1stu0) ← S ′. Since all
components of s that are public are masked with an element that is secret,
we can assume s to be secret. Since there are no specifications of the nature
of S ′ and χ′, ctmult[1] is of the form as + e and therefore computationally
indistinguishable from uniform random.

Auto: Let ctauto = Auto(ct0, σ). We have

ctauto = KeySwitch(σ(ct0), (1, σ(s)), evk)

=

kσ(ct0[0]) +

ℓ∑
j=1

ct′0,j [1]a1j [0]


kQi

,

 ℓ∑
j=1

ct′0,j [1]a1j [1]


kQi

.

Therefore,

ctauto[1] =

 ℓ∑
j=1

ct′0,j [1]a1j [1]


kQi

=

 ℓ∑
j=1

ct′0,j [1](au
evk
j + teevkj )


kQi

=

a
 ℓ∑

j=1

ct′0,j [1]u
evk
k

+ t

 ℓ∑
j=1

ct′0,j [1]e
evk
j


kQi

.
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With s :=
ℓ∑

j=1

ct′0,j [1]u
evk
k ← S ′ and e := t

ℓ∑
j=1

ct′0,j [1]e
evk
j ← χ′, ctauto[1]

is of the form as + e and therefore computationally indistinguishable from
uniform in RQi .

ModSwitch: Let ctModSwitch = ModSwitch((ct0, Qi), Qj). Then we have

ctModSwitch[1] =
[⌊

Qj

Qi
ct0[1]

⌉]
kQi

. So the distribution of ctModSwitch[1] is

the distribution of ct0[1], scaled by
Qj

Qi
. Therefore, if ct0[1] is of the form

as+ e and computationally indistinguishable from uniform random, then so
is ctModSwitch[1].

We see that if the second component of an input to any operation is of the
form as+ e, then so is the second component of the output, with respect to the
same public element a. Therefore, using the result of one operation as the input
to another one will still yield an element whose second component is of the form
“as + e”, with respect to different s and e, but the same public element a. By
Equation 1, the output ciphertext of any operation is therefore an RLWE sample
if the input ciphertext is one. Therefore, all the ciphertexts appearing as final or
intermediary results in the evaluation of a circuit on BGV ciphertexts are RLWE
samples, and are therefore computationally indistinguishable from uniform ran-
dom in RQi

× RQi
. We can therefore conclude that if Enc(f(m1, . . . ,mk), pk)

and Eval(Cf , ct1, . . . , ctk, evk) are at the same level, then both their distribu-
tions are computationally indistinguishable from uniform random over the same
ring. This concludes the proof. ⊓⊔

Additionally, we note that the above result implies that the critical quantity
is the underlying error of the RLWE sample, and therefore the ratio between the
magnitude of the critical quantity and the ciphertext modulus determines the
hardness of the underlying RLWE sample as shown in [APS15]. This illustrates
that the critical quantity is relevant for both correctness and security, and as
such is of paramount importance in the analysis of FHE schemes.

3.2 A New Definition of Circuit Privacy

Theorem 1 shows that BGV is leveled computationally circuit private in its original
form, without the need for any post-processing or sanitisation. We obtain com-
putational circuit privacy for free. This is counter-intuitive. Indeed, one would
think that a ciphertext resulting from two additions should be distinguishable
from a ciphertext resulting from one. The fact that the effect of this operation
is not visible in the ciphertext is mainly due to the fact that part of the ran-
domness in encryption is drawn uniformly randomly from RQi . This makes it
very likely that a wrap-around modulo Qi occurs in the ciphertext parts, thereby
obliterating any information on the distribution. However, to ensure correctness,
no such wrap-around can be allowed in the ciphertext noise. Therefore, even if
no information about the circuit can be deduced from the ciphertext parts, it
may be deduced from the ciphertext noise.
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To give an example, [MP19] proved in Lemma 1 that the noise of a fresh ci-
phertext is normally distributed, with mean 0 and variance ( 43n+1)t2σ2

0 , where
χ = N (0, σ2

0). Let ct0, ct1 be two fresh ciphertexts. Since the noise of the sum
of two ciphertexts is the sum of the noises, the noise of ct0 + ct1 is distributed
as N (0, 2( 43n + 1)t2σ2

0). The two distributions are therefore clearly distinguish-
able, and will move even further apart the more additions are performed. Thus,
even though we showed that BGV is computationally circuit private according to
Definition 15, we see that this does not necessarily capture all the information
that could be extracted from a ciphertext.

To obtain the noise of a ciphertext however, the adversary would need access
to the secret key. Assuming that the adversary has access to the secret key is not
unreasonable in this scenario. If we consider for example a Machine Learning as
a Service scenario, the adversary easily can become the client, and therefore the
secret-key holder.

We will therefore extend Definition 14 and 15 by additionally requiring that
the noise distributions be statistically indistinguishable.

Definition 16. Let E = (KeyGen, Enc, Eval, Dec) be a homomorphic encryption
scheme based on RLWE. We call E (leveled) computationally circuit private
against an adversary holding the secret key if it fulfils Definition 14 (Defini-
tion 15) and additionally it holds true that

∆(ν(Enc(f(m1, . . . ,mk), pk)), ν(Eval(Cfct1, . . . , ctk, evk))) ≤ negl(λ)

for all Cf ∈ CE and cti = Enc(mi, pk), i ∈ {0, . . . , k}. Again, we call E mali-
ciously (leveled) computationally circuit private against an adversary holding the
secret key, if the above holds even when the ciphertexts and the public keys are
not assumed to be well-formed.

We proceed by showing how minor modifications to Eval in BGV make it
leveled computationally circuit private even if the adversary holds the secret
key, and without the need for any expensive machinery as the Ducas-Stehlé
washing machine or noise flooding.

3.3 BGV’ - a leveled Semi-honest Circuit Private Variant of BGV

We define the scheme BGV’ to consist of the algorithms KeyGen, Enc’, Eval’ and
Dec, where KeyGen and Dec are identical to the algorithms of the same name
in BGV. We define Eval’ to allow for the same set of operations as BGV, that is
CBGV = CBGV′ . Eval’ and Enc’ are defined as follows.

Enc′(pk,m, 0 ≤ i < L) Set (ct, QL)← Enc(pk,m).
Return ct← ModSwitch((ct, QL), Qi).

Eval′(Cf , ct0, . . . , ctk, evk) Compute Cf (ct0, . . . , ctk).
Return ct← ModSwitch((Cf (ct0, . . . , ctk), Qi+1), Qi)
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There are two major differences between BGV’ and BGV that will allow us to
prove that BGV’ is computationally circuit private according to Definition 16. The
first is that we modulus switch a fresh encryption at least one level down, and the
second one is that we force a modulus switching after a completed evaluation.

We show that BGV’ is circuit private according to Definition 16. The results
relies on the fact that the output noise from the ModSwitch operation is simply a
rounding noise, provided that the input noise was smaller than Qi

Qi−1
. Informally

put, in that case, the ModSwitch operation will strip away all the information
that was contained in the input noise.

The noise after modulus switching therefore is circuit independent. We anal-
yse the conditions that must be fulfilled in order for BGV’ to be circuit private
according to Definition 16.

The fact that our result principally stems from the noise output after modu-
lus switching also explains the difference in the conclusion with [KS23]. In their
work, the authors conclude for CKKS that their Definition of circuit privacy (see
Definition 22 in Supplemental Material A) can only be achieved by adding ex-
ponential noise. They however do not consider rescaling, a noise management
operation in CKKS that is close to modulus switching in BGV. Since our proof
entirely depends on modulus switching, strong differences in the results are nat-
ural.

The requirements that we impose upon the scheme are as follows. The impact
of these constraints on the effectiveness of the scheme will be discussed later in
the paper.

Requirement 1

||νi(ct)||∞ ≤

√
Qi

NQi−1
+ t2 − t ≈

√
Qi

NQi−1
, j ∈ {1, . . . , k +m}.

Requirement 2
tℓD⋆

maxBe

ki
≤ Qi

Qi−1
,

where D⋆
max is the maximal digit in the decomposition of ct2 during key switch-

ing, ℓ is the number of such digits, and ki is the factor by which the ciphertext
modulus gets scaled to obtain the special modulus used during key-switching.

Leveled Semi-Honest Circuit Privacy In the remainder of this subsection, we
prove the following theorem, which is the main result of this subsection.

Theorem 2 (Computational Circuit Privacy Against Adversary with Secret Key).
Let BGV’ be the scheme as defined above, where values from the error distribu-
tion χ are bounded by Be ≤ 1

2tN
Qi

Qi−1
and the secret key distribution S draws

polynomials with Hamming weight h from the set {−1, 0, 1}. Then BGV’ is lev-
eled circuit private following Definition 16, as long as no more than α additions
and µ multiplications by a constant const ∈ {0, . . . , t − 1} are performed in a

row, where α and µ are defined as α+ tµ = κ, and t ≤
√

Qi

Qi−1N3
2
κ .
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The proof of Theorem 2 heavily relies on the results from [CNP23b]. In that
work, Lemma 8 states that if the Requirements 1 and 2 are fulfilled, the noise
after modulus switching is independent of prior operations and only depends on
the ring dimension, the plaintext modulus and the Hamming weight of the secret
key, all of which do not carry information about the circuit. The proof will show
that for any circuit C ∈ CBGV′ , if the Requirements 1 and 2 are fulfilled for the
input, they are fulfilled for the output. In the first part of the proof, we show
that fresh ciphertexts fulfil the requirements, then proceed by showing that the
operations that are defined for BGV ciphertexts do not change this. Therefore,
the final modulus switching will remove all information about the circuit from
the noise. In further detail, our proof consists of the following steps.

1. Prove that for a fresh ciphertext ctfresh = Enc′(m, pk) we have

νi(ctfresh) = τ0 + τ1s+ τ2,

where τi is the error polynomial after coefficient-wise rounding to the next
integer, such that the encrypted plaintext modulo t is unchanged.

2. Prove that if Requirements 1 and 2 are fulfilled for a ciphertext ct, then
νi(ct = Mult(ct0, ct1)) = νi(ModSwitch((ct, Qj), Qi)) = τ0 + τ1s + τ2 and
νi(AUTOMORPHISM(ct)) = τ0+ τ1s+ τ2. That is, the noise only consists of the
rounding noise and the resulting ciphertext no longer contains information
about prior operations.

3. Prove that

||τ0 + τ1s+ τ2||∞ ≤

√
Qi

Qi−1N
, for all i ∈ {1, . . . , L},

and therefore if a ciphertext ct fulfils Requirements 1 and 2 before ModSwitch
and AUTOMORPHISM, it will also fulfil them afterwards. Therefore, if the re-
quirements where fulfilled before this step, they will be fulfilled after.

4. Prove that ADDCONST does not affect the noise term.
5. Prove that for any ciphertext ct, we have

νi(ADD(ADD(. . . ADD︸ ︷︷ ︸
const-times

(ct, ct) . . .))) = νi(MULTCONST(ct, const)),

for all const ∈ {0, . . . , t − 1}. Therefore, the operation multiplication by a
constant const can be expressed by const additions, if we restrict multi-
plication by a constant to taking as input only degree 0 polynomials. We
therefore do not consider multiplication by constant separately, since it is
covered by additions. We extend the result to higher degree polynomials in
Corollary 1 in Appendix C.

6. Prove that we then have

κ||τ0 + τ1s+ τ2||∞ ≤

√
Qi

Qi−1N
.
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7. Prove that the noise of ctout = Cf (ct1, . . . , ctk), f(x1, . . . , xk) =
k∑

i=1

xi can

be bounded by

k||τ0 + τ1s+ τ2||∞,

for any possible representation of f, as long as k ≤ κ. Together with Step
6 we have now shown the following: if we do not perform more than α
additions or µ multiplications by constant, where α+ tµ = κ, the output of
a circuit consisting of additions and multiplications by constants fulfil the
requirements if the inputs did.

8. Conclude that BGV’ is circuit private following Definition 16. We show that
for any circuit with the above restrictions, the output of the circuit will fulfil
the requirements. Since we have shown in Step 2 that for a circuit fulfilling
the requirements, modulus switching reduces the noise to the rounding noise
and therefore strips away all information about the circuit, the result follows.

As a first step to the proof of the theorem, we need noise estimates for all
the operations. They are given in the following lemmas. Due to space limitations
the proofs of Lemma 1 to 4 are deferred to Appendix B.

Lemma 1. Let {0, . . . , L} be the set of indices in the moduli chain, excluding
the special moduli and let QL be the top modulus. Let ct0 and ct1 be two ci-
phertexts with respect to ciphertext moduli Qi and Qj respectively. Let ctadd :=
ADD(ct0, ct1). Then the noise of ctadd is given by

νmin(i,j)(ctadd) =(1− χ{j+1,...,L}(i))νi(ct0)

+ χ{j+1,...,L}(iνj(ModSwitch((ct0, Qi), Qj))

+ χ{j,...,L}(i)νj(ct1)

+ (1− χ{j,...,L}(i))νi(ModSwitch((ct1, Qj), Qi)).

Lemma 2. Let {0, . . . , L} be the set of indices in the moduli chain, excluding
the special moduli and let QL be the top modulus. Let ct0 and ct1 be two ci-
phertexts with respect to ciphertext moduli Qi and Qj respectively. Let ctmult :=
MULT(ct0, ct1). Then the noise of ctmult is given by

νmin(i,j)(ctmult) = νmin(i,j)(MULT(ct0, ct1)) = τ0 + τ1s+ τ2,

where τi is the rounding error of coefficient-wise rounding the polynomial to the
nearest integer having the same value modulo t.

Lemma 3. Let (ct, Qi) be a ciphertext and const ∈ {0, . . . , t − 1} a constant
in the plaintext space. The critical quantity after ADDCONST((ct, Qi), const) is
given by

νi(ADDCONST((ct, Qi), const)) = νi(ct).

The critical quantity after MULTCONST((ct, Qi), const) is given by

νi(MULTCONST)((ct, Qi), const) = const · νi(ct).

19



Lemma 4. Let (ct, Qi) be a ciphertext. Then the noise of AUTOMORPHISM((ct, Qi))
is as follows

νi(AUTOMORPHISM((ct, Qi))) ≈ τ0 + τ1s+ τ2.

Using these lemmas, we can now proceed to the proof of Theorem 2.

Proof. Step 1. Let ct = Enc′(m, pk) = ModSwitch(([m+pk[0]u+te0]QL
, [pk[1]u+

te1]QL
), Qi). Then we have

νi(ct) =

⌊
Qi

QL
[m+ (−as− te)u+ te0]QL

⌉
t

+ ⌊[au+ te1]QL
⌉t s−

⌊
Qi

Qi−1
m

⌉
t

=
Qi

QL
(t(−eu+ e1s+ e0)) + τ0 + τ1s+ τ2.

Since

∥t(−eu+ e1s+ e0)∥∞ ≤ t(∥−eu∥∞ + ∥e1s∥∞ + ∥e0∥∞)

≤ t(N ∥e∥∞ ∥u∥∞ +N ∥e1∥∞ ∥s∥∞ + ∥e0∥∞)

≤ t(N ∥e∥∞ +N ∥e1∥∞ + ∥e0∥∞)

≤ Be(1 + 2tN)

≤ 1

2tN

Qi

Qi−1
(1 + 2tN) ≈ Qi

Qi−1
.

Therefore, the first term will become negligible compared to τ0 + τ1s + τ2,
and we have

νi(ctfresh) = τ0 + τ1s+ τ2.

Step 2. This step has been proven in Lemmas 2 and 4.

Step 3. We can approximate τ0 + τ1s+ τ2 as follows.

||τ0 + τ1s+ τ2||∞ ≤ ||τ0||+ ||τ1s||∞ + ∥τ2∥∞
≤ ∥τ0∥∞ +N ∥τ1∥∞ ∥s∥∞ + ∥τ2∥∞

≤ t

2
+

Nt

2
+

t

2
≈ tN

2
.

We can approximate ∥τi∥∞ , i ∈ {0, 1, 2} by t
2 , since it is the error that arises

from rounding up or down to the next integer modulo t, and therefore never

grows larger than t
2 . Since we imposed that t <

√
Qi

Qi−1N3
2
κ we obtain

∥τ0 + τ1s+ τ2∥∞ ≤
tN

2
≤

√
Qi

N3Qi−1

2
κN

2
=

1

κ

√
Qi

Qi−1N
.
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Therefore, if Requirement 1 was fulfilled before modulus switching, it is still
fulfilled afterwards. This is where the bound on t comes from.

Step 4. This step immediately follows from Lemma 3.

Step 5. We therefore only need to consider the two operations ADD and
MULTCONST. First, we notice the following.

Let ct1, ct2, ct3 be ciphertexts at the same level Qi, i ∈ {1, . . . , L}. If ci-
phertexts at the same level are added, the noise respects associativity. That is,
we have

νi(ADD(ADD(ct1, ct2), ct3)) = νi(ADD(ct1, ADD(ct2, ct3))),

since we do not have to modulus switch and it hence does not matter which
ciphertexts are added first. More formally,

νi(ADD((ctk, Qi), (ctl, Qi)))

=(1− χ{i+1,...,L}(i)νi(ctk) + χ{i+1,...,L}(iνi(ModSwitch((ct1, Qi), Qi))

+ χ{i,...,L}(i)νi(ctl) + (1− χ{i,...,L}(i)νi(ModSwitch(ctl)))

=νi(ctk) + νi(ctl).

Since we have no modulus switches in the circuit, the same basic arithmetic
as in the plaintext ring holds true also for ciphertexts, and we can write, for
const being a plaintext polynomial of degree 0,

νi(ADD(ADD(. . . ADD︸ ︷︷ ︸
const - times

(ct, ct), . . .), ct) = νi(MULTCONST(ct, const)).

Since we can express MULTCONST through ADD with the same noise, we do not
need to consider MULTCONST further.

Step 6. We have seen in Step 3 that we can bound ||τ0 + τ1s+ τ2||∞ as

||τ0 + τ1s+ τ2||∞ ≤
1

κ

√
Qi

Qi−1N
.

We therefore see immediately that we can bound κ ∥τ0 + τ1s+ τ2∥∞ by Qi

Qi−1N
.

Step 7. We can assume all ciphertexts ct1, . . . , ctk to be either fresh cipher-
texts or the result of multiplications, automorphism or modulus switches. If one
of the input ciphertexts is the result of an addition between i ciphertexts, the
noise bound is given by k′ = k + i. We therefore do not need to consider this
separately. As argued in Step 5, the noise of multiplications by constant can be
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given via additions, so the same applies to ciphertexts resulting of multiplications
by constant. As seen in Lemma 3 additions by constant do not change the noise,
therefore we do not need to consider them here. Therefore, by Lemmas 2 and 4
and previous steps, all ciphertexts can be assumed to have noise τ0 + τ1s+ τ2.

Let ct = Cf (ct1, . . . , ctk). The ciphertext ct has the highest noise if
ct1, . . . , ctk are at the same level. This is due to the following. If a subset of
i ciphertexts ctj1 , . . . , ctji is at a level ℓ1, whereas the rest is at a level ℓ0 by
Lemma 1 we have νℓ1(ctj1 + . . . + ctji) = i(τ0 + τ1s + τ2). However, to make
addition with the ciphertexts at level ℓ0 possible, the result of the addition
will have to be modulus switched down. Now, since i < k < κ, ct still fulfils
Requirement 1.

Therefore, by Step 2, modulus switching will reduce the noise of the addition
of the first i ciphertexts to τ0+τ1s+τ2. Now, by Lemma 1, adding the remaining
k − i ciphertexts results in a final noise of

νℓ0(ct) = (k − i+ 1)(τ0 + τ1s+ τ2) ≤ k(τ0 + τ1s+ τ2).

Therefore, the noise is largest in the case where no intermediary modulus
switches are applied. This happens if all ciphertexts are at the same level. In
this case, Lemma 1 gives us for the noise of ct

νi(ct) = k(τ0 + τ1s+ τ2).

Hence, the claim holds true.

Step 8. Fresh ciphertexts fulfil Requirements 1 and 2. If no more than α
additions and µ multiplications with constant are performed in a row, then a
ciphertext that is the output of such a circuit fulfils these requirements. There-
fore, the final modulus switching as defined in Eval′ will reduce the noise of the
output ciphertext to τ0 + τ1s+ τ2, which is independent of the circuit that was
evaluated on the ciphertext. Since each fresh ciphertext is modulus switched,
they also have noise τ0 + τ1s+ τ2.

Since the noise terms of a fresh encryption and a ciphertext resulting of an
evaluation of f are the same, it is easy to see that their distributions are the
same as well. BGV’ is therefore circuit private according to Definition 16. ⊓⊔

The proof induces a parameter trade-off between the number of additions that
can be carried out in a row, the plaintext modulus and the ciphertext moduli
ratio. This is because we only perform a ModSwitch after a multiplication, and
we need that all input ciphertexts have noise smaller than Qi

Qi−1
. This will ensure

that the ModSwitch operation will strip away all the information about the
circuit that is carried in the noise. Since a multiplication by a large constant
has substantial influence on the noise growth, the larger the plaintext modulus
is, the fewer multiplications by constant can be carried out, or the larger the
ratio Qi

Qi−1
needs to be. This of course holds for BGV in general. However, the
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requirements lead to a smaller noise budget then if BGV was not supposed to be
circuit private and therefore harsher trade-offs need to be introduced.

There are two ways of getting better parameters, or even being able to use the
same parameters as for non-circuit-private BGV. The first would be to swap the
worst-case bounds out for average case bounds on BGV as presented in [CNP23b]
or [MP19]. We chose worst-case bounds in this work, since average-case bounds
can fail with a small probability. Using average-case bounds would thus have
introduced a failure probability in Theorem 2. Therefore, the advantage of an
adversary holding the secret key against the computational circuit privacy of
BGV’ would no longer only be the probability that the adversary guesses the
circuit correctly, that is 1

|CBGV′ |
, but additionally would depend on the probability

of one of the bounds failing, which in turn would be dependent on the circuit.
Using average-case bounds would therefore be theoretically very cumbersome
and would weaken the theorem. In practice however, it may be a worthwhile
trade-off to accept this additional failure probability in order to get tighter noise
estimates and therefore be able to perform more operations without increasing
the parameters. The second option is to apply modulus switching after a batch of
additions, which would then guarantee that the requirements are always fulfilled.
This would allow to use the usual parameters to the detriment of needing more
levels to evaluate a circuit.

As a second remark, we have proven that it is possible to achieve leveled
computational circuit privacy according to Definition 16 for BGV’ without noise
flooding. It is possible to extend BGV’ to allow it to fulfil the unleveled definition.
Again, this is done by forcing a bootstrapping and then a modulus switching.
The bootstrapping allows to get to a higher modulus QB , the modulus switching
allows reducing the noise thereafter to τ0 + τ1s+ τ2. If any fresh ciphertext then
is modulus switched down to level QB−1.

4 Lattice-Based Commitments and Zero-Knowledge Proofs

To extend our results to the malicious setting, we need lattice-based commit-
ments and zero-knowledge proofs of shortness, linearity, and multiplication.

Notation. Let η be an integer such that
(
n
η

)
· 2η > 2128 and define the two sets

Cη = {c ∈ RQL
| ∥c∥∞ = 1∧∥c∥1 = η} and C̄η = {c− c′ | c, c′ ∈ Cη ∧ c ̸= c′}. Let

BCom, BS , BS2 , Bχ ∈ N be bounds and let σ̄X ∈ R+ be the standard deviation of
a discrete distribution Dσ̄X over RQL

where σ̄X = η ·BX ·
√
n for a bound BX .

Rejection Sampling. To ensure that the proofs do not leak any information about
the secret values, we use rejection sampling to force the output to be independent
of the secrets [Lyu09,Lyu12]. When the standard deviation is roughly the ℓ2 norm
of the challenge times the secret vector, the algorithm accepts roughly 1/3 of the
time, when also rejecting samples where the inner product of the secret vector
and the output vector is negative [LNS21].

23



Commitments. We can commit to elements in RQL
using the BDLOP commit-

ment scheme [BDL+18]. For simplicity, we present the scheme instantiated over
rings instead of modules, committing to only one ring element at a time.

Setup(1λ): Takes in a security parameter λ, samples uniformly random a1, a2, a3
from RQL

and outputs the public commitment key ck defined as:

ck =

[
a1 0

a2 1

]
=

[
1 a1 a2 0

0 1 a3 1

]
.

Com(ck, x): Takes as input the commitment key ck and an element x in RQL
,

samples r of length 3 from RQL
such that ∥r∥∞ ≤ BCom, and computes:

com =

[
c1
c2

]
=

[
1 a1 a2 0

0 1 a3 1

]
r1
r2
r3
x

 .

It outputs the commitment com and the opening op = (x, (r, 1)).
Open(ck, com, op) The algorithm takes in the commitment key ck, the commit-

ment com and the opening op = (x, (r, f)) where f ∈ C̄η. It verifies:

f · com ?
=

[
1 a1 a2 0

0 1 a3 1

]
r1
r2
r3
f · x

 and ∀i ∈ [3] : ∥ri∥2
?
≤ 4σ̄Com

√
n.

It outputs 1 if the relations hold and 0 otherwise.

The BDLOP commitment scheme is hiding if the Learning With Errors
(LWE) problem is hard for vectors of ℓ∞ norm BCom over a lattice of dimension
2n, and the scheme is binding if the Short Integer Solution (SIS) problem is hard
for vectors of ℓ2 norm 16σ̄Com

√
ηn over a lattice of dimension 3n [BDL+18].

Proof of Shortness. Using the techniques by Lyubashevsky [Lyu09, Lyu12], we
can prove knowledge of an opening x such that ∥x∥∞ ≤ BX as follows.

1. Sample vector y of length 3 over RQL
according to Dσ̄Com

and y4 according
to Dσ̄X . Compute w = ck · ȳ where ȳ = y||y4.

2. Hash w to an element c in Cη and compute z̄ = ȳ + c · r̄ where r̄ = r||x.
3. Rejection sample with respect to (ȳ, z̄). If it outputs 1 then output (c, z̄) and

otherwise restart the protocol by sampling a new ȳ.

The verifier checks if ∥z̄i∥2 ≤ 2σ̄Com
√
n for all i ∈ [3], if ∥z̄4∥2 ≤ 2σ̄X

√
n and if

the hash of ck ·z− c ·com equals c. It outputs 1 if all checks verify, and otherwise
it outputs 0.

This proof ensures that the commitment is honestly computed and that the
prover has knowledge of secret value x bounded by 4σ̄X

√
n in the ℓ2 norm.

The proof system [LNP22] can potentially be more efficient, but are also more
complicated and the parameters need to be carefully adjusted to this setting.
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Proof of Linear Relations. The proof of linear relations can be constructed in a
similar way as above [BDL+18]. Let com be a commitment to x with randomness
r, com′ be a commitment to x′ with randomness r′, and let g be a public element
in RQL

. Then, the proof that x′ = g · x proceeds as follows.

1. Sample vectors y and y′ of length 3 over RQL
according to Dσ̄Com

and com-
pute w = a1 · y and w′ = a1 · y′ and u = g · a2 · y − a2 · y′.

2. Hash (w,w′, u) to an element c in Cη, and compute z = y+c·r, z′ = y′+c·r′.
3. Rejection sample with respect to (y, z), and (y′, z′). If it outputs 1 then

output (c, z, z′) and otherwise restart the protocol by sampling new (y,y′).

The verifier checks if ∥zi, z′i∥2 ≤ 2σ̄Com
√
n for all i ∈ [3] and if the hash of

(a1 · z− c · c1,a1 · z′ − c · c′1, g · a2 · z− a2 · z′ + c′2 + g · c2) equals c. It outputs 1
if all checks verify, and otherwise it outputs 0.

This proof ensures that the commitments are honestly computed and that
the prover has knowledge of secret values x and x′ such that x′ = g · x. We can
easily extend the proof to more terms, containing one vector z for each term.

Proof of Multiplication. The proof of multiplication uses the proof of linear rela-
tions as a building block. Let com be a commitment to a secret value s with ℓ∞
norm bounded by BS and let com′ be a commitment to x′. Let BS2 = B2

S · n.
We extend the multiplication proof of [ALS20] to prove that x′ = s2 as follows.

1. Sample vectors y and y′ of length 3 over RQL
according to Dσ̄Com

, y4 ac-
cording to Dσ̄S and y′4 according to Dσ̄S2 . Define ȳ = y||y4 and ȳ′ = y′||y′4.
Then compute w = ck · ȳ and w′ = ck · ȳ′, and commit to s · y4 − y′4 and y24
as com1 and com0 with randomness r1 and r0.

2. Hash (w,w′, com0, com1) to an element c in Cη and compute z̄ = ȳ + c · r̄
and z̄′ = ȳ′ + c · r̄′ where r̄ = r||s and r̄′ = r′||s2.

3. Rejection sample with respect to (ȳ, z̄), and (ȳ′, z̄′). If it outputs 0 then
restart the protocol by sampling a new (ȳ, ȳ′). Otherwise, compute a proof
of linearity πLin for z̄24 − c · z̄′4 = (s · y4 − y′4) · c + y24 with respect to com1

and com1. Output (com0, com1, πLin, c, z̄, z̄
′).

The verifier checks if ∥z̄i, z̄′i∥2 ≤ 2σ̄
√
n for all i ∈ [3], ∥z̄4∥2 ≤ 2σ̄S

√
n,

∥z̄′4∥2 ≤ 2σ̄S2

√
n, and if the hash of (a1 · z − c · c1,a1 · z′ − c · c′1, com0, com1)

equals c. It also checks that the proof of linearity holds. It outputs 1 if all checks
verify, and otherwise it outputs 0.

This proof ensures that the commitments are honestly computed, that com
is a commitment to a secret value s with ℓ2 norm bounded by 4σ̄S

√
n and that

com′ is a commitment to s2 with ℓ2 norm bounded by 4σ̄S2

√
n.

Norms. The proofs πKeyGen and πEnc ensure that the upper bound in the ℓ∞ norm
of elements sampled from a given distribution over a set X is 4·η ·BX ·n3/2 where
BX is the ℓ∞ norm of elements from the set X . Here, we have that X ∈ {S,S2, χ}.
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5 Maliciously Secure Key Generation and Encryption

To ensure computational circuit privacy against malicious adversaries corrupting
either the key generation or the encryption process, we must ensure that these
algorithms were computed honestly. We achieve this by extending the algorithms
to be verifiable, that is, the algorithms also output commitments to all secret key
material and randomness used to generate public keys and ciphertexts in addition
to zero-knowledge proofs (ZKPs), ensuring that these values have bounded norms
and are used correctly to create the output.

The evaluation algorithm is the same, except that it also takes the ZKPs as
input and verifies that they are correct before evaluating the circuit.

5.1 Extended Definitions

We define verifiable key generation and verifiable encryption overRQL
as follows:

VerKeyGen(1λ): Run KeyGen(1λ) and receive (sk, pk, evk) in addition to e and
ei for all i. Then sample commitment randomness rs, re, rs2 , rei for each
i ∈ {0, . . . ,m = logω(QL)} and create commitments coms = Com(ck, s, rs),
come = Com(ck, e, re), coms2 = Com(ck, s2, rs2) and comei = Com(ck, ei, rei)
for all i. Finally, create a ZKP πKeyGen proving the relation RKeyGen below,
including all the commitments in the proof. Output (sk, pk, evk, πKeyGen).

VerEncrypt(pk, m): Run Enc(pk,m) and receive ct in addition to u, e1 and
e2. Sample commitment randomness ru, re1 , re2 , rm and create commitments
comu = Com(ck, u, ru), come1 = Com(ck, e1, re1), come2 = Com(ck, e2, re2)
and comm = Com(ck,m, rm). Finally, create a ZKP πEnc proving the relation
REnc below, including all commitments in the proof. Output (ct, πEnc).

We define the following relations for the zero-knowledge proofs given in the
verifiable key generation and verifiable encryption algorithms:

– Verifiable key generation: The ZKP πKeyGen in the key generation proves
knowledge of a short key s and short error term e corresponding to pk and
that coms and come are proper commitments to s and e. Furthermore, it
proves knowledge of a short key s2 being the square of the key s and short
error terms ei corresponding to the given evk and that coms2 and comei are
proper commitments to s2 and ei for all i. For publicly fixed Be, t, h ∈ N and
decomposition base D = {D⋆

1 , . . . , D
⋆
L}, the relation RKeyGen is defined as:

RKeyGen :=


(x,w)

∣∣∣∣∣∣∣∣∣∣∣

x := (pk, evk, πKeyGen) ∧ w := (s, s2, e, {ei}, rs, rs2 , re, {rei}) :
pk[0] = −pk[1]s− te ∧ ∀i evk[0][i] = −evk[1][i]s− tei +D⋆

i s
2

∧ ∥s∥∞ ≤ 1 ∧
∥∥s2∥∥∞ ≤ h ∧ ∀i ∥e, {ei}∥∞ ≤ Be ∧

Open(ck, coms, (s, rs)) ∧ Open(ck, coms2 , (s
2, rs2)) ∧

Open(ck, come, (e, re)) ∧ ∀i Open(ck, comei , (ei, rei))


.
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– Verifiable encryption: The ZKP πEnc in the encryption algorithm proves
that the given ciphertext ct is generated using the encryption algorithm.
For publicly fixed Be, t ∈ N, the relation REnc is defined as:

REnc :=


(x,w)

∣∣∣∣∣∣∣∣∣∣∣

x := (pk, ct, πEnc) ∧ w := (u, e1, e2,m, ru, re1 , re2 , rm, ) :

ct[0] = m+ pk[0]u+ te1 ∧ ct[1] = pk[1]u+ te2
∧ ∥u∥∞ ≤ 1 ∧ ∥e1, e2∥∞ ≤ Be ∧ ∥m∥ ≤ t ∧

Open(ck, comu, (u, ru)) ∧ Open(ck, come1 , (e1, re1))

∧ Open(ck, come2 , (e2, re2)) ∧ Open(ck, comm, (m, rm))


.

These ZKPs can be instantiated with proofs of shortness [Lyu09,Lyu12,LNP22,
LN17], linear relations [BDL+18], and multiplication [ALS20], using commit-
ments [BDL+18], as described above.

5.2 Proving Verifiable Key Generation

In the actively secure key generation, we commit to s, s2, e, {ei} individually for
each i ∈ [{0, . . . ,m = logω(QL)}], where each commitment is of size 2 · n · log2 q
bits. We give a ZKP of shortness for e and each ei, where each proof is of size
3 · n · log2(6 · σ̄Com) + n · log2(6 · σ̄χ) bits. We give one proof of multiplication
for s and s2, which is of size 4 · n · log2 q + 4 · n · log2(6 · σ̄Com) + 6 · n · log2(6 ·
σ̄Com)+n · log2(6 · σ̄S)+n · log2(6 · σ̄S2) bits. Finally, we give one proof of linearity
for pk and m + 1 proofs of linearity for evk. The proof for pk consists of two
committed values, and hence, the proof is of size 6 · n · log2(6 · σ̄Com) bits. Each
part of evk consists of three committed values, and hence, the proof is of size
9 · n · log2(6 · σ̄Com) bits. To conclude, the verifiability ZKP πKeyGen is of size:

n((2m+ 16) log2 q + (12m+ 31) log2(6σ̄Com)

+(m+ 2) log2(6σ̄χ) + log2(6σ̄S) + log2(6σ̄S2)) bits.

5.3 Proving Verifiable Encryption

In the actively secure encryption algorithm, we commit to u, e1, e2, and m. We
then compute four ZKPs of shortness and two ZKPs of linear relations. The proof
for ct[0] consists of three committed values, and the proof for ct[1] consists of
two committed values. To conclude, the verifiability proof πEnc is of size:

n(4 log2 q + 31 log2(6σ̄Com)) bits.

5.4 Maliciously Secure Circuit Privacy

We conclude by proving computational circuit privacy in the setting of a mali-
cious adversary, when the prover is required to prove that he has followed the
key generation and encryption algorithms honestly. For circuit privacy we only
require integrity, but note that this changes the CPA security of the client ci-
phertext since we send additional information (commitments and proofs).
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However, it follows directly that the extended ciphertexts are CPA secure if
the commitments are hiding, and the proofs are zero-knowledge. Thus, we only
need to prove circuit privacy where we focus on the binding property of the
commitment and the soundness property of the zero-knowledge proofs to ensure
that the keys and ciphertexts are proper RLWE samples.

Theorem 3 (Maliciously Computational Circuit Privacy). Let vBGV be the veri-
fiable BGV scheme as defined in Section 5.1. Assuming that the RLWE problem
is hard, and that vBGV is instantiated with a binding commitment scheme and
sound proofs of shortness, linear relations, and multiplication, then vBGV is ma-
liciously leveled computationally circuit private if the BGV variant it is based on
fulfils Definition 15, and it is maliciously leveled computationally circuit private
against an adversary holding the secret key if the BGV variant it is based on fulfils
Definition 16.

Proof. It was proven in Theorem 1 that BGV is circuit private according to Def-
inition 15 if the input ciphertexts and public keys are proper RLWE samples.
In vBGV, the client needs to compute commitments Coms,Coms2 ,Come,Comei

to the randomnesses s, s2, e, ei used in key generation, and compute a zero-
knowledge proof that shows that

pk[0] = −pk[1]s− te

evk[0][i] = −evk[1][i]s− tei +D⋆
i s

2,

where s, e, and all ei are sufficiently short and the openings of the commitments
are valid. The client then additionally needs to commit to randomnesses u, e1
and e2 through commits Comu,Come1 , and Come2 and to a message m through
Comm. It needs to prove that the encryption relations

ct[0] = m+ pk[0]u+ te1

ct[1] = pk[1]u+ te2

hold, openings of the commitments verify, and randomness is sufficiently short.
Assume then that the client would try to create a public key and an evaluation

key maliciously or an external attacker would try to inject maliciously generated
keys into the server. Then the proofs of linear relation would still have to hold
for the keys, since otherwise the server will reject them. If the linear relations
hold, however, the public and evaluation keys are RLWE samples by definition.
Similarly, the proof of linear relation for the ciphertexts ensures that they are
RLWE samples with respect to the same public key. Since Theorem 1 carries
through whenever it is assured that the public keys and the input ciphertexts
used for evaluation are RLWE samples, it also carries through for vBGV even if
we assume the keys and ciphertexts to be potentially maliciously generated.

The proof of Theorem 2 carries through, if Theorem 1 and Requirements 1
and 2 hold. If for the underlying BGV variant of vBGV Theorem 1 holds, then the
parameters have been chosen such that those two requirements hold if random-
nesses drawn from the secret key distribution have an infinity norm bounded
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by 1 and randomnesses drawn from the error distribution have an infinity norm
bound by Be. Since the zero-knowledge proof of shortness is sound, the server
will not accept the proof unless these bounds hold. Since the commitment scheme
is binding, an attacker cannot compute the commitments on randomnesses dif-
ferent than those used in the key generation and the zero-knowledge proof of
shortness. Therefore, it is ensured that Requirements 1 and 2 hold. But then,
the proof of Theorem 2 carries through, even though the ciphertexts or public
keys may be maliciously generated. The result follows. ⊓⊔

6 Conclusion

We have shown that BGV naturally fulfils Definition 15 and can be adapted to fulfil
Definition 14 in a straightforward way. We then get semi-honest computational
circuit privacy for free. Furthermore, BGV fulfils Definition 14 if the result of a
ciphertext evaluation of a circuit is bootstrapped and modulus switched before
being returned to the client. Since the level of a ciphertext does not give much
information about the circuit and since bootstrapping is costly, Definition 15 can
be considered the most natural one for leveled schemes.

We further showed that, even if the distribution of the ciphertexts does not
leak information about the circuit, the noise may. Consequently, we have pro-
posed a new definition of computational circuit privacy that takes the noise into
account. We showed how the strategic use of modulus switching allows us to fulfil
this definition. Finally, we showed how to construct proofs of well-formedness for
keys and ciphertexts. If keys and ciphertexts are extended by these proofs when
sent to the server, we achieve malicious computational circuit privacy.
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Supplemental Material

A Definitions of Circuit Privacy

Since Gentry first introduced the concept of circuit privacy in 2009 [Gen09] many
different definitions have been proposed. In this section, we give an overview of
existing notions and prove relations among them.

A.1 Defining Semi-Honest Security

We will give here the definitions for semi-honest circuit privacy.

Definition 17 ( [Gen09]). We say that a homomorphic encryption scheme E is
(statistically) circuit private for circuits in CE , if for any key set (sk, pk, evk)
output by KeyGen(1λ), for any function f on plaintexts that has a corresponding
circuit Cf ∈ CE and any fixed ciphertexts ct1, . . . , ctk that are the encryption by
EncE(·, pk) of plaintexts m1, . . . ,mk respectively, the following holds true for the
distributions over the random coins in EncE(·, pk) and EvalE(·, Cf , evk):

∆(EncE(f(m1, . . . ,mk), pk), EvalE(ct1, . . . , ctk, Cf , evk)) ≤ negl(λ).

Definition 18 ( [Gen09]). We say that a leveled homomorphic encryption scheme
E is leveled (statistically) circuit private, if Definition 1 holds if the ciphertexts
ct = EncE(f(m1, . . . ,mk), pk) and ct′ = EvalE(ct1, . . . , ctk, Cf , evk) are at the
same level.

Definition 19 ( [BdMW16]). We say that a homomorphic encryption scheme E
is circuit private if there exists a PPT algorithm SIM, such that for any function
f on k plaintexts, that has a corresponding circuit Cf ∈ CE of length L = poly(λ),
any plaintexts m1, . . . ,mk ∈ {0, 1}, the following holds

∆(SIM(1λ, evk, f(m1, . . . ,mk), 1
L, ct1, . . . , ctk),

(evk, EvalE(ct1, . . . , ctk, Cf , evk), ct1, . . . , ck, 1
λ)) ≤ negl(λ),

where cti ← Enc(mi, pk), (evk, pk)← KeyGenE(1
λ).

Definition 20 ( [Klu22]). Let E be a homomorphic encryption scheme with set of
admissible circuit CE . Let f be a function that has a corresponding polynomial-
sized circuit Cf ∈ CE . E is said to be circuit private, if, for any k plaintexts
m1, . . . ,mk, there exists a PPT simulator SIM such that

∆(SIM(evk, f(m1, . . . ,mk)), Eval(ct1, . . . , ctk, Cf , evk)) ≤ negl(λ),

where cti ← Enc(mi, pk), and evk, pk← SetUp(1λ).
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Definition 21 ( [DD22]). We say an FHE scheme E is semi honestly circuit
private, if for all λ, and for all pk, evk, sk← KeyGen(1λ), messages m1, . . . ,mk,
and functions f, f ′ such that f(m) = f ′(m), that have corresponding circuits
Cf , Cf ′ ∈ CE

∆(Eval(Enc(m1, pk), . . . , Enc(mk, pk), Cf , evk),

Eval(Enc(m1, pk), . . . , Enc(pk,mk), Cf ′ , evk) ≤ negl(λ).

Definition 22 ( [KS23]). Let E be a homomorphic encryption scheme for circuits
C ∈ CE . Define the experiment ExpIND-CP

b (A), where b ∈ {0, 1} is a bit and A is
an adversary. The experiment is defined as follows

ExpIND-CP
b (A) :

r, r1, . . . , rk
$←− U ,

(sk, pk, evk)← KeyGen(λ, r),

m1, . . . ,mk, Cf0 , Cf1 , st← A(λ, r1, . . . , rk),
[cti ← Enc(mi, ri, pk)]

k
i=1,

ct← Eval(ct1, . . . , ctk, Cfb , evk),

b′ ← A(st, ct),
return b′,

where Cf0 , Cf1 ∈ CE and f0(m1, . . . ,mk) = f1(m1, . . . ,mk). The scheme E is said

to be λ−bit IND-CP secure if, for any adversary A we have that λ ≤ log2
T (A)
advA

.

A.2 Maliciously secure definitions

Definition 23 ( [OPP14]). Let E denote a homomorphic encryption scheme that
returns correct results for all circuits C ∈ CE,U represented by a representation
model U . We say E is (maliciously) circuit private if there exist an unbounded
algorithm SIM(1k, pk⋆, evk⋆, ct⋆1, . . . , ct

⋆
k, b) and an unbounded deterministic al-

gorithm EXT(1k, pk⋆, b), such that for all k, and all pk⋆, evk⋆, ct⋆1, . . . , ct
⋆
k and

all functions f that have a corresponding circuit Cf ∈ CE,U the following holds

– m⋆ = EXT(1k, pk⋆, ct⋆1 . . . , ct
⋆
k).

– ∆(SIM(1k, pk⋆, ct⋆1, . . . , ct
⋆
k, U(f,m⋆)), Eval(ct⋆1, . . . , ct

⋆
k, Cf , evk

⋆)) ≤ negl(λ).

In particular, for circuits Cf ∈ CE,U the output distribution of Eval (including
length) depends only on k. For leveled schemes, SIM and EXT also take a depth
parameter 1d. We say a scheme is semi-honest circuit-private, if the above holds,
where pk⋆, evk⋆, ct⋆ belong to the set of well-formed public-key ciphertexts pairs.

Definition 24 ( [DD22]). We say an HE scheme E for circuits C ∈ CE is
maliciously, statistically circuit private if there exists an unbounded simulator
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SIM with one-time oracle access to the function f and its corresponding circuit
Cf ∈ CE such that for all λ, and for all public keys pk⋆, evk⋆ and ciphertexts
ct⋆1, . . . , ct

⋆
k

∆(SIM(1λ, pk⋆, evk⋆, ct⋆1, . . . , ct
⋆
k), Eval(ct

⋆
1, . . . , ct

⋆
k, Cf , evk

⋆)) ≤ negl(λ).

Definition 25 ( [DD22]). Let E be a homomorphic encryption scheme for circuits
C ∈ CE . Let Φ : CE → {0, 1}⋆ be a leakage function. We say E is Φ (maliciously)
circuit private, if there exists an unbounded simulator SIM with one-time oracle
access to f and its corresponding circuit Cf ∈ CE such that for all λ, public keys
pk⋆, evk⋆ ciphertexts ct⋆1, . . . , ct

⋆
k, and PPT adversaries A,

Pr[A(SIMf (1λ, pk⋆, ct⋆1, . . . , ct⋆k, Φ(Cf )))]− Pr[A(Eval(ct⋆1, . . . , ct⋆k, Cf , evk
⋆))] ≤ negl(λ).

A.3 Hybrid secure definitions

Definition 26 ( [AGHV22]). A homomorphic scheme E for circuits C ∈ CE
is circuit-private+, if the following holds with probability ≥ 1 − negl(λ) over
the choice of (pk, evk, sk) ← KeyGen(1λ). For every function f that has a cor-
responding circuit Cf ∈ CE over k inputs and ciphertexts ct⋆1, . . . , ct

⋆
k in the

ciphertext space of E the following distributions are statistically close

∆(EncE(f(DecE(ct
⋆
1, sk), . . . , DecE(ct

⋆
k, sk)), pk), EvalE(ct

⋆
1, . . . , ct

⋆
k, Cf , evk)) ≤ negl(λ),

where the distributions are over the random coins of Enc and Eval.

A.4 Relations between the definitions

We now proceed to prove the implications between the definitions outlined above.
We begin by proving relations between the semi-honest definitions, with the ex-
ception of Definition 22. This is the only definition based on an indistinguisha-
bility game and therefore a special case. It additionally assumes the adversary
to be in possession of the secret key. Definitions 23, 24 and 25 also assume the
adversary to have the secret key. These definitions are however simulation-based.

A simulation-based definition tells us how much information can be obtained
from observing the output of the Eval algorithm on a ciphertext ct. The less
input the simulator gets, the stronger the definition is. Therefore, knowledge
of the secret key actually weakens the simulation-based definitions. This is in
contrast to the indistinguishability-based definitions. In this case, the more in-
formation the adversary has access to, the stronger her capabilities are, and
therefore the stronger the definition is. Therefore, assuming knowledge of the
secret key strengthens Definition 22, while it weakens Definitions 23, 24 and 25.

The knowledge of the secret key in Definition 22 essentially allows the ad-
versary to guess the underlying circuit by not only looking at the ciphertext
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distribution but also at the noise which, as has been shown in [KS23] and is
discussed in Section 3.2, is much more instructive.

Proving an implication between Definition 17 and 22 does not appear to
be feasible in general. In order to do so, one would have to argue about the
distribution of the noise, based on the distribution of the ciphertext components.
Since these two distributions are not independent, one must argue about the
concrete distributions, which cannot then be done in generality. This can however
be done for specific schemes, and we discuss the implication between those two
definitions in the specific case of BGV in Section 3.2. In the following Lemma
a Definition number with the superscript sh indicates that this is originally a
malicious definition, but we here consider it in a semi-honest setting to have a
broader comparison between the definitions.

Lemma 5. The following relations between the semi-honest definitions hold for
IND-CPA secure schemes based on the RLWE problem

26 ⇒ 17 ⇒ 18 ⇒ 20 ⇒ 19 ⇒ 21 ⇒ 24sh ⇒ 23sh

⇓

25sh

The proof that Definition 17 implies Definition 19 corrects a minor mistake
in [BdMW16], where it is claimed that Definition 19 is stronger than Defini-
tion 17.

Proof. We begin by noticing that

26⇒ 17.

The definitions are equivalent, but for the fact that Definition 26 also allows for
maliciously generated ciphertexts. It is therefore stronger.

Furthermore,

17⇒ 18.

If an adversary cannot distinguish between the distribution of the simulation
and the distribution of the output of the evaluation without the requirement
that both are at the same level, she will in particular not be able to distinguish
between those two if they are at the same level. We furthermore notice that

20⇒ 19.

The definitions are equivalent, with the exception that in 19 the simulator re-
ceives as additional information the length of the circuit as well as the exact
ciphertexts on which the simulation is being run. The same argument as above
holds: if the simulator is able to output a distribution that is indistinguishable
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from the output of the evaluation without having any additional information
(level, length of circuit), it will still be able to do so in the possession of the
additional information.

We are left with showing what the relation between Definitions 20 and 18 is,
as well as showing the relation between the two and the semi-honest settings of
Definitions 23 and 25.

If Definition 18 holds, then we know that

∆(EncℓE(f(m1, . . . ,mk), pk), Eval
ℓ
E(Cf , Enc(m1, pk), . . . , Enc(mk, pk), evk)) ≤ negl(λ),

for each level ℓ ∈ {0, . . . , L}. Now, the simulator as defined in 20 does not have
access to the public key. If it did, it could simply output a fresh encryption of any
message at the correct level, which by Definition 18 would then be indistinguish-
able from a ciphertext that is the output of Eval(). Since the simulator does not

have access to the public key, it can draw ctsim[0], ctsim[1]
$←− RQℓ

at random
and output ctsim = (ctsim[0] + f(m1, . . . ,mk), ctsim[1]) as the simulation of a
ciphertext. This tuple is still distributed uniformly at random in RQℓ

× RQℓ
.

Adding f(m1, . . . ,mk) only shifts the mean of the distribution, as f(m1, . . . ,mk)
is deterministic. Since all elements in RQℓ

are taken modulo Qℓ, this shift is not
detectable, so the distribution of the tuple remains uniform. Since the RLWE
problem guarantees that an RLWE sample cannot be distinguished from a uni-
formly random element from the same ring and a fresh encryption is an RLWE
sample, the distribution of this simulated encryption of f(m1, . . . ,mk) cannot
be distinguished from the distribution of a real ciphertext encrypting the same
value. We therefore have

∆(ctsim, Enc
ℓ
E(f(m1, . . . ,mk))) ≤ negl(λ).

By Definition 18, the distribution of a fresh encryption is indistinguishable
from the distribution of the result of an evaluation of the ciphertexts at the
same level. So, the simulator’s output remains indistinguishable. We therefore
have that

18⇒ 20⇒ 19.

Next, we show that
19⇒ 21.

If Definition 19 holds, then we have for two functions fi, i ∈ {1, 2} and a
PPT simulator SIM

∆(SIM(1λ,evk, fi(m1, . . . ,mk), 1
L, ct1, . . . , ctk),

(evk, EvalE(Cfi , ct1, . . . , ctk, evk), ct1, . . . , ctk, 1
λ)) ≤ negl(λ). (2)

Since Definition 21 requires f(m1, . . . ,mk) = f2(m1, . . . ,mk) we get

∆(SIM(1λ, evk,f1(m1, . . . ,mk), 1
L, ct1, . . . , ctk),
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(evk, EvalE(Cf2 , ct1, . . . , ctk, evk), ct1, . . . , ctk, 1
λ)) ≤ negl(λ).

Then, by Equation 2 we have that

∆((evk, EvalE(Cf1 , ct1, . . . , ctk, evk), ct1, . . . , ctk, 1
λ),

(evk, EvalE(Cf2 , ct1, . . . , ctk, evk), ct1, . . . , ctk, 1
λ)) ≤ negl(λ).

Assuming that Definition 21 holds, we can construct a simulator that gives
the output as required in Definition 24sh in the following way. Let F be the set
of all functions such that Cf ∈ CE . Since this is information about the scheme
itself, it can be assumed to be public. We then construct the simulator as follows.

For each f ′ ∈ F , it calculates Eval(Cf ′ , ct1, . . . , ctk, evk), where cti =
Encode(pk,mi). Then∆(Eval(Cf ′ , ct1, . . . , ctk, evk), Eval(Cf , ct1, . . . , ctk, evk)),
and outputs Eval(Cf ′ , ct1, . . . , ctk, evk) if this statistical distance is negligible.
Since the simulator only needs to be unbounded, we know that it will even-
tually reach this point, either because it finds f ′ different from f such that
f ′(m) = f(m) or else because it finds f. This further illustrates why an un-
bounded simulator weakens the definition, since it may output a correct solution
only by guessing the correct circuit. In this case, such a scheme would satisfy
the circuit privacy definition of 24.

The fact that Definition 24 implies Definition 23sh is easily seen. Defini-
tion 23sh restricts to only a particular representation of a circuit, and allows
the simulator to additionally see an evaluation of f on simulated plaintexts.
Therefore, the simulator receives more information and the definition is weaker.
Definition 24sh also implies Definition 25sh, since again the simulator receives
the additional information from the leakage function Φ on f. The claim follows.

⊓⊔

We continue by proving relations between the malicious Definitions 23 - 25.
The proof is very similar to the semi-honest case.

Lemma 6. The following implications hold

24⇒ 23

⇓
25

Proof. Definitions 24 and 25 are equivalent, but for the fact that in Definition 25
the simulator additionally obtains information from a leakage function on the
circuit Cf . The implication is therefore evident: if the simulator manages to
output a correct ciphertext without the information from the leakage function,
it will also be able to do so with this information.

The implication between Definition 24 and 23 can be seen in a similar way.
In Definition 23, the simulator gets as an additional information an evaluation
of a fixed representation of the circuit on a simulated message (a correct decryp-
tion may not be available due to the ciphertexts being potentially maliciously
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formed). Therefore, if the simulator in Definition 24 was able to output a valid
ciphertext without having seen the plaintext evaluation of the circuit, it will be
able to do the same upon seeing it. ⊓⊔

The relation between Definitions 23 and 25 depends on the concrete instantia-
tion of the leakage function. If the leakage function leaks the plaintext evaluation
of the circuit and potentially additional information, then Definition 23 implies
Definition 25. If the leakage function leaks different information, then the relation
between the two definitions is unclear.

B Proofs of Lemmas 1 - 4

Proof of Lemma 1

Proof. Let ct′0 and ct′1 be two ciphertexts whose levels have already be matched.
That is, if i = j, ct′0 = ct0, ct

′
1 = ct1, if i > j, ct′0 = ModSwitch((ct0, Qi), Qj), ct

′
1 =

ct1 or otherwise ct′0 = ct0, ct
′
1 = ModSwitch((ct1, Qj), Qi).

Then we can denote the noise νi(ct) of ctadd as

νmin(i,j)(ctadd) = νmin(i,j)(ct
′
0) + νmin(i,j)(ct

′
1).

We can include the level adjustment into this expression of the noise as follows

νmin(i,j)(ctadd) =(1− χ{j+1,...,L}(i))νi(ct0) + χ{j+1,...,L}(i)νj(ModSwitch((ct0, Qi), Qj))

+ χ{j,...,L}(i)νj(ct1) + (1− χ{j,...,L}(i))νi(ModSwitch((ct1, Qj), Qi)).

⊓⊔

Proof of Lemma 2

Proof. Let ct′0, ct
′
1 be the ciphertexts after the level adjustment. The noise of

the ciphertext ctpre-mult can therefore be given with respect to ct′0 and ct′1 as

νi(ctpre-mult) =ct
′
0[0]ct

′
1[0] + (ct′0[1]ct

′
1[0] + ct′0[0]ct

′
1[1])s+ ct′0[1]ct

′1[1]s2 −m0m1

=(ct′0[0] + ct′0[1]s−m0)(ct
′
1[0] + ct′1[1]s−m1)

+m1(ct
′
0[0] + ct′0[1]s−m0) +m0(ct

′
1[0] + ct′1[1]s−m1)

=νi(ct
′
0)νi(ct

′
1) +m1νi(ct

′
0) +m0νi(ct

′
1).

As for addition, the level adjustment outputs the following. If i > j,

ct′0 = ModSwitch((ct0, Qi), Qj)

ct′1 = ct1.

If j > i

ct′0 = ct0

39



ct′1 = ModSwitch((ct1, Qj), Qi).

If i = j

ct′0 = ct0

ct′1 = ct1.

Using the characteristic function, the critical quantity of the ciphertext can there-
fore be given as

νmin(i,j)(ctpre-mult)

=
(
(1− χ{j+1,...,L}(i))νi(ct0) + χ{j+1,...,L}(i)νj(ModSwitch((ct0, Qi), Qj))

)
·
(
χ{j,...,L}(i)νj(ct1) + (1− χ{j,...,L}(i))νi(ModSwitch((ct1, Qj), Qi))

)
+m0

(
χ{j,...,L}(i)νj(ct1) + (1− χ{j,...,L}(i))νi(ModSwitch((ct1, Qj), Qi))

)
+m1

(
(1− χ{j+1,...,L}(i))νi(ct0) + χ{j+1,...,L}(i)νj(ModSwitch((ct0, Qi), Qj))

)
.

As can be seen in Appendix D of [CNP23a] we then have for the noise of the
ciphertext ct that is output as the final result

νsp(ct) =
Qsp

Qmin(i,j)
νmin(i,j)(ctpre-mult) + t

ℓ∑
j=1

ct
pre-mult
j [2]e2,j .

Finally, after modulus switching, we obtain the following for the noise term

νi(MULT(ct0, ct1)) =

⌊
Qi−1

Qsp
ct[0]

⌉
t

+

⌊
Qi−1

Qsp
ct[1]

⌉
t

s−
⌊
Qi−1

Qsp
m0m1

⌉
t

=
Qi−1

Qsp

Qsp

Qi
νi(ctpre-mult) +

Qi−1

Qsp

ℓ∑
j=1

tctpre-mult
j [2]e2,j

+ τ0 + τ1s+ τ2.

We can approximate the second term by

∣∣∣∣Qi−1

Qi

ℓ∑
j=1

ct
(j)
pre-mult[2]e2,j

∣∣∣∣
∞ ≤

Qi−1

Qi
t

ℓ∑
j=1

||ctpre-mult
j [2]||∞||e2,j ||∞

≤ Qi−1

Qsp
tℓD⋆

maxBe

=
Qi−1

Qi

tℓD⋆
maxBe

k
.

Due to Requirement 2, this term is negligible compared to the first term. We
can therefore approximate the noise after a multiplication via
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νi(MULT(ct0, ct1)) ≈
Qi−1

Qi
νi(ctpre-mult) + τ0 + τ1s+ τ2.

We can approximate ∥νi(ctpre-mult)∥∞ as follows.

∥νi(ctpre-mult)∥∞ = ∥νi(ct′0)νi(ct′1) +m1νi(ct
′
0) +m0νi(ct

′
1)∥∞

≤ N ∥νi(ct′0)∥∞ ∥νi(ct
′
1)∥∞ +N ∥m1∥∞ ∥νi(ct

′
0)∥∞

+N ∥m0∥∞ ∥νi(ct
′
1)∥∞

≤ N

(√
Qi

Qi−1N
+ t2 − t

)2

+ 2Nt

(√
Qi

Qi−1N
+ t2 − t

)

=
Qi

Qi−1
,

where the the fourth line holds since
√

Qi

Qi−1N3 + t2− t is one solution of Nx2 +

2Ntx− Qi

Qi−1
and the third line holds due to Requirement 1. Indeed, this is where

Requirement 1 originates from. ⊓⊔

Proof of Lemma 3

Proof. We have

νi(ADDCONST((ct, Qi), const)) =ADDCONST((ct, Qi), const)[0]

+ ADDCONST((ct, Qi), const)[1]s−m− const

=ct[0] + const+ ct[1]s−m− const

=νi(ct),

and

νi(MULTCONST((ct, Qi), const)) =MULTCONST((ct, Qi), const)[0]

+ MULTCONST((ct, Qi), const)[1]s− const ·m
=const · (ct[0] + ·ct[1]s−m)

=const · νi(ct).

⊓⊔

Proof of Lemma 4

Proof. The automorphism operation only permutes the slots, but does not change
the values of the ciphertext. Hence, no new error is introduced. The key switching
then results in the following noise according to Appendix D in [CNP23a].

νi(KeySwitch(σ(ct), sk, σ(sk))) =
Qsp

Qi
νi(σ(ct)) + t

ℓ∑
j=1

σ(ct
(j)
1 )e2,j .

41



Therefore, after modulus switching, we have

νi(AUTOMORPHISM((ct, Qi))) =

⌊
Qi−1

Qsp
KeySwitch(σ(ct), sk, σ(sk))[0]

⌉
+

⌊
Qi−1

Qsp
KeySwitch(σ(ct), sk, σ(sk))[1]

⌉
s

−
⌊
Qi−1

Qsp
σ(m)

⌉
t

=
Qi−1

Qi
νi(σ(ct)) +

Qi−1

Qsp
t

ℓ∑
j=1

σ(ct
(j)
1 )e2,j

+ τ0 + τ1s+ τ2

≈Qi−1

Qi
νi(σ(ct)) + τ0 + τ1s+ τ2,

where the last line holds if Requirement 2 holds. Then, since νi(σ(ct)) = νi(ct),
if Requirement 1 holds, we have

νi(AUTOMORPHISM((ct, Qi))) ≈ τ0 + τ1s+ τ2.

⊓⊔

C Extension of Theorem 2 to Multiplication by Plaintext
Polynomials

Corollary 1. Let MULTCONST be such that it also accepts plaintext polynomials of
degree bigger than 0. BGV’ modified in this way is levelled noise circuit private, as

long as t ≤
√

Qi

Qi−1
N3 2

κ||C||∞ , where C is the polynomial product of all plaintexts

with which the ciphertexts are multiplied.

Proof. Let ptxt1, . . . ptxtℓ be plaintexts used in the evaluation of f , not neces-
sarily all distinct. Let f be any mathematical function on ciphertexts ct1, . . . , ctk,
consisting of m additions and ℓ multiplications by plaintexts, in any order. Then
we can bound the final value of f by

||f(ct1, . . . , ctk)||∞ ≤
∣∣∣∣C m∑

j=1

ctj
∣∣∣∣
∞,

where C =
ℓ∏

u=1
ptxtu. This holds true since the value of ||f(ct1, . . . , ctk)||∞ will

not wrap-around modulo Qi since otherwise there would be a decryption error.
Otherwise, this result is due to just pulling out all single multiplications at the
start of the computation and upper-bounding the result in this way.
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For additions, we have seen from the proof above that we can bound the
critical quantity of any representation of a purely additive circuit consisting of
m additions by m||τ0 + τ1s+ τ2||∞.

We therefore can bound the critical quantity of any representation of f by

∥νi(f(ct1, . . . , ctk))∥∞ ≤ ∥C∥∞ m ∥τ0 + τ1s+ τ2∥∞

≤ ∥C∥∞ m
th

2

≤ ∥C∥∞ m
tN

2

≤ ∥C∥∞ mN

√
Qi

Qi−1N3

2

2κ||C||∞

=
m

κ

√
QiQi−1N.

We therefore see that, for a correct choice of parameters, modulus switching
will reduce the accumulated noise to the rounding noise, and that BGV’ therefore
continues to be circuit private. ⊓⊔
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