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1 ISAE-SUPAERO, University of Toulouse,France name.surname@isae-supaero.fr
2 University Toulouse III Paul Sabatier, France

Abstract. We present Boomy, a multivariate polynomial commitment
scheme enabling the proof of the evaluation of multiple points: batch
openings. Boomy is the natural extension of two popular protocols: the
univariate polynomial commitment scheme of Kate, Zaverucha and Gold-
berg [18] and its multivariate counterpart from Papamanthou, Shi and
Tamassia [23]. In the special case of univariate, i.e., for only one evalu-
ation point, Boomy matches these two previous schemes. Our construc-
tion is proven secure under the selective security model. In this paper,
we present Boomy’s complexity and the applications on which it can
have a significant impact. In fact, Boomy is perfectly suited to tack-
ling blockchain data availability problems, shrinking existing challenges.
We also present special lower-complexity cases that occur frequently in
practical situations.

1 Introduction

Polynomial commitment schemes, whether univariate or multivariate, are a key
component in modern cryptography. They allow a prover to convince (with over-
whelming probability) a verifier that they know a polynomial of bounded degree
that evaluates at a given value, and this without revealing the polynomial it-
self, rendering the protocol zero-knowledge. To do that, the prover engages their
polynomial through a commitment. They can later generate a proof of one or
several evaluations of the same polynomial. Given the proof and the commit-
ment, the verifier is then able to enforce the correct evaluation of the committed
polynomial.

Univariate polynomial commitment protocols are used rather regularly for
their simplicity and performance. They are relatively easy to set up and often
offer better computation and communication complexities than their multivari-
ate counterparts. However, univariate polynomial commitments are flexibility-
limited: they cannot efficiently represent certain complex data types or mathe-
matical relationships. Multivariate polynomial commitments are the answer to
this shortcoming of univariate protocols.

Polynomial commitment schemes are beneficial to many applications such as
building zero-knowledge protocols [12], secret sharing [18] or confidential cryp-
tographic transactions [17].



1.1 Related Works and Contribution

The first polynomial commitment scheme proposed by [18] in 2010 allowed a
prover to convince a verifier of the evaluation of a committed univariate polyno-
mial at one or more points. Later, [23] built on this work, introducing multivari-
ate polynomials, but only at a single point of evaluation, opening up new paths
for new verifiable computation schemes. Boomy is the natural continuation of
these schemes, generalizing multivariate polynomial commitments to a batch of
evaluation points as presented below in Figure 1.

Kate, Zaverucha and
Goldber [18]

Batch opening of
Kate, Zaverucha and

Goldber [18]

Papamanthou, Shi
and Tamassia [23]

Boomy

One evaluation point Multiple evaluation points
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Fig. 1. Boomy’s positioning relative to other works.

Since 2013, other works have proposed multivariate polynomial commitments
in different security models and with different cryptographic assumptions. We
followed the same approach as in [18] and based Boomy on pairing-friendly groups
but other works have proposed schemes based on the discrete logarithm problem
[6] or the random oracle problem [21]. This enables protocols of multivariate
polynomial commitments that either require a transparent setup like [21] and
[6] or does not require any setup [28]. This last article is potentially post-quantum
since it is only based on hash functions. All of these improvements are made to
the detriment of the proof size and/or the opening and verification complexities.

Multivariate polynomial commitments have proven to be of genuine interest
to the field of verifiable computation. Using the results of [23], the authors of
[10] introduced one of the first universal Succint Non-interactive Arguments of
Knowledge (universal SNARK or SNORK) based on multivariate polynomial
commitments in parallel with [14] which uses univariate polynomials. Recently,
[9] proposed a new version of [28] based on pairing-friendly fields that can only
commit multi-linear polynomials (each variable is of degree at most one) but
accelerates the work presented in [14].

In this paper we propose a multivariate polynomial commitment supporting
batch opening, which is defined in [18] as the opening of several evaluation
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points at once. We based our technique on [23] by extending and generalizing
their scheme using the Gröbner bases theory. This new approach also allows the
description and interpretation of their scheme from new perspectives. We study
the complexity of this scheme, which we have called Boomy, both in the general
case and in the special case where points are all distinct in one dimension. Both
complexities are summarized in Table 1 below:

general case special case

pk size dG1 dG1

vk size (kn)G1, (k
n)G2 kG1, (k + n)G2

proof size |B|G1 nG1

commit size 1G1 1G1

commit (d− 1)G+
1 , dG

×
1 (d− 1)G+

1 , dG
×
1

opening

O(nk log k + |B|d log d log||P ||+ O(nk log k + k+

k + (n+ 1) · 2k ·
(
n+2k−1

2k

)ω
)F, nd log d log||P ||)F,

O(|B|·d)G+
1 , O(|B|·d)G×

1 O(nd)G+
1 , O(nd)G×

1

verification

O((n+ 1)k log k + |B|d log d log||R||+ O((n+ 1)k log k)F,

(n+ 1) · 2k ·
(
n+2k−1

2k

)ω
)F, kG+

1 , (k + 1)G×
1 ,

O(kn)G+
1 , O(kn)G×

1 , O(|B|·kn)G×
2 , O(nk)G+

2 , O(nk)G×
2 ,

O(|B|·kn)G×
2 , (|B|+1)P (n+ 1)P

Table 1. Complexity of the Boomy protocol for a multivariate polynomial in
F[X1, . . . , Xn] of degree bounded by di in each variable Xi. d denotes the maximum
number of terms in the polynomial: d :=

∏n
i=1 di. Lines commit, opening and veri-

fication present the complexity of their computations, with G+
i and G×

i respectively
denoting addition and scalar multiplication in Gi, F denoting multiplications in F, P
denoting the pairing operation, |B| the size of the Gröbner basis, ||P || being the prod-
uct of the maximum coefficients of the polynomial in each variable and ω the linear
algebra constant. These notations are detailed in Section 2.

We note that the complexity of Boomy is better than the complexity consist-
ing of doing k openings with the protocol in [23] and aggregating them using a
uniformly random linear combination as in [4]. To our knowledge, Boomy is the
first proposal of a protocol allowing the batch opening of a multivariate poly-
nomial based on pairing-friendly groups, paving the way for new applications in
the field of verifiable computation. We first introduce preliminaries in Section 2,
present the intuition, the construction, the proof of security and the complexity
of Boomy in Section 3. We then analyze special cases in Section 4. In Section
5, we explore the potential impact Boomy can have on different applications
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like verifiable computation, proof of data availability or verifiable information
dispersal (VID).

2 Preliminaries

2.1 Notations

Throughout this paper, λ will denote the security parameter, F a finite field of
super-polynomial size λω(1) and (G1,G2,GT ) groups of the same size λω(1) that
allow the construction of a non-degenerated pairing function e : G1 ×G2 → GT

computable in polynomial time over λ. G1,G2 and GT will be written additively.
It will be implicitly assumed that before all else, an algorithm is executed

to output (F,G1,G2,GT , e,G1, G2, GT ) given λ as input, such that G1 and
G2 are uniformly randomly chosen generators of G1 and G2 respectively, with
e(G1, G2) = GT a generator of GT .

These generated parameters are also implicitly given as inputs for every al-
gorithm. All adversaries will be supposed probabilistic polynomial time (PPT)
algorithms. negl(λ) will denote the set of all negligible functions over λ, i.e., all
functions lower than 1/p(λ) for all polynomials p evaluated in λ.

Finally, we will abbreviate vectors with bold letters (e.g., X := [X1, . . . , Xn]),
the cardinal of a set using the absolute value symbols, elements of the group
Gi : i ∈ {1, 2, T} by using [α]i = α ·Gi and will often write the non-zero integer-
set up to n as [n] := {1, . . . , n}. We will also use bold notation for ideals I and
algebraic affine varieties V.

2.2 Cryptographic Assumptions

The security of Boomy, like [23], relies on the discrete logarithm (DL), the t-SDH
[3] and the t-SBDH [15] assumptions.

Definition 1. DL Assumption. For any τ ∈ F∗. Given the tuple ([1]1, [τ ]1) ∈
G2

1 and for every PPT adversary A, Pr[A([1]1, [τ ]1) = τ)] = negl(λ).

Definition 2. t-SDH Assumption. For any τ ∈ F∗. Given the tuple
([1]1, [τ ]1, . . . , [τ

l]1) ∈ Gl+1
1 and for every PPT adversary A,

Pr
[
A([1]1, [τ ]1, . . . , [τ l]1) =

(
c,
[

1
τ+c

]
1

)]
= negl(λ) for any c ∈ F\{−τ}.

Definition 3. t-SBDH Assumption. For any τ ∈ F∗. Given the tuple
([1]1, [τ ]1, . . . , [τ

l]1) ∈ Gl+1
1 and for every PPT adversary A,

Pr
[
A([1]1, [τ ]1, . . . , [τ l]1) =

(
c,
[

1
τ+c

]
T

)]
= negl(λ) for any c ∈ F\{−τ}.

2.3 Multivariate Polynomial Commitment

We define a multivariate polynomial commitment as a scheme which follows
our extension of the definition given by [18]. More precisely, we expand their
definition to several variables and on a batch of evaluation points.
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Definition 4. A multivariate polynomial commitment scheme consists of four
algorithms: Setup, Commit, Open and Verify such that:

– Setup(d, k): generates a verifier key vk and a prover key pk. The prover key
can be used to commit, or to open on a set containing at most k evaluation
points, a multivariate polynomial of degree at most di in variable Xi. The
verifier key is used in the verification of an opening generated with pk.

– Commit(P, pk): generates a polynomial commitment cm of the polynomial
P using the prover key pk.

– Open(P, k, (ai)i∈[k], pk): generates the proof π of the evaluation of P ∈
F[X1, . . . , Xn] at the k points (ai)i∈[k] using pk (with ai = [ai,1, . . . , ai,n]).

– Verify(k, (ai)i∈[k], z,π, cm, vk): verifies that indeed ∀i ∈ [k], zi = P (ai), i.e., z
are the correct evaluations of the polynomial P at (ai), P being represented
indirectly by its commitment cm. It outputs accept if it holds and reject
otherwise.

Definition 5. A multivariate polynomial commitment scheme is considered se-
cure if the four properties (correctness, polynomial binding, evaluation binding
and hiding) hold:

– Correctness: For all P ∈ F[X] of degree at most di in variable Xi, and for
all (ai)i∈[k] ∈ (Fn)k:

Pr

 (pk, sk)← Setup(d, k)
cm← Commit(P, pk)

π ← Open(P, k, (ai), pk)
: Verify(k, (ai), (P (ai)),π, cm, vk) = Accept

 = 1

– Polynomial Binding: For all PPT adversary A:

Pr


(pk, sk)← Setup(d, k), (cm, P (X), (ai), P

′(X), (a′
i),π,π

′)← A(pk) :
Verify(k, (ai), (P (ai)),π, cm, vk) = Accept ∧
Verify(k, (a′

i), (P
′(a′

i)),π
′, cm, vk) = Accept ∧

P (X) ̸= P ′(X)

 = negl(λ)

– Evaluation Binding: For all PPT adversary A, it is selectively secure if:

Pr


(ai)← A(), (pk, sk)← Setup(d, k), (cm, z,π, z′,π′)← A(pk) :

Verify(k, (ai), z,π, cm, vk) = Accept ∧
Verify(k, (ai), z

′,π′, cm, vk) = Accept ∧
∃i ∈ [k] : zi ̸= z′i

 = negl(λ)

else it is adaptively secure if:

Pr


(pk, sk)← Setup(d, k), (cm, (ai), z,π, z

′,π′)← A(pk) :
Verify(k, (ai), z,π, cm, vk) = Accept ∧
Verify(k, (ai), z

′,π′, cm, vk) = Accept ∧
∃i ∈ [k] : zi ̸= z′i

 = negl(λ)
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– Computational Hiding: For all polynomial P ∈ F[X], given at most d :=
(
∏

i di)− 1 proven evaluation points distributed over one or more batches, a
PPT adversary A cannot determine the value of a new evaluation point with
probability more than negl(λ).
In other words, if (pk, vk)← Setup(d, k), cm← Commit(P, pk) and given k
points (ai)i∈[k] such that k < d, even if a PPT adversary A has access to
several batch openings proving those k evaluations, accepted by Verify, they
cannot determine P (α) with probability more than negl(λ) for all α that are
not in the given set of evaluation points.

3 Multivariate Polynomial Commitment for Multiple
Points

3.1 Intuition

In [23], a prover wants to prove that a chosen polynomial P ∈ F[X1, . . . , Xn]
evaluates to z at point a = (a1, . . . , an). To do that, the authors based their
protocol on the fact that the polynomial P can be divided by several quotients
that nullify at this point a. They proved that

∀i ∈ [n],∃Qi ∈ F[X] : P (X) =

n∑
i=1

Qi(X) · (Xi − ai) + r (1)

This can be explained by simply observing that the polynomial reduction of a
polynomial P ∈ F[X1, . . . , Xn] by the polynomial (X1−a1) leads to a remainder
polynomial in F[X2, . . . , Xn] and thus, that the successive reduction by all the
polynomials (Xi − ai), for i ∈ [n], leads to a constant remainder which is equal
to P (a).

In the univariate case, to define batch openings of points a = [a1, . . . , ak],

[18] divides the polynomial P by
∏k

i=1(X − ai) and shows that the remainder
polynomial (of degree lower than k) is the Lagrange polynomial interpolation of
the points [(a1, P (a1)), . . . , (ak, P (ak)]. This polynomial can thus be rebuilt by
the verifier from the given evaluation points.

To extend this scheme to the multivariate case, it is thus necessary to define
some divisor polynomials built from the points (a1, . . . ,ak) that lead to a re-
mainder polynomial that can be rebuilt by the verifier from the points and their
evaluations.

The natural extension of univariate polynomial division to the multivariate
case is defined by the Gröbner basis theory [11], if we want to have a unique
remainder. The polynomials of the Gröbner basis then play the role of the divisor,
the reduction operation corresponds to the polynomial pseudo-division and the
corresponding affine algebraic variety is equal to the set composed of the common
roots of the basis.

From the Gröbner basis theory, the underlying reason explaining why the
construction of [23] works, is that the polynomials fi(X) = Xi−ai define an affine
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algebraic variety which is exactly {a}. Moreover, they also form the reduced
Gröbner basis of the Ideal generated by (fi), since each of them is of degree 1
in a different variable and their leading coefficient is 1. The remainder of the
reduction of P by (fi) is then a constant polynomial always equal to P (a).

To generalize their protocol over a batch of points (ai)i∈[k], we reused the
above reason to construct a set of polynomials that defines an affine algebraic
variety that equals {ai : i ∈ [k]}. To make the remainder unique, we computed
a Gröbner basis B of the ideal generated by this set of polynomials. This gener-
alizes Eq. 1 as

P (X) =

n∑
i=1

Qi(X) ·Bi(X) +R(X)

The verifier has to recover R(X), which is not trivial with more than one
point. To do that, we propose computing one possible interpolation of the batch

of points. Since in F[X]
/
⟨B⟩ the polynomial P is equal to R or to any other

interpolation of the points (ai, P (ai))i∈[k], the verifier only has to reduce their
interpolated polynomial by the ideal ⟨B⟩ to recover R.

3.2 Polynomials Defining an affine algebraic variety

In this section, we present a method enabling the construction of a set of polyno-
mials defining an affine algebraic variety V given the set of points of V. Suppose
that we want to construct the polynomials defining V := {ai ∈ Fn : i ∈ [k]}.
First, we calculate the n polynomials that define the n algebraic affine vari-
eties in each dimension independently: ∀i ∈ [n], Si := {aj,i;∀j ∈ [k]} and
fi(Xi) :=

∏
j∈Si

(Xi − j). Those polynomials together define the affine alge-
braic variety of the “grid” (the Cartesian product) formed by each tuple that
has each coordinate in common with any ai. We interpolate a polynomial that
goes through all the points of the “grid” with value 0 if they are in {ai : i ∈ [k]}
and 1 otherwise. This polynomial can be interpolated one variable at a time
using Lagrange polynomial interpolations.

This construction directly leads to the following property:

Theorem 1. For any n ∈ N, we can always construct a set containing at most
n + 1 polynomials in F[X1, . . . , Xn] that defines an affine algebraic variety that
equals a finite set of k given points (ai)i∈[k] ∈ (Fn)k.

Example 1. To illustrate the construction, let us consider the the algebraic vari-
ety equal to {(2, 5), (2, 10), (7, 2), (7, 5)} and the polynomial ring F[X1, X2] with
F := Z /97Z . We show how to construct the set of three polynomials {f1, f2, f3}
defining this variety.

First we compute f1 and f2 as f1(X1, X2) := (X1 − 2) · (X1 − 7) and
f2(X1, X2) := (X2 − 2) · (X2 − 5) · (X2 − 10). There, the variety defined by
these two polynomials is the Cartesian product of {1, 2} and {2, 5, 10}, i.e.
V(f1, f2) = {(2, 2), (2, 5), (2, 10), (7, 2), (7, 5), (7, 10)}. Now, we want to remove
the points (2, 2) and (7, 10). To do that, we build the interpolating polynomial
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that equals 1 at (2, 2) and (7, 10), and 0 at the other points, one variable at a time.
For that, we first compute the Lagrange polynomials h1 and h2 in X2 that in-
terpolate {(2, 1), (5, 0), (10, 0)} and {(2, 0)(5, 0), (10, 1)} respectively. We obtain
h1(X2) = 93X2

2+60X2+91 and h2(X2) = 17X2
2+75X2+73. Then we can define

f3(X1, X2) as the interpolation in X1 of the points {(2, h1(X2)), (7, h2(X2)} and
we obtain f3(X1, X2) = −6X1X

2
2 − 32X1X2 + 19X1 − 10X2

1 + 6X2 + 26.

3.3 Main protocol

For a multivariate polynomial P (X) ∈ F[X1, . . . , Xn] of degree at most di in
variable Xi, a prover wants to convince a verifier, except with probability less
than negl(λ), that for a chosen set of k points (ai) ∈ (Fn)k,

P (ai) = zi for i ∈ [k]

Below, we present the Boomy protocol composed of the four algorithms:

– Setup(d, k): uniformly randomly chose τ ∈ F. Output pk := {[
∏n

i=1 τ
αi
i ]1 :

αi ∈ [di]} and vk = {[
∏n

i=1 τ
αi
i ]1 : αi ∈ [k]} ∪ {[

∏n
i=1 τ

αi
i ]2 : αi ∈ [k]}.

– Commit(P, pk): return cm = [P (τ )]1.
– Open(P, k, (ai)i∈[k], pk):

1. Compute the polynomials f defining the affine algebraic variety com-
posed of (ai)i∈[k].

2. For a predefined monomial order, compute a Gröbner basis B of the
ideal generated by f .

3. Reduce the polynomial P with each Bi to recover the “quotients” Qi

and the “remainder” R such that

P (X) =

|B|∑
i=1

(Bi(X) ·Qi(X)) +R(X)

4. Compute and return the proof π := ([Qi(τ )]1)i∈|B| composed of each
“quotient” evaluated in τ .

– Verify(k, (ai)i∈[k], z,π, cm, vk):
1. Compute the same polynomials f defining the affine algebraic variety

that is equal to the set composed of (ai)i∈[k].
2. Compute the same Gröbner basis B of the ideal generated by f .
3. Compute by interpolation a polynomial R′(X) that equals P on the

points (ai)i∈[k]. Recover R(X) by reducing R′(X) with B. Evaluate R
and each Bi in τ to obtain [R(τ )]1 and [Bi(τ )]2.

4. Accept if:

e(cm− [R(τ )]1 , [1]2) =

|B|∑
i=1

e(πi, [Bi(τ )]2)

otherwise reject.

Theorem 2. The Boomy protocol is a selectively secure multivariate polynomial
commitment scheme (as defined in Section 2.3) under the assumptions presented
in Section 2.2.

A proof of Theorem 2 is provided in the next Section 3.4.
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3.4 Security Analysis

In this section, we prove that Boomy’s construction is secure under the selective
security model and explain why its security can also be proven in the algebraic
group model of [13]. To prove the polynomial binding, the evaluation binding
and the hiding properties, we will build a simulator S that can break a given a
t-SBDH, t-SDH or DL problem in PPT with probability more than negl(λ) if it
has access to an adversary that can break one of these properties in PPT with
probability more than negl(λ).

Correctness: The correctness directly follows from the reduction of P by a
Gröbner basis B giving quotients Qi and remainder R.

Accept← Verify() ⇐⇒ e(cm− [R(τ )]1, [1]2) =

|B|∑
i=1

e(πi, [Bi(τ )]2)

⇐⇒ e([P (τ )]1 − [R(τ )]1, [1]2) =

|B|∑
i=1

e([Qi(τ )]1, [Bi(τ )]2)

⇐⇒ [P (τ )−R(τ )]T =

|B|∑
i=1

[Bi(τ ) ·Qi(τ )]T

⇐⇒ P (τ ) =

 |B|∑
i=1

Bi(τ ) ·Qi(τ )

+R(τ )

Polynomial Binding: The simulator S first crafts the trusted setup of Boomy
using the elements ([1]1, [t]1, . . . , [t

l]1) of the t-SBDH problem. It can do this
by uniformly randomly picking ri and si in F and fixing τi := ri · t + si for
i ∈ {2, . . . , n} and τ1 = t. Since each τi is a polynomial in t, S can craft vk and
pk without knowing t. Suppose that a PPT adversary A can craft P (X) and
Q(X) such that P ̸= Q and [P (τ )]1 = [Q(τ )]1, then we have:

[P (τ )]1 − [Q(τ )]1 = [P (τ )−Q(τ )]1 = [(P −Q)(τ )]1 = [0]1

It follows that τ is a non-trivial root of the polynomial P − Q. The simulator
recovers the polynomials P and Q from A and computes P − Q. It crafts the
polynomial Z(X) := (P −Q)(X) by replacing each variable Xi with ri ·X + si.
Then we have Z(t) = P − Q(τ ) = 0. S can recover t in PPT with the same
probability as A by factorizing Z [27], breaking the t-SDH assumption.

Evaluation Binding: The simulator S first asks the adversary A to commit
on the challenge point (ai)i∈[k] at which it will forge a valid batch opening con-
taining at least one incorrect evaluation. Suppose that the incorrect evaluation
happens at least at aη with the false value z′η for the rest of the proof. S then
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crafts the trusted setup of Boomy using the elements ([1]1, [t]1, . . . , [t
l]1) of the

t-SBDH problem. It can do this by uniformly randomly picking ri and si in
F that verify aη,i = ri · aη,1 + si and fixing τi := ri · t + si for i ∈ [n]\{η}
and τη = t. Since each τi is a polynomial in t, S can craft vk and pk with-
out knowing t. S then calls A to recover cm,π,π′, z, z′, (ai)i∈[k] in PPT with
probability more than negl(λ) such that both Verify(k, (ai)i∈[k], z,π, cm) and
Verify(k, (ai)i∈[k], z

′,π′, cm) output Accept and z ̸= z′. We will use B to denote
the elements of the Gröbner basis used during the Boomy protocol, R(X) and
R′(X) to denote the remainders of the reduction of the interpolated polynomial
of (ai, zi) and (ai, z

′
i) by B. Since the verification holds, we have

e(cm− [R(τ )]1, [1]2) =

|B|∑
i=1

e(πi, [Bi(τ )]2)

e(cm− [R′(τ )]1, [1]2) =

|B|∑
i=1

e(π′
i, [Bi(τ )]2)

S defines δ(X) := R′(X)−R(X) ̸= 0 (because R′(aη)−R(aη) = z′η − zη ̸= 0).
It follows that

e(cm− [R(τ )]1, [1]2)− e(cm− [R′(τ )]1, [1]2) =

|B|∑
i=1

(e(πi, [Bi(τ )]2)− e(π′
i, [Bi(τ ]2))

⇐⇒ e([R′(τ )]1 − [R(τ )]1, [1]2) =

|B|∑
i=1

e(πi − π′
i, [Bi(τ )]2)

⇐⇒ e([δ(τ )]1, [1]2) =

|B|∑
i=1

e(πi − π′
i, [Bi(τ )]2)

(2)

But since Bi ∈ I(V({ai, i ∈ [k]})) ⊂ I(V({aη})), ∀i ∈ [|B|],∀j ∈ [n],∃Qi,j(X) ∈
F [X1, . . . , Xn] such that Bi(X) :=

∑n
j=1(Xj − aη,j) · Qi,j(X), S can do the

same with δ(X) but δ /∈ I(V({aη})) so that δ will have a remainder different
from the zero polynomial. Since the quotients are all degree 1 in each variable,
the remainder will be in F. So ∀j ∈ [n],∃Dj(X) ∈ F [X] such that δ(X) :=∑n

j=1(Xj − aη,j) · Dj(X) + d. With d ∈ F\{0}. Eq. 2 can be rewritten when
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replacing π and π′ by [p]1 and [p′]1 respectively as n∑
j=1

(τj − aη,j) ·Dj(τ ) + d


T

=

 |B|∑
i=1

(pi − p′i) ·
n∑

j=1

(τj − aη,j) ·Qi,j(τ )


T

⇐⇒ [d]T =

 n∑
j=1

(τj − aη,j) ·

−Dj(τ ) +

|B|∑
i=1

(pi − p′i) ·Qi,j(τ )


T

⇐⇒ [d]T =

(t− aη,1) ·
n∑

j=1

−rj ·Dj(τ ) + rj ·
|B|∑
i=1

(pi − p′i) ·Qi,j(τ )


T

⇐⇒
[

1

t− aη,1

]
T

=

d−1 ·
n∑

j=1

rj ·

−Dj(τ ) +

|B|∑
i=1

(pi − p′i) ·Qi,j(τ )


T

⇐⇒
[

1

t− aη,1

]
T

= d−1 ·
n∑

j=1

rj ·

e([−Dj(τ )]1, [1]2) +

|B|∑
i=1

e(πi − π′
i, [Qi,j(τ )]2)


(3)

Therefor, S can break the t-SBDH problem returning
(
−aη,1,

[
1

t−aη,1

]
T

)
in PPT

using Eq. 3 with the same probability as A.

Computational Hiding: The simulator S can break the DL problem ([1]1, [α]1)
if it has access to an adversary A able to break the computational hiding prop-
erty. To do that, S first crafts the trusted setup of the Boomy protocol using
uniformly randomly picked τi ∈ F for i ∈ [n] to obtain vk and pk. S uni-
formly randomly takes k evaluations (ai, zi)i∈[k] of a polynomial P such that
∀j > 1, ai,j = 0. S supposes that P (0) = α, which is the solution of the discrete
logarithm problem. The simulator can find a polynomial that verifies P (ai) = zi
using Lagrange polynomial interpolation in X1 and then multiplies it by (X1−α)
to obtain P . P is then a polynomial of one variable and the same argument as
in [18] can be given: S computes the commit P (τ ) using the DL problem and
the trusted setup, it also computes the proofs and gives them to the adversary
A who outputs the polynomial P in PPT with probability more than negl(λ).
S can recover α by evaluating P at 0 and therefore break the DL problem with
probability more than negl(λ) in PPT.

Note on the Algebraic Group Model Note that these proofs can easily be
done in the Algebraic Group Model (AGM) presented in [13] through the proof of
the knowledge soundness property and the ”real pairing check” described in [4].
The correctness, the polynomial binding and the hiding properties have the same
proof in this model. The evaluation binding holds if the knowledge soundness also
holds. Indeed, since Verify outputted Accept for the evaluation of a polynomial
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P at (ai) to false values z′ represented by the polynomial R′(X) (the remainder
of the reduction), the adversary in the AGM can produce polynomials Qi(X)
such that

e([P (τ )]1 − [R′(τ )]1, [1]2) =

|B|∑
i=1

e([Qi(τ )]1, [Bi(τ )]2)

Then the probability of success of this ”real pairing” verification is bounded

by the probability of success of the ideal check: P (X)− R′(X) ≡
∑|B|

i=1 Qi(X) ·
Bi(X). But since z′ is not the real value of P on (ai), we have P (ai)−z′i ̸= 0 for
at least one i ∈ [k]. However, according to Hilbert’s weak Nullstellensatz [11],
this means that P (X)−R′(X) /∈ ⟨G⟩ which implies that ̸∃ Qi ∈ F[X], such that

P (X) − R′(X) =
∑|B|

i=1 Qi(X) · Bi(X), which contradicts the ideal check. This
proves that the knowledge soundness holds and then that the Boomy protocol is
secure in the AGM.

3.5 Complexity Analysis

In this section, we analyze the complexity of Boomy. In the case where n = 1
we get the same complexity as [18] and in the case where n ≥ 1 and k = 1 we
obtain the same complexity as [23].

In the following, we expose the complexity evaluations of Boomy for a poly-
nomial P of bounded degree di in each variable Xi. d :=

∏
i∈[n] di is then the

maximum number of terms in P . k denotes the maximum number of points
supported during the Open algorithm.

The prover key pk is composed of elements enabling the commitment and
proof of polynomials of maximum degrees di in variable Xi. Hence, its size is
d elements of G1. The verifier key, however, enables the verification of proofs
produced with pk. It results that vk has to support the computation of the
evaluation of the Gröbner basis and of the polynomial that is interpolating the
remainder. Since all those polynomials are at most of degree k in each variable,
vk is composed of kn elements of G1 for the evaluation of the remainder and kn

elements of G2 for the evaluation of the polynomials of the Gröbner basis.

The proof is composed of the evaluations of the Gröbner basis B and then
is of size |B| elements of G1 while the commitment is the evaluation of P only
representing one element of G1.

The computation complexity of the commitment is reduced to the evaluation
of P in G1. Since P is composed of at most d terms, it is necessary to do d scalar
multiplications in G1 and d− 1 additions in G1.

The opening is composed of several steps:

– The computation of the polynomials defining the affine algebraic variety. It
can be done in O(nk log k) multiplications in F using the construction of
Section 3.2.
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– The computation of a Gröbner basis related to the ideal generated by the
previous polynomials. It can be done in O((n+1) · 2k ·

(
n+2k−1

2k

)ω
) multipli-

cations in F with 2 ≤ ω ≤ 3 the linear algebra constant of matrix inversion
[2].

– The reduction of P by the Gröbner basis. It can be bounded byO(|B|·d log d log||P ||
+k) multiplications in F with ||P || being the product of the maximum coef-
ficients of P in each variable [26].

– The evaluation of the quotients using pk. Since the quotients are of degree
bounded by the degree of P , they need less than |B|·d scalar multiplications
in G1 and less than |B|(d− 1) additions in G1.

The verification is composed of the following steps:

– The computation of the same polynomials defining the affine algebraic vari-
ety. It can be done in O(nk log k) multiplications in F.

– The computation of the same Gröbner basis related to the ideal generated
by the previous polynomials. It can be done in O((n + 1) · 2k ·

(
n+2k−1

2k

)ω
)

multiplications in F.
– One interpolation of the remainder using the evaluation points. It can be

done in O(nk log k) multiplications in F.
– The reduction of the computed remainder by the Gröbner basis. It can be

bounded by O(|B|·d log d log||R||) multiplications in F with ||R|| being the
product of the maximum coefficients of the remainder in each variable.

– The evaluation of the remainder using vk. It can be done in less than kn

scalar multiplications in G1 and less than kn−1 additions in G1 because the
remainder is of degree bound by k in each variable.

– The evaluation of the polynomials of the Gröbner basis using vk. It can be
done in less than |B|·kn scalar multiplications in G2 and less than |B|·(kn−1)
additions in G2.

– The |B|+1 evaluation of the pairing function.

The complexity of Boomy is summarized in Table 2 below where, in the lines
commit computation, opening computation and verification computation, G+

i

and G×
i denote addition and scalar multiplication (in additive notation) in Gi,

F denotes multiplications in F. We will denote the pairing operation with P.
Note that trusted setups of univariate polynomial commitments can be com-

puted using a multi-party protocol, reinforcing its security by distributing the
knowledge of the secret among multiple entities. An adversary would have to
corrupt every participant to recover the secret τ of the trusted setup [19]. More-
over, univariate polynomial commitments can be adapted and reused without a
loss of security for the Boomy protocol, as proposed for [23] by the authors of
[30]. This directly enables the use of trusted setups generated from multi-party
protocols without the need to redo the heavy computation associated.

13



Complexities

pk size dG1

vk size (kn)G1, (kn)G2

proof size |B|G1

commit size 1G1

commit computation (d− 1)G+
1 , dG×

1

opening computation

O(nk log k + |B|d log d log||P ||+

k + (n+ 1) · 2k ·
(
n+2k−1

2k

)ω
)F,

O(|B|·d)G+
1 , O(|B|·d)G×

1

verification computation

O((n+ 1)k log k + |B|d log d log||R||+

(n+ 1) · 2k ·
(
n+2k−1

2k

)ω
)F, O(kn)G+

1 ,

O(kn)G×
1 , O(|B|·kn)G+

2 , O(|B|·kn)G×
2 , (|B|+1)P

Table 2. Complexity of Boomy in the general case

4 Special Cases

4.1 Cartesian Product

In the construction of the polynomials that define the affine algebraic variety
presented in Section 3.2, n univariate polynomials are built first. The variety
corresponding to these first n polynomials is the Cartesian product of the roots
of the univariate polynomial. The last interpolation polynomial added in the
construction is used to ”filter out” some of the points of the Cartesian product
(see the Example in Section 3.2). Therefore, if the variety is by construction a
Cartesian product, this last polynomial is useless (since it evaluates to the zero
polynomial adding no element to the ideal).

The first n polynomials directly form the reduced Gröbner basis since each of
them is a univariate polynomial in different variables and their leading coefficient
is one. It follows that the proof contains exactly n elements and the complexity
of the opening computation is then reduced compared to the general case.

4.2 Points Distinct in One Dimension

In the case where, for a given dimension j, all of the j-coordinates of the eval-
uation points are different, the proof can be reduced to n elements. The com-
putation of a Gröbner basis can also be simplified because it can be obtained
by only computing Lagrange polynomial interpolations in one dimension. This
case may occur in many applications enabling drastic reductions in verifier and
prover computations.
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Claim. For any dimension n, for any set of points {ai ∈ Fn : i ∈ [k]} such that
∃m ∈ [n] : ∀(i, j) with i ̸= j we have ai,m ̸= aj,m, we can build the reduced
Gröbner basis of the ideal of the variety {ai ∈ Fn : i ∈ [k]} simply by using
Lagrange polynomial interpolations.

Proof. Let n ∈ N, fix V := {ai ∈ Fn : i ∈ [k]} such that ∃m ∈ [n] : ∀(i, j), i ̸=
j ⇒ ai,m ̸= aj,m. Let I(V) denote the ideal of the polynomials vanishing at
the points of V. As [11] did with two variables, using Lagrange polynomial
interpolations, we will compute the n− 1 intermediate polynomials hi(Xm) for
each i ̸= m:

hi(Xm) :=

k∑
j=1

aj,i
∏
l ̸=j

Xm − al,m
aj,m − al,m

Let f(Xm) :=
∏k

i=1(Xm − ai,m).
First, let us show that:

I(V) =⟨X0 − h0(Xm), X1 − h1(Xm), . . . , Xm−1 − hm−1(Xm),

f(Xm), Xm+1 − hm+1(Xm), . . . , Xn − hn(Xm)⟩

1. It is straightforward to prove the inclusion ⟨X0−h0(Xm), X1−h1(Xm), . . . ,
Xm−1−hm−1(Xm), f(Xm), Xm+1−hm+1(Xm), . . . , Xn−hn(Xm)⟩ ⊆ I(V).
Indeed, f(Xm) vanishes by construction at {ai,m : i ∈ [k]}. It is also the case
for any Xi − hi(Xm) at {aj,i; j ∈ [k]} because ∀j ∈ [k], hi(aj,m) = aj,i.

2. For the other inclusion, we will suppose that the polynomial P (X) vanishes
at {ai : i ∈ [k]}. Giving the monomial order Xi > Xi+1 and Xm < Xi (so
we have X0 > X1 > · · · > Xm−1 > Xm+1 > · · · > Xn > Xm), the leading
term of f is Xk

m and the leading term of Xi − hi(Xm) is Xi. It follows
that the reduction of P by f and (Xi − hi(Xm))i∈[n]\{m} has a polynomial

composed of the monomials 1, . . . , Xk−1
m as remainder. Thus, the remainder

R is a univariate polynomial of degree at most k− 1 or the zero polynomial.
Since ∃(Q1, . . . , Qn) ∈ F[X] such that

P (X) = Qm(X) · f(Xm) +

n∑
i=1,i̸=m

Qi(X) · (Xi − hi(Xm)) +R(X)

it follows that

R(X) = P (X)−Qm(X) · f(Xm)−

 n∑
i=1,i̸=m

Qi(X) · (Xi − hi(Xm))


Since P , f and Xi − hi(Xm) vanish at {ai : i ∈ [k]}, R also vanishes at
those different k points. Since R is a univariate polynomial of degree at
most k − 1 with k distinct roots, R is the zero polynomial, proving that P
is in ⟨X0 − h0(Xm), X1 − h1(Xm), . . . , Xm−1 − hm−1(Xm), f(Xm), Xm+1 −
hm+1(Xm), . . . , Xn−hn(Xm)⟩. Since P can be any element of I(V), we have
the second inclusion.
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Secondly, let us prove that B := {Xi − hi(Xm) : i ∈ [k]\{m}} ∪ {f(Xm)} is
the reduced Gröbner basis of I(V).

1. We have previously shown that for any P ∈ I(V), its remainder of the
reduction by B is the zero polynomial. It follows that the leading term of P
is divisible by the leading term of elements of B which proves that B is a
Gröbner basis of I(V).

2. By construction, the leading coefficient of any element of B is 1. It is clear
that with the order X0 > X1 > · · · > Xm−1 > Xm+1 > · · · > Xn > Xm,
the leading term of Xi − hi(Xm) which is Xi does not divide any term of
f(Xm) or Xj−hj(Xm) with i ̸= j. And it is also clear that the leading term
of f(Xm) which is Xk

m does not divide any term of Xi − hi(Xm) (because
∀i ∈ [k]\{m}, Xi > Xm so the leading term is Xi). It follows that B is the
reduced Gröbner basis of I(V).

Corollary 1. Using the construction given in Section 3.2, fix B the reduced
Gröbner basis. The remainder of any P ∈ F[X1, . . . , Xn] by the reduction of B
is a polynomial in one variable.

Proof. This proposition is trivial since in the construction of Section 3.2, the
leading terms of the polynomials of the Gröbner basis B are Xi if i ̸= m or Xk

m,
therefore the remainder is composed of the monomials 1, Xm, . . . , Xk−1

m .

It follows that the remainder R(X) can be directly computed once again
using a Lagrange polynomial interpolation in variable Xm. In this case, the
interpolated polynomial is already the remainder of its reduction by B making
this step of computation unnecessary and the verifier key vk reducible to only k
elements. The complexity is summarized in Table 3 below.
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Complexities

pk size dG1

vk size kG1, (k + n)G2

proof size nG1

commit size 1G1

commit computation (d− 1)G+
1 , dG×

1

opening computation
O(nk log k + nd log d log||P ||+k)F,

O(nd)G+
1 , O(nd)G×

1

verification computation

O((n+ 1)k log k)F,

kG+
1 , (k + 1)G×

1 , O(nk)G+
2 ,

O(nk)G×
2 , (n+ 1)P

Table 3. Complexity of Boomy when the evaluation points are distinct on at least one
dimension

5 Applications

5.1 Verifiable Computation

Verifiable computations are being used more and more in several fields, such
as cloud computing to ensure the correct behavior of an external server [29],
or blockchain to improve scalability [25]. Verifiable computation is the main
area of application of [23], as far as we know. This is a very special case of
multivariate polynomial commitment, as the programs that are verified are often
represented as a series of univariate quadratic polynomials [14]. It can therefore
also be represented as a bivariate polynomial where the degree of one of its
two variables is at most two [9]. We believe that Boomy can be applied to these
techniques to build proofs of several evaluation points at the same time, enabling
new ways to make proof aggregations, accelerating their protocols or reducing
their communication complexity.

5.2 Data Availability Sampling

One of the main challenges in blockchain is the scalability issue. To address
this issue, [1] proposes making light clients able to verify the availability and
authenticity of block data. They based their approach on the proof of erasure
codes, more exactly on two-dimensional (or more) Reed-Solomon codes to make
data availability sampling [16]. Later, the Ethereum blockchain planned to make
this protocol a core component of their sharding protocol and create a new
transaction metadata type called blobs [7] based on polynomial commitments.
However, they switched their paradigm from fraud proofs of [1] to validity proofs,
i.e., using polynomial commitments. The proto-Danksharding upgrade of the
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blockchain is based on the commitment protocol in [18] to commit each line as a
univariate polynomial. The two-dimensional encoded data can then be verified
in batches of 16 evaluations, deriving the commitments of the second dimension
extension using the homomorphic properties of the [18] polynomial commitment.
Each validator of the blockchain, that acts as the light clients described in [1],
will then have to verify two rows and two columns of encoded data.

We claim that their scheme can benefit from our polynomial commitment
protocol which would reduce the size of communications, one of the new chal-
lenges that have emerged following Ethereum’s sharding proposal. Indeed, by
considering the block of data one bivariate polynomial, Boomy reduces the size
of the commitment to only one element. Using our special case of Section 4.1,
it is possible to provide proofs with two elements for certain subsets of elements
in rows or columns. Note that two proofs of elements of the same row (or col-
umn) can share one element among them using the correct monomial ordering.
Therefore, it is possible to factorize these elements to reduce the global size of
the proofs. It is also possible, using the special case described in Section 4.2,
to split each column or row into random elements of each row (using the case
where points are all different in one variable) or column respectively (using the
case where points form a Cartesian product because each column contains 16 el-
ements per row) in the manner described in [5]. This has the advantage of having
a better distribution of the data in the network reducing the number of required
online validators to reconstruct the data from shards. All these improvements
can help to cut down communication complexity, tackling the major network
challenges posed by sharding [20].

5.3 Verifiable Information Dispersal

Verifiable information dispersal (VID) [24, 8] is rather close to data availability
sampling. The aim is slightly different since it focuses on securely distribut-
ing data and ensuring its integrity. In the data availability sampling used in
Ethereum, validators ensure that, at a given time, the data are available and
correct. Instead VID disperses the data among peers, each one receiving a shard,
and provides a guarantee with each shard that it came from the same piece of
information and is correct. Blockchains’ scalability can also benefit from this
protocol: rollups and validiums (a validium being a rollup which stores its data
off-chain) can claim that a committee has received the correct data and made it
available [22]. VID is used by the committee to ensure the correct reception and
integrity of the data, its members certify this via a threshold signature sent to
the blockchain.

Boomy can be beneficial to VID by reducing communication complexity,
paving the way for new protocols for storage-constrained systems like blockchains.
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