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Abstract

The discrete logarithm problem forms the basis of security of many practical schemes. When the
number of bases is more than one, the problem of finding out the exponents is known as the multi-
dimensional discrete logarithm problem. It arises in several circumstances both in groups modulo
some integer or elliptic curve groups. Gaudry and Schost proposed a low-memory algorithm for this
problem which performs a pseudo-random walk in the group. Tag tracing is a technique to practi-
cally speed-up a pseudo-random walk. We have incorporated this technique into the Gaudry-Schost
algorithm to observe the results of practical differences in time. We implemented the new algorithm
in subgroups of Z∗

p. Such subgroups are cryptographically relevant in the context of electronic voting
and cash schemes. Our algorithm showed a substantial decrease in run-time with a gain in time by
some integral multiple. For example, on a single core of Intel Xeon E7-8890 @ 2.50 GHz we showed
our algorithm required 12 times less time than the Gaudry-Schost algorithm. This leads to better
practical behaviour of the algorithm over such groups. We also point out a few more optimizations
that can be adopted along with future applications for other scenarios.

1 Introduction

Cryptographic methods used in the earlier half of the twentieth century were susceptible to attacks by
adversaries as the exchange of keys happened over an insecure channel. This defect was eradicated by
Diffie and Hellman [dif]. Their development led to asymmetric or public-key cryptography based on the
hardness of the discrete log problem.
The discrete logarithm problem (DLP) is defined as: Given a cyclic group G, its generator g of order N
for some N ∈ N and an arbitrary element h ∈ G, find the exponent a ∈ [0, N) such that h = ga. One
can easily think this definition to be for dimension one as a single generator is sufficient to generate G.
This definition can also be extended for higher dimensions as follows.

Definition 1. Multi-Dimensional DLP: Let G be an abelian group. Suppose g1, g2, . . . , gD, h ∈ G and
N1, N2, . . . , ND ∈ N for some positive integer D. The D-dimensional discrete logarithm problem is to
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find integers (if they exist) a1, a2, . . . , aD ∈ N such that

h =
D∏
i=1

gi
ai (1)

where ai ∈ [0, Ni) ∀ i = 1, 2, . . . , D.
We assume that the integers Ni are odd ∀i, 1 ≤ i ≤ d and N = N1 ×N2 × . . .×ND.

Note, that an equivalent formulation of the problem for additive abelian group allows negative ex-
ponents. 1

Applications: The multi-dimensional discrete logarithm problem arises in several situations which
include structures as curves or a group modulo some integer. Computation of DLP in an interval is one
of the steps when counting points on curves over finite fields [GH00, GS04, MCT02, Wen06]. Gaudry
and Schost [GS04] developed their algorithm for the case of curves of genus 1. After using Schoof-type
algorithm, the remaining problem is a multi-dimensional DLP for some D ≥ 3. Thus, any enhancement
in the Gaudry-Schost algorithm would also provide a general development to point counting.
Gallant, Lambert, and Vanstone (GLV) proposed an approach [GLV01, GLV00] to speed up elliptic
curve arithmetic. Their method in [GLV00] requires expressing addition of a point P for some integer
n, i.e., [n]P = [n1]P + [n2]ψ(P ) for some integers n1, n2 where ψ is an endomorphism. The bound on
n1, n2 is that |n1|, |n2| ≈

√
n. Clearly, this is an example of 2-dimensional DLP. For dimensions that

exceed 2, other examples of such work are present in [GLS09, GS08]. The same approach of translating
the work of writing a multiple of a point to a multi-dimensional DLP [JD08] can happen in the case of
Koblitz curves [Kob91], which are ordinary elliptic curves over F2 (i.e., the group E(F2m))) leading to
a 2-dimensional DLP. Similar things happen in curves of genus 2 over F2 resulting in a 4-dimensional
DLP. The multi-dimensional DLP also arises in the situation when constructing an electronic cash
scheme [Bra93] and election scheme [CGS97].

To solve the multi-dimensional discrete logarithm problem, Matsuo et. al. [MCT02] adopted the
baby-step -giant -step algorithm [Sha71]. The time and space complexity of this algorithm were O(

√
N).

Pseudo-random walks had earlier been used [Pol78, PM99, GPR13] in case of 1-dimensional DLP, which
reduced the space requirement. Gaudry and Schost [GS04] proposed a low-memory algorithm using
pseudo-random walks (with exponents of gi's belonging to two types of sets called tame or wild sets)
which can be adapted for solving for 2-dimensional DLP. This algorithm can be generalized for the
multi-dimensional situation for any dimension.

The central idea in the Gaudry-Schost algorithm is to do a pseudo-random walk such that it is
deterministic. The elements of the walk are the powers of the bases gi. Depending on the bound on the

1Using same notations as in Definition 1, let G be an additive abelian group. The problem would be to find
a1, a2, . . . , aD ∈ N such that

h =

D∑
i=1

[ai]gi (2)

where [ai]gi means gi (or −gi) added absolute value of ai times if ai is positive (or negative) and ai ∈ [−ni, ni]. The two
definitions are equivalent when assuming 2ni + 1 = Ni depending upon the case at hand.
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exponents of gi's such walks are called tame or wild walks. As such walks happen in a finite group, they
are bound to collide. If the exponents of gi's are tracked when such walks are performed, then one can
easily find out the multi-dimensional discrete logarithms. Several improvements to the Gaudry-Schost
algorithm have been proposed assuming a specialized structure of the group [GR10, ZZY+19]. Generic
progress has also been suggested [GR09, WZ21] which considers special choice of tame and wild sets.
Good options of tame and wild sets reduce the number of iterations that may be actually required to
get a collision. But it does not reduce the costs associated with a single iteration. So the question that
arises in this condition is:

• Can we somehow reduce the work done per iteration?

The major work while performing each step of the walk is to multiply two elements. The other jobs
are minor as they comprise finding some index and keeping track of the exponents. As the size of the
group increases, the cost of multiplication becomes all the more pronounceable.

The principle of tag tracing that has previously been applied in pseudo-random walks of the Pollard
Rho algorithm reduces multiplications in the entire group and performs necessary multiplications in
some smaller subsets of the group. We try to understand how this will result if applied in the case of
the Gaudry-Schost algorithm for greater dimensions.
We have described the entire procedure to incorporate tag tracing into the Gaudry-Schost algorithm
in Section 5. An important scenario of application of multi-dimensional discrete logarithms arises in
the set-up of electronic cash scheme [Bra93] and election scheme [CGS97]. We have implemented our
algorithm in the case of such groups. We observe that there is a significant speed-up. In particular,
even with limited resources we observed about 12 times acceleration in time for large-sized groups.
Improvements are bound to be more for better choices of parameters, which has been suggested. This
reduction in the time required should give good amount of gain in real-world applications.

1.1 Our Contributions

We focus on the multi-dimensional discrete logarithm problem for subgroups of Z∗p. Our main results
are as follows:

1. We suggest an algorithm (Algorithm 5) that would help in reducing the practical cost when
Gaudry-Schost algorithm is used to solve multi-dimensional discrete logarithm problem. We aim
to reduce the work per iteration. Tag tracing is a method to speed up the pseudo-random walk
by reducing the number of multiplications and it has previously been applied while traveling the
walk of Pollard Rho algorithm [CHK12]. We extend tag tracing for multi-dimensional cases, and
in this work, we apply tag tracing to the Gaudry-Schost algorithm. The theoretical analysis shows
a reduction in time, with no increase in memory requirement.

2. We present the results of our implementation (in Section 9) of Algorithm 5 for subgroups of Z∗p.
Such groups are used in the construction of electronic cash and voting schemes. We observe that
there is a huge gain in time with the small computational resource. Specifically, for large groups,
we obtained about 12 times speed-up.

3. We have suggested certain future research directions [Section 10] that are sure to boost the present
status.
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1.2 Paper Organization

The rest of the paper is organized as follows: We describe the Gaudry-Schost algorithm in Section 2.
We next try to understand the motivation behind applying tag tracing to the Gaudry-Schost algorithm
in Section 3. Sections 4 and 5 notes the entire strategy of inclusion of tag tracing into the Gaudry-
Schost algorithm. Specifically, Algorithm 5 provides the entire process. The corresponding theoretical
difference in the cost is given in Section 6. In Section 7, a procedure to remove costly modulo p
reductions has been noted. Section 8 gives the complete description of the functions and the values of
the parameters that would be required for tag tracing in subgroups of Z∗p. The results obtained after
the implementation of these strategies are presented in Section 9. Some future research directions are
pointed out in Section 10. In Section 11 we summarize the conclusions that can be drawn from our
study.

2 Gaudry-Schost Algorithm Adapted to Multi-Dimensional Discrete
Logarithms

Gaudry and Schost [GS04] suggested a low-memory, parallelizable algorithm using a 2-dimensional
pseudo-random walk. The proposed method is efficient for solving 2-dimensional discrete logarithm
problem and hence can be extended to the multi-dimensional case.
The basic idea of the algorithm is to perform a deterministic, pseudo-random walk with the help of two
specially designed sets called tame and wild sets. A point

∏D
i=1 gi

xi is called a tame point or a wild point
depending upon whether the exponents (x1, x2, . . . , xD) lie in tame or wild set respectively. Generally,
a wild point is perceived to be of the form h

∏D
i=1 gi

yi where (a1 + y1, a2 + y2, . . . , aD + yD) is a member
of the wild set.

The algorithm proposed by Gaudry and Schost [GS04] consists of offline and online phase. In the
initial step of the offline phase, two positive integers ns,Mgs are chosen such that

ns > log(max(N1, . . . , ND))

and

Mgs ≈
N

1000 log2(N)
(3)

The purpose of choosing ns is to define a selection function

S : G→ {0, 1, . . . , ns − 1} (4)

for partitioning the group into ns components. Given any element of the group, the selection function
outputs some integer, which is the partition to which that element belongs. The function S should be
such that the distribution of the image of elements of G in the domain set {0, 1, . . . , ns − 1} is almost
uniform. It may be a hash function with good statistical properties.
Next, ns elements are pre-computed to perform a walk. These elements are stored in a pre-computed
table P as:

P := {wj =
D∏
i=1

gi
ei,j | −Mgs < ei,j < Mgs, j = 0, 1, . . . , ns − 1} (5)
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The pseudo-random walk is defined as below:
Let vk =

∏D
i=1 gi

xi,k denote the k−th element of the walk. Then the (k+ 1)-th element vk+1 can be
calculated as

vk+1 = vk · wS(vk) (6)

and its exponents

(x1,k+1, x2,k+1, . . . , xD,k+1) = (x1,k + e1,S(vk), x2,k + e2,S(vk), . . . , xD,k + eD,S(vk)) (7)

Equations 6 and 7 is combined and expressed by the walk equation

walk(vk, x1,k, x2,k, . . . , xD,k) = (vk+1, x1,k + e1,S(vk), x2,k + e2,S(vk), . . . , xD,k + eD,S(vk)) (8)

The function walk is so constructed with the help of S so that it is a deterministic pseudo-random
function. In the online phase, the pseudo-random walks are distributed parallely [VOW94, PM99] over
some processors. These walks continue until at least one element is found which is a product of gi's
as well as the product of h, gi's with known exponents belonging to tame set and wild set respectively.
Such a scenario is called finding a match between the tame and wild sets.

2.1 Run-time Analysis

The complexity analysis of the Gaudry-Schost algorithm is done by using birthday paradox [SEL95,
NS90]. Three heuristic assumptions done in the process are: The pseudo-random function exhibits
similar behavior as that of a random function; distinguished point probability is high enough; for any
specific type of walk (tame or wild), the bounds and the walk function are so chosen that child of tame
(or wild) point is also tame (or wild respectively) for a sufficient number of steps. The last condition is
important in practice, as better choices of tame and wild sets minimize the number of group operations
required.

2.2 Collision Detection

The process of finding a match between tame and wild walks requires the storage of the previously
generated elements of the walk. There are several strategies [SSY82, Niv04] to keep this storage size
optimal. The common collision detection algorithms of one-dimensional discrete logarithm problem like
Floyd’s cycle finding [Knu14], and Brent’s algorithm [Tes98] also tries to optimize the space constraints.

However, the most efficient of all these methods is the method of distinguished points [Qui95]. A
distinguished point is any element of the group G that satisfies certain conditions. These conditions are
defined in such a way that they are easy to check. For example, given a fixed encoding of the group,
one can define distinguished points as those elements of the group that have a certain number of most
(or least) significant bits equal to zero. Technically, it may be said that a point is distinguished if its
image by a second carefully chosen hash function is zero. This hash function should be designed so that
it is not too hard to compute and is independent of any arithmetic property of the element. Let ρD
denote the probability that a point is distinguished. As we try to find a match between distinguished
points instead of any points arising in the walk, ρD extra iteration of the walk function will be required
after a collision is already found. The goal here is to balance the cost of extra iterations with the cost
of storing elements so that the storage table is of a manageable size and the extra iterations are close to
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optimal. In practice, ρD = A√
N

for some constant A so that the storage space requirement is constant.

The distinguished point method can be parallelized [PM99] and leads to speed-ups that are linear in
the number of processors. To optimize the space overhead cost, the distinguished points are stored in
an easily searchable structure such as a binary tree.
As complete information regarding each point is available, one can choose some positive integer δ and
define zi to be distinguished if δ least significant digits are zero. This is the definition that we shall use
in our implementations. This can be easily tested by checking the equation below:

zi is distinguished if 2δ|zi (9)

The number of iterations to reach a distinguished point is 2δ in this case. The choice of δ should be
optimized for the efficiency of the algorithm.

Each pseudo-random walk continues until a distinguished point is reached. The distinguished points
that occur in the tame and wild walks are stored in two different tables. These tables are kept sorted
to ease the process of finding a common element.

2.2.1 Abandoning a walk

There is a possibility that a walk may never reach a distinguished point. To deal with such a situation,
Van Oorschot and Wiener [PM99] defined a bound on the number of steps after which it can be
abandoned. They set this length as L = 20

ρD
. Then the proportion of walks that exceed this length is

bounded by

(1− ρD)
20
ρD ≤ (exp(−ρD))

20
ρD = exp(−20)

Any abandoned trail is 20 times longer than average, the proportion of walks that is abandoned is about

20exp−20 < 5× 10−8

The quantity on the right side is negligible and so such long fruitless walks may be abandoned at any
time.

2.3 Obtaining the Multi-Dimensional Discrete Logarithm

Let z be a point that arises as a distinguished point both in tame and wild walks. Then for some
(x′1, x

′
2, . . . , x

′
D) ∈ TGS and (y′1, y

′
2, . . . , y

′
D) ∈ WGS , z is of the form

z =
D∏
i=1

gi
x′i = h

D∏
i=1

gi
y′i

Then, h =
∏D
i=1 gi

x′i−y′i . The multi-dimensional discrete logarithm is obtained as

ai = x′i − y′i ∀ 1 ≤ i ≤ D (10)

2.4 Algorithm

Let us now discuss the technical details related to the Gaudry-Schost algorithm. Here we discuss both
phases of the algorithm along with the complexities.
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2.4.1 Offline Phase

The pseudo-random walk (equations 6 and 8) requires the knowledge of the pre-computed table P as
in 5. In the offline phase (Algorithm 1), the aim is to compute such a table consisting of ns random
elements

∏D
i=1 gi

ei , |ei| < Mgs ∀ 1 ≤ i ≤ D.

Algorithm 1: Precomputation in Gaudry-Schost algorithm.

Input: D, g1, g2, . . . , gD, ns,Mgs.
Output: Table P consisting of ns products of elements gi’s for i = 1, 2, . . . , D.

1 Set P as an empty set
2 for i := 1 to ns do
3 Choose D integers e1, e2, . . . , eD randomly from (−Mgs,Mgs) //Choosing random

exponents.
4 Compute the product as prod←

∏D
i=1 gi

ei //Computing product with chosen exponents.
5 Append the product prod to P

6 Return P

2.4.2 Online phase

We now present the algorithms for the server side and the tame and wild processes. We will assume
that distinguished points are stored in an easily searchable structure. Due to this, searching and storing
times are polynomial and so can be neglected.
The algorithm for the server side, as given in Algorithm 2 receives points from the tame and wild
servers respectively. On receiving a point, either from the tame or wild side, it checks whether it has
been previously obtained from the different side also. The multi-dimensional discrete logarithm is solved
if it is found. Else, it just appends the point to the table of distinguished points allotted for that side.
The algorithm for the tame and wild processor is described in Algorithm 3. It initiates the walk from
a random tame (or wild) point and continues until it hits a distinguished point. It is ensured that
the length of the walk is bounded so that it does not fall into the trap of obtaining each point as
non-distinguished.

2.5 Different Choices of Tame and Wild Set

Efficient design of tame and wild sets will expedite the process of finding common points between such
walks. Gaudry and Schost [GS04] proposed their algorithm taking the tame and wild set as orthotopes
in Zd. The wild set was defined to be a translation of the tame set. Galbraith and Ruprai [GR09] pro-
posed different choices for the tame and wild sets. The key idea behind their proposal was: Constant
size of overlap will lead to constant expected running time for all instances of the problem. Thus their
expected running time is the same for best, average, and worst cases. Wu and Zhuang [WZ21] con-
structed another pair of tame and wild sets, with the second framework being asymptotically optimal.
In the 1-dimensional case, the multi-dimensional discrete logarithm problem (Definition 1) is: Given
g, h ∈ G and N ∈ N, finding 0 ≤ a < N such that h = ga. This can also be framed as: Finding x,
0 ≤ x < 1 such that h = gxN .
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Algorithm 2: The Gaudry-Schost algorithm: server side.

Input: g1, g2, . . . , gD, h ∈ G, N1, N2, . . . , ND ∈ N.
Output: Integers a1, a2, . . . , aD such that h =

∏D
i=1 gi

ai .
1 DT := [ ], DW := [ ]//Empty tables for storing distinguished points

2 while
(

no collision between tame and wild points has been found
)

do

3 Receive a point (z, b1, . . . , bD) from the tame or wild processor

4 if
(
z is received from a tame processor

)
then

5 if (z, y1, . . . , yD) ∈ DW for some y1, . . . , yD then
6 Send terminate signal to all client processors
7 return (b1 − y1, b2 − y2, . . . , bD − yD)

8 else

9 Append (z, b1, . . . , bD) to DT

10 else

11 if
(

(z, x1, . . . , xD) ∈ DT for some x1, . . . , xD

)
then

12 Send terminate signal to all client processors
13 return (x1 − b1, x2 − b2, . . . , xD − bD)

14 else

15 Append (z, b1, . . . , bD) to DW

In the second variant, Wu and Zhuang [WZ21] defined the tame and wild sets for dimension 1 as:

T =
[
0, N

]
, (11)

W =
[
xN − αN

2
, xN +

αN

2

]
(12)

such that 0 ≤ α ≤ 1.
For D > 1, the tame and wild sets were just the products as the dimensions are independent of each
other.

T =
[
0, N

]D
, (13)

W =
[
xN − αN

2
, xN +

αN

2

]D
(14)

The complexity analysis is based on non-uniform birthday problem as the size of overlap was not
the same throughout.

Theorem 1. (Section 4.2, [WZ21]) The expected average case complexity with the tame and wild set
choice as provided in equations 13 and 14 is 1.0171D

√
πN . The expected worst case complexity is

2
D
2

√
πN .

The analysis of complexity has to be done considering: a pseudo-random walk can never behave as
that of a random walk, so some correctional factor has to be included.
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Algorithm 3: The Gaudry-Schost algorithm: tame or wild processor.

Input: g1, g2, . . . , gD, h ∈ G, D,N1, N2, . . . , ND ∈ N, function walk, maximum length L of
consecutive non-distinguished points.

Output: A distinguished point z along with exponents of gi for it: (z, x1, . . . , xD) such that
z =

∏D
i=1 gi

xi if tame processor and z := h
∏D
i=1 gi

xi if wild processor .

1 while
(

no terminate signal received from server
)

do

2 Choose (x1, x2, . . . , xD) from the tame set T or wild set W depending upon the walk//
Selecting a random tame or wild point for initiating the walk

3 Set z :=
∏D
i=1 gi

xi if tame processor or z = h
∏D
i=1 gi

xi if wild processor
4 Set Length := 0

5 while
(
z is not a distinguished point and Length is less than L

)
do

6 j ← S(z)//Compute the index S(z) for the current point and store it
7 Find the entry wj of the pre-computed table P corresponding to the index of current

point//Finds a pre-computed random power of gi's along with the exponents
8 z ← z · wj//single multiplication for getting the next element of the walk with help of

pre-computed elements
9 (x1, x2, . . . , xD) = (x1, x2, . . . , xD) + (e1,j , e2,j , . . . , eD,j)//Updating the current

exponents by adding it with exponents from line 7
10 Length← Length+ 1

11 Supply (z, x1, . . . , xD) to the server.

3 Speeding-up Pseudo-Random Walks

The main crux of the Gaudry-Schost algorithm, applied to any dimension to solve the multi-dimensional
discrete log problem is to perform a pseudo-random walk and search for collisions. To keep storage
manageable, complete information of every point of the walk is not stored. A point is only required
to be known completely only if it satisfies some condition, which is generally taken to be an easily
testable distinguished point condition. Thus multiplication at each step of the walk is unnecessary if
the information required to test the condition can be somehow extracted. This would be particularly
efficient in large-sized groups where multiplication is costly. The principle of tag tracing [CHK12] can
traverse through a random walk without fully computing each point. It is adapted to the distinguished
point collision detection method.
Tag tracing was originally introduced in the context of the Pollard Rho algorithm [Pol78]. The Pollard
Rho algorithm is a generic algorithm for solving the discrete logarithm problem. The basic idea remains
the same as the Gaudry-Schost algorithm, which is to perform a pseudo-random walk until a collision
occurs. The walk is performed with the help of a pre-computed table. For detecting collisions, the
distinguished point approach is the most efficient method. The only notable difference between the
Gaudry-Schost walk and the Pollard Rho type of walk is that while the former aborts the walk on arriving
at a distinguished point, the latter continues. But this difference does not translate to any difference
in tag tracing as the adaption of this method to pseudo-random walks requires the computation of
a point entirely when a distinguished point is reached. Barring this, the other variation is that the
Gaudry-Schost algorithm performs two types of walks referred to as tame and wild walks, while the
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Pollard Rho algorithm performs a single kind of walk.
Practical implementations [CHK12] of tag tracing provided concrete speed-ups. Improvement in run-
time was demonstrated for prime order subgroups of multiplicative groups of finite fields. Two types of
fields were considered: Small characteristic, large extension degree fields, and prime order fields. Due to
the similarity between the overall technique of finding logarithms using pseudo-random walk, it is quite
likely that advantages obtained from tag tracing should be applicable in the case of the Gaudry-Schost
algorithm as well.
Designing better tame and wild sets for the Gaudry-Schost algorithm reduces the number of iterations
required. As a result, the asymptotic complexity is reduced. The concept of tag tracing reduces the
work that is required to be done per iteration, by reducing the number of multiplications in the larger
group. The consequence of this is some actual gain in time. As a result, the overall cost decreases. Here
we desire to obtain such a practical advantage in the multi-dimensional discrete logarithm case also.

4 The Method of tag tracing

The tag tracing method reduces the number of field multiplications with the help of a larger pre-
computed table and some easily computable functions. The addition in cost in the offline phase to
compute a larger table can be parallelized. In the steps where a point has not been computed entirely,
the task of knowing whether a point is distinguished or not is achieved with the help of some efficiently
designed functions. These functions are so constructed that they are easier to compute than a field
multiplication. A full product computation is required after a certain number of steps.

5 Application of tag tracing in the Online Phase of Gaudry-Schost
Algorithm

Let us discuss the adaption of this method for solving multi-dimensional discrete logarithms using
Gaudry-Schost [GS04] algorithm. Like the original version of the Gaudry-Schost [GS04] algorithm, two
phases are present.

5.1 Offline phase

Initially, a table structurally similar to P in equation 5 of the original Gaudry-Schost algorithm is
computed. For constructing the table, two positive integers r for size and Mtt for the bound on exponents
are decided. The table computed initially for applying tag tracing is of the form:

M := {wj =

D∏
i=1

gi
ei,j | −Mtt < ei,j < Mtt; j = 0, 1, . . . , r − 1} (15)

The next step aims to compute all those elements which are products of at most l elements from
M. This integer l is chosen after careful analysis. This can be thought of as computing the union of
sets M(0) ∪M(1) ∪ . . . ∪M(l), where each M(k) is the product of exactly k elements from the set M,
k = 0, 1, . . . , l. The set M(0) consists of only the identity element of the group and the set M(1) is
the set M. Apart from these two, each M(k+1) can be computed from M(k) by multiplying exactly
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one element of M at a time to every element of Mk. So whatever the size of r, l the computation of
each M(k) can be parallelized. We will denote this union as Ml henceforth, which is the multiplier set
consisting of at most l products of elements of M.

Theorem 2. (Lemma2, [CHK12])) The total number of elements in Ml is
(
r+l
r

)
.

The algorithm for the offline phase is given in Algorithm 4. Steps 2 to 5 compute the table M of
random products. Steps 7 to 17 computes M(k) for each k = 2, . . . , l. To compute M(k), product of
any (k − 1) terms can be known from M(k−1) and this product is multiplied with an element of M.
The cost of computing an element of M(k) is just a single multiplication once the factor in M(k−1) is
accessed with the help of known indices.

Technically, the sets obtained from equation 15 are:

M(0) = {1G}
M(1) =M

M(2) = {wj1wj2 |0 ≤ jk ≤ (r − 1) ∀ k = 1, 2}
...

M(l−1) = {wj1wj2 . . . wjl |0 ≤ jk ≤ (r − 1) ∀ k = 1, 2, . . . , l}

where 1G denotes the identity of G and wj ’s are listed in equation 15.

Ml = M(0) ∪M(1) ∪M(2) ∪ . . . ∪M(l) (16)

= {
l∏

k=1

wj1wj2 . . . wjk , 1G|0 ≤ jk ≤ (r − 1)∀k = 1, 2, , . . . , l} (17)

From equation 15, each exponent is absolutely bounded by Mtt. From equation 17, the exponents of
gi’s absolutely bounded above by l.Mtt. Due to this, Mtt has to be chosen so that

l.Mtt ≈Mgs ≈
N

1000 log2(N)
(18)

Choosing l: From Theorem 2 we see that increasing l will lead to a larger table. As the table has to
be accessed at each step during the online phase, it is necessary to keep this size optimal. On the other
hand, the approximation 18 provide another bound for selecting l.

Storing the table Ml: Each entry of table Ml comprises of three components. The product of

elements corresponding to indices j1, j2, . . . , jk of M (equation 15) is
∏k
t=1wjt =

∏D
i=1 gi

∑k
t=1 ei,jt . The

exponent information and this product is stored in Ml as:
[(j1, j2, . . . , jk),

∏k
t=1wjt , (

∑k
t=1 e1,jt ,

∑k
t=1 e2,jt , . . . ,

∑k
t=1 eD,jt)]. For easy maintenance, the table Ml

can be sorted according to multiplier combination information, or a hash table technique can be used.

11



Algorithm 4: Offline phase when tag tracing is applied to Gaudry-Schost algorithm.

Input: r,Mtt and l ∈ N.
Output: Multiplier table Ml consisting of

(
r+l
r

)
entries with products of elements gi’s for

i = 1, 2, . . . , D where each entry consists of a set of indices, the product, and the
exponent information.

1 Set M← [[(0), 1, (0, 0, . . . , 0)]]
2 for j := 0 to (r − 1) do
3 Choose D integers e1,j , e2,j , . . . , eD,j randomly from (−Mtt,Mtt)

4 Compute the product as wj ←
∏D
i=1 gi

ei,j

5 Append [(j + 1), wj , (e1,j , e2,j , . . . , eD,j)] to M
6 Set Ml =M// Next it will compute all possible l many products
7 for k := 2 to l do
8 I := [0, 0, . . . , 0] // Set of k indices all 0’s
9 e := [0, 0, . . . , 0]// To be used for getting the exponents

10 while
(
{Indices 6= [(r − 1), (r − 1), . . . , (r − 1)]}

)
do

11 E ← Entry of Ml corresponding to (I[1], I[2], . . . , I[k − 1]) as first component//Finds
and stores the entry

12 tmp← E[2]//The product wI[1]wI[2] . . . wI[(k−1)] corresponding to the chosen indices
that occurs as a second component of the entry

13 exp← E[3]//The exponents occur as the third component
14 prod := tmp× wI[k] //Single multiplication provides the product of k elements from the

initially chosen r random elements where wI[k] is obtained from M.

15 e← [e[1], e[2], . . . , e[k]] + [exp[1], exp[2], . . . , exp[k]]//Getting the exponents
16 Append the term [(I[1], I[2], . . . , I[k]), prod, e] as the next entry of Ml

17 Increase I according to Lex ordering

18 Return Ml

12



5.2 The Pseudo-Random Walk and the Functions Required

The pseudo-random walk when tag tracing is applied will be of the same type as in equation 8. The only
difference here is that the pre-computed table will be M ( as in equation 15). This requires choosing
ns = r. We assume that we have an index function s : G→ {0, 1, . . . , ns − 1} which partitions G.
An auxiliary index function s can be defined with the help of s as:

s : G×Ml → {0, 1, . . . , ns − 1}

s(y,m) = s(ym) ∀y ∈ G,m ∈Ml (19)

By the above equation, given the auxiliary index of some point gi of the walk, the next l auxiliary
indices can be computed without any multiplication.


gi+1 = gims(gi) =⇒ s(gi+1) = s(gi,ms(gi))

gi+2 = gi+1ms(gi+1) = gims(gi)ms(gi+1) =⇒ s(gi+2) = s(gi,ms(gi)ms(gi+1))
...

gi+l = gi+l−1ms(gi+l−1) = gims(gi)ms(gi+1) . . .ms(gi+l−1) =⇒ s(gi+l) = s(gi,ms(gi)ms(gi+1) . . .ms(gi+l−1))

(20)
The product of multipliers on the right-hand side of the above equation can be accessed from the table
Ml. Tag tracing requires the design of the auxiliary index function s such that s(y,m) is easier to
compute than multiplying y and m. This would make the pseudo-random walk for the next l steps
easier once an element is computed fully by multiplying its components.
The function s is constructed with the help of four other functions and a larger set T (such that
S = {0, 1, . . . , ns − 1} ⊂ T ) called the tag-set. The functions are:

Tag function τ : G→ T
Auxiliary tag function τ : G×Ml → T

Projection function σ : T → S
Auxiliary projection function σ : T → S ∪ {Fail}

The index function and the auxiliary index function are constructed by composing these so that s is
surjective, pre-image uniform, and obeys equation 19.

s = σ ◦ τ : G→ S
s = σ ◦ τ : G×Ml → S ∪ {fail}

There is a certain probability of failure, on which a full product computation has to be done. The index
function which is already being computed in each step can be used to define distinguished points. This
ensures that deciding whether a point is distinguished or not does not incur any extra cost. A simple
way of defining distinguished points is this set-up would be: A point zi, i ≥ (δ − 1) (where δ ≥ 1) is
distinguished if the index of itself and each of its δ − 1 ancestors are zero, i.e.,

zi is distinguished if s(zi−δ+1) = . . . = s(zi−1) = s(zi) = 0

13



Assuming zj+1 = zjwj for any index j, and using relation given by Equation 19 among s and s, a point
zi is a distinguished point if

s(zi−δ+1, wi−δ+1) = s(zi−δ+2, wi−δ+2) = . . . = s(zi−1, wi−1) = 0 (21)

The probability of such a distinguished point is ∆ = r
r−1(rδ−1) [Theorem 1, [CHK12]]. The ambiguity

for points that occur within δ iterations is negligible when compared to the total number of points
required for a complete logarithm computation, as δ is of logarithmic order in ∆ and the distinguished
point method will require O(∆) extra iterations after the point of collision. In case, some application
requires checking whether distinguishing property is present in such points, it can easily use the output
of τ , which is available for every point, and define distinguished points based on that. There are other
efficient ways to define distinguished points [CHK12].
In order to lessen run-time when calculating s in terms of s ( equation 19), Cs

Cfull
< 1 where Cs and Cfull

are the cost in terms of time required to obtain s and the time to compute a full product respectively.

5.3 Online phase

The algorithm for the tame and wild sides in the online phase is given in Algorithm 5. The application
of tag tracing into the Gaudry-Schost algorithm eliminates the necessity of multiplication at each step.
Multiplication once done, can be skipped for l consecutive steps in general.

The tame and wild walks begin by selecting a random point from the tame and wild sets. In this case,
one can continue with the best possible choice of tame and wild sets for the Gaudry-Schost algorithm.
This computation of random points is the only place where D multiplications are required. After that,
we find l multipliers w (line 13) from the previously generated tableMl. For finding any such multiplier
no multiplication is required. We check whether the product of z and the newly found multiplier w
is a distinguished point (line 12). If any distinguished point is found then it is sent to the server. It
is important to note [Equation 21] that distinguished points are defined in such a way that, complete
multiplication of z and w is not required for knowing whether z · w is distinguished. It is determined
easily from the partial knowledge of z and w.

The exponents of gi's are known for every point of the walk. This exponent tracing capability is
used for obtaining discrete logarithms.

6 Cost Comparison for the Online Phase

The major contributor to the run-time for both Algorithm 3 and Algorithm 5 is the cost of multiplication.
The method of tag tracing applied to the Gaudry-Schost algorithm requires a single multiplication after
every l steps. When this is compared to the original Gaudry-Schost algorithm, we see that there is
some improvement due to the reduction in the number of multiplications modulo p which results in a
real gain in time. This is particularly useful in situations where multiplications are costly.

Let N denote the number of iterations for a tame or wild walk. Also, let L denote the minimum
number of iterations until a walk terminates, i.e., either the walk reaches a distinguished point or it
reaches the maximum limit up to which a walk can travel if it is devoid of distinguished points. In
general, this number is equal to the number of iterations required for distinguished points.
Each set of L+1 points of the pseudo-random walk is either an initial point of the walk or some element
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Algorithm 5: Tag tracing applied to Gaudry-Schost algorithm: tame or wild processor.

Input: g1, g2, . . . , gD, h ∈ G, d,N1, N2, . . . , ND ∈ N, function walk, maximum length L of
consecutive non-distinguished points.

Output: A distinguished point z along with exponents of gi for it: (z, x1, . . . , xD) such that
z =

∏D
i=1 gi

xi if tame processor and z := h
∏D
i=1 gi

xi if wild processor .

1 while
(

no terminate signal received from server
)

do

2 Choose (x1, x2, . . . , xD) from the tame set T or wild set W depending upon the
walk//Set-up a random tame or wild walk

3 Set z :=
∏D
i=1 gi

xi if tame processor or z = h
∏D
i=1 gi

xi if wild processor
4 Set Length = 0

5 while
(
z is not a distinguished point and Length is less than L

)
do

6 w ← 1G.
7 k ← 0.
8 (e1,k, e2,k, . . . , eD,k) = (0, 0, . . . , 0)
9 tmps ← s(z, w)

10 if tmps is not fail then
11 jk ← tmps

12 while
(

(k < l) and (s does not fail) and (z.w is not a distinguished point)
)

do

13 E ← Entry of Ml corresponding to (j0, j1, . . . , jk)//This finds the entry with first
component (j0, j1, . . . , jk)

14 w ← E[2]//The second component is the pre-computed product wj0wj1 . . . wjk
15 k = k + 1
16 tmps ← s(z, w)
17 if tmps is not fail then
18 jk ← tmps

19 z ← z · w//single multiplication in G that does a full product computation and is
generally needed after skipping all multiplications for the previous l steps

20 Length← Length+ l
21 Update the exponent information (e1,k, e2,k, . . . , eD,k) corresponding to

(j0, j1, . . . , jk)//The third component of each entry in Ml contains exponent
information.

22 (x1, x2, . . . , xD) = (x1, x2, . . . , xD) + (e1,k, e2,k, . . . , eD,k)//Updating the exponent
information of z using exponent information of w

23 Send (z, x1, x2, . . . , xD) to the server
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obtained by applying the walk function to its previous element. The initial points are obtained by
multiplication of D group elements while getting roughly the next points require a single multiplication
in the full group and l multiplications roughly in smaller subset. Let CD denote the cost of obtaining
the initial element. The total cost, denoted by T0, for each consecutive set of L+ 1 points is then:

T0 = (CD + L.Cfull) (22)

In the case of applying tag tracing, full product multiplication is required either when l iterations of
successfully getting s is completed or when s fails in some intermediate step. Let Prob[s fails] denote
the probability of failure of s. The total cost, denoted by T1, for each consecutive set of L + 1 points
when tag tracing is applied is:

T1 = (CD + L(Prob[s fails] +
1

l
)Cfull + L(1− Prob[s fails]− 1

l
)Cs) (23)

Roughly, the total cost estimates in terms of the multiplications required in the case of Algorithm 3

is then N
(L+1)

T0. The same estimate for Algorithm 5 is N
(L+1)

T1. The overall improvement comes from

the fact that Cs < Cfull.
In the case of the original Gaudry-Schost algorithm, the exponents need to be updated every time. This
cost is ignored in the complexity analysis as it is less costly than iterating the walk function. When
applying tag tracing, the exponents can be updated after l iterations generally or in exceptional cases
when we get a distinguished point or s fails. Thus the cost of D additions at every iteration is replaced
by D additions until a full-product computation is required.

Since tag tracing in no way interferes with the pseudo-randomness of the walk, the number of
iterations N needed to get a collision will not change. As each iteration, will be accelerated, so the
overall time required will be less.

7 Improvement in Groups of Prime Order

Let G be a prime-ordered subgroup of some group containing (p − 1) elements for a prime p. It has
already been seen [CHK12] that tag tracing speeds up pseudo-random walks in such groups G.
A multiplication in G is a two-step operation: The first step is to do an integer multiplication which
is followed by a reduction modulo p operation. For arbitrary primes without any structural specialty,
reduction operation is costly. The strategy [MS22] of replacing these multiplications with Montgomery
multiplications helps to completely get rid of this cost. Instead, the cost incurred is quite inexpensive
as they are divisions by powers of two, which are done just by right shift operations.
In fact, the reduction operation is performed using division algorithm [Algorithm 14.20, [MVOV18]]. So
in general cases, the cost of the reduction operation is the same as integer multiplication. Substituting
this with cheap divisions by powers of two lessens the cost by about half. The technique of incorporating
Montgomery multiplication into the method of tag tracing has been entirely described in [MS22]. This
combination of tag tracing and Montgomery multiplications has been achieved without any trade-offs.
It is noteworthy that the entire procedure can be replicated into the Gaudry-Schost method as well to
find multi-dimensional discrete logarithms. This would eventually lead to more practical speed-ups.
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8 Cryptographically Relevant Groups

An interesting case of application of our proposal is in the electronic cash scheme [Bra93] and election
scheme [CGS97]. The group G(= Gq for the sake of notation) considered in these schemes, is a prime
order subgroup of Z∗p, the unit group of the set of integers modulo p. Gq has (known) order q, where
p, q are large primes such that p|(q − 1). For practical purposes, the bit-size of p, q are taken to be at
least 512, 140 respectively while the dimension d may be taken as 2, 3. Higher values of d also work.
Let us discuss the adoption of tag tracing in such groups.

8.1 Functions Required for tag tracing

The values of l,Mtt are such that

l ∗Mtt ≈
N

1000 log2(N)
(24)

The following choice of functions can be taken in the case of such groups. The definitions of the func-
tions as in Section 5.2 depend on some pre-fixed quantities. Also, let r, w be fixed as some suitable
powers of two. We consider u =

√
w, d = dlogu(p− 1)e , t = 2dlog2 due, t = w

t
, r = t

r . The functions are
defined as:

τ : G→ T = {0, 1, . . . , (t− 1)} τ(z) = b z mod p
tw

c

σ : T → S = {0, 1, . . . , (r − 1)} σ(z) = b zr c

Each element z ∈ Z∗p can be represented in base u as z = z0 +z1u+ . . .+zd−1u
(d−1). For every m ∈Ml,

we define m̂i = b(uim mod p)/wc. These values can be pre-computed as a part of the offline work and
stored in the table. Based on this, we define

τ : G×Ml → T τ(y,m) =

⌊
(
∑d−1
i=0 yim̂i) mod w

t

⌋
It can be verified that τ(zm) = τ(z,m) or τ(zm) = τ(z,m) mod t. This difference is filtered out by
defining σ properly so that s, s are equal for the same components of the product term.
The other functions can be defined as

σ =

{
fail if x ≡ −1 mod r,
bx/rc otherwise.

Clearly, whenever s(= σ ◦ τ) does not fail, it is equal to s(= σ ◦ τ).
The distinguished point definition can be taken as in Section 5.2 for some suitable choice of δ, where δ
can be chosen according to our will so that the distinguished point probability is sufficient enough.
The cost of a full product computation, in this case, would be size(p)2 where size(p) denotes the bit-
size of p, whereas, in computing s the main time is spent in τ as r is taken to be a small positive
integer (generally 4, 8 for upto 3072-bit primes). τ is essentially multiplication between w bit and u bit
integers, where size(w) << size(p) and size(u) << size(p). Also if w, u is chosen as a power of two
appropriately, then operations can be done quite easily.

The combination of the method mentioned in Section 7 along with tag tracing should help to gain
further acceleration of the process.
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9 Results of Implementation

In this section we present the results of implementation of Algorithm 3 and Algorithm 5 in prime order
subgroups Gq (of order q) of Z∗p. The primes q chosen in our experiment range from 256 to 2076 bits.
The primes p were safe primes. We aimed to compare the original Gaudry-Schost method with the
latest choice of tame and wild sets [WZ21] and the tag tracing method applied to the Gaudry-Schost
algorithm. Complete multi-dimensional discrete logarithm computation is not feasible with quite lim-
ited resources for the sizes of primes that we considered. We resort to the method of walking over a
large number of tame and wild points to collect some distinguished points from each. This was done for
random targets and generators using both algorithms. The time noted by observing the experiments
included the full time to find the number of distinguished points we desired for each of the algorithms.
The computations were run on a single core of server Intel Xeon E7-8890 @ 2.50 GHz. We implemented
our algorithms using Magma version V2.22-3.
We observe that our experiments indicate that when tag tracing is applied to the Gaudry-Schost al-
gorithm, there is a significant speed-up. For the primes that we have tested, this gain in time varies
from 3 to 12 times. We discuss the details in the following sections. We mention here that we have
used the same multiplication routine for both algorithms so that results do not become skewed. Our
multiplication is the classical multiplication method. No Montgomery multiplication strategy is adopted
for these as the purpose was to observe how much improvement sole tag tracing can lead to for the
Gaudry-Schost algorithm. The exact choice of primes, the definition of distinguished points, and the
average value of the time taken to walk past each point are given in the Appendix.

The time to compute the table of random points for both algorithms, may not be negligible when
a large-sized group is considered for practical purposes, but this time can be ignored when compared
with the corresponding total time for finding the solution to the multi-dimensional discrete logarithms.
Thus, we focussed on comparing the online phase of both algorithms. Firstly, we have tested the cor-
rectness of both algorithms on groups of small sizes. Both the algorithms terminate and provide valid
multi-dimensional discrete logarithms. We next initiate our experiments for larger groups. The exact
values of the 256, 512, 1024, 2076 bit primes chosen are given in Table 2. In all the experiments, we use
p = 2 · q+ 1 and r = 4, w = 232, u =

√
w. For the values of the other quantities and choice of functions,

we abide by the things mentioned in Section 8.1. The next work was to set an easily testable distin-
guishing property. For the Gaudry-Schost algorithm, we used Equation 9 to define distinguished points,
i.e., we choose some δ1 optimally and check whether 2δ1 divides the present walk point or not. For tag
tracing, we chose some positive integer δ2 and checked whether Equation 21 is satisfied or not for the
corresponding multipliers. The corresponding theoretical estimates, which would form a significant role
in determining the number of iterations required are 2δ1 for Algorithm 3 and r + r

r−1(rδ2 − 1) ( where
r arises due to cases when s fails) for Algorithm 5 respectively. We chose δ1, δ2 such that the number
of iterations required for getting a distinguished point was almost the same whether tag tracing was
applied or not. We used (δ1, δ2) as (12, 6) (for q with bit-size 256, 2076) and (10, 5) (for q with bit-size
512, 1024). These choices were done with the intention so that results are unbiased towards tag tracing.
It can be seen from Table 3 in Appendix that with such selections, the number of iterations required for
tag tracing was more. To compute the next element of the walk for Algorithm 3, we obtained the index
of the multiplier by doing a modulo operation with the pre-computed table size. Here pre-calculated
table size is taken as a multiple of two so that the modulo operation is easier. The child point for
Algorithm 5 is calculated with the help of s defined previously.
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For each such group Gq(⊆ Z∗p) we set the dimension as two and randomly chose 5 targets h along with
bases g1, g2 intending to collect the same number of distinguished tame and wild points for both the al-
gorithms. As the aim was simply to compare the relative run-time, we have not focussed on fine-tuning
the parameters for the algorithms. But care has been taken so that Algorithm 5 does not enjoy any
extra advantage. For example, we defined distinguished points so that lesser iterations are needed to
reach them in the case of the original Gaudry-Schost algorithm and the calculation of the next element
was made easier by choosing the pre-calculated table size as a power of two .

In Table 1, we have noted the time along with the number of points covered for each group consid-
ering tame and wild walks for both Algorithms 3 and 5. The number of distinguished points extracted
was the same for both algorithms. In columns 5 and 8, we note the average time taken to travel each
point of the walk, whether tame or wild in the case of both the algorithms. This ratio is approximated
by choosing to walk over a large number of points of the pseudo-random walk. In Tables 4 and 5 in
the Appendix, we have compared these ratios for various sizes of q.
It is obvious that in the case of both algorithms, major time is spent in doing the multiplications whether
complete or partial. To satisfy ourselves of the fact that the values in columns 5, and 8 of Table 1 are
quite accurate, we have compared two experimentally observed values (of time to travel a single point)
for the same algorithm and same walk type (tame or wild) such that in one case size of q is roughly
twice the other. The experimentally observed ratio in time is compared with the theoretical estimate
obtained from the cost of multiplication. From the statistics noted in Table 4 for the Gaudry-Schost
algorithm and Table 5 when tag tracing is applied, we see that the experimental observations and the-
oretical estimates are close enough. We can also observe from Table 1 that the time per point is almost
the same for time or wild considering each group, whether tag tracing is used or not.
From the arguments in Section A.1 of the Appendix, we see that the average times noted in columns
5 and 8 of Table 1 can be used for comparing the relative run-time. We also note that for both algo-
rithms, the major time exhausted was on performing multiplications. This is tuned with our previous
assumption. In the last column of Table 1, we compare the ratio of these two averages (i.e., Average
time taken to traverse a single point using Algorithm 3/ Average time taken to traverse a single point
when Algorithm 5 is applied).

We see that this ratio varies between 3 to 12 for the groups we tested. Clearly, this shows that
tag tracing requires much less time when it is applied to the Gaudry-Schost algorithm. This suggests
that the gain in time for realistic parameters would be quite significant in the case of complete multi-
dimensional discrete logarithm computation. It is also noteworthy that as the size of the group increases
tag tracing becomes more and more efficient. This accelerates the computation of logarithms about 12
times for the largest group that we have considered.

Our sole target here was to compare the relative run-time of the two algorithms. Tag tracing can be
further optimized by choosing better parameters. For example, the l value chosen by us is quite small.
Larger l will lead to walking through more points without performing complete multiplications. Also,
the design of better choices of tame and wild sets specialized to apply tag tracing and the associated
quantities to define the functions should also lead to the advancement of the process. The strategies
mentioned in Section 7 can also be included. These would be future work and it would lead to even
better estimates.
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(Bits in
q,Number
of distin-
guished
points)

Walks Gaudry-Schost tag tracing

Ratio

Time Points
tra-
versed in
pseudo-
random
walk

Average
time taken
to travel
single
point

Time Points
tra-
versed in
pseudo-
random
walk

Average
time to
travel
single
point

Ratio of
time to
traverse
single point

(256, 1000
tame 551267 3912583 0.140 233983 5620981 0.041 3.414
wild 589798 4151376 0.142 231168 5580770 0.041 3.463

(512, 500)
tame 766317 1367179 0.560 254391 2507186 0.101 5.544
wild 627970 1145379 0.548 240485 2274981 0.105 5.219

(1024, 100)
tame 227953 102899 2.215 35121 150748 0.232 9.547
wild 210711 97425 2.162 36523 148622 0.245 8.824

(2076, 50)
tame 1630114 193740 8.413 259295 382000 0.678 12.408
wild 1872828 221984 8.436 279945 410358 0.682 12.369

Table 1: Factor by which average time requirement reduces when tag tracing is applied is shown for
various groups. The total time and the total number of points walked through are also given.

10 Future Works

We see that tag tracing leads to remarkable gain in time when applied in the original Gaudry-Schost
algorithm. A few other things done in addition to this inclusion should also lead to superior results.
Firstly, the design of tame and wild sets can be done such that they are more suited towards tag tracing.
We have seen cases of non-constant [WZ21] and constant overlap [GR09]. Here the overlap can be varied
according to whether complete multiplications are required or not. In particular, instead of defining
the tame and wild sets solely on the values of N,α, the value of l and the quantities needed for getting
suitable functions can be included as well. This duo of better tame and wild sets to get collision faster,
along with tag tracing resulting in lesser work per iteration, should again help to reduce overall practical
cost.
The functions can be designed in such a way that this overlap is hastened. Also, the definition of
distinguished points can be more adapted for the multi-dimensional situations so that less work is
required for testing it.
Also taking some optimal value of l should lead to further advancement. The increase in the size of the
pre-computed table due to the surge in the value of l can be tackled by choosing a proper way to handle
it, for example, exponents can be added later, and the online phase requires getting hold of only those
information necessary to know whether a point is distinguished or not.
The combination of these things along with replacing modulo p reductions by divisions by powers of
two, as in Section 7 also seems interesting.
Our implementation are in subgroups of Z∗p. The application of the tag tracing procedure into multi-
dimensional discrete logarithm problem for elliptic curve groups, and also for performing better in other
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situations where the multi-dimensional walk is required is another venue that also should be worth
exploring.

11 Conclusion

We have proposed a modified form of the Gaudry-Schost algorithm by applying tag tracing. This has
lead to practical improvement in time to compute multi-dimensional discrete logarithms in subgroups
of Z∗p. Our algorithm [Algorithm 5] was implemented for groups with orders ranging between 256 to
2076 bits. With limited resources, the improvement obtained was quite impressive. We obtained about
12 times speed-up for groups of practical sizes. An open problem is to fine-tune the parameters and to
specially design tame and wild sets more suited for the new algorithm. This should lead to a overall
reduction in run-time by reducing the number of iterations. We have also noted some future research
directions for overall improvement.
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Bits in q q d r

256
578960446186580977117854925043439539266349

92332820282019728792003956608167403
16 1024

512
6703903964971298549787012499102923063739682910296196688861780721860882
015036773488400937149083451713845015929093243025426876941405973284973

216824506305919
32 512

1024

8988465674311579538646525953945123668089884894711532863671504057886633
790275048156635423866120376801056005693993569667882939488440720831124
642371531973706218888394671243274263815110980062304705972654147604250
288441907534117123144073695655527041361858167525534229314911997362296

9239858152417678164812113999429

64 256

2076 (1846389521368) + (11600) 130 64

Table 2: Group orders of various sizes along with corresponding values of d, r.

Bits
in q

2δ1 r + r
r−1(rδ2 − 1)

256 4096 6484

512 1024 1876

1024 1024 1620

2076 4096 5524

Table 3: The values that play crucial role in determining the number of iterations required for both
algorithms to reach a distinguished point. Numbers on the right side are always greater than the
corresponding ones on left.

A Appendix

This appendix lists the numerical values of various associated quantities used in our experiments. The
prime ordered group size and d, r needed for Algorithm 5 is noted on Table 2. The theoretical estimates
which would play a crucial role in determining the number of extra iterations needed for obtaining a
distinguished point are mentioned in Table 3. In Section A.1 we argue that the time required to walk
past each point obtained by taking the average time taken to walk through a large number of nodes of
the pseudo-random walk is an appropriate quantity to compare the relative runtimes.

A.1 Average Time Noted from Experiments and their Comparison With Theoret-
ical Estimates

In the Gaudry-Schost algorithm, all multiplications are done modulo p whereas for the case of utilization
of the concept of tag tracing, multiplication modulo p happens roughly after l steps, and the rest are
multiplications modulo w, u. The numerical values of w, u can be chosen to be powers of two, so such
multiplications are cheap.
In the first column of both Table 4 and Table 5, we have considered the size q1, q2 of the groups Gq1 , Gq2 .
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b(p)1, b(p)2 Experimentally observed Theoretical
estimate
( b(p)1

2

b(p)2
2 )

Tame Wild

513, 257 0.560
0.140 = 4 0.548

0.142 = 3.859 3.984

1025, 513 2.215
0.560 = 3.955 2.162

0.548 = 3.945 3.992

2077, 1025 8.413
2.215 = 3.798 8.436

2.162 = 3.901 4.106

Table 4: Comparison of the average time required in Gaudry-Schost algorithm for various bit-sizes.
Values match with the theoretical estimates given on the right side.

It can be seen that the size of q1 noted in that column is approximately twice that of q2. This leads to
similar nature in the sizes of corresponding p's as well.
Let us first focus on the cost analysis in the case of the Gaudry-Schost algorithm. Theoretically, the
complexity of multiplication modulo p when the schoolbook method is applied is about O(log2(p)

2). So
the ratio of the costs of multiplication, from theoretical estimates must be about 4 if one prime is about
two times the other. This is also reflected in the experimental observations both for tame and wild in
columns 2 and 3 of Table 4. This harmonization makes sure that the ratios observed in column 5 of
Table 1 are good enough to use for comparison purposes.
In case when the tag tracing algorithm is used, complete multiplication is needed roughly after every
l steps as the other case arises when s may fail to produce an output. From the definition of s as in
Section 8.1 this can happen roughly after every r steps. From our choice of r (Table 2) for the various
primes over here, it can be seen that it is greater than l = 20. The complexity of multiplication is then

O( log2(p)
2

l + d ·Cwu) where Cwu is the complexity of multiplication between w bit and u bit integers. It
can be seen from the definition of d in Section Section 8.1 that it depends on p. The values of d for our
examples have been listed in Table 2. So for comparing the costs of multiplications for primes p1 and

p2, we compute the numerical value of the quantity
b(p1)

2

20·32·16+d(p1)
b(p2)

2

20·32·16+d(p2)
. It is evident from Table 5 that the

theoretical estimates and the practical ones are quite close.
This justifies that the observed average time from experiments, which is the time taken to walk through
each point of the pseudo-random walk is appropriate to use when the two algorithms have to be com-
pared. It also confirms our intuitive supposition, that while comparing the complexities of the two
algorithms, it is sufficient to look at the corresponding costs of multiplication.
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