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Abstract. We propose a new lattice-based sublinear argument for R1CS
that not only achieves efficiency in concrete proof size but also demon-
strates practical performance in both proof generation and verification.
To reduce the proof size, we employ a new encoding method for large
prime fields, resulting in a compact proof for R1CS over such fields. We
also devise a new proof technique that randomizes the input message.
This results in fast proof generation performance, eliminating rejection
sampling from the proving procedure. Compared to Ligero (CCS 2017), a
hash-based post-quantum SNARK, our proof system yields a comparable
proof size and proof generation performance, and excels in verification
performance by an order of magnitude.
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1 Introduction

In recent years, publicly verifiable zk-SNARKs (Zero-Knowledge Succinct Non-
Interactive Arguments of Knowledge) have undergone extensive research and
developments. In particular, proof systems based on the discrete logarithm prob-
lem (e.g. [12, 15]) have gained renown for their efficiency in cryptographic ap-
plications. When considering (plausibly) post-quantum succinct zero-knowledge
proof systems, hash-based constructions such as Aurora [9] and Ligero [3] have
emerged as practical candidates.

Meanwhile, in the realm of lattice-based cryptography, significant progress
has been made, rapidly replacing its pre-quantum counterparts in signature [18]
and encryption schemes [14]. This advancement also extends to lattice-based
proof systems, whose proof sizes scale linearly with the input size. Based on
the efficient commitment scheme called BDLOP [8], there has been a line of
research [5, 19, 25, 26] that proves various arithmetic relations, such as product
and linear relations, with small proof sizes. This advancement in linear size proof
systems results in efficient constructions in ring and group signatures [24,27].

Unfortunately, there is still a relatively limited number of studies on practical
lattice-based SNARK constructions to date, despite several previous research ef-
forts [4,7,11,13,31]. Compared to the linear-scale proof systems, which are mainly
based on the BDLOP scheme, these sublinear-scale proof systems are commonly
built on top of the Ajtai [2] commitment scheme due to its intrinsic property
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where commitment size is almost independent of the input size, as opposed to
the BDLOP scheme where commitment size grows linearly with the input size.
However, the main challenge in proof systems with Ajtai commitments is the
restriction in its message space, which should be kept small due to security is-
sues, hindering practical construction, whereas BDLOP commitment schemes
have no limitations on message size, making it easier to construct proof sys-
tems. Additionally, these protocols often contain sequential rejection sampling
to achieve zero-knowledgeness. However, sequential rejection samplings greatly
degrade concrete proving performance since the repetition rate grows exponen-
tially with the number of sequential rejection samplings.

The recent work [31] and [11] have successfully demonstrated the practical-
ity of lattice-based SNARKs in terms of proof size, overcoming limitations in
message space. However, the zero-knowledge version of [11] was not presented
in the literature, and the protocol of [31] includes sequential rejection samplings
to achieve the zero-knowledge property, which inhibits practical proving perfor-
mance. In addition, to the best of our knowledge, these prior work on lattice-
based SNARKs analyzed only the size of proofs, but the concrete performance
of proof generation or verification has never been demonstrated in the litera-
ture, even though lattice-based cryptography is renowned for its efficiency in
computational performance.

1.1 Our Contributions

In this paper, we design a new lattice-based SNARK system that is not only
practical in terms of proof size but also efficient in the concrete performance of
proof generation and verification. Similar to [3, 9, 11, 31], our primary goal is to
prove the satisfiability of R1CS (Rank-1 Constraint System) over a finite field
F, an NP-complete problem that generalizes arithmetic circuit satisfiability. As
our proof system is also built on top of the Ajtai commitment scheme, it inherits
the aforementioned issues: restrictions in message space and sequential rejection
sampling.

First of all, the base field F in R1CS generally has a large size to obtain a
negligible soundness error. We solve the issue by adopting the encoding method
of [16, 17], which transforms elements of a large prime field Zp into ring ele-
ments with small coefficients. As a result, we can take Zp as a message space
while maintaining the security of the Ajtai commitment, allowing us to compose
arguments for R1CS over Zp.

We also combine the methodology of [22] to avoid sequential rejection sam-
plings from the BDLOP-based proof systems. Briefly speaking, the conventional
construction exploits the rejection sampling method to make the transcript inde-
pendent of the input, as it regards the commitment randomness as a fixed value.
In contrast, we consider the distribution of commitment randomness in security
analysis and prove that the whole transcript of our protocol can be simulated
independent of the secret input. However, this method is not directly applicable
to Ajtai-based proof systems since the rejection sampling technique is also used
for hiding a message different from the BDLOP-based proof systems. Hence,
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we resolve this issue by randomizing messages, leveraging the property that the
arithmetic relation still holds unless the inputs are equal modulo p. This new
proof technique enables us to completely eliminate rejection sampling from our
protocol, providing efficiency in proof generation.

Regarding the concrete performance, our proof system is comparable to the
prior work Ligero [3]. For a circuit size N , Ligero [3] achieves a sublinear proof
size of O(

√
N) (which is larger than polylogarithmic complexity of Aurora [9]),

but it enjoys much faster proof generation. This work asymptotically achieves a
sublinear complexity of O(

√
N logN) and has a similar concrete proof size to [3]

when the size of the base field is approximately 2128, as presented in Table 3.
However, for a larger field size, such as 2256, our proof system yields a smaller
proof about by a factor of two compared to Ligero. For the concrete performance
of proof generation and verification for our proof system, we summarize the
benchmark results in Fig. 10 and Table 4 for a field size about 2128, together
with Ligero, and AuroraSNARK. While the proof generation is slightly slower
than Ligero, our proof system is still significantly faster than that of Aurora and
our verification procedure outperforms the prior work by an order of magnitude.

1.2 Technical Overview

Efficient Encoding Method. For a polynomial ring R = Z[X]/(Xn + 1), one
can prove that Zmp ∼= R/(Xm−b) where m | n and p = bn/m+1 is a prime. Then,
there exists an isomorphism between them. We refer to the process of converting
a vector in Zmp to a ring element R/(Xm − b) as encoding, denoted by Ecd, and
the reverse process as decoding, denoted by Dcd. We note that each ring element
in R/(Xm−b) has a representation in R with coefficients bounded by b+2

2 . Since
we typically set b to be much smaller than p, the encoding procedure involves
converting a vector of large prime field elements into ring elements with small
coefficients.

In our proof system, we utilize this encoding method to convert messages
from the large prime field Zp to small ring elements and vice versa for the secu-
rity of the Ajtai commitment scheme. From an information-theoretic perspective,
this encoding does not necessarily improve efficiency in terms of proof size for
linear-scale proof systems, as it essentially expands m elements of size p into n
elements of size b, which are of similar sizes. However, since our proof system
yields sublinear proof size, an increase in input dimension leads to higher com-
pression rates. As a result, this encoding method not only provides advantages
in terms of achieving security but also results in smaller proof sizes.

Message Randomization. To achieve simulatability (i.e., zero-knowledgeness),
our proof system randomizes the input message x⃗ ∈ Zmp , more precisely, the en-
coded messages Ecd(x⃗). During proof generation, the prover frequently sends a
response in the form of yyy+ccc ·Ecd(x⃗) to the verifier, where yyy is a random noise for
masking Ecd(x⃗), sampled by the prover, and ccc is a random challenge sampled
by the verifier. Since this response leaks information about x⃗, which must be
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kept secret from the verifier, previous constructions use the rejection sampling
method [23] to make it independent of x⃗.

Since the verifier usually checks the satisfiability of R1CS with the decoded
value, the prover can replace the value of Ecd(x⃗) with xxx where xxx = Ecd(x⃗)
(mod Xm − b). Using this property, we randomize Ecd(x⃗) by generating xxx from
DEcd(m)+PZn,s1 , a sample from the discrete Gaussian distribution over the coset
Ecd(x⃗)+PZn where P is the negacyclic matrix corresponding to (Xm− b), and
Ecd(x⃗) is regarded as a coefficient vector over Zn. Then, xxx = Ecd(x⃗) (mod Xm−
b) holds, and we can prove that yyy + ccc ·xxx is statistically close to the distribution
yyy + ccc · xxx′ for xxx′ ← DPZn,s1 if yyy is sampled from DZn,s2 .

Note that the latter distribution does not contain any information about x⃗,
making it independent of x⃗. Thus, by randomizing messages, we can achieve sim-
ulatability in transcripts, which results in the complete elimination of rejection
sampling from our proof system.

2 Preliminaries

2.1 Notation

For a positive integer q, we use Z∩ (−q/2, q/2] as a representative set of Zq, and
denote by [a]q the reduction of a modulo q. Vectors over Z or Zq are denoted
with regular lowercase letters and arrows, such as v⃗, and matrices over Z or Zq
are represented by regular uppercase letters. We regard all vectors as column
vectors, and we use the symbol ∥ for the concatenation of two vectors.

Let n be a power of two. We denote by R = Z[X]/(Xn + 1) the ring of
integers of the 2n-th cyclotomic field and Rq = Zq[X]/(Xn+1) the residue ring
of R modulo q. For polynomials in R or Rq, we use bold lowercase letters to
denote them e.g. fff . We often regard them as n-dimensional vectors over Z or Zq
with components corresponding to coefficients. Vectors over R or Rq are denoted
with bold lowercase letters and arrows, such as f⃗ff , and matrices over R or Rq are
represented by bold uppercase letters.

For a vector v⃗ = (v0, . . . , vm−1) ∈ Zm, the ℓp (p ≥ 1) and ℓ∞ norms are
defined as follows:

∥v∥p :=
p

√√√√m−1∑
i=0

|vi|p, ∥v∥∞ := max
0≤i<m

|vm|

For a polynomial fff or a vector of polynomials f⃗ff , ∥fff∥p and
∥∥∥f⃗ff∥∥∥

p
are calculated

by regarding them as coefficient vectors. For a matrix A ∈ Rm×m, we denote the
matrix norm of A by ∥A∥2 := max0̸=x⃗∈Rm

∥Ax⃗∥2
∥x⃗∥2

.

2.2 Probability Distributions

We denote sampling x from the distribution D by x← D. For distributions D1

and D2 over a countable set S (e.g. Zn), the statistical distance of D1 and D2 is
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defined as 1
2 ·
∑
x∈S |D1(x)−D2(x)| ∈ [0, 1]. We denote the uniform distribution

over S by U(S) when S is finite.
We define the n-dimensional spherical Gaussian function ρ : Rn → (0, 1] as

ρ(x⃗) := exp(−π · x⃗⊤x⃗). In general, for a positive definite matrix Σ ∈ Rn×n,
we define the elliptical Gaussian function ρ√Σ : Rn → (0, 1] as ρ√Σ(x⃗) :=

exp(−π · x⃗⊤Σ−1x⃗).
Let Λ ⊆ Rn be a lattice and c⃗ ∈ Rn. The discrete Gaussian distribution

Dc⃗+Λ,√Σ is defined as a distribution over the coset c⃗+Λ, whose probability mass
function is Dc⃗+Λ,√Σ(x⃗) = ρ√Σ(x⃗)/ρ

√
Σ(c⃗+Λ) for x⃗ ∈ c⃗+Λ where ρ√Σ(c⃗+Λ) :=∑

v⃗∈c⃗+Λ ρ
√
Σ(v⃗) <∞. When Σ = σ2 ·In for σ > 0 where In is the n-dimensional

identity matrix, then we substitute
√
Σ by σ in the subscript and refer to σ as

the width parameter of Dc⃗+Λ,σ. For a polynomial xxx, we denote by xxx← Dc⃗+Λ,√Σ
if we sample its coefficient vector from Dc⃗+Λ,√Σ .

2.3 Useful Lemmas

Definition 1 ( [30, Def. 3.1]). For an n-dimensional lattice Λ and positive real
ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that ρ1/s(Λ∗\{0}) ≤
ε.

Definition 2 ( [32, Def. 2.3]). Let Σ be a positive-definite matrix. We say
that

√
Σ ≥ ηε(Λ) if ηε(

√
Σ
−1 · Λ) ≤ 1.

Lemma 1 ( [30, Lem. 3.3]). For any n-dimensional lattice Λ and ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ)

where λn(Λ) is the smallest real number r > 0 such that dim(span(Λ∩B(r))) = n
and B(r) is the n-dimensional ball with radius r centered at the origin.

Lemma 2 ( [22, Lem. 5]). For a positive-definite matrix Σ,
√
Σ ≥ ηε(Λ)

holds if
∥∥Σ−1∥∥

2
≤ ηε(Λ)−2.

Lemma 3 ( [32, Lem. 2.4]). Let Λ ⊆ Rn be any n-dimensional lattice. For
any 0 < ε < 1, Σ > 0 such that

√
Σ ≥ ηε(Λ), and any c⃗ ∈ Rn,

ρ√Σ(c⃗+ Λ) ∈
[
1− ε
1 + ε

, 1

]
· ρ√Σ(Λ)

Lemma 4 ( [6, Lem. 2.4]). Let Λ ⊆ Rn be any n-dimensional lattice. For any
0 < ε < 1/3, σ ≥ ηε(Λ), and any c⃗ ∈ Rn,

Pr [∥x⃗∥∞ > 5σ | x⃗← Dc⃗+Λ,σ] ≤ n · 2−111

Lemma 5 ( [30, Lem. 4.4]). Let Λ ⊆ Rn be any n-dimensional lattice. For
any 0 < ε < 1/3, σ ≥ ηε(Λ), and any c⃗ ∈ Rn,

Pr
[
∥x⃗∥2 > σ

√
n | x⃗← Dc⃗+Λ,σ

]
≤ 2−n+1
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Lemma 6 ( [32, Fact 2.1]). Let Σ1, Σ2 > 0 be positive-definitive matrices, let
Σ−10 = Σ−11 +Σ−12 > 0 and Σ3 = Σ1 +Σ2 > 0 , let x⃗, c⃗1, c⃗2 ∈ Rn be arbitrary,
and let c⃗0 ∈ Rn be such that Σ−10 c⃗0 = Σ−11 c⃗1 +Σ−12 c⃗2. Then,

ρ√Σ1
(x⃗− c⃗1) · ρ√Σ2

(x⃗− c⃗2) = ρ√Σ0
(x⃗− c⃗0) · ρ√Σ3

(c⃗1 − c⃗2)

Lemma 7 ( [10, Lem. 3.1]). Let n be a power of two, and let 0 ≤ i, j < 2n
such that i ̸= j. Then, 2(Xi −Xj)−1 is an element of R such that∥∥2(Xi −Xj)−1

∥∥
∞ ≤ 1,

where the inverse of (Xi −Xj) is taken over the field Q[X]/(Xn + 1).

Lemma 8. Let k > 0 and Λ ⊆ Zn be a full-rank lattice. Let x⃗i ← Dc⃗i+Λ,
√
Σ

for 0 ≤ i < k and c⃗i ∈ Rn. If
√
Σ ≥

√
2 · ηε(Λ) for some 0 < ε < 1/2, then

the distribution of
∑k−1
i=0 x⃗i is within statistical distance 4kε of Dc⃗+Λ,√kΣ where

c⃗ =
∑k−1
i=0 c⃗i.

Lemma 9 (Schwartz-Zippel Lemma). Let F be a finite field, and let g :
Fm → F be a non-zero m-variate polynomial of total degree at most d. Then, for
(x0, . . . , xm−1)← U(Fm),

Pr[g(x0, . . . , xm−1) = 0] ≤ d

|F|

2.4 Module SIS/LWE

Definition 3. Let µ, ℓ be positive integers, and 0 < β < q. Then, the goal of
the Module-SIS (MSIS) problem is to find, for a given matrix A ← U(Rµ×ℓq ),
x⃗xx ∈ Rµ+ℓq such that [Iµ|A]x⃗xx = 0 (mod q) and ∥x⃗xx∥2 < β. We say that a PPT
adversary A has advantages ε in solving MSISR,µ,q,β if

Pr
[
∥x⃗xx∥2 < β ∧ [Iµ|A]x⃗xx = 0 (mod q) | A← U(Rµ×ℓq ); x⃗xx← A(A)

]
≥ ε.

Definition 4. Let ν, ℓ be positive integer, and χ be a distribution over Rν+ℓ.
Then, the goal of the Module-LWE (MLWE) problem is to distinguish (A, u⃗uu)
from (A, [A|Iℓ ]⃗rrr) for A ← U(Rℓ×νq ), u⃗uu ← U(Rℓq), and r⃗rr ← χ. We say that a
PPT adversary A has advantages ε in solving MLWER,ν,q,χ if

|Pr
[
b = 1 | A← U(Rℓ×νq ); r⃗rr ← χ; b← A (A, [A|Iℓ ]⃗rrr)

]
− Pr

[
b = 1 | (A, u⃗uu)← U(Rℓ×νq ×Rℓq); b← A(A, u⃗uu)

]
| ≥ ε.

For spherical discrete Gaussian distributions, we replace them with their width
parameters in the MLWE notation for simplicity.

For both problems, the value of ℓ in the hardness estimation is not significant,
so we omit it in the parameters for both problems.
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2.5 Hint-MLWE

A variant of the MLWE problem known as the Hint-MLWE problem has been
introduced in recent literature [22, 29]. This variant helps us for proving the
simulatability of lattice-based proof systems without relying on the rejection
sampling method [23].

Definition 5 (The Hint-MLWE Problem). Let ν, ℓ, n be positive integers,
χ, ψ be distributions over Rν+ℓ, and ccc0, . . . ccch−1 be elements in R. The Hint-
MLWE problem, denoted by HintMLWE

ccc0,...,ccch−1

R,ν,q,χ,ψ0,...,ψh−1
, asks an adversary A to

distinguish the following two cases:

1.
(
A, [A|Iℓ ]⃗rrr, z⃗zz0, . . . , z⃗zzh−1

)
for A ← U(Rℓ×νq ), r⃗rr ← χ, y⃗yyi ← ψi, and z⃗zzi =

ccci · r⃗rr + y⃗yyi for 0 ≤ i < h.

2.
(
A, u⃗uu, z⃗zz0, . . . , z⃗zzh−1

)
for A ← U(Rℓ×νq ), u⃗uu ← U(Rℓq), r⃗rr ← χ, y⃗yyi ← ψi, and

z⃗zzi = ccci · r⃗rr + y⃗yyi for 0 ≤ i < h.

For spherical discrete Gaussian distributions, we replace them with their width
parameters in the Hint-MLWE notation for simplicity.

Theorem 1 ( [22, Thm 1]). Let ν, ℓ, n be positive integers and ccc0, . . . , ccch−1
be elements in R. For σ1, σ2,0, . . . σ2,h−1 > 0, let σ > 0 be a real number defined
as 1/σ2 = 2(1/σ2

1 +
∑h−1
i=0 B

2
i /σ

2
2,i), where Bi’s are upper bounds for ∥ccci∥1’s.

If σ ≥
√
2 · ηε(Zn) for 0 < ε ≤ 1/2, then there exists an efficient reduction

from MLWER,ν,q,σ to HintMLWE
ccc0,...,ccch−1

R,ν,q,σ1,σ2,0,...,σ2,h−1
that reduces the advantage

by O(ε).

2.6 Proof of Knowledge and Simulatability

In this subsection, we review the definition of a secure proof-of-knowledge proto-
col. The conventional construction regards each input as a fixed value. However,
this approach is not sufficient for our protocol to achieve the zero-knowledgeness
property. Hence, we follow the definition from recent literature [22], which con-
siders the distributions of inputs together, as described below.

Definition 6. Let L,L′ be NP-languages satisfying L ⊆ L′. Let R,R′ be witness
relations for L and L′ respectively i.e., (t ∈ L⇔ ∃w (t, w) ∈ R) and (t ∈ L′ ⇔
∃w′ (t, w′) ∈ R′). Let (P,V) be an interactive protocol where P takes a secret
input m and a public parameter pp as input, and V only takes a public parameter
pp as input. Then (P,V) is called a secure proof-of-knowledge protocol for the
languages (L,L′) if and only if it satisfies the followings:

– Two Phases: The protocol consists of the following phases.
• Generate-phase: In generate-phase, the prover first samples random-

ness r, and then generates a statement t with x and r. At the end of the
phase, it sends the statement t to the verifier V.
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• Prove-phase: In prove-phase, the prover and the verifier take (pp, t, x, r)
and (pp, t) as input respectively. Then, they interact each other to prove
that t ∈ L′. At the end of the phase, the verifier outputs either 0 or 1.

We refer the sequence of messages exchanged between P and V during the
generate-phase and the prove-phase as the transcript, and denote it by
Tr(P(pp, x),V(pp)).

– Completeness: If P generates a statement t ∈ L in the generate-phase, the
prove-phase ends with 1 except for negligible probability.

– Knowledge Soundness: If there exists an adversarial prover P∗ which
makes the verifier outputs 1 at the prove-phase with non-negligible probability,
then there exists an efficient algorithm E, called an extractor, which, given
black-box access to P∗, outputs w′ such that (t, w′) ∈ R′ with non-negligible
probability.

– Simulatability: There exists a PPT algorithm S, called a simulator, whose
input is pp and output is tr which is computationally indistinguishable from
the transcript from the honest prover P and verifier V, for any secret in-
put x. In other words, for all PPT algorithm A, the following advantage is
negligible:∣∣∣Pr [b = 1

∣∣∣x←A(pp); tr←Tr(P(pp,x),V(pp));
b←A(pp,tr)

]
− Pr

[
b = 1

∣∣∣x←A(pp); tr←S(pp);
b←A(pp,tr);

]∣∣∣
In this definition, the zero-knowledge condition is reformulated by the sim-

ulatability of transcripts without knowledge of the prover’s secret input. The
main distinction between the simulatability property and the conventional zero-
knowledge proof is whether input randomness is considered together or not.
Since the main objective of a secure proof-of-knowledge protocol is to conceal
the prover’s secret input, it suffices to satisfy this simulatability property for the
desired security requirement.

The definition utilizes two languages, L ⊆ L′, referred to as the honest and
proven languages, respectively, to address common scenarios in lattice-based
constructions. Previous studies, such as [10,28], have reduced the communication
cost by weakening the extractors’ power in the knowledge soundness property,
and our instantiations of proof-of-knowledge in this paper also employ these
methods. The difference between L and L′ is often referred to as the soundness
slack.

2.7 Lattice-based Commitment Scheme

We recall the definition of commitment scheme.

Definition 7 (Commitment Scheme). A commitment scheme consists of the
following three algorithms:

– Gen(1λ): Given a security parameter λ, it generates a commitment key ck.
– Comck(m;µ): Given a commitment key ck, a message m, and randomness µ,

it outputs a commitment m∗.



Efficient Lattice-based Sublinear Arguments for R1CS without Aborts 9

– Openck(m
∗,m, µ): Given a commitment m∗, a message m, and randomness

µ, it outputs either 0 or 1.

where Gen is probabilistic and Com, Open are deterministic. Let R be a distribution
for randomness. Then a commitment scheme (Gen, Com, Open) is said to be secure
if it satisfies the following properties:

– Hiding: For all PPT adversaries A, the following advantage is negligible:∣∣∣∣Pr [b = b′
∣∣∣ ck←Gen(1λ);(m0,m1)←A(ck);µ←R;
b←U({0,1});m∗=Comck(mb;µ);b

′←A(ck,m∗);

]
− 1

2

∣∣∣∣ .
– Binding: For all PPT adversaries A, the following probability is negligible:

Pr
[
Openck(m

∗,m0,µ0)=Openck(m
∗,m1,µ1)=1

∧ m0 ̸=m1

∣∣∣ ck←Gen(1λ);
(m∗,m0,m1,µ0,µ1)←A(ck)

]
.

Below, we present the Ajtai commitment scheme [2], whose binding and hid-
ing properties rely on the hardness of MSISR,µ,q,2β and MLWER,ν,q,χ, respec-
tively, where χ is a distribution for commitment randomness.

• Gen(1λ): Given a security parameter λ, it outputs a commitment key ck =

(A0,A1) where A0 ← U(Rµ×ℓq ), and A1 ← U(Rµ×νq ).

• Comck(m⃗mm; µ⃗µµ): Given a commitment key ck = (A0,A1), a message m⃗mm ∈ Rℓ, and
randomness µ⃗µµ ∈ Rµ+ν , it outputs m⃗mm∗ := A0m⃗mm+ [A1|Iµ]µ⃗µµ ∈ Rµq .

• Openck(m⃗mm
∗, m⃗mm, µ⃗µµ): Given a commitment m⃗mm∗, a message m⃗mm, and randomness µ⃗µµ,

it outputs 1 if and only if m⃗mm∗ = Comck(m⃗mm; µ⃗µµ) and ∥m⃗mm∥µ⃗µµ∥2 < β.

We note that the above commitment scheme satisfies the additive homomor-
phism for both message and randomness i.e., for any m⃗mm0, m⃗mm1 ∈ Rℓ, µ⃗µµ0, µ⃗µµ1 ∈
Rµ+ν , and ccc ∈ R, it holds that

Comck(m⃗mm0; µ⃗µµ0) + ccc · Comck(m⃗mm1; µ⃗µµ1) = Comck(m⃗mm0 + ccc · m⃗mm1; µ⃗µµ0 + ccc · µ⃗µµ1)

2.8 Rank-one Constraint System

A rank-one constraint system (R1CS) over a finite field F is a problem of finding
a solution vector s⃗ ∈ FM to the equation As⃗ ◦ Bs⃗ = Cs⃗, where the first entry
of s⃗ is fixed to one, and A,B,C ∈ FM×M are matrices that contains Ω(M)
non-zero entries. Below, we give another formulation of R1CS which will be
used throughout this paper. We also denote by N = Ω(M) the total number of
non-zero entries in the three matrices A,B,C.

Definition 8 (R1CS problem). Given matrices A,B,C ∈ FM×M each con-
taining Ω(M) nonzero entries, and vectors a⃗, b⃗, c⃗ ∈ FM , the R1CS problem asks
to find any solution vector t⃗ ∈ FM which satisfies:

(At⃗+ a⃗) ◦ (Bt⃗+ b⃗) = (Ct⃗+ c⃗)

where ◦ denotes the component-wise product.
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3 Revisiting Amortized Proofs of Opening Knowledge

In this section, we revisit the amortized proof of opening knowledge (POK) pro-
tocols for the Ajtai commitment scheme. The previous construction by Baum
et al. [7] achieved a sublinear proof size by leveraging the core property of the
Ajtai commitment scheme, where the dimension of commitment is almost in-
dependent of the dimension of the input. However, as we mentioned before, it
has two main bottlenecks for practical usage: restrictions in message space and
rejection sampling.

In our new construction, we address all these issues, making the amortized
POK protocol for the Ajtai scheme more practical. To handle the challenge of
a large message modulus, we devise a novel encoding method that converts a
vector of elements in Zp with a large prime p into a small cyclotomic ring element,
inspired from recent literature by Chen et al. [16,17]. Using this method, we can
commit messages with a large modulus p without introducing large commitment
modulus q.

To eliminate rejection sampling, we also devise a new proof technique that
randomizes messages. In most applications of sublinear arguments, it proves
knowledge of solutions for arithmetic relations on Zp. Thus, a prover can commit
to a message m′ instead of m if m′ = m (mod p). We focus on this redundancy
and leverage it for randomizing messages. This randomization in the message
helps us apply the technique from [22] to the Ajtai commitment scheme, elimi-
nating rejection sampling from the POK protocol. In the rest of this section, we
delve into the technical details of our improvements.

3.1 Encoding Methods for Large Prime Fields

We first explain how we adapt the encoding method proposed by Chen et
al. [16,17] for our own purposes. Initially, their encoding method was proposed to
instantiate high-precision arithmetic for lattice-based homomorphic encryption
without increasing the ciphertext modulus. Since we aim for a similar goal, com-
mitting large prime field elements without increasing the commitment modulus,
we modify their encoding method to support large prime field arithmetic. Below,
we present the key algebraic property that enables such an encoding /method.

Lemma 10. Let b, m, and κ be positive integers such that κ = n/m is an integer
and p = bκ+1 is a prime. Then, R/(Xm−b) is isomorphic to Zmp as a Z-module.

Proof. Using the fact that R/(Xm− b) = Z[X]/(Xn+1, Xm− b), we obtain the
following isomorphism.

R/(Xm − b) =
m−1⊕
i=0

Xi · Z[Xm]/(Xn + 1, Xm − b)

=

m−1⊕
i=0

Xi · Zp[Xm]/(Xm − b) ∼=
m−1∏
i=0

Zp[Xm]/(Xm − b).
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Note that Zp[Xm]/(Xm−b) ∼= Zp via an isomorphism f(Xm) 7→ f(b). Therefore,
we have R/(Xm − b) ∼= Zmp with respect to the following isomorphism φ from
R/(Xm − b) to Zmp :

φ : āaa =

m−1∑
i=0

κ−1∑
j=0

amj+iX
mj+i 7→

κ−1∑
j=0

amjb
j ,

κ−1∑
j=0

amj+1b
j , . . . ,

κ−1∑
j=0

amj+m−1b
j


⊓⊔

The isomorphism φ is defined over the polynomial representation on R of
an element āaa in R/(Xm − b). It is well-defined, because for any two polynomial
representations aaa and aaa′ in R of āaa, we have aaa = aaa′ (mod Xm − b) and φ maps
Xm − b to zero. As for the inverse map φ−1, which corresponds to encoding
of messages in Zmp , we aim for its polynomial representation in R to have a
small norm. To achieve this, we present an algorithm in Alg. 1 that outputs a
polynomial representation aaa of φ−1(a) with an upper bound ∥aaa∥∞ ≤

b+2
2 since

|ai,j | ≤ b/2 and |ci,j | ≤ 1. Below, we provide encoding and decoding algorithms
for the large prime field Zp.

Algorithm 1 Encoding
Input: a⃗ = (a0, . . . , am−1) ∈ Zmp
Output: aaa ∈ R
1: for 0 ≤ i < m do
2: if ai = p− 1 (mod p) then
3: (ai,0, . . . , ai,κ−1)← (0, . . . , 0, b)
4: else
5: (ai,0, . . . , ai,κ−1) is the base-b representation of 0 ≤ ai < bκ

6: end if
7: end for
8: for 0 ≤ i < m, 0 ≤ j ≤ κ do
9: if ai,j > b/2 then

10: ai,j ← ai,j − b, ci,j ← 1
11: else
12: ci,j ← 0
13: end if
14: end for
15: aaa←

∑m−1
i=0

∑κ−1
j=0 ai,jX

mi+j +
∑m−1
i=0

∑κ−1
j=0 ci,jX

m(i+1)+j

• Ecd(⃗a): Given an element a⃗ = (a0, . . . , am−1) ∈ Zmp , run Alg. 1 and output a
ring element aaa where ∥aaa∥∞ ≤

b+2
2 .

As an abuse of notation, we often put an integer a ∈ Zp as an input for the
encoding algorithms. In this case, Ecd(a) outputs a ring element aaa = Ecd(⃗a),
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where a⃗ = (a, 0, . . . , 0) such that ∥aaa∥1 ≤
(b+2)κ

2 since there are at most κ non-
zero coefficients.

• Dcd(aaa): Given a ring element aaa =
∑m−1
i=0

∑κ−1
j=0 ai,jX

i+mj ∈ R, output a⃗ =

φ(aaa) =
(∑κ−1

j=0 a0,jb
j , . . . ,

∑κ−1
j=0 am−1,jb

j) ∈ Zmp .

3.2 Randomized Encoding

Now, we present a randomization procedure for messages, which helps us achieve
the simulatability of the POK protocol without using the rejection sampling
method. We focus on the fact that the decoding algorithm outputs the same
results unless inputs are congruent modulo Xm− b—i.e., it holds that Dcd(aaa) =
Dcd(aaa′) if aaa = aaa′ (mod Xm − b). Since our objective is to construct sublinear
arguments for arithmetic circuits, the verification for the arguments remains
valid if the decoding algorithm outputs identical results. Therefore, we aim to
incorporate a randomization procedure during the message encoding process.
To be precise, a randomized encoding procedure samples a ring element mmm such
that mmm = Ecd(m⃗) (mod Xm − b), where m⃗ ∈ Zmp is an input message. Then, it
remains to specify the distribution from which mmm is sampled.

To proceed, we recall that the purpose of randomized encoding is for the sim-
ulatability of the POK protocol. Hence, we first analyze the problematic part of
the transcripts of the protocol. During the protocol, a prover sends a response
of the form yyy+ ccc · Ecd(m⃗), where yyy is a mask for Ecd(m⃗) that a prover samples,
and ccc is a random challenge sampled from a verifier. Without careful treatment,
such as the rejection sampling method, the response yyy+ccc · Ecd(m⃗) includes par-
tial information on m⃗, which inhibits simulating the transcript without witness
knowledge. Our aim is to replace Ecd(m⃗) with mmm so that yyy + ccc ·mmm follows a
distribution that is independent of Ecd(m⃗). For this purpose, we propose the
following lemma, inspired by the convolution lemma for the discrete Gaussian
distribution [32].

Lemma 11. Let h > 0 be an integer, S ∈ Rn×n be a positive-definitive ma-
trix, s′ > 0 be positive reals, and Λ ⊆ Zn be an n-dimensional lattice. Given
ccc0, . . . , ccch−1 ∈ R, let Ci ∈ Rn×n be the negacyclic matrix corresponding to
ccci for 0 ≤ i < h. Let Sh > 0 be a positive-definitive matrices such that
S−1h = S−1 +

∑h−1
i=0 s′−2i · C⊤i Ci. If

√
Sh ≥ ηε(Λ) for some 0 < ε < 1/2,

then for any u⃗, u⃗′ ∈ Zn, the following two distributions are within a statistical
distance of 2ε.{

(zzz0, . . . , zzzh−1) | xxx← Du⃗+Λ,√S, yyyi ← DZn,s′i
, zzzi = ccci · xxx+ yyyi

}
{
(zzz′0, . . . , zzz

′
k−1) | xxx′ ← Du⃗′+Λ,

√
S, yyyi ← DZn,s′i

, zzz′i = ccci · xxx′ + yyyi

}
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Proof. Since u⃗, u⃗′ ∈ Zn and Λ ⊆ Zn, the sample spaces of the above two distri-
butions are identical to Rh. Thus, it is enough to show that∣∣Pr[⃗zzz = w⃗ww]− Pr[⃗zzz′ = w⃗ww]

∣∣ ≤ 2ε · Pr[⃗zzz = w⃗ww] (1)

for all w⃗ww = (www0, . . . ,wwwh−1) ∈ Rh where z⃗zz = (zzz0, . . . , zzzh−1), and z⃗zz′ = (zzz′0, . . . , zzz
′
h−1).

The first term of Eq. (1) can be computed as follows:

Pr[⃗zzz = w⃗ww] =
∑

vvv∈u⃗+Λ

Pr[xxx = vvv] ·
h−1∏
i=0

Pr[yyyi = wwwi − ccci · vvv]

=
∑

v⃗∈u⃗+Λ

ρ√S(v⃗) ·
k−1∏
i=0

ρs′iC
−1
i

(v⃗ − C−1i w⃗i) (2)

where v⃗ and w⃗i are the coefficient vectors of vvv and wwwi respectively. Let Si =
S−1 +

∑i−1
j=0 s

′
j
−2 · C⊤j Cj for 0 ≤ i < h. Then, we have the following by Lem. 6

ρ√Si
(v⃗ − a⃗i) · ρs′i·C−1

i
(v⃗ − C−1i w⃗i) = ρ√

Si+1
(v⃗ − a⃗i+1) · ρ√Si+s′i

2(C⊤
i Ci)−1 (⃗bi+1)

where a⃗0 = 0, b⃗0 = C−10 w⃗0 and, a⃗i+1 =
(
Si+s′i

2
(C⊤i Ci)

−1)(S−1i a⃗i+s′i
−2
C⊤i w⃗i

)
,

and b⃗i+1 = a⃗i − b⃗i. Note that both a⃗i and b⃗i are independent of the value of v⃗.
Then, Eq. (2) can be rewritten as follows

Pr[⃗zzz = w⃗ww] =

h−1∏
i=0

ρ√
Si+s′i

2(C⊤
i Ci)−1 (⃗bi+1) ·

∑
v⃗∈u⃗+Λ

ρ√Sh
(v⃗ − a⃗h).

Similarly, the second term of Eq. (1) can be computed as follows:

Pr[⃗zzz′ = w⃗ww] =

h−1∏
i=0

ρ√
Si+s′i

2(C⊤
i Ci)−1 (⃗bi+1) ·

∑
v⃗∈u⃗′+Λ

ρ√Sh
(v⃗ − a⃗h).

Hence, if
√
Sh ≥ ηε(Λ) for 0 < ε < 1/2, we obtain the followings by Lem. 3∣∣Pr[⃗zzz = w⃗ww]− Pr[⃗zzz′ = w⃗ww]

∣∣
=

h−1∏
i=0

ρ√
Si+s′i

2(C⊤
i Ci)−1 (⃗bi+1) ·

∣∣ρ√Sh
(u⃗− a⃗h + Λ)− ρ√Sh

(u⃗′ − a⃗h + Λ)
∣∣

≤ 2ε ·
h−1∏
i=0

ρ√
Si+s′i

2(C⊤
i Ci)−1 (⃗bi+1) · ρ√Sh

(u⃗− a⃗h + Λ) = 2ε · Pr[⃗zzz = w⃗ww].

Therefore, the two given distributions are within a statistical distance of 2ε. ⊓⊔

The above lemma essentially states that if a prover samples a mask yyy from
a discrete Gaussian distribution over an n-dimensional integer lattice Zn, and a
randomized encoding mmm of a message m⃗ follows a discrete Gaussian distribution
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over a coset Ecd(m⃗)+Λ of some lattice Λ ⊆ Zn, then yyy+ccc ·mmm is statistically close
to a distribution that is independent of m⃗. Since our goal is to havemmm = Ecd(m⃗)
(mod Xm − b), we can set Λ = PZn, where P ∈ Rn×n is the negacyclic matrix
corresponding to Xm − b, then it satisfies all the required conditions. Below, we
present our randomized encoding algorithm.

• R.Ecd(a; s): Given an element a⃗ ∈ Zmp and a positive real s > 0, output a ring
element aaa← DEcd(a⃗)+PZn,sP where P ∈ Rn×n is the negacyclic matrix of Xm−b.

As an abuse of notation, we often put an ℓm-dimensional vector a⃗ = a⃗0∥ · · · ∥a⃗ℓ−1
∈ Zℓmp as an input for the above algorithms. In this case, R.Ecd(⃗a) outputs a vec-
tor of ring element a⃗aa = (aaa0, . . . , aaaℓ−1) ∈ Rℓ where aaai = R.Ecd(⃗ai; s) for 0 ≤ i < ℓ.

To analyze an upper bound for the randomized encoding, we utilize the fact
that DEcd(a⃗)+PZn,sP = P · DP−1Ecd(a⃗)+Zn,s. Then, we can apply the tail bounds
from Lem. 4 and 5 to DP−1Ecd(a⃗)+Zn,s. Additionally, we note that P−1 corre-
sponds to the negacyclic matrix of the polynomial (Xm−b)−1 = − 1

bκ+1

(
Xn−m+

bXn−2m + · · · + bκ−1
)
. Then, it holds that ∥P∥2 ≤ ∥Xm − b∥1 = b + 1 and∥∥P−1∥∥

2
≤
∥∥(Xm − b)−1

∥∥
1
= bκ−1

(b−1)(bκ+1) ≤
1
b−1 .

3.3 New Proof of Opening Knowledge Protocol

Incorporating the aforementioned randomized encoding method for large prime
fields, we present an improved version of the amortized POK protocol for the
Ajtai commitment scheme, which achieves the binding property with small pa-
rameter overheads and simulatability without the rejection sampling method.
We first define the witness relations for POK as follows:

ROpen := {(m⃗mm∗, m⃗mm, µ⃗µµ) | m⃗mm∗ = Comck(m⃗mm,µ⃗µµ) ∧ ∥m⃗mm||µ⃗µµ∥2 < βOpen}
R′Open := {(m⃗mm

∗, m⃗mm, µ⃗µµ) | 2m⃗mm∗ = Comck(m⃗mm,µ⃗µµ) ∧ ∥m⃗mm∥µ⃗µµ∥2 < 2n · βOpen}

where ck← Gen(1λ). Then, (m⃗mm,µ⃗µµ) can be viewed as a witness for the statement
about m⃗mm∗. The honest language LOpen and the proven language L′Open are defined
as follows:

LOpen =
{
m⃗mm∗ ∈ Rµq | ∃(m⃗mm,µ⃗µµ) ∈ Rℓ ×Rµ+ν s.t. (m⃗mm∗, m⃗mm, µ⃗µµ) ∈ ROpen

}
L′Open =

{
m⃗mm∗ ∈ Rµq | ∃(m⃗mm,µ⃗µµ) ∈ Rℓ ×Rµ+ν s.t. (m⃗mm∗, m⃗mm, µ⃗µµ) ∈ R′Open

}

We note that LOpen ⊆ L′Open since (m⃗mm∗, m⃗mm, µ⃗µµ) ∈ ROpen implies (m⃗mm∗, 2m⃗mm, 2µ⃗µµ) ∈
R′Open.

We present the amortized POK protocol ΠOpen in Fig. 1, the verification
procedure VOpen in Fig. 2, and the simulator SOpen in Fig. 3.
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ΠOpen(m⃗mm
∗
0, . . . , m⃗mm

∗
k′−1)

Prover P Verifier V

Input: ck ∈ Rµ×(µ+ν+ℓ)
q ck

m⃗mm0, . . . , m⃗mmk′−1 ∈ R
ℓ

µ⃗µµ0, . . . , µ⃗µµk′−1 ∈ R
µ+ν

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 : For 0 ≤ j < r,

2 : n⃗nn
(j) ← Dℓ

Zn,
√

k′s2
, ν⃗νν

(j) ← Dµ+ν

Zn,
√

k′σ2

3 : n⃗nn
∗(j)

= Comck(n⃗nn
(j)

; ν⃗νν
(j)

) n⃗nn
∗(j)

4 : For 0 ≤ j < r,

5 : ccc
(j)
0 , . . . , ccc

(j)

k′−1 ccc
(j)
0 , . . . , ccc

(j)

k′−1
← U(C)

6 : For 0 ≤ j < r,

7 : m⃗mm
(j)

= n⃗nn
(j)

+

k′−1∑
i=0

ccc
(j)
i · m⃗mmi

8 : µ⃗µµ
(j)

= ν⃗νν
(j)

+

k′−1∑
i=0

ccc
(j)
i · µ⃗µµi

m⃗mm
(j)
, µ⃗µµ

(j)

9 : Run VOpen

Fig. 1. Amortized POK protocol for the Ajtai commitment scheme

VOpen

1 : For 0 ≤ j < r,

2 :
∥∥∥m⃗mm(j)

∥∥∥
2

?
< ((b+ 1)s1 + s2) ·

√
k′ℓn

3 :
∥∥∥m⃗mm(j)

∥∥∥
∞

?
< 5((b+ 1)s1 + s2) ·

√
k′

4 :
∥∥∥µ⃗µµ(j)

∥∥∥
2

?
< (σ1 + σ2) ·

√
k′(µ+ ν)n

5 :
∥∥∥µ⃗µµ(j)

∥∥∥
∞

?
< 5(σ1 + σ2) ·

√
k′

6 : Comck(m⃗mm
(j)
, µ⃗µµ

(j)
)

?
= n⃗nn

∗(j)
+

k′−1∑
i=0

ccc
(j)
i · m⃗mm∗

i (mod q)

Fig. 2. Verification procedure for ΠOpen
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SOpen(ck)

1 : m⃗mm
′∗
i ← U(R

µ
q ) for 0 ≤ i < k

′

2 : ccc
(j)
0 , . . . , ccc

(j)

k′−1
← U(C) for 0 ≤ j < r

3 : n⃗nn
(j) ← Dℓ

Zn,
√

k′s2
, ν⃗νν

(j) ← Dµ+ν

Zn,
√

k′σ2
for 0 ≤ j < r

4 : m⃗mm
′
i ← R.Ecd(0, s1), µ⃗µµi ← D

µ+ν
Zn,σ1

for 0 ≤ i < k
′

5 : m⃗mm
′(j)

:= n⃗nn
(j)

+

k′−1∑
i=0

ccc
(j)
i · m⃗mm′

i, µ⃗µµ
(j)

:= ν⃗νν
(j)

+

k′−1∑
i=0

ccc
(j)
i · µ⃗µµi for 0 ≤ j < r

6 : n⃗nn
∗(j)

:= Comck(m⃗mm
′(j)

; µ⃗µµ
(j)

)−
k′−1∑
i=0

ccc
(j)
i · m⃗mm′∗

i for 0 ≤ j < r

7 : Output {m⃗mm′∗
i }

k′−1
i=0 , {n⃗nn∗(j)}r−1

j=0 , {(ccc
(j)
0 , . . . , ccc

(j)

k′−1
)}r−1

j=0 , {m⃗mm
′(j)}r−1

j=0 , {µ⃗µµ
(j)}r−1

j=0

Fig. 3. Simulator for ΠOpen

Below, we prove that ΠOpen is a secure POK protocol for the languages
(LOpen,L

′
Open).

Theorem 2. Let ck← Gen(1λ), C = {1, X, . . . ,X2n−1} and r ≥ (λ+2)/ log(2n).
Let s1, s2, σ1, σ2, σ, βOpen be positive reals satisfying the following conditions for
some 0 < ε < 2−λ.

– s1 ≥
√
2 · b+1

b−1 · ηε(Z
n), s2 ≥ (b+ 1)

√
2r · ηε(Zn)

– σ1 ≥ 2
√
2 · ηε(Zn), σ2 ≥ 2

√
2r · ηε(Zn), σ = 1√

2
(σ−21 + r · σ−22 )−1/2

– βOpen =
(
(b+ 1)s1 + s2) ·

√
k′ℓn+ (σ1 + σ2) ·

√
k′(µ+ ν)n

If m⃗mmi ← R.Ecd(m⃗i; s1) for some m⃗i ∈ Zℓmp and µ⃗µµi ← D
µ+ν
Zn,σ1

for 0 ≤ i < k′,
then ΠOpen is a secure proof-of-knowledge protocol for (LOpen,L

′
Open) under the

hardness assumption of MLWER,ν,q,σ and MSISR,µ,q,4nβOpen .

Proof. We show the completeness, soundness and simulatability of ΠOpen.

Completeness. If the prover is honest, m⃗mm∗i = Comck(m⃗mmi; µ⃗µµi) holds for 0 ≤ i <
k′. Consequently, line 6 of VOpen always holds, so we need to show that the
upper-bound check conditions in lines 2 to 5 are valid. Since ccc(j)i ’s are mono-
mials with coefficients equal to 1, ccc(j)i · m⃗mmi and ccc(j)i · µ⃗µµi follow the distributions
D
ccc
(j)
i ·m⃗mmi+(PZn)ℓ,s1P⊗Iℓ

and Dµ+νZn,σ1
, respectively. Using Lem. 8, the distribution

of
∑k′−1
i=0 ccc

(j)
i m⃗mmi and

∑k′−1
i=0 ccc

(j)
i µ⃗µµi are within statistical distance of O(ε) from

D∑k′−1
i=0 ccc

(j)
i m⃗mmi+(PZn)ℓ,

√
k′s1P⊗Iℓ

and Dµ+νZn,
√
k′σ1

since s1, σ1 ≥
√
2 · ηε(Zn). Apply-

ing the tail bounds, presented in Lem. 4, 5, to n⃗nn(j) and
∑k′−1
i=0 ccc

(j)
i m⃗mmi, we have

the following upper bounds, except for negligible probabilities:∥∥∥m⃗mm(j)
∥∥∥
2
≤
(
(b+ 1)s1 + s2) ·

√
k′ℓn,

∥∥∥m⃗mm(j)
∥∥∥
∞
≤ 5
(
(b+ 1)s1 + s2) ·

√
k′
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Similarly, we obtain the following results for µ⃗µµ(j):∥∥∥µ⃗µµ(j)
∥∥∥
2
≤
(
σ1 + σ2) ·

√
k′ℓn,

∥∥∥µ⃗µµ(j)
∥∥∥
∞
≤ 5
(
σ1 + σ2) ·

√
k′

Thus, the upper-bound check conditions in lines 2 to 5 hold, except for neg-
ligible probabilities.

Soundness. The soundness of the protocol is directly derived from Lem. 5 of [7].
If there exists an adversarial prover who succeeds in cheating an honest verifier
with a non-negligible probability, it implies the existence of a knowledge extrac-
tor E , which can extract a witness (m⃗mm′i, µ⃗µµ

′
i) satisfying 2m⃗mm∗i = Comck(m⃗mm

′
i, µ⃗µµ
′
i) and∥∥m⃗mm′i∥µ⃗µµ′i∥∥2 < 2nβOpen for 0 ≤ i < k′ with a non-negligible probability. Therefore,

a prover cannot be accepted by an honest verifier without knowing the witness
for 2m⃗mm∗i for 0 ≤ i < k′ assuming the hardness of MSISR,µ,q,4nβOpen .

Simulatability. We show that SOpen in Fig. 3 efficiently simulates ΠOpen. Let
D0(m⃗) and D1 represent the distributions of the transcript generated by the
honest prover and the verifier of ΠOpen with input message m⃗ = (m⃗0, . . . , m⃗k′−1),
respectively, and those generated by SOpen. We show that these distributions are
computationally indistinguishable using the hybrid argument.

We first define the distributions H0(m⃗), H1(m⃗), H2(m⃗), and H3 as follows,
where n⃗nn(j)i ← DℓZn,s2

, and ν⃗νν(j)i ← D
µ+ν
Zn,σ2

for 0 ≤ i < k′, 0 ≤ j < r.

– H0(m⃗) :=
(
A0m⃗mmi + [A1|Iµ]µ⃗µµi, n⃗nn

(j)
i + ccc

(j)
i · m⃗mmi, ν⃗νν

(j)
i + ccc

(j)
i µ⃗µµi

)
– H1(m⃗) :=

(
A0m⃗mmi + m⃗mm′∗i , n⃗nn

(j)
i + ccc

(j)
i · m⃗mmi, ν⃗νν

(j)
i + ccc

(j)
i µ⃗µµi

)
– H2(m⃗) :=

(
m⃗mm′∗i , n⃗nn

(j)
i + ccc

(j)
i · m⃗mmi, ν⃗νν

(j)
i + ccc

(j)
i µ⃗µµi

)
– H3 :=

(
m⃗mm′∗i , n⃗nn

(j)
i + ccc

(j)
i · m⃗mm

′
i, ν⃗νν

(j)
i + ccc

(j)
i µ⃗µµi

)
If H0(m⃗) and H3 are computationally indistinguishable, then D0(m⃗) and D1 are
also computationally indistinguishable, as the latter distributions can be derived
from the former ones. To be precise,

∑k′−1
i=0 n⃗nn

(j)
i +ccc

(j)
i ·m⃗mmi and

∑k′−1
i=0 ν⃗νν

(j)
i +ccc

(j)
i ·

µ⃗µµi in H0(m⃗) are within statistical distance O(ε) of m⃗mm(j) and µ⃗µµ(j) in D0(m⃗),
respectively, by Lem. 8. Similarly,

∑k′−1
i=0 n⃗nn

(j)
i +ccc

(j)
i ·m⃗mm

′
i and

∑k′−1
i=0 ν⃗νν

(j)
i +ccc

(j)
i · µ⃗µµi

in H3 are within statistical distance O(ε) of m⃗mm′(j) and µ⃗µµ(j) in D1, respectively, by
Lem. 8. Thus, it is sufficient to prove that H0(m⃗) and H3 are computationally
indistinguishable, which involves proving the following claims.

Claim 1: H0(m⃗) and H1(m⃗) are computationally indistinguishable.
Distinguishing between the two given distributions is equivalent to solving

HintMLWE
ccc
(0)
i ,...,ccc

(r−1)
i

R,ν,q,σ1,σ2,...,σ2
. Since σ ≥

√
2 · ηε(Zn) holds under the given condi-

tions for σ1 and σ2, HintMLWE
ccc
(0)
i ,...,ccc

(r−1)
i

R,ν,q,σ1,σ2,...,σ2
can be reduced from MLWER,ν,q,σ

by Thm. 1. Therefore, the two given distributions are computationally indistin-
guishable under the hardness assumption of MLWER,ν,q,σ.
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Claim 2: H1(m⃗) and H2(m⃗) are statistically identical.
Since m⃗mm′∗i ’s are uniform random samples from U(Rµq ), the distribution of

A0m⃗mmi + m⃗mm′∗i and m⃗mm′∗i are identical.

Claim 3: H2(m⃗) and H3 are within negligible statistical distance.
We use Lem. 11 to prove the claim Let S be a positive definitive ma-

trices satisfying S−1 = s−21 · (PP⊤)−1 + rs−22 · In. Then, we need to show√
S ≥ ηε(PZn) ⇐⇒ P−1

√
S ≥ ηε(Zn). By Lem. 2, it suffices to show that∥∥P⊤S−1P∥∥

2
≤ ηε(Z)−2. Since ∥P∥2 ≤ b+ 1 and

∥∥P−1∥∥
2
≤ (b− 1)−1, we have

the followings: ∥∥P⊤S−1P∥∥
2
≤ (b+ 1)2

(
(b− 1)−2s−21 + rs−22

)
Then, it holds that

∥∥P⊤S−1P∥∥
2
≤ ηε(Zn) under the given conditions for s1 and

s2 Therefore, by Lem. 11, each distribution of the components of n⃗nn(j)i + ccc
(j)
i · m⃗mmi

and n⃗nn(j)i + ccc
(j)
i · m⃗mm

′
i is within statistical distance O(ε).

By Claim 1,2, and 3, the distributions H0(m⃗) and H3 are computationally
indistinguishable, which implies D0(m⃗) and D1 are also computationally indis-
tinguishable.

Therefore, ΠOpen satisfies the completeness, soundness, and simulatability
under the given conditions. ⊓⊔

4 Sublinear Argument for R1CS

In this section, we present sublinear zero-knowledge argument for R1CS based
on our new amortized POK protocol ΠOpen. Our protocol mainly proves the
knowledge of the solution vector t⃗ ∈ ZMp for the following equations:

(At⃗+ a⃗) ◦ (Bt⃗+ b⃗) = (Ct⃗+ c⃗) (mod p) (3)

where A,B,C ∈ ZM×Mp and a⃗, b⃗, c⃗ ∈ ZMp are public to both prover and verifier.
The high-level idea is similar to the previous work [7]. We embed the constraints
of R1CS, such as A,B,C, a⃗, b⃗, c⃗, into polynomial equations over Zp. Then, the
satisfiability of R1CS is reduced to the satisfiability of these polynomial equa-
tions.
Reduction to Inner Product Relations. Before composing the polynomial
equations, we adapt optimization techniques from recent literature [19,31], which
converts satisfiability of linear relations to satisfiability of inner product rela-
tions. To prove that t⃗ is a solution for Eq. (3), we show the following equation
holds for a random challenge v⃗ = (1, v, . . . , vM−1) where v ← U(Zp):〈

(At⃗+ a⃗) ◦ (Bt⃗+ b⃗)− (Ct⃗+ c⃗), v⃗
〉
= 0 (mod p)



Efficient Lattice-based Sublinear Arguments for R1CS without Aborts 19

By applying the Schwartz-Zippel lemma, this equation holds only with a prob-
ability of O(1/p), which will be set to be negligible, if t⃗ is not a solution for
Eq. (3). We can rewrite the above equation as follows, where V = diag(v⃗):〈

t⃗, A⊤V Bt⃗+B⊤V a⃗+A⊤V b⃗− C⊤v⃗
〉
= ⟨c⃗, v⃗⟩ −

〈
a⃗, V b⃗

〉
(mod p)

If we introduce a new indeterminate d⃗, and set g0 := ⟨c⃗, v⃗⟩ −
〈
a⃗, V b⃗

〉
, it is

equivalent to showing that the following two equations hold:{〈
t⃗, d⃗
〉
= g0 (mod p)

d⃗ = A⊤V Bt⃗+B⊤V a⃗+A⊤V b⃗− C⊤v⃗ (mod p)

Instead of the second equation, we show the following equation holds for a ran-
dom challenge w⃗ = (1, w, . . . , wM−1) for w ← U(Zp):〈

d⃗−A⊤V Bt⃗−B⊤V a⃗−A⊤V b⃗+ C⊤v⃗, w⃗
〉
= 0

⇐⇒
〈
t⃗, B⊤V Aw⃗

〉
−
〈
d⃗, w⃗

〉
=
〈
C⊤v⃗ −B⊤V a⃗−A⊤V b⃗, w⃗

〉
If we set f⃗ = (f0, . . . , fM−1) := B⊤V Aw⃗ and g1 :=

〈
C⊤v⃗ −B⊤V a⃗−A⊤V b⃗, w⃗

〉
,

then proving the satisfiability of the R1CS finally reduces to proving the satisfi-
ability of the following inner product relations:

〈
t⃗, d⃗
〉
= g0 (mod p)〈

t⃗, f⃗
〉
−
〈
d⃗, w⃗

〉
= g1 (mod p)

(4)

Reduction to Polynomial Equations. We now reduces the satisfiability of
Eq. (4) to the satisfiability of polynomial equations over Zp. For an indeterminant
Y , we define polynomials t(Y ) and d(Y ) as follows:

t(Y ) := Y ℓm ·
M−1∑
i=0

tiY
i, d(Y ) := Y ℓm ·

M−1∑
i=0

diY
M−i

f(Y ) := Y ℓm ·
M−1∑
i=0

fiY
M−i, w(Y ) := Y ℓm ·

M−1∑
i=0

wiY i

Then, the coefficient of YM+2ℓm of t(Y ) · d(Y ), t(Y ) · f(Y ), and d(Y ) · w(Y )

are equal to
〈
t⃗, d⃗
〉
,
〈
t⃗, f⃗
〉
, and

〈
d⃗, w⃗

〉
, respectively. Hence, proving the satis-

fiability of Eq. (4) is reduced to the proving the coefficient of YM+2ℓm of the
following polynomial is zero for some random challenge x← U(Zp) by applying
the Schwartz-Zippel lemma.

t(Y ) · d(Y )− g0 · YM+2ℓm + x ·
(
t(Y ) · f(Y )− d(Y ) · w(Y )− g1 · YM+2ℓm

)
(5)
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Committing and Verifying. To prove that the coefficient of YM+2ℓm in
Eq. (5) is zero, a prover initially commits t⃗ = (t0, . . . , tM−1) and d⃗ = (d0, . . . , dM−1)
using the Ajtai scheme. We recall that for each commitment, it can contain at
most ℓm elements of Zp. Therefore, we set M = k · ℓm, so that k commit-
ments are generated for each vector. For 0 ≤ i < k, commitments t⃗tt

∗
i and d⃗dd

∗
i

for t⃗ and d⃗ are generated as follows, where t⃗i = (tiℓm, . . . , t(i+1)ℓm−1), d⃗i =
(diℓm, . . . , d(i+1)ℓm−1), and s1, σ1 > 0.

t⃗tti ← R.Ecd(⃗ti; s1), τ⃗ττ i ← Dµ+νZn,σ1
, t⃗tt

∗
i = Comck(⃗ttti; τ⃗ττ i)

d⃗ddi ← R.Ecd(d⃗i; s1), δ⃗δδi ← Dµ+νZn,σ1
, d⃗dd

∗
i = Comck(⃗dddi; δ⃗δδi)

Then, for y ← U(Zp), y⃗ := (1, . . . , yℓm−1) and y⃗′ := (yℓm−1, . . . , 1), it holds the
followings. 〈

y⃗, Dcd

(
k−1∑
i=0

Ecd(y(i+1)ℓm) · t⃗tti

)〉
= t(y)〈

y⃗′, Dcd

(
k−1∑
i=0

Ecd(yM−iℓm+1) · d⃗ddi

)〉
= d(y)

Thus, a prover can prove the evaluations of t(Y ) and d(Y ) at the point y by
sending

∑k−1
i=0 Ecd(y(i+1)ℓm) · t⃗tti and

∑k−1
i=0 Ecd(yM−iℓm+1) · d⃗ddi instead of t⃗ and

d⃗, effectively reducing communication costs. However, directly sending them re-
veals information about t⃗ and d⃗. To resolve this, we mask it with some ran-
dom noise eee0, eee1 and eee2 so that t⃗tt := eee0 +

∑k−1
i=0 Ecd(y(i+1)ℓm) · t⃗tti and d⃗dd :=

eee1 +
∑k−1
i=0 Ecd(yM−iℓm+1) · d⃗ddi appears independent of t⃗ and d⃗ to a verifier.

Then, we have
〈
y⃗, Dcd(⃗t)

〉
= e0(y) + t(y) and

〈
y⃗′, Dcd(d⃗)

〉
= e1(y) + d(y) where

(e0, . . . , e3ℓ−1) := Dcd(eee0∥eee1∥eee2)

e0(Y ) :=
ℓm−1∑
i=0

eiY
i, e1(Y ) :=

ℓm−1∑
i=0

eℓm+iY
ℓm−1−i, e2(Y ) :=

ℓm−1∑
i=0

e2ℓm+iY
i

Hence, a prover can prove evaluations of e0(Y ) + t(Y ) and e1(Y ) + d(Y ) at the
point y, with reduced communication cost while keeping t⃗ and d⃗ secret. To recap,
our objective is to prove the coefficient of YM+2ℓm is zero in Eq. (5), which is
equal to the coefficient of YM+2ℓm of the following polynomial:

h(Y ) := (e0(Y ) + t(Y )) · (e1(Y ) + d(Y ))− g0 · YM+2ℓm − e2(Y )

+ x ·
(
(e0(Y ) + t(Y )) · f(Y )− (e1(Y ) + d(Y )) · w(Y )− g1 · YM+2ℓm

)
since the degree of e0(Y ), e1(Y ) and e2(Y ) are smaller than ℓm. To prove the
coefficient of YM+2ℓm in h(Y ) =

∑2M+2ℓm−1
i=0 hiY

i is zero, a prover commits
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its coefficients hi except for the (M + 2ℓm)-th coefficient. Then, using a similar
method as for e0(Y ) + t(Y ) and e1(Y ) + d(Y ), a prover can efficiently prove
evaluations of e2(Y )+h(Y )−hM+2ℓm ·YM+2ℓm at the point y. The verifier then
checks that it has the same value as:

(e0(y) + t(y)) · (e1(y) + d(y))− g0 · yM+2ℓm

+ x ·
(
(e0(y) + t(y)) · f(y)− (e1(y) + d(y)) · w(y)− g1 · yM+2ℓm

)
This results in proving hM+2ℓm = 0, which is our goal.

4.1 Proof-of-Knowledge Protocol for R1CS

We present a proof-of-opening knowledge protocol for R1CS, which achieves
sublinear communication complexity of O(

√
M) in the input size M . Our pro-

tocol follows the commit-and-prove framework. A prover starts by commit-
ting input messages t⃗ = (t0, t1, . . . , tM−1), along with other side information
d⃗ = (d0, . . . , dM−1), and h⃗ = (h0, . . . , h2M+2ℓm−1) using the Ajtai commitment
scheme. Then, it shows that the committed values satisfy polynomial equations,
which we reduce from the satisfiability of R1CS. Finally, it proves its opening
knowledge of the committed values using the amortized POK protocol for the
Ajtai scheme.

The witness relations for the protocol are defined as follows:

RR1CS :=

({⃗ttt∗i }k−1i=0 , {⃗ttti}
k−1
i=0 , {τ⃗ττ i}

k−1
i=0 )

∣∣∣∣∣∣∣
(⃗ttt
∗
i , t⃗tti, τ⃗ττ i) ∈ ROpen

∧(At⃗+ a⃗) ◦ (Bt⃗+ b⃗) = (Ct⃗+ c⃗)

s.t. t⃗ = Dcd(⃗ttt0∥ · · · ∥⃗tttk−1) ∈ ZMp


R′R1CS :=

({⃗ttt∗i }k−1i=0 , {⃗ttti}
k−1
i=0 , {τ⃗ττ i}

k−1
i=0 )

∣∣∣∣∣∣∣
(⃗ttt
∗
i , t⃗tti, τ⃗ττ i) ∈ R′Open

∧(At⃗+ 2a⃗) ◦ (Bt⃗+ 2⃗b) = 2(Ct⃗+ 2c⃗)

s.t. t⃗ = Dcd(⃗ttt0∥ · · · ∥⃗tttk−1) ∈ ZMp


where ck ← Gen(1λ). Then, ({⃗ttti}k−1i=0 , {τ⃗ττ i}

k−1
i=0 ) is a witness for R1CS, which is

bound by the commitments. The honest language LR1CS and the proven language
L′R1CS are defined as follows:

LR1CS =
{
{⃗ttt∗i }k−1i=0

∣∣∣ ∃{⃗ttti}k−1i=0 , {τ⃗ττ i}
k−1
i=0 s.t.

(
{⃗ttt∗i }k−1i=0 , {⃗ttti}

k−1
i=0 , {τ⃗ττ i}

k−1
i=0

)
∈ RR1CS

}
L′R1CS =

{
{⃗ttt∗i }k−1i=0

∣∣∣ ∃{⃗ttti}k−1i=0 , {τ⃗ττ i}
k−1
i=0 s.t.

(
{⃗ttt∗i }k−1i=0 , {⃗ttti}

k−1
i=0 , {τ⃗ττ i}

k−1
i=0

)
∈ R′R1CS

}

We note that what one can prove from the protocol is the knowledge of the
solution t⃗ to the following equations:

(At⃗+ 2a⃗) ◦ (Bt⃗+ 2⃗b) = 2(Ct⃗+ 2c⃗) (mod p)
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However, if we set t⃗′ = 2−1 · t⃗, then

(2At⃗′ + 2a⃗) ◦ (2Bt⃗′ + 2⃗b) = 4(Ct⃗′ + c⃗) (mod p)

⇐⇒ (At⃗′ + a⃗) ◦ (Bt⃗′ + b⃗) = (Ct⃗′ + c⃗) (mod p)

which is equivalent to solving the original R1CS. Hence, our protocol is sufficient
for proving knowledge of a solution to the given R1CS even if there is a gap
between the honest language and the proven language.

We present the proof-of-knowledge protocol for R1CS ΠR1CS in Fig. 4, 5, 6,
and the verification procedure VR1CS in Fig. 7, and the simulator SR1CS in Fig. 8,
9.

ΠR1CS(A,B,C, a⃗, b⃗, c⃗, {⃗ttt∗i }k−1
i=0 )

Prover P Verifier V

Input: ck ∈ Rµ×(µ+ν+ℓ)
q ck

t⃗tt0, . . . , t⃗ttk−1 ∈ Rℓ

τ⃗ττ0, . . . , τ⃗ττk−1 ∈ Rµ+ν

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 : Step 1:

2 : t⃗ := Dcd(⃗ttt0∥ · · · ∥⃗tttk−1) ∈ ZM
p

3 : v v ← U(Zp)

4 : v⃗ := (1, v, . . . , v
M−1

), V := diag(v⃗),

5 : d⃗ = d⃗0∥ · · · ∥d⃗k−1 := A
⊤
V Bt⃗+ B

⊤
V a⃗+ A

⊤
V b⃗− C⊤

v⃗

6 : For 0 ≤ i < k,

7 : d⃗ddi ← R.Ecd(d⃗i; s1), δ⃗δδi ← Dµ+ν
Zn,σ1

8 : d⃗dd
∗
i := Comck (⃗dddi; δ⃗δδi)

d⃗dd
∗
0 , . . . , d⃗dd

∗
k−1

9 : w w ← U(Zp)

10 : w⃗ := (1, w, . . . , w
M−1

)

Fig. 4. Proof of R1CS relation(1).
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ΠR1CS(A,B,C, a⃗, b⃗, c⃗, {⃗ttt∗i }k−1
i=0 )

Prover P Verifier V
11 : Step 2:

12 : e⃗ee0, e⃗ee1 ← Dℓ

Zn,
(b+2)κ

2
·
√

k·s2
, e⃗ee2 ← Dℓ

Zn,
(b+2)κ

2
·
√

2k+2·s2

13 : ε⃗εε0, ε⃗εε1 ← Dµ+ν

Zn,
(b+2)κ

2
·
√

k·σ2

, ε⃗εε2 ← Dµ+ν

Zn,
(b+2)κ

2
·
√

2k+2·σ2

14 : e⃗ee
∗
0 = Comck (⃗eee0; ε⃗εε0), e⃗ee

∗
1 = Comck (⃗eee1; ε⃗εε1)

15 : e⃗ee
∗
2 = Comck (⃗eee2; ε⃗εε2)

e⃗ee
∗
0 , e⃗ee

∗
1 , e⃗ee

∗
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 : Step 3:

17 : (t0, . . . , tM−1) := t⃗, (d0, . . . , dM−1) := d⃗

18 : (e0, . . . , e3ℓm−1) := Dcd(⃗eee0∥⃗eee1∥⃗eee2)

19 : f⃗ = (f0, . . . , fM−1) := B
⊤
V Aw⃗

20 : g0 := ⟨c⃗, v⃗⟩ −
〈
a⃗, V b⃗

〉
, g1 :=

〈
C

⊤
v⃗ − B⊤

V a⃗− A⊤
V b⃗, w⃗

〉
21 : t(Y ) := Y

ℓm ·
M−1∑
i=0

tiY
i
, d(Y ) := Y

ℓm ·
M−1∑
i=0

diY
M−i

22 : e0(Y ) :=

ℓm−1∑
i=0

eiY
i
, e1(Y ) :=

ℓm−1∑
i=0

eℓm+iY
ℓm−1−i

23 : e2(Y ) :=

ℓm−1∑
i=0

e2ℓm+iY
i

24 : f(Y ) := Y
ℓm ·

M−1∑
i=0

fiY
M−i

, w(Y ) := Y
ℓm ·

M−1∑
i=0

w
i
Y

i

25 : x x← U(Zp)

26 :

2M+2ℓm−1∑
i=0

hiY
i
:=

(
e0(Y ) + t(Y )

)(
e1(Y ) + d(Y )

)
− e2(Y )− g0YM+2ℓm

27 : + x ·
(
(e0(Y ) + t(Y ))f(Y )− (e1(Y ) + d(Y ))w(Y )− g1YM+2ℓm

)
28 : For 0 ≤ i < 2k + 2,

29 : h⃗hhi ← R.Ecd(hiℓm, . . . , h(i+1)ℓm−1; s1) if i < k + 2

30 : h⃗hhi ← R.Ecd(hiℓm+1, . . . , h(i+1)ℓm; s1) if i ≥ k + 2

31 : η⃗ηηi ← D
µ+ν
Zn,σ1

, h⃗hh
∗
i = Comck(h⃗hhi; η⃗ηηi)

h⃗hh
∗
0 , . . . , h⃗hh

∗
2k+1

Fig. 5. Proof of R1CS relation(2).
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ΠR1CS(A,B,C, a⃗, b⃗, c⃗, {⃗ttt∗i }k−1
i=0 )

Prover P Verifier V
32 : Step 4:

33 : m⃗mm0∥ · · · ∥m⃗mm4k+1 := (⃗ttt0∥ · · · ∥⃗tttk−1)∥(⃗ddd0∥ · · · ∥d⃗ddk−1)∥(h⃗hh0∥ · · · ∥h⃗hh2k+1)

34 : µ⃗µµ0∥ · · · ∥µ⃗µµ4k+1 := (τ⃗ττ0∥ · · · ∥τ⃗ττk−1)∥(⃗δδδ0∥ · · · ∥⃗δδδk−1)∥(η⃗ηη0∥ · · · ∥η⃗ηη2k+1)

35 : m⃗mm
∗
0∥ · · · ∥m⃗mm

∗
4k+1 := (⃗ttt

∗
0∥ · · · ∥⃗ttt

∗
k−1)∥(⃗ddd

∗
0∥ · · · ∥d⃗dd

∗
k−1)∥(h⃗hh

∗
0∥ · · · ∥h⃗hh

∗
2k+1)

36 : Run ΠOpen(m⃗mm
∗
0 , . . . , m⃗mm

∗
4k+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37 : Step 5:

38 : y y ← U(Zp)

39 : t⃗tt := e⃗ee0 +

k−1∑
i=0

Ecd(y
(i+1)ℓm

) · t⃗tti

40 : τ⃗ττ := ε⃗εε0 +

k−1∑
i=0

Ecd(y
(i+1)ℓm

) · τ⃗ττ i

41 : d⃗dd := e⃗ee1 +

k−1∑
i=0

Ecd(y
M−iℓm+1

) · d⃗ddi

42 : δ⃗δδ := ε⃗εε1 +

k−1∑
i=0

Ecd(y
M−iℓm+1

) · δ⃗δδi

43 : h⃗hh := e⃗ee2 +

k+1∑
i=0

Ecd(y
iℓm

) · h⃗hhi +

2k+1∑
i=k+2

Ecd(y
iℓm+1

) · h⃗hhi

44 : η⃗ηη := ε⃗εε2 +

k+1∑
i=0

Ecd(y
iℓm

) · η⃗ηηi +
2k+1∑
i=k+2

Ecd(y
iℓm+1

) · η⃗ηηi
t⃗tt, d⃗dd, h⃗hh

τ⃗ττ, δ⃗δδ, η⃗ηη

45 : Run VR1CS

Fig. 6. Proof of R1CS relation(3).
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VR1CS

1 :
∥∥∥⃗ttt∥∥∥

2
,
∥∥∥d⃗dd∥∥∥

2

?
<

(b+ 2)κ

2
·
(
(b+ 1)

√
ks1 + s2

)
·
√
kℓn

2 :
∥∥∥⃗ttt∥∥∥

∞
,
∥∥∥d⃗dd∥∥∥

∞

?
<

5(b+ 2)κ

2
·
(
(b+ 1)

√
ks1 + s2

)
·
√
k

3 : ∥τ⃗ττ∥2,
∥∥∥δ⃗δδ∥∥∥

2

?
<

(b+ 2)κ

2
·
(√
kσ1 + σ2

)
·
√
k(µ+ ν)n

4 : ∥τ⃗ττ∥∞,
∥∥∥δ⃗δδ∥∥∥

∞

?
<

5(b+ 2)κ

2
·
(√
kσ1 + σ2

)
·
√
k

5 :
∥∥∥h⃗hh∥∥∥

2

?
< b, ∥η⃗ηη∥2

?
< β

6 :
∥∥∥h⃗hh∥∥∥

∞

?
<

5(b+ 2)κ

2
·
(
(b+ 1)

√
2k + 2s1 + s2

)
·
√

2k + 2

7 : ∥η⃗ηη∥∞
?
<

5(b+ 2)κ

2
·
(√

2k + 2σ1 + σ2

)
·
√

2k + 2

8 : Comck (⃗ttt; τ⃗ττ)
?
= e⃗ee

∗
0 +

k−1∑
i=0

Ecd(y
(i+1)ℓm

) · t⃗tt∗i (mod q)

9 : Comck (⃗ddd; δ⃗δδ)
?
= e⃗ee

∗
1 +

k−1∑
i=0

Ecd(y
M−iℓm+1

) · d⃗dd∗i (mod q)

10 : Comck(h⃗hh; η⃗ηη)
?
= e⃗ee

∗
2 +

k+1∑
i=0

Ecd(y
iℓm

) · h⃗hh∗
i +

2k+1∑
i=k+2

Ecd(y
iℓm+1

) · h⃗hh∗
i (mod q)

11 : v⃗ := (1, v, . . . , v
M−1

), V := diag(v⃗)

12 : w⃗ := (1, w, . . . , w
M−1

), w(Y ) := Y
ℓm ·

M−1∑
i=0

w
i
Y

i

13 : f⃗ := (f0, . . . , fM−1) := B
⊤
V Aw⃗, f(Y ) := Y

ℓm ·
M−1∑
i=0

fiY
M−i

14 : g0 := ⟨c⃗, v⃗⟩ −
〈
a⃗, V b⃗

〉
, g1 :=

〈
C

⊤
v⃗ − B⊤

V a⃗− A⊤
V b⃗, w⃗

〉
15 : y⃗ := (1, . . . , y

ℓm−1
), y⃗

′
:= (y

ℓm−1
, . . . , 1)

16 :
〈
y⃗, Dcd(h⃗hh)

〉
?
=

〈
y⃗, Dcd(⃗ttt)

〉
·
〈
y⃗
′
, Dcd(⃗ddd)

〉
− g0 · yM+2ℓm

17 : + x ·
(〈

y⃗, Dcd(⃗ttt)
〉
· f(y)−

〈
y⃗
′
, Dcd(⃗ddd)

〉
· w(y)− g1 · yM+2ℓm

)
(mod p)

Fig. 7. Verification procedure for ΠR1CS
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SR1CS(ck, A,B,C, a⃗, b⃗, c⃗)

1 : Step 1:

2 : t⃗tt
′∗
i , d⃗dd

′∗
i ← U(R

µ
q ) for 0 ≤ i < k

3 : h⃗hh
′∗
i ← U(R

µ
q ) for 0 ≤ i < 2k + 2 , v, w, x, y ← U(Zp)

4 : v⃗ := (1, v, . . . , v
M−1

), V := diag(v⃗), w⃗ := (1, w, . . . , w
M−1

)

5 : t⃗tt
′
i ← R.Ecd(0; s1), τ⃗ττ i ← Dµ+ν

Zn,σ1
for 0 ≤ i < k

6 : d⃗dd
′
i ← R.Ecd(0; s1), δ⃗δδi ← Dµ+ν

Zn,σ1
for 0 ≤ i < k

7 : e⃗ee0, e⃗ee1 ← Dℓ
Zn,

√
kκbs2

, e⃗ee2 ← Dℓ
Zn,

√
2k+2κbs2

8 : ε⃗εε0, ε⃗εε1 ← Dµ+ν

Zn,
√

kκbσ2
, ε⃗εε2 ← Dµ+ν

Zn,
√

2k+2κbσ2

9 : (e0, . . . , e3ℓm−1) := Dcd(⃗eee0∥⃗eee1∥⃗eee2), f⃗ = (f0, . . . , fM−1) := B
⊤
V Aw⃗

10 : g0 := ⟨c⃗, v⃗⟩ −
〈
a⃗, V b⃗

〉
, g1 :=

〈
C

⊤
v⃗ − B⊤

V a⃗− A⊤
V b⃗, w⃗

〉
11 : e0(Y ) :=

ℓm−1∑
i=0

eiY
i
, e1(Y ) :=

ℓm−1∑
i=0

eℓm+iY
ℓm−1−i

, e2(Y ) :=

ℓm−1∑
i=0

e2ℓm+iY
i

12 : f(Y ) := Y
ℓm ·

M−1∑
i=0

fiY
M−i

, w(Y ) := Y
ℓm ·

M−1∑
i=0

w
i
Y

i

13 : h
′
0 := e0(y)e1(y)− e2(y)− g0yM+2ℓm

+ x ·
(
e0(y)f(y)− e1(y)w(y)− g1yM+2ℓm

)
14 : h⃗hh

′
0 ← R.Ecd(h

′
0, 0, . . . , 0; s1), η⃗ηη0 ← D

µ+ν
Zn,σ1

15 : h⃗hh
′
i ← R.Ecd(0; s1), η⃗ηηi ← D

µ+ν
Zn,σ1

for 1 ≤ i < 2k + 2

16 : t⃗tt
′
:= e⃗ee0 +

k−1∑
i=0

Ecd(y
(i+1)ℓm

) · t⃗tt′i, τ⃗ττ := ε⃗εε0 +

k−1∑
i=0

Ecd(y
(i+1)ℓm

) · τ⃗ττ i

17 : d⃗dd
′
:= e⃗ee1 +

k−1∑
i=0

Ecd(y
M−iℓm+1

) · d⃗dd′i, δ⃗δδ := ε⃗εε0 +

k−1∑
i=0

Ecd(y
M−iℓm+1

) · δ⃗δδi

18 : h⃗hh
′
:= e⃗ee2 +

k+1∑
i=0

Ecd(y
iℓm

) · h⃗hh′
i +

2k+1∑
i=k+2

Ecd(y
iℓm+1

) · h⃗hh′
i

19 : η⃗ηη := ε⃗εε2 +

k+1∑
i=0

Ecd(y
iℓm

) · η⃗ηηi +
2k+1∑
i=k+2

Ecd(y
iℓm+1

) · η⃗ηηi

20 : e⃗ee
∗
0 := Comck (⃗ttt; τ⃗ττ)−

k−1∑
i=0

Ecd(y
(i+1)ℓm

) · t⃗tt′∗i (mod q)

21 : e⃗ee
∗
1 := Comck (⃗ddd; δ⃗δδ)−

k−1∑
i=0

Ecd(y
M−iℓm+1

) · d⃗dd′∗i (mod q)

22 : e⃗ee
∗
2 := Comck(h⃗hh; η⃗ηη)−

k+1∑
i=0

Ecd(y
iℓm

) · h⃗hh′∗
i −

2k+1∑
i=k+2

Ecd(y
iℓm+1

) · h⃗hh∗
i (mod q)

23 : Output {⃗ttt′∗i }
k−1
i=0 , {d⃗dd

′∗
i }

k−1
i=0 , {⃗eee

∗
i }

2
i=0, {h⃗hh

′∗
i }

2k+1
i=0 , v, w, x, y, t⃗tt

′
, d⃗dd

′
, h⃗hh

′
, τ⃗ττ, δ⃗δδ, η⃗ηη

Fig. 8. Simulator for ΠR1CS(1)
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SR1CS(ck, A,B,C, a⃗, b⃗, c⃗)

24 : Step 2:

25 : m⃗mm
′
0∥ · · · ∥m⃗mm

′
4k+1 := (⃗ttt

′
0∥ · · · ∥⃗ttt

′
k−1)∥(⃗ddd

′
0∥ · · · ∥d⃗dd

′
k−1)∥(h⃗hh

′
0∥ · · · ∥h⃗hh

′
2k+1)

26 : µ⃗µµ0∥ · · · ∥µ⃗µµ4k+1 := (τ⃗ττ0∥ · · · ∥τ⃗ττk−1)∥(⃗δδδ0∥ · · · ∥⃗δδδk−1)∥(η⃗ηη0∥ · · · ∥η⃗ηη2k+1)

27 : m⃗mm
′∗
0 ∥ · · · ∥m⃗mm

′∗
4k+1 := (⃗ttt

′∗
0 ∥ · · · ∥⃗ttt

′∗
k−1)∥(⃗ddd

′∗
0 ∥ · · · ∥d⃗dd

′∗
k−1)∥(h⃗hh

′∗
0 ∥ · · · ∥h⃗hh

′∗
2k+1)

28 : ccc
(j)
0 , . . . , ccc

(j)
4k+1 ← U(C) for 0 ≤ j < r

29 : n⃗nn
(j) ← Dℓ

Zn,
√

4k+2s2
, ν⃗νν

(j) ← Dµ+ν

Zn,
√

4k+2σ2
for 0 ≤ j < r

30 : m⃗mm
′(j)

:= n⃗nn
(j)

+

4k+1∑
i=0

ccc
(j)
i · m⃗mm′

i, µ⃗µµ
(j)

:= ν⃗νν
(j)

+

4k+1∑
i=0

ccc
(j)
i · µ⃗µµi for 0 ≤ j < r

31 : n⃗nn
∗(j)

:= Comck(m⃗mm
′(j)

; µ⃗µµ
(j)

)−
4k+1∑
i=0

ccc
(j)
i · m⃗mm′∗

i (mod q) for 0 ≤ j < r

32 : Output {n⃗nn∗(j)}r−1
j=0 , {(ccc

(j)
0 , . . . , ccc

(j)

k′−1
)}r−1

j=0 , {m⃗mm
′(j)}r−1

j=0 , {µ⃗µµ
(j)}r−1

j=0

Fig. 9. Simulator for ΠR1CS(2)

Below, we prove that ΠOpen is a secure POK protocol for the languages
(LOpen,L

′
Open).

Theorem 3. Let ck← Gen(1λ) and log p ≥ λ+log(2M+2ℓm). Let s1, s2, σ1, σ2,
b, β, βR1CS be positive reals satisfying the following conditions for some 0 < ε <
2−λ.

– s1 ≥
√
2 · b+1

b−1 · ηε(Z
n), s2 ≥ (b+ 1)

√
2r + 2 · ηε(Zn)

– σ1 ≥ 2
√
2 ·ηε(Zn), σ2 ≥ 2

√
2r + 2 ·ηε(Zn), σ = 1√

2
(σ−21 +(r+1) ·σ−22 )−1/2

– b = (b+2)κ
2 ·

(
(b+ 1)

√
2k + 2s1 + s2

)
·
√
(2k + 2)ℓn

– β = (b+2)κ
2 ·

(√
2k + 2σ1 + σ2

)
·
√

(2k + 2)(µ+ ν)n
– βR1CS = 2b+ 2β + 2(b+ 2)(k + 1)κ · nβOpen

If t⃗tti ← R.Ecd(⃗ti; s1) for some t⃗ = (⃗t0, . . . , t⃗k−1) ∈ ZMp satisfying (At⃗+ a⃗) ◦ (Bt⃗+
b⃗) = (Ct⃗ + c⃗), τ⃗ττ i ← Dµ+νZn,σ1

for 0 ≤ i < k, and ΠOpen is a secure proof-of-
knowledge protocol for (LOpen,L

′
Open), then ΠR1CS is a secure proof-of-knowledge

protocol for (LR1CS,L
′
R1CS) under the hardness assumption of MLWER,ν,q,σ and

MSISR,µ,q,2βR1CS .

Proof. We show the completeness, soundness, simulatability of ΠR1CS.

Completeness. If the prover is honest, t⃗tt
∗
i = Comck(⃗ttti; τ⃗ττ i) holds for 0 ≤ i < k′,

and (At⃗+ a⃗) ◦ (Bt⃗+ b⃗) = (Ct⃗+ c⃗) holds for t⃗ = Dcd(⃗ttt0∥ . . . ∥⃗tttk−1). Consequently,
lines 8 to 17 of VR1CS always hold, so it suffices to show that the upper-bound
check conditions in lines 1 to 7 are valid. As an example, we analyze the case of
h⃗hh; the others can be shown in a similar manner. In this time, we directly apply
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the tail bounds from Lem. 4, 5 to h⃗hhi’s and e⃗ee2. Then, the following holds except
for negligible probabilities:∥∥∥h⃗hhi∥∥∥

2
≤ (b+ 1)s1 ·

√
ℓn, ∥⃗eee2∥2 ≤

(b+ 2)κ

2
· s2 ·

√
(2k + 2)ℓn∥∥∥h⃗hhi∥∥∥

∞
≤ 5(b+ 1)s1, ∥⃗eee2∥∞ ≤

5(b+ 2)κ

2
·
√
2k + 2 · s2

Since ∥Ecd(a)∥1 ≤
(b+2)κ

2 holds for all a ∈ Zp, the following holds:∥∥∥∥∥
k+1∑
i=0

Ecd(yiℓm) · h⃗hhi +
2k+1∑
i=k+2

Ecd(yiℓm+1) · h⃗hhi

∥∥∥∥∥
2

≤ (2k + 2) · (b+ 2)κ

2
· (b+ 1)s1 ·

√
ℓn

∥∥∥∥∥
k+1∑
i=0

Ecd(yiℓm) · h⃗hhi +
2k+1∑
i=k+2

Ecd(yiℓm+1) · h⃗hhi

∥∥∥∥∥
∞

≤ (2k + 2) · (b+ 2)κ

2
· 5(b+ 1)s1

Therefore, the following holds except for negligible probabilities:∥∥∥h⃗hh∥∥∥
2
≤ b =

(b+ 2)κ

2
·
(
(b+ 1)

√
2k + 2s1 + s2

)
·
√
(2k + 2)ℓn∥∥∥h⃗hh∥∥∥

∞
≤ 5(b+ 2)κ

2
·
(√

2k + 2s1 + s2
)
·
√
2k + 2

Thus, the upper-bound check conditions in lines 1 to 7 hold, except for negligible
probabilities.

Soundness. Suppose there is a prover that is accepted by an honest prover
of ΠR1CS with non-negligible probabilities. By the soundness property of ΠOpen,
a prover possess opening knowledges (⃗ttt

′
i∥τ⃗ττ
′
i), (⃗ddd

′
i∥⃗δδδ
′
i), and (h⃗hh

′
i∥η⃗ηη
′
i) for 2⃗ttt

∗
i , 2d⃗dd

∗
i ,

and 2h⃗hh
∗
i , respectively, with sizes bounded by 2nβOpen. Then, a prover can derive

opening knowledges (⃗eee′0∥⃗εεε
′
0), (⃗eee

′
1∥⃗εεε
′
1), and (⃗eee′2∥⃗εεε

′
2) for 2⃗eee∗0, 2⃗eee

∗
1, and 2⃗eee∗2, respec-

tively, with sizes bounded by βR1CS = 2b+2β+2(b+2)(k+1)κ ·nβOpen, based on
the equations in lines 8 to 10 in VR1CS. Since we assume that MSISR,µ,q,2βR1CS is
computationally hard, these opening knowledges are bound to the corresponding
commitments. Therefore, for the responses t⃗tt, d⃗dd, h⃗hh from the prover, their values
are represented as follows:

2⃗ttt := e⃗ee′0 +

k−1∑
i=0

Ecd(y(i+1)ℓm) · t⃗tt′i

2d⃗dd := e⃗ee′1 +

k−1∑
i=0

Ecd(yM−iℓm+1) · d⃗dd
′
i

2h⃗hh := e⃗ee′2 +

k+1∑
i=0

Ecd(yiℓm) · h⃗hh
′
i +

2k+1∑
i=k+2

Ecd(yiℓm+1) · h⃗hh
′
i
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From equations in lines 16 to 17 in VR1CS, it holds that:〈
y⃗, Dcd(4h⃗hh)

〉
=
〈
y⃗, Dcd(2⃗ttt)

〉
·
〈
y⃗′, Dcd(2d⃗dd)

〉
− 4g0 · yM+2ℓm

+ x ·
(〈

y⃗, Dcd(4⃗ttt)
〉
· f(y)−

〈
y⃗′, Dcd(4d⃗dd)

〉
· w(y)− 4g1 · yM+2ℓm

)
By the Schwartz-Zippel lemma on variable y, the coefficient of each yi for 0 ≤
i < 2M +2ℓm on both sides should be equal, except for negligible probabilities.
Define t′i, d′i, h′i ∈ Zp as follows:

t⃗′ = (t′0, . . . , t
′
M−1) := Dcd(⃗ttt

′
0∥ · · · ∥⃗ttt

′
k−1)

d⃗′ = (d′0, . . . , d
′
M−1) := Dcd(⃗ddd

′
0∥ · · · ∥d⃗dd

′
k−1)

(h′0, . . . , h
′
M+2ℓm−1) := Dcd(h⃗hh

′
0∥ · · · ∥h⃗hh

′
k+1)

(h′M+2ℓm+1, . . . , h
′
2M+2ℓm−1) := Dcd(h⃗hh

′
k+2∥ · · · ∥h⃗hh

′
2k+1)

Note that the coefficient of yM+2ℓm is zero in the left hand side, so the coefficient
of yM+2ℓm should also be zero on the right-hand side, as calculated below:

M−1∑
i=0

t′id
′
i − 4g0 + x ·

(
M−1∑
i=0

(2t′ifi − 2d′iw
i)− 4g1

)
=
〈
t⃗′, d⃗′

〉
− 4g0 + 2x ·

(〈
t⃗′, f⃗

〉
−
〈
d⃗′, w⃗

〉
− 2g1

)
= 0

By the Schwartz-Zippel lemma on variable x, both
〈
t⃗′, d⃗′

〉
− 4g0 and

〈
t⃗′, f⃗

〉
−〈

d⃗′, w⃗
〉
− 2g1 should be zero except for negligible probabilities. Then, we have

the followings:〈
t⃗′, d⃗′

〉
= ⟨4c⃗, v⃗⟩ −

〈
2a⃗, 2V b⃗

〉
〈
d⃗′, w⃗

〉
=
〈
t⃗′, B⊤V Aw⃗

〉
+
〈
2B⊤V a⃗+ 2A⊤V b⃗− 2C⊤v⃗, w⃗

〉
=
〈
A⊤V Bt⃗′ + 2B⊤V a⃗+ 2A⊤V b⃗− 2C⊤v⃗, w⃗

〉
By the Schwartz-Zippel lemma on variable w, it holds that d⃗′ = A⊤V Bt⃗′ +
2B⊤V a⃗+ 2A⊤V b⃗− 2C⊤v⃗ except for negligible probabilities. Then, we have the
followings:〈

t⃗′, A⊤V Bt⃗′ + 2B⊤V a⃗+ 2A⊤V b⃗− 2C⊤v⃗
〉
= ⟨4c⃗, v⃗⟩ −

〈
2a⃗, 2V b⃗

〉
⇐⇒

〈
(At⃗′ + 2a⃗) ◦ (Bt⃗′ + 2⃗b)− 2(Ct⃗′ + 2c⃗), v⃗

〉
= 0

Finally, by the Schwartz-Zippel lemma on variable v, (At⃗′ + 2a⃗) ◦ (Bt⃗′ + 2⃗b) −
2(Ct⃗′ + 2c⃗) = 0 except for negligible probabilities. Therefore, the prover knows
witness knowledge for L′R1CS.
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Simulatability. We show that SR1CS in Fig. 8 and 9 efficiently simulates ac-
cepting transcripts of ΠR1CS. Let D0(⃗t) and D1 represent the distributions of
transcripts generated by the honest prover and the verifier of ΠR1CS with in-
put message t⃗ = (⃗t0, . . . , t⃗k−1) ∈ ZMp , respectively, as well as those generated
by SR1CS. Similar to the simulatability proof for ΠOpen, we prove their indistin-
guishability using a hybrid argument. The only difference is that we need to
additionally account for the effect of t⃗tt, d⃗dd, h⃗hh and τ⃗ττ , δ⃗δδ, η⃗ηη in proving simulatability.
For simplicity, we focus on proving the simulatability of the transcripts related
to (⃗ttti, τ⃗ττ i, t⃗tt

∗
i ), because the proof can be naturally extend to cover the cases of

(⃗dddi, δ⃗δδi, d⃗dd
∗
i ) and (h⃗hhi, η⃗ηηi, h⃗hh

∗
i ).

We first define the distributionsH0(⃗t),H1(⃗t),H2(⃗t), andH3 as follows, where
e⃗ee0,i ← DℓZn,

(b+2)κ
2 s2

, ε⃗εε0,i ← Dµ+νZn,
(b+2)κ

2 σ2

, n⃗nn(j)i ← DℓZn,s2
, and ν⃗νν

(j)
i ← Dµ+νZn,σ2

for

0 ≤ i < k, 0 ≤ j < r.

– H0(⃗t) :=

(
A0⃗ttti + [A1|Iµ ]⃗τττ i, n⃗nn

(j)
i + ccc

(j)
i · t⃗tti, ν⃗νν

(j)
i + ccc

(j)
i · τ⃗ττ i,

e⃗ee0,i + Ecd(y(i+1)ℓm) · t⃗tti, ε⃗εε0,i + Ecd(y(i+1)ℓm) · τ⃗ττ i

)

– H1(⃗t) :=

(
A0⃗ttti + t⃗tt

′∗
i , n⃗nn

(j)
i + ccc

(j)
i · t⃗tti, ν⃗νν

(j)
i + ccc

(j)
i · τ⃗ττ i,

e⃗ee0,i + Ecd(y(i+1)ℓm) · t⃗tti, ε⃗εε0,i + Ecd(y(i+1)ℓm) · τ⃗ττ i

)

– H2(⃗t) :=

(
t⃗tt
′∗
i , n⃗nn

(j)
i + ccc

(j)
i · t⃗tti, ν⃗νν

(j)
i + ccc

(j)
i · τ⃗ττ i,

e⃗ee0,i + Ecd(y(i+1)ℓm) · t⃗tti, ε⃗εε0,i + Ecd(y(i+1)ℓm) · τ⃗ττ i

)

– H3 :=

(
t⃗tt
′∗
i , n⃗nn

(j)
i + ccc

(j)
i · t⃗tt

′
i, ν⃗νν

(j)
i + ccc

(j)
i · τ⃗ττ i,

e⃗ee0,i + Ecd(y(i+1)ℓm) · t⃗tt′i, ε⃗εε0,i + Ecd(y(i+1)ℓm) · τ⃗ττ i

)

IfH0(⃗t) andH3 are computationally indistinguishable, then D0(⃗t) and D1 are
also computationally indistinguishable, as the latter distributions can be derived
from the former ones, as shown in the proof of simulatability for ΠOpen Thus, it
is sufficient to prove that H0(⃗t) and H3 are computationally indistinguishable,
which involves proving the following claims.

Claim 1: H0(⃗t) and H1(⃗t) are computationally indistinguishable.

Distinguishing between the two given distributions is equivalent to solving

HintMLWE
ccc
(0)
i ,...,ccc

(r−1)
i ,Ecd(y(i+1)ℓm)

R,ν,q,σ1,σ2,...,σ2,
(b+2)κ

2 σ2

. Since σ ≥
√
2 · ηε(Zn) holds under the given

conditions for σ1 and σ2, HintMLWE
ccc
(0)
i ,...,ccc

(r−1)
i ,Ecd(y(i+1)ℓm)

R,ν,q,σ1,σ2,...,σ2,
(b+2)κ

2 σ2

can be reduced from

MLWER,ν,q,σ by Thm. 1. Therefore, the two given distributions are computa-
tionally indistinguishable under the hardness assumption of MLWER,ν,q,σ.

Claim 2: H1(⃗t) and H2(⃗t) are statistically identical.

Since t⃗tt
′∗
i ’s are uniform random samples from U(Rµq ), the distribution of A0⃗ttti+

t⃗tt
′∗
i and t⃗tt

′∗
i are identical.

Claim 3: H2(⃗t) and H3 are within negligible statistical distance.
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We use Lem. 11 to prove the claim Let S be a positive definitive matrices
satisfying S−1 = s−21 · (PP⊤)−1 + rs−22 · In + ( (b+2)κ

2 s2)
−2 · Y ⊤i Yi, where Yi is

the negacyclic matrix corresponding to Ecd(y(i+1)ℓm). Then, we need to show√
S ≥ ηε(PZn) ⇐⇒ P−1

√
S ≥ ηε(Zn). By Lem. 2, it suffices to show that∥∥P⊤S−1P∥∥

2
≤ ηε(Z)−2. Since ∥P∥2 ≤ b+ 1,

∥∥P−1∥∥
2
≤ (b− 1)−1, and ∥Yi∥2 ≤

(b+2)κ
2 , we have the followings:∥∥P⊤S−1P∥∥

2
≤ (b+ 1)2

(
(b− 1)−2s−21 + (r + 1)s−22

)
Then, it holds that

∥∥P⊤S−1P∥∥
2
≤ ηε(Zn) under the given conditions for s1

and s2 Therefore, by Lem. 11, the distributions of n⃗nn(j)i + ccc
(j)
i · t⃗tti and e⃗ee

(j)
0,i +

Ecd(y(i+1)ℓm) · t⃗tti are within statistical distance O(ε) of n⃗nn(j)i + ccc
(j)
i · t⃗tt

′
i and e⃗ee(j)0,i +

Ecd(y(i+1)ℓm) · t⃗tt′i.

By Claim 1,2, and 3, the distributions H0(⃗t) and H3 are computationally
indistinguishable, which implies D0(⃗t) and D1 are also computationally indistin-
guishable.

Therefore, ΠR1CS satisfies the completeness, soundness, and simulatability
under the given conditions. ⊓⊔

Complexity Analysis. We analyze the communication complexity of the pro-
tocol ΠR1CS and the computational complexity of the prover and the verifier. The
communication cost is primarily determined by the size of commitments, which
consist of µ ring elements, and responses, which consist of µ+ν+ℓ ring elements,
sent by the prover at each step of the protocol. Therefore, we count the number
of them at each step below.

– Input: k commitments
– Step 1: k commitments
– Step 2: 3 commitments
– Step 3: 2k + 2 commitments
– Step 4: r commitments and r responses for ΠOpen.
– Step 5: 3 responses
– Total: (4k + r + 5) commitments and (r + 3) responses

We note that parameters such as q, n, µ, ν, r are determined by the security pa-
rameter λ, making them almost independent of the size of the input M . Thus,
we can consider each commitment to have a size of O(1). In the case of re-
sponses, we can regard them as having a size of O(ℓ log k) since the upper bound
of their coefficients has a size of O(k). Therefore, the total communication com-
plexity depends on O(k + ℓ log k). We recall that M = kℓm holds, so if we set
k = O(

√
M logM), then the total communication complexity is determined as

O(
√
M logM).

For the computational complexity of the prover, it is primarily dominated
by two factors: generating commitments and performing matrix and polyno-
mial operations required for constructing arguments for R1CS. For generating
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commitments, it takes O(µ(µ+ν+ℓ)) = O(ℓ) operations in Rq per each commit-
ment. Since a prover generates O(k) commitments, it amounts to a complexity of
O(M). In the case of matrix operations, each matrix and vector multiplication,
such as in line 5 in Fig. 4, takes O(N) complexity, where N = Ω(M) represents
the number of nonzero entries in the matrices A,B,C. Regarding polynomial
operations, the dominating factor is the multiplications in lines 26 to 27 in
Fig. 5, which requires O(M logM) complexity. In summary, the computational
complexity for the prover is O(N logN).

For the verifier, its complexity is dominated by matrix operations in lines 13
to 14 in Fig. 7, which result in a total complexity of O(N).

5 Experimental Results

In this section, we present a proof-of-concept implementation of our sublinear
arguments for R1CS and demonstrate its concrete performance. We implement
our protocol using the Rust programming language and convert the interactive
protocol into a non-interactive one using the Fiat-Shamir transform.1 For the
functionality of the random oracle, we use the SHA-3 hash function. To mea-
sure the performance and proof size of Ligero and Aurora, we utilize the libiop
library [1], which implements hash-based SNARKs. All experiments were per-
formed with a single thread on a machine with an Intel(R) Xeon(R) Platinum
8268 CPU running at 2.90GHz and 384GB of RAM.

5.1 Parameter Setting

We summarize all parameters that appear in our protocol below.

Type Parameter Description

Binding & Hiding

q commitment modulus
n ring dimension
µ MSIS rank
ν MLWE rank

s1, s2, σ1, σ2 width parameters

Soundness

b base
κ digit lengths
p message modulus (= bκ + 1)
r # repetition

Proof Size

m messages per ring element (= n/κ)
ℓ ring element per commitment
k # commitment
M input size (= kℓm)

Table 1. Parameters for R1CS argument

1 The source code is available at https://github.com/SNUCP/elsa.
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Firstly, there are parameters that determine the security of the binding and
hiding properties of the Ajtai commitment scheme, namely q, n, µ, ν, s1, s2, σ1, σ2.
We recall that, to ensure the binding and hiding properties in our protocol,
MSISR,µ,q,2βR1CS and MLWER,µ,q,ν should be hard, as stated in Thm.3, where
βR1CS and σ are constants described in the same theorem. We first set the width
parameters as follows s1 =

√
2 · b+1

b−1 · ηε(Z
n), s2 = (b + 1)

√
2r + 2 · ηε(Zn),

σ1 = 2
√
2 · ηε(Zn), σ2 = 2

√
2r + 2 · ηε(Zn), following the conditions in the

theorem. For the smoothing parameter ηε(Zn), we approximate it using the
upper bound in Lem.1 by setting ε = 2−λ. Once the width parameters are
determined, the values of q, n, µ, ν determine the hardness of the MSIS and
MLWE problem. To estimate their hardness, we compute the root Hermite factor
δ and set it to be approximately 1.0045, similar to [5, 19]. As a result, we use
q ≈ 258 ∼ 263, n = 211, µ = ν = 1 in our protocol.

The soundness of the protocol is mainly determined by the parameters r and
p, where p = bκ + 1. In Table 2, we present a list of parameters used in our
protocol for security levels approximately equivalent to 2128, 2192, and 2256. For
the parameters related to proof size, such as k and ℓ, they are set to be optimal
values that result in the smallest proof size for each fixed M .

b κ ⌈log p⌉ r

248 16 128 9
54 32 185 14
156 32 234 18

Table 2. Parameters for Soundness

5.2 Concrete Proof Size

We provide concrete proof sizes based on the parameter settings described in
the previous subsection. To calculate the upper bound of each element of com-
mitments, we use the value of q, and for each element of responses, we consider
the coefficient upper bounds presented in ΠOpen and ΠR1CS. To demonstrate the
sublinear growth of proof size, we measure the proof size for input dimensions
M = 218, 220, and 222 in Table 3, alongside Ligero, for field sizes of 128, 192,
and 256 bits. We can directly observe that the proof size doubles as the input
dimension quadruples, demonstrating the sublinear complexity of our proof sys-
tem. Regarding the concrete proof size, our system and Ligero have similar proof
sizes for a 128-bit field size. However, our system exhibits smaller proof sizes for
larger field sizes of 192 and 256 bits.
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Input
Dimension

128 192 256

Ligero Ours Ligero Ours Ligero Ours

218 6.5 6.3 14.0 9.2 23.1 11.5

220 12.9 12.8 28.2 18.4 46.8 22.9

222 25.7 25.7 56.5 38.4 94.4 47.6
Table 3. Proof size for R1CS. All units are MB(Megabytes).

5.3 Benchmark Results

We now present benchmark results for the proof generation and verification
procedures of our proof system. To optimize ring operations on Rq, we utilize
NTT operations, which enable asymptotically faster polynomial multiplications.
For obtaining discrete Gaussian samples, we use Karney’s algorithm [21].

We measure elapsed time for proof generation and verification for input di-
mension M = 218, 220, and 222 when for 128-bits field size. To provide a com-
parison with other post-quantum SNARKs, we also measured the performance
of Ligero and Aurora. We note that all proof systems have the same asymptotic
complexity in both proof generation and verification. The results are presented
in Table 4 and Fig. 10.

Input
Dimension

Prove Verify

Aurora Ligero Ours Aurora Ligero Ours

218 165 4.8 8.6 6.0 3.9 0.3

220 759 20.4 33.3 23.8 15.3 1.1

222 3298 80.2 131.3 97.4 61.1 4.1
Table 4. Benchmark results for our proof system, Ligero, and Aurora. All units are
seconds per operation.

In terms of proof generation performance, our proof system is slightly slower
than Ligero. This is primarily due to the time taken for generating discrete
Gaussian samples in randomized encoding, which accounts for about half of
the total time. However, if we were to use rejection sampling instead of our
randomized encoding method to achieve simulatability, it could result in much
slower performance. In such a scenario, the other half of the elapsed time would
be multiplied due to rejection sampling. We also note that our proof system is
still significantly faster than Aurora.
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Fig. 10. Benchmark results for our proof system, Ligero, and Aurora. All units are
seconds per operation. Proof Times are labeled in logarithmic scale.

For the verification procedure, our proof system outperforms others by an or-
der of magnitude, despite having identical asymptotic complexities. We attribute
this result to the efficiency of lattice-based cryptography.

6 Conclusion and Future Work

In this paper, we have introduced a novel post-quantum zero-knowledge proof
system for R1CS based on lattice-based cryptography. Prior to this work, there
have been few studies [11,31] addressing the construction of efficient lattice-based
SNARKs. Furthermore, these studies primarily focused on addressing practical
proof size rather than discussing concrete performance in proof generation and
verification. Our proof system not only successfully achieves practical proof sizes
through an efficient encoding method for large prime fields but also significantly
improves practical proof generation and verification performance by introducing
a new proof technique based on message randomization. Compared to other
post-quantum SNARKs, our proof system yields comparable proof sizes and
proof generation performance, while excelling in verification performance, which
is an order of magnitude faster than others.

There are still several ways to improve our proof system further. In terms
of concrete performance, adopting the discrete Gaussian sampling algorithm
from [20] can lead to faster proof generation since generating samples currently
consumes a significant portion of the total elapsed time. To improve the proof
size, we can improve asymptotic scale by adopting the leveled Ajtai commit-
ment [13]. This approach achieves O(N1/d) complexity by generalizing amortized
POK protocols. Regarding the verification procedure, the complexity is currently
dominated by processing public information. Devising a method for delegating
this computation to a prover can lead to sublinear verification complexity, which
would be another avenue for improvement.
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