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Abstract

One-way functions are central to classical cryptography. They are both necessary for the
existence of non-trivial classical cryptosystems, and sufficient to realize meaningful primi-
tives including commitments, pseudorandom generators and digital signatures. At the same
time, a mounting body of evidence suggests that assumptions even weaker than one-way
functions may suffice for many cryptographic tasks of interest in a quantum world, includ-
ing bit commitments and secure multi-party computation.

This work studies one-way state generators [Morimae-Yamakawa, CRYPTO 2022], a nat-
ural quantum relaxation of one-way functions. Given a secret key, a one-way state genera-
tor outputs a hard to invert quantum state. A fundamental question is whether this type of
quantum one-wayness suffices to realize quantum cryptography. We obtain an affirmative
answer to this question, by proving that one-way state generators with pure state outputs
imply quantum bit commitments and secure multiparty computation.

Along the way, we build an intermediate primitive with classical outputs, which we call a
(quantum) one-way puzzle. Our main technical contribution is a proof that one-way puzzles
imply quantum bit commitments.
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1 Introduction
A one-way function is a classically efficiently computable function that is hard to invert. This
is a fundamental hardness assumption, necessary for the existence of much of modern classi-
cal cryptography [LR86, IL89, ILL89]. The classical crypto-complexity class “minicrypt” contains
primitives like bit commitments, pseudorandom generators, pseudorandom functions and sym-
metric encryption, that are all equivalent to the existence of one-way functions. On the other
hand, there are tasks like key exchange and secure multi-party computation that classically re-
quire stronger, more structured assumptions [IR90].

The relationship between computational hardness and cryptography appears to be drasti-
cally different in a quantumworld. Here, the seminal works ofWiesner [Wie83] and Bennett and
Brassard [BB84] first demonstrated the possibility of unconditional quantum key distribution
(QKD) by exploiting the properties of quantum information. Unfortunately, it was also shown
that other useful cryptographic primitives like bit commitments and secure computation can-
not exist unconditionally [LC97, May97], and must necessarily rely on computational hardness,
even in a quantum world. However, our understanding of computational hardness in a quantum
world is still in its infancy. For instance, it was only recently understood [BCKM21, GLSV21]
that one-way functions suffice to enable secure multi-party computation in a quantum world, a
task that is believed to be impossible classically.

Sources of Hardness in a Quantum World. Despite being necessary for classical cryptogra-
phy, one-way functions may not be necessary for computational quantum cryptography.

Two recent concurrent works [AQY22, MY22b] demonstrated that many cryptographic prim-
itives including quantum bit commitments, (one-time secure) digital signatures, and multi-party
secure computation can also be based on the existence of pseudorandom state generators (PRSGs),
which were introduced in [JLS18].

Given a secret key, a PRSG efficiently generates a quantum state, several copies of which are
computationally indistinguishable from equally many copies of a Haar random state. The exis-
tence of PRSGs may be a weaker assumption than one-way functions. Specifically, it has been
shown that PRSGs exist even if BQP = QMA (relative to a quantum oracle) [Kre21] or if P = NP
(relative to a classical oracle) [KQST23]. This means that PRSGs, and all the cryptographic prim-
itives that they imply, can exist even if all quantum-secure (classical) cryptographic primitives,
including one-way functions, are broken.

Can we base quantum cryptography on assumptions that are potentially even weaker than
the existence of PRSGs? As pointed out in [MY22a], PRSGs and bit commitments are “decision-
type” primitives. On the other hand, there is a natural, simpler “search-type” assumption that
significantly relaxes the pseudorandomness guarantee of a PRSG to one-wayness.

A one-way state generator (OWSG) [MY22b] is a quantum algorithm that given a secret key,
generates a hard-to-invert quantum state. This is a natural quantum analogue of a one-way
function, and appears to be weaker, as a definition, than most known quantum cryptographic
primitives. It is in particular known to be implied by several quantum primitives including quan-
tum signature and encryption schemes, and variants of quantum money schemes1. Outputs of
random quantum circuits can be natural candidates for one-way states.

1See, for example, [MY22a], the figure at https://sattath.github.io/qcrypto-graph/ and references therein.
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Given that one-way functions enable a variety of classical cryptosystems, it is natural to ask
whether one-way state generators play a similar role in quantum cryptography. Namely,

Can we obtain quantum cryptosystems including bit commitments and MPC
only assuming the existence of one-way state generators?

Our main theorem answers this question in the affirmative in the setting where OWSG outputs
are pure states. Our main theorem is the following.

Theorem 1.1. (Informal) One-way state generators with pure state outputs imply quantum bit
commitments.

By combining with prior work [GLSV21, BCKM21] building secure multi-party computation
from quantum bit commitments, we also obtain the following corollary.

Corollary 1.1. (Informal) One-way state generators with pure state outputs imply secure multi-
party computation for all quantum functionalities.

We note that OWSGs were initially defined in [MY22b] to only output pure states; but this
definition was later generalized in [MY22a] to also allow mixed states. OWSG with pure state
outputs were also studied in [CX22], who showed equivalences between variants (weak, distri-
butional) of OWSGs. Pure OWSGs are implied by other cryptographic primitives such as digital
signatures with pure verification keys and quantum money with pure banknotes [MY22a]. This,
combined with our theorem, shows that these other primitives imply quantum bit commitments.

One-Way Puzzles. Enroute to our main theorem, we use efficient shadow tomography [HKP20]
to prove that OWSG imply an intermediate cryptographic primitive with entirely classical out-
puts, that we call a one-way puzzle. We find this implication from a OWSG with arbitrary quan-
tum outputs to a simple, cryptographically useful primitive with classical outputs, noteworthy.

Theorem 1.2. (Informal) One-way state generators with pure state outputs imply one-way puzzles.

A (quantum) one-way puzzle is a pair of algorithms (Samp,Ver) where Samp is quantum
polynomial time and outputs a pair of classical strings – a key and puzzle (k, s) – satisfying
Ver(k, s) = 1. The security guarantee is that given a “puzzle” s, it is (quantum) computationally
infeasible to find a key k such that Ver(k, s) = 1, except with negligible probability.

Unlike prior definitions of one-way puzzles that have sometimes appeared in the literature,
we do not require the verification (Ver) algorithm to be efficient. As we will see later, only asking
for inefficient verification turns out to be necessary for our implication from OWSG. Indeed, if
verification were efficient, then a QMA oracle would be capable of breaking one-way puzzles,
but such an oracle is unlikely to break OWSG [Kre21]. Somewhat surprisingly, we show that
inefficiently verifiable one-way puzzles are also sufficient to build quantum bit commitments.

The reader may have observed that one-way puzzles generalize one-way functions to allow
joint, randomized sampling of keys and outputs. In a classical world, this is unnecessary: one-
way puzzles are equivalent to one-way functions. One direction of the implication is straightfor-
ward, since one-way functions imply one-way puzzles (almost) immediately by definition. In the
other direction, a one-way function can be obtained from a classical one-way puzzle by “pulling
out” the (uniform) randomness r used by Samp. The one-way function f on input r samples
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(k, s) ← Samp(1n, r) and outputs f(r) = s. It is easy to see that one-wayness of the puzzle
implies one-wayness of f .

However, this type of conversion is no longer possible when Samp is quantum, because there
may be no equivalent deterministic, efficient function that on input uniform randomness, out-
puts (k, s) distributed according to the output of Samp. Nevertheless, enroute to proving our
main result, we show the following.

Theorem 1.3. (Informal) One-way puzzles imply quantum bit commitments.

Theorem 1.3 is the most technically involved part of this work, and the techniques involved
are essentially classical. In a nutshell, existing techniques for building commitments from clas-
sical one-way primitives (e.g., [HILL99]) crucially only apply when the preimage distribution
of every image of the function is flat (i.e., uniform over all preimages). This work develops a
method to generate pseudorandomness from one-way puzzles with arbitrary preimage distribu-
tions, which we believe is of independent interest.

Local Quantum Cryptography and One-Way Puzzles. As an aside, we observe that one-
way puzzles are also implied by quantum cryptography with classical communication. In fact
there is a large body of work that aims to understand the computational hardness yielding
quantum cryptography with classical communication, including protocols for quantum advan-
tage [BCM+18,MY23a,MY23b], quantum commitmentswith classical communication [AGQY22],
and even black-box separations for key exchange [ACC+22]. Classical-communication protocols
are desirable as they can be used over the current infrastructure (e.g., the Internet). In this model,
sometimes called the “local” model for quantum cryptography or the quantum-computation
classical-communication (QCCC) model [ACC+22], all the quantum computation is done locally
by parties who exchange only classical messages.

We observe that natural cryptographic primitives such as public-key encryption and signa-
tures in the QCCC model imply one-way puzzles. For example, given a public-key encryption
scheme with corresponding algorithms (KeyGen,Enc,Dec), a one-way puzzle (Samp,Ver) can
be defined as follows. Samp(1n) will sample and output (pk, sk) ← KeyGen(1n). Ver(pk, sk)
outputs 1 iff for a random m ← {0, 1}n, Dec(sk,Enc(pk,m)) = m. It is easy to see that an
adversary that breaks one-wayness of the resulting puzzle can be used to break CPA security of
the encryption scheme. In Appendix A, we formalize this reduction and also show how similar
ideas prove that one-way puzzles are implied by digital signatures, natural bit commitments and
symmetric encryption schemes in the QCCC model2.

Conclusion and Future Directions. Prior to this work, bit commitments were known from
pseudorandom state generators [AQY22, MY22b] via a construction that roughly parallels the
classical setting [Nao89]. They were also known [MY22a] from a restricted type of OWSG;
namely one with injective, orthogonal outputs. However, as we discuss in the next section, build-
ing commitments from general-purpose OWSG requires methods that are quite different from
known classical techniques, and which may be broadly applicable beyond this work.

2One may ask whether computational cryptographic primitives in the QCCC model also imply one-way func-
tions. But it is unclear if this is true; and at the very least this is challenging to prove, for the same reason as above
– namely, we cannot explicitly pull out the sampling randomness from an arbitrary quantum algorithm.
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The one-way puzzle abstraction may also enable a better understanding of quantum com-
mitments, and may be useful in future work. For example, current attempts to understand the
complexity of quantum commitments [Kre21, KQST23] build oracles relative to which complex-
ity classes collapse, but pseudorandom states exist (and thus, one-way puzzles exist). Directly
establishing the existence of one-way puzzles relative to these oracles may be easier, andmay en-
able even more general oracle separations. One-way puzzles may also help better understand the
relationship between quantum cryptography and quantum notions of Kolmogorov complexity.

Finally, we discuss some open questions related to this work. An obvious question is whether
our results extend to mixed state one-way state generators. One avenue towards proving this
would be to build one-way puzzles frommixed-stateOWSG. In addition, answers to the following
questions may shed some light on the complexity of quantum cryptography.

1. Do one-way state generators imply quantum bit commitments with classical communica-
tion? To obtain a construction, it would suffice to build commitments with classical com-
munication from one-way puzzles. This may be plausible because one-way puzzle outputs
are classical after all. Indeed, enroute to building commitments, this work also builds sev-
eral meaningful intermediate primitives that are entirely classical.

2. Can we obtain other forms of pseudorandomness, e.g., pseudorandom quantum state gen-
erators, from one-way state generators? It would again suffice to build such pseudorandom
state generators from one-way puzzles. The techniques and intermediate constructions,
e.g., of pseudoentropy generators, in this work may serve as a useful starting point.

3. Do quantum bit commitments imply one-way puzzles? If not, is there a separation? It is
easy to observe that one-way puzzles can be broken with sufficiently many queries to a re-
lated boolean function f . Is this also true for every quantum bit commitment? A resolution
to this question appears to be connectedwith the unitary synthesis problem [AK07, Aar16].

4. Is there a quantum analogue of the classical implication from one-way puzzles to one-
way functions? In other words, does the existence of one-way puzzles with hardness over
arbitrary distributions imply one-way primitives with hardness over uniform inputs?

2 Technical Overview
We begin this overview by outlining a well-known construction of classical commitments from
any injective one-way function. This construction relies on hardcore predicates: roughly, a hard-
core predicate for a one-way function f is a bit that is easy to compute given a preimage k but
hard to compute given f(k). The Goldreich-Levin theorem [GL89] shows that the bit ⟨k, r⟩ is
hard-core for the function f(k)||r. When f is injective, the hardcore bit is uniquely determined
for every element in the image, and gives rise to a simple commitment scheme, as follows.

A commitment to bit b is f(k), r, ⟨k, r⟩ ⊕ b for randomly sampled k and r. This commitment
is binding because of the injectivity of f , and computationally hides the bit b due to ⟨k, r⟩ being
hardcore. This construction does not work when f is not injective. In this case, for an image y,
there may exist two preimages k1, k2 ∈ {f−1(y)} such that ⟨k1, r⟩ ̸= ⟨k2, r⟩, which will allow
the committer to break binding.
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The celebrated work of Hastad et. al. [HILL99] showed how to overcome the binding issue,
and base classical commitments on general (not necessarily injective) one-way functions. We
outline (some relevant parts of) their technique next.

Pairwise independent hashing reduces the number of preimages. The key idea in [HILL99]
is to append to the image f(k) a (pairwise-independent) hash h(k), thereby reducing the total
number of preimages of f(k), h(k), making it behave somewhat like an injective function for
carefully chosen output sizes of h(k).

In more detail, letNk denote the number of preimages of f(k). When the output size h(k) is
set to (slightly larger than) logNk, then [HILL99] (roughly) show that:

• h(k) is computationally indistinguishable from uniform given f(k), and

• h(k) is statistically (somewhat) distinguishable from uniform given f(k).

The fact that f(k), h(k) appears to a computationally bounded adversary to have more entropy
than it actually does is formalized by building an object called a weak pseudoentropy generator
(WPEG) [HILL99, HRV13]. We will now describe this object in a little more detail.

2.1 Weak Pseudoentropy
A distribution G0 is a weak pseudoentropy generator (WPEG) if there exists another, possibly
inefficient simulated distribution G1 whose output is computationally indistinguishable from,
and yet has more Shannon entropy than G0.

For a one-way function f and pairwise independent hash h, we can consider distributions

G0(1
n) := f(k), h, i, h(k)i

and

G1(1
n) :=

{
f(k), h, i, h(k)i−1, u1 if i = ⌈logNk⌉+ 1
f(k), h, i, h(k)i otherwise

where k, h are sampled uniformly in {0, 1}n, i ← [n], Nk denotes the number of preimages of
f(k), h(k)i denotes outputting the first i bits of h(k) and u1 denotes a uniformly random bit.

Prior works [HILL99, HRV13] show that the distributions G0 and G1:

• Have an Entropy Gap. Roughly, the pairwise independence of h implies that with prob-
ability at least 1

2
, f(k), h(k)⌈logNk⌉ has a single preimage, i.e., x. Thus, with probability

at least 1
2
the last bit in G0 is a deterministic function of the remaining bits, and has less

entropy than the corresponding (uniform) bit in G1.

• Are Computationally Indistinguishable. At a high level, the Leftover Hash Lemma
guarantees that when x is sampled from a distribution X with min-entropy ℓ, then the
first ℓ − 2c log n bits of h(x) are 1

nc statistically close to uniform. By setting X to be the
(uniform) distribution over preimages of f(k), we have that ℓ = logNk. Next, applying
the Goldreich-Levin theorem while guessing O(log n) bits of h(k), [HILL99] convert any
distinguisher between G0 and G1 to an adversary that inverts the one-way function3.

3This step requires the hash to be a specific inner-product based functionwhich is compatible with theGoldreich-
Levin technique.
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Next, we discuss barriers in extending these ideas to quantum one-way state generators.
A Preliminary Approach that Does Not Work.

A natural first approach to building commitments from OWSG could be to replace the clas-
sical string f(k) in the distributions above, with the quantum state |ψk⟩ output by the OWSG.

Then the two WPEG distributions G0 and G1 are replaced by the following mixed states.

ρ0(1
n) :=

∑
k,h,i

|ψk⟩ ⟨ψk| , h, i, h(k)i

and

ρ1(1
n) :=

{ ∑
k,h,i,u |ψk⟩ ⟨ψk| , h, i, h(k)i−1, u1 if i = ⌈logNk⌉+ 1∑
k,h,i,u |ψk⟩ ⟨ψk| , h, i, h(k)i otherwise

Unfortunately, classical arguments demonstrating statistical entropy gap and computational in-
distinguishability do not extend to the mixed states defined above, because of the barriers that
we describe next.

Barrier #1: Non-orthogonality of Outputs, or, What is a Preimage Anyway?
The mixed state ρ1 is well-defined only when Nk is. In the classical setting, Nk denotes

the number of pre-images of f(k). But it is unclear how to define “preimages” of a quantum
state under a OWSG. For two keys x and x′, the corresponding OWSG output states |ψx⟩ and
|ψx′⟩ could have arbitrary overlap. What overlaps qualify x′ to be a pre-image of |ψx⟩? One
could consider fixing some inverse polynomial function (say 1

n
) and say that x′ is a pre-image of

|ψx⟩ whenever ⟨ψx|ψx′⟩ ≥ 1
n
. Unfortunately, setting an arbitrary threshold does not accurately

capture the adversary’s uncertainty about k, given |ψk⟩.
In fact, we could imagine executing the OWSG key generation algorithm on register A, then

writing the state output by the OWSG on register B. This yields the classical-quantum state:∑
k

αk |k⟩ ⟨k|A (|ψk⟩)B

When k is uniformly sampled and |ψk⟩ is the (classical) output of a one-way function, tracing
out the B register leaves a uniform mixture of Nk classical preimages on the A register. Then
G0 hashes out the contents of the A register, so that the hash output statistically fixes a single
preimage of |ψk⟩ while still keeping it computationally hidden.

But in the general quantum setting, the states |ψk⟩ and |ψk′⟩ for k ̸= k′ may not be parallel
or orthogonal, and may instead overlap arbitrarily with one another. In this case tracing out the
B register leaves an arbitrary mixture of quantum states on the A register. Then it is completely
unclear what is achieved by hashing the classical k values as in ρ0 above. Now one could imagine
hashing the quantum preimage register instead, but these approaches are all fundamentally
doomed for the following reason.

It is possible to build one-way state generators that are unconditionally statistically unin-
vertible given only a single copy of the output state |ψx⟩. A simple example is the following
construction based on Weisner encodings/BB84 states. On input classical key k = (θ, x) where
θ, x← {0, 1}n, the OWSG outputs pure state |x⟩θ. This OWSG is statistically single-copy secure,
because |x⟩θ hides the string θ (over the randomness of x).
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Since quantum bit commitments cannot be secure against unbounded adversaries, this would
rule out any possible constructions of commitments (including the one above) that rely only on
the assumption that single-copy (pure) OWSG exist. Instead, we will rely on multi-copy security
of the OWSG.

Resolving Barrier #1: FromQuantum to Classical Outputs via Shadow Tomography.
Shadow tomography, introduced in [Aar20], allows one to estimate a large number of ob-

servables by obtaining classical information from relatively few copies of an unknown quantum
state. In more detail, shadow tomography is a procedure that applied to t = poly(n, 1

ϵ
) copies

of an unknown state |ψ⟩ yields a classical string, the shadow S. Given S, it is possible to si-
multaneously estimate ⟨ψ|Oj|ψ⟩ upto ϵ error for an exponentially large number of observables
{Oj}j∈[2n].

Applying shadow tomography to a OWSG with pure outputs yields (at least) a statistical
inverter for the OWSG. Given t = poly(n) copies of some state |ψk⟩, an inverter can use shadow
tomography on |ψk⟩⊗t to (inefficiently) find a k′ such that ⟨ψk|ψk′⟩ > 1− 1

n
.

Given a OWSG output state |ψk⟩, it may even be tempting to define its “preimages” as the
set of possible keys k′ returned by this statistical inverter, and try to apply arguments similar
to the classical argument above. Unfortunately this approach breaks down too. The statistical
inverter given |ψk⟩⊗t only finds a key k′ where |ψk′⟩ has nontrivial single-copy overlap with |ψk⟩.
It is possible that for such k′, ⟨ψk|ψk′⟩⊗t is close to 0. Thus k′ is not even close to being a preimage
of |ψk⟩⊗t, at least for the purposes of arguing computational indistinguishability.

Thus instead of trying to define preimages of quantum states, we will crucially use the fact
that certain shadow tomography methods [HKP20] have efficiently computable classical shad-
ows. We now outline how this fact turns out to be useful.

Our Main Insight is the following: On input key k, instead of having ρ0 (and ρ1) contain one
or more copies of the OWSG state |ψk⟩, they will only contain a classical shadow Sk of |ψk⟩.

Whenever these classical shadows can be efficiently computed, the WPEG distribution ρ0
remains efficiently sampleable (and even becomes entirely classical). We point out that while
OWSG are defined to be secure given an arbitrary (unbounded) polynomial copies of |ψk⟩, this
procedure uses only uses a fixed polynomial number of copies. Indeed, we show that commit-
ments are implied by a weaker variant of OWSG, where security only holds given a fixed poly-
nomially many copies of |ψk⟩.

We point out that the shadow Sk is a randomized (i.e., not deterministic) function of the key k.
Moreover, given a shadow Sk obtained from |ψk⟩, it is (statistically feasible but) computationally
infeasible to find any key k′ such that |ψk⟩ and |ψk′⟩ have non-negligible overlap (otherwise this
would break one-wayness of the OWSG). Indeed, this means that the (randomized) classicalmap
k → Sk is efficiently computable but computationally uninvertible (assuming OWSG security).

In Section 4 we formalize this approach to obtain a primtive with classical outputs: a one-
way puzzle from any pure-state OWSG.

We can now focus our attention on building commitments from one-way puzzles. This may
at first appear to be easy, given the HILL technique. But the quantum nature of one-way puzzles
leads to a major technical barrier, that we describe next.
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Barrier #2: No Flatness in aQuantumWorld.
Recall that a one-way puzzle sampler outputs classical (k, s) pairs which satisfy the following:

(1) Ver(k, s) = 1 and (2) given s, it is computationally hard to find a preimage k such that
Ver(k, s) = 1. Here, observe that the distribution on preimage keys k induced by fixing a puzzle
output s is not a “flat” distribution, i.e., it does not necessarily assign equal probability mass to
each preimage key. Why does this matter?

The construction of weak PEGs from one-way functions, discussed at the beginning of the
overview, may seem to extend naturally to one-way puzzles as follows. Consider distributions

G0(1
n) := s, h, i, h(k)i

and

G1(1
n) :=

{
s, h, i, h(k)i−1, u1 if i = ⌈logNs⌉+ 1
s, h, i, h(k)i otherwise

where (k, s) ← OWPuzzle.Samp(1n), h ← {0, 1}n, i ← [n], and Ns denotes the number of
preimages of s.

Let Ks denote the distribution on keys induced by an output puzzle string s. Since this is
an arbitrary distribution, its min-entropy ℓs can be much smaller than (the logarithm of) the
size of its support, Ns. To prove computational indistinguishability between G0 and G1, we may
attempt to use the Leftover Hash Lemma. This states that the first ℓs − 2c log n bits of h(k) are
1
nc -statistically close to uniform given s, where ℓs is the min-entropy in distribution Ks. Any
subsequent bits may leak significant information about the preimage k. Since we hash to Ns ≫
ℓs bits, it is completely unclear if G0 and G1 are computationally indistinguishable at all!

On the other hand, if we changed G1 so that

G1(1
n) :=

{
s, h, i, h(k)i−1, u1 if i = ℓs + 1
s, h, i, h(k)i otherwise

then this could mean that we are hashing to too few bits: G0 and G1 could end up not having a
statistical entropy gap at all.

This problem does not arise in the classical setting, because flat preimages can be assumed
without loss of generality by “pulling out” the (uniform) randomness from any classical algo-
rithm. Letting r denote the randomness used to sample k, one can always define a (one-way)
function that uses its uniform input r to sample k and finally outputs y = f(k). This ensures
that ℓs = Ns above, enabling simultaneous arguments for both computational indistinguishabil-
ity and statistical entropy gap. Unfortunately, this type of flattening is no longer possible when
the sampler is a quantum circuit, because the randomness comes from a quantum process and
we do not know how to explicitly pull it out.

We overcome this issue by fixing, for every puzzle, a “good set” of preimage keys which is
almost flat. We set the distribution G1 to differ from G0 only when the preimage k belongs to this
good set. While this approach seems promising, it encounters some technical issues and we need
additional ideas to make it work. We provide details below.

10



Resolving Barrier #2: From One-Way Puzzles to Commitments by Slicing Preimages.
Our goal is to prove that the distribution

G0(1
n) := s, h, i, h(k)i

is a weak pseudoentropy generator, where (k, s)← Samp(1n), h← {0, 1}n and i← [n]. Recall
that this means we must demonstrate the existence of a different distribution which is compu-
tationally close to but has more entropy than G0.

We already outlined why setting G1 identically to the case of one-way functions does not
work. Instead, we observe that for every s and corresponding preimage distributionKs, there is
a “good” subset Gs of preimages k such that4:

1. The set Gs is dense enough in Ks, that is, for every s,

Prx←Ks [x ∈ Gs] ≥
1

n
, and

2. For every pair of preimages (x1, x2) ∈ Gs,

PrKs [x2]

2
≤ PrKs [x1] ≤ 2PrKs [x2]

We now consider a different simulated distribution G1 as follows.

G1(1
n) :=

{
s, h, i, h(k)i−1, u1 if i = log |Gs|+ 1 and k ∈ Gs

s, h, i, h(k)i otherwise

where (k, s) ← Samp(1n), h ← {0, 1}n, i ← [n], and Gs is the good slice of preimages defined
above. Computational indistinguishability between G0 and G1 follows by noting that any distin-
guishing advantage can only exist when k ∈ Gs. Because we are reducing to a search problem,
it is still possible to apply the Leftover Hash Lemma and the Goldreich-Levin theorem to convert
any distinguisher into an inverter for the one-way puzzle.

Moreover, conditioned on k ∈ Gs, G1 obviously has more entropy than G0 (and when k ̸∈ Gs,
the two distributions are identical)5. This unfortunately does not imply that G1 has more entropy
than G0. The reason can best be explained with the following toy examples.

Example 1: There is a (hidden) eventB that occurs with probability 2
3
, and distributions (A0, A1)

such that

• Distribution A0 outputs 0 when B occurs, and 1 when B doesn’t occur.

4We use numbers like 1
n below for simplicity. In our main section, we use slightly different fractions than the

ones depicted here, for various technical reasons.
5It may appear that we are close: we seem to have a pair of distributions that are statistically far but computa-

tionally close. Unfortunately, to obtain a commitment, we also need these distributions to be efficiently sampleable.
But sampling from G1 requires knowing is and Gs which are not necessarily efficiently computable functions of
(k, s). This is why we only aim to prove that G0 is a weak PEG: in this case, we do not need G1 to be efficiently
sampleable. We only need to prove that G1 has more entropy than G0.
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• Distribution A1 outputs a uniform bit when B occurs, and 1 when B doesn’t.

A1 has more entropy than A0 conditioned on B, and the distributions are identical when B
doesn’t occur – but the overall entropy in A0 is equal to that of A1! Similarly, while G1 has more
entropy than G0 when k ∈ Gs, and the distributions are identical otherwise, the overall entropy
in G0 could end up being equal to that in G1.

Consider, however, the following example where both distributions A0 and A1 are uniform
when B doesn’t occur. That is,

Example 2: There is a (hidden) eventB that occurs with probability 2
3
, and distributions (A0, A1)

such that

• Distribution A0 outputs 0 when B occurs, and a uniform bit when B doesn’t occur.

• Distribution A1 outputs a uniform bit when B occurs, and a uniform bit when B doesn’t.

A1 has more entropy than A0 conditioned on B. Moreover, since A0 and A1 are uniform when
B doesn’t occur, then A1 having higher entropy than A0 conditioned on B does imply that A1

has higher entropy overall.
We could hope to apply a similar argument to G0 and G1 if somehow it were the case that for

k ̸∈ Gs, the last bit of G0 (and also G1) is close to uniform given the remaining bits s, h, i, h(k)i−1.
But why would this even be the case?

Establishing an Entropy Gap. Inspired by the insight above, we will modify G1 to provably
obtain an entropy gap. For every s, the two distributions are identical when i ̸= log |Gs| + 1,
therefore, we only focus on the case where i = log |Gs|+ 1.

In this case, ideally we want the bias in the ith bit of h(k) when k ̸∈ Gs to not cancel out the
bias that arises when k ∈ Gs, in the distribution G0. This would hold if the ith bit of h(k) when
k ̸∈ Gs were uniform (even given the remaining bits output by G0). But we do not know if this
is the case, or even what the distribution of keys when k ̸∈ Gs looks like.

To resolve this, let us first try to ensure that for most k ∈ Gs, all preimages (besides k) of
(s, h(k)i−1) have extremely low sampling probability in Ks. (Recall that Ks is the distribution
induced on preimages of s.) We show that this is achieved by changing G1 as follows:

G1(1
n) :=

{
s, h, i, h(k)i−1, u1 if i = (log |Gs|+ 600 log n) and k ∈ Gs

s, h, i, h(k)i otherwise

In the modified distribution G1, for most k ∈ Gs, all preimages (besides k) of (s, h(k)i−1) are
sampled with probability less than 1

n600 inKs, for i = (log |Gs|+ 600 log n). For the purposes of
this overview, we assume that this holds for all k ∈ Gs

6.
We will now consider the following two cases.

1. Preimages (besides k) of (s, h(k)i−1) are sampled with total probability ≤ 1
n
in Ks.

In this case, since the unique k ∈ Gs has probability mass at least 1− 1
n
, the bias in the ith

bit of h(k) from keys outsideGs barely stacks up against the bias that arises from k ∈ Gs.

6In the technical sections, we further modify G1 to account for the fact that for a few choices of h and a few
k ∈ Gs, there are multiple preimages of (h, h(k)) that are each sampled with probability much higher than 1

n600 .
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2. Preimages (besides k) of s, h(k)i−1 are sampled with total probability > 1
n
in Ks.

In this case, the individual probability mass of every preimage (besides k) is very low, but
their total probability mass is high. This means that the overall distribution of pre-images
(besides k) of (s, h(k)i−1) necessarily has high entropy. Then by the Leftover Hash Lemma,
the ith bit of h(k) when k ̸∈ Gs will be close to uniform, which is what we desired.

In both cases, we conclude that the overall Shannon entropy in G1 is larger than that in G0

by a (fixed) inverse polynomial value: which means that G0 is indeed a WPEG. We prove this
formally in Section 5.

At this point, because G1 cannot be efficiently sampled, we cannot use it directly to build
commitments. Indeed, obtaining a full-fledged commitment requires additional steps, which we
outline next.

2.2 Pseudoentropy Generators (PEG)
Our next step follows a similar technique as [HILL99] to simultaneously achieve two goals: (1)
remove the need for the simulated distribution to depend on a distinct (and not efficiently com-
putable) is for each image s, and (2) amplify the entropy gap between real and simulated distri-
butions while maintaining computational indistinguishability.

This is done by taking a product distribution of the outputs of the weak PEG. In more detail,
we sample q(n) = poly(n) (for a large enough polynomial poly(·)) random keys k1, . . . , kq along
with q(n) independent (h, i) values. We use these to generate q(n) samples from distribution G0,
and we append these samples together as our PEG output. This also has the effect of “concen-
trating” the entropy to an expected value independent of the choice of k (whereas in weak PEG
this entropy would necessarily depend on k via is). In the PEG, we have that for every choice of
security parameter n, there is a single value ĥn that corresponds to the Shannon-entropy in the
output of the PEG, and this value is smaller than themin-entropy in the corresponding simulated
product distribution by nc, for some c > 1.

2.3 Imbalanced EFI Pairs
An EFI is a pair of efficiently sampleable distributions that are statistically far but computation-
ally indistinguishable. Such distributions have been shown [BCQ23, Yan22] to be equivalent to
quantum bit commitments.

Let us consider hashing the output of our PEG to approximately ĥn + n bits. That is, the
size of hash outcome is larger than the actual Shannon entropy in the PEG output, making the
resulting distribution statistically distinguishable from uniform. At the same, since the PEG
outputs are computationally indistinguishable from a distribution with (much) more than ĥn + n
bits of min-entropy, the resulting hash output is still be computationally indistinguishable from
uniform. It may now seem like we have an EFI pair: consider distributions

• h(PEG(n)) where the output of h is truncated to ĥ(n) + n bits

• Uĥ(n)+n which is the uniform distribution over ĥ(n) + n bits

13



While these distributions are computationally close but statistically far, they cannot be sampled
efficiently without non-uniform advice, i.e., the value ĥ(n) for every n.

In fact, observe that truncating the hash output to any less than ĥn + n bits would still
preserve computational indistinguishability, and truncating to any more would still ensure sta-
tistical distance, but the two can simultaneously be guaranteed only when truncating to exactly
ĥ(n) + n bits. This is why we call the resulting object an imbalanced EFI.

Due to the equivalence between EFI and commitment, we can equivalently claim to have
statistically binding, computationally hiding quantum bit commitments [Yan22, BCQ23] – albeit
dependent on non-uniform advice z(n). When z(n) ≤ ĥ(n)+n, the commitments are hiding, and
when z(n) ≥ ĥ(n)+n, these commitments are binding. We call this an imbalanced commitment
scheme. The next few steps discuss how to remove this imbalanced drawback by appropriately
combining variants of these commitments7.

2.4 Always binding, Non-uniform hiding Commitments
In the next step, we rely on prior work in flavor conversion of quantum commitments [HMY23]
to convert our statistically hiding, computationally binding EFI pairs/commitments to commit-
ments with the reverse property: namely, where for z(n) ≥ ĥ(n) + n, the commitments are
hiding, and when z(n) ≤ ĥ(n)+n, these commitments are binding. Next, given these two types
of complementary commitments, we combine them by using both to commit to the same bit b:
note that for every choice of advice z(n) (i.e. length to which we truncate the hash outcome),
at least one of the two commitments is necessarily binding. This allows us to show that the re-
sulting combined commitment is always binding (for every choice of z(n)) and hiding whenever
z(n) = ĥ(n) + n. We call this a non-uniform hiding commitment.

2.5 Standard (Uniform) Commitments

Finally, we observe that for each n, the number of possible ĥ(n) values is bounded by a fixed poly-
nomial t(n). Thus, we can repeat the above construction for every possible value of ĥ(n), obtain-
ing a sequence of commitments where for every n, at least one commitment in the sequence is
hiding (and all are binding). By secret sharing the committed bit between various commitments,
we can show that the overall commitment scheme satisfies both hiding and binding. Thus, we
have removed dependence on the advice string z(n), yielding a uniform construction of commit-
ments.

Quick Detour: An Alternative Template. We briefly note an alternative technique [MY22b]
using quantum information to sidestep the use of the hardcore bit. While this was developed to
build commitments from a strong “injective” variant of OWSG, for simplicity, we describe it as
applied to injective one-way functions. Very roughly, a commitment to 0 is

∑
k |k⟩C |k, f(k)⟩D

and a commitment to 1 is
∑

k |k⟩C |0, f(k)⟩D; whereC is the commit register andD the decommit

7This upcoming part diverges from techniques in [HILL99] which build uniform pseudorandom generators by
appropriately stretching the output of a nonuniform PRG. These techniques break down in our setting because
there is no clear way to run a puzzle on its own output, and thus to achieve significant “stretch” in a puzzle-based
PRG-type object.
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register. Statistical hiding follows because tracing out the D register leaves identical mixtures
on C in both cases. Computational binding follows by the hardness of finding k given f(k) for
a random k. Our methods, including hashing preimages to appropriate lengths and slicing, will
also similarly apply to this template. We do not find any one of these templates to be simpler
than the other, but we focus on the Goldreich-Levin template because it yields interesting inter-
mediate primitives with entirely classical outputs.

Roadmap. In the following section, we recall useful definitions and facts about quantum cryp-
tography and various notions of entropy. In Section 4, we show that OWSG with pure states
imply one-way puzzles. Our construction of commitments from one-way puzzles is detailed in
Sections 5-8. In Section 5, we show how one-way puzzles imply a weak pseudoentropy genera-
tor (WPEG). Then, in Section 6 we describe how a product distribution of quantum weak PEGs
gives rise to a pseudoentropy generator (PEG). Next in Section 7 we obtain imbalanced EFI by
appropriately hashing the output of the PEG. Finally, in Section 8 we apply flavor swap and other
combiners to the imbalanced EFI to obtain a uniform construction of quantum bit commitments.

In Appendix A, we provide evidence that one-way puzzles are a necessary assumption for
quantum cryptography with classical communication.

3 Preliminaries
In this section, we discuss some notation and preliminary information, including definitions, that
will be useful in the rest of the exposition.

3.1 Notation
We write negl(·) to denote any negligible function, which is a function f such that for every con-
stant c ∈ N there existsN ∈ N such that for all n > N , f(n) < n−c. For any k, we will denote by
Uk the uniform distribution supported on k bits. We will use SD(A,B) to denote the statistical
distance between (classical) distributions A and B.

Quantum conventions. A register X is a named Hilbert spaceC2n . A pure state on register X is
a unit vector |ψ⟩ ∈ C2n , and we say that |ψ⟩ consists of n qubits. A mixed state on register X is
described by a density matrix ρ ∈ C2n×2n , which is a positive semi-definite Hermitian operator
with trace 1.

A quantum operation F is a completely-positive trace-preserving (CPTP) map from a register
X to a register Y, which in general may have different dimensions. That is, on input a density
matrix ρ, the operation F produces F (ρ) = τ a mixed state on register Y. A unitary U : X→ X
is a special case of a quantum operation that satisfies U †U = UU † = IX, where IX is the identity
matrix on register X. A projector Π is a Hermitian operator such that Π2 = Π, and a projective
measurement is a collection of projectors {Πi}i such that

∑
iΠi = I.
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3.2 Quantum Cryptographic Primitives
Definition 3.1 (One-Way State Generators). [MY22b] Let κ = κ(·) denote a polynomial. A
one-way state generator (OWSG) is a set of QPT algorithms (KeyGen, StateGen,Ver) where:

• KeyGen(1n): On input the security parameter n, output a classical key string k ∈ {0, 1}n.

• StateGen(k): On input key k ∈ {0, 1}n, output anm-qubit quantum state |ψk⟩.

• Ver(k, |ψ⟩) : On input key k ∈ {0, 1}n andm-qubit quantum state |ψ⟩, output ⊤ or ⊥.

These algorithms satisfy the following properties.

• Correctness. For every n ∈ N,

Pr
k←KeyGen(1n)
|ψk⟩←StateGen(k)

[⊤ ← Ver(k, |ψk⟩)] ≥ 1− negl(n)

• t(n)-Copy Security. For every QPT A = {An}n∈N and n ∈ N,

Pr
k←KeyGen(1n)
|ψk⟩←StateGen(k)

[
⊤ ← Ver

(
An((|ψk⟩)⊗t(n)), |ψk⟩

)]
≤ negl(n)

This definition was later generalized in [MY22a] to allow StateGen outputs to be mixed state.
They also showed how, for a OWSG with pure state outputs, the procedure Ver(k, |ψ⟩)may without
loss of generality be assumed to be a projection of |ψ⟩ onto |ψk⟩.

Definition 3.2 (One-way Puzzles). A one-way puzzle is a pair of sampling and verification algo-
rithms (Samp,Ver) with the following syntax.

• Samp(1n) → (k, s) is a (uniform) quantum polynomial time algorithm outputs a pair of
classical strings (k, s). We refer to s as the puzzle and k as its key. Without loss of generality
we may assume that k ∈ {0, 1}n.

• Ver(k, s) → ⊤ or ⊥, is an unbounded algorithm that on input any pair of classical strings
(k, s) halts and outputs either ⊤ or ⊥.

These satisfy the following properties.

• Correctness. Outputs of the sampler pass verification with overwhelming probability, i.e.,

Pr
(k,s)←Samp(1n)

[Ver(k, s) = ⊤] = 1− negl(n)

• Security. Given s, it is (quantum) computationally infeasible to find k satisfying Ver(k, s) =
⊤, i.e., for every polynomial-sized quantum circuit A,

Pr
(k,s)←Samp(1n)

[Ver(A(s), s) = ⊤] = negl(n)
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Definition 3.3 (EFI pairs). [BCQ23] An EFI pair is a QPT algorithm EFIGen(b, 1n)→ ρb that on
input b ∈ {0, 1} and the security parameter n, outputs a (potentially mixed) quantum state ρb such
that the following hold:

1. Computational Indistinguishability. For all QPT adversaries A, for all n ∈ N

|Pr[1← A(EFIGen(0, 1n))]− Pr[1← A(EFIGen(1, 1n))]| ≤ negl(n)

2. Statistical Binding. There exists a negligible function δ(·) such that for large enough n ∈ N,

TD(EFIGen(0, 1n),EFIGen(1, 1n)) ≥ 1− δ(n)

3.3 Entropy and Randomness Extractors
Wewill useH(X) to denote the Shannon entropy,H∞(X) to denote themin-entropy andHmax(X)
to denote the max-entropy of distribution X . For an arbitrary classical random variable X , the
sample entropy [HRV13] of any x ∈ Supp(X) is defined as

HX(x) := log(1/Pr[X = x]).

The min-entropy of distribution X is then

H∞(X) := min
x∈Supp(X)

HX(x)

Additionally for random variables (X, Y ), we can also define the conditional sample entropy as

HX|Y (x|y) := log(1/Pr[X = x|Y = y])

Definition 3.4. (Smooth Min-Entropy) Let X, Y be jointly distributed discrete random variables.
The ϵ-Smooth Min Entropy of X conditioned on Y is defined as:

Hϵ∞(X|Y ) := supX′,Y ′H∞(X
′|Y ′)

where X ′, Y ′ are arbitrary joint distributions at most ϵ statistically far from X, Y .

Wealso have the followingwell-known lemmas and theorems about entropy and randomness
extraction.

Lemma 3.1 (Leftover Hash Lemma). Fix ϵ, ϵ′ > 0. LetX, Y be jointly distributed discrete random
variables whereX is distributed over {0, 1}n, and Hϵ∞(X|Y ) ≥ k. LetH be a universal hash family
with output length k − 2 log(1/ϵ′). Then

SD
(
(Y,H(X), H), (Y, U,H)

)
≤ ϵ+ ϵ′

where U is uniformly distributed in {0, 1}k−2 log(1/ϵ′).
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Theorem 3.1 (Entropy Concentration in Product Distributions). [Ren08] Let X, Y be jointly
distributed discrete random variables, whereX takes values in a universe U , let t ∈ N and let ϵ > 0.
Then,

Hϵ∞(X
t|Y t) ≥ t · H(X|Y )−

√
2t · log(1/ϵ) · log(3 + |U|)

Finally, we will use the following version of the Goldreich-Levin theorem (in the presence of
quantum advice).

Theorem 3.2 (Goldreich-Levin with Quantum Advice). [AC02] There exists a QPT algorithm E
such that if for any QPT algorithm D, any ϵ > 0, any mixed state ρ, and any a ∈ {0, 1}n,

Pr
x←{0,1}n

[D(ρ, x) = ⟨a, x⟩] ≥ 1

2
+ ϵ

then,
Pr[E(ρ) = a] ≥ 4ϵ2

4 Pure OWSG imply One-Way Puzzles
In this section, we show how to use shadow tomography to build one-way puzzles (with ineffi-
cient verification) from any OWSG with pure state outputs. We will use the following theorem
on shadow tomography from [HKP20].

Theorem 4.1. [HKP20] (Rephrased, following [YK]) Fix any ϵ, δ > 0. There exists a quantum
polynomial-sized algorithm ShadowGen that, given T = O(log(1/δ)/ϵ2) copies of an unknown
state |ψ⟩ generates a classical string (called the “shadow”) S with the following property:

For some t ∈ N, let {Mi}i∈[t] be a set of observables such that Tr(M2
i ) ≤ 1. Then there exists a

deterministic “estimator” function E such that:

Pr
S←ShadowGen(|ψ⊗T ⟩

[
∀i ∈ [t],

∣∣E(S,Mi)− ⟨ψ|Mi |ψ⟩
∣∣ ≤ ϵ

]
≥ 1− tδ

We now proceed to state and prove our main theorem for this section.

Theorem 4.2. One-way state generators with pure state outputs (Definition 3.1) imply one-way
puzzles (Definition 3.2).

Proof. (of Theorem 4.2) Let (KeyGen, StateGen) be a one-way state generator (OWSG) with pure
state outputs and let |ψk⟩ represent the output of StateGen(k).

To build a puzzle from this OWSG, we will apply shadow tomography to the output states
of the OWSG. In fact, the one-way puzzle will simply sample a OWSG key k, compute |ψk⟩ ←
StateGen(k), and finally compute sk as a classical shadow of |ψk⟩. It will output sk as the puz-
zle, with solution k. In what follows, we formalize this construction and define an (inefficient)
verification algorithm for the one-way puzzle.
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Defining preimage keys of a classical shadow. First, it will be useful to define an (inefficient)
algorithm L that obtains a classical shadow and outputs a list of keys, roughly corresponding to
possible preimages of the shadow.

Set ϵ = 1/10 and for n ∈ N, set δ = 2−2n. For all k ∈ Supp(KeyGen(1n)), define Mk :=
|ψk⟩ ⟨ψk|. Note that these satisfy Tr(M2

k ) = 1. Let ShadowGen and E be algorithms as defined
by Theorem 4.1 applied to δ, ϵ and {Mk}k∈[2n]. Let T = O(n) be the required number of copies.

Define the (inefficient) algorithm L that takes a shadow s as input and outputs a list of keys
such that the estimated overlap of the shadow with each key in the list is at least 1− ϵ. That is,

L(s) =

{
k :
(
k ∈ Supp(KeyGen(1n))

)∧(
E(s,Mk) ≥ 1− ϵ

)}

The following claim about the algorithm L states that for any key k, with high probability
over sampling a corresponding shadow sk of |ψk⟩, (1) the key k appears in L(sk) and (2) for all
j ∈ L(sk), the (pure) states |ψk⟩ and |ψj⟩ have high overlap. The proof of this claim follows from
the correctness of shadow tomography (Theorem 4.1).

Claim 4.1. For all k ∈ Supp(KeyGen(1n)):

1. Prsk←ShadowGen(|ψk⟩⊗T )[k ∈ L(sk)] ≥ 1− 2−n

2. Prsk←ShadowGen(|ψk⟩⊗T )[∀j ∈ L(sk), |⟨ψk|ψj⟩|2 ≥ 1− 2ϵ] ≥ 1− 2−n

Proof. Fix any k ∈ Supp(KeyGen(1n)). Applying Theorem 4.1 on δ, t, ϵ:

Pr
sk←ShadowGen(|ψk⟩⊗T )

[∀j ∈ Supp(KeyGen(1n)),
∣∣E(sk,Mj)− |⟨ψk|ψj⟩|2

∣∣ ≤ ϵ] ≥ 1− tδ ≥ 1− 2−n

(1)
Setting j = k, we have:

Pr
sk←ShadowGen(|ψk⟩⊗T )

[E(sk,Mk) ≥ 1− ϵ] ≥ 1− 2−n

By definition of L, this implies

Pr
sk←ShadowGen(|ψk⟩⊗T )

[k ∈ L(sk)] ≥ 1− 2−n

which is the first part of the claim.
Again, fix any k ∈ Supp(mathsfKeyGen(1n)). If we restrict j to L(sk), then by equation

(1), we have

Pr
sk←ShadowGen(|ψk⟩⊗T )

[∀j ∈ L(sk),
∣∣E(sk,Mj)− |⟨ψk|ψj⟩|2

∣∣ ≤ ϵ] ≥ 1− 2−n

But j ∈ L(sk) ⇐⇒ E(sk,Mj) ≥ 1− ϵ. Substituting in the above equation gives:

Pr
sk←ShadowGen(|ψk⟩⊗T )

[∀j ∈ L(sk), |⟨ψk|ψj⟩|2 ≥ 1− 2ϵ] ≥ 1− 2−n

which is the second part of the claim.
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Constructing the One-Way Puzzle. Define a one-way puzzle as follows.

• Puzz.Samp(1n) :

– Sample k ← KeyGen(1n).

– Compute s← ShadowGen(|ψk⟩⊗T )
– Return (k, s)

• Puzz.Ver(k, s) :

– If k ∈ L(s) return ⊤
– Else return ⊥

Claim 4.2. (Puzz.Samp,Puzz.Ver) satisfies Definition 3.2.

Correctness. By Claim 4.1, for all k ∈ Supp(KeyGen(1n))

Pr
s←ShadowGen(|ψk⟩⊗T )

[k ∈ L(s)] ≥ 1− 2−n

which by the definition of Puzz.Ver implies

Pr
s←ShadowGen(|ψk⟩⊗T )

[⊤ ← Puzz.Ver(k, s)] ≥ 1− 2−n

Therefore
Pr

(k,s)←Puzz.Samp(1n)
[⊤ ← Puzz.Ver(k, s)] ≥ 1− 2−n

Security. We prove one-wayness by contradiction. Suppose there exists a quantum polynomial-
sized adversary A that breaks the one-wayness of the puzzle, i.e. there exists a polynomial q(·)
such that for infinitely many n ∈ N,

Pr
(k,s)←Puzz.Samp(1n)

[⊤ ← Puzz.Ver(A(s), s)] ≥ q(n)

We build a reduction that breaks the one-wayness of the OWSG. First, by the definition of
Puzz.Ver and Puzz.Samp, for infinitely many n ∈ N,

Pr
k←KeyGen(1n)

s←ShadowGen(|ψk⟩⊗T )

[A(s) ∈ L(s)] ≥ q(n) (2)

By Claim 4.1, for all k ∈ Supp(KeyGen(1n))

Pr
s←ShadowGen(|ψk⟩⊗T )

[∀k′ ∈ L(s), |⟨ψk|ψk′⟩|2 ≥ 4/5] ≥ 1− 2−n (3)

For any events A and B, Pr[A∧B] ≥ Pr[A]−Pr[¬B]. Therefore, from equations (2) and (3), for
infinitely many n ∈ N,

Pr
k←KeyGen(1n)

s←ShadowGen(|ψk⟩⊗T )

[A(s) ∈ L(s) ∧ ∀k′ ∈ L(s), |⟨ψk|ψk′⟩|2 ≥ 4/5] ≥ q(n)− 2−n (4)
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which can be simplified to say that for infinitely many n ∈ N,

Pr
k←KeyGen(1n)

s←ShadowGen(|ψk⟩⊗T )

[k′ ← A(s) s.t |⟨ψk|ψk′⟩|2 ≥ 4/5] ≥ q(n)− 2−n

Furthermore, by the definition of Ver(·), for infinitely many n ∈ N,

Pr
k←KeyGen(1n)

s←ShadowGen(|ψk⟩⊗T )

[k′ ← A(s) ∧ ⊤ ← Ver(k′, |ψk⟩)] ≥
4

5
· (q(n)− 2−n) >

3q(n)

5

Then, letting B be the algorithm that on input |ψk⟩⊗T outputsA(ShadowGen(|ψk⟩⊗T )), we have
that for infinitely many n ∈ N,

Pr
k←KeyGen(1n)

[k′ ← B(|ψk⟩⊗T ) ∧ ⊤ ← Ver(k′, |ψk⟩)] >
3q(n)

5

Since SGen and A are quantum polynomial-sized circuits, this contradicts O(n)-copy security
of the OWSG.

5 One-way Puzzles implyQuantumWeak PEGs
Here, we show that (inefficiently verifiable) one-way puzzles imply quantum weak pseudoen-
tropy generators, defined below.

Definition 5.1 (Quantum Weak Pseudoentropy Generator). A Quantum Weak Pseudoentropy
Generator consists of an ensemble of distributions {G0(n),G1(n)}n∈N over classical strings such
that:

• Efficiency. There exists a uniform quantum polynomial-sized algorithm G where for all n ∈
N, G(1n) returns a sample from G0(n).

• (Shannon) EntropyGap. There exists an explicit constant c > 0 such that for all sufficiently
large n ∈ N,

H(G1(n))− H(G0(n)) ≥
1

nc

• Indistinguishability. There exists a negligible functionµ such that for all quantumpolynomial-
sized adversaries A, for all n ∈ N:∣∣∣∣ Pr

z←G0(n)
[A(z) = 1]− Pr

z←G1(n)
[A(z) = 1]

∣∣∣∣ ≤ µ(n)

Theorem 5.1. One-way puzzles (Definition 3.2) imply quantum weak pseudoentropy generators
(Definition 5.1).

The rest of this section is devoted to the proof of this theorem. For the following discussion, fix
some sufficiently large n ∈ N. In what follows, we will sometimes drop explicit parameterization
on n when it is clear from the context.
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5.1 Defining G0 and G1

In order to build QWPEG, we first need to define the two distributions, G0 and G1.

The Distribution G0. The distribution G0 is defined as:

G0(n) := s, h, i, r, h(k)i, ⟨k, r⟩

where (k, s)← Samp(1n), h ∈ {0, 1}ℓ is a (uniform) seed for a pairwise independent hash func-
tion mapping {0, 1}n bits to {0, 1}3n bits, i ← [3n], and r ← {0, 1}n. Moreover, h(k)i denotes
the output of h(k) truncated to the first i bits.

The Distribution G1. The distribution G1 is defined as:

G1(n) :=

{
s, h, i, r, h(k)i, u if i = is, k ∈ Gs, (h, h(k)i) ∈ Fs
s, h, i, r, h(k)i, ⟨k, r⟩ otherwise

where (k, s) ← Samp(1n), h ∈ {0, 1}ℓ is a (uniform) seed for a pairwise independent hash
function mapping {0, 1}n bits to {0, 1}3n bits, i← [3n], u is a uniform bit, and r ← {0, 1}n.

It remains to define is and the setsGs,Fs, which we do next. First, we define some notation.

• Let K = Supp(K), where K is the marginal distribution on keys induced by Samp(1n).

• Let S = Supp(S), where S is the marginal distribution on puzzles induced by Samp(1n).

• For any s ∈ S, denote by Ks the distribution on keys output by Samp conditioned on the
puzzle being s, and let Ks = Supp(Ks).

• For any k ∈ K, denote by Sk the distribution on puzzles output by Samp conditioned on
the key being k, and let Sk = Supp(Sk).

DefiningGs and is. We claim the existence of a dense enough setGs of preimage keys of every
puzzle s, where all keys in Gs have (roughly) the same sample entropy in distribution Ks. We
call this sample entropy js, and we will later use it to define is.

Claim 5.1. For all n ∈ N and all s ∈ S, there exists a set Gs ⊆ Ks and js ∈ [0, 2n− 1] such that

1. Prk←Ks [k ∈ Gs] ≥ 1/3n

2. For all k ∈ Gs, we have js ≤ HKs(k) ≤ js + 1.

Proof. We first show that most of the probability mass in Ks is on keys with sample entropies
less than 2n. We fix some arbitrary s ∈ S for the following discussion.

Pr
k←Ks

[HKs(k) ≥ 2n] =
∑

k:HKs (k)≥2n

PrKs [k]

=
∑

k:PrKs (k)≤2−2n

PrKs [k]

≤
∑

k:PrKs (k)≤2−2n

2−2n

≤ 2n · 2−2n ≤ 2−n
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Now, we can divide these keys into sets with similiar sample entropies. For j ∈ [0, 2n − 1], let
Cj := {k ∈ Ks : j ≤ HKs(k) ≤ j + 1}. With overwhelming probability, k sampled fromKs will
belong to some Cj .

Pr
k←Ks

[∃j ∈ [0, 2n− 1] s.t k ∈ Cj] = Pr
k←Ks

[0 ≤ HKs(k) ≤ 2n]

≥ 1− 2−n

Then the Pigeonhole Principle says there must exist some js ∈ [0, 2n− 1] such that

Pr
k←Ks

[k ∈ Cjs ] ≥
1− 2−n

2n
≥ 1/3n

Set Gs := Cjs . This completes the proof.

For every s ∈ S, fix Gs, js to be an arbitrary set and index satisfying the above claim. Set
is := js+600 log(n). Note that since js ≤ 2n, is ∈ [3n] for sufficiently large n. Furthermore, let

As := {k ∈ Ks : HKs(k) ≤ js + 500 log(n)}

We will now proceed to defining Fs.

Defining Fs. We now claim the existence of a dense enough set Fs of h, y values such that
(1) the preimage distribution of h, y in Ks (i.e. Ks conditioned on h(Ks)is = y) has reasonably
high probability mass in Gs and (2) there is at most one key k ∈ As that hashes (under h) to y.
Formally, we have the following claim.

Claim 5.2. For all n ∈ N and all s ∈ S, there exists a set Fs such that

1. Prh←{0,1}ℓ
k←Ks

[h, h(k)is ∈ Fs] ≥ 1/6n− 1/n100

2. For all h, y ∈ Fs, the following holds:
Prk←Ks [k ∈ Gs|h(k)is = y] ≥ 1/6n and there exists atmost one k ∈ As such that h(k)is = y

Proof. Weprove the claim in two parts. The following claim shows thatwith high probability over
the randomness of sampling (h, k), there exists atmost one k′ ∈ As such that h(k′)is = h(k)is .

SubClaim 5.1. For all s ∈ S,

Pr
h←{0,1}ℓ
k←Ks

[∃k′ ∈ As s.t. k′ ̸= k and h(k′)is = h(k)is ] ≤ 1/n100

Proof. We first show a bound on the size of As. By definition of As, for all k ∈ As, we have that
HKs(k) ≤ js + 500 log n. This implies

Pr
Ks

[k] ≥ 1

2js+500 logn

=⇒ Pr
k′←Ks

[k′ ∈ As] ≥
|As|

2js+500 logn

=⇒ |As| ≤ 2js+500 logn
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By the properties of universal hash functions, for all s ∈ S, for all k, k′ such that k ̸= k′

Pr
h←{0,1}ℓ

[h(k′)is = h(k)is ] =
1

2is

Applying a union bound to the set As \ {k}

Pr
h←{0,1}ℓ

[∃k′ ∈ As \ {k} s.t. h(k′)is = h(k)is ] ≤
|As|
2is

Recall that is is defined as js + 600 log n and |As| ≤ 2js+500 logn. Substituting these above gives

Pr
h←{0,1}ℓ

[∃k′ ∈ As \ {k} s.t. h(k′)is = h(k)is ] ≤
1

n100

which proves this subclaim.

In the next subclaim we show that for some noticeable fraction of (h, h(k)is), the induced
preimage distribution on keys has noticeable probability mass in Gs.

SubClaim 5.2. For all s ∈ S,

Pr
k←Ks

h←{0,1}ℓ

[
Pr

k′←Ks

[k′ ∈ Gs|h(k′)is = h(k)is ] ≥ 1/6n

]
≥ 1/6n

Proof. Consider the following inequality: For all s ∈ S,

Pr
k←Ks

h←{0,1}ℓ
k′←Ks

[k′ ∈ Gs|h(k′)is = h(k)is ] ≥ 1/3n

It suffices to prove the above inequality, since the statement of our subclaim follows from it by
a Markov argument. Note that

Pr[k′ ∈ Gs|h(k′)is = h(k)is ] =
Pr[(k′ ∈ Gs) ∧ (h(k′)is = h(k)is)]

Pr[h(k′)is = h(k)is ]

where the probabilities are over k ← Ks, h← {0, 1}ℓ, k′ ← Ks.
By applying the properties of universal hashing to the RHS,

Pr[k′ ∈ Gs|h(k′)is = h(k)is ] = Pr
k′←Ks

[k′ ∈ Gs] ·
1/2is

1/2is

= Pr
k′←Ks

[k′ ∈ Gs]

By Claim 5.1 for all s ∈ S,
Pr

k←Ks

[k ∈ Gs] ≥ 1/3n

which gives
Pr[k′ ∈ Gs|h(k′)is = h(k)is ] ≥ 1/3n
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We now combine these subclaims to define Fs. For any eventsA andB, Pr[A∧B] ≥ Pr[A]−
Pr[¬B]. Applying this to the above two subclaims, for all s ∈ S,

Pr
k←Ks

h←{0,1}ℓ

[(
Pr

k′←Ks

[k′ ∈ Gs|h(k′)is = h(k)is ] ≥ 1/6n

)
∧ (∀k′ ∈ As \ {k}, h(k′)is ̸= h(k)is)

]
≥ 1/6n− 1/n100

which implies

Pr
k←Ks

h←{0,1}ℓ

[
Prk′←Ks [k

′ ∈ Gs|h(k′)is = h(k)is ] ≥ 1/6n
∧ (∃ at most one k′ ∈ As s.t. h(k′)is = h(k)is)

]
≥ 1/6n− 1/n100

Define Fs as follows:

Fs :=

h, y
∣∣∣∣∣∣

h ∈ {0, 1}ℓ ∧ y ∈ {0, 1}is∧
Prk←Ks [k ∈ Gs|h(k)is = y] ≥ 1/6n
∧ (∃ at most one k ∈ As s.t. h(k)is = y)


which implies

Pr
k←Ks

h←{0,1}ℓ

[h, h(k)is ∈ Fs] ≥ 1/6n− 1/n100

which concludes the proof of our claim.

This completes a description ofG0 andG1. It is easy to see thatG0(n) is efficiently sampleable.
Next, we prove that G1(n) has inverse-polynomially higher Shannon entropy than G0(n).

5.2 Establishing an Entropy Gap
Lemma 5.1. For all sufficiently large n ∈ N,

H(G1(n))− H(G0(n)) ≥ 1/n5

The rest of this subsection is dedicated to a proof of the above lemma. We will make use of
some intermediate lemmas and claims, that we state below.

First, we state a standalone lemma described below, the proof of which is in Appendix B.
Intuitively, the lemma defines a special distributionX over {0, 1}n that samples a single element
x∗ with much higher probability than all other elements x ̸= x∗. It then finds a lower bound
on the difference in Shannon entropy between distributions A0 and A1, where A0 = R, ⟨X,R⟩
and A1 is identical to A0 except replacing ⟨X,R⟩ with a uniform random bit when X = x∗

(and where R is the uniform distribution on {0, 1}n). The proof makes use of the leftover hash
lemma to show that the two distributions are close to uniform (and hence have high entropy)
conditioned on X ̸= x∗. Thus, a difference in entropies arises from the case of X = x∗.

Lemma 5.2. For sufficiently large n ∈ N, letX be a distribution over {0, 1}n such that there exists
x∗ ∈ {0, 1}n s.t.
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1. Prx←X [x = x∗] ≥ 1/6n

2. ∀x′ ̸= x∗, Prx←X [x = x′] ≤ 2/n600

LetR be uniformly distributed on {0, 1}n, andU1 denote the uniform distribution over {0, 1}. Define
α0 and α1 as follows.

α0(x, r) := ⟨x, r⟩

α1(x, r) :=

{
U1 if x = x∗

⟨x, r⟩ otherwise

For b ∈ {0, 1}, define distribution Ab := R,αb(X,R). Then

H(A1)− H(A0) ≥ 1/100n2

To prove lemma 5.1, we will also do the following. For each fixing of s ∈ S, we will establish
an entropy gap between the distributions G0 and G1 when conditioned on sampling (k, h, i) such
that i = is and h, h(k)is ∈ Fs. To do this, we will use the following claim, which helps establish
a difference in entropy in the last bit of G0 and G1 for every fixing of s ∈ S and h, y ∈ Fs.

Claim 5.3. Fix any s ∈ S and any (h, y) ∈ Fs. Let R be uniformly distributed on {0, 1}n.
For any r ∈ {0, 1}n, define distributions Pr, Qr as follows: First sample k ← Ks conditioned

on h(k)is = y. Set

Pr =

{
U1 if k ∈ Gs

⟨k, r⟩ otherwise

and

Qr = ⟨k, r⟩

Then,
H(R,PR)− H(R,QR) ≥ 1/100n2

Before proceeding, we provide a complete proof of Claim 5.3.

Proof. (of Claim 5.3) We first require some claims about the preimage distribution on keys inKs

such that h(k)is = y. These will set us up to use Lemma 5.2.
First, we show that there is a unique key k∗ ∈ Gs that hashes to y.

SubClaim 5.3. There exists a unique k∗ ∈ Gs such that h(k∗)is = y.

Proof. By definition of Fs,
Pr

k←Ks

[k ∈ Gs|h(k)is = y] ≥ 1/6n

Thus, there must exist at least one k∗ ∈ Gs such that h(k∗)is = y.
By definition, Gs ⊆ As. By Claim 5.2, there exists atmost one k ∈ As such that h(k)is = y.

Therefore, k∗ is unique.

Next we show that since all other preimage keys are outside of As, they have significantly
lower sampling probabilities than k∗.
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SubClaim 5.4. For all k′ ∈ {0, 1}n such that k′ ̸= k∗

Pr
k←Ks

[k = k′|h(k)is = y] ≤ 2/n600

Proof. By Claim 5.2, there is atmost one k ∈ As such that h(k)is = y. Note that k∗ ∈ Gs ⊆ As.
Fix any k′ ̸= k∗ such that h(k′)is = y (the subclaim follows trivially if h(k′)is ̸= y). It must

therefore be the case that k′ /∈ As. By definition of As,

HKs(k
′) ≥ js + 600 log n

or equivalently,

Pr
Ks

[k′] ≤ 1

n600 · 2js
We aim to bound Prk←Ks [k = k′|h(k)is = y]. We do so by noting that the ratio of probabili-

ties of k∗ and k′ is unaffected by conditioning on h(k)is = y.

Pr
k←Ks

[k = k′|h(k)is = y] =
Prk←Ks [k = k′]

Prk←Ks [h(k)is = y]

Pr
k←Ks

[k = k∗|h(k)is = y] =
Prk←Ks [k = k∗]

Prk←Ks [h(k)is = y]

which implies
Prk←Ks [k = k′|h(k)is = y]

Prk←Ks [k = k∗|h(k)is = y]
=

Prk←Ks [k = k′]

Prk←Ks [k = k∗]

Since k∗ ∈ Gs, by Claim 5.1

HKs(k
∗) ≤ js + 1 =⇒ Pr

Ks

[k∗] ≥ 1/2js+1

Together with the previous bound on the probability of k′ this implies

Prk←Ks [k = k′|h(k)is = y]

Prk←Ks [k = k∗|h(k)is = y]
=

Prk←Ks [k = k′]

Prk←Ks [k = k∗]
≤ 2js+1

n600 · 2js
≤ 2

n600

Since probabilities are upper bounded by one, this proves the subclaim.

We may now apply Lemma 5.2 with X := (Ks|h(Ks)is = y) and x∗ := k∗. By Claim 5.2

Pr
k←Ks

[k ∈ Gs|h(k)is = y] ≥ 1/6n

Since k∗ is the only inverse in Gs, this implies

Pr
k←Ks

[k = k∗|h(k)is = y] ≥ 1/6n

Moreover, for all k′ ∈ {0, 1}n such that k′ ̸= k∗, Prk←Ks [k = k′|h(k)is = y] ≤ 2/n600. Thus,
Lemma 5.2 implies that

H(R,PR)− H(R,QR) ≥ 1/100n2

which proves Claim 5.3.
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The next claim relates the entropy gap between joint distributions (A,B0) and (A,B1) to
their entropy gap conditioned on an event.

Claim 5.4. LetA,B0, andB1 be random variables and letA := Supp(A). Additionally, letA∗ ⊆ A
be a set with the following properties:

1. There exists some d ≥ 0 such that for all a ∈ A∗,H(B1|A = a)− H(B0|A = a) ≥ d.

2. For all a ∈ A \ A∗,H(B1|A = a) = H(B0|A = a)

Then the following holds

H(A,B1)− H(A,B0) ≥ d · Pr[A ∈ A∗]

Proof. By the chain rule, for b ∈ {0, 1}

H(A,Bb) = H(Bb|A) + H(A)

Applying this to the difference in entropies

H(A,B1)− H(A,B0) = H(B1|A) + H(A)− H(B0|A)− H(A)

= H(B1|A)− H(B0|A)

=
∑
a∈A

Pr
A
[a]
(
H(B1|A = a)− H(B0|A = a)

)
We may now split the sum into terms where a ∈ A∗ and terms where a ∈ A \A∗, and apply the
properties of A∗.

H(A,B1)− H(A,B0) =
∑
a∈A∗

Pr
A
[a]
(
H(B1|A = a)− H(B0|A = a)

)
+
∑

a∈A\A∗

Pr
A
[a]
(
H(B1|A = a)− H(B0|A = a)

)
=
∑
a∈A∗

Pr
A
[a]
(
H(B1|A = a)− H(B0|A = a)

)
≥
∑
a∈A∗

Pr
A
[a] · d

=d · Pr[A ∈ A∗]

which concludes the proof.

We are now ready to prove the main lemma of this subsection.

Proof. (of Lemma 5.1) Let H be uniformly distributed over {0, 1}ℓ, I be uniformly distributed
over [3n], and R be uniformly distributed over {0, 1}n. Recall that

G0 = (SK , H, I, R,H(K)I , QK,R)
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and
G1 = (SK , H, I, R,H(K)I , PK,R)

where
QK,R := ⟨K,R⟩

and

PK,R =

{
U1 if K ∈ GSK

and I = iSK
and h, h(K)I ∈ FSK

⟨K,R⟩ otherwise

First, we note that for any s ∈ S and any (h, y) ∈ Fs, the distribution (R,PK,R|SK = s,H =
h,H(K)I = y, I = is) is identical to the distribution (R,PR) as defined in Claim 5.3. Similarly,
(R,QK,R|SK = s,H = h,H(K)I = y, I = is) is identical to the distribution (R,QR) as defined
in Claim 5.3. Applying the claim therefore gives

H(R,PK,R|SK = s,H = h,H(K)I = y, I = is)

− H(R,QK,R|SK = s,H = h,H(K)I = y, I = is) ≥ 1/100n2

Additionally, note that if H,H(K)I /∈ FS or I ̸= iS , the distributions are identical. We now
apply Claim 5.4. Setting A to be (SK , H,H(K)I , I), B1 to (R,PK,R), B0 to (R,QK,R), and A∗ to
the set {(s, h, y, is) : s ∈ S ∧ (h, y) ∈ Fs}, we get

H(SK , H, I, R,H(K)I , PK,R)

− H(SK , H, I, R,H(K)I , QK,R) ≥ Pr[I = IS ∧ (H,H(K)I) ∈ FS]/100n2

which may be written as

H(G0)− H(G1) ≥ Pr[I = IS ∧ (H,H(K)I) ∈ FS]/100n2

Since I is uniform over [3n],

H(G0)− H(G1) ≥ Pr[(H,H(K)iS) ∈ FS]/300n3

By Claim 5.2, for every s ∈ S, Pr[H,H(K)is ∈ Fs] ≥ 1/6n− 1/n100. Therefore for large enough
n ∈ N

H(G0)− H(G1) ≥ (1/6n− 1/n100) · (1/300n3)

≥ (1/7n) · (1/300n3)

≥ 1

2100n4
>

1

n5

which concludes the proof.

5.3 Establishing Computational Indistinguishability
Lemma 5.3. There exists a negligible function µ such that for all quantum polynomial sized circuits
A, for all n ∈ N: ∣∣∣∣ Pr

z←G0(n)
[A(z) = 1]− Pr

z←G1(n)
[A(z) = 1]

∣∣∣∣ ≤ µ(n)
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Proof. We prove this lemma by contradiction. Suppose there exists some quantum polynomial-
sized A and an inverse polynomial function ε such that for infinitely many n ∈ N,∣∣∣∣ Pr

z←G0(n)
[A(z) = 1]− Pr

z←G1(n)
[A(z) = 1]

∣∣∣∣ ≥ ε(n)

For every s, G0 and G1 are identical whenever i ̸= is or k ̸∈ Gs. As a result, the case where this
constraint is met must give rise to all the distinguishing advantage. By definition of G0 and G1,
this means that ∣∣∣Pr [A(s, h, h(k)is , is, r, ⟨k, r⟩) = 1

∣∣ k ∈ Gs

]
− Pr

[
A(s, h, h(k)is , is, r, b) = 1

∣∣ k ∈ Gs

] ∣∣∣
≥ ε(n) (5)

where the probability is over k, s← (K,SK), b← {0, 1}, h← {0, 1}ℓ, r ← {0, 1}n.
Let A′ be a predictor that on input (s, h, y, i, r) samples a uniform bit b and outputs b ⊕

A(s, h, y, i, r, b). Then the previous equation implies:

Pr
[
A′(s, h, h(k)is , is, r) = ⟨k, r⟩

∣∣ k ∈ Gs

]
≥ 1/2 + ε(n) (6)

Note thatA′ is a quantum polynomial-sized circuit that guesses ⟨k, r⟩ with noticeable prob-
ability, given (s, h, h(k)is , is) as an auxiliary function of the key k, along with r, and when condi-
tioned on k ∈ Gs. Therefore, by the Goldreich-Levin theorem (Theorem 3.2) applied toA′, there
exists a quantum polynomial-sized circuit B and an inverse polynomial function ε′ such that:

Pr
[
B(s, h, h(k)is , is) = k

∣∣ k ∈ Gs

]
≥ ε′(n) (7)

Our goal is to prove the existence of a quantum polynomial-sized algorithm that outputs
inverses k given a puzzle s. In the above equation, however, B requires (h, h(k)is , is) as input in
addition to the puzzle s. The next claim proves that B will output an inverse of the puzzle with
non-negligible probability even when is is and h(k)is are replaced with uniform strings.

Claim 5.5. There exists an inverse polynomial function ε′′ such that for infinitely many n ∈ N:

Pr [⊤ ← Ver(B(s, h, u, i), s)] ≥ ε′′(n)

where the probability is over s← S, i← [3n], h← {0, 1}ℓ, u← {0, 1}i.

Proof. To prove this claim, we will first define a statistical test using the input-output behavior
of B.

SubClaim 5.5. Define test T as follows.

T (s, h, y) :=
{

1 if Pr[⊤ ← Ver(B(s, h, y, is), s)] ≥ ε′(n)/4
0 otherwise

where the probability is over the randomness of B and Ver. Then,

Pr
(k,s)←(K,S),h←{0,1}ℓ

[T (s, h, h(k)is) = 1|k ∈ Gs] ≥ ε′(n)/4
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Proof. (of SubClaim 5.5) For any events A and B, Pr[A ∧ B] ≥ Pr[A] − Pr[¬B]. Applying this
to the correctness of the puzzle

Pr
k,s←(K,SK)

h←{0,1}ℓ

[B(s, h, h(k)is , is) = k ∧ ⊤ ← Ver(k, s)|k ∈ Gs]

≥ ε′(n)− Pr
k,s←(K,SK)

[⊥ ← Ver(k, s)|k ∈ Gs]

≥ ε′(n)−
Prk,s←(K,SK)[⊥ ← Ver(k, s)]

Prk,s←(K,SK)[k ∈ Gs]

= ε′(n)− 3n · negl(n) > ε′(n)/2

where the last step follows due to Claim 5.1, and due to the correctness of the one-way puzzle.
Thus,

Pr [⊤ ← Ver(B(s, h, h(k)is , is), s)|k ∈ Gs] ≥ ε′(n)/2

and by a Markov argument

Pr [Pr[⊤ ← Ver(B(s, h, h(k)is , is), s)] ≥ ε′(n)/4|k ∈ Gs] ≥ ε′(n)/4

which proves this subclaim.

Let ℓ∗ := 600 log n+ log 3n+ 2 log(8/ε′(n)). Fix any s ∈ S, and define ℓ∗s = min(is, ℓ
∗). Let

K ′s denote the distribution of the random variable (k ← Ks|k ∈ Gs). In what follows, we will
bound the distance between h(k)is−ℓ∗s and uniform.

SubClaim 5.6. For every s ∈ S,

SD
(
(H,H(K ′s)is−ℓ∗s), (H,Uis−ℓ∗s)

)
≤ ε′(n)/8

Proof. For all s ∈ S, for all k∗ ∈ Gs,

Pr
k←K′

s

[k = k∗] = Pr
k←Ks

[k = k∗|k ∈ Gs]

= Pr
k←Ks

[k = k∗]/ Pr
k←Ks

[k ∈ Gs]

By Claim 5.1, for all s ∈ S, Prk←Ks [k ∈ Gs] ≥ 1/3n. Additionally, for all k∗ ∈ Gs, HKs(k
∗) ≥

js =⇒ PrKs [k
∗] ≤ 2−js .

Therefore for all s ∈ S, for all k∗ ∈ Gs,

Pr
k←K′

s

[k = k∗] = Pr
k←Ks

[k = k∗]/ Pr
k←Ks

[k ∈ Gs]

≤ 2−js · 3n

Thus for s ∈ S, for k∗ ∈ Gs, HK′
s
(k∗) ≥ js − log 3n. In other words, H∞(K ′s) ≥ js − log 3n.

By the Leftover Hash Lemma (Theorem 3.1),

SD
(
(H,H(K ′s)is−ℓ∗s), (H,Uis−ℓ∗s)

)
≤ 2−0.5(Hmin(K

′
s)−is+ℓ∗s)

= 2−0.5(js−log 3n−is+600 logn+log 3n+2 log(8/ε′(n)))

= 2− log(8/ε′(n)) = ε′(n)/8

which proves the claim.
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Next, relaxing the probability bound from SubClaim 5.5 gives us

Pr
[
∃γ ∈ {0, 1}ℓ∗s s.t T (s, h, (h(k)is−ℓ∗s∥γ)) = 1

∣∣k ∈ Gs

]
≥ ε′(n)/4

Defining T ′ as:

T ′(s, h, y) :=
{

1 if ∃γ ∈ {0, 1}ℓ∗s s.t T (s, h, (y∥γ)) = 1
0 otherwise

we have
Pr

(k,s)←(K,S),h←{0,1}ℓ

[
T ′ℓ∗(s, h, h(k)is−ℓ∗s) = 1

∣∣k ∈ Gs

]
≥ ε′(n)/4

Since no statistical test can distinguish between two distributions with advantage better than
their statistical distance, replacing the hash with a uniform string in the equation above, and
invoking SubClaim 5.6 gives us

Pr
k,s←(K,SK)

h←{0,1}ℓ,u←{0,1}is−ℓ∗s

[T ′(s, h, u) = 1|k ∈ Gs] ≥
ε′(n)

4
− ε′(n)

8
=
ε′(n)

8

which by definition of T ′ implies

Pr
k,s←(K,SK)

h←{0,1}ℓ,u←{0,1}is−ℓ∗s

[
∃γ ∈ {0, 1}ℓ∗s s.t T (s, h, u∥γ)) = 1

∣∣k ∈ Gs

]
≥ ε′(n)

8

If we sample γ randomly as well, we obtain

Pr
k,s←(K,SK)

h←{0,1}ℓ,u←{0,1}is

[T (s, h, u)) = 1|k ∈ Gs] ≥
ε′(n)

8
· 2−ℓ∗

We may now relax the constraint that k ∈ Gs as follows:

Pr
k,s←(K,SK)

h←{0,1}ℓ,u←{0,1}is

[T (s, h, u)) = 1] ≥ ε′(n)

8
· 2−ℓ∗ · Pr

k,s←K,SK

[k ∈ Gs] ≥
ε′(n)

24n
· 2−ℓ∗

where the last inequality follows from Claim 5.1.
Substituting ℓ∗ := 600 log n+ log 3n+ 2 log(8/ε′(n)), we obtain

Pr
k,s←(K,SK)

h←{0,1}ℓ,u←{0,1}is

[T (s, h, u)) = 1] ≥ (ε′(n))3

24n · n600 · 3n · 64
≥ (ε′(n))3

4608n602
:= ϵ(n)

By the definition of T , this means

Pr
k,s←(K,SK)

h←{0,1}ℓ,u←{0,1}is

[Pr[⊤ ← Ver(B(s, h, u, is), s)] ≥ ε′(n)/4] ≥ ϵ(n)
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which after undoing the Markov argument implies

Pr
k,s←(K,SK)

h←{0,1}ℓ,u←{0,1}is

[⊤ ← Ver(B(s, h, u, is), s)] ≥
ε′(n)ϵ(n)

4

When i is sampled uniformly from [3n], i = is occurs with probability 1/3n. Therefore

Pr
k,s←(K,SK)

h←{0,1}ℓ
i←[3n],u←{0,1}i

[⊤ ← Ver(B(s, h, u, i), s)] ≥ ε′(n)ϵ(n)

12n
:= ε′′(n)

which completes the proof of the claim.

To complete the proof of the lemma, letB′ denote an algorithm that on input s does the following.

• Sample h← {0, 1}ℓ

• Sample i← [3n]

• Sample u← {0, 1}i

• Output B(s, h, u, i)

Then Claim 5.5 implies

Pr
(k,s)←Samp(1n)

[⊤ ← Ver(B′(s), s)] ≥ ε′′(n)

which contradicts security of the puzzle, as desired.

6 QuantumWeak PEGs implyQuantum PEGs
In this section, we show that a parallel repetition of quantum weak PEGs yields a strong pseu-
doentropy property, which we formalize into a quantum PEG, defined below.

Definition 6.1 (Quantum Pseudoentropy Generator). AQuantum Pseudoentropy Generator con-
sists of an ensemble of distributions {Ḡ0(n),G1(n)}n∈N over classical strings such that:

• Efficiency. There exists some quantum polynomial-sized algorithm that for all n ∈ N, on
input 1n, returns a sample from Ḡ0(n).

• Indistinguishability. There exists a negligible functionµ such that for all quantum polynomial-
sized adversaries A, for all n ∈ N,∣∣∣∣ Pr

z←Ḡ0(n)
[A(z) = 1]− Pr

z←G1(n)
[A(z) = 1]

∣∣∣∣ ≤ µ(n)
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• Entropy Gap. Here, we work with min and max entropies, as opposed to Shannon entropy.
We require the min-entropy of G1 to be higher than the max-entropy of Ḡ0. Formally, there is
some explicit constant c > 0 and some negligible function ϵ such that for all sufficiently large
n ∈ N,

H
ϵ(n)
min (G1(n))−Hϵ(n)

max (Ḡ0(n)) ≥ nc

Theorem 6.1. Quantum weak pseudoentropy generators (Definition 5.1) imply quantum pseudoen-
tropy generators (Definition 6.1).

Let {G0(n),G1(n)}n∈N be a Quantum Weak Pseudoentropy Generator with entropy gap
greater than 1/nc. Let L(·) be a polynomial such that |G1(n)| ≤ L(n) and |G0(n)| ≤ L(n).
Let q(n) := nc+3 · L(n)2.

We construct a pseudoentropy generator {Ḡ0(n),G1(n)}n∈N by simply generating q(n) inde-
pendent samples of G0(n) and G1(n) respectively. That is,

• Ḡ0(n) := G0(n)
q(n)

• G1(n) := G1(n)
q(n)

Claim 6.1. The distribution ensembles {Ḡ0(n)}n∈N and {G1(n)}n∈N satisfy Definition 6.1.

Computational Indistinguishability. There exists a negligible function µ2 such that for all
quantum polynomial-sized adversaries A, n ∈ N:∣∣∣∣ Pr

z←Ḡ0(n)
[1← A(z)]− Pr

z←G1(n)
[1← A(z)]

∣∣∣∣ ≤ µ2(n)

Proof. We prove this by contradiction. Suppose there exists an adversary A that distinguishes
the two distributions with non-negligible advantage ϵ. We use this adversary to build a reduction
to computational indistinguishability of G0 and G1, contradicting the security of the QWPEG.
We proceed through a series of hybrids H0, H1, . . . , Hq(n). In hybrid Hj , the adversary is run
on inputs sampled from Dj := G0(n)

j × G1(n)
q(n)−j . By definition, D0 = Ḡ0 and Dq(n) − G1

Suppose the adversary distinguishes adjacent hybrids Hj−1 and Hj with advantage ϵj . Note
that by assumption, the adversary distinguishesH0 andHq with advantage ϵwhich implies that
ϵ ≤

∑
j ϵj . Therefore, for each sufficiently large n, there exists a j such that ϵj ≥ ϵ/q(n), i.e:∣∣∣∣ Pr

z←Dj−1

[1← A(z)]− Pr
z←Dj

[1← A(z)]
∣∣∣∣ ≥ ϵ/q

This adversary therefore distinguishes between samples from G0 and G1 at the jth posi-
tion, given appropriate samples at the other positions. While samples can be computed from G0

efficiently, computing G1 is not necessarily efficient. To resolve this we show that for each suffi-
ciently large n there must exist fixed samples for which the adversary distinguishes in the jth po-
sition, and which the reduction may receive as non-uniform advice. If we parse z as z1, . . . , zq(n),
by a Markov argument:

Pr
z∗1 ,...,z

∗
q(n)←Dj

∣∣∣∣∣∣
Pr

zj←G0(n)

[
1← A(z∗1 , . . . , z∗j−1, zj, z∗j+1, . . . , z

∗
q(n))

]
− Pr

zj←G1(n)

[
1← A(z∗1 , . . . , z∗j−1, zj, z∗j+1, . . . , z

∗
q(n))

]
∣∣∣∣∣∣ ≥ ϵ/2q

 ≥ ϵ/2q
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Therefore, for each sufficiently large n there exist z∗1 , . . . , z
∗
j−1, z

∗
j+1, . . . z

∗
q ∈ Supp(G0(n)) ∪

Supp(G1(n)) such that:∣∣∣∣∣∣
Pr

zj←G0(n)

[
1← A(z∗1 , . . . , z∗j−1, zj, z∗j+1, . . . , z

∗
q(n))

]
− Pr

zj←G1(n)

[
1← A(z∗1 , . . . , z∗j−1, zj, z∗j+1, . . . , z

∗
q(n))

]
∣∣∣∣∣∣ ≥ ϵ/2q

We may now build a reduction R that receives as input z and takes as non-uniform advice τ
defined as:

τ := j, z∗1 , . . . , z
∗
j−1, z

∗
j+1, . . . z

∗
q

The reduction R on input z, τ outputs A(z∗1 , . . . , z∗j−1, z, z∗j+1, . . . , z
∗
q(n)) and achieves a distin-

guishing advantage of atleast ϵ/2q, contradicting the security of QWPEG.

Entropy Gap. There exists a constant c′ such that for ϵ(n) = 1/2n and sufficiently large n:

Hϵmin

(
G1(n)

)
−Hϵ

max

(
Ḡ0(n)

)
≥ nc

′

Proof. Setting t = q(n), ϵ = 2−n and U = 2|G1| ≤ 2L(n), we may apply Theorem 3.1 to obtain:

Hϵ
min(G1(n)) ≥ q(n) ·H (G1(n))−O(

√
qnL2)

Since H(G1(n))−H(G0(n)) ≥ 1/nc

Hϵ
min(G1(n)) ≥ q(n) ·H (G0(n)) + q(n)/nc −O(

√
qnL2)

Similarly setting t = q(n), ϵ = 2−n and U = 2|G0| ≤ 2L(n), we may apply Theorem 3.1 to obtain:

Hϵ
max(Ḡ0(n)) ≤ q(n) ·H (G0(n)) +O(

√
qnL2)

Taking the difference gives us

Hϵ
min(G1(n))−Hϵ

max

(
Ḡ0(n)

)
≥ q(n)/nc −O(

√
qnL2)

Substituting q(n) = n2c+3L(n)2

Hϵ
min(G1(n))−Hϵ

max

(
Ḡ0(n)

)
≥ nc+3L(n)2 −O(nc+2L(n)2)

≥ nc+3L(n)2/2

which implies there exists c′ such that for sufficiently large n

Hϵ
min(G1(n))−Hϵ

max

(
Ḡ0(n)

)
≥ nc

′

which concludes the proof.
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7 Quantum PEGs Imply Imbalanced EFI

In this section, we prove that quantum pseudoentropy generators imply a (non-uniform) variant
of EFI, that we define below.

Definition 7.1 (s∗-Imbalanced EFI). Let s∗(·) denote a function. An s∗-non-uniform EFI is a quan-
tum polynomial time algorithm EFIs(1

n, b)→ ϕb that obtains classical parameter-dependent advice
string s, and on input b ∈ {0, 1}, outputs a (potentially mixed) quantum state such that:

1. Computational Indistinguishability. There exists a negligible function µ(·) such that for
all quantum polynomial-sized circuits A, for every n ∈ N and every s ≤ s∗(n),∣∣∣∣ Pr

y←EFIs(1n,0)
[A(y) = 1]− Pr

y←EFIs(1n,1)
[A(y) = 1]

∣∣∣∣ ≤ µ(n)

2. Statistical Distance. There exists a negligible function µ(·) such for every n ∈ N and every
s ≥ s∗(n),

TD(EFIs(1
n, 0),EFIs(1

n, 1)) ≥ 1− µ(n)

Theorem 7.1. There exists a function s∗(·) such that

• There exists a polynomial p such that for all n ∈ N, |s∗(n)| ≤ log p(n) and

• Quantum pseudoentropy generators (Definition 6.1) imply s∗-imbalanced EFI (Definition 7.1).

Let {Ḡ0(n),G1(n)}n∈N be a QPEG (Definition 6.1). As a result, there exists a constant c and
some negligible smoothing parameter ϵ such that the entropy gap is greater than nc. Let L(·)
be a polynomial such that the length of the generator output is bounded by L(n). Finally, let
ℓ be the key length of a universal hash function from {0, 1}L(n) to {0, 1}L(n). Let h be sampled
uniformly from {0, 1}ℓ. We define the EFI distributions as follows.

• EFIs(1
n, 0) := h, h(Ḡ0)s

• EFIs(1
n, 1) := h, Us

We define s∗(n) := H(Ḡ0) +
nc

2
. Note that s∗(n) ≤ p(n) := L(n) + nc

2
.

We will now show that EFIs is an s∗-imbalanced EFI (Definition 7.1). It is easy to see that
EFIs(1

n, 0) := h, h(Ḡ0)s and EFIs(1
n, 1) := h, h(Ḡ0)s are efficiently sampleable for all s, n ∈ N.

The proof of the theorem follows from the two lemmas below.

Lemma 7.1. (Computational Indistinguishability.) There exists a negligible function µ(·) such that
for all quantum polynomial-sized adversaries A, for every n ∈ N and every s ≤ s∗(n),∣∣∣∣ Pr

z←EFIs(1n,0)
[A(z) = 1]− Pr

z←EFIs(1n,1)
[A(z) = 1]

∣∣∣∣ ≤ µ(n)

36



Proof. Fix some quantumpolynomial-sized adversaryA. Consider the distribution {h, h(G1(n))s}.
Since Ḡ0 andG1 are computationally indistinguishable, there exists some negligible functionµ′(·)
such that ∣∣∣∣∣∣∣ Pr

h←{0,1}ℓ
x←Ḡ0(n)

[A(h, h(x)s) = 1]− Pr
h←{0,1}ℓ
x←G1(n)

[A(h, h(x)s) = 1]

∣∣∣∣∣∣∣ ≤ µ(n)

Additionally, since for sufficiently large n

Hϵ
min(G1(n)) ≥ s∗(n) + nc/2 ≥ s+ nc/2

by the Leftover Hash Lemma (Theorem 3.1)

SD
(
{h, h(G1(n))s(n)}, {h, Us(n)}

)
≤ 1

2nc/4
+ ϵ(n)

Putting both together,∣∣∣∣∣∣∣ Pr
h←{0,1}ℓ
x←Ḡ0(n)

[A(h, h(x)s) = 1]− Pr
h←{0,1}ℓ
x←{0,1}s

[A(h, Us) = 1]

∣∣∣∣∣∣∣ ≤ µ(n) +
1

2nc/4
+ ϵ(n)

which is negligible.

Lemma 7.2. (Statistical Distance.) There exists a negligible function µ(·) such for every n ∈ N and
every s ≥ s∗(n),

TD(EFIs(1
n, 0),EFIs(1

n, 1)) ≥ 1− µ(n)

Proof. Since the output of EFI is classical, trace distance is equivalent to statistical distance. We
use the following sub-claim.

SubClaim 7.1. Let X be a random variable such that Hϵ
max(X) ≤ v, and let d be the keylength of

a universal hash function from {0, 1}|X| to {0, 1}v+t for some t ≥ 0. Let h be sampled uniformly
from {0, 1}d. Then statistical distance between the distributions

{h, h(X)} and {h, Uv+t}

is atleast 1− 2−t − ϵ.

Proof. SinceHϵ
max(X) ≤ v, there must exist a random variableX ′ such that SD(X,X ′) ≤ ϵ and

Hmax(X
′) ≤ v. This means that for all x ∈ X ′

HX′(x) ≤ v

=⇒ Pr
X′
(x) ≥ 1/2v

=⇒ |Supp(X ′)| ≤ 2v

Now,
SD({h, h(X ′)}, {h, Uv+t}) = Eh[SD(h(X ′), Uv+t)]
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For any h, SD(h(X ′), Uv+t) may be written as

SD(h(X ′), Uv+t) =
∑

z∈{0,1}v+t

∣∣∣∣ Prx←X′
[h(x) = z]− 1

2v+t

∣∣∣∣
=

∑
z∈Supp(X′)

∣∣∣∣ Prx←X′
[h(x) = z]− 1

2s+n

∣∣∣∣
+

∑
z∈{0,1}v+t\Supp(X′)

∣∣∣∣ Prx←X′
[h(x) = z]− 1

2v+t

∣∣∣∣
≥

∑
z∈{0,1}v+t\Supp(X′)

∣∣∣∣ Prx←X′
[h(x) = z]− 1

2v+t

∣∣∣∣
≥

∑
z∈{0,1}s+n\Supp(X′)

1

2v+t

≥ 2v+t − Supp(X ′)

2v+t

≥ 1− 2−t

Therefore
SD({h, h(X ′)}, {h, Uv+t}) ≥ 1− 2−t

By the triangle inequality

SD({h, h(X)}, {h, Uv+t}) ≥ 1− 2−t − ϵ

which concludes the proof of the subclaim.

Note s−nc/2 ≥ s∗(n)−nc/2 ≥ Hϵ
max(Ḡ0(n)). Therefore, setting Ḡ0(n) asX , s(n)−nc/2 as

v, and nc/2 as t in the above claim, the statistical distance between {h, h(Ḡ0(n))s} and {h, Us}
is atleast 1− ϵ(n)− 2−n

c/2 which concludes the proof of the claim.

Corollary 7.1. Assume the existence of pure one-way state generators according Definition 3.1.
Then there exists a function s∗(n) such that

• There exists a polynomial p such that for all n ∈ N, |s∗(n)| ≤ log p(n) and

• There exists a s∗-imbalanced EFI (Definition 7.1).

Proof. This follows immediately from Theorems 4.2, 5.1, 6.1 and 7.1.

8 Imbalanced EFI Imply Commitments
In this section, we prove that imbalanced EFI imply non-uniform commitments. First, we state
the definitions of quantum commitments that we work with.
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8.1 Defining Commitments
8.1.1 Quantum Bit Commitments

A non-interactive quantum bit commitment is defined by a commitment unitary Com, and has
the following syntax.

• Commit Phase. On input bit b, the committer initializes a single bit register M to b and
ℓ(n)-qubit auxiliary registerW to |0⟩ℓ(n). The committer then applies a unitary Com to reg-
isters M,W and writes the resulting state on registers (C,D), where C denotes the “com-
mit” register, that is sent to the receiver.

• Decommit Phase. The committer decommits by sending the D register. The receiver ap-
plies Com† to the pair (C,D), obtaining (M,W). It verifies the decommitment by checking
that W is in the state |0⟩ℓ(n) via a projective measurement. If the measurement does not
succeed, it outputs ⊥. Otherwise, it outputs the classical bit obtained by measuringM.

We will require these bit commitments to satisfy the following properties.

Completeness. The (honest) receiver’s output at the end of the decommit phase equals the
(honest) committer’s input.

Collapse Binding for Bit Commitments. For the case of commitments to classical bits, it will
sometimes be convenient to work with collapse binding [Unr14, GJMZ23], which intuitively says
that an adversary cannot detect whether or not their opened message was measured. Formally,
we consider the following experiment parameterized by a (malicious) committer A and security
parameter n.

Expmt-BindingComA,n :

• A (arbitrarily) prepares and outputs registers (C,D) to a challenger.

• Validity Check. The challenger applies Com† to (C,D) to obtain (M,W), then projects
W onto |0⟩ℓ(n), i.e. measures {|0ℓ(n)⟩ ⟨0ℓ(n)| , I − |0ℓ(n)⟩ ⟨0ℓ(n)|} on W. If the measurement
rejects, the challenger sets b′ ← {0, 1} and ends the experiment. If not, the experiment
continues.

• The challenger samples b← {0, 1} and:

– If b = 0, the challenger does nothing.

– If b = 1, the challenger measuresM in the standard basis.

• Finally, the challenger applies Com to (M,W) to obtain (C,D), and returns D to A.

• Set b′ to equal the bit output by A.

We define AdvExpmt-Binding
Com,A,n as the probability that b′ = b in Expmt-BindingComA,n .
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Definition 8.1 (Binding for Quantum Bit Commitments [Unr14, GJMZ23]). A non-interactive
quantum bit commitment satisfies statistical (resp., computational) binding if for every unbounded
(resp., QPT) adversaryA = {An}n∈N, there exists a negligible function ν(·) such thatAdvExpmt-Binding

Com,A,n ≤
1
2
+ ν(n).

Hiding for Quantum Bit Commitments. We consider the following experiment parameter-
ized by a (malicious) receiverA and security parameter n. Intuitively, this says that an adversary
cannot tell whether a commitment is to zero or one.

Expmt-HidingComA,n :

• The challenger samples b ← {0, 1}, then sets register M to the bit b. It initializes W to
|0ℓ(n)⟩. It then applies Com to registers (M,W) writing the result on registers (C,D). It
sends C to A.

• Denote the output of A by b′.

We define AdvExpmt-Hiding
Com,A,n as the probability that b′ = b in Expmt-HidingComA,n .

Definition 8.2 (Hiding for Non-interactiveQuantumBit Commitments). A non-interactive quan-
tum bit commitment satisfies statistical (resp., computational) hiding if for every unbounded (resp.,
QPT) adversary A = {An}n∈N, there exists a negligible function ν(·) such that AdvExpmt-Hiding

Com,A,n ≤
1
2
+ ν(n).

8.1.2 Imbalanced Commitments

Wewill also consider constructions of commitments parameterized by a classical security-parameter
dependent advice string s, with the corresponding unitary denoted by Coms. We will require
these to satisfy completeness for all values of the advice string s. Furthermore, for a function s∗,
we define notions of left-s∗-binding, right-s∗-binding, left-s∗-hiding and right-s∗-hiding.

Intuitively, left (resp. right) s∗-binding implies that binding holds for all values of advice
s ≤ s∗ (resp. s ≥ s∗); and similarly for hiding.

Definition 8.3 (Imbalanced Binding forQuantumBit Commitments). Let s∗(·) denote a function.
A non-interactive quantum bit commitment satisfies left-s∗-statistical (respectively, computational)
collapse binding if for every unbounded (respectively, QPT) adversary A = {An}n∈N, there exists a
negligible function ν(·) such that for every n ∈ N and every s ≤ s∗(n), AdvExpmt-Binding

Coms,A,n ≤ 1
2
+ν(n).

It satisfies right-s∗-statistical (respectively, computational) collapse binding if for every un-
bounded (respectively, QPT) adversary A = {An}n∈N, there exists a negligible function ν(·) such
that for every n ∈ N and every s ≥ s∗(n), AdvExpmt-Binding

Coms,A,n ≤ 1
2
+ ν(n).

Definition 8.4 (Imbalanced Hiding forQuantum Bit Commitments). Let s∗(·) denote a function.
A non-interactive quantum bit commitment satisfies left-s∗-statistical (respectively, computational)
hiding if for every unbounded (respectively, QPT) adversaryA = {An}n∈N, there exists a negligible
function ν(·) such that for every n ∈ N and every s ≤ s∗(n), AdvExpmt-Hiding

Coms,A,n ≤ 1
2
+ ν(n).

It satisfies right-s∗-statistical (respectively, computational) hiding if for every unbounded (re-
spectively, QPT) adversary A = {An}n∈N, there exists a negligible function ν(·) such that for every
n ∈ N and every s ≥ s∗(n), AdvExpmt-Hiding

Coms,A,n ≤ 1
2
+ ν(n).

40



8.2 Imbalanced EFI imply Imbalanced Commitments
We import the following lemmas from prior work: while these were proven in the uniform setting,
we observe that they also carry over to the imbalanced setting with similar proofs.

Lemma 8.1. (Imported, rephrased) [Yan21, Yan22] For every function s∗(·), an s∗-imbalanced
EFI satisfying Definition 7.1 implies an imbalanced quantum bit commitment satisfying right-s∗-
statistical collapse binding according to Definition 8.3 and left-s∗-computational hiding according to
Definition 8.4.

Proof. (Sketch.) Consider the purification EFI′s of the procedure from Definition 7.1. When
s ≤ s∗(n), the unitary Coms(1

n, b) := EFI′s(1
n, b) satisfies computational hiding according to

Definition 8.3 by inheriting the hiding from Definition 7.1. When s ≥ s∗(n), then by Uhlmann’s
theorem there are no purification registers that can result in EFI′s(1

n, b) and EFI′s(1
n, b) hav-

ing noticeable overlap. This implies that the corresponding Coms is statistical honest bind-
ing [Yan21] for s ≥ s∗(n), which is known [Yan22] to imply collapse binding for the same
parameters.

The lemma below follows from the generic transformation in [HMY23, GJMZ23] (referred to
as a “flavour swap"), which can be applied to any commitment Coms to obtain a commitment
C̃oms that is hiding whenever Coms is binding and binding whenever Coms is hiding.

Lemma 8.2. (Imported, rephrased) [HMY23, GJMZ23] For every function s∗(·), an imbalanced
quantum bit commitment satisfying right-s∗-statistical collapse binding according to Definition 8.3
and left-s∗-computational hiding according to Definition 8.4 implies an imbalanced quantum bit
commitment satisfying right-s∗-statistical hiding according toDefinition 8.4 and left-s∗-computational
collapse binding according to Definition 8.3.

We obtain the following corollary by combining the results in previous sections with the two
lemmas above.

Corollary 8.1. Assume the existence of pure one-way state generators according to Definition 3.1.
Then there exists a function s∗(·) for which there exists

1. An imbalanced quantum bit commitment satisfying right-s∗-statistical collapse binding ac-
cording to Definition 8.3 and left-s∗-computational hiding according to Definition 8.4.

2. An imbalanced quantum bit commitment satisfying left-s∗-computational collapse binding
according to Definition 8.3 and right-s∗-statistical hiding according to Definition 8.4.

Furthermore, there exists an explicit constant c such s∗(·) satisfies that for large enough n ∈ N,
|s∗(n)| ≤ nc.

Proof. This follows immediately from Corollary 7.1, Lemma 8.1 and Lemma 8.2.

41



8.3 Obtaining a Non-Uniform Hiding Commitment
Next, we obtain a commitment that is non-uniformly hiding (i.e., hiding for a given choice of
non-uniform advice s∗) by combining a sequence of imbalanced commitments.

Definition 8.5 (s∗-Non-Uniform Hiding Commitment). Let s∗(·) denote a function. An s∗-non-
uniform hiding commitment is a quantum polynomial time algorithm Coms(b, 1

n) that obtains a
classical parameter-dependent advice string s, and on input b ∈ {0, 1}, outputs a (potentially mixed)
quantum state such that:

1. Non-Uniform Computational Hiding. For every quantum polynomial-sized circuit A =
{An}n∈N, there exists a negligible function ν(·) such that for every n ∈ N, AdvExpmt-QBinding

Coms∗(n),A,n ≤
1
2
+ ν(n).

2. (Always) Computational Binding. There exists a negligible function µ(·) such that for
every quantum polynomial-sized circuit As, all n, s ∈ N,

AdvExpmt-Binding
Coms,A,n ≤ 1

2
+ µ(n)

where AdvExpmt-Binding
Coms,A,n is the probability that b′ = b in Expmt-BindingComs

A,n , defined above.

Theorem 8.1. Assume that there exists a function s∗(·) for which there exists

1. An imbalanced quantum bit commitment satisfying right-s∗-statistical collapse binding ac-
cording to Definition 8.3 and left-s∗-computational hiding according to Definition 8.4.

2. An imbalanced quantum bit commitment satisfying left-s∗-computational collapse binding
according to Definition 8.3 and right-s∗-statistical hiding according to Definition 8.4.

Then there exists an s∗-non-uniform hiding commitment according to Definition 8.5.

Proof. (of Theorem 8.1). Fix s∗ as in the statement of the Theorem.
Let Com1,s,Com2,s denote commitment unitaries for the two quantum bit commitments in

bullets 1 and 2 of the theorem statement.

Construction. Define unitary C̃oms that given advice string s commits to its input (classical)
string twice simultaneously, via Com1,s and Com2,s, as follows:

1. The input register is a p = p(n) qubit register M̃, and there is a p(n)+2ℓ(n) qubit auxiliary
register W̃, divided into sub-registersW1,M2,W2 of ℓ(n), p(n) and ℓ(n) qubits respectively.

2. First apply a CNOT operation from the M̃ register onto the M2 sub-register. (This serves
to copy the input string ontoM2.)

3. Next, apply theCom1,s unitary to registers M̃,W1 to obtain (C1,D1) and theCom2,s unitary
to registersM2,W2 to obtain (C2,D2).

4. The output registers are C = (C1,C2),D = (D1,D2).
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Lemma 8.3. C̃oms satisfies computational binding according to Definition 8.5.

Proof. Suppose, towards a contradiction, that the statement of the claim is false. Then, there
exists a (malicious) committer As and a polynomial q(·) such that in Expmt-BindingC̃omA,n,s,

1. A (arbitrarily) prepares and outputs registers (C̃, D̃) to a challenger.

2. Validity Check. The challenger applies (C̃oms)
† to (C̃, D̃) to obtain (M̃, W̃), then projects

W̃ onto |0⟩p(n)+2ℓ(n), i.e. measures {|0p(n)+2ℓ(n)⟩ ⟨0p(n)+2ℓ(n)| , I − |0p(n)+2ℓ(n)⟩ ⟨0p(n)+2ℓ(n)|}
on W̃. If the measurement rejects, the challenger returns uniform b′, and ends the experi-
ment (this corresponds to the case where decommitment fails to verify).

3. Otherwise, the challenger samples b← {0, 1} and:

(a) If b = 0, the challenger does nothing.

(b) If b = 1, the challenger measures M̃ in the standard basis.

4. Finally, the challenger applies C̃oms to (M̃, W̃) to obtain (C̃, D̃), and returns D̃ to As.

5. Denote the output of As by b′, then it holds that for infinitely many n, there exists s such
that

Pr[b′ = b] ≥ 1

2
+

1

q(n)

Fix suchAs and q(·). Wewill build a reductionB that usesAs to obtain a contradiction as follows.

Reduction Bs:

1. Bs(1n) obtains s∗(n) as non-uniform advice. If s ≥ s∗(n), it sets e = 1, otherwise e = 2. It
initializes a challenger for Come.

2. It obtains registers (C̃, D̃) from As.

3. Validity Check. Bs applies (C̃oms)
† to (C̃, D̃) to obtain (M̃, W̃), then projects W̃ onto

|0⟩p(n)+2ℓ(n), i.e. measures {|0p(n)+2ℓ(n)⟩ ⟨0p(n)+2ℓ(n)| , I− |0p(n)+2ℓ(n)⟩ ⟨0p(n)+2ℓ(n)|} on W̃. If
the measurement rejects, Bs returns uniform b′ ← {0, 1}, and ends the game.

4. Otherwise, Bs applies a CNOT operation from the M̃ register onto theM2 sub-register8. It
then applies theCom1,s unitary to registers M̃,W1 obtainingC1,D1, and theCom2,s unitary
to registersM2,W2 obtaining C2,D2.

5. Bs finally sends Ce,De to its external challenger for Come,s, then obtains De from the ex-
ternal challenger, and returns D̃ = (D1,D2) to As.

6. Bs returns the output bit b′ of As as its own output.

8Recall that W̃ is divided into sub-registersW1,M2,W2 of ℓ(n), p(n) and ℓ(n) qubits respectively
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Note that Bs,n attempts to break Com1,s if s ≥ s∗(n), and tries to break Com2,s otherwise. Then
the statement of the lemma follows by the following claim (Claim 8.1) together with the fact
that B only incurs a polynomial overhead above the size of As.

Claim 8.1. At least one of the following is true.

• Either are infinitely many n ∈ N for which there exists s ≥ s∗(n) such that

AdvExpmt-Binding
Com1,s,B,n ≥ 1

q(n)

• Or there are infinitely many n ∈ N for which there exists s ≤ s∗(n) such that

AdvExpmt-Binding
Com2,s,B,n ≥ 1

q(n)

Proof. In what follows, we will show that A’s state at every step in an interaction with the
challenger of C̃oms when the C̃oms challenger picks bit b, is identical to its state at every step in
an interaction with B when the Come,s challenger picks the same bit b.

Because B mirrors the output of A, this will imply that

AdvExpmt-Binding
Come,s,B,n = AdvExpmt-Binding

C̃oms,A,n
≥ 1

q(n)
.

Fix any n, s ∈ N. The following experiment describes an interaction of the reduction Bs above
and external challenger for Come,s, with adversary As against C̃oms.

Expmt0:

1. Bs obtains registers (C̃, D̃) from As.

2. Validity Check. Bs applies (C̃oms)
† to (C̃, D̃) to obtain (M̃, W̃), then applies measurement

{|02ℓ(n)+p(n)⟩ ⟨02ℓ(n)+p(n)| , I− |02ℓ(n)+p(n)⟩ ⟨02ℓ(n)+p(n)|} on W̃. If the measurement rejects,
Bs returns uniform b′ ← {0, 1}, and ends the game.

Otherwise, Bs applies C̃oms, which entails the following. First, apply a CNOT operation
from the M̃ register onto the M2 sub-register. Next, apply the Com1,s unitary to registers
M̃,W1 obtaining C1,D1, and the Com2,s unitary to registers M2,W2 obtaining C2,D2. Bs
then sends Ce,De to its external challenger.

3. Challenger’s Validity Check. The external challenger obtains (Ce,De). It applies Com
†
e,s

to (Ce,De) to obtain (Me,We), then applies measurement {|0ℓ(n)⟩ ⟨0ℓ(n)| , I−|0ℓ(n)⟩ ⟨0ℓ(n)|}
onWe. If the measurement rejects, it returns uniform b′ ← {0, 1}, and ends the game.

4. Otherwise, the challenger samples b← {0, 1} and:

(a) If b = 0, the challenger does nothing.

(b) If b = 1, the challenger measuresMe in the standard basis.
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5. The challenger applies Come,s to (Me,We) to obtain (Ce,De) and returns De to b.

6. Bs obtains De from the challenger, and returns D̃ = (D1,D2) to As.

7. Bs returns the output bit b′ of As.

Observe that the unitary Come,s applied at the end of Step 2 in the experiment above is im-
mediately reversed by the challenger at the beginning of Step 3. Since Com†e,sCome,s = I for any
unitary Come,s, we can remove both operations from the experiment. At this point, observe that
measurement {|0ℓ(n)⟩ ⟨0ℓ(n)| , I− |0ℓ(n)⟩ ⟨0ℓ(n)|} on registerWe is performed twice in succession,
and sinceMM = M for any measurementM , we can remove one application of the measure-
ment. Finally, also noting that operations on disjoint subsystems commute, it follows that the
above experiment is equivalent to the following simpler experiment.

Expmt1:

1. Bs obtains registers (C̃, D̃) from As.

2. Bs’s Validity Check. Apply (C̃oms)
† to (C̃, D̃) to obtain (M̃, W̃), then apply measurement

{|0ℓ(n)⟩ ⟨0ℓ(n)| , I − |0ℓ(n)⟩ ⟨0ℓ(n)|} on W̃. If the measurement rejects, return uniform b′ ←
{0, 1}, and end the game.

Otherwise, apply a CNOT operation from the M̃ (also denoted M1) register onto the M2

sub-register.

3. Sample b← {0, 1} and:

(a) If b = 0, do nothing.

(b) If b = 1, measureMe in the standard basis.

4. Apply Com1,s to (M1,W1) to obtain (C1,D1), and Com2,s to (M2,W2) obtaining C2,D2.

5. Return D̃ = (D1,D2) to As.

6. Set b′ to the output of As.

As discussed above, Expmt1 performs identical operations as Expmt0, thus we have

PrExpmt1 [b
′ = b] = PrExpmt0 [b

′ = b] (8)

Finally, let Expmt2 be identical to Expmt1 except thatM1 is measured in Step 3 of Expmt2, instead
ofMe. That is,

Expmt2:

1. Bs obtains registers (C̃, D̃) from As.

45



2. Bs’s Validity Check. Apply (C̃oms)
† to (C̃, D̃) to obtain (M̃, W̃), then apply measurement

{|0ℓ(n)⟩ ⟨0ℓ(n)| , I − |0ℓ(n)⟩ ⟨0ℓ(n)|} on W̃. If the measurement rejects, return uniform b′ ←
{0, 1}, and end the game.

Otherwise, apply a CNOT operation from the M̃ (also denoted M1) register onto the M2

sub-register.

3. Sample b← {0, 1} and:

(a) If b = 0, do nothing.

(b) If b = 1, measureM1 in the standard basis.

4. Apply Com1,s to (M1,W1) to obtain (C1,D1) and Com2,s toM2,W2 obtaining C2,D2.

5. Return D̃ = (D1,D2) to As.

6. Set b′ to the output of As.

Note that the CNOT operation (Step 2) on any state∑
i∈[0,2p(n)−1]

(αi |i⟩)M1 ⊗ |0p⟩M2

results in the state ∑
i∈[0,2p(n)−1]

αi |i⟩M1
|i⟩M2

.

This implies that measuring either one of the registers M1 or M2 results in an identical (mixed)
state on the system. This implies that Expmt1 and Expmt2 are identical, and thus

PrExpmt2 [b
′ = b] = PrExpmt1 [b

′ = b] (9)

Next, note that the only difference between Expmt2 and Expmt-BindingC̃oms
A,n occurs only in

the case of b = 1. In this case in Expmt2, a CNOT is first applied from M1 onto M2 and then M1

is measured in the standard basis. Whereas in Expmt-BindingC̃oms
A,n , M1 is first measured in the

standard basis and then a CNOT is applied from M1 onto M2. Since these operations commute,
the experiments are identical. Thus,

PrExpmt2 [b
′ = b] = AdvExpmt-Binding

C̃oms,A,n
(10)

Combining equations (8), (9) and (10) with the fact that AdvExpmt-Binding
C̃oms,A,n

≥ 1
q(n)

gives us that
for Bs defined above,

AdvExpmt-Binding
Come,s,B,n = AdvExpmt-Binding

C̃oms,A,n
≥ 1

q(n)
.

By definition of Bs, this implies that at least one of the following is true.

• Either are infinitely many n ∈ N for which there exists s ≥ s∗(n) such that

AdvExpmt-Binding
Com1,s,B,n = AdvExpmt-Binding

C̃oms,A,n
≥ 1

q(n)
.
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• Or there are infinitely many n ∈ N for which there exists s ≤ s∗(n) such that

AdvExpmt-Binding
Com2,s,B,n = AdvExpmt-Binding

C̃oms,A,n
≥ 1

q(n)
.

which completes the proof of the claim.

This concludes the proof of Lemma 8.3.

The construction given therefore satisfies Definition 8.5, completing the proof of Theorem 8.1.

Lemma 8.4. For non-uniform parameter s∗(n), C̃om satisfies computational hiding according to
Definition 8.5.

Proof. The proof follows by a straightforward hybrid argument. Consider an intermediate uni-
tary Ĉoms which, in place of applying a CNOT from M̃ onto M2 (and thereby committing to
the same message twice), instead initializes M2 to 0, thereby potentially committing to two dif-
ferent messages via the unitaries Com1,s and Com2,s. By computational hiding of Com1,s for

s = s∗(n), there is a negligible function µ(·) such that the state ofAs in Expmt-HidingC̃oms
A,n when

the challenger picks b = 1 is computationally µ(n)-close to its state when Ĉoms is applied in-
stead of C̃oms. Furthermore, by the statistical hiding of Com2 for s = s∗(n), the state of As in
Expmt-HidingC̃oms

A,n when the challenger picks b = 0 is statistically µ′(n)-close to its state when

Ĉoms is applied instead of C̃oms. This implies that for every polynomial-sized quantum circuit
As and every n ∈ N,∣∣∣∣∣ Pr

y←C̃oms∗(n)(1
n,0)

[A(y) = 1]− Pr
y←C̃oms∗(n)(1

n,1)

[A(y) = 1]

∣∣∣∣∣ ≤ µ(n) + µ′(n) = negl(n)

which completes the proof of the lemma.

8.4 Obtaining a (Uniform) Commitment
In the previous section, we obtained a commitment that is binding for every choice of (non-
uniform advice) s, but only hiding when the advice string matches the value s∗(n). We show
that this implies a uniform construction of commitments, as long as |s∗(n)| is not too large.
Formally, we prove the following theorem.

Theorem 8.2. Assume that there exists a function s∗(·) such that (1) there exists a polynomial p(·)
such that for all n ∈ N, |s∗(n)| ≤ (log p(n)), and (2) there exists an s∗-non-uniform hiding com-
mitment according to Definition 8.5. Then there exists a (standard) uniform commitment satisfying
computational collapse binding according to Definition 8.1 and computational hiding according to
Definition 8.2.

Proof. Let t = t(n) = 2|s
∗(n)| ≤ p(n), and let Com1,Com2, . . . ,Comt denote the commitment

unitaries form quantum string commitments, one corresponding to each possible value of s∗(n).
Construction. Define unitary C̃om as follows:
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1. The input is a single bit b, and there is a t(n) · (ℓ(n) + 1) qubit auxiliary register W̃, divided
into sub-registers M1,M2,M3, . . . ,Mt,W1,W2, . . . ,Wt where the Mi registers are initial-
ized to |0⟩ and theWi registers are initialized to |0ℓ(n)⟩.

2. C̃om applies the H gate to each of the registers M1, . . .Mt−1. Next, it applies unitary U
that maps

(m,x1, x2, . . . , xt−1, y) 7→ (m,x1, x2, . . . , xt−1,
⊕
i∈[t−1]

xi ⊕ y ⊕m)

to registers M̃,M1, . . . ,Mt.

3. Next for i ∈ [t], it applies the Comi unitary to registersMi,Wi to obtain (Ci,Di).

4. The output registers are C = (C1, . . . ,Ct),D = (D1, . . . ,Dt).

Lemma 8.5. C̃om satisfies computational hiding according to Definition 8.2.

Proof. Let s∗ = s∗(n) ∈ t[n] be such that Coms∗ satisfies statistical (resp., computational) hiding
according to Definition 8.2.

Further, assume towards a contradiction that the lemma is not true. Then there exists an un-
bounded (resp., QPT) adversary A and a polynomial q(·) such that AdvExpmt-Hiding

C̃om,A,n
(in Definition

8.2) is at least 1
q(n)

. Consider the following intermediate experiment.

Expmt-intermediateA,n:

• A outputs a quantum state on registerM.

• The challenger samples b ← {0, 1}, then swaps the contents of M with |0⟩ if b = 0. It
initializes W̃, divided into sub-registers M1,M2,M3, . . . ,Mt,W1,W2, . . . ,Wt where for all
j ∈ [t], theMj registers are initialized to |0⟩ and theWj registers are initialized to |0ℓ(n)⟩.
It then applies the H gate to each of the registers M1, . . .Mt−1. Next, it applies unitary U
mapping

(m,x1, x2, . . . , xt−1, y) 7→ (m,x1, x2, . . . , xt−1,
⊕

i∈[n−1]

xi ⊕ y ⊕m)

to registersM,M1, . . . ,Mt. Next, it swaps out the value on registerMs∗(n) to |0⟩, and finally
for j ∈ [t], it applies the Comj unitary to registersMj,Wj to obtain (Cj,Dj).

It sends C̃ = (C1, . . . ,Ct) to As.

• Denote the output of A by b′.

Note that the contents of registers C1, . . . ,Ct in this intermediate experiment are indepen-
dent of the bit b (due to swapping out Mj with |0⟩), therefore for any A, Pr[b′ = b] = 1

2
in the

intermediate experiment.
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This implies that there exists a fixing of b ∈ {0, 1} such that A’s output in the interme-
diate experiment Expmt-HidingC̃omA,n with this fixing of b, is at least 1

2q(n)
-far from its output in

Expmt-intermediateA,n. Suppose this holds for b = 1 (the case of b = 0 follows similarly). We
build a (non-uniform) reduction B that interacts with an external challenger to break the pur-
ported hiding of Coms∗ , as follows.

1. Obtain a quantum state on registerM from A.

2. Prepare a t(n) · (ℓ(n) + 1) qubit register W̃, divided into sub-registersM1,M2,M3, . . . ,Mt,
andW1,W2, . . . ,Wt where for all j ∈ [t], theMj registers are initialized to |0⟩ and theWj

registers are initialized to |0ℓ(n)⟩.

3. Apply the H gate to each of the registersM1, . . .Mt−1. Next, apply unitary U that maps

(m,x1, x2, . . . , xt−1, y) 7→ (x1, x2, . . . , xt−1,
⊕
i∈[t−1]

xi ⊕ y ⊕m)

to registersM,M1, . . . ,Mt.

4. Send theMs∗ register to the external challenger, and obtain register Cs∗ .

5. For j ∈ [t] \ s∗, apply the Comj unitary to registersMj,Wj to obtain (Cj,Dj).

6. Send C1, . . .Ct to A and return the output b′ of A.

By construction, the size of B is only polynomially larger than that of A, and∣∣∣Pr[B outputs 1|b = 0]− Pr[B outputs 1|b = 1]
∣∣∣ ≥ 1

2q(n)

This implies that∣∣∣Pr[B(Coms∗(1
n, 0)) = 1]− Pr[B(Coms∗(1

n, 1)) = 1]
∣∣∣ ≥ 1

2q(n)

which is a contradiction to the hiding of Coms∗ , as desired, and thus the lemmamust be true.

Lemma 8.6. C̃om satisfies statistical (resp., computational) collapse binding according to Defini-
tion 8.1 as long as all of Com1, . . . ,Comt satisfy statistical (resp., computational) collapse binding
according to Definition 8.1.

Proof. Suppose, towards a contradiction, that the statement of the theorem is false. Then, there
exists a (malicious) committer A and a polynomial q(·) such that in Expmt-BindingC̃omA,n ,

1. A (arbitrarily) prepares and outputs registers (C̃, D̃) to a challenger.

2. Validity Check. The challenger applies (C̃om)† to (C̃, D̃) to obtain (M̃, W̃), then projects
W̃ onto |0⟩t(n)·(1+ℓ(n)). If the projection rejects, the challenger returns uniform b′, and ends
the experiment (this corresponds to the case where decommitment fails to verify).
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3. Otherwise, the challenger samples b← {0, 1} and:

(a) If b = 0, the challenger does nothing.

(b) If b = 1, the challenger measures M̃ in the standard basis.

4. Finally, the challenger applies C̃om to (M̃, W̃) to obtain (C̃, D̃).

This entails applying the H gate to each of the registersM1, . . .Mt−1. Next, applying uni-
tary U that maps

(m,x1, x2, . . . , xt−1, y) 7→ (m,x1, x2, . . . , xt−1,
⊕
i∈[t−1]

xi ⊕ y ⊕m)

to registers M̃,M1, . . . ,Mt. Finally for i ∈ [t], applying the Comi unitary to registersMi,Wi

to obtain (Ci,Di).

5. The challenger returns D̃ to As.

6. Denote the output of As by b′, then it holds that (for infinitely many n),

Pr[b′ = b] ≥ 1

2
+

1

q(n)

We will now consider a sequence of t(n) hybrids, where Hyb0 is identical to the one outlined
above, and for each j ∈ [t(n)],Hybj is identical toHybj−1, except that theMj register is measured
in the standard basis before applying the Comi unitary at the end of Step 4. We write the descrip-
tion ofHybj for completeness below, with the difference from the binding experiment underlined.

Hybj :

1. A (arbitrarily) prepares and outputs registers (C̃, D̃) to a challenger.

2. Validity Check. The challenger applies (C̃om)† to (C̃, D̃) to obtain (M̃, W̃), then projects
W̃ onto |0⟩t(n)·(1+ℓ(n)). If the projection rejects, the challenger returns uniform b′, and ends
the experiment (this corresponds to the case where decommitment fails to verify).

3. Otherwise, the challenger samples b← {0, 1} and:

(a) If b = 0, the challenger does nothing.

(b) If b = 1, the challenger measures M̃ in the standard basis.

4. The challenger applies the H gate to each of the registers M1, . . .Mt−1. Next, it applies
unitary U that maps

(m,x1, x2, . . . , xt−1, y) 7→ (m,x1, x2, . . . , xt−1,
⊕
i∈[t−1]

xi ⊕ y ⊕m)

to registers M̃,M1, . . . ,Mt. Next, it measures registersM1, . . .Mj in the standard basis.

Finally for i ∈ [t], it applies the Comi unitary to registersMi,Wi to obtain (Ci,Di).
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5. The challenger returns D̃ to A.

6. Denote the output of A by b′.

Note that inHybt,Pr[b
′ = b] = 1

2
for anyA, becausemeasuring all registersM1, . . . ,Mt in the

standard basis implies a measurement of M in the standard basis. Moreover by our assumption
above, in Hyb0, Pr[b

′ = b] ≥ 1
2
+ 1

q(n)
for adversary A and some polynomial q(·). This implies

that for every n, there exists j∗ = j∗(n) ∈ [t(n)] such that∣∣∣Pr[b′ = b|Hybj∗ ]− Pr[b′ = b|Hybj∗−1]
∣∣∣ ≥ 1

q(n)t(n)
(11)

To complete the contradiction, we build a reduction B that breaks statistical (resp., compu-
tational) binding of Comj∗ , by doing the following.

1. Obtain registers (C̃, D̃) from As.

2. Validity Check. B applies (C̃om)† to (C̃, D̃) to obtain (M̃, W̃), then projects W̃ onto
|0⟩t(n)·(1+ℓ(n)). If the projection rejects, it returns uniform b′, and ends the experiment (this
corresponds to the case where decommitment fails to verify).

3. Otherwise, B samples b← {0, 1} and:

(a) If b = 0, it does nothing.

(b) If b = 1, it measures M̃ in the standard basis.

4. B applies the H gate to each of the registers M1, . . .Mt−1. Next, it applies unitary U that
maps

(m,x1, x2, . . . , xt−1, y) 7→ (m,x1, x2, . . . , xt−1,
⊕
i∈[t−1]

xi ⊕ y ⊕m)

to registers M̃,M1, . . . ,Mt. Next, it measures registersM1, . . .Mj∗−1 in the standard basis.

Finally for i ∈ [t], it applies the Comi unitary to registersMi,Wi to obtain (Ci,Di).

5. Bs then sends Cj∗ ,Dj∗ to the binding challenger for Comj∗ , and then obtains Dj∗ from the
challenger.

6. Bs returns D̃ = (D1, . . . ,Dt) to As.

7. Let b′ denote the output of A. Output 1 if b′ = b, otherwise output 0.

Note that when the external challenger for Comj∗ samples its challenge c = 0, the interaction of
B with A corresponds to Hybj∗−1, and otherwise to Hybj∗ . Thus by equation (11), we have that:∣∣∣Pr[B outputs 1|c = 1]− Pr[B outputs 1|c = 0]

∣∣∣ ≥ 1

q(n)t(n)
.

Since the size of B is only polynomially larger than that of A, this contradicts9 the statistical
(resp., computational) binding of Comj∗ , as desired.

9Note that any B satisfying the equation above can be converted (with polynomial overhead) to an adversary
that has advantage at least 1

2q(n)t(n) in the binding game.
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This concludes the proof of Theorem 8.2.

Theorem 8.3. One-way state generators with pure states (Definition 3.1) imply quantum bit com-
mitments satisfying computational collapse binding according to Definition 8.1 and computational
hiding according to Definition 8.2.

Proof. The theorem follows from Corollary 7.1, Theorem 8.1 and Theorem 8.2.

Computationally hiding and computationally collapse binding quantum bit commitments
are known [BCQ23] to imply EFI pairs, which in turn are known to imply secure computation
for all classical and quantum functionalities [BCKM21, GLSV21, AQY22, BCQ23]. We therefore
also have the following corollary.

Corollary 8.2. One-way state generators with pure state outputs imply secure computation for all
quantum functionalities.
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A One-Way Puzzles are Necessary for QCCCCryptography
In this section, we show that a variety of protocols, including encryption, commitments and
digital signatures in the quantum computation classical communication (QCCC) model imply
one-way puzzles.

A.1 Public Key Encryption
Definition A.1 (Public Key Encryption). A public key encryption scheme consists of a set of QPT
algorithms (KeyGen,Enc,Dec) where

• KeyGen(1n) takes the security parameter as input and outputs a public key pk and a secret
key sk.

• Encpk(m) takes a public key and a message as input and outputs a ciphertext c.

• Decsk(c) takes a secret key and a ciphertext as input and outputs a message.

It has the following properties.

• Correctness. For allm ∈ {0, 1}n,

Pr
(pk,sk)←KeyGen(1n)

[Decsk(Encpk(m)) = m] ≥ 1− negl(n)

• Hiding. For all QPT adversaries A10,

Pr
(pk,sk)←KeyGen(1n)

m←{0,1}n

[A(pk, (Encpk(m)) = m] ≤ negl(n)

Theorem A.1. Public key encryption in the QCCC model implies one-way puzzles.

Proof. Let (KeyGen,Enc,Dec) be a PKE scheme. We define algorithms (Samp,Ver) as follows:

• Samp(1n): Sample (pk, sk)← KeyGen(1n) and return (sk, pk).

• Ver(k, s): Samplem← {0, 1}n and accept if and only ifm = Deck(Encs(m))

Claim A.1. (Samp,Ver) satisfies Definition 3.2.
10We note that this is a weaker property than CPA-security, we use this because it will give us a stronger result.
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Proof. By the correctness of the PKE scheme, with overwhelming probability over the sampling
of keys (pk, sk), for any message m, Decsk(Encpk(m)) = m. Correctness of the one-way puzzle
follows.

Suppose there exists an adversary that breaks the security of the one-way puzzle. That is
there exists a non-negligible function p(·) such that for all n ∈ N

Pr
(k,s)←Samp(1n)

[Ver(A(s), s) = ⊤] ≥ p(n)

Rewriting using the definitions of Samp and Ver we get

Pr
(pk,sk)←KeyGen(1n)

m←{0,1}n

[sk∗ ← A(pk) ∧m = Decsk∗(Encpk(m))]

Let B be an algorithm that takes (pk, z) as input, runs A(pk) to get sk∗ and outputs Decsk∗(z).
Then

Pr
(pk,sk)←KeyGen(1n)

m←{0,1}n

[B(pk, (Encpk(m)) = m] ≥ p(n)

which contradicts the hiding of the PKE scheme.

The theorem follows trivially from the claim.

A.2 Digital Signatures
Definition A.2 (Signature Scheme). A digital signature scheme consists of a set of QPT algorithms
(KeyGen, S,V) where

• KeyGen(1n) takes the security parameter as input and outputs a signing key sk and a verifi-
cation key vk.

• S(sk,m) takes a signing key and a message as input and outputs a signature σ.

• V(vk, σ,m) takes a verification key, a signature, and a message as input and outputs a bit b.

A signature scheme has the following properties.

• Correctness. For allm ∈ {0, 1}n,

Pr
(sk,vk)←KeyGen(1n)

[V(vk, S(sk,m),m) = 1] ≥ 1− negl(n)

• Unforgeability. For all QPT adversaries A,

Pr
(sk,vk)←KeyGen(1n)

[(σ,m)← A(vk) ∧ V(vk, σ,m) = 1] ≤ negl(n)

Theorem A.2. QCCC signature schemes imply one-way puzzles.

Proof. Let (KeyGen, S,V) be a PKE scheme. We define the algorithms Samp,Ver as follows:
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• Samp(1n): Sample (sk, vk)← KeyGen(1n) and return (vk, sk).

• Ver(k, s): Samplem← {0, 1}n and accept if and only if V(vk, (S(sk,m),m) = 1

Claim A.2. (Samp,Ver) satisfies Definition 3.2.

Proof. By the correctness of the signature scheme, with overwhelming probability over the sam-
pling of keys (sk, vk), for any messagem, V(vk, (S(sk,m),m) = 1. Correctness of the one-way
puzzle follows.

Suppose there exists an adversary that breaks the security of the one-way puzzle. That is
there exists a non-negligible function p(·) such that for all n ∈ N

Pr
(k,s)←Samp(1n)

[Ver(A(s), s) = ⊤] ≥ p(n)

Rewriting using the definitions of Samp and Ver we get

Pr
(sk,vk)←KeyGen(1n)

m←{0,1}n

[sk∗ ← A(vk) ∧ V(vk, (S(sk∗,m),m) = 1]

Let B be an algorithm that takes vk as input, runs A(vk) to get sk∗, samples m ← {0, 1}n and
outputs S(sk∗,m),m. Then

Pr
(sk,vk)←KeyGen(1n)

[(σ,m)← B(vk) ∧ V(vk, σ,m) = 1] ≥ p(n)

which contradicts the unforgeability of the signature scheme.

The theorem follows trivially from the claim.

A.3 Bit Commitments
The definition below differs from the one in Section 8.1 since unlike the commitment scheme we
build from pure OWSGs, general QCCC commitments may be interactive.

Definition A.3 (Bit Commitment Scheme). A (QCCC) bit commitment scheme is an efficient two-
party protocol Com = ⟨C,R⟩ between a committer C and a receiver R consisting of a commit stage
and an opening stage.

• Commit Stage. Both parties receive the security parameter 1n and the committer C receives
a private input b ∈ {0, 1}. It interacts with the receiver R to produce a transcript z. At the end
of the stage each party outputs a (private) quantum state, denoted by qC and qR respectively.

• Opening Stage. Both parties receive the transcript z produced in the first stage and their
respective output states. They then interact and at the end of the stage the receiver outputs a
bit or the reject symbol ⊥.

A bit-commitment scheme satisfies correctness if there exists a negligible function µ(·) such that for
all n ∈ N and all b ∈ {0, 1}, when C and R are honest, R outputs b at the end of the opening stage
with probability at least 1− µ(n).
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Definition A.4 (Computational Hiding). A bit-commitment scheme is computationally hiding if
there exists a negligible functionµ(·) such that for an honest committerC that receives a bit b as input,
no QPT adversarial receiver R can distinguish interactions where C receives b = 0 and interactions
where C receives b = 1 with advantage greater than µ(n).

Below, we define a weak notion of binding for commitments, that we label computational
weak honest binding. This is implied by other standard notions such as honest binding [Yan22].

Definition A.5 (Computational Weak Honest Binding). A quantum bit commitment scheme is
weakly honest binding if there exists a negligible function µ(·) such that for b ∈ {0, 1}, no QPT
adversary A wins the following game with probability greater than µ(n).

• Run the commit stage of the commitment with an honest committer C that receives input b
and an honest receiver R. Let z be the transcript and let qR be the receiver state at the end of
the commit stage.

• Run the opening stage between A and R, where A receives z (but not the state output by C)
and R receives qR. The adversary wins if R outputs 1− b.

We say that a bit-commitment scheme has non-interactive opening if the opening stage con-
sists of a single message sent from the committer to the receiver.

Theorem A.3. QCCC Bit commitments that are computationally hiding, computationally weak
honest binding, and have non-interactive openings imply one-way puzzles.

Proof. Let Com = (C,R) be a computationally hiding and computationally weak honest binding
bit-commitment scheme. We define the algorithms Samp,Ver as follows:

• Samp(1n):

1. Run the commit stage with an honest committerC that receives input 0 and an honest
receiver R. Let z be the transcript and let qC and qR be the committer and receiver
outputs respectively.

2. Run the opening stage with an honest committer C that receives input (z, qC) and an
honest receiver R that receives input (z, qR). Let the opening message be d.

3. Output (d, z)

• Ver(k, s):

1. Consider an honest execution of the commit stage between C with input 0 and R.
Sample a random output state q∗R for R conditioned on the transcript being s. This
may be achieved in exponential time by rejection sampling. Output ⊥ if no such q∗R
exists.

2. Return ⊤ if the output of R on input q∗R and message k is 0. Return ⊥ otherwise.

Claim A.3. (Samp,Ver) satisfies Definition 3.2.
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Proof. By construction, for a transcript z generated by an honest execution of commitment to 0,
the state q∗R generated by Ver(d, z) for arbitrary d is identically distributed to the state qR output
by the receiver during the honest execution. Ver(d, z) accepts whenever an honest receiver ac-
cepts message d as an opening to 0 given transcript z and state q∗R. Therefore, for any message d,
the probability that Ver(d, z) accepts is the probability that an honest receiver accepts message
d as an opening to 0 given transcript z and state qR.
Correctness. Samp generates themessage d as an honest opening for z, an honest commitment
to 0. Therefore by the correctness of the commitment scheme the probability that Ver(d, z)
accepts is atleast 1− negl(n). Therefore

Pr
(k,s)←Samp(1n)

[Ver(k, s) = ⊤] = 1− negl(n)

which proves correctness of the oneway puzzle.
Security. We prove by contradiction. Suppose there exists a QPT adversaryA that breaks one-
way puzzle security. That is there exists a non-negligible function ϵ(·) such that for all n ∈ N:

Pr
(k,s)←Samp(1n)

[Ver(A(s), s) = ⊤] ≥ ϵ(n)

Since s is sampled as the transcript of an honest commitment to zero, this means that an honest
receiver accepts the output of A(s) as an opening to zero given transcript s and the receiver
output from the commitment execution. This may be written as

Pr [0← R(z, qR,A(z)) | z, qC, qR ← ⟨C(0, 1n),R(1n)⟩] ≥ ϵ(n)

By the computational weak honest binding property of the commitment, the probability that
A(z) is accepted as an opening to zero when the value committed to is one must be negligible.
That is,

Pr [0← R(z, qR,A(z)) | z, qC, qR ← ⟨C(1, 1n),R(1n)⟩] = negl(n)

We now build an algorithm B that breaks the hiding of the commitment scheme. B interacts
with an honest committer C as follows:

• During the commit stage, simulate an honest receiver in interactions with C to obtain a
transcript z and a receiver state qR.

• Run A on input z to obtain opening transcript d∗.

• Return 1 if R(z, qR, d∗) outputs 0. Else output 0.

By the two previous inequalities, the probability that B outputs 1 when the commitment is to 0
is atleast ϵ(n). Likewise, the probability that B outputs 1when the commitment is to 1 is atmost
negl(n). B therefore distinguishes both interactions with advantage atleast ϵ(n)−negl(n), which
contradicts the hiding of the commitment scheme.

The theorem follows trivially from the previous claim.
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A.4 Symmetric Encryption
Definition A.6 (Symmetric Encryption). A symmetric encryption scheme consists of a set of QPT
algorithms (KeyGen,Enc,Dec) where

• KeyGen(1n) takes the security parameter as input and outputs a secret key k.

• Encsk(m) takes a key and a message as input and outputs a ciphertext c.

• Deck(c) takes a key and a ciphertext as input and outputs a message.

A symmetric encryption scheme has the following properties.

• Correctness. For allm ∈ {0, 1}n,

Pr
k←KeyGen(1n)

[Deck(Enck(m)) = m] ≥ 1− negl(n)

• Hiding. All QPT adversaries A win the following game with probability less than 1/2 +
negl(n).

– m0,m1 ← A(1n)
– b← {0, 1}
– k ← KeyGen(1n)

– b′ ← A(Enck(mb))

A wins the game if b′ = b.

We additionally assume that the size of the keyspace is a negligible fraction of the message space,
i.e. |Supp(KeyGen(1

n))|
2n

= negl(n). This is without loss of generality for symmetric encryption schemes
that support multi-message encryption.

Theorem A.4. Symmetric encryption in the QCCC model implies one-way puzzles.

Proof. Let (KeyGen,Enc,Dec) be a symmetric encryption scheme. We define the algorithms
Samp,Ver as follows:

• Samp(1n): Sample k ← KeyGen(1n) andm← {0, 1}n and return k, (m,Enck(m)).

• Ver(k, s): Parse s as (m, c) and accept ifm = Deck(c). Reject otherwise.

Claim A.4. (Samp,Ver) satisfies Definition 3.2.

Proof. By the correctness of the symmetric encryption scheme, with overwhelming probability
over the sampling of key k, for anymessagem,Deck(Enck(m)) = m. Correctness of the one-way
puzzle follows.

Suppose there exists an adversary that breaks the security of the one-way puzzle. That is
there exists a non-negligible function ϵ(·) such that for all n ∈ N

Pr
(k,s)←Samp(1n)

[Ver(A(s), s) = ⊤] ≥ ϵ(n)
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Rewriting using the definitions of Samp and Ver we get

Pr
k←KeyGen(1n)
m←{0,1}n

[k∗ ← A(m,Enck(m)) ∧m = Deck∗(Enck(m))] ≥ p(n)

We now build an algorithm B that breaks the hiding of the encryption scheme. B interacts with
an external CPA challenger as follows.

1. Samplem0,m1 ← {0, 1}n.

2. Sendm0,m1 to the external challenger.

3. Receive c = Enck(mb) for some freshly sampled k and uniform bit b.

4. Compute k∗ ← A(m0, c)

5. Ifm0 = Deck∗(c) then return 0, else return a uniform bit.

We calculate the probability that B guess the uniform bit b.

Pr[B returns b] = Pr[b = 0 ∧m0 = Deck∗(c)] +
1

2
· Pr[b = 0 ∧m0 ̸= Deck∗(c)]

+
1

2
· Pr[b = 1 ∧m0 ̸= Deck∗(c)]

=
1

2
· Pr[m0 = Deck∗(Enck(m0))] +

1

4
· Pr[m0 ̸= Deck∗(Enck(m0))]

+
1

4
· Pr[m0 ̸= Deck∗(Enck(m1))]

=
1

4
+

1

4
· Pr[m0 = Deck∗(Enck(m0))] +

1

4
· Pr[m0 ̸= Deck∗(Enck(m1))]

≥1

4
+
ϵ(n)

4
+

1

4
· Pr[m0 ̸= Deck∗(Enck(m1))]

For arbitrary z, define Mz as follows:

Mz := {m ∈ {0, 1}n : ∃k∗ ∈ Supp(KeyGen(1n)) s.t Deck∗(z) = m}

Since Dec is deterministic, for all z

|Mz| ≤ |Supp(KeyGen(1n))|

Then

Pr
m0,m1←{0,1}n
k←KeyGen(1n)

[m0 ∈MEnck(m1)] ≤
|MEnck(m1)|

2n
≤ |Supp(KeyGen(1

n))|
2n

= negl(n)

which by definition ofM means that

Pr
m0,m1←{0,1}n
k←KeyGen(1n)

[∃k∗ s.tm0 = Deck∗(Enck(m1))] = negl(n)
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which means that in the hiding game

Pr[m0 ̸= Deck∗(Enck(m1))] = 1− negl(n)

Substituting this back in the expression for B guessing b

Pr[B returns b] ≥ 1

4
+
ϵ(n)

4
+

1

4
· Pr[m0 ̸= Deck∗(Enck(m1))]

≥ 1

4
+
ϵ(n)

4
+

1

4
· (1− negl(n))

≥ 1

2
+
ϵ(n)

4
− negl(n)

which contradicts the hiding of the symmetric encryption scheme.

The theorem follows immediately from the claim.

B Proving Lemma 5.2
In this section, we provide a complete proof of Lemma 5.2. First, we list some preliminary theo-
rems/claims that will be useful in proving the lemma.

B.1 Preliminary Claims
The following well-known theorem can be derived as a simple consequence of the leftover hash
lemma.

Theorem B.1 (Inner Product is a Good Extractor). Let X be a random variable distributed over
{0, 1}n where H∞(X) ≥ k, for some k > 0. Then

SD
(
(Un, ⟨X,Un⟩), (Un, U1)

)
≤ 2(1−k)/2

Proof. The hash function that takes a uniform seed h← {0, 1}n+1 and x ∈ {0, 1}n and outputs
⟨x, y⟩ ⊕ z is known to be universal, where y indicates the first n bits of h and z is the last bit of
h. Then by Theorem 3.1

SD
(
(Un, U1, ⟨X,Un⟩ ⊕ U1), (Un, U2)

)
≤ ϵ

for ϵ ≤ 2(1−k)/2. We now consider the distribution obtained by replacing the last bit with the
XOR of the last two bits in both distributions. Since performing the same operation on two
distributions can only reduce the statistical distance,

SD
(
(Un, U1, ⟨X,Un⟩), (Un, U2)

)
≤ ϵ

which implies that SD
(
(Un, ⟨X,Un⟩), (Un, U1)

)
≤ ϵ, as desired.
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Wewill also use the following claim that relates the bias in an arbitrary single-bit distribution
to its Shannon entropy.

Claim B.1. Let X be an arbitrary d-biased distribution on a single bit, i.e.,

Pr[X = 1] =
1 + d

2
and Pr[X = 0] =

1− d
2

.

Then,

H(X) ≤ 1− d2

2

Additionally, whenever d ≤ 1/2, we have

H(X) ≥ 1− d2

Proof. Note that

H(X) =

(
1 + d

2

)
· log

(
2

1 + d

)
+

(
1− d
2

)
· log

(
2

1− d

)
= 1− (1/2) · [(1 + d) log(1 + d) + (1− d) log(1− d)]

Rearranging

1− H(X) = (1/2) ·
[
log(1− d2) + d · (log(1 + d)− log(1− d))

]
Since log y = ln y/ ln 2, we can rewrite as

1− H(X) = (1/2 ln 2) ·
[
ln(1− d2) + d · (ln(1 + d)− ln(1− d))

]
By the Taylor series expansion, for y > −1

ln(1 + y) = y − y2/2 + y3/3− y4/4 + . . .

Noting that 0 < d < 1 implies that d,−d and −d2 are all greater than −1, we can apply this
expansion to the ln terms in the previous equation. This gives

1− H(X) = (1/2 ln 2) ·
[
(−d2 − d4/2− d6/3− d8/4 . . .)

+ d ·
(
(d− d2/2 + d3/3− d4/4 . . .)− (−d− d2/2− d3/3− d4/4 . . .)

)]
= (1/2 ln 2) ·

[
(−d2 − d4/2− d6/3− d8/4 . . .) + d · (2d+ 2d3/3 + 2d5/5 . . .)

]
= (1/2 ln 2) ·

[
(d2 + d4/6 + d6/15 + . . .+ d2n/(n · (2n− 1)) + . . .)

]
We may pull out the common factor d2 to obtain

1− H(X) =
(
d2/2 ln 2

)
·
[
(1 + d2/6 + d4/15 + . . .+ d2n−2/(n · (2n− 1)) + . . .)

]
(12)
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which implies

1− H(X) ≥
(
d2/2 ln 2

)
or equivalently,

H(X) ≤ 1− d2

2 ln 2

≤ 1− d2

2

Additionally, equation (12) implies

1− H(X) ≤
(
d2/2 ln 2

)
·
[
(1 + d2 + d4 + . . .+ d2n + . . .)

]
=

d2

2 ln 2 · (1− d2)

If d ≤ 1/2, then

1− H(X) ≤ d2

2 ln 2 · (1− 1
4
)

=
2d2

3 ln 2

which implies

H(X) ≥ 1− 2d2

3 ln 2
≥ 1− d2

which concludes the proof.

B.2 Proof of the Lemma
In this section, we proceed to prove the main lemma.

Lemma 5.2 Restated. Let X = {Xn}n∈N be an ensemble of distributions over {0, 1}n s.t. for
sufficiently large n ∈ N, there exists x∗n ∈ {0, 1}n satisfying:

1. Prx←Xn [x = x∗n] ≥ 1/6n

2. ∀x′ ̸= x∗n, Prx←Xn [x = x′] ≤ 2/n600

Let Rn be uniformly distributed on {0, 1}n. Define α0,n and α1,n as follows.

α0,n(x, r) := ⟨x, r⟩

α1,n(x, r) :=

{
U1 if x = x∗n
⟨x, r⟩ otherwise
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For b ∈ {0, 1}, define distribution Ab,n := Rn, αb,n(X,R). Then for sufficiently large n ∈ N,

H(A1,n)− H(A0,n) ≥ 1/100n2

To prove this lemma, we will first define random variables that indicate biases in the two distri-
butions. Fix any sufficiently large n, and any r ∈ {0, 1}n, b ∈ {0, 1}. Define

Bb
r,n := | Pr

x←Xn

[αb,n(x, r) = 1]− Pr
x←Xn

[αb,n(x, r) = 0]|

B∗r,n := | Pr
x←Xn

[⟨x, r⟩ = 1|x ̸= x∗n]− Pr
x←Xn

[⟨x, r⟩ = 0|x ̸= x∗n]|

Intuitively, the variable Bb
r,n represents the bias of αb,n(Xn, r) away from uniform. B∗r,n repre-

sents the bias conditioned on Xn ̸= x∗n (which is identical for both distributions). Then,

B0
r,n =

∣∣∣∣PrXn

[x∗n] + Pr
x←Xn

[x ̸= x∗n]

(
Pr

x←Xn

[⟨x, r⟩ = ⟨x∗n, r⟩|x ̸= x∗n]− Pr
x←Xn

[⟨x, r⟩ ≠ ⟨x∗n, r⟩|x ̸= x∗n]

)∣∣∣∣
≥ Pr

Xn

[x∗n]− Pr
x←Xn

[x ̸= x∗n]

∣∣∣∣( Pr
x←Xn

[⟨x, r⟩ = ⟨x∗n, r⟩|x ̸= x∗n]− Pr
x←Xn

[⟨x, r⟩ ≠ ⟨x∗n, r⟩|x ̸= x∗n]

)∣∣∣∣
≥ Pr

Xn

[x∗n]− Pr
x←Xn

[x ̸= x∗n] ·B∗r,n (13)

where the second inequality follows due to a triangle inequality. Furthermore,

B1
r,n =

∣∣∣∣ Pr
x←Xn

[x ̸= x∗n]

(
Pr

x←Xn

[⟨x, r⟩ = ⟨x∗n, r⟩|x ̸= x∗n]− Pr
x←Xn

[⟨x, r⟩ ≠ ⟨x∗n, r⟩|x ̸= x∗n]

)∣∣∣∣
= Pr

x←Xn

[x ̸= x∗n] ·B∗r,n (14)

The proof of the lemma follows immediately from the next two claims, which analyse the
distribution X in different ways depending on whether or not it is heavily biased towards x∗n.

Claim B.2. Consider any n ∈ N for which Xn is heavily biased towards x∗n, that is,

Prx←Xn [x = x∗n] > 1− 1/n.

Then, if n ≥ 8, it holds that for all r ∈ {0, 1}n,

H(α1(X, r))− H(α0(X, r)) ≥ 1/100n2.

Proof. Since B∗r,n ≤ 1 for every n, r ∈ N, equations (13) and (14) imply

B0
r,n ≥ Pr

Xn

[x∗n]− Pr
x←Xn

[x ̸= x∗n] ·B∗r,n ≥ 1− 2/n

and
B1
r,n = Pr

x←Xn

[x ̸= x∗n] ·B∗r,n ≤ 1/n.

Let dn := (1−B0
r,n)/2. Then, because B

0
r,n ≥ 1− 2/n, it holds that dn ≤ 1/n. This implies

H(α0(X, r)) = d log(1/d) + (1− d) log(1/1− d)
≤ d log(1/d) + log(1/1− d)
= log(n)/n+ log(n/n− 1)

= log(n)/n+ log(n)− log(n− 1)
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which for sufficiently large n is a decreasing function of n. Thus for all n ≥ 8,

H(α0(X, r)) ≤ log(8)/8 + log(8)− log(7) < 3/8 + 3− 2.8 < 0.6

Since the bias B1
r,n ≤ 1/n ≤ 1/2 for n ≥ 2, by Claim B.1, for n ≥ 2,

H(α1(X, r)) ≥ 1− 1/n2

Thus for n ≥ 8, all r ∈ {0, 1}n,

H(α1(X, r))− H(α0(X, r)) ≥ 1/100n2

as desired.

Claim B.3. Consider any n ∈ N for which

Prx←Xn [x = x∗n] ≤ 1− 1/n.

Then, if n is large enough, it holds that for all r ∈ {0, 1}n,

H(A1,n)− H(A0,n) ≥ 1/100n2.

Proof. The premise of the claim implies

Prx←Xn [x ̸= x∗n] ≥ 1/n.

Let X ′n denote the distribution (Xn|Xn ̸= x∗n). For all x
′ ∈ Supp(X ′n),

Prx←X′
n
[x = x′] =

Prx←Xn [x = x′]

Prx←Xn [x ̸= x∗n]

≤ n · Pr
x←Xn

[x = x′]

≤ 2n−599

which implies that for all x′ ∈ Supp(X ′n),

HX′
n
(x′) ≥ 599 log n− log 2 ≥ 598 log n (for n ≥ 2)

which implies that H∞(X ′n) ≥ 598 log n. Then, Theorem B.1 applied to X ′n implies that:

SD
(
(Rn, ⟨X ′n, Rn⟩), (Rn, U1)

)
≤
√
2n−598 < n−200

The statistical distance may be rewritten as

SD
(
(Rn, ⟨X ′n, Rn⟩), (Rn, U1)

)
=
∑
r

1

2
· Pr
Rn

[r] ·
∣∣∣∣ Pr
x←X′

n

[⟨x, r⟩ = 1]− 1/2

∣∣∣∣ ≤ n−200

Since Prx←X′
n
[⟨x, r⟩ = 1] = 1− Prx←X′

n
[⟨x, r⟩ = 0], we can rewrite the above equation as∑

r

1

4
· Pr
Rn

[r] ·
∣∣∣∣ Pr
x←X′

n

[⟨x, r⟩ = 1]− Pr
x←X′

n

[⟨x, r⟩ = 0]

∣∣∣∣ ≤ n−200
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Substituting B∗r,n =
∣∣Prx←X′

n
[⟨x, r⟩ = 1]− Prx←X′

n
[⟨x, r⟩ = 0]

∣∣, we obtain∑
r

1

4
· Pr
Rn

[r] ·B∗r,n ≤ n−200

By a Markov argument on r,
Pr

r←Rn

[B∗r,n ≥ n−100] ≤ n−100

Let Bn := {r|B∗r,n ≤ n−100}. Therefore, Prr←Rn [r /∈ Bn] ≤ n−100. Moreover, equations (13) and
(14) imply that for all r ∈ B,

B0
r,n ≥

(
Pr
Xn

[x∗n]− Pr
x←Xn

[x ̸= x∗n] ·B∗r,n
)
≥ 1/6n− n−100 ≥ 1/7n

and
B1
r,n = Pr

x←Xn

[x ̸= x∗n] ·B∗r,n ≤ n−100

Finally, by applying the chain rule,

H(A1,n)− H(A0,n) = H(α1,n(Xn, Rn), Rn)− H(α0,n(Xn, Rn), Rn)

= H(α1,n(Xn, Rn)|Rn) + H(Rn)− H(α0,n(Xn, Rn)|Rn)− H(Rn)

= H(α1,n(Xn, Rn)|Rn)− H(α0,n(Xn, Rn)|Rn)

=
∑
r

Pr
Rn

[r] · (H(α1,n(Xn, r)− H(α0,n(Xn, r))

=
∑
r∈Bn

Pr
Rn

[r] · (H(α1,n(Xn, r)− H(α0,n(Xn, r))

+
∑
r/∈Bn

Pr
Rn

[r] · (H(α1,n(Xn, r)− H(α0,n(Xn, r))

≥
∑
r∈Bn

Pr
Rn

[r] · (H(α1,n(Xn, r)− H(α0,n(Xn, r))−
∑
r/∈Bn

Pr
Rn

[r]

≥
∑
r∈Bn

Pr
Rn

[r] · (H(α1,n(Xn, r)− H(α0,n(Xn, r))− Pr
r←Rn

[r /∈ Bn]

Applying Claim B.1 to the distributions α0,n(Xn, r) and α1,n(Xn, r) with biases B0
r,n and B1

r,n

respectively, and noting that B1
r,n <

1
2
for n ≥ 2,

H(A1)− H(A0) ≥
∑
r∈B

Pr
R
[r] ·

(
(B0

r )
2

2
−
(
B1
r

)2)− Pr
r←R

[r /∈ B]

≥
∑
r∈B

Pr
R
[r] ·

(
1

98n2
− 1

n100

)
− Pr

r←R
[r /∈ B]

≥ Pr
r←R

[r ∈ B] ·
(

1

99n2

)
− Pr

r←R
[r /∈ B]

≥ (1− 1/n100) ·
(

1

99n2

)
− (1/n100)

≥ 1/100n2 (for large enough n)

This completes the proof of the claim.
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