
Et tu, Brute? Side-Channel Assisted Chosen
Ciphertext Attacks using Valid Ciphertexts

A Case Study on HQC KEM

Thales Paiva∗1, Prasanna Ravi2, Dirmanto Jap2 and Shivam Bhasin2

1 Fundep and CASNAV, Brazil
2 Temasek Laboratories, Nanyang Technological University, Singapore

thalespaiva@gmail.com prasanna.ravi@ntu.edu.sg djap@ntu.edu.sg
sbhasin@ntu.edu.sg

Abstract. HQC is a code-based key encapsulation mechanism (KEM) that was
selected to move to the fourth round of the NIST post-quantum standardization
process. While this scheme was previously targeted by side-channel assisted chosen-
ciphertext attacks for key recovery, we notice that all of these attacks use malformed
ciphertexts, which can be easily detected since they cause a decapsulation failure. In
this case, designers may chose as a countermeasure to refresh the key whenever a
failure occurs, making these previous attacks ineffective. In this work, we present
the first side-channel assisted chosen-ciphertext attacks using valid ciphertexts which
can be carried out in a stealthy manner for key recovery. Our attacks target side-
channel leakage from two different operations within the Reed-Muller decoder used
for decryption, and can recover the secret key with 100% success rate, even in the
presence of errors in side-channel information. All our experiments are performed on
the open-source implementation of HQC KEM taken from the pqm4 library, with our
attacks validated using both the power and EM side-channel. We also demonstrate
novel key recovery attacks which also work on shuffled implementations, and discuss
applicability of our attack to masking countermeasures. To the best of our knowledge,
we are not aware of a side-channel protected design for HQC KEM, and thus we
believe our work stresses the need towards more research on secure and efficient
masking and hiding countermeasures for HQC KEM.
Keywords: Code-based cryptography · Electromagnetic Side-Channel Attack · HQC
· Key Encpasulation Mechanism · Chosen Ciphertext Attack

1 Introduction
In 2022, the NIST standardization process for post-quantum cryptography has finished
its third round [AAC+22]. In this round, one lattice-based key encapsulation mechanism
(KEM) and 3 digital signature schemes were selected for standardization, while three
code-based KEMs were selected to advance to the fourth round. While implementation
performance and theoretical security served as the main criteria in the initial rounds,
resistance against side-channel attacks (SCA) and fault injection attacks (FIA) emerged
as an important criterion in the final round, as also clearly stated by NIST at several
instances [AH21,RR21]. Of the three code-based schemes at least one is likely to be chosen
by NIST for standardization. This makes it important to study their resistance against
SCA.

∗Part of this work was done while the author was a PhD student at the University of São Paulo.

mailto:thalespaiva@gmail.com
mailto:prasanna.ravi@ntu.edu.sg
mailto:djap@ntu.edu.sg
mailto:sbhasin@ntu.edu.sg

2 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

In this work, we focus on HQC [MAB+21], which is a code-based KEM whose security
is based on the syndrome decoding problem for quasi-cyclic codes. HQC can be seen as an
intermediate scheme between the other two code-based KEMs currently being considered by
NIST, namely, Classic McEliece [BCL+19] and BIKE [ABB+21]. Its quasi-cyclic structure
makes it more efficient than Classic McEliece, but it does not rely on a secret sparse
structure as BIKE, making it a slightly more conservative choice.

In its first revision, HQC was subject to timing attacks [PT20, WTBBG19], which
mainly exploited leakage from non-constant implementation of the decoding process for
the error correction codes used for decryption. After these timing attacks were proposed,
the HQC team updated its implementation to use constant-time decoders, but these
were targeted side-channel attacks using electromagnetic emanations (EM) and power
consumption [SRSWZ21,SHR+22,GLG22]. These attacks can be commonly referred to as
side-channel assisted chosen-ciphertext attacks. One of the main characteristics of these
attacks is that they rely on querying the decapsulation device with malformed ciphertexts,
and utilizing leakage from targeted operations in the decapsulation procedure for key
recovery. One of the main downsides of these attacks is that the malformed ciphertexts
used for the attack, can be detected with a very high probability. Such chosen-ciphertext
attacks using malformed ciphertexts have also been used to target other PQC schemes as
well [RR21]. This makes it natural for a designer to implement a simple protection: refresh
the secret key every time he/she observes a decapsulation failure, since decapsulation
failures for valid ciphertexts occur negligible probability.

This raises a natural question on whether "it is possible to perform chosen-ciphertext
attacks on HQC with valid ciphertexts?". This represents a more stealthy approach
towards chosen-ciphertext attacks, as valid ciphertexts cannot be detected as malicious
by the decapsulation procedure, as they do not trigger decapsulation failure. In this
work, we answer this question positively by demonstrating the first side-channel assisted
chosen-ciphertext attack on HQC KEM with valid ciphertexts.

Our Contribution

The contribution of this work is manifold.

1. Our chosen-ciphertext attacks rely on leakage from two types of operations in the
Reed-Muller decoder - ExpandAndSum and FindPeaks, which have not been
targeted any previous side-channel attacks on HQC KEM. We show that it is possible
to recover significant information about the decrypted codeword using leakage from
these operations for key recovery.

2. We propose novel key recovery attacks, capable of exploiting leakage from the
aforementioned operations to recover the key with 100% success rate. Remarkably,
we show that our key recovery attacks are robust to noise in the side-channel
measurements, and that full key recovery is possible even with errors in the recovered
side-channel information.

3. We perform experimental validation of our attacks on the open-source implementation
of HQC KEM taken from the pqm4 library, with our attacks validated using both
the power and EM side-channel.

4. We also demonstrate novel key recovery attacks which work on shuffled implementa-
tions of the ExpandAndSum and FindPeaks operation, thereby demonstrating
that shuffling increases the attacker’s complexity for key recovery, but does not
concretely prevent the attack. Similarly, we also discuss the applicability of our
attack to masking countermeasures.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 3

5. To the best of our knowledge, we are not aware of a side-channel protected design for
HQC KEM, and thus we believe our work stresses the need towards more research
on secure and efficient masking and hiding countermeasures for HQC KEM.

2 Background
2.1 Notation
Vectors and matrices are denoted by bold lowercase and uppercase letters, respectively,
such as a and A. We use zero-based indexing, and if a is a vector of length n, then
a[i] denotes its i-th entry, for i = 0, . . . , n− 1. We sometimes abuse the notation a[i] to
represent the (i mod n)-th entry of a, for i ∈ Z. The cyclic rotation of a vector a by i
positions to the right is denoted by a≫ i. In our analysis, it will be useful to talk about
contiguous parts of cyclic a vector, which are called slices. A k-bit slice of a starting at
position i is denoted as slicek

i (a) = [a[i], . . . , a[i + k − 1]]. We let slices wrap around the
end of a vector, therefore slice3

n−1 (a) = [a[n− 1], a[0], a[1]]. This, we believe, allows for a
more concise notation and somewhat more intuitive descriptions in specific parts of our
analysis. We denote the the space of all byte arrays of length n bytes as Bn. If b ∈ Bn,
then b[i] denotes its i-th byte, while b[i]k denotes the k-th bit of b[i].

A binary [n, k]-linear code is a k-dimensional linear subspace of Fn
2 , where F2 denotes

the binary field. If C is a binary [n, k]-linear code spanned by the rows of a matrix G of
Fk×n

2 , we say that G is a generator matrix of C. Similarly, if C is the kernel of a matrix H
of Fr×n

2 , we say that H is a parity-check matrix of C. The Hamming weight of a vector v,
denoted by w (v), is the number of its non-zero entries. The Hamming distance between
two vectors is the number of coordinates in which they differ. If C is a binary [n, k]-linear
code, and the minimum Hamming distance between two codewords in C is d, we say that
C is an [n, k, d]-linear code. The support of a binary vector v ∈ Fn

2 , denoted as supp (v),
is the set supp (v) = {i ∈ {0, . . . , n− 1} : v[i] = 1}. We denote by L (w) the subset of Fn

2
consisting only of elements of weight w.

The syndrome z of a vector e with respect to a parity check matrix H is the vector
z = eH⊤. If the vector e is sufficiently sparse and the linear code defined by H is sufficiently
good, it may be possible to recover e from the syndrome z by using efficient decoding
algorithms.

The circulant matrix defined by a vector v = [v0, . . . , vn−1], is the matrix

rot (v) =

v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
vn−1 vn−2 . . . v0

 .

It is well known that binary circulant matrices of dimension n form a ring that is
isomorphic to the polynomial ring F2[X]/(Xn − 1). Since each circulant matrix is defined
by one vector, we can identify polynomials in F2[X]/(Xn − 1) and vectors in Fn

2 . This
motivates the definition of the product of two vectors u and v of Fn

2 as

u · v = u rot (v)T =
(
rot (v) uT

)T = v rot (u)T = v · u.

Notice that the transpose of the circulant matrix generated by v consists of a sequence of
cyclic shifts of v, and therefore the product of two vectors can also be written as

u · v =
∑

i∈supp(u)

(v≫ i) =
∑

i∈supp(v)

(u≫ i).

In this paper, we prefer the binary linear algebra interpretation of vectors instead of
polynomials, as most of the attacks are described in this way.

4 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

2.2 HQC
In this section, we present the parameters and algorithms used by HQC, together with its
security.

2.2.1 Parameters and Algorithms

HQC provides its parameter sets defining (n, k, δ, w, wr, we) for each security level, as
shown in Table 1. Parameters n and k define the public error correction code C used
by HQC, while parameters w, wr and we correspond to the weights of the sparse vectors
defined and used in the next sections. Parameter M = n2/128 is the multiplicity of the
repeated Reed-Muller code, which is a building block of code C and it is an important
parameter used in our attacks.

Table 1: Parameter sets for HQC [MAB+21].
Security
level n1 n2 M n k w wr = we

Failure probability
(upper bound)

128 46 384 3 17669 128 66 77 2−128

192 56 640 5 35851 192 100 114 2−192

256 90 640 5 57637 256 133 149 2−256

For each parameter set, the scheme uses a public binary [n, k]-linear code C which
consists of a concatenated code between two codes with good error correction properties:
a repeated Reed-Muller (RM) code and a Reed-Solomon (RS) code. The repeated Reed-
Muller code is a binary [n2, 8]-linear code, while the Reed-Solomon is a non-binary linear
code. Since, in this work, the details of the Reed-Solomon code are not particularly
important we can think of the Reed-Solomon as an encoding algorithm that, given k bits,
returns 8n1 bits corresponding to representation of the original k bits with redundancy.

Therefore, code C comes with an efficient pair of algorithms for encoding and decoding.
Intuitively, if m ∈ Fk

2 , then Encode (m) is responsible to add redundancy to it. If
c = Encode (m) + e for some error vector e ∈ Fn

2 , then Decode (c) returns m as long as
the weight of e is not too large. Notice that the decoding of a corrupted codeword goes
in the inverse direction of Figure 1, that is, first remove the padding bits, then use the
decoding algorithms for the Reed-Muller code in each block, followed by the Reed-Solomon
decoder to the 8n1 bits.

crs
1

RM−−−→ crmrs
1

crs
2

RM−−−→ crmrs
2

...
...

...

crs
n1

RM−−−→ crmrs
n1

crsRS−−→m crmrs
Padding with−−−−−−−−−→
n−n1n2 zeros Encode (m)

k bits 8n1 bits

8 bits n2 bits

n1n2 bits n bits

Figure 1: The encoding process using concatenated Reed-Muller and Reed-Solomon codes
with padding.

At its core, HQC uses a chosen-plaintext secure PKE scheme (IND-CPA), consisting
of three procedures: Key Generation (CPAPKE.KeyGen), Encryption (CPAPKE.Encrypt),
Decryption (CPAPKE.Decrypt). These are reviewed next.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 5

IND-CPA algorithms used by HQC. The three procedures of the IND-CPA secure HQC
PKE scheme are described as Algorithm 1. While the key generation and encryption are
more directly understood, let us see why decryption works. Notice that vector c′ = v−u ·y,
as computed in the decryption algorithm is equal to

c′ = Encode (m) + s · r2 + e− (r1 + r2 · h) · y
= Encode (m) + (x + y · h) · r2 + e− (r1 + r2 · h) · y
= Encode (m) + x · r2 − r1 · y + e.

Intuitively, since x, y, r1, r2, and e all have low weight, we expect e′ = x · r2 + r1 · y + e to
have a relatively low weight. HQC parameters are carefully chosen to ensure that w (e′) is
sufficiently low for it to be corrected out of c′ with overwhelming probability, using the
decoder C.Decode.

This decoder is for the concatenated code C, that is, first the internal Reed-Muller
decoder followed by the external Reed-Solomon decoder to correct the errors in c′ and
yield the same message m′ = m. In general, schemes based on syndrome decoding have to
take care to avoid generic attacks based on Information Set Decoding [Pra62,Ste88,TS16].
Furthermore, the quasi-cyclic structure of the code used to secure the secret key can make
the scheme vulnerable to DOOM [Sen11], or other structural attacks [GJL15, LJS+16].
To instantiate the scheme, the authors propose parameters for which they prove very low
decryption error probability and resistance to the attacks mentioned.

Algorithm 1 IND-CPA secure HQC PKE Scheme [MAB+21]
1: procedure CPAPKE.KeyGen
2: h← Fn

2
3: (x, y)← (L (w))2

4: s← x + h · y
5: Return pk← (h, s), sk← (x, y)
6: end procedure

7: procedure CPAPKE.Encrypt(pk, m ∈ B∗, seed ∈ B∗)
8: (e, r1, r2)← Pseudorandom sample from (L (we)× L (wr)× L (wr)) using seed
9: u← r1 + h · r2

10: v← C.Encode (m) + s · r2 + e
11: Return ct = (u, v)
12: end procedure

13: procedure CPAPKE.Decrypt(ct, sk)
14: c′ = v− u · y
15: m′ = C.Decode (c′)
16: Return m′

17: end procedure

2.2.2 CCA Transformation

The aforementioned PKE scheme is only secure in the IND-CPA security model, but is
insecure in the IND-CCA security model, and therefore susceptible to chosen-ciphertext
attacks. Thus, the well-known Hofheinz-Hövelmanns-Kiltz (HHK) transformation [HHK17]
is used to turn the IND-CPA secure PKE into an IND-CCA2 secure KEM.

Refer to Alg. 2 for the encapsulation and decapuslation procedures of IND-CCA secure
HQC KEM. The core idea of this transformation is to make the encryption procedure be
deterministic, such that the generated ciphertext ct (Lines 3 to 4 in CCA.Encaps) depends
entirely upon the message m. This enables the decapsulation procedure to encrypt the

6 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

message m (Line 12) and recompute the ciphertext ct′. Then, the received ciphertext
ct is compared with ct′ (Line 14), and the comparison succeeds for a valid ciphertext
with overwhelming probability, to generate a valid session key (Line 16). However, the
comparison fails with an overwhelming probability for an invalid ciphertext, which typically
means a malicious party manipulated the ciphertext, and this results in aborting the
decapsulation procedure (Line 18).

Algorithm 2 IND-CCA2 secure HQC KEM (Using HHK Transform [HHK17])
1: procedure CCAKEM.Encaps(pk = (h, s))
2: m← Fk

2
3: seed← G(m)
4: ct = CPAPKE.Encrypt(m, pk, seed) ▷ Deterministic Encryption
5: K = K(m, ct)
6: d = H(m)
7: Return (ct, d)
8: end procedure

9: procedure CCA.Decaps(sk, pk, ct)
10: m′ = CPAPKE.Decrypt(ct, sk)
11: seed′ = G(m′)
12: ct′ = CPAPKE.Encrypt(m′, pk, seed′)
13: d′ = H(m′)
14: if ct′ = ct and d′ = d then
15: K = K(m, ct)
16: Return K
17: else
18: Return ⊥
19: end if
20: end procedure

2.3 Prior SCA on HQC and Motivation
HQC KEM has been subjected to a number of side-channel attacks mainly targeting
the decapsulation procedure to recover the long-term secret key. They can be broadly
split into two categories: (1) Timing Attacks and (2) Power/EM Side-Channel Attacks.
Timing attacks on HQC KEM have exploited the inherent non-constant time behavior of
error correcting codes or the rejection sampling procedure during re-encryption for key
recovery. The first timing attack on the CCA secure decapsulation procedure was proposed
in [PT20], which worked by querying the decapsulation device with valid ciphertexts, and
subsequently utilizing the correlation between the weight of the decoded error and the
computation time of the decoder for full key recovery. Subsequently, [GHJ+22] proposed
novel timing attacks exploiting non-constant time rejection sampling procedures used in
the re-encryption operation after decryption. They query the decapsulation device with
malformed/invalid ciphertexts and utilize timing information from the rejection sampling
procedure to obtain information about the decrypted message, resulting in full key recovery.
However, the attacks can be trivially prevented by using constant time implementation of
the decoding procedure.

With respect to the power/EM side-channel attacks, Schamberger et al. [SRSWZ21]
presented the first power side-channel attack on the original version of HQC KEM based
on the BCH code. It also utilizes malformed/invalid ciphertexts to query the decapsulation
oracle, and subsequently utilizes leakage from the BCH decoder to recover the corresponding
codewords, resulting in full key recovery. Subsequently, the same authors adapted their
attack to the updated version of HQC KEM, based on the concatenated Reed-Muller

T. Paiva, P. Ravi, D. Jap, S. Bhasin 7

and Reed-Solomon code, by exploiting leakage from the Reed-Solomon decoder for key
recovery [SHR+22]. Goy et al. [GLG22] presented a simplified version of this attack, where
they demonstrated that leakage exploited from the Hadamard transform operation for
malformed/invalid ciphertexts can also result in key recovery attacks, potentially with a
simpler technique to build chosen-ciphertexts.

We observed that all power/EM-based key recovery attacks on HQC KEM, rely on
utilization of malformed ciphertexts which can be easily detected by the decapsulation
procedure as invalid ones. Moreover, all these attacks require a few thousand chosen-
ciphertext queries for full key recovery. Given the almost negligible decapsulation failure
rate for valid ciphertexts, observing a few thousand decapsulation failures will definitely
raise suspicion. Moreover, it is easy for a designer to implement a countermeasure that
simply refreshes the secret key upon a decapsulation failure, as a precaution. In such a
scenario, all the existing side-channel attacks cannot be used for key recovery. In this
work, we demonstrate the first power/EM side-channel assisted chosen-ciphertext attack
that can be done using valid ciphertexts. We demonstrate that our novel key recovery
attacks can work even in the presence of errors in the side-channel information, and are
also applicable to implementations protected with shuffling and masking countermeasures.

2.4 Test Vector Leakage Assessment (TVLA) [GJJR11]
TVLA is a popular conformance-based evaluation methodology widely used to perform
side-channel evaluation of cryptographic implementations. It involves computation of
the univariate Welch’s t-test over two sets of side-channel measurements to identify
differentiating features. The TVLA formulation over two datasets Tr and Tf is given by:

TVLA = µr − µf√
σ2

r

mr
+ σ2

f

mf

, (1)

where µr, σr and mr (resp. µf , σf and mf) are univariate mean, standard deviation and
cardinality of the trace set Tr (resp. Tf). The null hypothesis (two means are equal) is
rejected with a confidence of 99.9999% when the absolute value of the t-test score is greater
than 4.5 [GJJR11]. A rejected hypothesis implies that the two sets are different and hence
could leak some side-channel information.

3 Our Approach to Key Recovery
We observe that the Reed-Muller decoder operates upon the erroneous codeword c′,
as it serves as the external code in the concatenated code of HQC (Line 15 in the
CPAPKE.Decrypt) procedure). As we show later, the codeword c′ is a sensitive variable,
as the error component e′ that masks the correct codeword c within c′, is dependent
upon the secret key components x and y (Refer to description of IND-CPA secure
CPAPKE.Decrypt procedure of HQC KEM). We demonstrate that leakage from the Reed-
Muller decoder during decapsulation of valid ciphertexts can be exploited to recover
incremental information about the secret key, resulting in full key recovery attacks. Thus,
operations within the Reed-Muller decoder serve as the primary target for the side-channel
attacks presented in this work.

In the following, we first discuss our approach to key recovery from side-channel
information, obtained from the Reed-Muller decoder. We start by discussing the types
of oracles that are used to model the side-channel information. We then we define our
basic approach for key recovery using partial information, which consists of a simple linear
algebra method. We finish by providing an abstract overview on what we call likelihood

8 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

functions, which are used to extract secret information from the oracles’ outputs and are a
central tool to allow the key recovery in all of our attacks.

3.1 The Oracles
To model the information we can get from side-channel analysis of the steps of the Reed-
Muller decoding operation, we define a number of oracles throughout the paper. Since
we are interested in attacks using valid ciphertexts, we let each oracle O output, together
with the side-channel information sca_information on a targeted step of the Reed-Muller
decoding, the message m and the random vectors r1, r2 and e used to encrypt the message
under a public key pk. A little more formally, each oracle O takes as input a public key
pk, and returns a freshly generated tuple

(sca_information, m, r1, r2, e)← O(pk).

Notice that this notation makes it explicit that, in this paper, we do not require the
attacker to choose m, r1, r2, nor e: they only need to know these values from an honest
encryption, together with the corresponding sca_information, to perform the attack.

The quality of the information provided by side-channel analysis is dependent on both
the hardware and the setup for the attack. Furthermore it may not be possible to perfectly
recover the side-channel information in some setups. To account for possible noise in
the setup, we also define, for each oracle O, a noisy oracle Oε. A noisy oracle Oε, calls
its perfect parent oracle O and adds some noise to sca_information before returning
the tuple, while parameter ε controls the amount of noise. The way in which noise is
added to sca_information depends on a reasonable noise modeling for each side-channel
implementation, and therefore they are explained in each section.

3.2 Solving The Key Equation with Partial Information
In HQC, the secret key (x, y) is related to the public key (h, s) by the following binary
linear equation

y · h = y rot (h)⊤ = s + x.

Notice that, if we know either y or x, we can easily recover the other. The problem we
face, when attacking HQC, is that x and y are not directly recoverable purely from the
side-channel observations. Therefore we must build algorithms that allow us to solve the
key equation from information on both x and y.

Suppose that, using side-channel analysis together with some additional algorithms,
we are able to build two sets of indexes Uy and Ex as described next. Let Uy be some
set of indexes of y that is known to contain each index of non-null entries in y, that is,
supp (y) ⊂ Uy. Let Ex be a set of indexes of x that contains only indexes of null entries
of x, that is, supp (x)∩Ex = ∅. In the next paragraph, we explain why Uy and Ex can be
seen as the sets of unknowns and equations, respectively.

Notice how, since we know Uy, we can reduce the number of variables in y from n to
|Uy|. Although we have n equations, this is still not enough to solve the system because,
since we do not know x, there is still some uncertainty on s + x. But Ex tells us a number
of indexes that are 0 in x, so if we use only these equations, together with the public vector
s, we may be able to solve the unknowns of y.

From the discussion above, we need two conditions for being able to recover the secret
key y using simple linear algebra. First, the number of unknowns should be lower than
or equal to the number of equations, that is |Uy| ≤ |Ex|. Second, the linear subsystem
obtained from y rot (h) = s + x together with Uy and Ex should have full rank. This
second condition is equivalent to say that the matrix Ĥ ∈ F|Uy|×|Ex|

2 is full rank, where Ĥ

T. Paiva, P. Ravi, D. Jap, S. Bhasin 9

is constructed by taking, from rot (h)⊤, the rows and columns whose indexes are in Uy
and Ex, respectively.

An alternative to the simple linear algebra approach discussed above would be to
combine sets Uy and Ex with information-set decoding (ISD) algorithms [Pra62, Ste88,
Dum91]. While ISD algorithms are the best algorithms to find the secret key from the
key equation when no information is known about the secret key, recently, Horlemann et
al. [HPR+22] studied how partial information on the key improves the performance of ISD
algorithms.

In some of the attacks we show, the attacker needs to try multiple attack parameters,
and, for each of them, try to recover the key. In the simple linear algebra approach, the
attacker either can recover the key, with the information obtained, or not, while for the ISD
with hints algorithm, there is a variable work factor that depends on how much information
the attacker was able to obtain. The problem of using the more powerful ISD with hints
approach in our case is that the composition of work factors of the ISD, together with the
multiple parameters the attacker needs to test, may result in an inefficient key recovery
procedure.

Therefore, when simulating the number of oracle queries required for a key recovery
attack, we take the pure linear algebra approach instead of the ISD with hints. The main
reason is that this simplifies the analysis, at the cost of increasing the number of queries
required for recovering the key. The result is that the estimates on the performance of the
attacks presented in this paper are conservative.

In the next section, we describe the role of the likelihood functions, which serve as a
bridge from the oracles information and to the construction of sets Uy and Ex, that are
required for the key recovery.

3.3 The Likelihood Vectors
To model the information we get from side-channel analysis, we use the oracles, as was
previously mentioned. But this information is usually rather raw, and must be processed
for its relation to the secret key to be clearly visible. For example, the side-channel
information may consist of whether the Reed-Muller decoder was able to correct all the
errors in each block, or be the weight of some part of the noisy codeword c′.

The core of our key recovery procedure is building functions that take a number of
independent oracle answers and output two vectors likelihoodsx and likelihoodsy,
that belong to Rn. Ideally, for a sufficiently high number of oracle queries, it should hold
that

• likelihoodsx[i] > likelihoodsx[j], whenever i ∈ supp (x) and j ̸∈ supp (x) , and

• likelihoodsy[i] > likelihoodsy[j], whenever i ∈ supp (y) and j ̸∈ supp (y) .

That is, the indexes of the highest likelihoods indicate the non-null entries of the secret
key vectors x and y.

These properties, however, are not always attainable for some of the oracles we use,
even for a large number of queries. But remember that we do not need full separation
between entries inside and outside the supports of x and y to fully recover the key. As we
discussed in the previous section, we only need to be able to build a sufficiently large set
of equations Ex and together with a small enough set of unknowns Uy.

If we want to use only the likelihoods vector to define sets Ex and Uy, then the
maximum size of a valid Ex, such that Ex ∩ supp (x) = ∅, is given by

max |Ex| = |{j : likelihoods[j] < τx}| ,

where τx = mini∈supp(x) likelihoods[i].

10 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

Algorithm 3 Solving the key equation using likelihood vectors.
1: procedure TryToSolveKeyEquation(likelihoodsx, likelihoodsy)
2: for n_unknowns = ω to n− ω do
3: Uy ← Indexes of the n_unknowns highest entries of likelihoodsy
4: Ĥ← Take rows from rot (h)⊤ whose indexes are in Uy
5: n_equations← n_unknowns
6: while Ĥ is not full rank do
7: Ex ← Indexes of the n_equations smallest entries of likelihoodsx
8: Ĥ← Columns from Ĥ whose indexes are in Ex
9: n_equations← n_equations + 1

10: end while
11: ŝ← Entries of s whose indexes are in Ex
12: Solve full rank system ŷĤ = ŝ
13: if a solution ŷ exists and has weight ω then
14: Reconstruct y from ŷ and Uy
15: return y
16: end if
17: end for
18: return ⊥
19: end procedure

Similarly, the minimum size of a valid Uy, such that supp (y) ⊂ Uy, is

min |Uy| = |{j : likelihoods[j] ≥ τy}| ,

where τy = mini∈supp(y) likelihoods[i].
Now, when min |Uy| ≤ max |Ex|, then key recovery may be possible, if the resulting

linear system is full rank. However, remember that the attacker has no way of knowing
min |Uy| and max |Ex| since they do not know y and y, and therefore cannot compute τy
and τx. One possible solution is to iterate over possible values for the number n_unknowns
of unknowns, and, by setting the number of equations n_equations ≥ n_unknowns just
high enough to get a full rank system, we then try to solve the resulting linear system.

Algorithm 3 formalizes this approach. The algorithm iterates over possible values
for n_unknowns and, for each value, build candidate sets Uy and Ex. If the resulting
linear system is full rank, then it solves it and returns the key y, if the solution has low
weight. If no key y is found, then it returns an error ⊥, which indicates that the attacker
should ask more queries to the oracle and update the likelihood vectors likelihoodsx
and likelihoodsy accordingly, to hopefully get a sufficient separation between entries
inside and outside the secret supports.

3.4 Reed-Muller Error Correcting Code
We briefly explain the operation of the repeated Reed-Muller error correcting code, whose
side-channel leakage is used for our key recovery attacks. The repeated Reed-Muller
code consists of repeating M times the codeword of an original Reed-Muller code with
parameters (r = 1, m = 7), which is a binary [128, 8, 64]-linear code. The resulting error
correction codes are binary [n2 = 128M, 8, 64M]-linear codes, for M = 3 or 5, depending
on the security parameters from Table 1. In particular, for 128 bits of security, a binary
[384, 8, 192]-linear code is used, while a binary [640, 8, 320]-linear code is used for security
levels 192 and 256.

For simplicity, we visualize the duplicated codeword a with M blocks (i.e.) a =
(a0, a1, . . . , aM−1) where ai denotes the duplicated copies of a0, for i ∈ [1, M − 1]. When
encoding under the concatenated code C, there is a total of n1 Reed-Muller codewords
of n2 bits. In the decryption procedure, the Reed-Muller decoding procedure is applied
over each of the n1 codewords ai ∈ Fn2

2 for i ∈ [0, n1 − 1]. For each of these n2-bit

T. Paiva, P. Ravi, D. Jap, S. Bhasin 11

blocks, the Reed-Muller decoding procedure consists of the following three distinct steps.
We emphasize that, when we say Reed-Muller decoding in HQC, we actually mean the
decoding of the corresponding repeated Reed-Muller code.

1. ExpandAndSum: The multiplicity M of the duplicated codeword a is removed
by this operation, wherein the single bits of the copies ai for i ∈ [0, M − 1] are
simply added to each other, yielding a vector a′ ∈ N128, where each element a′[j] for
j ∈ [0, 127] is in the range of [0, M]. Refer to the pseudo-code of the ExpandAndSum
procedure in Alg.4.

2. Hadamard transform: This operation essentially involves multiplication of a′ ∈ N128

with the Hadamard matrix. The Hadamard transform is a more efficient way
of performing the same computation, which essentially computes the generalized
discrete Fourier transform of a′. This operation determines the weight distribution
of the cosets, thereby allowing to decode using a maximum likelihood operation, and
find the distance between the received message and every codeword. This operation
returns a vector denoted as a′′ ∈ Z128.

3. FindPeaks: This is the final operation in the Reed-Muller decoding procedure,
which returns a byte b ∈ F8

2, whose seven (7) least significant bits correspond to the
location of the highest absolute value in a′′ ∈ Z128. The most significant bit is given
by the sign of the absolute maximum value. Refer to Alg. 4 for the pseudo-code of
the FindPeaks procedure.

Algorithm 4 ExpandAndSum and FindPeaks Operation used within the Reed-Muller
Decoder.

1: procedure ExpandAndSum Operation(a ∈ F(128·M)
2)

2: a← 0 ∈ N128

3: for i = 0 to M do
4: for j = 0 to 128 do
5: a′[j]+ = a[128i + j]
6: end for
7: end for
8: return a′

9: end procedure

10: procedure FindPeaks Operation(a′′ ∈ Z128)
11: peak_value, peak_abs_value, peak_pos = (0, 0, 0)
12: for i = 0 to M do
13: (t, tabs)← (a′′[i], abs(a′′[i]))
14: if (tabs > peak_abs_value) then
15: peak_value, peak_abs_value, peak_pos← (t, tabs, i)
16: end if
17: end for
18: if peak_value > 0 then
19: peak_neg← 1
20: else
21: peak_neg← 0
22: end if
23: peak_pos← peak_pos + 128(peak_neg)
24: return peak_pos
25: end procedure

In this work, we exploit leakage from the ExpandAndSum and FindPeaks operations
within the Reed-Muller decoding procedure to recover incremental information about the

12 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

codeword c′ ∈ Fn
2 , for full key recovery. We start by defining the adversary model that we

utilize for all attacks mentioned in the paper.

3.5 Adversary Model
The attacker’s main motive is to recover the long term secret key used by the target
device for the decapsulation procedure of HQC KEM. We assume the following attacker
capabilities:

• Physical access to DUT performing decapsulation for power/EM measurements.

• Ability to request the DUT to decapsulate arbitrary number of chosen ciphertexts.

• No knowledge of secret key of the DUT or any innate knowledge of the underlying
implementation such as the source or compiled executable.

4 SCA of ExpandAndSum Operation

1 void expand_and_sum (uint16_t dest [128] , uint8_t src [16*M])
2 {
3 size_t seg , bytepos , bitpos ;
4 /* Extract bits of first segment */
5 /* Iterating over 16 bytes of segment */
6 for (bytepos = 0; bytepos < 16; bytepos ++){
7 /* Iterating over 8 bits of the byte */
8 for (bitpos = 0; bitpos < 8; bitpos ++){
9 /* Extracting the target bit */

10 /* Storing the bit in dest */
11 dest[bytepos*8+bitpos] = ((src[bytepos]»bitpos)&1);
12 }
13 }
14 /* Accumulating bits of other segments */
15 /* Iterating over remaining M -1 segments */
16 for (block = 1; block < M; block ++){
17 /* Iterating over 16 bytes of segment */
18 for (bytepos = 0; bytepos < 16; bytepos ++){
19 /* Iterating over 8 bits of the byte */
20 for (bitpos = 0; bitpos < 8; bitpos ++){
21 /* Extracting the target bit */
22 /* Adding bit to entry in dest */
23 dest[bytepos *8+ bitpos] += ((src[16*block+bytepos]»bitpos)&1);
24 }
25 }
26 }
27 }

Figure 2: C code snippet of ExpandAndSum operation in RM decoder of HQC KEM.
The target operations/variables for SCA are highlighted in red.

Our experiments were carried out on the reference implementation of the HQC scheme
from the authors [MAB+21], taken from the open-source pqm4 library, a well-known
benchmarking and testing framework for the ARM Cortex-M4 microcontroller. This is the
also same implementation that was submitted to the NIST PQC standardization process
by the authors. Moreover, we are not aware of any assembly optimized implementations
of HQC for the embedded microcontrollers, and thus, we report all our analysis on the
reference implementation of HQC.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 13

Recall that the Reed-Muller decoding procedure is computed over n1 RM codewords in
the total codeword c′ in the decryption procedure (Line 15 in CPAPKE.Decrypt procedure in
Alg.1). However, our analysis deals with decoding of one of the n1 codewords (also denoted
as c′), while the same can be extended to all n1 RM codewords. Refer to Fig.2 for the C
code snippet of the ExpandAndSum operation which operates over the input codeword
c′ stored in the src array, organized as 16 ·M bytes. The codeword src can be visualized
as containing M blocks, each of length 16 bytes. Thus, the ith block (starting from 0)
corresponds to the bytes src[i · 16 : (i + 1) · 16) for i ∈ [0, M − 1]. The ExpandAndSum
operation on src is implemented in two steps in the following manner:

1. Step-1: Firstly, every bit of the first block of src (i.e.) a total of 128 bits from bytes
src[0] to src[15] are extracted, and subsequently stored in 128 successive locations
of the dest array one bit at a time. This operation is shown between Lines 6-13 in
Fig.2. We refer to this operation as First_Block_Extraction operation.

2. Step-2: After extracting the bits of the first segment, bits of the subsequent segments
(1 to M − 1) are extracted one bit at a time, and then added to the previous value in
the corresponding location in the dest array. This operation is shown in Lines 16-26
in Fig.2. We refer to this operation as Other_Blocks_Accumulation.

We therefore observe that single bits of the codeword stored in the src array, are manipu-
lated one bit at a time in both the First_Block_Extraction and Other_Blocks_Accumulation
operations. For brevity, we refer to it as the Bitwise_Manipulation behaviour throughout
this paper. In the following, we demonstrate that this Bitwise_Manipulation vulnerability
can be exploited from both the operations to recover the entire src array containing the
codeword c′, one bit at a time. We will first present our side-channel analysis of the
First_Block_Extraction followed by a similar analysis of the Other_Blocks_Accumulation
operation.

4.1 SCA of First_Block_Extraction
We observe that the First_Block_Extraction operation (Lines 6-13 in Fig.2) iterates over
the first block of the src array, one byte at a time, starting from src[0] until src[15], using the
bytepos variable (Line 10). Then, for each byte, single bits are extracted in order starting
from bit 0 until bit 7, using the bitpos variable (Line 13). The bits are sequentially extracted
and stored in the index (bytepos · 8 + bitpos) of the dest array. This Bitwise_Manipulation
behaviour leads to two possible leakage sources (i.e.) the bit extraction as well as the
storage of the extracted bit in memory.

4.1.1 Experimental Setup

The implementations of the targeted schemes are taken from the public pqm4 library [KRSS],
a benchmarking and testing framework for PQC schemes on the 32-bit ARM Cortex-M4
microcontroller, which is a NIST recommended optimization target for embedded software
implementations. To demonstrate the generic applicability of our attack, we perform
experiments using both the EM and power side-channel.

EM Side Channel Setup

The EM side-channel measurements were captured from an STM32F4 microcontroller
(running at 24 MHz) using a Langer RF-U 5-2 near-field EM probe placed on top of the
chip and are then collected using a Lecroy 610Zi oscilloscope at a sampling rate of 1.25
GSam/sec, amplified 30dB with a pre-amplifier. We also used a 48 MHz analog low-pass
filter to remove high frequency noise in our traces.

14 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

Power Side Channel Setup

The power side-channel measurements were captured from an STM32F3 microcontroller
(running at 7.372 MHz) using the ChipWhisperer CW308 setup. The measurements are
then collected using a Lecroy 610Zi oscilloscope at a sampling rate of 1.25 GSam/sec.

4.1.2 Leakage Detection

We start by validating the presence of side-channel leakage due to the
Bitwise_Manipulation behaviour. We utilize the well-known TVLA metric for the same,
and detect leakage from the first bit of the src byte denoted as src[0]0. We capture two
sets of side-channel measurements corresponding to src[0]0 = 0 and src[0]0 = 1 respectively,
while the other bits of src are random. This however requires the attacker to control the
value of the codeword c′ on the target device, without the knowledge of the secret key.

Controlling the value of codeword c′: The value of the codeword can be controlled
by choosing maliciously crafted chosen-ciphertexts ct = u, v, in the following manner.
Choosing u = 0 ∈ R, ensures that the codeword c′ = v − 0 · y has the value of c′ = v.
Since the value of v can also be controlled by the attacker, he/she can observe side-channel
leakage for codewords c′ of his/her choice, without the knowledge of the secret key.

We acknowledge that leakage detection requires to utilize such invalid ciphertexts.
However, this is not an issue as leakage detection only needs to be done once for a given
target device. The same leakage profiles can then be used for multiple attacks, for different
keys using valid ciphertexts. Even if the target device adopts a countermeasure to refresh
the key pair after observing a decapsulation failure, profiling leakage of the codeword
can still be carried out, since the value of the codeword is independent of the key during
leakage evaluation.

To test for the leakage of src[0]0, we build two sets of ciphertexts. The first set is
denoted as CT0 whose u = 0, but v is chosen such that its first bit v[0] = 0, while all other
bits are random. Similarly, the second set is denoted as CT1 whose u = 0, but v is chosen
such that its first bit v[0] = 1, while all of its other bits are random. We collect two sets
of 10k side-channel measurements corresponding to decapsulation of the two ciphertexts
in sets CT0 and CT1 denoted as T0 and T1 respectively. We normalize each trace and
compute the Welch’s t-test to identify the differentiating features between the trace sets.

We performed experiments on two types of implementations: (1) O0 compiler optimiza-
tion: no optimization and (2) O3 compiler optimization: highest optimization. Refer to
Fig. 3 which shows the 8 t-test plots overlaid on top of each other, demonstrating leakage
of 8 bits of the first byte src[0], for both the O0 and O3 optimized implementations. While
Fig.3(a)-(b) denote results for the EM side-channel, Fig.3(a)-(b) denote results for the
power side-channel.

In case of the O0-optimized implementation (Fig.3)(a) and Fig.3)(c)), we clearly ob-
serve eight distinct and uniformly distanced peaks corresponding to all the bits of src[0].
However, in case of the O3-optimized implementation (Fig.3)(b) and Fig.3)(d)), we see that
unlike for O0, the t− test peaks are not uniformly spaced out and do not have similar heights.

Effect of Compiler Optimization Level: In case of the O0 optimized implemen-
tation, the compiler implements the individual iterations of the inner for loop (Line 8-12
in Fig.2) using the same set of assembly instructions. This leads to utilization of the same
set of registers for all the bits, thereby giving rise to uniform leakage. However, in case
of the O3 optimized implementation, the compiler unrolls the inner for loop and utilizes
different set of instructions and registers to manipulate the different bits. This results in
non-uniform leakage for the individual bits within the src array.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 15

2000 3000 4000 5000 6000 7000
Features

40

20

0

20

40

60
T-

te
st

 V
al

ue

FBE - O0

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

3400 3500 3600 3700 3800 3900
Features

50

0

50

100

T-
te

st
 V

al
ue

FBE - O3

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(a) O0 optimized (EM) (b) O3 optimized (EM)

10000 15000 20000 25000
Features

20

0

20

40

60

80

T-
te

st
 V

al
ue

FBE - O0

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

4500 5000 5500 6000
Features

20

0

20

40

60

80

100

T-
te

st
 V

al
ue

FBE - O3

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(c) O0 optimized (Power) (d) O3 optimized (Power)

Figure 3: t-test leakage corresponding to 8 bits of the first byte of the src array in the
First_Block_Extraction (FBE) within the ExpandAndSum operation. (a)-(b) show results
for the EM side-channel, while (c)-(d) show results for the power side-channel.

We verified the same through analysis of the assembly level instructions for both the
implementations. Though the leakage behaviour is different, we however detect significant
leakage for all the bits in src[0], for both the O0 and O3 optimized implementations. Simi-
larly, the attacker can detect leakage for the other 15 bytes of src, processed within the
First_Block_Extraction operation.

In the following, we demonstrate how the detected leakage can be exploited to recover
the first 16 bytes of the codeword stored in the src array.

4.2 Two Phase Codeword Recovery Attack
The attack is performed in two phases: (1) Pre-Processing phase and (2) Exploitation
phase.

4.2.1 Pre-Processing Phase

This phase involves building side-channel templates for every bit in the first block of the
src array (i.e.) bytes src[0 : 15]. It is a one-time process for a given target device, and the
same templates can be used to perform multiple attacks. We present the methodology for
building templates for the first bit src[0]0, while the same technique can be used to build
templates for all bits in src[0 : 15].

We utilize the t-test plot obtained as a result of leakage detection for src[0]0 (Refer
to Fig.3) using the trace sets T0 and T1. We then select those features whose absolute
t-test value is above a certain threshold Th0, as our points of interest (PoI) denoted as P0.
We stress that Th0 is a parameter of the experimental setup, and can be experimentally
determined. We use the selected features P0 to build a reduced trace set RT (0,i) from each
Ti for i = {0, 1}. We can then compute the mean and co-variance matrix of each reduced

16 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

trace set RT (0,i), which we denote as µ(0,i) ∈ R∥P0∥ and Σ(0,i) ∈ R(∥P0∥)×(∥P0∥). Thus,
the reduced template for src[0]0 = i is denoted as tmp(0,i) = (µ(0,i), Σ(0,i)) for i = {0, 1}.
The same procedure can be repeated to build side-channel templates for all 128 bits within
the first block src[0 : 15].

Improving Efficiency for Template Creation: While it appears that separate/distinct
trace sets are required to build templates for different bits, it is possible to build templates
for all the bits using a single trace set. We can collect side-channel measurements cor-
responding to random ciphertexts cti = (u = 0, vi) where vi ∈ R are chosen in random.
In order to build templates for the bit src[0]0, we split the random ciphertexts into two
sets CT j for j = {0, 1}, such that the set CT j corresponds to ciphertexts such that u = 0
and v[0] = j. Note that the exact number of traces required for profiling is an empirical
parameter of the experimental setup. We merely establish that all bits of the codeword
can be profiled simultaneously, thereby reducing the trace complexity of the pre-processing
phase.

4.2.2 Exploitation Phase

In the exploitation phase, the attacker obtains a trace tr corresponding to decapsulation of
a chosen valid ciphertext ct, whose codeword c′ is intended to be recovered by the attacker.
In order to recover the first bit src[0]0, we first utilize the PoI set P0 to build a reduced
trace tr′

0, corresponding to P0. We then compute the maximum likelihood f(tr′
0)i of the

reduced trace tr′
0 for i ∈ {0, 1}, to match with the templates tmp(0,i) using the following

formula:

f(tr′
0)i = 1√

(2π)k∥Σ∥
e−((tr′

0−µ(0,i))T ·Σ−1·(tr′
0−µ(0,i)))

We then classify src[0]0 = i based on the highest value of f(tr′
0)i. A similar approach can

be used to recover all the bits of the first block of src array.

4.2.3 Experimental Results

We performed experimental validation of the codeword recovery attack for both the O0 and
O3 optimized implementations. Our attack targets leakage from single bit manipulation,
and thus leakage only corresponds to a very few points. Thus, success rate of recovery is
heavily dependent on the Signal to Noise Ratio (SNR). We therefore use the technique
of averaging of repeated measurements to reduce the random noise, and thereby increase
SNR to improve the success rate. Since the attacker has the ability to query with chosen-
ciphertexts, he/she can obtain multiple side-channel measurements corresponding to the
same inputs.

Fig.4 shows the error rate when recovering the 8 bits of the first byte src[0] for both the
O0 and O3 optimized implementations. Fig.4(a)-(b) show results for the EM side-channel,
while Fig.4(c)-(d) show results for the power side-channel. For single traces on O0 optimized
implementation, we obtain an error rate of ≈ 0.008 for the EM side-channel, and between
0.06− 0.15 for the power side-channel. However, for traces with an averaging of 25, we
observe a much reduced error rate of 0 for the EM side-channel and 0.00− 0.03 for the
power side-channel. This cleary demonstrates improved success rate with averaging in the
traces.

Similarly, for single traces on O3 optimized implementation, we obtain an error rate
of ≈ 0.04 − 0.20 for the EM side-channel, and between 0.06 − 0.18 for the power side-
channel. However, for traces with an averaging of 25, we observe a slightly reduced
error rate between 0.00 − 0.18 for the EM side-channel and 0.02 − 0.22 for the power

T. Paiva, P. Ravi, D. Jap, S. Bhasin 17

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Er

ro
r r

at
e

FBE O0

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

FBE O3

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(a) O0 optimized (EM) (b) O3 optimized (EM)

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

FBE O0

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

FBE O3

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(c) O0 optimized (Power) (d) O3 optimized (Power)

Figure 4: Error rate in recovering single bits of the codeword using leakage from the
First_Block_Extraction (FBE) within the ExpandAndSum operation. (a)-(b) show results
for the EM side-channel, while (c)-(d) show results for the power side-channel.
side-channel. The improvement due to averaging is slightly lesser compared to the O0
optimized implementation.

An attacker can also other techniques such as employing high precision EM probes,
hardware analog filters and advanced digital filtering to improve success rate, apart from
averaging of replicated measurements. We hypothesize that a motivated attacker with a
more sophisticated SCA setup and advanced post-processing techniques might be able to
obtain achieve better error rates than the results obtained from our experiments.

In this manner, it is possible to recover significant amount of information from the first
block of 128 bits within every n1 RM codewords in a single trace, thereby simultaneously
recovering (n1 · 128) bits out of the (n1 · 128 ·M) bits of the total codeword.

4.3 Side-Channel Analysis of Other_Blocks_Accumulation
Similar to recovering the first block of the n1 RM codewords, it is also possible to recover the
other blocks of the RM codewords, exploiting leakage from the Other_Blocks_Accumulation
operation within the ExpandAndSum operation. We observe that the
Other_Blocks_Accumulation operation (Lines 16-26 in Fig.2) iterates over every bit (bitpos =
0 to 8) within every byte (bytepos = 0 to 15) in blocks 1 until M − 1, and extracts every
bit in index (128 · block + 8 · bytepos + bitpos) of the src array, and adds it to the index
(8 · bytepos + bitpos) in the dest array. Thus, leakage from extraction of the single bits
can yet again be exploited to recover bits from the other blocks of the RM codeword.
However, there is a subtle difference between leakage of the First_Block_Extraction and
Other_Blocks_Accumulation operations. While First_Block_Extraction contained leakage
from both the extraction as well as storage of the extracted bit in memory, leakage within

18 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

8000 10000 12000 14000 16000
Features

5

0

5

10
T-

te
st

 V
al

ue

OBA - bit - O0

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

2600 2800 3000 3200 3400
Features

10

5

0

5

10

15

T-
te

st
 V

al
ue

OBA - bit - O3

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(a) (b)

20000 30000 40000 50000
Features

10
5
0
5

10
15
20
25
30

T-
te

st
 V

al
ue

OBA - bit - O0

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

6500 7000 7500 8000 8500 9000
Features

10

0

10

20

30

T-
te

st
 V

al
ue

OBA - bit - O3

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(c) (d)

Figure 5: t-test leakage corresponding to 8 bits of the byte src[16] in the
Other_Block_Accumulation (OBA) within the ExpandAndSum operation. (a)-(b) show
results for the EM side-channel, while (c)-(d) show results for the power side-channel.
Other_Blocks_Accumulation is slightly weaker since leakage only arises from the extraction
of the bit. Thus, we expect the success rate in recovering the bits of the other blocks to be
slightly lower than that of the first block.

Refer to Fig. 5 which shows 8 t-test plots overlaid on top of each other, demonstrating
leakage of 8 bits of the byte src[16] (first byte of the second block), for both the O0 and O3
optimized implementations. Similar to the case of the First_Block_Extraction operation,
we observe that the t-test leakage is much more pronounced and uniform in case of O0
optimized implementation, compared to the O3 optimized implementation. Refer to Fig.6
that shows the error rate when recovering the 8 bits of the first byte of the second block
(i.e.) src[16] for the O0 and O3 optimized implementations, and both the EM and power
side-channel leakage.

For single traces on O0 optimized implementation, we obtain an error rate of 0.04−0.12
for the EM side-channel, and between 0.06− 0.09 for the power side-channel. However, for
traces with an averaging of 25, we observe a much reduced error rate of 0.02− 0.08 for the
EM side-channel and 0.02− 0.04 for the power side-channel. This clearly demonstrates
improved success rate with averaging in the traces. Similarly, for single traces on O3
optimized implementation, we obtain an error rate of 0.12− 0.20 for the EM side-channel,
and between 0.20− 0.30 for the power side-channel. However, for traces with an averaging
of 25, we observe a slightly reduced error rate between 0.10− 0.17 for the EM side-channel
and 0.10− 0.28 for the power side-channel. The improvement due to averaging is slightly
lesser compared to the O0 optimized implementation.

In this manner, side-channel analysis of the ExpandAndSum operation gives informa-
tion on each bit of the corrupted codeword c′ = mG + ê, where ê = x · r2 + y · r1 + e.
While we are not able to achieve perfect recovery of c′ through SCA, we show that an
attacker can still recover the secret key through our novel key recovery attacks.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 19

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Er

ro
r r

at
e

OBA O0 - bit

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

OBA O3 - bit

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(a) (b)

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

OBA O0 - bit

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

5 10 15 20 25
No. of Averaging

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

OBA O3 - bit

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(c) (d)

Figure 6: Error rate in recovering single bits of the byte src[16] in the
Other_Block_Accumulation within the ExpandAndSum operation. (a)-(b) show results
for the EM side-channel, while (c)-(d) show results for the power side-channel.
4.4 Key Recovery Attack
In this section, we analyze how to use information on c′ to recover the secret key. We
separate the analysis into two cases.

First, we assume we can recover ê without any errors, which is the case when the
side-channel analysis of the expand and sum operation leaks each bit of c′ with perfect
accuracy. We then describe a new key recovery algorithm that works even when there is
some error associated with the recovery of the bits of c′.

4.4.1 Recovering the Key Without SCA Errors

In this case, the attacker generates valid ciphertexts and have access to an oracle that
gives them the noisy codewords c′ associated with the generated ciphertexts. Notice that,
although the attacker does not manipulate the ciphertext, they know the values of r1, r2
and e. A bit more formally, this situation can be modeled as if the attacker has access
to an oracle Oes that, on each query with input pk, outputs a freshly generated tuple
(c′, m, r1, r2, e), where each r1, r2 and e are are honestly chosen following the encryption
algorithm described in Algorithm 1 using public key pk, and c′ is the noisy codeword that
is computed during decryption.

To recover the secret key x, y associated with pk using queries to Oes(pk), we observe
that with only one query, together with the key equation s = x + y · h, we can build
a linear system with two equations in which the unknowns are precisely x and y. Let
(c′, m, r1, r2, e) be an output of Oes(pk), then we build the linear system{

x + y · h = s,

x · r2 + y · r1 = ê− e,

where ê = mG− c′.

20 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

By expanding the product between vectors into the multiplication of a vector and a
circulant matrix, the linear system above can be written as the single linear equation

[x |y] T = [s | ê− e] , where T =
[

I rot (r2)⊤

rot (h)⊤ rot (r1)⊤

]
.

The solution [x |y] then can be easily recovered as long as the inverse of matrix T exists.
Let us analyze when this is the case.

First notice that, if the inverse of the block matrix T exists, then it must be equal to

T−1 =
[

K−1 0
0 K−1

] [
rot (r1)⊤ rot (r2)⊤

rot (h)⊤ I

]
, where K = rot (r1)⊤ + rot (r2)⊤ rot (h)⊤

,

which can be checked by evaluating the product T−1T. This implies that T is invertible if
and only if K is also invertible.

Notice that K is a circulant n × n matrix, since the product and sum of circulant
matrices is also circulant. Furthermore, notice that 2 is a primitive root modulo n for all
security levels supported by HQC. It is known that, for such values of n, a circulant n× n
binary matrix is invertible if and only if the weight of its first row is odd [ABB+22, Section
A.1.2]. We can see that the parity of the weight of the first row of K is equal to

w (r1) + w (r2) w (h) mod 2 = wr + wrw (h) mod 2.

Therefore, we have two cases. When wr is odd, then T is invertible whenever w (h) is
also odd, which happens with probability 1/2. However, when wr is even, then K is never
invertible, since the parity is always 0 in this case. Notice, from the security parameters
shown in Table 1, that wr is odd for levels 128 and 256, but it is even for 192 bits of
security.

Although in the cases when T has no inverse we cannot directly solve the system with
only one query, we can ask the oracle Oes for more samples and build a larger system
that should be full rank with overwhelming probability. The main limitation of this linear
algebra approach to recover the key is that it does not work even if only a single bit of c′

is wrong. Since in side-channel analysis there is usually some amount of error, this may
significantly reduce the effectiveness of this algorithm. In the following section, we describe
an algorithm that works well even when the bit error rate of c′ is relatively high.

4.4.2 Recovering the Key Without SCA Errors

In this case, the attacker generates valid ciphertexts and have access to an oracle that
gives them the noisy codewords c′ associated with the generated ciphertexts. Notice that,
although the attacker does not manipulate the ciphertext, they know the values of r1, r2
and e. A bit more formally, this situation can be modeled as if the attacker has access
to an oracle Oes that, on each query with input pk, outputs a freshly generated tuple
(c′, m, r1, r2, e), where each r1, r2 and e are are honestly chosen following the encryption
algorithm described in Algorithm 1 using public key pk, and c′ is the noisy codeword that
is computed during decryption.

To recover the secret key x, y associated with pk using queries to Oes(pk), we observe
that with only one query, together with the key equation s = x + y · h, we can build
a linear system with two equations in which the unknowns are precisely x and y. Let
(c′, m, r1, r2, e) be an output of Oes(pk), then we build the linear system{

x + y · h = s,

x · r2 + y · r1 = ê− e,

T. Paiva, P. Ravi, D. Jap, S. Bhasin 21

where ê = mG− c′.
By expanding the product between vectors into the multiplication of a vector and a

circulant matrix, the linear system above can be written as the single linear equation

[x |y] T = [s | ê− e] , where T =
[

I rot (r2)⊤

rot (h)⊤ rot (r1)⊤

]
.

The solution [x |y] then can be easily recovered as long as the inverse of matrix T exists.
Let us analyze when this is the case.

First notice that, if the inverse of the block matrix T exists, then it must be equal to

T−1 =
[

K−1 0
0 K−1

] [
rot (r1)⊤ rot (r2)⊤

rot (h)⊤ I

]
, where K = rot (r1)⊤ + rot (r2)⊤ rot (h)⊤

,

which can be checked by evaluating the product T−1T. This implies that T is invertible if
and only if K is also invertible.

Notice that K is a circulant n × n matrix, since the product and sum of circulant
matrices is also circulant. Furthermore, notice that 2 is a primitive root modulo n for all
security levels supported by HQC. It is known that, for such values of n, a circulant n× n
binary matrix is invertible if and only if the weight of its first row is odd [ABB+22, Section
A.1.2]. We can see that the parity of the weight of the first row of K is equal to

w (r1) + w (r2) w (h) mod 2 = wr + wrw (h) mod 2.

Therefore, we have two cases. When wr is odd, then T is invertible whenever w (h) is
also odd, which happens with probability 1/2. However, when wr is even, then K is never
invertible, since the parity is always 0 in this case. Notice, from the security parameters
shown in Table 1, that wr is odd for levels 128 and 256, but it is even for 192 bits of
security.

Although in the cases when T has no inverse we cannot directly solve the system with
only one query, we can ask the oracle Oes for more samples and build a larger system
that should be full rank with overwhelming probability. The main limitation of this linear
algebra approach to recover the key is that it does not work even if only a single bit of c′

is wrong. Since in side-channel analysis there is usually some amount of error, this may
significantly reduce the effectiveness of this algorithm. In the following section, we describe
an algorithm that works well even when the bit error rate of c′ is relatively high.

4.4.3 Recovering the Key with SCA errors

To account for the case when there may be some errors in the bits of c’, we now introduce
the noisy oracle Oε

es. On each query to Oε
es(pk), the oracle, similarly to its parent Oes,

also returns a sequence (ĉ, m, r1, r2, e), where ĉ is a noisy representation of the corrupted
codeword c′ computed during decryption. Formally, vector ĉ can be written as

ĉ = c′ + e⋆ = mG + ê + e⋆,

where e⋆ is an n-bit vector in which each entry is non-null with probability ε.
It is important to notice that, in each query, a fresh error vector e⋆ is generated, and e⋆

is unknown to the attacker as it represents the measurement errors from the side-channel
analysis. As we discussed in the end of the previous section, the linear algebra approach
alone is not effective to recover the key in this case because of the addition of e⋆. To deal
with this problem, we propose a different approach that exploits the sparsity of vectors x,
y, r1 and r2.

22 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

Suppose we make a number η of queries to oracle Oε
es(pk), obtaining as a list of results(

ĉk, mk, rk
1 , rk

2 , ek
)
← Oε

es(pk), for k = 1 to η.

Because of the unknown errors e⋆ used to generate each sample, this would give us η
approximate linear equations

ĉk −mkG ≈ êk ≈ x · rk
2 + y · rk

1 + ek

≈
∑

j∈supp(x)

(
rk

2 ≫ j
)

+
∑

j∈supp(y)

(
rk

1 ≫ j
)

+ ek.

Remember that one of the main arguments for the effectiveness of HQC decoding is
that the products x · rk

2 and y · rk
1 are somewhat sparse, just as their sum. Because of

this sparsity, we expect that the left-hand side of the equation ĉk −mkG should share a
larger number of ones in the same locations with the circular shifts of rk

2 and rk
1 that are

selected by the non-null entries of x and y, respectively, in the corresponding products in
the equation above.

This motivates us to define the likelihoods vectors likelihoodsx and likelihoodsy
in a way that they capture the similarity between ĉk −mkG and the vectors rk

2 and rk
1 .

Formally, we let each entry j of the likelihood vectors be defined as1

likelihoodsx[j] =
η∑

k=1

∣∣supp
(
ĉk −mkG

)
∩ supp

(
rk

2 ≫ j
)∣∣ ,

likelihoodsy[j] =
η∑

k=1

∣∣supp
(
ĉk −mkG

)
∩ supp

(
rk

1 ≫ j
)∣∣ .

Figure 7 illustrates a real instance of the distributions of likelihoodsx[j] when j is
in or is not in supp (x). We can see that even for a relatively high error rate of ε = 0.25,
just η = 10 queries to Oε

es are enough to see that likelihoodsx tends to be higher for
values in supp (x). Notice that the separation between the distributions is not enough to
confidently decide if a given entry belongs to supp (x). However, if we take the values of
j with the lowest values of likelihoodsx(j), the figure suggests that we can be rather
confident that they correspond to zero entries in x.

We can then plug these likelihoods vectors into Algorithm 3 from Section 3.3, which
will use them to try to solve the key equation. Figure 8 shows the results of our attack
simulations on the necessary number of queries to Oε

es for full key recovery, considering
different values of ε. We can see that this key recovery procedure is much better than the
simple linear algebra approach. With very high probability, the attack works with only
one query for values of ε up to 0.1. Furthermore, the attack works even for relatively high
error rates of 0.35 with about 25 queries on average.

While Figure 8 gives us a clear picture on the effect of noise on the performance of
key recovery, we need to combine this result with the real-world implementation of the
side-channel attack. In particular, to quantify the interaction with the target device, it is
important to compute the real number of challenges needed. That is, we must consider if
we need to repeat challenges to average them out to get rid of SCA noise, as seen previously
in the SCA sections.

1We remark that the definition of these likelihood vectors is very similar to the computation of the
counters of unsatisfied parity-check equations used by Gallagher’s [Gal62] well-known decoding algorithm
for low-density parity-check codes. In particular, when the algorithm is applied to a code whose parity-check
matrix is

[
rot

(
rk

2
)

| rot
(

rk
1
)

| I
]

and when the target syndrome is ĉk − mkG. However, for each of the
η queries, we get a new pair of code and syndrome, while the error vectors

[
x | y | ek + (e⋆)k

]
generating

the syndromes all share its first part (x, y). This artificial case does not seem to have any connection to
the real-world noise models used in coding theory.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 23

300 320 340 360 380 400 420

Values of likelihoodsy[j]

0

10

20

30
N

u
m

b
er

of
o
cc

u
rr

en
ce

s
j 6∈ supp(x)

j ∈ supp(x)

Figure 7: The distribution of the likelihoods likelihoodsx[j] when j is inside and outside
the support of secret vector x, using η = 15 queries to Oε

es for ε = 0.25, considering
parameters for 128 bits of security.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Error probability ε

0

20

40

N
u

m
b

er
η

of
q
u

er
ie

s

95% quantile

Average

Figure 8: The number of queries to Oε
es needed to recover the key for different values of ε,

considering parameters for 128 bits of security. For each value of ε, we use data from the
simulation of key recovery of 1000 freshly generated keys.

Figure 9 illustrates the real number of challenged needed for a full key recovery, for
different number of repeated challenges. For each number ρ of repeated challenges in
{1, 5, 9, 13, 17, 21, 25}, we computed the weighted average error rate by considering both
the store and load operations. Notice that the average has to be weighted because store
operation is used once for each bit in the first copy of each RM block, while the load
is used for the other copies. Then for this average error rate, we used the number of
queries needed for the attack in Figure 8 and multiplied it by ρ to get the true number
of challenges for a real-world attack2. We can see that, for attacking ExpandAndSum
under our target devices, it does not seem to be useful to average the result for multiple
challenges. The reason is that, from each different challenge, we get a lot more information
to compute the likelihoods than we get from repeating the challenge to get rid of noise.

5 SCA of the FindPeaks Operation
In this section, we show that side-channel leakage from the FindPeaks operation within
the Reed-Muller decoding procedure can be used to deduce the output of the Reed-Muller
decoding procedure. This information can be used by an attacker for full key recovery
using valid chosen ciphertexts.

2It is useful to think as if the averaged result of the SCA constitute one query to the abstract oracle.

24 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

1 5 9 13 17 21 25

Number of repeated challenges for averaging

0

20

40

T
ot

al
ch

al
le

n
ge

s Power SCA with O0

Power SCA with O3

EM SCA with O0

EM SCA with O3

Figure 9: The real number of challenges to a target device needed to recover the key when
using different number of repeated challenges for averaging, considering parameters for
128 bits of security.
5.1 Side-Channel Vulnerability

The FindPeaks operation is the final operation in the Reed-Muller decoding procedure.
Refer to Alg.4 for the pseudo-code of the FindPeaks procedure and Fig.11 for the C code
snippet of the FindPeaks operation. This operation takes as input an array in with 128
elements and involves finding the index denoted as pos (7 bits), that contains the absolute
maximum value. This implementation of the peak finding operation is shown in Lines 7
to 17 of Fig.11. The operation iterates over every element of the array in (i.e.) in[i] for
i ∈ [0, 127], and the operation in each iteration is given as follows: For element in[i], it
computes its absolute value denoted as abs in Line 10.

Then, it computes a variable denoted as mask (Line 12) based on the absolute value
of the previous peak (peak_abs) and abs. The mask variable can only take two possible
values - 0x0000/0xFFFF where mask = 0x0000, when peak_abs > abs, and mask = 0xFFFF
when peak_abs ≤ abs. The mask variable is then used to update the pos variable, with
the index of the newly identified peak (Line 15). Similarly, it is also used to update the
peak variable, which contains the value of the current peak (Line 14), and the peak_abs
variable, which contains the absolute value of the current peak.

Thus, we observe that the mask variable takes the value of 0xFFFF, only when a
new peak is encountered. On the other hand, mask = 0x0000, whenever no new peak is
encountered. Thus, identifying the mask variable for every iteration of the FindPeaks
operation, can enable an attacker to recover the index of the peak. The last occurrence of
mask = 0xFFFF in the 128 iterations of the FindPeaks operation provides the position
of the peak variable (pos in Line 15. This comprises of the 7 least significant bits of the
output of the FindPeaks operation.

The mask variable can only take two values: 0x0000/0xFFFF, which have a Hamming
Weight (HW) difference of 16 bits. Thus, these two values should be easily distin-
guishable through the power/EM side-channel. In order to distinguish between mask =
0x0000/0xFFFF, we utilize the same t-test based template technique that we utilized to
recover single bits of the RM codeword using leakage from the ExpandAndSum opera-
tion (Refer to Sec.4.1.2). While leakage from the ExpandAndSum operation involved
distinguishing 1 bit of information (i.e.) 0 vs 1, leakage due to the mask variable in the
FindPeaks operation is much more pronounced since the difference between the two possi-
ble mask values is 16 bits. We propose to build a template for the mask = 0x0000/0xFFFF,
in each of the 128 iterations of the FindPeaks operation. This template can then be used
to recover the value of the mask variable in every iteration of the FindPeaks operation.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 25

0 2500 5000 7500 10000 12500 15000 17500
Features

100

50

0

50

100

150

200
T-

te
st

Find Peaks

0 2500 5000 7500 10000 12500 15000 17500
Features

0

100

200

300

400

T-
te

st

Find Peaks

(a) EM side-channel (b) Power side-channel

Figure 10: t-test leakage corresponding to Mask variable in the second iteration of the
FindPeaks operation.
5.2 Experimental Evaluation

Refer to Fig.10 which shows the t-test leakage due to the mask variable in the second index
of the FindPeaks operation (as a representative), for O3 optimized implementation, using
both the EM and power side-channel. We can observe a very high peak in the t-test plot,
and this leakage can be used to build template for the mask = 0x0000/0xFFFF for the
second iteration. Similarly, leakage of the mask variable in other iterations can be obtained
to build side-channel templates. For the O3 optimized implementation, we obtained a
100% success rate in recovering the mask variable even with single traces, using both the
power and EM side-channel. Since the leakage is very dominant, averaging of side-channel
traces is not required to amplify success rate.

Thus, we observe that this leakage can be used to easily recover the least 7 significant
bits of the output of the FindPeaks operation. In the following, we show how this
information can be used to recover the key, when a sufficiently large number of challenges
is analyzed.

1 uint8_t find_peaks (uint16_t in [128])
2 {
3 uint16_t peak_abs = 0;
4 uint16_t peak = 0;
5 uint16_t pos = 0;
6 uint16_t t, abs , mask;
7 for (uint16_t i = 0; i < 128; i++)
8 {
9 t = in[i];

10 abs = t ^ ((-(t >> 15)) & (t ^ -t));
11 /* Computation of Mask Variable */
12 mask = -(((uint16_t)(peak_abs - abs)) » 15);
13 /* Utilization of Mask Variable */
14 peak ^= mask & (peak ^ t);
15 pos ^= mask & (pos ^ i);
16 peak_abs ^= mask & (peak_abs ^ abs);
17 }
18 pos |= 128 & ((peak >> 15) - 1);
19 return (uint8_t) pos;
20 }

Figure 11: C code snippet of FindPeaks operation in RM decoder of HQC KEM. The
target operations/variables for SCA are highlighted in red.

26 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

5.3 Key Recovery Attack
We emphasize that the key recovery algorithm using SCA on FindPeaks is more complex
than the one used for attacking ExpandAndSum. However, the algorithm we explain
in this section can be used to attack even the shuffled implementation of FindPeaks.
Therefore, in this section, we take some time to carefully explain it in detail.

5.3.1 The oracle

Remember that FindPeaks is called n1 times, that is, one call for each RM block. Let
cfp

j ∈ F8
2 denote the output of FindPeaks applied to the j-th RM block. FindPeaks

is the last step of the RM decoding, therefore there are two possibilities: either the RM
decoder corrected all errors in the j-th block, or it did not. If the RM decoder successfully
corrected all errors in the j-th block, then cfp

j = crs
j , where crs

j denotes the j-th 8-bit block
of the Reed-Solomon encoding of the message m, as shown in Figure 1. But notice that,
since the attacker knows m, they can easily compute the exact value of each crs

j by simply
encoding m with the Reed-Solomon code.

Therefore, the attacker can use the side-channel information on the FindPeaks output
to be confident that the decoding of the j-th RM block did not corrected all the errors
whenever there is a difference in the 7 least significant bits of cfp

j and crs
j . This motivates us

to define the oracle Ofp that, when called with input pk, returns the tuple (d, m, r1, r2, e),
whose elements are explained next.

As usual, r1, r2 and e are are honestly chosen following the encryption of vector m
using public key pk, as described in Algorithm 1 using public key pk. The side-channel
information is represented by vector d ∈ Fn1

2 , such that, each of its entries j is

d[j] =
{

0, if the 7 least significant bits of cfp
j and crs

j are equal,
1, otherwise.

We can use oracle Ofp to define its noisy variant Oε
fp as follows. On input pk, oracle

Oε
fp first calls its parent oracle obtaining (d′, m, r1, r2, e)← Ofp(pk). It then generates a

noise vector e⋆ ∈ Fn1
2 in which each coordinate has probability ε of being 1. Then compute

vector d ∈ Fn1
2 as d← d′ + e⋆. Finally, oracle Oε

fp returns the tuple (d, m, r1, r2, e).

5.3.2 Using the oracle to get information on the key

In this section, we investigate what kind of information on the secret key we can learn from
querying the oracle Oε

fp. Remember that the input for the decoding process is c′ = mG+ ê,
where ê = x · r2 + y · r1 + e. First, the last n − n1n2 bits of c′ are dropped, and the
resulting n1n2-bit vector is broken into n1 blocks of n2 bits, and each of them is a RM
codeword with some added noise.

Let c′
j and êj denote the corresponding blocks of n2 bits of c′ and ê, respectively, that

is c′
j = slicen2

jn2
(c′) and êj = slicen2

jn2
(ê). Since the repeated Reed-Muller code used to

encode each block is a linear code with minimum distance n2/2, then the RM decoder will
be able to correct the errors in c′

j if the weight of êj is w (êj) ≤ ⌊(n2/2− 1)/2⌋. Therefore,
if the j-th bit of the oracle output d is equal to 1, then, with probability 1− ε, we know
that the weight of block êj must be larger than ⌊(n2/2− 1)/2⌋.

Now ê is related to x, y, r1 and r2 by the following equation

ê =
∑

s∈supp(r2)

(x≫ s) +
∑

s∈supp(r1)

(y≫ s) + e.

Since e is sparse, the position of non-null entries of ê correlate with the non-null entries of
the shifts of x and y that are selected by vectors r2 and r1, respectively, in the summations

T. Paiva, P. Ravi, D. Jap, S. Bhasin 27

above. Our main observation is that the attacker can then use the knowledge on the
failures on each RM block, together with r1 and r2, to infer the number of non-null entries
in the shifts of y and x, respectively.

Let us make this observation more formal. For concreteness, consider the related
vectors y and r1, but notice that we could have chosen x and r2 without loss of generality.
Let us consider the j-th RM block êj , and notice that it can be written as

êj ≈
∑

s∈supp(r1)

slicen2
jn2

(y≫ s) ≈
∑

s∈supp(r1)

slicen2
(jn2−s) (y) .

Therefore, from d[j] and r1, we can learn a small amount of information on the weight
of slicen2

(jn2−s) (y) for each s in supp (r1). For example, if d[j] = 1, then, for each s in
supp (r1), we increase our belief that the weight of slicen2

(jn2−s) (y) is higher than previously
thought, otherwise we decrease it. Furthermore, if we have a sufficiently large number
of pairs of (r1, d), the values of (jn2 − s) mod n should cover the full set of integers
modulo n, which means we must be able to learn the weight of slicen2

i (y) for each possible
i ∈ {0, . . . , n− 1}.

This motivates us to define two vectors w1 and w2 in Rn. Each entry w1[i] represents
the average number of failures when slicen2

i (y) was selected by an entry of r1, while,
analogously, each entry w2[i] represents the same quantity but for x and r2. Algorithm 5
shows how to build these vectors using outputs from Oε

fp. Suppose we made η queries to
Oε

fp, obtaining
(
dk, rk

1 , rk
2
)
, for k = 1 to η. Then we build w1 and w2 as

wα = Buildw
((

rk
α, dk

))
, for α = 1 and 2.

Algorithm 5 Building vectors wα using the corresponding answers from oracle Oε
fp.

1: procedure Buildw(Pairs (rk
α, dk) for k = 1 to η)

2: (counts, sum)← (0, 0) ∈ Rn × Rn

3: for k = 1 to η do ▷ Iterate over oracle answers
4: for s in supp

(
rk

α

)
do ▷ Iterate over the rows selected by rk

5: for j = 1 to n1 do ▷ Iterate over RM blocks
6: i← jn2 − s mod n ▷ Block j in row s corresponds to slice [i : i + n2]
7: counts[i]← counts[i] + 1
8: sum[i]← sum[i] + dk[j]
9: end for

10: end for
11: end for
12: wα ← 0 ∈ Rn ▷ Initialize wα

13: for i = 1 to n do
14: wα[i]← sum[i]/counts[i] ▷ Average number of failures related to slice [i : i + n2]
15: end for
16: return wα

17: end procedure

Figure 12 illustrates how, for a sufficiently large number η of oracle queries, w1 and
w2 can be seen as approximations of the weights each possible slice of n2 bits of y and
x, respectively. In particular, the figure shows this comparison for w1 and y, considering
η = 5 million queries. We can clearly see that the shapes of both graphs are very similar,
except that there is considerable noise in w1, despite the large number of queries.

28 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

5000 6000 7000 8000 9000 10000
0.0004

0.0006

0.0008

0.0010
V

al
u

e
of

w
1
[i

] Positions in supp(y)

5000 6000 7000 8000 9000 10000

Index i

0

2

4

6

W
ei

gh
t

of
sl

ic
en

2
i

(y
)

Positions in supp(y)

Figure 12: A comparison between w1 and the weight of each slice of n2 bits of y, considering
η queries to Oε

fp with ε = 0 and parameters for 128 bits of security.
5.4 Recovering the key
We now discuss how to use the information from Oε

fp to effectively recover the key. In
particular, we define how to compute likelihood vectors from the information provided by
the oracle that are summarized by the w1 and w2.

For concreteness, let us focus on vector y, but notice that our discussion works
analogously for x. Let us denote the weight of the i-th slice of n2 bits of y by

∆y(i) = w (slicen2
i (y)) .

Notice that, as shown in Figure 12, this definition implies that vector w1 can be seen as a
noisy representation of ∆y.

We can point the following two distinguishing patterns that allow us to distinguish
some of the non-null entries of y from ∆y.

• If ∆y(i) > ∆y(i+1), then y[i] = 1. This happens because there is a one in slicen2
i (y)

but this one is not in slicen2
i+1 (y). Since the slices differ only in the first and last

entries, the only way to observe this is when y[i] = 1 and y[i + n2] = 0.

• If ∆y(i − n2) < ∆y(i − n2 + 1), then y[i] = 1. In this case, a new one was found
when going from slicen2

i−n2
(y) to slicen2

i−n2+1 (y). Since slicen2
i−n2+1 (y) contains y[i]

and slicen2
i−n2

(y) does not, then this happens when y[i] = 1 and y[i− n2] = 0.

These two patterns can be seen in Figure 12, by noticing that the non-null entries of of
y are typically located on the right edges of the graphs, which are distant by n2 positions
of one left edge. We point that, when looking at Figure 12, it is tempting to consider that
the associated edge is the closest left edge at the same level, but when there are close
non-null entries in y, this is not true. Consider, for example, the entries located between
i = 8000 and i = 8500, where the corresponding right and left edges are not at the same
level.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 29

While these two cases can help us find most of the ones, there is an important caveat:
when y[i] = y[i + n2] = y[i + 2n2] = 1, the middle non-null entry at y[i + n2] cannot
be detected by any of the cases. Additionally, this case could be extended for 4 or more
non-null entries separated by n2 bits in a sequence. To see this, suppose, as a toy example,
that supp (y) = {n2, 2n2, 3n2}. Then 0 = ∆y(0) < ∆y(1) = 1, and therefore we detect
that y[n2] = 1. Additionally, 1 = ∆y(3n2) > ∆y(3n2 + 1) = 0, from which we conclude
that y[3n2] = 1. But there is no transition in ∆y that allows us to detect that y[2n2] = 1,
since both ∆y(n2) = ∆y(n2 + 1) = 1 and ∆y(2n2) = ∆y(2n2 + 1) = 1.

However, a careful consideration of the perfect information from ∆y allows us to detect
this cases. One could detect these problematic cases by noticing a place where there is a
left edge but no corresponding right edge at n2 positions after, and flagging it as a 1. The
problem is that, when we try to build the likelihood functions with the noisy representation
of ∆y provided by w1, such techniques are difficult to code and they do not seem to be
very robust.3 As we demonstrate next, we use a simpler technique that appears to be
effective when recovering the key.

These observations form the basis of how we can compute likelihoods based on w1 and
w2, which, as we discussed in the previous section, can be seen as an approximation of
∆y and ∆x, respectively. To compute the likelihoods, we propose Algorithm 6. Together
with the vector wα, the algorithm takes two parameters: integers ℓ and ν. Parameter ℓ
serves as the window size that is used to smooth out the noisy vector wα. Parameter ν is
important in corner cases, such as the one mentioned in the last paragraph, and its role is
explained next.

Algorithm 6, on input w, ν, and ℓ computes the likelihoods in two phases. First it
computes the likelihoods of each index by considering the sizes of the steps around it,
considering the difference between the averages of two window of length ℓ, one before and
one after i. Higher differences moving down (positive diff), increase the likelihood of
index i, high differences moving up (negative diff), increase the likelihood of index i + n2.
Then, if ν > 0, comes the vetting of indexes that are at a distance multiple of n2 from
points of high likelihood. If this is the case, then for the 2w points of highest likelihood,
the likelihoods of its neighbors at cyclic distance jn2 is set to ∞, for j = 1 to ν, which
means that they will not be considered as a non-null entry when trying to solve the key
equation.

Now that we defined the likelihoods function we are ready to define the full recovery
algorithm as Algorithm 7. Essentially, this algorithm combines calls to the key equation
solving from Algorithm 3 with the iteration over possible values of η and window size ℓ,
from 0 to ηmax and 1 to ℓmax, respectively.

The choice of iterating over parameters ℓ and ν before computing the likelihood
dramatically reduces the number of oracle queries needed to recover the key, at the cost
of more processing power. The reason why we iterate over them is that it seems to be
difficult to give a fixed set of parameters (ℓ, ν) that at the same time fit all public keys
and attacking setups. On the one hand, a large ℓ is better to get rid of the noise when the
number η of queries to Oε

fp is small or when the oracle error ε is high. On the other hand,
in cases when there are non-null entries in x or y that are close to each other, a smaller ℓ
is better for distinguishing them.

Parameter η clearly is important when the public key falls into the problematic case
of more than 2 ones separated by n2 positions. However, even if there are only 2 ones
separated by n2 positions, we observed that η = 1 ends up being very useful as these
cases are also harder to detect because only one of the edges will be apparent in the noisy
vectors wx or wy.

3We tried implementing these detection methods, but we faced the problem that these events are rare
and there is too much noise to accurately detect them. Furthermore, if these cases are not detected, the
key recovery becomes very difficult.

30 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

Algorithm 6 Computing the likelihoods for vector w using moving averages of length ℓ.
1: procedure Likelihoods(w, ν, ℓ)
2: likelihoods← 0 ∈ Rn

3: for i = 0 to n− 1 do
4: mean_before← Mean value of sliceℓ

i−ℓ+1 (w) ▷ Includes i
5: mean_after← Mean value of sliceℓ

i+1 (w) ▷ Does not include i
6: diff← mean_before− mean_after ▷ Higher values on right peaks
7: likelihoods[i]← likelihoods[i] + diff
8: likelihoods[i + n2]← likelihoods[i + n2]− diff
9: end for

10: if ν > 0 then ▷ If ν > 0 then comes the vetting of indexes
11: sorted_likelihoods_indexes← Indexes of likelihoods in decreasing order
12: for k = 0 to 2w − 1 do
13: i← sorted_likelihoods_indexes[k]
14: for v = 1 to ν do
15: likelihoods[i + νn2]←∞
16: likelihoods[i− νn2]←∞
17: end for
18: end for
19: end if
20: return likelihoods
21: end procedure

Algorithm 7 Recovering the key using the Oε
fp.

1: procedure KeyRecovery(w1, w2)
2: for ν = 0 to νmax do
3: for ℓ = 1 to ℓmax do
4: likelihoodsx ← Likelihoods(w2, ℓ, ν)
5: likelihoodsy ← Likelihoods(w1, ℓ, ν)
6: y← TryToSolveKeyEquation(likelihoodsx, likelihoodsy)
7: if y ̸= ⊥ then
8: return y
9: end if

10: end for
11: end for
12: return ⊥
13: end procedure

Figure 13 shows the number of queries needed for a successful attack against 128 bits of
security parameters using oracle Oε

fp. For each value of ε, we use data from the simulation
of key recovery of 30 freshly generated keys, using parameters νmax = 4 and ℓmax = 50.
Notice that even a small increase in ε from 0 to 0.0025 has a significant impact on the
number of queries needed, which goes from about 200000 to more than a million. This
happens because RM errors rarely occur and even a small error ε = 0.0025 causes a lot of
noise.

We conclude this section by pointing that, differently from what we did when attacking
ExpandAndSum, we do not need to consider the effect of averaging. This is because, as
mentioned in the beginning of the section, we observed a 100% accuracy for our classifier
of the 7 least significant bits of the output of FindPeaks.

6 Attacking Protected Implementations
In the previous sections, we demonstrated the ability of our attack to perform full key
recovery on unprotected implementations of the ExpandAndSum and FindPeaks opera-

T. Paiva, P. Ravi, D. Jap, S. Bhasin 31

0.00 0.02 0.04 0.06 0.08 0.10

Error probability ε

105

107

N
u

m
b

er
η

of
q
u

er
ie

s

η = 188333

95% quantile

Average

Figure 13: The number of queries to Oε
fp needed to recover the key for different values of

ε, considering parameters for 128 bits of security.
tion within the Reed-Muller decoder. We showed that our attacks are robust to noise in the
side-channel measurements and are capable of full key recovery, even in the presence of non-
negligible error in the information extracted from the side-channel measurements. In the
following, we study the applicability of our attack to two well-known SCA countermeasures
- (1) Shuffling and (2) Masking.

In Sec. 4 and Sec. 5, we demonstrated the profiling leakage of the ExpandAndSum and
FindPeaks operation for known codewords, can be used to build templates, which can be
used to recover information about the codeword, leading to full key recovery. However,
both the shuffling or masking countermeasure randomize execution of operations on the
codeword, which ensures that an attacker cannot profile leakage for known codewords.
This disables the attacker from using leakage detection techniques such as TVLA to build
templates for side-channel analysis. In this respect, we assume two scenarios.

1. Access to Clone Device: In the presence of a clone device, the attacker can build
templates using leakage from the clone device, where the attacker can control of
have knowledge of the shuffling order, in case of the shuffling countermeasure, or the
knowledge of the shares in case of the masking countermeasure. This will allow the
attacker to still build templates for target operations corresponding to known values
of the codeword.

2. No Access to Clone Device: In this scenario, the attacker has to adopt unsupervised
approaches towards building templates, as he cannot control the shuffling/masking
countermeasure on the target device. In this respect, we present novel methodologies
on how to detect leakage from the target operations directly using leakage from the
target device.

We first study the applicability of our attack to the shuffling countermeasure, followed
by the masking countermeasure.

6.1 Shuffled Implementation of ExpandAndSum Operation
In the shuffled implementation of the ExpandAndSum Operation, we assume that the bits
are extracted and processed in a random order. We first explain our methodology to build
templates using leakage directly from the shuffled implementation of the ExpandAndSum
operation, followed by our key recovery attack.

6.1.1 Building Templates directly on Target Device

For the attack on shuffling countermeasure, we assume that the attacker has (partial)
knowledge on when the bit of the codeword is being processed during the execution, but

32 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

could not know the exact position of the bit on the trace. For the attack, we adopt the
approach from unsupervised machine learning, namely, using k-means clustering [Mac67].
In our case, since our target is bit value, k = 2. The general idea of the attack can be
found in Algorithm 8.

Algorithm 8 k-means clustering for attacking shuffling protected implementation
1: procedure K-Means(T, repeat)
2: L← 0 ∈ RN

3: TVLA← 0
4: idx← 0
5: for i = 0 to n− 1 do ▷ Run the clustering for each time samples
6: µ0, µ1 ← RandomAssign(Ti) ▷ Assign 2 traces randomly as mean cluster
7: temp_label← ShortestDistance(Ti, µ0, µ1) ▷ Assign label to each trace
8: µ0, µ1 ← UpdateLabel(temp_label, µ0, µ1) ▷ Update cluster mean
9: for j = 1 to repeat-1 do ▷ Repeat the procedure

10: temp_label← ShortestDistance(Ti, µ0, µ1)
11: µ0, µ1 ← UpdateLabel(temp_label, µ0, µ1)
12: end for
13: temp_TVLA← CalcTVLA(temp_label) ▷ Calculate absolute TVLA value
14: if temp_TVLA > TVLA then
15: TVLA← temp_TVLA
16: idx← i
17: L← temp_label
18: end if
19: end for
20: return L
21: end procedure

The general intuition for the approach is: for given time samples, if there is high
leakage (as indicated by TVLA value), the trace should be easily clustered and this should
be captured through k-means algorithm. Hence, this approach is related to the quality of
the leakage. We would like to emphasize that this is a heuristic approach.

As a proof of concept, we performed experiments on EM side-channel leakage obtained
from the shuffled ExpandAndSum operation on O0 optimized implementation. We
collected 50, 000 raw non-averaged traces with shuffling implementation and refer to
Figure 14, which shows the TVLA calculated using the correct label, as well as TVLA
calculated using predicted label obtained using k-means clustering. As observed, that
within the region of interest, the predicted label achieve similar TVLA as the actual one.
Indeed, when we compute the similarity between the predicted label and actual value, we
achieve 100% similarity. However, note that there are other TVLA peaks as well that are
not in the region of interest. Nevertheless, if the attacker has approximate knowledge of
the location of the processed bits, then he/she should be able to differentiate between the
true peaks from the false peaks.

The results for our experiments are then shown in Figure 15. For O0, we observe
that it could achieve low error rate (< 0.05) for all bits. A more sophisticated attacker
with a better SCA setup can potentially perform perfect recovery of all the bits. One
can adopt a similar approach for O3 optimized implementation as well, but it is expected
that the success rate in recovery will be impacted, given that leakage from O3 optimized
implementation is less pronounced than O0 optimized implementation. Nevertheless, we
have shown that it is indeed possible to build side-channel templates directly from leakage
of the shuffled ExpandAndSum operation.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 33

8000 10000 12000 14000 16000 18000 20000
Time samples

0

50

100

150

200

250

300

TV
LA

Actual vs Predicted TVLA

actual TVLA
predicted TVLA

Figure 14: Actual vs Predicted TVLA of O0 implementation (shaded areas indicate
different targeted bits)

0 1 2 3 4 5 6 7
Bit

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r r
at

e

Attack on o0

Figure 15: Error Rate for O0 implementation
6.1.2 Key Recovery Attack

In a shuffled implementation of ExpandAndSum, while we still can accurately recover
each bit of c′ = mG + ê, the problem is that we cannot know its position, and therefore
cannot use the same key recovery procedure.

Therefore, side-channel analysis on the shuffled implementation of ExpandAndSum
allows us to recover the hamming weight of each of the n2-bit blocks where the shuffling
occurs. In this section, we show that this information is enough to recover the key using
an idea similar to the one used in Section 4.

The Oracle. Let Os(es) denote the oracle that models the information given by the
side-channel information on the shuffled implementation of ExpandAndSum. On input
pk, it returns a freshly generated tuple (w, m, r1, r2), where r1 and r2 are the random
sparse vectors used for the encryption of m, and w ∈ Zn1 is the list of weights of each
block of n2 bits of the noisy codeword c′ = mG + x · r2 + y · r1 + e.

To account for possible errors during the side-channel analysis, we define a generalized
oracle Oε

s(es) that also returns a tuple (w, m, r1, r2), but the output is computed as follows.
First, Oε

s(es) calls the perfect oracle (w′, m, r1, r2)← Os(es)(pk). Then it computes

w[j] =
w′[j]∑
i=1

(1−Bi) +
n2∑

i=w′[j]+1

Bi,

where each Bi is a Bernoulli random variable with ε probability of being 1. Intuitively, the
idea is that the Bi variables represent a possible bit error when using SCA to recover a bit.

34 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

The Likelihoods Vectors. Now let us analyze how the outputs of oracles Os(es) and Oε
s(es)

give us information on the secret key. Suppose we are given an output (w, m, r1, r2) of
Os(es). Notice that, since we know m, we can compute crmrs = mG, and let crmrs

j denote
the j-th RM block of n2 bits of the encoded message, where j goes from 0 to n− 1.

Now, compare the weight of each crmrs
j with w[j]. We know that, by definition

w[j] = w
(
crmrs

j + êj

)
, where êj is the j-th block of n2 bits of vector ê = x · r2 + y · r1 + e.

As in the other attacks, our intention is to exploit the fact that ê is directly dependent on
the secret key, but we do not have access to its entries directly.

Consider vectors w[j] and crmrs
j that we know, since we have access to oracle Os(es).

We can see that there are two cases of interest.

1. When w[j] > w
(
crmrs

j

)
, then at least one of the non-null entries of êj was responsible

for flipping a bit of crmrs
j from a 0 to a 1.

2. Similarly, when w[j] < w
(
crmrs

j

)
, then there was an entry in êj responsible for

flipping a 1 to a 0.

This motivates us to define the vector flip_candidates ∈ {0, 1}n1n2 such that

flip_candidates[i] =

1− crmrs[i], if w

(
crmrs

⌊i/n2⌋

)
> w [⌊i/n2⌋]

crmrs[i], if w
(

crmrs
⌊i/n2⌋

)
< w [⌊i/n2⌋]

0, otherwise.

(2)

Intuitively, if flip_candidates[i] = 1, then crmrs[i] may have been one of the bits flipped
by the error ê when computing c′ = crmrs + ê. In other words, if the weight of the block j
of n2 bits increased when going from crmrs to c′, then all of the null entries in the block j
are marked as 1. Alternatively, if the weight of the block j decreased, then all of the null,
entries in the block j are marked as 1.

We are now ready to define a likelihood function that can be seen as a variant
of the one used for attacking the non-shuffled implementation of ExpandAndSum.
Suppose we make a number η of queries to oracle Oε

s(es), and obtain a set of tuples{(
wk, mk, rk

1 , rk
2
)

for k = 1 to η
}

. Let flip_candidatesk denote the vector defined in
Equation 2, by using the results of each query k make the substitution of variables as
w← wk and crmrs ←mkG.

Then we compute the likelihood vectors likelihoodsx and likelihoodsy as

likelihoodsx[j] =
η∑

k=1

∣∣supp
(
flip_candidatesk

)
∩ supp

(
rk

2 ≫ i
)∣∣ ,

likelihoodsy[j] =
η∑

k=1

∣∣supp
(
flip_candidatesk

)
∩ supp

(
rk

1 ≫ i
)∣∣ .

We invite the reader to compare these likelihood vectors with the ones used to attack
the non-shuffled implementation of ExpandAndSum in Section 4.4. In particular, it is
interesting to notice that the ones used for the non-shuffled implementation can be seen as
a particularization of these new ones when the shuffling block has length 1, and not n2.

Key Recovery. Now, with the likelihood vectors in hand, we can use them together with
the Algorithm 3 to try to solve the key equation. Figure 16 shows the number of queries
needed for a successful attack against 128 bits of security. For each value of ε, we simulated
the attack against 100 random keys. We can see that the attack is very efficient, allowing

T. Paiva, P. Ravi, D. Jap, S. Bhasin 35

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Error probability ε

500

1000
N

u
m

b
er
η

of
q
u

er
ie

s
95% quantile

Average

Figure 16: The number of queries to Oε
s(es) needed to recover the key for different values

of ε, considering parameters for 128 bits of security.
us to recover the secret key with less than 200 queries, on average, even for bit error rates
close to ε = 0.10.

Remember that, differently from our SCA against FindPeaks, that there is also some
possible bit error rates when trying to recover the hamming weight of the blocks of c′.
Therefore, just like what was done in Section 4.4, it is useful to consider the effect of
averaging multiple traces in the key recovery. Figure 17 shows the results on the true
number of challenges needed for the recovery attack. Again, the best results were observed
when using only 1 trace for the same challenge, instead of multiple ones. In particular,
our results suggest that about 300 traces are enough, on average, to recover the secret key
under the two setups (EM and power) and optimization levels.

1 5 9 13 17 21 25

Number of repeated challenges for averaging

102

103

T
ot

al
ch

al
le

n
ge

s

Power SCA with O0

Power SCA with O3

EM SCA with O0

EM SCA with O3

Figure 17: The real number of challenges to a target device needed to recover the key
when using different number of repeated challenges for averaging, considering parameters
for 128 bits of security.

6.2 Shuffled Implementation of FindPeaks Operation
In the shuffled implementation of the FindPeaks operation, we assume that the elements
of the input array are processed in a random order. In this respect, we can adopt the
same approach that used for building templates directly on the shuffled ExpandAndSum
operation, to build templates for the mask variable, for every iteration of the FindPeaks
operation.

Refer to Section 6.1.1 for a detailed description of the same. From Figure 18, we plotted
the TVLA calculated using actual label. We then calculated the TVLA using predicted

36 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

8000 9000 10000 11000
Time samples

0

100

200

300

400

500

TV
LA

Actual vs Predicted TVLA

actual TVLA
predicted TVLA

Figure 18: Actual TVLA vs TVLA from k-means prediction for Find Peaks CW O3
implementation (shaded area indicates region of interest)
label obtained using k-means clustering. As observed, that within the region of interest,
the predicted label achieve similar TVLA as the actual one. Indeed, when we compute the
similarity between the predicted label and actual value, we achieve 100% similarity. Thus,
we can see that it is indeed possible to build side-channel templates directly from leakage
of the shuffled FindPeaks operation.

6.2.1 Key Recovery Attack

The Oracle. To model the information we get from side-channel analysis of the Find-
Peaks operation, first we define two oracles: Os(fp) and its noisy generalization Oε

s(fp).
Given a public key pk, the oracle Os(fp) outputs a tuple (p, m, r1, r2). As usual, r1 and r2
are the random sparse vectors used for the encryption of m using pk. The side-channel
information is contained in vector p ∈ Zn2 , in which p[j] denotes the number of times
there is a change of value in the variable containing the current peak when iterating over
the shuffled a′′ array. Formally, this value is:

p[i] = |{i ∈ {0, . . . , 127} : |a′′[i]| > |a′′[j]| , for all 0 ≤ j < i}| .

Similarly, on input pk, the noisy oracle Oε
s(fp) also outputs a tuple (p, m, r1, r2),

where p is the number of times the peak changed but with some noise dependent on
ε. Therefore, the noisy oracle Oε

s(fp) behaves as follows. First call the non-noisy oracle
(p′, m, r1, r2)← Os(fp). Then compute

p[j] =
p′[j]∑
i=1

(1−Bi) +
n2∑

i=p′[j]+1

Bi,

where each Bi is a Bernoulli random variable with ε probability of being 1. That is, each
Bi introduces an error of an entry being wrongly classified as a change in the variable
containing the current peak. Oracle Oε

s(fp) then returns (p, m, r1, r2).

The Likelihoods Vectors. Remember that, in Section 5.4, we developed a key recovering
algorithm that uses the information from oracle Oε

fp, which outputs whether each block of
RM codewords was successfully decoded or not. Furthermore, remember that the main
argument for the algorithm to work is: when there is a decoding failure in the j-th RM
block, it means that the weight of êj must be high. The difficulty when attacking the
shuffled implementation of FindPeaks is that we cannot accurately detect when there is
a RM error in the block. In particular, the shuffling makes does not let us compute the
FindPeaks outputs, and therefore we cannot compare their 7 least significant bits with
what is expected when the RM decoding successfully decoded all errors in each block.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 37

2 4 6 8 10 12 14 16 18

Unique absolute values in a′′

0

50

100

150
E

rr
or

w
ei

gh
t

(a) Correlation between error weight and the
number of unique absolute values in a′′.

1 2 3 4 5 6 7 8 9 10 11 12

Number p[j] of changes

0

50

100

150

E
rr

or
w

ei
gh

t

(b) The correlation between p[j] and the weight
of êj .

Figure 19: The correlations observed that allow key recovery, considering parameters for
128 bits of security. The grey error bands illustrate the standard deviation.

Let us then work with the information given by Oε
s(fp), which is the number of times

the variable computing the peak changes in a shuffled implementation of FindPeaks. We
can point the following two conditions for one such number p[j] to be high.

1. The first one is when the peak is located in the end of the vector a′′, so there is more
opportunity for the current peak variable to be changed during the computation.

2. The second condition is when there is a large number of unique entries in the array
a′′. This makes it more likely that the variable with the current peak will take
different values before finding the peak.

Notice that, because of the shuffling, the position of the peak is independent of the error
weight, which means the first condition is not useful for us. However, the second condition
can be exploited, as we explain next.

Remember that the a′′ vector, which is the output of the Hadamard transform, can be
seen as encoding the distance from the corrupted RM codeword and each possible valid
codeword. Intuitively, then, when the noise is high, the variance within the absolute value
of the entries in the a′′ vector should also be higher. Figure 19a shows that this appears
to indeed be the case, that is, the number of unique values in a′′ is positively correlated
the error weight.

Now, to attack the shuffled implementation of FindPeaks using oracle Oε
s(fp), we

need to verify that the following information flow is valid. From p[j] we expect to get
information on the number of unique values in a′′ of the block j, which in turn is related
to the weight of the j-th block of n2 bits in the error ê.

Figure 19b demonstrates this correlation, where we can see that larger values of p[j],
on average, corresponds to higher error weights in êj . However, the standard deviation,
which is shown as the grey error bands, is relatively large. This suggests that, if we want
to use this information for key recovery, we may need a large number of queries to get rid
of the noise.

With this correlation, we conclude that the values in p are higher when the weight of
the error ê in each corresponding block is also higher. But notice that this is exactly the
same property that the output d of the oracle Oε

fp, for the non-shuffled FindPeaks, also
exhibited. Therefore, we can compute the likelihoods vectors in the exact same way we
did in Section 5.4.

Formally, we first make a number η queries to Oε
s(fp), obtaining

(
pk, rk

1 , rk
2
)
, for k = 1

38 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

to η. Then we build the auxiliary vectors w1 and w2

wα = Buildw

((
rk

α, pk
)η

k=1

)
, for α = 1 and 2,

where Buildw is the procedure described in Algorithm 5. Finally, we compute the likeli-
hoods vectors as described in the special key recovery procedure described in Algorithm 7,
which iterates over parameters ν and ℓ just as we do for attacking the non-shuffled
implementation of FindPeaks.

Key Recovery. Figure 20 shows the attack performance against the 128-bit security
parameters of HQC, when FindPeaks is implemented with shuffling. We can see that
the number of queries needed for the attack is about a hundred times larger than what is
needed to attack the non-shuffled implementation of FindPeaks. Furthermore, we can see
that even a very small amount of noise greatly impacts the recovery performance. Luckily,
however, our side-channel analysis of the shuffled implementation of FindPeaks achieves
100% accuracy, and therefore the attack should be possible with about 21 million challenges,
on average, as shown in the figure. Thus, we observe that the shuffling countermeasure
for the FindPeaks operation significantly increases the number of queries compared
to shuffling for the ExpandAndSum operation, which can be defeated with only a few
thousand queries.

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030

Error probability ε

107

108

109

N
u

m
b

er
η

of
q
u

er
ie

s

η = 20800000

95% quantile

Average

Figure 20: The number of queries to Oε
s(fp) needed to recover the key for different values

of ε, considering parameters for 128 bits of security.

6.3 On Attacking Masked Implementations
To the best of knowledge, we are not aware of masking schemes for HQC KEM. Thus,
we will not be able to provide concrete details on how our attack applies to the masked
implementations. Nevertheless, we consider certain possibilities and assumptions on
how the targeted operations of our attack will be implemented in a probable masked
implementation. We assume that the codeword c′ is computed as boolean shares, where
each bit of the codeword is split into multiple boolean shares. We assume that the
ExpandAndSum operation is performed over the boolean shares of c′, and still involves
bitwise manipultion of the individual shares.

If the attacker has access to a clone device, the attacker can train on the individual
shares with knowledge of the shares, and can simply recover all the shares of the codeword
one bit at a time, to perform full key recovery. However, in absence of a clone device, the
attacker has to adopt unsupervised approaches to build distinguishers for the single bits of
the codeword.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 39

6.4 Building Templates directly on Target Device (Masked ExpandAnd-
Sum Operation)

For the attacks on masking countermeasure, one of the common approach is to combine
the time samples in which the mask and masked value are being processed. We assume
that the attacker has partial knowledge on the time window where the shares are being
manipulated. One of the main issue with combining time samples is to identify the precise
time samples, and could be further complicated by desynchronization of the trace.

Recently, it has been reported that the approach based on Deep Learning (DL) allows to
combine these samples automatically during the training and can be used to target masking
implementation directly [MDP19]. Thus, in this work, we adopt similar approach, namely,
we used Convolutional Neural Networks (CNNs), commonly used learning paradigm in
DL.

CNNs can be commonly considered to be consisting of three types of layers: convolu-
tional, pooling and fully connected layers. The convolution layer computes the output of
neurons connected to local regions in the input, where each is computing a dot product
between the weights and input within a small region (convolution kernel). Next is the
pooling layer, in which number of features is downsampled by combining the outputs from
a group of neurons at the previous layer into a single neuron in the next layer (usually
by taking the max or the average). Lastly, in fully connected layers, every neuron in one
layer will be connected to every neuron in another layer.

Since it is not the aim of this study, we did not investigate further into optimization of
the CNN model. For evaluating the attack, we use the modified version of CNN model
from [PSB+18], which can be observed in Figure 21. The size of the batch is equal to 200
and we use RMSprop optimizer with a initial learning rate of 10−5 and 200 epochs for
training (in some cases, 20 epochs is sufficient, however, for bits with low leakage, more
epochs are required and fine tuning is required to avoid overfitting).

64 128 256 512 512

4096 4096

2

Avg Pool (2)

Flatten

Softmax

Figure 21: Architecture of the modified CNN used for the attack on masking experiment

For O0 implementation, we collected 50, 000 raw non-averaged traces with simple
masking enabled. For training, validation and testing, we further split the trace into
30, 000, 10, 000 and 10, 000 traces respectively. In Figure 22a, we highlight the regions
where the mask and masked share are being processed for one byte.

From the figure, we could observe that for O0 implementation, the pattern is quite
regular and as such shares recombining might be easier. Thus, we use the knowledge of
these regions when doing the training and the attack on each bit (i.e., combining both
region for masked bit and mask value for bit i, i ∈ {0, ..., 7}.

In Figure 22b, we plot the results on CNN targeting masking implementation on O0
implementation. We observe that we can recover all the bits with almost 100% accuracy.

40 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

10000 15000 20000 25000 30000 35000
Time samples

0

50

100

150

200

250

Am
pl

itu
de

Mask shares

(a) Regions of Interest for O0 (red regions
indicate different masked bits and blue re-
gions indicate different mask values)

0 1 2 3 4 5 6 7
Bit

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r r
at

e

O0 - CNN

(b) Error rate for O0 masked implementation
on different target bits

Figure 22: Performance of CNN when attacking masked O0 implementation
This makes sense, since the pattern are regular and they have high leakage. For CNN, we
requires less than 20 epoch for training.

As such for this experiment targeting masking implementation, we have shown that
the error rates are low enough. Thus, we show that even for masking implementation, we
could achieve sufficient error rate required for the recovery for most of the bits. We do not
present an analysis for the masked FindPeaks operation, as we do not have sufficient
information on how the masked FindPeaks operation will be implemented.

7 Countermeasures and Concluding Remarks

We start by discussing potential countermeasures against our proposed attacks. Firstly, we
show in Section 6 that shuffling the ExpandAndSum operation is not sufficient to prevent
the attack, as knowledge of the Hammming Weight (HW) of the individual RM codewords
is sufficient for key recovery. However, we observe that performing a high-level shuffle in
the order of processing of the n1 RM codewords, ensures that an attacker cannot obtain
targeted information about any of the n1 RM codewords, from both the ExpandAndSum
and FindPeaks operations. While this appears to prevent key recovery, we leave concrete
analysis of the same for future work. Moreover, a combination of masking and shuffling
could also offer protection against key recovery, however a concrete analysis of the same is
also left for future work.

In this paper, we demonstrate the first chosen-ciphertext attack on HQC KEM that
is conducted using valid ciphertexts. We demonstrate how side-channel analysis of two
operations of the Reed-Muller decoder, namely the ExpandAndSum and the FindPeaks
operations, allows us to recover the HQC secret key using only valid ciphertexts. We present
novel key recovery attacks exploiting leakage from both the operations to recover the key
with 100% success rate, albeit with varying number of traces depending upon the type of
exploited leakage. All our experiments are performed on the open-source implementation
of HQC KEM taken from the pqm4 library, with our attacks validated using both the power
and EM side-channel. We also demonstrate novel key recovery attacks which also work on
shuffled implementations, thereby demonstrating that shuffling increases the attacker’s
complexity for key recovery, but does not concretely prevent the attack. Similarly, we
also discuss the applicability of our attack to masking countermeasures. To the best of
our knowledge, we are not aware of a side-channel protected design for HQC KEM, and
thus we believe our work stresses the need towards more research on secure and efficient
masking and hiding countermeasures for HQC KEM.

T. Paiva, P. Ravi, D. Jap, S. Bhasin 41

Acknowledgment
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the third round of the NIST post-quantum cryptography
standardization process. Technical report, National Institute of Standards
and Technology, 2022.

[ABB+21] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay
Gueron, Tim Güneysu, Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo
Persichetti, Jan Richter-Brockmann, Nicolas Sendrier, Jean-Pierre Tillich,
Valentin Vasseur, and Gilles Zémor. BIKE: Bit flipping key encapsula-
tion, 2021. https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.
1.pdf.

[ABB+22] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay
Gueron, Tim Güneysu, Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo
Persichetti, Jan Richter-Brockmann, Nicolas Sendrier, Jean-Pierre Tillich,
Valentin Vasseur, and Gilles Zémor. BIKE: Bit flipping key encapsula-
tion, 2022. https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.
1.pdf.

[AH21] Daniel Apon and James Howe. Attacks on NIST PQC 3rd Round Candidates,
2021. Invited talk at Real World Crypto 2021, https://iacr.org/submit/
files/slides/2021/rwc/rwc2021/22/slides.pdf.

[BCL+19] Daniel J Bernstein, Tung Chou, Tanja Lange, Rafael Misoczki, Ruben
Niederhagen, Edoardo Persichetti, Peter Schwabe, Jakub Szefer, and Wen
Wang. Classic McEliece: conservative code-based cryptography. 2019.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th
Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, 1991.

[Gal62] Robert Gallager. Low-density parity-check codes. IRE Transactions on
information theory, 8(1):21–28, 1962.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in HQC and BIKE. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 223–263, 2022.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST Non-Invasive
Attack Testing Workshop, volume 7, pages 115–136, 2011.

[GJL15] Qian Guo, Thomas Johansson, and Carl Löndahl. A new algorithm for
solving Ring-LPN with a reducible polynomial. IEEE Transactions on
Information Theory, 61(11):6204–6212, 2015.

https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf

42 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts

[GLG22] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. A new key recovery
side-channel attack on HQC with chosen ciphertext. In Post-Quantum
Cryptography: 13th International Workshop, PQCrypto 2022, Virtual Event,
September 28–30, 2022, Proceedings, pages 353–371. Springer, 2022.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Theory of Cryptography Conference,
pages 341–371. Springer, 2017.

[HPR+22] Anna-Lena Horlemann, Sven Puchinger, Julian Renner, Thomas Scham-
berger, and Antonia Wachter-Zeh. Information-set decoding with hints.
In Code-Based Cryptography: 9th International Workshop, CBCrypto 2021
Munich, Germany, June 21–22, 2021 Revised Selected Papers, pages 60–83.
Springer, 2022.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
mupq/pqm4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[LJS+16] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on McEliece
public-key cryptosystems using quasi-cyclic codes of even dimension. Designs,
Codes and Cryptography, 80(2):359–377, 2016.

[MAB+21] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux, Olivier
Blazy, Jurjen Bos, Jean-Christophe Deneuville, Arnaud Dion, Philippe
Gaborit, Jérôme Lacan, Edoardo Persichetti, Jean-Marc Robert, Pascal
Véron, and Gilles Zémor. Hamming Quasi-Cyclic: HQC, 2021. https:
//pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf.

[Mac67] J MacQueen. Classification and analysis of multivariate observations. In
5th Berkeley Symp. Math. Statist. Probability, pages 281–297. University of
California Los Angeles LA USA, 1967.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. IACR Cryptol. ePrint Arch., page
439, 2019.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[PSB+18] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ASCAD database. IACR Cryptol. ePrint Arch., page 53,
2018.

[PT20] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In Kenneth G. Paterson and Douglas Stebila, editors,
Selected Areas in Cryptography – SAC 2019, pages 551–573, Cham, 2020.
Springer International Publishing.

[RR21] Prasanna Ravi and Sujoy Sinha Roy. Side-channel analysis of lattice-based
PQC candidates. Round 3 Seminars, NIST Post Quantum Cryptography,
2021.

[Sen11] Nicolas Sendrier. Decoding one out of many. In International Workshop on
Post-Quantum Cryptography, pages 51–67. Springer, 2011.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf

T. Paiva, P. Ravi, D. Jap, S. Bhasin 43

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh,
and Georg Sigl. A power side-channel attack on the Reed-Muller Reed-
Solomon version of the HQC cryptosystem. In Post-Quantum Cryptography:
13th International Workshop, PQCrypto 2022, Virtual Event, September
28–30, 2022, Proceedings, pages 327–352. Springer, 2022.

[SRSWZ21] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh.
A power side-channel attack on the CCA2-secure HQC KEM. In Smart
Card Research and Advanced Applications: 19th International Conference,
CARDIS 2020, Virtual Event, November 18–19, 2020, Revised Selected
Papers 19, pages 119–134. Springer, 2021.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In In-
ternational Colloquium on Coding Theory and Applications, pages 106–113.
Springer, 1988.

[TS16] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set
decoding for a sub-linear error weight. In Post-Quantum Cryptography, pages
144–161. Springer, 2016.

[WTBBG19] Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, and Philippe Gaborit. A
practicable timing attack against HQC and its countermeasure. Cryptology
ePrint Archive, Report 2019/909, 2019. https://eprint.iacr.org/2019/
909.

https://eprint.iacr.org/2019/909
https://eprint.iacr.org/2019/909

	Introduction
	Background
	Notation
	HQC
	Prior SCA on HQC and Motivation
	Test Vector Leakage Assessment (TVLA) gilbert2011testing

	Our Approach to Key Recovery
	The Oracles
	Solving The Key Equation with Partial Information
	The Likelihood Vectors
	Reed-Muller Error Correcting Code
	Adversary Model

	SCA of ExpandAndSum Operation
	SCA of First_Block_Extraction
	Two Phase Codeword Recovery Attack
	Side-Channel Analysis of Other_Blocks_Accumulation
	Key Recovery Attack

	SCA of the FindPeaks Operation
	Side-Channel Vulnerability
	Experimental Evaluation
	Key Recovery Attack
	Recovering the key

	Attacking Protected Implementations
	Shuffled Implementation of ExpandAndSum Operation
	Shuffled Implementation of FindPeaks Operation
	On Attacking Masked Implementations
	Building Templates directly on Target Device (Masked ExpandAndSum Operation)

	Countermeasures and Concluding Remarks

