
On the (In)Security of the BUFF Transform

Abstract. The BUFF transform is a generic transformation for digi-
tal signature schemes, with the purpose of obtaining additional secu-
rity properties beyond standard unforgeability, e.g., exclusive ownership
and non-resignability. In the call for additional post-quantum signatures,
these were explicitly mentioned by the NIST as “additional desirable se-
curity properties”, and some of the submissions indeed refer to the BUFF
transform with the purpose of achieving them, while some other submis-
sions follow the design of the BUFF transform without mentioning it
explicitly.
In this work, we show the following negative results regarding the non-
resignability property in general, and the BUFF transform in particu-
lar. In the plain model, we observe by means of a simple attack that
any signature scheme for which the message has a high entropy given
the signature does not satisfy the non-resignability property (while non-
resignability is trivially not satisfied if the message can be efficiently
computed from its signature). Given that the BUFF transform has high
entropy in the message given the signature, it follows that the BUFF
transform does not achieve non-resignability whenever the random ora-
cle is instantiated with a hash function, no matter what hash function.
When considering the random oracle model (ROM), the matter becomes
slightly more delicate since prior works did not rigorously define the
non-resignability property in the ROM. For the natural extension of the
definition to the ROM, we observe that our impossibility result still holds,
despite there having been positive claims about the non-resignability
of the BUFF transform in the ROM. Indeed, prior claims of the non-
resignability of the BUFF transform rely on faulty argumentation.
On the positive side, we prove that a salted version of the BUFF trans-
form satisfies a slightly weaker variant of non-resignability in the ROM,
covering both classical and quantum attacks, if the entropy requirement
in the (weakened) definition of non-resignability is statistical; for the
computational variant, we show yet another negative result.

1 Introduction

1.1 Non-Resignability and the BUFF Transform

Since their introduction in the seminal work by Diffie and Hellman [DH76] as a
concept, and by Rivest, Shamir, and Adleman [RSA78] with the first proposed
instantiation, digital signature schemes play an indispensable role in modern
cryptography, both in the theory of cryptography and in practical applications.

The gold standard security property for digital signatures is unforgeability
(under chosen message attacks), demanding that it is hard to produce a valid
signature without knowledge of the secret key. However, in certain situations,



additional security properties may be desirable, like exclusive ownership [PS05],
message-bound signatures, and non-resignability [JCCS19]. The NIST explicitly
mentioned them as “additional desirable security properties” in their call for ad-
ditional post-quantum signatures [NIST22]. As discussed in [CDF+21], there are
real-life attacks in certain applications that exploit the lack of these additional
security properties.

Non-resignability for example requires, informally, that it is hard for an at-
tacker to maul a signature σ for a message m into a signature σ under his own
public-key, when he only gets to see the signature σ of m (under someone else’s
public key) and some auxiliary information on m, but not the message m it-
self. The relevance of non-resignability has been shown in [JCCS19], where the
authors identified an attack against the “Dynamically Recreatable Key” proto-
col [KBJ+14] that indeed applies in case the deployed signature scheme does
not satisfy non-resignability, uncovering a flaw in the protocol’s original security
analysis [ZBPB17].

On top of discussing these additional security properties and their relevance
in applications, Cremers, Düzlü, Fiedler, Fischlin, and Janson [CDF+21] of-
fer a generic transformation, the BUFF transform (which stands for Beyond
UnForgeability Features), that turns any signature scheme into a new signa-
ture scheme that is argued to then satisfy these additional security properties
either in the random oracle model (ROM) or in the plain model under some
non-standard assumptions on the hash function.1

Motivated by the reference in the NIST call and the little overhead caused by
the BUFF transform, several of the submissions to the NIST call for additional
post-quantum signatures have the BUFF transform built in, or mention the
possibility of applying the BUFF transform to the proposed scheme.2

There have also been some claims about (some of) these additional security
properties being achieved by the three signature schemes that were selected by
the NIST in 2022 to be standardized. Indeed, Cremers et al. [CDF+21] argue that
Dilithium [LDK+20] uses the BUFF transform implicitly, allowing them to ap-
ply their main result regarding the BUFF transform. Falcon [PFH+20] does
not achieve the beyond unforgeability features; however, the Falcon team an-
nounced that they will deploy the BUFF transform to achieve them [FHK+22].
Finally, Cremers et al. expect that Sphincs+ [HBD+20] also achieves non-
resignability, though only using some informal arguments.

1 The original publication [CDF+21] has been revised in reaction to this work; our
discussion here is with respect to the original version of [CDF+21]; we discuss the
revision [CDF+23] explicitly in Sect. 1.3.

2 The following submissions explicitly refer to the BUFF transform: Squir-
rels [ENST23], Racoon [dPEK+23], HAWK [BBD+23], PROV [GCF+23],
Vox [PCF+23], and eMLE [LZ23].
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1.2 Our Results.

In this work, we give both negative and positive results on the non-resignability
property in general, and the BUFF transform in particular, as discussed below
in more detail.

Negative Results. First, we consider the plain model, and we observe that for
any signature scheme with the property that there is sufficient (computational)
entropy in the message when given its signature (and the public key), there is a
simple attack that entirely breaks non-resignability of the signature scheme.3

Given that, by design, the BUFF transform satisfies this entropy requirement,
it follows directly that the BUFF transform does not satisfy non-resignability
in the plain model, regardless of the hash function used (and regardless of the
hash function being fixed or chosen from a family of possible hash functions).
We stress that not only is there no proof for the non-resignability of the BUFF
transform in the plain model, but our aforementioned attack easily breaks it.

Moving to the random oracle model (ROM), somewhat surprising in the light
of the positive results claimed in [CDF+21] on the BUFF transform in the ROM,
we show that, as a matter of fact, also in the ROM the BUFF transform does
not (necessarily) satisfy non-resignability. The matter is slightly more subtle here
since prior works did not rigorously define the non-resignability property in the
ROM. What we show is that for the natural extension of the non-resignability
property to the ROM, our negative results from the plain model carry over,
and thus, in particular, that the BUFF transform does not achieve (this natural
notion of) non-resignability in the ROM.

Given the positive claims in prior work, we discuss what is wrong with the
reasoning in [CDF+21], where the BUFF transform is claimed to satisfy non-
resignability. Namely, the issue lies in the Φ-non-malleability property of the
random oracle, incorrectly claimed in [BFS11] and used in [CDF+21]. More pre-
cisely, we show that Φ-non-malleability as stated in these works is unachievable.

We note that our generic attack on the non-resignability property is em-
barrassingly simple in retrospect. It exploits that there is no restriction on the
attacker’s auxiliary information on the signed message m, subject to that it does
not reveal m; this pretty much allows to embed the mauled signature σ into the
auxiliary information, making the attacker’s job of finding σ trivial. This attack
has no (direct) real-world impact, since the auxiliary information is typically not
adversarially chosen, but determined by the application. Instead, the point of
our attack is to show that the formal definition put forward in [CDF+21] is too
strong, and that prior positive results on achieving non-resignability are incor-
rect. Thus, we need to go back to the drawing board: both the formal definition
as well as achievability results need to be revised. This is what we do, to a certain
degree, in the main part of the paper, as discussed below.

3 On the other hand, if the message can be efficiently computed from its signature,
non-resignability is also not satisfied, as already pointed out in [CDF+21].
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Positive (and More Negative) Results. Facing the above strong nega-
tive result, we introduce a weaker variant of the original definition of the non-
resignability property, which is still meaningful from an application perspective
yet avoids the above generic attack, by requesting the auxiliary information to
be computed without access to the random oracle.4 This definition is thus still
meaningful whenever in the considered application the computation of the auxil-
iary information does not depend on the random oracle that is used in the signing
process for the considered signature scheme (which can typically be enforced via
domain separation).

A natural question then is whether the BUFF transform satisfies this weak-
ened variant of the non-resignability property. Interestingly, this remains a non-
trivial problem; as a matter of fact, depending on the precise formulation of the
entropy requirement, which captures that the signed message m should remain
hidden to the attacker, we show yet another negative result (see below).

On the positive side, we show that the above weakened variant of the non-
resignability property is satisfied in the ROM by a salted version of the BUFF
transform, if the entropy requirement on the messagem is statistical (rather than
computational). The salted version of the BUFF transform includes a random
salt in the hash and appends the salt to the signature.

Our proof follows a similar blueprint as the (faulty) proof in [CDF+21].
Indeed, we first show that the reduction from [CDF+21], which reduces non-
resignability of the BUFF transform to Φ-non-malleability of the random oracle
(where the latter, however, is not satisfied), carries over to the salted BUFF
transform when considering the weaker variant of non-resignability and a corre-
spondingly weaker and salted variant of Φ-non-malleability, and considering the
entropy requirement to be statistical. Then, the main technical challenge, and
thus the main technical contribution of this work, lies in proving that the random
oracle satisfies the considered weaker and salted variant of Φ-non-malleability.

The above positive result is proven in the classical as well as in the quantum
ROM (with different respective reduction losses), covering thus both classical
and quantum attacks. We note that despite the innocent-looking nature of the
core problem, proving the considered Φ-non-malleability variant for the random
oracle turns out to be highly non-trivial, even just in the classical case.

Yet again on the negative side, by means of a counterexample in the form of a
contrived signature scheme, we show that the above result on the salted version
of the BUFF transform does not carry over in case the entropy requirement on
the message m is computational (by means of the HILL entropy), as originally
considered in [CDF+21]. This in particular applies to the original (unsalted)
BUFF transform.

Thus, despite our weakened version of the non-resignability property, showing
positive results remains challenging. In particular, whether the original BUFF
transform satisfies our weaker non-resignability notion in case the entropy re-
quirement is statistical, remains an unsettling open question.

4 A more radical solution is to disallow any auxiliary information altogether, which in
essence is done in [CDF+23]; see later for a more elaborate discussion of [CDF+23].
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Conclusion. Altogether, our work shows that the non-resignability property for
digital signature schemes, introduced in [JCCS19], later formalized in [CDF+21],
and mentioned by NIST as an desirable property in their call for additional post-
quantum signatures, is a very delicate security notion, and whether it is achieved
(by one or another construction)—or even achievable at all—depends on subtle
choices in the formal definition. Furthermore, our work shows that we actually
have only very limited positive results so far; in particular, there is currently
no positive (meaningful) result on the non-resignability property of the original
BUFF transform.

1.3 Related Work

We already mentioned [CDF+21] and [JCCS19], upon which our work builds up.
In reaction to our negative results, the authors of [CDF+21] have updated their
work; we briefly discuss this update [CDF+23] here.

In order to avoid our negative results (cf. Theorem 5), which exploit that the
auxiliary information can be misused to embed a mauled signature, the authors
modified the definition of non-resignability to require the auxiliary information
to be computationally independent of the message (see [CDF+23, Fig. 4] for the
non-resignability game and [CDF+23, Definition 4.3] for the actual definition).
This is equivalent to not allowing any auxiliary information at all, and thus
weaker than the variant of non-resignability we consider. Indeed, in the security
reduction it is argued that, due to the computational independence, one can
drop the auxiliary information altogether, and so reduce the non-resignability of
the original BUFF transform to a variant of Φ-non-malleability with no auxiliary
information (see [CDF+23, Fig. 1, right]).

Interestingly though, the authors have not adjusted their reasoning for their
claim on the random oracle satisfying (the now weaker notion of) Φ-non-malleability,
which is the place where the original flaw was hiding. They still argue via the
very same informal reasoning as in the original version (see the quote in our Sec-
tion 3.3). Although it is tempting to believe that this argumentation is sufficient,
it is actually not.

Indeed, by means of a simple counter example we show in Appendix A that
no hash function (or hash function familiy), including the random oracle, sat-
isfies the considered (weaker) notion of Φ-non-malleability. Thus, their claim
on the BUFF transform satisfying the version of non-resignability considered
in [CDF+23], under the assumption that the hash function satisfies the consid-
ered Φ-non-malleability notion, is vacuous.

1.4 Overview

Given the various dimensions involved, Table 1 provides an overview of the pos-
sibility and impossibility results that follow from our work, and of what is still
open. In this overview, we distinguish between the original non-resignability secu-
rity game NRH (Fig. 5) as proposed in [CDF+21] (but considered in the random
oracle model now), our weaker notion NRH,⊥ (Fig. 10, left) which requires the
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auxiliary information to be computed without access to the random oracle H,
and the further weakened notion NRH,0 where no auxiliary information at all
is allowed (as considered in [CDF+23], in essence). In the other directions, we
distinguish between the original and the salted BUFF transformation (respec-
tively denoted by BUFF and $-BUFF), and between the computational and
the statistical entropy requirement.

Table 1. Overview of possibility and impossibility results resulting from our work. In
the table, we write H∞ and HILL∞ to differentiate between statistical and computation
entropy, respectively. Positive results are indicated with ✓ while negative results are
visualized with ✗—for both we refer to the corresponding theorem establishing that
result. A ? is used for an open question.

NRH NRH,⊥ NRH,0

H∞ HILL∞ H∞ HILL∞ H∞ HILL∞

BUFF
✗

Thm. 7

✗

Thm. 7
?

✗

Thm. 18
? ?

$-BUFF
✗

Thm. 7

✗

Thm. 7

✓

Thm. 11

✗

Thm. 18

✓

Thm. 11
?

2 Preliminary

2.1 (HILL) Entropy

We briefly recall that, for a random variable X, specified by its probability
distribution PX , the guessing probability is given by guess(X) := maxx PX(x),
and the min-entropy by H∞(X) := − log guess(X). As usual, the log is in base 2.

In a similar spirit, for a pair of random variables (X,Z), specified by their
joint distribution PXZ , the conditional guessing probability guess(X | Z) is de-
fined as

guess(X | Z) :=
∑
z

PZ(z)guess(X | Z = z) ,

with the natural understanding that guess(X | Z = z) = maxx PX|Z(x | z), and
the conditional min-entropy H∞(X | Z) as

H∞(X | Z) := − log guess(X | Z) .

Thus, in other words, H∞(X | Z) := − log
∑

z PZ(z)2
−H∞(X|Z=z)

The HILL entropy is a computational variant of the above min-entropy. First,
we recall that for two random variables X and Y , the computational distance

δs(X,Y ) := max
C
| Pr[C(X) = 1]− Pr[C(Y ) = 1] |

is the maximum distinguishing advantage over all circuits C of size s.
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Definition 1. For a pair of random variables (X,Z), specified by their joint
distribution PXZ , the conditional HILL entropy (with parameters δ and s) is
defined as

δ,sHILL∞(X | Z) := max
Y

H∞(Y | Z) ,

where the maximum is over all random variables Y , specified by its joint distri-
bution PY Z with Z, such that δs

(
(X,Z), (Y, Z)

)
≤ δ.

When switching to asymptotic notation, for a family of pairs of random vari-
ables {(Xλ, Zλ)}λ∈N, a bound HILL∞(Xλ | Zλ) ≥ k(λ) then naturally means that
for every λ there exists Yλ such that H∞(Yλ | Zλ) ≥ k(λ), and for every polyno-
mial s(λ) there exists a negligible δ(λ) such that δs(λ)

(
(Xλ, Zλ), (Yλ, Zλ)

)
≤ δ(λ).

In this case, we tend to omit the security parameter λ and simply write (X,Y )
and HILL∞(X | Z) ≥ k.

2.2 Digital Signatures

We use the standard definition of a signature scheme. By default, the key-
generation, signing, and verification algorithms of a signature scheme S are re-
spectively denoted by KGen, Sign, and Vfy, and the message space byM.

In this work, we take it as understood that a signature scheme is correct up
to a negligible error, i.e., for any m ∈M we have

Pr
(sk,pk)←KGen(1λ)

[Vfy(pk,m, Sign(sk,m)) = 0] ≤ negl(λ) .

Furthermore, we insist on the key generation to produce a public key pk that
has negligible guessing probability

guess
(sk,pk)←KGen(1λ)

(pk) ≤ negl(λ) ;

this is obviously necessary for the scheme to be secure in any meaningful way.
For a signature scheme in the random oracle model (i.e., where KGen may query
the random oracle H), we require guess(pk |H) to be negligible.

In expressions similar to those above, we will sometimes write (sk, pk) instead
(sk, pk)← KGen(λ), taking the generation as understood.

2.3 Non-Resignability and Φ-Non-Malleability

For a signature scheme S = (KGen, Sign, Vfy), non-resignability is defined via
game NR, given in Fig. 1, which involves an adversary A = (A0,A1) and a
(possibly randomized) auxiliary function aux. We say that A is PPT if A0 and
A1 are. In spirit, the goal of the adversary is to turn a signature σ for an
unknown messagem into a signature for the same message, but under a different,
adversarially chosen, public key. We write

AdvNR
S (λ,A, aux) = Pr[1← NRS]
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for the probability that the NRS game outputs 1 when instantiated with signature
scheme S and with adversaryA and auxiliary function aux. Similarly, for variants
of NR and for other games that we will consider. For simplicity, we will often
leave the security parameter λ implicit.

Game NRS

1 : (sk, pk)← KGen(1λ)

2 : m← A0(pk)

3 : h := aux(m, pk)

4 : σ ← Sign(sk,m)

5 : (σ, pk)← A1(pk, σ, h)

6 : v := Vfy(pk,m, σ)

7 : return (v = 1 ∧ pk ̸= pk)

Fig. 1. Security game NRS (in the plain model) with an explicit hint function aux and a
signature scheme S = (KGen, Sign, Vrfy). The original definition in [CDF+21] had both
m and h produced by A0(pk). This change in the definition only makes our negative
result stronger (since it is a restriction on how h is produced), and will be convenient
later on when trying to restore positive results.

As pointed out in [CDF+21], an adversary A can easily win this game if A1

can compute m; indeed, it can then just sign m under a public-key pk for which
it knows the secret key. Thus, for this to be a potentially hard game, we need
to enforce an entropy requirement on m. In this work, we consider two variants,
by requiring the statistical entropy H∞(m | pk, h) or the computational entropy
HILL∞(m | pk, h) to be lower bounded, where m, pk and h are chosen as in NR.

Following [CDF+21] (subject to this minor change in the game NR mentioned
in Fig. 1), non-resignability is defined as follows.

Definition 2. A signature scheme S = (KGen, Sign, Vfy) is called non-resignable
if for any PPT adversary A and any PPT function aux that satisfy the compu-
tational entropy condition

HILL∞
(sk,pk)←KGen(1λ)

m←A0(pk)

(
m

∣∣ pk, aux(m, pk)
)
≥ ω(log λ) (1)

it holds that AdvNR
S (λ,A, aux) ≤ negl(λ) .

A related notion, which is used in [CDF+21] towards proving non-resignability
of the BUFF transform (see Sect. 2.4), is Φ-non-malleability, first introduced
in [BCFW09], for a (keyed) hash function, specified by a pair (KGen, Eval) of
PPT key-generation and evaluation algorithms.

The definition is via game Φ-NMF , given in Fig. 2, and, as for non-resignability,
we need to require a certain amount of statistical entropy H∞(x | hk, h) or com-
putational entropy HILL∞(x | hk, h), for the game to be non-trivial.
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Game Φ-NMF

1 : hk ← KGen(1λ)

2 : x← A0(hk)

3 : h← aux(hk, x)

4 : y := Fhk(x)

5 : (y, ϕ)← A1(hk, y, h)

6 : return (Fhk(ϕ(x)) = y ∧ ϕ(x) ̸= x)

Fig. 2. Security game Φ-NMF (in the plain model) with explicit hint function aux and
a keyed hash function F = (KGen, Eval), where we denote Fhk(x) := Eval(hk, x).

Following [BFS11,CDF+21], for a family Φ of functions, Φ-non-malleability
is defined as follows. Looking ahead, of particular interest is the case where x
consists of two parts, conveniently written as x = (pk,m), and Φ consists of
shifts of pk but leaves m untouched.

Definition 3. A keyed hash function F = (KGen, Eval) is called Φ-non-malleable
if for any PPT adversary A that satisfies the computational entropy condition

HILL∞
hk←KGen(1λ)
x←A0(hk)

(
x
∣∣hk, aux(hk, x)) ≥ ω(log λ) (2)

it holds that AdvΦ-NM
F (A) ≤ negl(λ) .

2.4 The BUFF Transform

The BUFF transform [CDF+21] is a generic transform for signature schemes
to achieve additional security properties beyond standard unforgeability. The
transformation comes in two variants—BUFF and BUFF-lite. Throughout this
work, we only consider the former, stronger variant5 which is displayed in Fig. 3.

KGen(1λ)

1 : (skS, pkS)← S.KGen(1λ)

2 : hk ← KGen(1λ)

3 : sk := (skS, hk)

4 : pk := (pkS, hk)

5 : return (sk, pk)

Sign(sk,m)

1 : (skS, hk) := sk

2 : y := Fhk(m, pk)

3 : σS ← S.Sign(skS, y)

4 : σ := (σS, y)

5 : return (σ, pk)

Vfy(pk,m, σ)

1 : (pkS, hk)← pk

2 : (σS, y)← σ

3 : y := Hhk(m, pk)

4 : d := S.Vfy(pkS, y, σS)

5 : return d = 1 ∧ y = y

Fig. 3. The BUFF transform.

5 The weaker one, BUFF-lite, does not achieve non-resignability, which is the focus
of our work.
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The idea of the BUFF transform is to sign the hash of the message and the
public key, and to append this hash to the signature. This “binds” the public key
to the signature, which ensures that no other keys can be generated that verify
such a signature, thus ensuring what is known as exclusive ownership. The idea
behind non-resignability is as follows. In order to turn a signature into a new
signature for the same message but under a different public key pk, the adversary
needs to produce the hash value y := Fhk(m, pk) for the modified public key pk
and the unknown message m, which should be hard by the Φ-non-malleability of
the hash function. Indeed, formally, the following is proven (where we omit the
claims regarding further security properties that are not relevant to our work).

Theorem 4 ([CDF+21, Theorem 5.5]). Let S be an EUFCMA-secure sig-
nature scheme. Then the application of the BUFF transformation produces an
EUFCMA-secure signature scheme BUFF[S,H] that additionally provides [...]
NR if H is Φ-non-malleable where Φ = {ϕpk | pk ∈ K} and ϕpk(pk,m) = (pk,m).

In combination with the claim on the random oracle being Φ-non-malleable
for this choice Φ from [BFS11], the authors of [CDF+21] then conclude non-
resignability of the Buff transform in the ROM.

3 On the Impossibility of Non-Resignability

In this section, we show strong negative results on the non-resignability property
in general, and on the BUFF transform in particular.

First, we consider the plain model, where we show, by means of a simple
attack, that non-resignability is not satisfied when applied to a signature scheme
with the property that the message has high (computational) entropy when
given its signature (and the public key).6 Since the BUFF transform, when
applied to any signature scheme, satisfies the considered entropy requirement
(assuming the hash function to be compressing), it follows directly that the
BUFF transform does not satisfy non-resignability in the plain model, regardless
of the hash function used. We stress that not only is there no proof for the non-
resignability of the BUFF transform in the plain model, but there is also an
attack that breaks it.

These negative results from the plain model carry over to the random oracle
model (ROM) when considering the natural extension of the non-resignability
property to the ROM (prior works did not rigorously specify the property in
the ROM). Thus, also in the ROM the BUFF transform does not (necessarily)
satisfy non-resignability, invalidating the positive results claimed in [CDF+21] in
that respect. In essence, the claim on the random oracle being Φ-non-malleable,
made in [CDF+21,BFS11], is false.

6 In the other extreme, if the message can be efficiently computed from its signature,
non-resignability is also not satisfied, as already pointed out in [CDF+21].
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3.1 Non-Resignability and BUFF Transform in the Plain Model

It is clear that the NRS game (Fig. 1) is easy to win if the message m can be
efficiently computed from its signature σ. In the following theorem, we show that
if, on the other hand, the signature scheme is such that the message m has high
computational entropy given its signature (and the public key), then another
attack applies.7

Theorem 5. Let S be a signature scheme such that for message m ← M and
key-pair (sk, pk) ← KGen(1λ) we have HILL∞(m | pk, Sign(sk,m)) ≥ ω(log λ).
Then there exists a PPT adversary A = (A0,A1) and a PPT function aux such
that the computational entropy condition (1) is satisfied, yet

AdvNR
S (λ,A, aux) ≥ 1− negl(λ) .

The attack is surprisingly simple. Instead of burdening A1 with finding σ,
which, intuitively, is hard since A1 does not know m, we simply let aux compute
σ and hand it over to A1 as auxiliary information h. The entropy condition on
the signature scheme then ensures that this is an eligible attack. The proof below
spells out the details.

Proof. We construct the adversary A = (A0,A1) and function aux as shown
in Fig. 4. In the first stage, A0 samples a message uniformly at random and
outputs it. The function aux, which receives m as an input, generates a new
key pair (sk, pk)← KGen(1λ), computes σ ← Sign(sk,m), and outputs the hint
h := (σ, pk). In the second stage, A1 receives as input the public key pk, the
signature σ ← Sign(sk,m), and the hint h = (σ, pk), and it outputs (σ, pk).

By the completeness property, we have Pr[Vfy(pk,m, σ) = 1] ≥ 1− negl(λ).
We further have Pr[pk ̸= pk] ≥ 1 − negl(λ) due to the high min-entropy of key
generation.

It remains to argue that A satisfies the entropy condition (1). It holds that

HILL∞
(
m

∣∣ pk, aux(m, pk)
)
= HILL∞

(
m

∣∣ aux(m, pk)
)

= HILL∞
(
m

∣∣ pk, Sign(sk,m)
)
≥ ω(log λ) ,

where the first equality holds by the independence of pk and (m, aux(m, pk)),
the second equality holds by the construction of aux, and the last inequality
holds from the entropy requirement. Taking all of this together, we get that A
is a valid adversary playing NRS such that

AdvNR
S (λ,A, aux) ≥ 1− negl(λ) .

This concludes the proof.

7 This leaves open only a very small, artificial gap for signature schemes that may
potentially satisfy non-resignability: the message must be hard to compute from its
signature while having low conditional HILL entropy.
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Adversary A0(pk)

1 : m←M
2 : return m

Adversary A1(pk, σ, h)

1 : (σ, pk)← h

2 : return (σ, pk)

Function aux(m, pk)

1 : (sk, pk)← KGen(1λ)

2 : σ ← S.Sign(sk,m)

3 : return (σ, pk)

Fig. 4. Adversary A = (A0,A1) and function aux used in the proof of Theorem 5.

Having established Theorem 5, it then follows as an immediate corollary that
the BUFF-transform does not achieve non-resignability, no matter what hash
function is used, as long as it is compressing, so that there is entropy in the
message m when given H(m, pk) (here, the entropy is even statistical).

Corollary 6. Let S be a signature scheme, and let BUFF[S,F ] be the signa-
ture scheme obtained via the BUFF transform obtained by using a (keyed) hash
function F that compresses by at least the size of the public key plus ω(log λ)
bits. Then there exists a PPT adversary A = (A0,A1) and a PPT function aux

such that the entropy condition (1) is satisfied, yet

AdvNR
S (λ,A, aux) ≥ 1− negl(λ) .

Clearly, a non-compressing hash function avoids this particular attack; how-
ever, it is unclear if security would be restored (in particular in the light of
Footnote 7). Also, from a practical point of view, hash functions used in the
BUFF transform will be compressing.

3.2 Non-Resignability and the BUFF Transform in the ROM

When considering the random oracle model, things become somewhat subtle.
First, we note that no definition of non-resignability in the ROM has been ex-
plicitly provided in the previous literature; the definitions given in [CDF+21] are
in the plain model. When switching to the ROM, one needs to specify who is
given access to the random oracle. Clearly, considering a signature scheme “in
the ROM”, we give KGen, Sign, and Vfy oracle access to the random oracle H.8

Also, by default, the attacker is given oracle access to the random oracle. Thus,
looking at Fig. 1, this means we certainly want to give A0 and A1 oracle access
to the random oracle. But, say, what about the function aux? Given that in the
original definition in [CDF+21], the auxiliary information h is actually computed
by A0 (and our re-writing in terms of a function aux is for later convenience), it
is natural to then also allow the function aux to have oracle access the random
oracle. We make this explicit in Fig. 5, where we give the resulting security game
for non-resignability in the ROM.

However, there is another subtle matter in the definition of non-resignability
when switching to the ROM. Namely, the entropy condition (1), as well as its un-
conditional counterpart H∞(m | pk, auxH(m, pk)) ≥ ω(log λ), are not sufficient

8 We make this explicit by writing KGenH etc.
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anymore for the definition to be meaningful. Indeed, AH
0 could simply choose

m to be the hash of 0. In the ROM, this will be of high entropy and indepen-
dent of pk; yet, AH

1 can easily recover it (as the hash of 0), and then honestly
sign it using his secret key. For this reason, in the definition of non-resignability
in the ROM, we change the entropy requirement on the message to hold when
additionally conditioning on the random oracle, i.e., we require

H∞
(sk,pk)←KGenH(1λ)

m←AH
0 (pk)

(
m

∣∣ pk, auxH(m, pk),H
)
≥ ω(log λ) . (3)

We stress that we consider the statistical variant of the entropy condition here;
with H an exponentially large function table, switching to the computational
HILL variant will bring up further issues, which we want to avoid—for now
(though we will look into this issue in Section 4.4). Furthermore, having this more
stringent requirement on the attacker only makes our negative result stronger.

Game NRH
S

1 : (sk, pk)← KGen
H(1λ)

2 : m← AH
0 (pk)

3 : h := aux
H(m, pk)

4 : σ ← Sign
H(sk,m)

5 : (σ, pk)← AH
1 (pk, σ, h)

6 : v := Vfy
H(pk,m, σ)

7 : return (v = 1 ∧ pk ̸= pk)

Fig. 5. Security game NRH
S for the signature SH = (KGenH, SignH, VfyH) in the random

oracle model. In this variant, both the adversary and the function aux are granted
access to the random oracle H.

The following theorem shows that, considering the above natural definition
of non-resignability in the ROM, the impossibility result from the plain model
(Theorem 5) carries over pretty much in the obvious way.

Theorem 7. Let H be a random oracle and SH = (KGenH, SignH, VrfyH) be a
signature scheme given query access to H such that for message m←M and key-
pair (sk, pk) ← KGenH(1λ) we have H∞(m | pk, SignH(sk,m),H) ≥ ω(log λ).
Then there exists a PPT adversary AH = (AH

0 ,AH
1 ) and a PPT function auxH

with access to H such that the entropy condition (3) is satisfied, yet

AdvNRH

S (λ,A, aux) ≥ 1− negl(λ) .

The proof follows essentially from the proof of Theorem 5 with some obvious
adjustments regarding the random oracle. The full proof is given in Appendix C.
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Adversary AH
0 (pk)

1 : m←M
2 : return m

Adversary AH
1 (pk, σ, h)

1 : (σ, pk)← h

2 : return (σ, pk)

Function auxH(m, pk)

1 : (sk, pk)← KGen
H(1λ)

2 : σ ← S.SignH(sk,m)

3 : return (σ, pk)

Fig. 6. Adversary AH = (AH
0 ,AH

1 ) and function aux used in the proof of Theorem 7.

We can leverage Theorem 7 to show that a BUFF-transformed signature
scheme does not achieve non-resignability in the ROM. This is formalized in the
following corollary.

Corollary 8. Let H be a random oracle, FH be a PPT hash function given
query access to H, compressing by at least the size of the public-key plus ω(log λ)
bits, SH be a signature scheme given query access to H, and BUFF[S,F ] be the
signature scheme obtained via the BUFF transform with FH. Then there exists
a PPT adversary AH = (AH

0 ,AH
1 ) and a PPT function aux such that the entropy

condition (3) is satisfied, yet

AdvNRH

BUFF[S,F ](λ,A, aux) ≥ 1− negl(λ) .

The above negative claim on the BUFF transform contradicts [CDF+21],
which claims that the BUFF transform does satisfy non-resignability in the
ROM (though without being explicit about the definition in the ROM). We
discuss below the source of the false positive claim.

3.3 Φ-Non-Malleability in the ROM

[CDF+21] argues the non-resignability of the BUFF transform (in the ROM)
in two steps. First, they prove the security of the BUFF transform in the plain
model under the assumption that the hash function (family) satisfies the notion
of Φ-non malleability (for a certain class Φ of functions). The formal statement is
given in [CDF+21, Theorem 5.5] (cf. Theorem 4). Then, the following is remarked
in [CDF+21, page 9], from which it is then concluded that the BUFF transform
satisfies non-resignability in the ROM.

We note that if we model H as a random oracle then the hash function
satisfies the definition of Φ-non-malleability for any class Φ where the
functions ϕ preserve sufficient entropy in x, as will be the case for our
results. The reason is that the adversary can only output a related random
oracle value y if it has queried the random oracle about ϕ(x) before. But
this is infeasible if ϕ(x) still contains enough entropy.

Note that this claim originates from [BFS11], where a similar argument is made.
We show that this claim on the Φ-non-malleability of the random oracle is

incorrect (under some mild assumption on Φ). As a matter of fact, the same
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kind of attack as for the non-resignability of signature schemes applies here as
well: we can simply let aux compute the mauled hash value. This bypasses the
argument that the adversary has to make this particular query to the random
oracle.

First, we explicitly spell out in Fig. 7 the security game of Φ-non-malleability
in the ROM, for any PPT hash function FH with query access to the random
oracle H. Then, we state the negative result in Theorem 9 below. Note that
the latter in particular implies that the random oracle itself, i.e., when setting
FH = H, is not Φ-non-malleable.

Game Φ-NMH
F

1 : x← AH
0 ()

2 : h := aux
H(x)

3 : y := FH(x)

4 : (y, ϕ)← AH
1 (y, h)

5 : return (FH(ϕ(x)) = y ∧ ϕ(x) ̸= x)

Fig. 7. Security game Φ-NMH
F for the hash function FH in the ROM and an arbitrary

function family Φ.

Theorem 9. Let H be a random oracle, FH : X → Y be a PPT hash function
given query access to H, compressing by least ω(log λ) bits, and Φ ⊆ XX be such
that there is a PPT algorithm DΦ producing ϕ ∈ Φ that does not fix most points
with overwhelming probability, i.e.

Pr
ϕ←DΦ
x←X

[ϕ(x) = x] ≤ negl(λ) . (4)

Then, there exists a PPT adversary AH = (AH
0 ,AH

1 ) and a PPT function auxH,
both given query access to H, such that the entropy condition

H∞
x←AH

0 ()

(
x
∣∣ auxH(x),H)

≥ ω(log λ)

is satisfied, yet

AdvΦ-NMH

F (λ,A, aux) ≥ 1− negl(λ) .

Proof. We give a PPT adversary AH = (AH
0 ,AH

1 ) that wins the game Φ-NMH

with overwhelming probability. Both AH = (AH
0 ,AH

1 ) and auxH are given in
Fig. 8. In the first stage, adversary A0 chooses x uniformly at random. The
auxiliary function on input x ∈ X , chooses a function ϕ ← DΦ, computes y :=
FH(ϕ(x)), and returns the pair (y, ϕ) as hint. In the second stage, adversary
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A1 gets y = FH(x) along with the hint h = (y, ϕ) as input and outputs the
(y, ϕ) from the hint. It is easy to see that 1 ← Φ-NMH, unless ϕ(x) = x, which
only happens with negligible probability due to (4). Furthermore, the entropy
requirement follows from the fact that x is chosen uniformly from X independent
of (ϕ,H), and that FH is compressing by ω(log λ) bits.

Adversary AH
0 (pk)

1 : x← X
2 : return x

Adversary AH
1 (y, h)

1 : (y, ϕ) := h

2 : return (y, ϕ)

Function auxH(x)

1 : ϕ← DΦ

2 : y := FH(ϕ(x))

3 : return (y, ϕ)

Fig. 8. Adversary AH = (AH
0 ,AH

1 ) and function auxH used in the proof of Theorem 9.

Remark 10. The above theorem is stated for the random oracle model. It is easy
to see, though, that the result carries over to the plain model for concrete hash
functions.

4 Weak Non-Resignability and Salted BUFF

In this section, we partly recover from the negative results from the previous
section by considering a salted version of the BUFF transform, and showing
that it satisfies a weaker variant of non-resignability in the ROM. The formal
specification of the salted BUFF transform, denoted $-BUFF, is given in Fig. 9.
It matches with the original BUFF transform, except that some random salt s
is added to the signature and used for the hash.

KGen(1λ)

1 : (sk, pk)← S.KGen(1λ)

2 : return (sk, pk)

Sign(sk,m)

1 : s← {0, 1}ℓ

2 : y := F(pk,m, s)

3 : σ ← S.Sign(sk, y)

4 : return (σ, y, s)

Vfy(pk,m, (σ, y, s))

1 : y ← F(pk,m, s)

2 : d := S.Vfy(pk, y, σ)

3 : return (d = 1 ∧ y = y)

Fig. 9. The salted BUFF transform $-BUFF[S,F ] for a signature scheme S and a hash
function F .

Our goal is to show that the salted BUFF transform satisfies the weaker vari-
ant of non-resignability in the ROM obtained by replacing the non-resignability
game NRH

S to NRH,⊥
S , as given in Fig. 10 (left). The only difference is that the
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function aux, which computes the auxiliary information h, is not given access to
the random oracle anymore.

Indeed, below we will prove the following. To start with, we consider the
entropy condition on the message to be statistical; as explained in Sect. 3.2, here
in the ROM we additionally need to condition on H (in order to avoid letting
m = H(0)). In Sect. 4.4, we then discuss the case of computational entropy.

We consider both the case of classical and of quantum queries by the ad-
versary A when querying the random oracle, as well as a “semi-quantum” case
where A0 is classical yet A1 may be quantum. The latter is motivated by the fact
that A0 is typically not adversarially chosen, but determined by the considered
application.9

Theorem 11. Let H be a random oracle with co-domain denoted by Y, let SH =
(KGen, SignH, VfyH) be a signature scheme with a key generation that has no
access to H, and let $-BUFF[S,H] be the signature scheme obtained by applying
the salted BUFF transform (cf. Fig. 9) to S. Furthermore, let AH = (AH

0 ,AH
1 )

be an computationally unbounded NRH,⊥ adversary, aux be any function, and let
SignH,AH

0 ,AH
1 make at most qS , q0, q1 queries to H respectively. Assuming

H∞
(sk,pk)←KGen(1λ)

m←AH
0 (pk)

(
m

∣∣H, pk, aux(m, pk)
)
≥ log(1/ϵ) ,

then for SignH,A0,A1 making quantum queries in general, it holds that

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤
√
q0 · 2−ℓ +

q0 · 2−ℓ

2
+ 4(q1 + qS)

√
ϵ+

(2q0 + 1)2

|Y|
,

(5)

and if AH
0 is restricted to classical queries,

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ q0 · 2−ℓ + 4(q1 + qS)
√
ϵ+

(q0 + 1)

|Y|
. (6)

In case where SignH,AH
0 ,AH

1 are all restricted to classical queries, then we have

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ q0 · 2−ℓ + 2(q1 + qS) · ϵ+
(q0 + 1)

|Y|
. (7)

Remark 12. In the setting where the key generation KGenH is given access to the
random oracle H, it is not too hard to extend the non-resignability of $-BUFF
into such a setting, by noticing that any sufficiently long portion of the random
salt s in $-BUFF is hard to guess by KGenH, and hence separating the domain
queried by KGenH from ones queried by SignH and VfyH up to some negligible
advantage.

9 In the fully quantum case, we even allow the signing procedure to make quantum
queries to H; this is not really relevant but obtained for free.
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Our proof goes along the following blueprint. First, we consider a weaker and
salted variant of the Φ-non-malleability property in the ROM (for a particular
function family Φ), as specified in Fig. 10 (right), and show that if the random
oracle satisfies this variant (in the ROM) then the salted BUFF transform sat-
isfies NRH,⊥ (in the ROM). For this step (Sect. 4.1), we can simply recycle the
original corresponding proof. The bulk of the work, and thus our main technical
contribution, is then proving that the random oracle indeed satisfies this weaker
and salted variant of Φ-non-malleability. This is done in Sect. 4.2 for the classical
ROM, and in Sect. 4.3 for the QROM, i.e., when allowing quantum queries to
the random oracle.

Finally, in Sect. 4.4, we show how the relax the requirement on the statistical
min-entropy H∞(m|H, pk, aux(m, pk)) to a variant of the computation HILL
entropy, adjusted to the ROM setting in order to avoid the conditioning on H.

Game NRH,⊥
S

1 : (sk, pk)← KGen
H(1λ)

2 : m← AH
0 (pk)

3 : h := aux(m)

4 : σ ← Sign
H(sk,m)

5 : (σ, pk)← AH
1 (pk, σ, h)

6 : v := Vfy
H(pk,m, σ)

7 : return (v = 1 ∧ pk ̸= pk)

Game Φ-$-NMH,⊥
F (pk)

1 : m← AH
0

2 : h := aux(m)

3 : s← {0, 1}ℓ

4 : y := FH(pk,m, s)

5 : (y, pk, s)← AH
1 (y, h, s)

6 : return (FH(pk,m, s) = y ∧ pk ̸= pk)

Fig. 10. Weaker variant of the non-resignability game for a signature scheme SH =
(KGenH, SignH, VrfyH), where aux has no access to H (left), and the salted Φ-non-
malleability game (right) for a hash function FH. The game is slightly changed towards
our use-case of the BUFF-transform: Instead of letting A0 output one value x and
requiring A1 to output the hash value of ϕ(x), we split x into (pk,m), where pk is
arbitrary but fixed and (only) m is chosen by A0. To win the game, A1 has to find a
hash for a different pk but the same m (very much in line with finding a signature for
the same message under a different public key).

4.1 Φ-$-NMH,⊥ ⇒ NRH,⊥ for $-BUFF

The following shows that the modified BUFF transformation provides the variant
of non-resignability considered in Fig. 10 (left), given that the hash function H
achieves the Φ-non-malleability variant considered in Fig. 10 (right).

Proposition 13. Let H be a random oracle, let S be a signature scheme with a
key generation that has no access to H, and let $-BUFF[S,H] be the signature
scheme obtained by applying the modified BUFF transform (cf. Fig. 9) to S.
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Then for any adversary A = (A0,A1) and function aux as in the game NRH,⊥,
there exists a keyed adversary B(sk, pk) = (B0(sk, pk),B1(sk, pk, •)) such that

guess
(sk,pk)

m←AH
0 (pk)

(
m

∣∣H, pk, aux(m, pk)
)
= E

(sk,pk)

[
guess

m←BH
0 (sk,pk)

(
m

∣∣H, aux(m, pk)
)]

and

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ E
(sk,pk)

[
Adv

Φ-$-NMH,⊥(pk)
H (B(sk, pk), aux(•, pk))

]
.

B(sk, pk) is given in Fig. 11. In particular, B0 makes the same number and the
same type (classical versus quantum) of queries as A0, and B1 makes the same
number and the same type of queries as the composition of S.Sign and A1.

Proof. The claim on the guessing probability follows directly from the construc-
tion of B and the basic properties of the conditional guessing probability. To-
wards the claim on the advantage, note that for any pair (sk, pk), the adversary
B(sk, pk) wins the game Φ-$-NMH,⊥(pk) if and only if

H(pk,m, s) = y ∧ pk ̸= pk ,

which, by Fig. 9, is necessary for

$-BUFF[S,H].VfyH(pk,m, (σ, y, s)) ∧ pk ̸= pk

to be satisfied, where σ is as specified in Fig. 11. The expectation of the latter be-

ing satisfied, taken over (sk, pk)← KGen(1λ), is preciselyAdvNRH,⊥

$-BUFF[S,H](A, aux),
and so this proves the claim in the advantage.

BH
0 (sk, pk)

1 : m← AH
0 (pk)

2 : return m

BH
1 (sk, pk, y, h, s)

1 : σ ← S.SignH(sk, y)

2 : ((σ, y, s), pk)← AH
1 (pk, (σ, y, s), h)

3 : return (y, pk, s)

Fig. 11. Adversary B used in the proof of Theorem 13.

4.2 The Random Oracle is Φ-$-NMH,⊥ in the ROM

Here, we show that the random oracle (i.e., the hash function FH := H) satisfies
the notion of Φ-$-NMH,⊥, specified in Fig. 10 (right).
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Theorem 14. Let (AH
0 ,AH

1 ) be an (computationally unbounded) adversary against
Φ-$-NMH,⊥, with AH

0 making at most q0 classical queries and AH
1 at most q1 clas-

sical queries to the random oracle H with co-domain Y, and let aux be a function.
Set

ϵ := guess
m←AH

0

(
m

∣∣H, aux(m)
)
,

and let pk be an arbitrary valid public key. Then,

Adv
Φ-$-NMH,⊥(pk)
H (A, aux) ≤ q0 · 2−ℓ + 2q1 · ϵ+ (q0 + 1)/|Y| .

Proof. The proof proceeds via the games G0, . . . ,G
i
6 displayed in Fig. 12. Steps

from G0 to G3 are symmetric, in that they argue closeness between games, while
each of the rest upperbounds the winning probability of one game via another.

The closeness between games G0 ≈ G1 ≈ G2 ≈ G3 is via arguing that an
adversary cannot detect some reprogramming in the random oracle except with
small probability. For G0 ≈ G1, one exploits that the reprogrammed point in-
volves a freshly chosen salt s in uniform distribution. For G1 ≈ G2 ≈ G3, one ex-
ploits that m has high entropy, conditioned on the view of the attacker through-
out the execution of the intermediate game G2.

G0 to G1 hop. The only difference between G0 and G1 is that the former computes
y ← H(pk,m, s), while the latter does a reprogramming via H(pk,m, s) := y ←
Y. Thus, both games behave identically unless A0 has queried the corresponding
input (pk,m, s), which happens with probability at most q0 · 2−ℓ in either game,
due to the random choice of s.

G1 to G2 hop. Without loss of generality, we may assume pk ̸= pk, in which
case the reprogramming of H, done in G1 but not in G2, does not affect the
final hash H(pk,m, s). Thus, there is a difference in the two games only if A1

makes a query to (pk,m, s); however, in G2, using that y and s are independent
of (m,H, h) and by the entropy condition, we have that guess(m | H, y, h, s) =
guess(m | H,h) ≤ ϵ, and so this happens with probability at most q1ϵ. Thus,

Pr [1← G1] ≤ Pr [1← G2] + q1ϵ .

G2 to G3 hop. Similar as above, the difference between G2 and G3 can only be
noticed when A1 makes a query of the form (·,m, ·), which again happens with
probability at most guess(m | H, y, h, s) ≤ ϵ. Therefore,

Pr [1← G2] ≤ Pr [1← G3] + q1ϵ .

G3 to G4 hop. In G4, we relax the winning condition by dropping the requirement
pk ̸= pk; this only increases the winning probability. Furthermore, we replace
A1 in G3 by B1 in G4, which computes h := aux(m) and samples s ← {0, 1}ℓ
and y ← Y as a first step, and then runs A1 on input (y, h, s); this change is
only syntactically and does not affect the winning probability. Thus,

Pr [1← G3] ≤ Pr [1← G4] .
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Game G0

1 : m← AH
0 ()

2 : h := aux(m)

3 : s← {0, 1}ℓ

4 : y := H(pk,m, s)

5 : (y, pk, s)← AH
1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

Game G1

1 : m← AH
0 ()

2 : h := aux(m)

3 : s← {0, 1}ℓ

4 : H(pk,m, s) := y ← Y

5 : (y, pk, s)← AH
1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

Game G2

1 : m← AH
0 ()

2 : h := aux(m)

3 : s← {0, 1}ℓ

4 : y ← Y

5 : (y, pk, s)← AH
1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

Game G3

1 : m← AH
0 ()

2 : h := aux(m)

3 : s← {0, 1}ℓ

4 : y ← Y

5 : (y, pk, s)← AH[(·,m, ·) 7→ ⊥]
1 (y, h, s)

6 : return (H(pk,m, s) = y

7 : ∧ pk ̸= pk)

Game G4

1 : m← AH
0 ()

2 : (y, pk, s)← BH[(·,m,·)7→⊥]
1 (m)

3 : return H(pk,m, s) = y

Game Gi
5

1 : m← AH
0 ()

2 : (y, pk, s)← BH[(·,m,·)7→⊥]
1 (m)

3 : return H(pk,m, s) = y

4 : ∧(pk,m, s) = (pki,mi, si)

5 : // where (pki,mi, si) is A0’s i-th query

Game Gi
6

1 : m← AH
0 ()

2 : (y, pk, s)← BH[(·,mi
,·)7→⊥]

1 (mi)

3 : return H(pki,mi, si) = y

4 : // where (pk
i
,m

i
, s

i
) is A0’s i-th query

Fig. 12. The sequence of games considered in the proof of Theorem 14. In all games,
H is understood to be uniformly random. In the game G4 etc., H[(·,m, ·) 7→ ⊥] denotes
the oracle that blocks queries of the form (·,m, ·), i.e., replies with some special value
⊥ in that case, and replies with H applied to the query otherwise.
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G4 to Gi
5 hop. Since A0 is classical, assume without loss of generality that it

never repeats a query. If (pk,m, s) has never been queried byA0, i.e., (pk,m, s) ̸=
(pkj ,mj , sj) for all j ∈ {1, . . . , q0}, then (using that A1 is blocked from queries
of the form (·,m, ·)) the hash H(pk,m, s) is random and independent of y, in
which case they are equal with probability 1/|Y|. Therefore we obtain,

Pr [G4] = 1/|Y|+
∑
i∈[q0]

Pr

[
1← G4

(pk,m, s) = (pki,mi, si)

]
= 1/|Y|+

∑
i∈[q0]

Pr
[
1← Gi

5

]
.

Gi
5 to Gi

6 hop. In Gi
5, due to the extra condition m = mi for winning the game,

replacingm bymi as in Gi
6 has no effect on the winning probability, and dropping

the requirement again then only increases the probability. Thus

Pr
[
1← Gi

5

]
≤ Pr

[
1← Gi

6

]
.

It remains to show that the latter probability is small. First, we may assume
that A0’s queries (pkj ,mj , sj) are all distinct. Furthermore, we may assume
that once A0 has decided on the i-th query (pki,mi, si), it stops without making
this query; the game then simply proceeds as described with running B1 on input
mi. This shows that B1’s input is independent of H(pki,mi, si), and so is his
output y then, given that he is blocked from queries of the form (·,m, ·). Hence

Pr
[
1← Gi

6

]
≤ 1/|Y| .

Combining all the (in)equalities then concludes the proof.

Combining Proposition 13, Theorem 14, for A, Sign restricted to classical
queries, we get

AdvNRH,⊥

$-BUFF[S,H](A, aux) ≤ E
(sk,pk)

[
q0 · 2−ℓ + 2(q1 + qS) · ϵsk,pk + (q0 + 1)/|Y|

]
≤ q0 · 2−ℓ + 2(q1 + qS) · ϵ+ (q0 + 1)/|Y| ,

where

ϵsk,pk := guess
m←AH

0 (pk)

(
m

∣∣H, pk, aux(m, pk)
)
,

and the second inequality is via linearity. This concludes (7).

4.3 The Random Oracle is Φ-$-NMH,⊥ in the QROM

We now prove the same result in the QROM when AH
0 and AH

1 are algorithms
that may make quantum (i.e., superposition) queries to the random oracle.

Theorem 15. Let A = (AH
0 ,AH

1 ) be a (computationally unbounded) adversary
against Φ-$-NMH,⊥, with AH

0 making at most q0 quantum queries and AH
1 at
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most q1 quantum queries to the random oracle H with co-domain Y, and let aux
be a function. Set

ϵ := guess
m←AH

0

(
m

∣∣H, aux(m)
)
,

and let pk be an arbitrary public key. Then,

Adv
Φ-$-NMH,⊥(pk)
H (A, aux) ≤

√
q0 · 2−ℓ +

q0 · 2−ℓ

2
+ 4q1

√
ϵ+ (2q0 + 1)2/|Y| .

Proof. The proof of Theorem 15 is identical to that of Theorem 14 up to some
small changes in the argumentation for the first four game hops, and a more
significant change of strategy in the last two. Indeed, we reuse the first four
games and define modified versions of Gi

5 and Gi
6, as specified in Fig. 13. Namely,

in case of superposition queries by A0, we cannot define (pki,mi, si) as the i-th
query; instead, rather naturally, we introduce (pki,mi, si) by measuring the i-th
query. Furthermore, for technical reasons, we then reprogram H on (pki,mi, si)
by a random value Θ, from this or the next query onwards.

Game Gi
5

1 : m← AHΘ
i

0 ()

2 : #measure ith query: (pki,mi, si)

3 : (y, pk, s)← BH[(·,m,·)7→⊥]
1 (m)

4 : return HΘ
i (pk,m, s) = y

5 : ∧(pk,m, s) = (pki,mi, si)

Game Gi
6

1 : m← AHΘ
i

0 ()

2 : #measure ith query: (pki,mi, si)

3 : (y, pk, s)← BH[(·,mi
,·)7→⊥]

1 (mi)

4 : return HΘ
i (pk

i,mi, si) = y

Fig. 13. The modified games Gi
5 and Gi

6 for the proof of Theorem 15. In both games, H
is understood to be uniformly random. HΘ

i is the oracle that implements H until just
before the i-th query, then measures that query in the computational basis to obtain
(pki,mi, si), and subsequently answers queries from A0 with H[(pki,mi, si) 7→ Θ], i.e.,
with H but reprogrammed to a random value Θ at (pki,mi, si), either from the i-th or
the i+ 1-th query onward, with this choice being made uniformly at random as well.

G0 to G1 hop. The only difference between G0 and G1 is that the former com-
putes y ← H(pk,m, s), while the latter reprograms H(pk,m, s) := y ← Y. With
s being uniformly random chosen, this is a direct application of the adaptive
reprogramming lemma (Theorem 1 in [GHHM21]) to bound the distinguishing
probability:

Pr [1← G0] ≤ Pr [1← G1] +
√
q0 · 2−ℓ +

q0 · 2−ℓ

2
.

G1 to G2 hop. Without loss of generality, we may assume pk ̸= pk, in which
case the reprogramming of H, done in G1 but not in G2, does not affect the final
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hash H(pk,m, s). Thus, the only difference between the two games is that A1

interacts with the original H in G2, and with H that is reprogrammed to ⊥ at
the point (pk,m, s) in G1.

This is a direct application for O2H ([AHU19, Theorem 3]). We note that in
game G2, A1 has access to H, y, h and s. Using that y and s are independent of
(m,H, h), we obtain guess(m | H, y, h, s) = guess(m | H,h) = ϵ (where the latter
equality is given by the entropy condition). Thus, measuring a random query of
A1 in G2 yields (pk,m, s) with probability at most ϵ. Therefore, by O2H,

Pr [1← G1] ≤ Pr [1← G2] + 2q1
√
ϵ .

G2 to G3 hop. Again by O2H - arguing as above that the measurement out-
come when measuring a random query of A1 in G2 is of the form (·,m, ·) with
probability at most ϵ - we obtain

Pr [1← G2] ≤ Pr [1← G3] + 2q1
√
ϵ .

G3 to G4 hop. Here we argue precisely as in the classical case: we relax the
winning condition, and we do a syntactical change by introducing B1, which
does the computation of h and the sampling of s and y locally, before it runs A1.
Thus, also here

Pr [1← G3] ≤ Pr [1← G4] .

G4 to Gi
5 hop. In Gi

5, the oracle for A0 is replaced by HΘ
i , which implements H

until just before the i-th query, then measures that query in the computational
basis to obtain (pki,mi, si), and subsequently switches to H[(pki,mi, si) 7→ Θ]
either from the i-th or the i + 1-th query onward, with this choice being made
uniformly at random.

The goal here is to use the measure-and-reprogram technique from [DFM20]
to control the effect of this change. For this purpose, we consider the oracle
algorithm CH(A0,B1), which simply runs m ← AH

0 () followed by (y, pk, s) ←
BH[(·,m,·)7→⊥]
1 (m).
We allow C conditional superposition query access to the random-oracle H,

which it uses to forward all queries from A0 unconditionally and queries x from
B1 conditional on x ̸= (·,m, ·), returning ⊥ for x = (·,m, ·). CH is thus an oracle
algorithm with query complexity q0 + q1 and such that in its second phase the
only query inputs with non-zero amplitude are of the form x ̸= (·,m, ·). At the
end of its run, CH(A0,B1) outputs (x, z) with x := (pk,m, s) and z := y.

Furthermore, we define the verification predicate V (x, y, z) that is 1 if and
only if y = z. Then, V (x,H(x), z) = 1 if and only if H(pk,m, s) = y, which is
the verification condition in G4. Thus,

Pr[V (x,H(x), z) = 1 : (x, z)← CH((A0,B1))] = Pr [1← G4(A0,B1)] .

We are now in a situation where we can apply a modified version of the
measure-and-reprogram technique from [DFM20]. Theorem 22 in the Appendix
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ensures the existence of a “simulator” SC such that, for a random Θ,

Pr[V (x,H(x), z) = 1 : (x, z)← CH]
(2q + 1)2

≤ Pr[V (x,Θ, z) = 1 ∧ x = x′ : (x′, x, z, i)← ⟨SC(Q), Θ⟩] ,

where Q is a set of queries where S has non-zero probability of success, and
q = |Q|. We need to describe S in a bit more detail before we can determine Q.

In the following, let Q0 := {0, . . . , q0−1} and Q1 := {q0, . . . , q0+ q1−1} (we
let C’s queries start at 0 and run until q0+ q1− 1). The algorithm ⟨SC , Θ⟩ works
as follows: it measures the i-th query of CH for a random i ∈ Q0∪Q1∪{q0+q1},
with the measurement outcome being x′, and then reprograms future queries
to input x′ by Θ (starting from this or the next query, chosen uniformly at
random).10 Finally, S outputs x′ along with i and the final output (x, z) of C.

In the case of our algorithm C it is easy to determine Q; C knows m by the
end of its first phase, and by construction 1. never queries any input of the form
(·,m, ·) from that point on and 2. at the end of its run outputs x = (pk,m, s).
Hence, for i ∈ Q1 we have x ̸= x′ with certainty and thus

Pr
(x′,x,z,i)←⟨SC,Θ⟩

[V (x,Θ, z) = 1 ∧ x = x′|i ∈ Q1] = 0 .

It follows that Q = Q0 and therefore q = q0.

Thus, conditioned on i ∈ Q0, ⟨SC , Θ⟩ works asA
HΘ

i
0 () followed by BH[(·,m,·) 7→⊥]

1 (m)
in Gi

5 for a random i ∈ Q0, and the event V (x,Θ, z) = 1 ∧ x = x′ matches with
the winning condition of Gi

5.
Hence, omitting the specification (x′, x, z, i) ← ⟨SC , Θ⟩ of the probability

space and writing V as a shorthand for V (x,Θ, z) in the expressions to simplify
notation, we obtain

Pr[V = 1 ∧ x = x′] = Pr[i ∈ Q0] Pr [V = 1 ∧ x = x′ | i ∈ Q0]

+ Pr[i /∈ Q0] Pr [V = 1 ∧ x = x′ | i /∈ Q0]

=
q0

q0 + 1
Pr

[
1← Gi

5 | i ∈ Q0

]
+

1

q0 + 1
Pr [V = 1 ∧ x = x′ | i /∈ Q0] . (8)

Finally, we argue that for (x′, x, z, i)← ⟨SC , Θ⟩

Pr[V (x,Θ, z) = 1 ∧ x = x′ | i /∈ Q0] =
1

|Y|
.

Consider i /∈ Q0, i.e. S measures the final output of C. Then B1 learns
no information on Θ before producing its output, and so V (x,Θ, z) = 1 with
probability 1

|Y| .

10 The choice i = q0 + q1 indicates that the final output (pk,m, s) of C is measured,
instead of one of its queries.
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Putting all together, we obtain that

Pr [1← G4]

(2q0 + 1)2
≤ q0

q0 + 1
Pr

[
1← Gi

5 | i ∈ Q0

]
+

1

(q0 + 1) · |Y|
.

Gi
5 to Gi

6 hop. Let i ∈ Q0 now be fixed. As in the classical case, due to the extra
condition in Gi

5, we may replace the occurrence of m with mi without affecting
the output of the game. Thus

Pr
[
1← Gi

5

]
= Pr

[
1← Gi

6

]
.

Similarly (but not identically) to the classical case, we can argue the latter
probability to be small. Indeed, we may assume that A0 stops after having
produced the i-th query, which is then measured. This then means, given that
H[(·,mi, ·) 7→ ⊥]) blocks the query that would reveal Θ, the output (y, pk, s)
produced by B1 is independent of Θ. Thus, the probability that y = Θ is at
most 1/|Y|, showing that

Pr
[
1← Gi

6

]
= 1/|Y| for all fixed i ∈ Q0.

Substituting terms in Equation 8, we obtain that

Pr [1← G4] ≤
(2q0 + 1)2

|Y|
.

Combining the above bounds concludes the proof.

With this, we have all ingredients to conclude (5), i.e., Theorem 11 for quan-
tum adversaries. Similar to the bottom of Section 4.2, we combine Proposition 13
and Theorem 15, except now replacing the use of linearity to Jensen’s inequality.

Given that, in typical applications, A0 is not adversarially chosen but de-
termined by the environment, and typical applications take place in a classical
environment, it makes sense to also consider the “semi-quantum case” where
we restrict A0 to classical queries, but we still allow A1 to be quantum. By an
appropriate mix-and-match of the classical and the (fully) quantum proof, we
obtain the following bound then.11

Porism 16. Let A = (AH
0 ,AH

1 ) be a computationally unbounded adversary
against Φ-$-NMH,⊥, with AH

0 making at most q0 classical queries and AH
1 at

most q1 quantum queries to the random oracle H with co-domain Y, and let aux
be a function. Set

ϵ := guess
m←AH

0

(
m

∣∣H, aux(m)
)
,

and let pk be an arbitrary public key. Then,

Adv
Φ-$-NMH,⊥(pk)
H (A, aux) ≤ q0 · 2−ℓ + 4q1

√
ϵ+ (q0 + 1)/|Y| .

Again, combining Proposition 13 and Porism 16, we conclude (6), i.e. the
semi-quantum case of Theorem 11.

11 The most challenging part of the proof is the superposition queries by A0.
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4.4 Computational Entropy in the ROM

Previous definitions of non-resignability (and similar for Φ-non-malleability) in
the plain model involved a premise on the min-entropy of the signed message,
making it hard for the adversary A1 to guess it. In the random oracle model,
however, the random oracle H : X → Y itself becomes a source of randomness.
Thus, by choosing the message to be the hash of a fixed string, it has high
entropy but is still easy to guess, by just making one query to the random
oracle. So far, we dealt with this by considering the statistical min-entropy and
additionally conditioning on the (function table of the) random oracle. However,
conditioning on the exponentially large function table of the random oracle is
problematic when considering the computational HILL entropy.

Below, we consider a natural way to overcome this issue by introducing a
notion of HILL entropy in the ROM. In spirit, a random variable X, which may
be correlated with the random oracle, has high HILL entropy, if it is indistin-
guishable from a random variable that has high statistical entropy, and where
indistinguishability must hold for efficient oracle algorithms that may query the
random oracle. Looking ahead, unfortunately, our positive result from above
nevertheless does not carry over to the computational setting, despite this new
notion of HILL entropy in the ROM.

Formally, for two random variables X,Y that may depend on the random
oracle H, we define the computational distance relative to H as

δHs,q(X,Y ) := max
C

∣∣Pr [1← CH(X)
]
− Pr

[
1← CH(Y )

]∣∣ ,

where the maximum is taken over all circuits C of size s and additionally given
at most q queries to H. The definition of the (conditional) HILL entropy HILLH∞
relative to H is then in line with Definition 1.

Definition 17. For a pair of random variables (X,Z), possibly dependent on
the random oracle H, the conditional HILL entropy (with parameters δ, s and q)
relative to the random oracle is defined as

δ,s,qHILLH∞(X|Z) := max
Y

H∞(Y |Z,H) ,

where the max is over all random variables Y with δHs,q((X,Z), (Y,Z)) ≤ δ .

Note that we can also consider a variant where the indistinguishability is
captured via quantum circuits, but for the sake of simplicity, here we consider
only the classical variant of HILL entropy. Furthermore, similarly to the remark
in Section 2.1, we may also use an asymptotic notation and omit the parameters.

Below, we show that our positive result on the salted BUFF transform in
the ROM does not carry over to the computational setting when considering the
entropy requirement to be computational, i.e., captured by the above notion of
HILL entropy in the ROM. Concretely, we show that under the computational
Diffie-Hellman (CDH) assumption, there exists a (contrived) signature scheme
that is secure in the standard sense (and thus a meaningful signature scheme),
but for which the salted BUFF transformation does not provide the computa-
tional variant of NRH,⊥. Formally, this is summarized in Theorem 18.
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Theorem 18. Let H be a random oracle with co-domain Y. Assuming CDH
is hard, there exists a signature scheme SH = (KGen, SignH, VfyH) in the ROM,
with a key generation that has no access to H, for which $-BUFF[S,H], obtained
by applying the salted BUFF transform (see Fig. 9), satisfies the following:

There exists a PPT adversary AH := (AH
0 ,AH

1 ) given query access to H, and
a PPT function aux without any query to H such that

HILLH∞
(sk,pk)←$-BUFF[S,H].KGen(1λ)

m←AH
0 (pk)

(
m

∣∣ pk, aux(m, pk)
)
≥ log(|Y|) ,

and yet they win the game NRH,⊥ against $-BUFF[S,H] with certainty, i.e.,

AdvNRH,⊥

$-BUFF[S,H](A, aux) = 1 .

Moreover, SH is strongly unforgeable under chosen message attacks.

Let SH
◦ be an arbitrary CDH-based (strongly unforgeable) signature scheme,

with a key generation that does not query H. Define S to be as S◦, but modified
as follows. The key generation additionally produces a pair (a, ga), and attaches
a to the secret key and ga to the public key. Furthermore, signing attaches a to
the actual signature (but will be ignored by the verification). Then, we consider
an attacker that produces the message m as m := (H(gab), gb), and the auxiliary
function aux(m, pk) := gb. Then we have

HILLH∞
(
m

∣∣ pk, aux(m, pk)
)
≥ HILLH∞

(
H(gab)

∣∣ ga, gb) ,
which is at least as large as log(|Y|) by the CDH assumption; yet when given the
signature of m, which includes a (be it BUFF transformed or not), the attacker
can compute all of m and so produce a new signature by freshly signing m, which
breaks the NRH,⊥ security of $-BUFF[S,H]. For completeness, the detailed proof
is spelled out in Appendix D.

5 Conclusion

Non-resignability was considered to be a meaningful, possibly desirable, addi-
tional security property for digital signature schemes, beyond standard unforge-
ability, and the BUFF transform was believed to be a generic transformation
that turns any signature scheme into one that satisfies this additional security
property (in the random oracle model). Our work shows that the situation is ac-
tually much more negative; the above, incorrect understanding is largely due to
prior work not spelling out formal definitions, statements, and proofs rigorously
enough, leading to incorrect claims—or to claims that are not defined but easily
incorrectly interpreted.

We also show that there is room for positive results, but more work is nec-
essary in that respect. In particular, it is conceivable that the original BUFF
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transform satisfies our weaker notion of non-resignability in the ROM when hav-
ing a bound on the statistical entropy, i.e., that Theorem 11 holds (with adjusted
bounds) for the original BUFF transform. Achieving our weaker notion of non-
resignability in the ROM, by means of a generic transformation, when consider-
ing the computational variant of the entropy requirement is another challenging
open problem.
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ZBPB17. Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. HACL*: A verified modern cryptographic
library. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1789–1806. ACM Press, Oc-
tober / November 2017.

A Unachievability of Φ-Non-Malleability as in [CDF+23]

Following the (updated) definition in [CDF+23, Def. 2.4], a hash function H is
Φ-non-malleable if for every pair (A0,A1) of PPT algorithms for which the Hill
entropy HILL∞(x|state) is sufficiently large for (X , state)← A0 and x← X , the
probability of winning the game in Fig. 14 is negligible. In case of a hash function
family, the hash key is given as input to A0 and the HILL entropy is then also
conditioned on the hash key. In case of H a random oracle, A0 is given query
access to H and the entropy requirement is then on the statistical min-entropy
H∞(x|H, state), where one additionally conditions on the (function table of) the
random oracle.

The relevant choice of Φ for the non-resignability claim in [CDF+23] is

Φ = {ϕpk : (pk,m) 7→ (pk,m) | pk ∈ K} ,

where K is the space of all public keys. In more detail, [CDF+23, Lemma 5.7]
shows that the considered NR property of the (original) BUFF transform is
satisfied if the considered hash function H (or hash function family) satisfies the
above notion of Φ-non-malleability for this particular choice of Φ.

We show here a simple attack against this notion of Φ-non-malleability for
this choice of Φ. The attack applies to any hash function (family) H, includ-
ing the random oracle, and so renders the non-resignability claim in [CDF+23,
Lemma 5.7], and in [CDF+23, Theorem 5.5], vacuous.
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Φ-NM0:

1: (X , state)← A0

2: x← X
3: y := H(x)
4: (y, ϕ)← A1(y, state)
5: return (H(ϕ(x)) = y ∧ ϕ(x) ̸= x )

Fig. 14. The Φ-non-malleability game, as considered in [CDF+23], but for a fixed hash
function H. X is an efficiently sampleable distribution. The subscript in Φ-NM0 here
is meant to distinguish it from the original definition, which considers some additional
auxiliary information.

The attack works as follows. A0 outputs the distribution X that samples a
random pk ∈ K and outputs x = (pk, 0), and A1 ignores its input y = H(pk, 0)
and simply outputs (H(pk, 0), ϕpk) for an arbitrary (fixed) pk ∈ K. Note that
there is no state information state here, and the entropy condition is satisfied
(assuming K to be sufficiently large). Thus, this is a valid attack that succeeds
with probability almost 1; it only fails when the random pk ∈ K happens to
be pk.

B A modified measure-and-reprogram lemma

In [DFM20] we find the “measure-and-reprogram technique 2.0” (Theorem 2):

Theorem 19 (Measure-and-reprogram). Let X and Y be finite non-empty
sets. There exists a black-box two-stage quantum algorithm S with the following
property. Let A be an arbitrary oracle quantum algorithm that makes q queries
to a uniformly random H : X → Y and that outputs some x ∈ X and a (possibly
quantum) output z. Then, the two-stage algorithm SA outputs some x ∈ X in the
first stage and, upon a random Θ ∈ Y as input to the second stage, a (possibly
quantum) output z, so that for any x◦ ∈ X and any (possibly quantum) predicate
V :

Pr
H,Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA, Θ⟩

]
≥ 1

(2q + 1)2
Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z)← AH

]
.

Furthermore, S runs in time polynomial in q, log |X |, and log |Y|.

Here ⟨SA, Θ⟩ works as follows: First, one of the q+1 queries of A (also count-
ing the final output in register X) is measured, and the measurement outcome
x is output by (the first stage of) S. Each of the q actual queries is picked with
probability 2

2q+1 , while the final output is picked with probability 1
2q+1 . Then

this very query of A is answered either using the original H or using the repro-
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grammed oracle H∗Θx, with the choice being made at random12, while all the
remaining queries of A are answered using oracle H ∗Θx. Finally, (the second
stage of) S outputs whatever A outputs.

The theorem follows directly from the above definition of S and a technical
lemma. Let first |ϕi⟩ be defined asA’s state right before making its i+1st query—
with the special case |ϕq⟩ denoting the final output state—to which we add the
superscript O ∈ {H,H∗Θx} when all previous queries have been answered using
O. Next, we use AOi→j to denote the unitary that brings A from |ϕi⟩ to |ϕj⟩,
using O from the i-th query on. Finally, we use the shorthand X := |x⟩⟨x|. The
lemma then reads:

Lemma 20. Let A be a q-query oracle quantum algorithm. Then, for any func-
tion H : X → Y, any x ∈ X and Θ ∈ Y, and any projection Πx,Θ, it holds
that

Ei,b

[∥∥(X ⊗Πx,Θ)
(
AH∗Θx

i+b→q

)(
AH

i→i+b

)
X

∣∣ϕH
i

〉 ∥∥2
2

]
≥

∥∥(X ⊗Πx,Θ)
∣∣ϕH∗Θx

q

〉 ∥∥2
2

(2q + 1)2
,

where the expectation is over uniform (i, b) ∈ ({0, . . . , q−1} × {0, 1}) ∪ {(q, 0)}.

Here the left-hand side corresponds to the success probability of S with
respect to V and Θ, while (in expectation over Θ) the right-hand side is equal
to the success probability of the adversary in a normal run, now with respect to
V and the original oracle output H(x).

A first observation is that the technical lemma actually proves something
slightly stronger than Theorem 19; If we let S additionally output the measure-
ment outcome x, we get the condition x = x′ for free (since the same projector
X is used on the query as well as the final output state). On the other hand,
for our application it suffices to use a slightly weaker statement (in a different
respect) that we obtain by summing over all x◦ ∈ X :

Pr
Θ

[
x=x′ ∧ V (x,Θ, z) : (x, x′, z)← ⟨SA, Θ⟩

]
≥ 1

(2q + 1)2
Pr
H

[
V (x,H(x), z) : (x, z)← AH

]
.

Next, we will reduce q to account for only those queries where S has a non-zero
probability of measuring the same x′ = x that will eventually be output by A,
while also satisfying the quantum predicate. The probability here is over the
choice of H, Θ and the measurement outcome x′, we thus define:

Qmin := {i ∈ {0, . . . , q−1} | ∃H ∈ YX ,∃Θ ∈ Y,∃x ∈ X ,∃b ∈ {0, 1} s.t.∥∥(X ⊗Πx,Θ)
(
AH∗Θx

i+b→q

)(
AH

i→i+b

)
X

∣∣ϕH
i

〉 ∥∥
2
̸= 0} .

Let furthermore Q be any subset of queries such that Qmin ⊆ Q ⊆ {0, . . . , q−1}.
It will now be easy to prove the following modified lemma:

12 If it is the final output that is measured then there is nothing left to reprogram, so
no choice has to be made.
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Lemma 21. Let A be a q-query oracle quantum algorithm, with Q as defined
above. Then, for any function H : X → Y, any x ∈ X and Θ ∈ Y, and any
projection Πx,Θ, it holds that

E
i,b

[∥∥(X ⊗Πx,Θ)
(
AH∗Θx

i+b→q

)(
AH

i→i+b

)
X

∣∣ϕH
i

〉 ∥∥2
2

]
≥

∥∥(X ⊗Πx,Θ)
∣∣ϕH∗Θx

q

〉 ∥∥2
2

(2|Q|+ 1)2
,

where the expectation is over uniform (i, b) ∈ (Q× {0, 1}) ∪ {(q, 0)}.

Note that the only difference to Lemma 20 is in the expectation on the left-
hand side and the denominator on the right-hand side, as indicated in blue.
The proof is largely taken from [DFM20], with a small modification which we
highlight with a gray background.

Proof. For any 0 ≤ i ≤ q, inserting a resolution of the identity and exploiting
that (

AH∗Θx
i+1→q

)(
AH

i→i+1

)(
I−X

) ∣∣ϕH
i

〉
=

(
AH∗Θx

i→q

)(
I−X

) ∣∣ϕH
i

〉
,

we can write(
AH∗Θx

i+1→q

) ∣∣ϕH
i+1

〉
=

(
AH∗Θx

i+1→q

)(
AH

i→i+1

)(
I−X

) ∣∣ϕH
i

〉
+

(
AH∗Θx

i+1→q

)(
AH

i→i+1

)
X

∣∣ϕH
i

〉
=

(
AH∗Θx

i→q

)(
I−X

) ∣∣ϕH
i

〉
+

(
AH∗Θx

i+1→q

)(
AH

i→i+1

)
X

∣∣ϕH
i

〉
=

(
AH∗Θx

i→q

) ∣∣ϕH
i

〉
−
(
AH∗Θx

i→q

)
X

∣∣ϕH
i

〉
+

(
AH∗Θx

i+1→q

)(
AH

i→i+1

)
X

∣∣ϕH
i

〉
Rearranging terms, applying GΘ

x = (X ⊗Πx,Θ) and using the triangle equality,
we can thus bound∥∥GΘ

x

(
AH∗Θx

i→q

) ∣∣ϕH
i

〉 ∥∥
2
≤

∥∥GΘ
x

(
AH∗Θx

i+1→q

) ∣∣ϕH
i+1

〉 ∥∥
2

+
∥∥GΘ

x

(
AH∗Θx

i→q

)
X

∣∣ϕH
i

〉 ∥∥
2

+
∥∥GΘ

x

(
AH∗Θx

i+1→q

)(
AH

i→i+1

)
X

∣∣ϕH
i

〉 ∥∥
2
.

Summing up the respective sides of the inequality over i = 0, . . . , q−1, dropping
(some of) the zero terms in the summand13, we get∥∥GΘ

x

∣∣ϕH∗Θx
q

〉 ∥∥
2
≤

∥∥GΘ
x

∣∣ϕH
q

〉 ∥∥
2
+

∑
i ∈ Q

b∈{0,1}

∥∥GΘ
x

(
AH∗Θx

i+b→q

)(
AH

i→i+b

)
X

∣∣ϕH
i

〉 ∥∥
2
.

By squaring both sides, dividing by 2|Q| + 1 (i.e., the number of terms on the
right-hand side), and using Jensen’s inequality on the right-hand side, we obtain∥∥GΘ

x

∣∣ϕH∗Θx
q

〉 ∥∥2
2

2|Q|+ 1
≤

∥∥GΘ
x

∣∣ϕH
q

〉 ∥∥2
2
+

∑
0≤i<q
b∈{0,1}

∥∥GΘ
x

(
AH∗Θx

i+b→q

)(
AH

i→i+b

)
X

∣∣ϕH
i

〉 ∥∥2
2

13 At most (if Q = Qmin) we drop all terms that are zero for every choice of b,H,Θ,
and x.
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and thus, noting that we can write
∥∥GΘ

x

∣∣ϕH
q

〉 ∥∥2
2
as∥∥GΘ

x

(
AH∗Θx

i+b→q

)(
AH

i→i+b

)
X

∣∣ϕH
i

〉 ∥∥2
2

with i = q and b = 0,∥∥GΘ
x

∣∣ϕH∗Θx
q

〉 ∥∥2
2

(2|Q|+ 1)2
≤ E

i∈ Q,b

[∥∥GΘ
x

(
AH∗Θx

i+b→q

)(
AH

i→i+b

)
X

∣∣ϕH
i

〉 ∥∥2
2

]
.

This concludes the proof.

The corresponding theorem reads as follows:

Theorem 22 (Measure-and-reprogram with stingy simulator). Let X
and Y be finite non-empty sets. There exists a black-box two-stage quantum al-
gorithm S with the following property. Let A be an arbitrary oracle quantum al-
gorithm that makes q queries to a uniformly random H : X → Y and that outputs
some x ∈ X and a (possibly quantum) output z, and let V be a (possibly quantum)
predicate. For i ∈ {0, . . . , q− 1}, define the two-stage algorithm SAi as follows:
In the first stage Si measures the i-th query of A, and outputs the measurement
outcome x′. Then, upon a random Θ ∈ Y as input to the second stage, this very
query of A is answered either using the original H or using the reprogrammed
oracle H ∗Θx, with the choice being made at random, while all the remaining
queries of A are answered using oracle H ∗Θx. At the end of its run Si then
outputs whatever A outputs (along with i). Now let Q ⊆ {0, . . . , q − 1} be such
that for all i /∈ Q we have PrH,Θ

[
x′=x ∧ V (x,Θ, z) : (x′, x, z) ← ⟨SAi , Θ⟩

]
= 0.

Define S(Q) to be the algorithm that with probability 2|Q|
2|Q|+1 picks i uniformly at

random from Q and then runs Si, and with probability 1
2|Q|+1 chooses i = q and

just simulates A without any measurement or reprogramming, and again outputs
whatever A outputs (along with x′ := x and i). We then have

Pr
H,Θ

[
x′=x ∧ V (x,Θ, z) : (x′, x, z, i)← ⟨SA(Q), Θ⟩

]
≥ 1

(2|Q|+ 1)2
Pr
H

[
V (x,H(x), z) : (x, z)← AH

]
.

Furthermore, S runs in time polynomial in q, log |X |, and log |Y|.

C Proof of Theorem 7

Proof. For the signature scheme SH = (KGenH, SignH, VrfyH), we give an ad-
versary AH = (AH

0 ,AH
1 ) that wins game NRH

S with overwhelming probability.
The adversary AH = (AH

0 ,AH
1 ) and the function auxH are given in Fig. 6. In

the first stage, adversary AH
0 chooses a random message m that it will output.

The auxiliary function, which receives the message m as input, first generates a
new key pair (sk, pk) ← KGenH(1λ), computes σ ← SignH(sk, y), and outputs
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h ← (pk, σ). In the second state, AH
1 gets the public key pk, the signature σ

(of message m using secret key sk), and the hint h (consisting of pk and σ)
as input and simply outputs h = (pk, σ). It is easy to see that NRH

S outputs 1
with overwhelming probability. This is because, by the correctness of S, we have
that σ is a valid signature of m under pk with overwhelming probability, and by
the high min-entropy of a public key conditioned on H, we have pk ̸= pk with
overwhelming probability.

The remaining is to argue that A satisfies the entropy condition (3). It holds
that

H∞(m | pk, auxH(m, pk),H) = H∞(m | auxH(m, pk),H)

= H∞(m | pk, SignH(sk,m),H) ≥ ω(log λ) .

The first equality holds by noticing that m → (auxH(m, pk),H) → pk forms a
Markov chain, the second equality holds by the construction of auxH, and the
last inequality holds from the entropy requirement. Collecting the above yields

AdvNRH

S (λ,A, aux) ≥ 1− negl(λ) ,

which concludes the proof.

D Prove of Theorem 18

Let G be a cyclic group of order n generated by g, for which CDH is hard. The
core of this negative result is a generic compiler RSg as defined in Fig. 15. The
compiler RSg appends a ← {1, . . . , n} to sk and ga to pk during key genera-
tion, and appends a to the signature during signing, transforming any signature
scheme SH

◦ into another RSg[S◦, H] that can easily be re-signed, as will be shown
later. This transformation does not make additional queries to H during key gen-
eration. Moreover, as can be clearly seen by construction, RSg preserves strong
(resp. weak) unforgeability, and additionally commutes with $-BUFF, i.e.

$-BUFF[RSg[S◦,H],H] ≡ RSg[$-BUFF[S◦,H],H] , (9)

where we use “≡” to denote that signatures on both sides behave identically
(up to output re-formatting). As a direct consequence, the salted BUFF ap-
plied to any such compiled signature RSg[S◦,H] yields another RSg-transformed
signature, thus can still be re-signed.

Now we are ready to spell out the attack A = (A0,A1) and aux in Fig. 16
against NRH,⊥ in Fig. 10. From the construction, we immediate see that they
win the game with certainty, i.e.

AdvNRH,⊥

RSg[S◦,H](A, aux) = 1 . (10)

Then, it follows from Lemma 23 that the above attack indeed satisfies the HILL
entropy requirement, namely

HILLH∞
(sk,pk)←RSg [S◦,H].KGen(1λ)

m←AH
0 (pk)

(
m

∣∣∣ pk, aux(m, pk)
)
≥ log(|Y|) .
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KGen(1λ)

1 : (sk, pk)← S◦.KGen(1
λ)

2 : a← {1, . . . , n}
3 : sk := (a, sk)

4 : pk := (ga, pk)

5 : return (sk, pk)

SignH(sk,m)

1 : (a, sk) := sk

2 : σ ← S◦.Sign(sk,m)

3 : return σ := (a, σ)

VfyH(pk′,m, σ′)

1 : (ga, pk) := pk

2 : (a, σ) := σ

3 : return S◦.Vfy(pk,m, σ)

Fig. 15. The compiler RSg[S◦, H] for a signature scheme SH
◦ and a hash function H.

Putting things together, we conclude Theorem 18.

AH
0 (pk)

1 : (ga, pk) := pk

2 : b← [n]

3 : return m := (H(gab), gb)

aux(m, pk)

1 : (−, gb) := m

2 : return h := gb

AH
1 (pk, σ, h)

1 : (a,−) := σ

2 : gb := h

3 : return gab

Fig. 16. Attacker against NRH,⊥ in terms of HILL entropy

Lemma 23. Let H be a random oracle with co-domain Y, and G be a cyclic
group of order n generated by g, for which CDH is hard. Then we have

HILLH∞
a,b←[n]

(
H(gab) | ga, gb

)
≥ log(|Y|) .

Proof. Let y ← Y be a fresh randomness, and CH be a q-query polynomial-
circuit-size oracle algorithm where q is polynomially bounded. To distinguish
between (H(gab), ga, gb) and (y, ga, gb), the algorithm CH has to query gab in
one of its queries, i.e.∣∣Pr [1← CH(H(gab), ga, gb)

]
− Pr

[
1← CH(y, ga, gb)

]∣∣
≤

∑
i∈[q]

Pr
[
gab ← Ci(g

a, gb)
]
,

where the circuit Ci simulates CH and its queries to H via lazy sampling, and
then simply output the ith query to H. Since each Ci is still polynomial-circuit-
size, it is unable to produce gab except with negligible probability, i.e.

Pr
a,b←[n]

[gab ← Ci(g
a, gb)] ≤ negl(λ) ,

for some security parameter λ that has been kept implicit. Putting things to-
gether, we obtain

HILL∞
a,b←[n]

(
H(gab) | ga, gb

)
≥ H∞(y | H, ga, gb) = log(|Y|) ,
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where the last equality follows from the independence between y and (H, ga, gb).
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