
Input Transformation Based Efficient
Zero-Knowledge Argument System for Arbitrary

Circuits with Practical Succinctness

Frank Y.C. Lu

YinYao

Abstract. We introduce a new efficient transparent interactive zero
knowledge argument system that is based on the new input transfor-
mation concept which we will introduce in this paper. The core behind
this concept is a mechanism that converts input parameters into a for-
mat that can be processed directly by the circuit so that the circuit
output can be verified through direct computation. In our protocol, we
convert circuit inputs in Pedersen commitment form to linear polynomi-
als in integer form so the verifiers can use standard integer operations to
compute and verify the circuit output.

This direct computation mechanism replaces the constraint system of-
ten found in popular zero knowledge protocols, and eliminates the need
of using a front end encoder to translate NP relation R to some zero-
knowledge friendly representation R̂ (such as the R1CS constraint sys-
tem) before the relation can be converted to a proof system, making our
protocol easy to implement and likely easier to use compared to protocols
using a constraint system.

The asymptotic cost of our protocol is O(mp log mp) for prover work,
O(n) for verifier work, and O(mp

1/2) for communication cost, where n
stands for the total number of operations in a circuit and mp stands for
the total number of multiplications performed on the path that leads
to the circuit output (e.g. for a circuit with n = 220 sequential mul-
tiplications and one output, mp = n). While the verifier runtime of
our protocol is linear to the size of the circuit, its benchmark perfor-
mance compares favorable against current state-of-the-art transparent
zero-knowledge protocols by a large margin. For this reason, we say that
our protocol achieves practical succinctness.

Specifically, when running a circuit comprised of 220 sequential multi-
plication gates with 640 input bits on a single CPU thread, the prover
runtime of our protocol is 6 seconds, the verifier runtime is 23 millisec-
onds, and the communication cost is approximately 59 kilobytes. This
result shows a significant improvement in verifier runtime over the state
of the art while keeping the prover runtime and communication cost
competitive with the state of the art.

Keywords: zero knowledge · interactive oracle proofs

1 Introduction

Ever since the discoveries of interactive proofs (IPs) [14] and probabilistically
checkable proofs (PCPs) [5] [4] [3] [2] in the late last century, there has been
tremendous amount of research in the area of proof systems. More recently, the
rise Blockchain and Web3 has finally triggered real-world deployments of zero
knowledge systems.

Popular zero knowledge systems are often divided into two phases: the first
part, a “front-end” encoder converting a specification of an NP-relation R into a
“zero-knowledge friendly” representation R̂ (e.g. rank-1 constraint system); and
then another “back-end” system converting R̂ to a zero-knowledge proof system
for R. The encoder based two-phased design has accelerated the development of
zero knowledge system applications, but it has added cost of running the encoder
to translate circuit logic to constraint system form.

Due to expensive computation during setup time of earlier SNARKs, it has
become a significant interest to have the structured reference string (SRS) be
constructible in a “universal and updatable” fashion, meaning that the same
SRS can be used for statements about all circuits of a certain bounded size.
Maller et al. constructed for the first time a universal fully succinct SNARK
for circuit satisfiability called Sonic [15]. More recently developed protocols such
as PLONK [12], MARLIN [11] are universal fully-succinct SNARK with signifi-
cantly improved prover run time compared to the fully-succinct Sonic. However,
there are two draw backs with these SNARKs: first, most of these universal
succinct SNARKs systems require trusted setup; second, the prover run-time of
these protocols are very expensive, which is prohibitive for many applications.

Protocols belong to the Goldwasser, Kalai, and Rothblum (GKR) class such
as Hyrax [18], Virgo [21]; MPC-in-the-head class of Kushilevitz, Ostrovsky, and
Sahai such as ZKBoo [13] and Ligero/Ligero++ [1] [8]; memory efficient VLOE
protocols such as Wolverine [19], Mac’n’Chess [6], Quicksilver [20], offer efficient
prover runprover runtimetime that are at least one order of magnitude more ef-
ficient than pairing based SNARKs, and many of these protocols do not require
trusted setups. However, these protocols are largely ignored by the Blockchain
community due to expensive verifier runverifier runtimetime and high communi-
cation cost (hundreds of KBs, or MBs for VLOE protocols) than fully succinct
PIOP protocols such as STARK [7], PLONK, MARLIN, and Supersonic [10].
Furthermore, state-of-art GKR protocols such as Virgo has additional depen-
dency on circuit depth where protocol complexity increases and performance
significantly degrades as the circuit depth gets longer, making them less at-
tractive to the industry where complex business logics are expected on smart
contracts.

NIZKs such as SpartanNIZK [16] and later Lakonia [17] seems to offer a much
more balanced approach, where it offers efficient prover runtime (6-18 seconds)
and competitive communication cost for large circuits (220 constraints) while not
being layer dependent. However, the downside of these protocols is that their
verifier performance is still expensive, usually in the 400 ms range on a single
thread CPU.

2

We aim to create a new transparent zero knowledge protocol designed to
handle complex circuits and offers prover runtime and communication cost com-
parable to that of the state of the art, but with verifier runtime significantly
improved over the current state of the art systems.

1.1 Summary of Contributions

We introduce a new efficient, transparent, interactive zero-knowledge argument
system that offers great verifier performance despite not being asymptotically
succinct. We achieve this by transforming each committed input parameter of a
circuit to some obfuscated scalar value in linear polynomial form, where verifiers
can perform normal arithmetic operations (e.g., addition and multiplication) on
these values as they do on integers. Since field operations are cheap, the verifier
runtime of our protocol compares favorably against state-of-the-art transparent
zero knowledge protocols.

This input transformation and direct computation approach of our protocol
does not require a“front end” encoder to compile business logic relation R
into some zero-knowledge friendly representation R̂. This construct makes our
protocol relatively easy to implement and also makes it easier for end developers
to apply zero knowledge design to real world applications.

The prover runtime of the base version (Protocol 1) of our protocol is domi-

nated by O(mp
2 +mp+ l) field operations and O(mp+m

1/2
p + l) group exponen-

tiations, where mp stands for the total number of multiplication gates included
in the path that contains most multiplications and l stands for the number of

inputs to a circuit; the verifier runtime is dominated by O(n + m
1/2
p + l) field

operations and O(mp
1/2+l) group exponentiations; and the communication cost

is dominated by O(mp
1/2 + 1) group elements and O(mp

1/2 + l) field elements.

The prover runtime will get increasingly expensive as the value of mp gets
large, so we introduce a mechanism that uses number theoretic transform (NTT)
to bring down the dominating cost factor (computing coefficients of the output
polynomial) in prover runtime from O(mp

2) to O(mp log mp) field operations

in Protocol 2 and then further improve that to O(mp log m
1/2
p) field operations

in Protocol 3.

Our protocol is specifically efficient for proving applications with complex
business logic (e.g., a smart contract validating complex business trade rules)
where circuit depth is high and the number of input parameters is often much
smaller than the circuit size.

We introduce our protocol in an interactive setting where all verifier chal-
lenges are random field elements. In practice, we assume that the Fiat-Shamir
heuristic would be applied in order to obtain a non-interactive zero-knowledge
argument in the random oracle model.

3

2 Preliminaries

2.1 Assumption

Definition 1. (Discrete Logarithmic Relation) For all PPT adversaries A and
for all n ≥ 2 there exists a negligible function negl(λ) s.t.

Pr

[
G = Setup(1λ), g0, ..., gn−1

$←− G ∃ ai 6= 0 ∧
∏n−1
i=0 g

ai
i = 1

a0, ..., an−1 ∈ Zp ← A(g0, ..., gn−1)

]
≤ negl(λ)

The Discrete Logarithmic Relation assumption states that an adversary can’t
find a non-trivial relation between the randomly chosen group elements g0, ..., gn−1 ∈
Gn, and that

∏n−1
i=0 g

ai
i = 1 is a non-trivial discrete log relation among g0, ..., gn−1.

2.2 Zero-Knowledge Argument of Knowledge

Interactive arguments are interactive proofs in which security holds only against
computationally bounded provers. In an interactive argument of knowledge for a
relationR, a prover convinces a verifier that it knows a witness w for a statement
x s.t. (x,w) ∈ R without revealing the witness itself to the verifier. When we say
knowledge of an argument, we imply that the argument has witness-extended
emulation.

Definition 2. (Interactive Argument) Let’s say (P,V) denotes a pair of PPT
interactive algorithms and Setup denotes a non-interactive setup algorithm that
outputs public parameters pp given a security parameter λ that both P and V
have access to. Let 〈P(pp, x, w),V(pp, x)〉 denote the output of V on input x after
its interaction with P, who has knowledge of witness w. The triple (Setup,P,V)
is called an argument for relation R if for all non-uniform PPT adversaries A,
the following properties hold:

• Perfect Completeness

Pr

[
(pp, x, w) /∈ R or pp← Setup(1λ)

〈P(pp, x, w),V(pp, x)〉 = 1 (x,w)← A(pp)

]
= 1

• Computational Soundness

Pr

[
∀w(pp, x, w) /∈ R∧ pp← Setup(1λ)

〈A(pp, x, s),V(pp, x)〉 = 1 (x, s)← A(pp)

]
≤ negl(λ)

• Public Coin All messages sent from V to P are chosen uniformly at random
and independently of P’s messages

4

Definition 3. (Computational Witness-Extended Emulation) Given a public-
coin interactive argument tuple (Setup,P,V) and arbitrary prover algorithm
P∗, let Recorder (P∗, pp, x, s) denote the message transcript between P∗ and
V on shared input x, initial prover state s, and pp generated by Setup. Fur-
thermore, let E Recorder (P , pp, x, s) denote a machine E with a transcript
oracle for this interaction that can rewind to any round and run again with
fresh verifier randomness. The tuple (Setup,P,V) has computational witness-
extended emulation if for every deterministic polynomial time P there exists an
expected polynomial time emulator E such that for all non-uniform polynomial
time adversaries A the following condition holds:

∣∣∣∣∣Pr
[

pp← Setup(1λ)
A(tr) = 1 (x, s)← A(pp)

tr ← Recorder(P∗, pp, x, s)

]
−

Pr

[A(tr) = 1∧ pp← Setup(1λ)
tr accepting =⇒ (x,w) ∈ R (x, s)← A(pp)

(tr, w)← ERecorder(P∗,pp,x,s)(pp, x)

]∣∣∣∣∣ ≤ negl(λ)

Definition 4. (Perfect Special Honest Verifier Zero Knowledge for Interactive
Arguments) An interactive proof is (Setup,P,V) is a perfect special honest
verifier zero knowledge (PSHVZK) argument of knowledge for R if there exists
a probabilistic polynomial time simulator S such that all pairs of interactive
adversaries A1,A2 have the following property for every (x,w, σ) ← A2(pp) ∧
(pp, x, w) ∈ R, where σ stands for verifier’s public coin randomness for challenges

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← 〈P(pp, x, w),V(pp, x)〉

]
=

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← S(pp, x, σ)

]

Above property states that adversary chooses a distribution over statements x
and witnesses w but is not able to distinguish between the simulated transcripts
and the honestly generated transcripts for a valid statement/witnesses pair.

2.3 Polynomial Commitment Function

As in the case of other popular zero knowledge protocols that offer succinct
proof size, our protocol uses a polynomial commitment evaluation protocol to
construct most of our proof transcript. Our protocol uses a version of the poly-
nomial commitment scheme defined by Bootle. et al. [9] Others have improved
the square-root-based polynomial commitments by applying the inner product

5

approach defined by Bunez et. al. and adding support for multilinear polyno-
mials such as Hyrax [18] and Spartan [16]. Similar techniques may be used to
improve our implementation in the future to reduce proof size in the expense of
longer verifier runtime. The polynomial commitment function PolyCommitEval
is defined as:

• PolyCommitEval(C, y, x;~τ , φ) → boolean C is the committed polynomial
in G where ~τ are its coefficients and φ is its blinding key. The function returns
a boolean value“̊atrue” if the polynomial can be correctly evaluated at point
x s.t. y = f(x).

While most polynomial commitment evaluation schemes use constant sized
commitment, the commitment of the scheme defined by Bootle. et al. [9] is a set

of m
1/2
p group elements. In order to not lose generality, we use a single element

C ∈ G to denote a polynomial commitment in this paper.

2.4 Zero Knowledge Proof of Discrete Logarithm

For a prover to prove it has the knowledge of a discrete logarithmic φ of some
group element s = gφ ∈ G. We define the relation for this protocol as RPoD =
{(g, s;φ) : s = gφ}. We also define two functions (ProveDL,V erifyDL) for
provers and verifiers to create and verify proof transcripts:

• ProveDL(g, φ) → trφ generates proof transcript trφ, where φ is the witness.
• V erifyDL(g, s, trφ) → b ∈ {0, 1} takes a proof transcript trφ and a pair of

group elements with discrete log relation (g, s ∈ G ∧ s = gφ), and outputs
true if the knowledge of the relation is verified, false otherwise.

In this paper, we assume the underlying implementation of the proof of dis-
crete logarithm protocol is Schnorr’s protocol. We know for a fact that Shnorr’s
protocol has perfect completeness, special honest verifier zero knowledge, and
computational witness-extended emulation.

2.5 Notations

Let G denote any type of secure cyclic group of prime order p, and let Zp denote
an integer field modulo p. Group elements other then generators are denoted by
capital letters. e.g., C = ua11 u

a2
2 ...u

an
n ∈ G is a commitment commits to a vector

~a denoted by a capital letter, and B ∈ G is a random group element also denoted
by a capital letter. For generators used as base points to compute other group
elements in our protocol, such as ~g, h ∈ G, we use lower case letters to denote
them. Greek letters are used to label hidden key values. e.g. υ is the blinding key
for Pedersen commitment P on generator h ∈ G s.t. P = gahυ. Finally, we use
standard vector notation ~v to denote vectors. i.e. ~a ∈ Znp is a list of n integers
ai for i = {1, 2, ..., n}.

We write R = {(Public Inputs ;Witnesses) : Relation} to denote the
relation R using the specified public inputs and witnesses.

6

3 Input Transformation Based Zero Knowledge
Argument

In this section, we will introduce the base version of our protocol, and then
we will present the improved version of the baseline protocol in sections 4 and
5, which leverage number theoretic transform (NTT) to speed up polynomial
multiplication operations.

The prover work of the baseline version of our protocol is dominated by

O(mp
2 +mp + l) field operations and O(mp +m

1/2
p + l) group exponentiations,

where mp stands for the total number of multiplications included in the path
that leads to the circuit output. Unlike GKR based protocols, layers of additive
operations have no impact on the asymptotic performance of our protocol. In
section 4, we will introduce the full version of our protocol that leverages NTT
to reduce the asymptotic prover runtime for field operations to mp log mp.

The verifier work is dominated by O(n + m
1/2
p + l) field operations and

O(mp
1/2 + l) group exponentiations (we are using the univariate polynomial

commitment scheme defined by Bootle et al. [9], the reason for this choice will
be explained in section 5). Although running O(n) field operations is not techni-
cally sub-linear, it is still efficient even for large circuits with 220 multiplication
gates, so we therefore claim that the verifier work of our protocol achieves prac-
tical succinctness.

The communication cost is dominated by O(mp
1/2

+ l) field elements and

O(mp
1/2

+l)G group elements when using the univariate polynomial commitment
scheme based on the one developed by Bootle et al.[9]

3.1 Using Input Transformation Concept to Build a Zero
Knowledge Argument Protocol For Arbitrary Circuits

We first define the relation for the base version of our protocol. For l input
parameters, let CF represents the set of arbitrary arithmetic circuits in F, there
exists a zero knowledge argument for the relation:

{(g, h,R ∈ G, ~P ∈ Gl, Ec = CF ; ~a, ~υ ∈ Zlp, r, ε ∈ Zp) :

Pi = gaihυi ∀i ∈ [1, l] ∧ R = grhε ∧ Ec(~a, υ) = r, ε}
(1)

The above relation states that each input parameter is a commitment Pi in G
with committed value ai and blinding key υi. The protocol checks whether r, ε
of R are computed from circuit Ec using input witnesses ~a, ~υ.

We update the relation above by introducing witnesses ~τ , which is a byprod-
uct computed from witnesses ~a, ~υ s.t E(~a, ~υ) = r, ε, ~τ . The prover commits to
~τ so that verifiers can use polynomial evaluation protocol to verify them. The
updated relation is as follows:

{(g, h,R,C ∈ G, ~u ∈ Gmp , ~P ∈ Gl, E = CF ; ~a, ~υ ∈ Zlp, r, ε ∈ Zp, ~τ ∈ Zmp
p) :

Pi = gaihυi ∀i ∈ [1, l] ∧ R = grhε ∧ C = ~u ~τ ∧ E(~a, υ) = r, ε, ~τ}
(2)

7

The main idea is to transform committed inputs in Perdersen commitment
form in G to linear polynomials in F so that both the prover and the verifier can
perform addition and multiplication operations just as they add and multiply
polynomials in F. For an input commitment Pi s.t. P = gaihυi ∈ G where ai is
the input value and υi is its blinding key. We use the same value pair to create
its corresponding integer value in linear polynomial form ai

′ ∈ Zp :

ai
′ = ai +Xυi ∈ Zp (3)

The linear polynomial a′i is obviously not binding to ai as we can easily
manipulate the value of ai by altering its blinding key if the value of challenge
X is known. e.g. a′i = (ai+ δ) +x(υi− δ/x) (the ”committed” value ai is altered
to ai + δ). To combat this, verifiers use the following equation to confirm the
mapping between the scalar ai

′ and Pi for some challenge x:

Pi/g
ai
′

=
gaihυi

gai+xυi
= (h/gx)υi (4)

If the prover can prove the knowledge of υi on generator (h/gx) ∈ G using
any proof of discrete log protocol, we have a concrete proof that the witnesses of
ai
′ and Pi must match for some challenge x except for a negligible probability.

Before we move on, there are two issues in real world applications that we
have to consider before we construct the base version of our protocol:

First, since each committed Pi may be used multiple times as inputs to
different circuits, an attacker can easily deduce the witness pair of Pi from two
different challenges x1, and x2. (e.g. for Pi = gaihυi , its linear polynomial form
value from the first challenge x1 would be ai+x1υi, and from the second challenge
x2 would be ai+x2υi, subtracting the two will get υi(x1−x2) where an attacker
can trivially extract the witness pair υi and ai).

Second, for a circuit with l input parameters, it would be pretty inefficient
to create l proof of knowledge transcripts for all l inputs, so we need some kind
of batching mechanism to verify them in batch.

The prover can get around the first issue by creating new blinding keys αi for
every linear polynomial ai

′ s.t. i = {1, ..., l}, and then commit to the differences
between each blinding key pair (e.g. αi − υi). To batch verify them, the verifier

use a random challenge k to generate l challenges ~k = k1, ..., kl s.t.:

κ =

l∑
i=1

(αi − υi)ki ∈ Zp (5)

PKκ = hκ ∈ G (6)

trκ = ProveDL(h, κ) (7)

If the prover can prove the knowledge of κ on generator h ∈ G using any
proof of knowledge (proof of discrete logarithm) protocol, we can confirm that
only the sum of products of blinding keys (exponent of h, not the committed

8

values on generator g) are updated after performing equation 8 except for a
negligible probability.

Pt = (

l∏
i=1

P k
i

i) · PKκ ∈ G (8)

The prover use the new blinding keys ~α to create linear polynomials such
that ai

′ = ai + xαi for all i. After challenge k is known, the prover can batch
prove the mapping between committed values and their linear polynomial values
by providing transcripts for trαt .

αt =

l∑
i=1

(αi)k
i ∈ Zp (9)

trαt
= ProveDL((h/gx), αt) (10)

The verifier computes the sum of products of ~a and powers of k. With sum of
products of both ~P , ~a′ (Pt, t) available, the verifier can trivially compute PKαt

s.t.:

t =

l∑
i=1

a ′ik
i ∈ Zp (11)

PKαt
= Pt/g

t = (h/gx)αt (12)

If the prover can prove the knowledge of αt on generator (h/gx) ∈ G using

any proof of knowledge protocol, we know that the mapping between ~P and ~a′

is correct except for a negligible probability.
The main philosophy of our protocol is that once we have transformed input

parameters in linear polynomials, verifiers can just perform arithmetic operations
on polynomials, which they can’t do on Pedersen commitments. To provide zero
knowledge proof for a circuit, the prover needs to to prove it knows all coefficients
of the result polynomial after finish running the circuit. For example, adding two
input values in ai

′ is the same as adding two polynomials:

o = a1
′ + a2

′ = r +X · ε (13)

Where r = (a1 + a2) and the blinding key is ε = (α1 + α2). Multiplying two
values in ai

′ is the same as multiplying two polynomials:

o = a1 · a2 = r +X · ε+X2 · τ (14)

Where r = a1 · a2, ε = a2α1 + a1α2, and τ = α1 · α2. We use the label “o”
to represent the result polynomial after all circuit operations. The degree of the
polynomial will increase after each multiplication operation, so the efficiency will
drop as the total number of multiplications included in the path that leads to
the circuit output (mp) increase.

9

We still want to use a linear polynomial r′ = r+Xε to represent the output
of the circuit, which maps to the commitment R = grhε. To do that, we need
to subtract out all terms with degree higher than one. In the simple case above,
the verifier needs to eliminate the term with coefficient τ and the prover needs
to commit to τ before the challenge x is known, so that verifiers can obtain r′

by subtracting y = X2τ from o s.t.:

r′ = o− y (15)

We call y the “breaker” of our protocol, because it subtracts all noises (poly-
nomial terms with degree higher than two) from the output of the raw circuit
evaluation o. If we let mp to denote the total number of multiplications included
in the path that leads to the circuit output, then o is a polynomial with degree
mp + 2.

The constant term of the committed polynomial is the committed value r
and the coefficient of degree 1 term is the blinding key ε. The prover uses vector
commitment to commit to all coefficients for terms with degree higher than
two. In order to not lose generality, we use one vector commitment to denote
a polynomial commitment. In our implementation, the polynomial commitment

we used is actually a set of mp
1/2 vector commitments (or ~C ∈ Gmp

1/2

see Bootle.
et al. [9]).

C =

mp∏
i=1

uτii ∈ G (16)

We now define the function Multiply just to show how coefficients are com-
puted from a circuit multiplication operation, we can trivially observe the logic
is the same as that of a polynomial multiplication operation. The output of the
function Multiply is an array list o[] of size mp + 2, such that o[1] is the value of
r, o[2] is the blinding key ε, and o[3], ..., o[mp + 2] are values of ~τ .

The returned list o[] may be used again as input to another multiplication
or addition function.

Input : (lists ol[], or[]) (17)

Define a list o[] of size n = |or|+ |ol − 1| (18)

Define a matrix ot[][] of size |or| × |ol| (19)

for j = 1, ..., size or (20)

for i = 1, ..., |ol| (21)

ot[j][i] = ol[j] · or[j] (22)

for j, ..., |or| (23)

for i = 1, ..., |ol| (24)

o[i+ j − 1] = o[i+ j − 1] + ot[j][i] (25)

return o[] (26)

Function Multiply

10

Like that of function Multiply, function Add is polynomial addition operation
and outputs the coefficients of result polynomial in array list o[].

Input : (lists ol[], or[]) (27)

Define a list o[] of size n = max length of or, ol (28)

for i = 1, ..., n (29)

o[i] = ol[i] + or[i] (30)

return o[] (31)

Function Add

We define two more functions for our protocol. function computeKeys is used
by the prover to compute keys of a polynomial, and function computeEquation
is used by verifiers to compute the value of the result polynomial at evaluation
point X:
1. function computeKeys(circuit,“input values”, “input keys”) take input val-
ues ~a and keys ~υ to compute r, ε, ~τ (coefficients of o) using the circuit provided
to the protocol. function computeKeys uses function Multiply and function Add
defined above to compute coefficients of o.
2. function computeEquation(circuit,“input values in linear polynomial form”)
trivially compute the result o from the inputs provided as they are integer values.

Since the logic of these functions are trivial, we don’t waste space describ-
ing them in detail here. With all the information available, we now formally
introduce Protocol 1:

Input : (~P ∈ Gn, g, h, u ∈ G,~a ∈ Zlp, υ ∈ Zp) (32)

P ′s input : (~P , g, h, u;~a, υ) (33)

V ′s input : (~P , g, h, u) (34)

P compute : (35)

αi
$←− Zp, i = {1, ..., l} (36)

r, ε, ~τ = computeKeys(equation,~a, ~α) ∈ Zmp+2
p (37)

R = grhε ∈ G (38)

trε = ((h/gx), ε) (39)

C =

mp∏
i=1

uτii ∈ G (40)

P → V : C,R, trε (41)

V compute : (42)

x
$←− Zp (43)

V → P : x (44)

11

P compute : (45)

a′i = ai + xαi ∈ Zp i = {1, ..., l} (46)

y =

mp∑
i

τi · xi+1 ∈ Zp (47)

P → V : ~a ′, y (48)

V verify final output R : (49)

o = computeEquation(equation,~a ′) ∈ Zp (50)

r′ = o− y ∈ G // r′ = r + x · ε (51)

PKε = R/gr
′
∈ G //equal to (h/gx)ε (52)

if PolyCommitEval(C, y, x;~τ), then continue (53)

else reject (54)

if V erifyDL((h/gx), PKε, trε), then continue (55)

else reject (56)

V compute : (57)

k
$←− Zp (58)

V → P : k (59)

P compute : (60)

αt =

l∑
i=1

αik
i ∈ Zp (61)

trαt
= ProveDL((h/gx), αt) (62)

κ =

l∑
i=1

(αi − υi)ki ∈ Zp (63)

PKκ = hκ ∈ G (64)

trκ = ProveDL(h, κ) (65)

P → V : PKκ, trκ, trαt (66)

V verify inputs : (67)

Pt = (

l∏
i=1

P k
i

i) · PKκ ∈ G (68)

t =

l∑
i=1

a ′ik
i ∈ Zp (69)

PKαt
= Pt/g

t (70)

if V erifyDL(h, PKκ, trκ), (71)

and V erifyDL((h/gx), PKαt
, trαt

), then accept (72)

else reject (73)

12

Protocol 1

Theorem 1. (Zero Knowledge Argument with Practical Succinctness). The proof
system presented in this section has perfect completeness, perfect special honest
verifier zero-knowledge, and computational witness extended emulation.

The proof for Theorem 1 is presented in Appendix A.
The main idea of Protocol 1 is to convert commitments Pi to its linear poly-

nomial form a′i so that the verifier can just take linear polynomials as input
values to the circuit and use standard integer operations to compute the circuit.
The computation result o is a polynomial with mp + 2 degree. By subtracting
out all term with degree greater than 2 as in equation 15 explained, the verifier
gets the scalar value in linear polynomial form that maps to commitment R.

4 Input Transformation Based Efficient Zero Knowledge
Argument with Practical Succinctness

Protocol 1’s prover isn’t efficient because O(mp
2) field operations in prover work

can become expensive as mp gets big. In this section, we introduce a mechanism
that allows us to use the number theoretic transform (NTT) to cut prover’s field
operation work to mp log mp.

4.1 Using Number Theoretic Transform to Improve Prover
Performance in Field Operations

The objective of NTT is to multiply two polynomials such that the coefficients of
the resultant polynomials are calculated under a particular modulo inmp log mp,
a major improvement over mp

2 runtime in protocol 1. However, a major draw-
back of NTT is that it normally requires a prime modulo q of the form q = r·2k+1
to be the order of the group, where k and c are arbitrary constants. Since the
order of widely used G in cryptography is usually not a prime with the afore-
mentioned form, we need a mechanism to map linear polynomials with a prime
modulo q that satisfies the aforementioned form to any group with prime order
p. q is expected to be smaller than p because: 1) computation in p (e.g. poly-
nomial commitment evaluation) won’t overflow 2) lower communication cost. In
our benchmark testing, we set q to a 62-bit number.

We redefine equation 3 s.t. a′i and its blinding key αi are now in field q instead
of the larger field p.

a′i = ai + xαi ∈ Zq i = {1, ..., l} (74)

We define a new blinding key ωi ∈ Zp and mix that with blinding key υi in
Pi and its matching αi in a′ to create Si, Ti.

Si = gωi·q ∈ G i = {1, ..., l} (75)

Ti = gυi−αi ∈ G i = {1, ..., l} (76)

13

The prover then sends Si, Ti for i = {1, .., l} to the verifier. When the chal-
lenge x ∈ Zq is available, the prover sends ei s.t.:

ei = ((xαi mod q)− xαi) · x+ ωi · q i = {1, ..., l} (77)

ei is not in Zp, but it is a good idea to keep ei smaller than p to keep the
communication cost low. The idea here is that when we subtract ei from ai,
we can subtract out the blinding modulo q element (xαi mod q) from a′i (e.g.
a′i · x− ei = (ai + xαi) · x− ωiq). The verifier can replace x2αi − ωiq part with
the new blinding element x2υi as the exponent of generator g by adding the
previously committed values Si, Ti.

ga
′
i·x−ei · T x

2

i · Si = (gx)ai+xυi ∈ G i = {1, ..., l} (78)

With (gx)ai+xυi available, the verifier can trivially divide each Pi and taking
their sum with powers of k to get PKυt .

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (79)

PKυt = (hx/gx)υt . The verifier can confirm the correctness of the transformation
except with negligible probability if the prover can prove the knowledge of υt on
generator (hx/gx) ∈ G.

Finally, the verifier needs to make sure ei doesn’t alter the value of ai. This
can be done by taking the modulus q of ei and checking if it returns 0. This is
trivial to understand since a′i is in Zq. If ei is a multiple of q then it is obvious
that it cannot alter the value of ai.

if (ei mod q) == 0, then continue (80)

ei does not leak any information to the verifier either. This is because the first
part of ei: ((xαi mod q)− xαi) · x is a multiple of q, which is also equivalent to
s · q for some s. s value is perfectly hiding with the blinding term w · q in ei.

We have so far skipped the overflow problem. If ai + (xαi mod q) > q, then
we will have an overflow problem in equation 78 79 when computing a′i · x− ei.
To get around this the prover simply needs to check if ai+(xαi) mod q overflows
q, and subtracts q · x from ei if that’s the case.

if ai + (xαi mod q) > q, then ei = ei − q · x i = {1, ..., l} (81)

We now merge the NTT conversion code introduced in this section and for-
mally define the efficient version of our protocol in Protocol 2.

Input : (~P ∈ Gn, g, h, u ∈ G,~a ∈ Zlp, υ ∈ Zp−q) (82)

P ′s input : (~P , g, h, u;~a, υ) (83)

V ′s input : (~P , g, h, u) (84)

14

P compute : (85)

αi
$←− Zp, i = {1, ..., l} (86)

ωi
$←− Zp, i = {1, ..., l} (87)

r, ε, ~τ = computeKeys(equation,~a, ~α) ∈ Zmp+2
p (88)

R = grhε ∈ G (89)

trε = ((h/gx), ε) (90)

C =

mp∏
i=1

gτii ∈ G (91)

Si = gωi·q ∈ G i = {1, ..., l} (92)

Ti = gυi−αi ∈ G i = {1, ..., l} (93)

P → V : ~S, ~T ,C,R, trε (94)

V compute : (95)

x
$←− Zp (96)

V → P : x (97)

P compute : (98)

a′i = ai + xαi ∈ Zq i = {1, ..., l} (99)

ei = ((xαi mod q)− xαi)x+ ωiq ∈ Zp i = {1, ..., l} (100)

if ai + (xαi mod q) > q, then ei = ei − q · x i = {1, ..., l} (101)

y =

mp∑
i

τi · xi+1 ∈ Zp (102)

P → V : ~e,~a ′, y (103)

V verify final output : (104)

o = computeEquation(equation,~a ′) ∈ Zp (105)

r′ = o− y ∈ Zp // r + x · ε (106)

PKε = R/gr
′
∈ G //equal to (h/gx)ε (107)

if PolyCommitEval(C, y, x;~τ), then continue (108)

else reject (109)

if V erifyDL((h/gx), PKε, trε), then continue (110)

else reject (111)

V compute : (112)

k
$←− Zp (113)

V → P : k (114)

P compute : (115)

15

υt =

l∑
i=1

υik
i ∈ Zp (116)

trυt = ProveDL(h/gx, υt) (117)

P → V : trυt (118)

V verify inputs : (119)

if (ei mod q) == 0, then continue (120)

else reject (121)

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (122)

if V erifyDL((hx/gx), PKυt , trυt), then accept (123)

else reject (124)

Protocol 2

Theorem 2. (Efficient Zero Knowledge Protocol for Arbitrary Circuit with Prac-
tical Succinctness). The proof system presented in this section has perfect com-
pleteness, perfect special honest verifier zero-knowledge, and computational wit-
ness extended emulation.

The proof for Theorem 2 is presented in Appendix B.
Since we are now evaluating the output polynomial at a smaller field q, the

soundness error is increased due to existence of polynomial roots. The NTT
acceptable prime we use in our implementation is q = 1945555039024054273,
where r = 27, k = 56, g = 5 s.t. q = r ∗ 2k + 1. For a circuit with 220 sequential
multiplications (mp = n), the soundness error is at most 2−41, acceptable in
most real-life use cases.

4.2 The Asymptotic Cost of Protocol 2

Using the polynomial commitment evaluation protocol defined by Bootle et. al,
the prover runtime of Protocol 2 is contributed by O(mp log mp +mp + l) field
operations and O(mp + mp

1/2 + l) group exponentiations; the verifier runtime
is contributed by O(n + mp

1/2 + l) field operations and O(mp
1/2 + l) group

exponentiations; and the communication cost is contributed by O(mp
1/2 + l)

group elements and O(mp
1/2 + l) field elements.

The worst possible scenario for our protocol is when we have a sequence of
multiplications where both multiplier and multiplicand are the product of the
previous multiplication operation (e.g. ((a2)2)2 is technically 3 multiplications,
but it will result in mp = 23), in such case mp will grow exponentially. One
way to tackle such problem is to break the circuit into segments of smaller sub-
circuits so that mp value will be refreshed whenever it grows oversize, similar
to the idea of bootstrapping in fully homomorphic encryption. One area worth
investigate is whether we can batch process this bootstrapping technique so that
we can use multiple breakers y to

16

5 Input Transformation Based Efficient Zero Knowledge
Argument For Arbitrary Circuits With Practical
Succinctness

The efficiency of protocol 2 introduced in the last section degrades as the total
number of multiplications in the path computing the output (mp value) gets
larger, a not-so-uncommon scenario for circuits with high depth. One potential
way to get around this problem is to have mb number of breakers so that the
number of polynomial terms will never exceed b, where b =

mp

mb
(instead of just

one breaker at term mp as in Protocol 2).

5.1 Batch Verification With Multiple Breakers

Each breaker yi is an evaluation at point x for terms x2, ..., xb+1 of the polynomial
accumulated thus far in the computation. Obviously, it is not efficient for us to
commit and evaluate m number of polynomials, where m stands for the number
of breakers we use to evaluate a circuit.

Fortunately, we just need to a little modification the polynomial commitment
evaluation protocol defined by Bootle et al. to enable the prover and verifiers
to evaluate mb breakers at once. We start by aligning each breaker yi to the
coefficients of vector commitments (columns of the mb × b matrix).

g
y′1
1

g
y′2
2

g
y′3
3

.

.

g
y′mb
mb

=



g
τ1,1
1 g

τ1,2
1 . . g

τ1,b
1

g
τ2,1
2 g

τ2,2
2 . . g

τ2,b
2

g
τ3,1
3 g

τ3,2
3 . . g

τ3,b
3

.

.

g
τmb,1

mb g
τmb,2

mb . . g
τmb,b

mb





x2

x3

x4

.

.

xb+1


Figure 1

Let yi = (y′i) mod q, we can observe from figure 1 that each y′i can be com-
puted from the sum of products of exponents of gi (e.g. y′i = τi,1x

2 + τi,2x
3 +

...+ τi,bx
b+1).

In our protocol, the prover commits to the columns of the matrix in figure 1
like that in Bootle et al.’s polynomial commitment evaluation scheme.

Cj =

mb∏
i=1

g
τi,j
i for j = {1, ..., b} (125)

17

When the evaluation point x is known, the verifier computes the powers of
x and multiplies them to the exponent of each Cj . If the equality below is true,
all breakers are verified.

mb∏
i=1

g
y′i
i

?
=

b∏
j=1

Cx
j+1

j (126)

Note that if each xj+1 ∈ Zq and τi,j ∈ Zq and each breaker y′i is equal to
the sum of products of b terms, then we have |y′i| ≈ |q|+ |q|+ |b|. y′i can also be
expressed as y′i = yi + z · q for some z and |z| ≈ |q|+ |b|. Passing raw y′i values
to the verifier may leak some information about the coefficients.

To cope with that, we make the prover commit to a blinding vector ~β ∈ Zmz
s.t. each y′i is now computed as:

y′i =

b∑
j=1

τi,jx
j+1 + q · βi for i = {1, ...,mb} (127)

The value of yi is not being altered after applying mod q to y′i since (q ·
βi) mod q = 0 for any βi. The updated equality graph is shown in figure 2
below.

g
y′1
1

g
y′2
2

g
y′3
3

.

.

g
y′mb
mb

=



g
τ1,1
1 g

τ1,2
1 . . g

τ1,b
1

g
τ2,1
2 g

τ2,2
2 . . g

τ2,b
2

g
τ3,1
3 g

τ3,2
3 . . g

τ3,b
3

.

.

g
τmb,1

mb g
τmb,2

mb . . g
τmb,b

mb





x2

x3

x4

.

.

xb+1


·



gβ1

1

gβ2

2

gβ3

3

.

.

g
βmb
mb



q

Figure 2

Let B =
∏mb

i=1 g
βi

i , the equality in figure 2 can also be expressed using the
equation below:

mb∏
i=1

g
y′i
i

?
=

b∏
j=1

Cx
j+1

j ·Bq (128)

If the commitments ~C,B and vector ~y satisfy the equation above with a
challenge x, then we know all the breakers ~y are valid. The verifier applies mod
q to each y′i to get the actual breakers yi used in computing o.

yi = (y′i) mod q ∈ Zq for i = {1, ...,mb} (129)

18

We are now ready to introduce Protocol 3, which replaces the generic poly-
nomial commitment evaluation in Protocol 2 with the multi-breaker mechanism
we introduced in this section.

Input : (~P ∈ Gn, g, h, u ∈ G,~a ∈ Zlp, υ ∈ Zp−q) (130)

P ′s input : (~P , g, h, u;~a, υ) (131)

V ′s input : (~P , g, h, u) (132)

P compute : (133)

αi
$←− Zp, i = {1, ..., l} (134)

ωi
$←− Zp, i = {1, ..., l} (135)

r, ε, ~τ = computeKeys(equation,~a, ~α) ∈ Zmp+2
p (136)

R = grhε ∈ G (137)

trε = ((h/gx), ε) (138)

Cj =

mb∏
i=1

g
τi,j
i ∈ G i = {1, ..., b} (139)

Si = gωi·q ∈ G i = {1, ..., l} (140)

Ti = gυi−αi ∈ G i = {1, ..., l} (141)

P → V : ~S, ~T , ~C,R, trε (142)

V compute : (143)

x
$←− Zp (144)

V → P : x (145)

P compute : (146)

a′i = ai + xαi ∈ Zq i = {1, ..., l} (147)

ei = ((xαi mod q)− xαi)x+ ωiq ∈ Zp i = {1, ..., l} (148)

if ai + (xαi mod q) > q, then ei = ei − q · x i = {1, ..., l} (149)

yi =

b∑
j

τi,j · xj+1 ∈ Zp i = {1, ..., b} (150)

P → V : ~e,~a ′, ~y (151)

V verify final output : (152)

for j = 1, ...,mb { (153)

oi,j = computeEquation(equation,~a ′||r′) ∈ Zp (154)

yi = (y′i) mod q ∈ Zq (155)

r′ = o− yi ∈ Zp // r + x · ε (156)

} (157)

19

PKε = R/gr
′
∈ G //equal to (h/gx)ε (158)

if (

mb∏
i=1

g
y′i
i

?
=

b∏
j=1

Cx
j+1

j ·Bq) then continue (159)

else reject (160)

if V erifyDL((h/gx), PKε, trε), then continue (161)

else reject (162)

V compute : (163)

k
$←− Zp (164)

V → P : k (165)

P compute : (166)

υt =

l∑
i=1

υik
i ∈ Zp (167)

trυt = ProveDL(h/gx, υt) (168)

P → V : trυt (169)

V verify inputs : (170)

if (ei mod q) == 0, then continue (171)

else reject (172)

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (173)

if V erifyDL((hx/gx), PKυt , trυt), then accept (174)

else reject (175)

Protocol 3

Theorem 3. (Efficient Zero Knowledge Argument for Arbitrary Circuits with
Practical Succinctness). The proof system presented in this section has perfect
completeness, perfect special honest verifier zero-knowledge, and computational
witness extended emulation.

The proof for Theorem 3 is presented in Appendix C.

From line 154 to 158 in protocol 3 we assumed our circuit is a linear circuit
where there is only one path because it is easy to model. In practice, binary
circuits generally have multiple ”bit” paths that executes in parallel.

5.2 Booleanity Check and Bit Decomposition/Reposition

A common occurrence in proof systems is the need to enforce input data ai ∈
{0, 1} for some i ∈ {1, ..., l}. In practice, it is useful to decompose l full integer

20

inputs into l · 32 bits (assuming we use 32 bits to represent a full integer, like
the int type in Java) in order to perform comparison operations on input data.
If a committed value ai is in [0, 1], then its linear polynomial form ai must have
the following property:

(a′i · a′i − a′i) = β1x+ β2x
2 (176)

Where β2 = α2, and β1 = α when aj is 1 and β1 = −α when aj is 0. To prove the
correctness for all ai ∈ {0, 1} , the prover commits to two polynomials K1,K2

s.t.

K1 = u
β11
1 u

β12
2 ...u

β1l

l hρ1 and K2 = u
β21
1 u

β22
2 ...u

β2l

l hρ2 (177)

Where K1 commits to coefficients on x term for i ∈ {1, ..., l · 32} and K2

commits to coefficients on x2 term for i ∈ {1, ..., l ·32}. The prover sends K1,K2

to the verifier. When the challenge k is received, the prover sends the evaluation
results y1, y2 to the verifier, and the verifier uses the polynomial commitment
protocol to verify the correctness of y1, y2 at point k, and checks if the equality
below is true:

y1 · x+ y2 · x2 =

l·32∑
j=1

(a′i · a′i − a′i) · ki (178)

Once we know all linear polynomials maps to either 0 or 1, it is trivial to re-
compose the linear polynomial form of a full integer input a′i from 32 decomposed
bits a′i,j for j = {1, ..., 32}.

a′i =

32∑
j=1

a′i,j · 2j (179)

In practice, we will conduct booleanity test on all l · 32 bit values at once
and then use equation 179 to convert them to l full integer values so that we
can perform the ”linear polynomial to Pedersen commitment” mapping test
explained in the last two sections.

5.3 The Asymptotic Cost of Protocol 3

For a circuit with l input parameters and each input parameter is composed of
32 bits, the prover runtime of the final version (Protocol 3) of our protocol is

contributed by O(mp log m
1/2
p +mp + l+ 32 · l1/2) field operations and O(mp +

mp
1/2 + l + 32 · l1/2) group exponentiations; the verifier runtime is contributed

by O(n+mp
1/2 + l+32 · l1/2) field operations and O(mp

1/2 + l+32 · l1/2) group
exponentiations; and the communication cost is contributed by O(mp

1/2 + l +

32 · l1/2) group elements and O(mp
1/2 + l + 32 · l1/2) field elements.

21

6 Performance Comparison

We compare the performance of our protocol to some of the most popular trans-
parent Zero Knowledge Protocols that open source codes are available. Our test
runs are performed on Intel(R) Core(TM) i7-9750H CPU @ 2.60 Ghz. Only one
core is being utilized, and all tests are run on a single CPU thread.

The baseline protocols we picked are Hyrax, Ligero, Aurora, and Spartan-
NIZK. These protocols are chosen because they are the most representative of
popular zero-knowledge protocols and can be verified with open source code. In
particular, Aurora outperforms STARK in all key parameters (prover runtime,
verifier runtime, proof size), and Spartan offers the most balanced performance
across all performance parameters.

We didn’t consider transparent protocols that highly depend on circuit depth
such as GKR based protocols simply because they can’t handle 220 sequential
multiplications. We also don’t consider VOLE based protocols as they are only
optimized for prover work. Other popular transparent schemes such as Bullet-
proofs are also not being considered because they have linear verifier runtime
and therefore are not succinct.

Spartan++ and Lakonia are two more recent developments that we didn’t
include in our benchmark testing but are worth mentioning. The improvement
of Spartan++ over SpartanNIZK is marginal, and the performance of Lakonia
is largely comparable to that of SpartanNIZK (the prover performance of Spart-
anNIZK is approximately 3X more efficient, and the verifier performance is 1.5X
more efficient than that of Lakonia, while Lakonia is 4X more efficient than
SpartanNIZK in proof size).

We set inputs to 20 integers, and each input is represented by 32 bits so that
there are a total of 20 ·32 = 640 input bits to the circuit. The performance of our
protocol correlates with the total number of multiplications included in the path
leads to the circuit output. The random circuit we use is to perform n sequential
multiplications on l inputs, so we set mp = n.

The NTT acceptable prime number we picked for our benchmark testing is
q = 1945555039024054273, a 61-bit number that implies the soundness error will
be at most 2−41 for a circuit with 220 sequential multiplications where mp = n,
more than enough in most real-life applications.

To maximize the advantage of the NTT algorithm in computing sequential
multiplications, we arrange our circuit in binary tree format, such tuning may
not be required in real-world applications since large circuits should have multi-
plication gates somewhat balanced out across layers.

For group operations, we use curve25519-dalek implementation, and Pip-
penger acceleration is applied to all sum-of-product group operations. For field
operations, we use Montgomery algorithm to accelerate modular multiplications
on the 61-bit NTT prime q.

Table 1 shows that as the circuit size gets bigger, the prover performance of
our protocol is becoming increasingly more efficient than all of our baseline pro-
tocols. SpartanNIZK seems to match that of our for circuits with 220 constraints
(which will also diminish as the circuit grows bigger) when compared to the

22

Circuit size 210 212 214 216 218 220

Hyrax 1 2.8 9 36 117 486
Ligero 0.1 0.4 1.6 4 17 69
Aurora 0.5 1.6 6.5 27 116 485
SpartanNIZK 0.02 0.05 0.16 0.6 1.7 6

This Work(mp = n) 0.6 0.8 1 1.5 2.7 6

Table 1: Prover performance comparison (seconds)

worst case scenario version of our protocol (mp = n) . However, this is not a fair
comparison in our favor since we’re comparing 220 constraints in SpartanNIZK
with the unlikely scenario of 220 sequential multiplications in that of our pro-
tocol. Furthermore, our protocol doesn’t use a constraint system; savings from
eliminating copy constraints and constraint system encoder will likely further
boost the actual performance of our protocol

Circuit size 210 212 214 216 218 220

Hyrax 14 17 21 28 38 58
Ligero 546 1,076 2,100 5,788 10,527 19,828
Aurora 477 610 810 1,069 1,315 1,603
SpartanNIZK 9 12 15 21 30 48

This Work(mp = n) 12 14 16 23 35 59

Table 2: Proof size comparison (kilobytes)

Table 2 shows that the communication cost of our protocol dominates that
of Ligero and Aurora, while largely comparable to SpartanNIZK and Hyrax. For
higher input number counts, see Table 4 for more detail.

Circuit size 210 212 214 216 218 220

Hyrax 206 253 331 594 1.6s 8.1s
Ligero 50 179 700 2s 7.5s 33s
Aurora 192 590 2s 7.2s 29.8s 118s
SpartanNIZK 7 11 17 36 103 387

This Work(mp = n) 8 9 10 13 17 25

Table 3: Verifier performance comparison (milliseconds)

We can observe from table 1-2 that our protocol is largely comparable to
the current state of art in prover runtime and communication cost. Table 3

23

demonstrates that our protocol achieves significant improvement by at least
one order of magnitude in verifier runtime over all baseline protocols we are
comparing against. Like that of communication cost, the verifier runtime of our
protocol will grow when the number of inputs to the protocol grows.

Some may consider 20 integer inputs and 640 input bits to a circuit too small,
so in table 4 we list performance benchmarks for different number of inputs (l)
to a circuit with 220 multiplications.

Input bits (l · 32) Input Integers (l) Prover time(s) Verifier time(ms) Proof size(kb)

960 30 6 23 63
1,280 40 6 23 67
1,600 50 6.1 24 71
1,920 60 6.1 24 76
2,240 70 6.1 25 80
2,560 80 6.1 26 84
2,880 90 6.1 27 87
3,200 100 6.2 28 91

Table 4: Performance comparison for different input numbers on circuits with
220 multiplications and mp = n

32

In table 4 we can observe that increases in prover runtime and verifier runtime
are hardly noticeable as the input bits count approaching 3, 200. This is because
the total input number is still small compared to the size of the circuit (220

sequential multiplications). Communication cost gets impacted the most as the
input count gets higher. This is because the prover have to send l · 32 linear
polynomials to the verifier. Technically speaking, more inputs usually implies
lower circuit depth and less complex business logic.

Appendiex

A. Proof for Theorem One

Proof. Perfect completeness follows from the fact that Protocol 1 is trivially com-
plete. To prove perfect honest-verifier zero-knowledge, we define a simulator S to
show that protocol 1 has perfect special honest verifier zero-knowledge for rela-
tion 2. S uses simulator SS to simulate proof transcripts for proof of knowledge
(or proof of discrete logarithm) protocols, and simulator Sp to simulate proof
transcripts for polynomial commitment evaluation function PolyCommitEval.

Simulator S generates random group elements for C,R, proof of knowledge
transcript trε. After receiving challenge x from the verifier, the simulator gener-
ates l random integers to represent linear polynomials ~a′ and one random integer
to represent y and sends them to the verifier.

24

The verifier follows the protocol to compute PKε, then simulator S calls
simulator SS to interact with the verifier and generate all necessary transcripts
to prove it knows the value of ε. This makes sense since we already know for
a fact that schnorr and many other proof of knowledge protocols have perfect
special honest verifier zero-knowledge. Similarly, the simulator S calls simulator
SP to simulate the transcripts for proving y is the evaluated value at point x for
polynomial commitment C.

The simulator then simulates the transcripts to prove it knows αt and κ.
The simulator simply sends randomly generated PKκ and random transcripts
for trκ and trαt

, and calls simulator SS to simulate transcripts needed to prove
the knowledge of κ and αt.

Simulator S chooses all proof elements and challenges according to the ran-
domness supplied by the adversary from their respective domains or computes
them directly as described in the protocol. Since all elements in proof transcripts
are either independently randomly distributed or their relationship is fully de-
fined by the verification equations, we can conclude that protocol 1 has perfect
special honest verifier zero-knowledge.

To prove computational witness extended emulation, we construct an ex-
tractor X , which uses extractor X to extract witnesses from proof of knowledge
transcripts and extractor X to extract witnesses from polynomial commitments.

We validate the soundness of Protocol 1 in three steps. First, we show how
to construct an extractor X for Protocol 1 s.t. on input ~P ∈ Gl, R ∈ G, it either
extracts witnesses r, ε, ~τ for relation 2, or discovers a non-trivial discrete loga-
rithm relation among g, h, ~u ∈ G. Next, we show that the extractor X either
extracts witnesses ~a, ~υ s.t. ~υ maps to ~α or discovers a non-trivial discrete loga-
rithm relation among g, h, u ∈ G. Finally, we validate the proof by checking if
r, ε, ~τ can be computed from witnesses ~a, ~α.

In step one, extractor X interacts with the prover in the same way as any
verifier would and receives C, R, trε from the prover. The extractor X then
generates a challenge x1 and forwards it to the prover. After receiving ~a′1, y1, the
extractor rewinds the prover and sends another challenge x2 to retrieve ~a′2, y2.

The extractor then follows the protocol and computes o and PKε, then calls
extractor XS to extract ε from trε and PKε. With either x1 or x2, we can trivially
retrieve r, ε from r′ since r′ = r + x · ε, and validate if R = grhε. To validate
if r, ε is correctly computed from the circuit, extractor X calls extractor XP to
retrieve set ~τ from polynomial commitment C.

We have now retrieved witnesses r, ε, ~τ using the prover committed values
C,R, trε, and we know for a fact that o must also be computed from ~a, ~α and
evaluation point x since:

o = r + ε · x+

n∑
i=1

τi · xi+1 (180)

If the prover is honest, r, ε, ~τ must be computed by the prover from witnesses
~a, ~α

25

So in the second step, we validate if witnesses of ~a ′ (~a, ~α) used in computing

o maps to ~a, ~υ in ~P by checking if we can extract these witnesses. With ~a′1
and ~a′2 extractor X retrieved earlier, we can trivially retrieve ~a, ~α since for all
i = {1, ..., l} we have:

a′1i − a
′
2i = αi(x1 − x2)

We then extracts witnesses ~a, ~υ using ~a′ and input commitments ~P . The extractor
first generates k1 and then follows the protocol to get PKκ1

, trκ1
, PKαt1

, trαt1

from the prover. The extractor then calls extractor XS to retrieve κ1 and αt1.
Rewind and repeat this procedure for another l times to retrieve κ2, ..., κl+1 and
αt2, ..., αtl+1 using evaluation points k2, ..., kl+1.

Through interpolation technique the extractor retrieves (αi−υi) and αi for i
in {1, ..., l}. With these information, we can now trivially compute ~υ and verify if

they can be mapped ~P s.t. Pi = gaihυi unless we found a non-trivial relationship
among generators g, h.

In the last step, we must be able to re-compute witnesses r, ε, ~τ from ~a, ~α for
equality 180 to be true except for a negligible probability or we found a non-
trivial relationship among generators g, h, ~u. We can therefore conclude Protocol
1 has computational witness extended emulation.

B. Proof for Theorem Two

Proof. Perfect completeness follows from the fact that Protocol 2 is trivially
complete. To prove perfect honest-verifier zero-knowledge, we define a simulator
S to show that protocol 2 has perfect special honest verifier zero-knowledge
for relation 2. S uses simulator SS to simulate proof transcripts for proof of
knowledge (discrete logarithm) protocols, and simulator Sp to simulate proof
transcripts for polynomial commitment evaluation function PolyCommitEval.

The simulator S generates random group elements for ~S, ~T ,C,R, proof of
knowledge transcript trε. After receiving challenge x from the verifier, the simu-
lator generates l random integers to represent ~e, l random integers to represent
~a′, and one random integer to represent y and sends them to the verifier.

The simulator follows the protocol to compute o and PKε, then the simulator
S calls simulator SS to interact with the verifier and randomly generate all
necessary transcripts to prove it knows the value of ε. This makes sense since we
already know for a fact that schnorr and many other proof of knowledge protocols
have perfect special honest verifier zero-knowledge. Similarly, the simulator S
also calls simulator SP to simulate transcripts for proving y is the evaluated
value at point x for polynomial commitment C.

Next, simulator S simulates transcripts for proving the mapping from ~a′ to ~P .
After challenge k is received from the prover, the simulator follows the protocol
to compute PKυt , then calls simulator SS to simulate transcripts needed to
prove knowledge of υt.

The simulator chooses all proof elements and challenges according to the ran-
domness supplied by the adversary from their respective domains or computes

26

them directly as described in the protocol. Since all elements in proof transcripts
are either independently randomly distributed or their relationship is fully de-
fined by the verification equations, we can conclude that protocol 2 is perfect
special honest verifier zero-knowledge.

To prove computational witness extended emulation, we construct an ex-
tractor X , which uses extractor X to extract witnesses from proof of knowledge
transcripts and extractor X to extract witnesses from polynomial commitment
C.

Like that of Protocol 1, we validate the soundness of Protocol 2 in three
steps. First, we show how to construct an extractor X for Protocol 2 s.t. on input
~P ∈ Gl, R ∈ G, it either extracts witnesses r, ε, ~τ for relation 2, or discovers a
non-trivial discrete logarithm relation among g, h, ~u ∈ G. Next, we show that
the extractor X either extracts witnesses ~a, ~υ s.t. ~υ maps to ~α or discovers a
non-trivial discrete logarithm relation between g, h ∈ G. Finally, we validate the
proof by checking if r, ε, ~τ can be computed from witnesses ~a, ~α.

In step one, the extractor X interacts with the prover in Protocol 2 and
receives ~S, ~T , C, R, trε from the prover. The extractor X then generates a
challenge x1 and forward it to the prover. After receiving ~e1,~a

′
1, y1, the extractor

rewinds the prover and sends another challenge x2 to receive ~e2,~a
′
2, y2.

The extractor then follows the protocol and calls extractor XS to extract
ε from trε and PKε. With either x1 or x2, we can trivially retrieve r from
r′ since r′ = r + x · ε and validate R = grhε. Likewise, the extractor X calls
extractor XP using either x1, y1 or x2, y2 pair to retrieve coefficient set ~τ from
polynomial commitment C. Like that of Protocol 1, we can compute o from r, ε
at any evaluation point x as equality 180 states.

We have now retrieved witnesses r, ε, ~τ using transcripts C,R, trε. If the
prover is honest, r, ε, ~τ are coefficients computed by the prover from ~a, ~α, where
as ~α maps to blinding keys ~υ.

In step two, we validate if witnesses of ~a ′ used in computing o maps to ~a, ~υ
in ~P by checking if we can extract these witnesses. The extractor first generates
k1 and then follows the protocol to get PKυt1 , trυt1 , then calls extractor XS to
retrieve υt1 . The extractor then rewinds and repeats the above step l times to
retrieve υt2, ..., υtl+1. Through interpolation the extractor retrieves witnesses υi
for all i in {1, ..., l}. Dividing dividing Pi by hυi we will get:

Pi/h
υi = gai (181)

Using the two different challenges x1, x2 we mentioned earlier, the extractor gets
~a′1 and ~a′2 from the prover, which we can trivially retrieve ~a, ~α for all i = {1, ..., l}
since:

a′1i − a
′
2i = αi(x1 − x2)

If each υi maps to each αi, then ai must be the exponent of g in equality 182 or
we found a non-trivial relationship among generators g, h.

In step three, we check that if we can re-compute witnesses r, ε, ~τ from ~a, ~α .
This must be true for equality 180 to be true except for a negligible probability

27

or we found a non-trivial relationship among generators g, h, ~u. We can therefore
conclude Protocol 2 has computational witness extended emulation.

C. Proof for Theorem Three

Proof. Perfect completeness follows from the fact that Protocol 3 is trivially
complete. To prove perfect honest-verifier zero-knowledge, we define a simulator
S to show that protocol 3 has perfect special honest verifier zero-knowledge
for relation 2. S uses simulator SS to simulate proof transcripts for proof of
knowledge (or proof of discrete logarithm) protocols.

The simulator S generates random group elements to represent ~S, ~T , ~C,R,
and the proof of knowledge transcript trε. After receiving challenge x from the
verifier, the simulator generates l random integers to represent ~e, l random in-
tegers to represent ~a′, and mb random integers to represent breakers ~y. The
simulator sends them to the verifier.

The simulator follows the protocol to compute r′ and PKε, then the simulator
mathcalS calls the simulator SS to interact with the verifier and randomly
generate all the necessary transcripts to prove it knows the value of ε. This
makes sense since we already know for a fact that schnorr and many other proof
of discrete log protocols have perfect special honest verifier zero-knowledge.

Next, simulator S simulates transcripts for proving the mapping from ~a′ to ~P .
After challenge k is received from the verifier, the simulator randomly generates
trυt and then follows the protocol to compute PKυt , then calls the simulator SS
to simulate transcripts needed to prove knowledge of υt.

The simulator chooses all proof elements and challenges according to the ran-
domness supplied by the adversary from their respective domains or computes
them directly as described in the protocol. Since all elements in proof transcripts
are either independently randomly distributed or their relationship is fully de-
fined by the verification equations, we can conclude that protocol 3 is perfect
special honest verifier zero-knowledge.

To prove computational witness extended emulation, we construct an ex-
tractor X , which uses extractor XS to extract witnesses from proof of knowledge
transcripts.

Like that of Protocol 1 and 2, we validate the soundness of Protocol 3 in
three steps. First, we show how to construct an extractor X for Protocol 3 s.t.
on input ~P ∈ Gl, R ∈ G, it either extracts witnesses r, ε, ~τ for relation 2, or
discovers a non-trivial discrete logarithm relation among g, h, ~u ∈ G. Second, we
show that the extractor X either extracts witnesses ~a, ~υ s.t. ~υ maps to ~α or
discovers a non-trivial discrete logarithm relation between g, h, ~u ∈ G. Third,
we complete validating the proof by checking if r, ε, ~τ can be computed from
witnesses ~a, ~α.

In the first step, the extractor X interacts with the prover in Protocol 3 and
receives ~S, ~T , ~C, R, trε from the prover. The extractor X then generates at least
b + 3 challenges ~x and forwards them to the prover. After receiving ~e1,~a

′
1, ~y1,

28

the extractor rewinds and repeats this step b + 2 times to receive ~e2, ..., ~eb+3,
~a′2, ...,~a

′
b+3, and ~y2, ..., ~yb+3.

The extractor then follows the protocol and calls extractor XS to extract ε
from trε and PKε. With any two challenges xi, xi+1, we can trivially retrieve
r, ε since r′ = r+x ·ε, which must match the witness r, ε retrieved from R = grhε

and PKε using extractor XS except with a negligible probability or discover a
non-trivial discrete log relation among generators g, h ∈ G.

With challenges x1, ..., xb+3 and evaluation (breaker) sets ~y1, ..., ~yb+3, we ap-
ply Lagrange polynomial interpolation to retrieve witnesses ~τ , coefficients of
commitments ~C.

We have now retrieved witnesses r, ε, ~τ using transcripts C, R, trε. If the
prover is honest, r, ε, ~τ are coefficients computed by the prover from ~a, ~α, where
as ~α maps to blinding keys ~υ.

In the second step, we validate if witnesses ~a, ~α of ~a ′ used in computing o
map to witnesses ~a, ~υ of ~P by checking if we can extract these witnesses and
that ~α map to ~υ. The extractor first generates k1 and then follows the protocol
to get trυt1 , PKυt1 , then calls the extractor XS to retrieve υt1 . The extractor
then rewinds and repeats this step l times to retrieve υt2, ..., υtl+1. Through
interpolation, the extractor retrieves witnesses υi for all i in {1, ..., l}. Dividing
dividing Pi by hυi we will get:

Pi/h
υi = gai (182)

Using any two different challenges xi, xi+1 we mentioned earlier, the extractor
gets ~a′1 and ~a′2 from the prover, which we can trivially retrieve ~a, ~α for all i =
{1, ..., l} since:

a′1i − a
′
2i = αi(x1 − x2)

If each υi maps to each αi, then ai must be the exponent of g in equality 182 or
we found a non-trivial relationship among generators g, h.

In the final step, we validate the proof by checking if r, ε, ~τ can be computed
from witnesses ~a, ~α. This must be true for equality 180 to be true except for a
negligible probability or we found a non-trivial relationship among generators
g, h, ~u. We can therefore conclude Protocol 3 has computational witness extended
emulation.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press, Dallas,
TX, USA (Oct 31 – Nov 2, 2017). https://doi.org/10.1145/3133956.3134104

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifi-
cation and hardness of approximation problems. In: 33rd FOCS. pp. 14–
23. IEEE Computer Society Press, Pittsburgh, PA, USA (Oct 24–27, 1992).
https://doi.org/10.1109/SFCS.1992.267823

29

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1109/SFCS.1992.267823

3. Arora, S., Safra, S.: Probabilistic checking of proofs; A new characterization of
NP. In: 33rd FOCS. pp. 2–13. IEEE Computer Society Press, Pittsburgh, PA,
USA (Oct 24–27, 1992). https://doi.org/10.1109/SFCS.1992.267824

4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: 23rd ACM STOC. pp. 21–31. ACM Press, New Orleans, LA,
USA (May 6–8, 1991). https://doi.org/10.1145/103418.103428

5. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time
has two-prover interactive protocols. In: 31st FOCS. pp. 16–25. IEEE
Computer Society Press, St. Louis, MO, USA (Oct 22–24, 1990).
https://doi.org/10.1109/FSCS.1990.89520

6. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828,
pp. 92–122. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021).
https://doi.org/10.1007/978-3-030-84259-84

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2019). https://doi.org/10.1007/978-3-030-26954-823

8. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang,
Y.: Ligero++: A new optimized sublinear IOP. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) ACM CCS 2020. pp. 2025–2038. ACM Press, Virtual Event, USA
(Nov 9–13, 2020). https://doi.org/10.1145/3372297.3417893

9. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016).
https://doi.org/10.1007/978-3-662-49896-512

10. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 677–706. Springer, Heidelberg, Germany, Zagreb, Croatia (May 10–14, 2020).
https://doi.org/10.1007/978-3-030-45721-124

11. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Heidel-
berg, Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-
3-030-45721-126

12. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

13. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069–1083.
USENIX Association, Austin, TX, USA (Aug 10–12, 2016)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press,
Providence, RI, USA (May 6–8, 1985). https://doi.org/10.1145/22145.22178

15. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference
strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM
CCS 2019. pp. 2111–2128. ACM Press, London, UK (Nov 11–15, 2019).
https://doi.org/10.1145/3319535.3339817

30

https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1145/103418.103428
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/3319535.3339817

16. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 704–737. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
2020). https://doi.org/10.1007/978-3-030-56877-125

17. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275 (2020), https://eprint.iacr.org/2020/1275

18. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. Cryptology ePrint Archive, Report 2017/1132
(2017), https://eprint.iacr.org/2017/1132

19. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic cir-
cuits. In: 2021 IEEE Symposium on Security and Privacy. pp. 1074–1091.
IEEE Computer Society Press, San Francisco, CA, USA (May 24–27, 2021).
https://doi.org/10.1109/SP40001.2021.00056

20. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 2986–3001. ACM Press, Virtual Event, Republic
of Korea (Nov 15–19, 2021). https://doi.org/10.1145/3460120.3484556

21. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security
and Privacy. pp. 859–876. IEEE Computer Society Press, San Francisco, CA, USA
(May 18–21, 2020). https://doi.org/10.1109/SP40000.2020.00052

31

https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2017/1132
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1109/SP40000.2020.00052

	Input Transformation Based Efficient Zero-Knowledge Argument System for Arbitrary Circuits with Practical Succinctness

