
Input Transformation Based Zero-Knowledge Argument
System for Arbitrary Circuits with Both High Runtime

Efficiency and Memory Efficiency

Frank Y.C. Lu

YinYao Inc.

Abstract. We introduce a new efficient transparent interactive zero-knowledge argument sys-
tem that is based on the new input transformation concept which we will introduce in this
paper. The core of this concept is a mechanism that converts input parameters into a format
that can be processed directly by the circuit so that the circuit output can be verified through
direct computation of the circuit.
Our benchmark result shows our approach can significantly improve verifier runtime performance
by more than one order of magnitude over the state of the art while keeping the prover runtime
and communication cost competitive with that of the state of the art.
In addition, the direct computation mechanism in our protocol allows the prover to add specifi-
cally designed gates to optimize the evaluation process. This is because the circuit is verified by
verifiers linearly “computing” the circuit, which also enables us to bypass the “inactive part” of
the circuit to further improve its performance.
Last but not least, our protocol is also memory-efficient. The theoretical memory cost of our

protocol is just O(n
1
2), where n stands for the number of gates in a circuit. Unlike memory-

efficient voice-based protocols, our protocol offers both high runtime performance and small
communication cost and can be easily made non-interactive with the Fiat-Shamir heuristic.

1 Introduction

Ever since the discoveries of interactive proofs (IPs) [28] and probabilistically checkable proofs (PCPs)
[5] [4] [3] [2] in the late last century, there has been a tremendous amount of research in the area of proof
systems. More recently, the rise of blockchain and Web3 has finally triggered real-world deployments
of zero-knowledge systems.

Popular zero-knowledge systems are often divided into two phases: the first part, a “front-end”
encoder converting a specification of an NP-relation R into a “zero-knowledge friendly” representation
R̂ (e.g. rank-1 constraint system); and then another “back-end” system converting R̂ to a zero-
knowledge proof system for R. The encoder-based, two-phased design has accelerated the development
of zero-knowledge system applications, but it has added the cost of running the encoder to translate
circuit logic to constraint system form.

Due to the expensive computation cost in the setup phase of earlier SNARKs (Succinct Non-
Interactive Argument of Knowledge), it has become a significant interest to have the structured refer-
ence string (SRS) be constructible in a “universal and updatable” fashion, meaning that the same SRS
can be used for statements about all circuits of a certain bounded size. The first universal SNARK
was in Groth et al. [29], and Maller et al. improved the SRS size from quadratic to linear in Sonic [33].
More recently developed protocols such as PLONK [26], MARLIN [21] are universal fully-succinct
SNARK with significantly improved prover runtime compared to the fully-succinct Sonic. However,
many of these universal succinct SNARKs systems require trusted setup, and the prover run-time of
these protocols is prohibitively expensive even with the latest improvements such as HyperPlonk [20],
usually takes over 100 seconds on a single-threaded CPU for a circuit with over 220 constraints.

Protocols belong to the Goldwasser, Kalai, and Rothblum (GKR) class such as Hyrax [38], Virgo
[43]; MPC-in-the-head class of Kushilevitz, Ostrovsky, and Sahai such as ZKBoo [27] and Ligero/Ligero++

[1] [9] offer efficient prover runtimes that are at least one order of magnitude more efficient than pairing-
based SNARKs, and many of these protocols do not require trusted setups. However, these protocols
are largely ignored by the industry (e.g., the blockchain community) due to their expensive verifier
runtime and high communication cost (hundreds of KBs) compared to fully succinct protocols such
as STARK [7], PLONK, MARLIN, and Supersonic [19]. Furthermore, state-of-the-art GKR proto-
cols generally have additional dependency on circuit depth, where protocol complexity increases and
performance significantly degrades as the circuit depth gets longer, making them less attractive to
the industry where complex business logics (e.g., inputs are floating point numbers) are expected on
smart contracts.

Memory-efficient privacy-free garbled circuits [31] [25] [30] and Vector Oblivious Linear Evaluation
(VOLE) protocols [14] [34] [16] [15] [42] [40] [6] [41] generally offer better prover performance. However,
their verifier runtimes are just as expensive as their prover runtime and generally cannot be easily
made fully non-interactive, and their communication cost is easily many orders of magnitude more
expensive than other approaches.

NIZKs such as SpartanNIZK [35] and later Lakonia [36] seem to offer a much more balanced
approach, where they offer efficient prover runtime (6-18 seconds single thread) and competitive com-
munication costs for large circuits (220 constraints) while not being layer dependent. However, the
downside of these protocols is that their verifier performance is still expensive, usually in the 400+
ms range on a single-threaded CPU.

Our aim is to create a new transparent zero-knowledge protocol that offers great flexibility to
optimize and the best overall performance. Specifically, we want to keep the prover runtime cost and
communication cost comparable to those of the state-of-the-art and improve the verifier runtime by
one order of magnitude over that of the state-of-the-art. Finally, we also want our new system to be
memory-efficient, or at least have the option to be memory-efficient.

1.1 Summary of Contributions

Our approach is to design a new class of protocols that allows verifiers to validate circuit outputs
by directly examining circuit inputs without going through some intermediate translation phase. In
our protocol, circuit inputs in the Pedersen commitment form are converted to linear polynomials
in the integer field so that verifiers can use standard integer operations to compute and verify each
circuit output. In addition to performance gains, we believe such an approach offers more flexibility
in designing customized sub-circuits/gates and would allow developers to code business rules exactly
as they are described in business language.

In the past, Cramer and Damg̊ard [24] first introduced a mechanism where input commitments are
directly used in validating each multiplication gate. However, such an approach requires validation to
be performed on each multiplication gate and therefore introduces a large communication overhead
and requires both provers and verifiers to perform expensive operations in G for every multiplication
gate. Although this approach, combined with some clever design, is adopted in some more recent
protocols such as Hyrax [38], we still found that such an approach has some inherent inefficiencies and
cannot be used to get the desired result we are seeking.

In our protocol, we start by transforming each committed input parameter into a circuit to some
integer value in linear polynomial form, where verifiers can perform arithmetic operations (e.g., ad-
dition and multiplication) on them like they do on normal integers. Since field operations are cheap,
the verifier can perform this step with very high efficiency.

For a simple circuit a1
d+a2

d+a3
d = r s.t. circuit inputs are a1, a2, a3 and the circuit output is r. In

our protocol, inputs a1, a2, a3 and output r are committed by the prover using Pedersen commitment.
The prover then provides the transformed inputs a1, a2, a3 in the linear polynomial form a′1, a

′
2, a
′
3 in

Zp s.t. a′i = ai+Xαi ∈ Zp (αi is its blinding key). Since the transformed inputs are in F, the verifier can
plug these values directly into the circuit to compute the “temporary” output o e.g. a′d1 +a′d2 +a′d3 = o.
The “temporary” circuit output o ∈ Zp is the evaluation at point x of the output polynomial s.t.

2

f(x) = o. Since the degree of the output polynomial will increase after it is multiplied with another
polynomial, the degree of the output polynomial of the sample circuit is d + 1. The constant term
of this polynomial is the circuit output r and all other coefficients serve as its blinding keys. If the
prover can prove that 1) it knows all coefficients of the output polynomial (e.g. using a polynomial
commitment) 2) all input transformations are legit, then we say the proof is legit.

The output polynomial in the example above has a degree of d+ 1 because the transformed inputs
(linear polynomials) are of degree 1. Multiplying them d times will give a polynomial with a degree
of d + 1. So if the circuit is something like a1

2 + a2
2 + a3

2+, ...,+at
2 = r, the degree of the output

polynomial is 3 = d + 1 (d = 2) regardless of the value of t. Throughout our paper, we use the
symbol mp to denote the maximum number of multiplications included in any path that leads to the
circuit output, which also defines the degree of the output polynomial (e.g. if the degree of the output
polynomial is d+ 1, then mp = d).

This input transformation approach pioneered by our protocol does not require a“front end” en-
coder to compile the business logic relation R into some zero-knowledge friendly representation R̂.
This construct makes our protocol easy to implement and also makes it easier for end developers to
design customized sub-circuits/gates (see section 3.3).

For a deep circuit where mp value is large (unlike GKR based protocols, layers made up of addition
gates make negligible performance impact in our protocol), the prover runtime of the base version of

our protocol (Protocol 1) is dominated by O(mp
2 + mp + l) field operations and O(mp + m

1/2
p + l)

group exponentiations, where mp stands for the total number of multiplication gates included in the
path that contains most multiplications and l stands for the number of inputs to a circuit; the verifier

runtime is dominated by O(n + m
1/2
p + l) field operations and O(mp

1/2 + l) group exponentiations;
and the communication cost is dominated by O(mp

1/2 + 1) group elements and O(mp
1/2 + l) field

elements.

On the other hand, if the circuit is shallow (e.g., for a circuit with n/2 addition operations and
n/2 multiplication operations: r =

∑n
i=1 a · b where r is the circuit output and a, b are circuit inputs

and n stands for the total number of gates in a circuit., we have mp = 1), the prover work would be
dominated by O(n/2) field addition operations, which is very cheap.

Our protocol is specifically efficient for proving complex application logic where the circuit depth
is high and can be greatly simplified using customized gates. Furthermore, our protocol gives the
developer the power to significantly reduce the size of the circuit by bypassing the “inactive” part of
the circuit logic.

Specifically, when processing an extremely deep circuit of 220 sequential multiplication gates (mp =
n) with 960 input bits on a single CPU thread in the non-interactive setting, the prover runtime of
our protocol is 5.3 seconds, the verifier runtime is 36 milliseconds, and the communication cost is
approximately 76 kilobytes. This result shows a significant improvement in verifier runtime by one
order of magnitude over the state of the art while keeping the prover runtime and communication
cost competitive with the state of the art. If one interaction is allowed for the same circuit, the
prover runtime of our protocol will further improve to 2.7 seconds, the verifier runtime will improve
to 15 milliseconds, and the communication cost will improve to 65 kilobytes. To the best of our
knowledge, our protocol offers the best prover performance in literature in the non-interactive setting.
Alternatively, our protocol allows even faster prover runtime in exchange for bigger proof size.

On the memory side, the theoretical memory cost of our protocol is just O(2 · n 1
2) to the circuit

size n. This makes our protocol extremely attractive because voice-based memory-efficient protocols
generally require one round of interaction and are extremely expensive in terms of verifier runtime
cost and communication cost.

We introduce our protocol in an interactive setting where all verifier challenges are random field
elements. In practice, we assume the Fiat-Shamir heuristic is applied to our protocol to obtain a
non-interactive zero-knowledge argument in the random oracle model.

3

2 Preliminaries

2.1 Assumption

Definition 1. (Discrete Logarithmic Relation) For all PPT adversaries A and for all n ≥ 2 there
exists a negligible function negl(λ) s.t.

Pr

[
G = Setup(1λ), g0, ..., gn−1

$←− G ∃ ai 6= 0 ∧
∏n−1
i=0 g

ai
i = 1

a0, ..., an−1 ∈ Zp ← A(g0, ..., gn−1)

]
≤ negl(λ)

The Discrete Logarithmic Relation assumption states that an adversary can’t find a non-trivial
relation between the randomly chosen group elements g0, ..., gn−1 ∈ Gn, and that

∏n−1
i=0 g

ai
i = 1 is a

non-trivial discrete log relation among g0, ..., gn−1.

2.2 Zero-Knowledge Argument of Knowledge

Interactive arguments are interactive proofs in which security holds only against computationally
bounded provers. In an interactive argument of knowledge for a relation R, a prover convinces a
verifier that it knows a witness w for a statement x s.t. (x,w) ∈ R without revealing the witness itself
to the verifier. When we say knowledge of an argument, we imply that the argument has witness-
extended emulation.

Definition 2. (Interactive Argument) Let’s say (P,V) denotes a pair of PPT interactive algorithms
and Setup denotes a non-interactive setup algorithm that outputs public parameters pp given a
security parameter λ that both P and V have access to. Let 〈P(pp, x, w),V(pp, x)〉 denote the output
of V on input x after its interaction with P, who has knowledge of witness w. The triple (Setup,P,V)
is called an argument for relation R if for all non-uniform PPT adversaries A, the following properties
hold:

• Perfect Completeness

Pr

[
(pp, x, w) /∈ R or pp← Setup(1λ)

〈P(pp, x, w),V(pp, x)〉 = 1 (x,w)← A(pp)

]
= 1

• Computational Soundness

Pr

[
∀w(pp, x, w) /∈ R∧ pp← Setup(1λ)

〈A(pp, x, s),V(pp, x)〉 = 1 (x, s)← A(pp)

]
≤ negl(λ)

• Public Coin All messages sent from V to P are chosen uniformly at random and independently of
P’s messages

Definition 3. (Computational Witness-Extended Emulation) Given a public-coin interactive argu-
ment tuple (Setup,P,V) and arbitrary prover algorithm P∗, let Recorder (P∗, pp, x, s) denote the
message transcript between P∗ and V on shared input x, initial prover state s, and pp generated by
Setup. Furthermore, let E Recorder (P , pp, x, s) denote a machine E with a transcript oracle for
this interaction that can rewind to any round and run again with fresh verifier randomness. The tuple
(Setup,P,V) has computational witness-extended emulation if for every deterministic polynomial
time P there exists an expected polynomial time emulator E such that for all non-uniform polynomial
time adversaries A the following condition holds:

4

∣∣∣∣∣Pr
[

pp← Setup(1λ)
A(tr) = 1 (x, s)← A(pp)

tr ← Recorder(P∗, pp, x, s)

]
−

Pr

[A(tr) = 1∧ pp← Setup(1λ)
tr accepting =⇒ (x,w) ∈ R (x, s)← A(pp)

(tr, w)← ERecorder(P∗,pp,x,s)(pp, x)

]∣∣∣∣∣ ≤ negl(λ)

Definition 4. (Perfect Special Honest Verifier Zero Knowledge for Interactive Arguments) An inter-
active proof is (Setup,P,V) is a perfect special honest verifier zero knowledge (PSHVZK) argument
of knowledge for R if there exists a probabilistic polynomial time simulator S such that all pairs of in-
teractive adversaries A1,A2 have the following property for every (x,w, σ)← A2(pp)∧ (pp, x, w) ∈ R,
where σ stands for verifier’s public coin randomness for challenges

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← 〈P(pp, x, w),V(pp, x)〉

]
=

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← S(pp, x, σ)

]

Above property states that adversary chooses a distribution over statements x and witnesses w but is
not able to distinguish between the simulated transcripts and the honestly generated transcripts for
a valid statement/witnesses pair.

2.3 Polynomial Commitment Function

As in the case of other popular zero knowledge protocols that offer succinct proof size, our protocol
uses a polynomial commitment evaluation protocol to construct most of our proof transcript. Our
protocol uses a version of the polynomial commitment scheme defined by Bootle. et al. [12] Others
have improved the square-root-based polynomial commitments by applying the inner product approach
defined by Bunez et. al. and adding support for multilinear polynomials such as Hyrax [39] and Spartan
[35]. Similar techniques may be used to improve our implementation in the future to reduce proof size
in the expense of longer verifier runtime. The polynomial commitment function PolyCommitEval is
defined as:

• PolyCommitEval(C, y, x;~τ , φ) → boolean C is the committed polynomial in G where ~τ are its
coefficients and φ is its blinding key. The function returns a boolean value“̊atrue” if the polynomial
can be correctly evaluated at point x s.t. y = f(x).

Assume the polynomial commitment scheme we use in this paper is the one defined by Bootle et
al. [12]. In section 5, we will introduced a modified version of the polynomial commitment evaluation
scheme defined by Bootle et al. that tailors to our need.

2.4 Zero Knowledge Proof of Discrete Logarithm

For a prover to prove it has the knowledge of a discrete logarithmic κ of some group element s =
hκ ∈ G. We define the relation for this protocol as RPoD = {(h, s;κ) : s = gκ}. We also define two
functions (ProveDL,V erifyDL) for provers and verifiers to create and verify proof transcripts:

5

• ProveDL(g, κ) → trκ generates proof transcript trκ, where κ is the witness.
• V erifyDL(g, s, trκ) → b ∈ {0, 1} takes a proof transcript trκ and a pair of group elements with

discrete log relation (g, s ∈ G ∧ s = hκ), and outputs true if the knowledge of the relation is
verified, false otherwise.

In this paper, we assume the underlying implementation of the proof of discrete logarithm protocol
is Schnorr’s protocol. We know for a fact that Shnorr’s protocol has perfect completeness, special
honest verifier zero knowledge, and computational witness-extended emulation.

2.5 Notations

Let G denote any type of secure cyclic group of prime order p, and let Zp denote an integer field modulo
p. Group elements other then generators are denoted by capital letters. e.g., C = ua11 u

a2
2 ...u

an
n ∈ G

is a commitment commits to a vector ~a denoted by a capital letter, and B ∈ G is a random group
element also denoted by a capital letter. For generators used as base points to compute other group
elements in our protocol, such as ~g, h ∈ G, we use lower case letters to denote them. Greek letters are
used to label hidden key values. e.g., υ is the blinding key for Pedersen commitment P on generator
h ∈ G s.t. P = gahυ. Finally, we use standard vector notation ~v to denote vectors. i.e., ~a ∈ Znp is a
list of n integers ai for i = {1, 2, ..., n}.

We write R = {(Public Inputs ;Witnesses) : Relation} to denote the relation R using the
specified public inputs and witnesses.

2.6 The Input Transformation Concept

We first define the relation for the base version of our protocol. For l input parameters, let CF represent
the set of arbitrary arithmetic circuits in F, there exists a zero knowledge argument for the relation:

{(g, h,R ∈ G, ~P ∈ Gl, Ec ∈ CF ; ~a, ~υ ∈ Zlp, r, ε ∈ Zp) :

Pi = gaihυi ∀i ∈ [1, l] ∧ R = grhε ∧ Ec(~a, υ) = r, ε}
(1)

The above relation states that each input parameter to a circuit is represented by a commitment Pi
in G, which hides input value ai with blinding key υi. r is the output of circuit Ec on inputs ~P . The
circuit output value is also represented by a commitment R ∈ G with blinding key ε.

We cannot take Pedersen commitments as inputs to a circuit because we cannot perform mul-
tiplications on them. We introduce a new concept called input transformation. The main idea is to
transform committed inputs in G to linear polynomials in F where both the prover and the verifier
can perform addition and multiplication operations. For an input commitment Pi s.t. P = gaihυi ∈ G
where ai is the input value and υi is its blinding key, we create a corresponding integer value in linear
polynomial form ai

′ ∈ Zp :

ai
′ = ai +Xαi ∈ Zp (2)

Note that the blinding key of each input is updated to a random αi s.t. αi 6= υi. Likewise, the
circuit output commitment R = grhε ∈ G also has a matching linear polynomial.

r′ = r +Xε ∈ Zp (3)

Since inputs represented by linear polynomials are just integer values, verifiers can perform arith-
metic operations on them just as they do on integers. The output value of a circuit evaluation is now
a polynomial with mp + 1 degrees evaluated at point X. The constant term of the output polynomial
is the circuit output r and the coefficient of the degree one term is the blinding key of the circuit
output.

6

One of the key processes of our protocol is to reduce this output polynomial of mp + 1 degree
to a linear polynomial of degree 1 as stated in 3 by subtracting out all other terms of the output
polynomial.

We are now ready to expand the definition of relation 1 above with the new blinding keys used
to hide inputs and outputs. We say witnesses r, ε, ~τ are coefficients of the output polynomial after
evaluating circuit Ec where ~τ are coefficients of degree 2 term to degree mp + 1 term. The updated
relation is as follows:

{(g, h,R ∈ G, ~u ∈ Gmp , ~P ∈ Gl, Ec ∈ CF;~a, ~υ ∈ Zlp, r, ε ∈ Zp, ~τ ∈ Zmp
p) :

Pi = gaihυi ∀i ∈ [1, l] ∧R = grhε ∧ Ec(~a, ~υ) = r, ε, ~τ}
(4)

In our protocol, we can break the evaluation process into two sub-statements: to prove the first
sub-statement, the prover proves each input in G is correctly transformed to Zp by proving their
mapping is legit; To prove the second sub-statement, the prover proves the circuit output is correctly
computed from transformed inputs by showing the constant term of the output polynomial maps to
the committed circuit output value.

To prove the first sub-statement we show how to prove each input transformation from Pi to
a′i is legit. Unlike commitments, the linear polynomial a′i ∈ Zp is not binding to ai as we can easily
manipulate the value of ai by altering its blinding key if the value of challenge X is known. e.g.,
a′i = (ai + δ) + x(υi − δ/x) (the “committed” value ai is altered to ai + δ). This is ok because the
prover must commit to circuit output r′ and its blinding key ε before the evaluation point X is known.

The prover commits to the differences between blinding key pairs (αi − υi) using blinding key

µ. The verifier uses a random challenge k to generate ~k = k1, ..., kl so that verifiers can verify all
transformed inputs in batch s.t.:

κ =

l∑
i=1

(αi − υi)ki ∈ Zp (5)

PKκµ = hκuµ ∈ G (6)

If the prover can prove the knowledge of κ, µ on generator h, u ∈ G using any proof of knowledge
(proof of discrete logarithm) protocol, we can confirm that only the sum of products of blinding keys
(exponent of h) is being updated except for a negligible probability. To prove and verify the knowledge
of two exponents on two generators of a committed value, we extend the functionality of proveDL and
verifyDL defined earlier:

• ProveEDL(h, u, κ, µ) → trκµ generates proof transcript trκµ, where κ, µ are witnesses.
• V erifyEDL(h, u, PKκµ, trκµ) → b ∈ {0, 1} takes a proof transcript trκµ and verify a pair of

discrete log relation (PKκµ = hκuµ), and outputs true if the knowledge of these relation is
verified, false otherwise.

The implementation of the two functions above is trivial and has been used in many existing
protocols [13], one such example can be found in Appendix C. The key is to not allow attackers to
retrieve hκ and uµ from proof transcripts. In protocol 1, the prover creates the proof transcript for
the knowledge of κ, µ on generators h, u ∈ G as follows:

trκµ = ProveEDL(h, u, κ, µ) (7)

To verify all input mappings in one batch, the verifier adds the commitment to blinding key
differences PKκµ back to the sum of the products of all input commitments:

Pt = (

l∏
i=1

P k
i

i) · PKκµ ∈ G (8)

7

The prover uses new blinding keys ~α to create linear polynomials ~ai such that ai
′ = ai+xαi for all

i. After challenge k is available, the prover can batch prove the mapping between committed values
and their linear polynomial values by providing transcripts for trαt .

αt =

l∑
i=1

(αi)k
i ∈ Zp (9)

trαtµ = ProveEDL((h/gx), u, αt, µ) (10)

The verifier computes the sum of products of ~a and powers of k. With the sum of products of both
~P , ~a′ (Pt, t) available, the verifier can trivially compute PKαt s.t.:

t =

l∑
i=1

a ′ik
i ∈ Zp (11)

PKαtµ = Pt/g
t = (h/gx)αtuµ (12)

If the prover can prove the knowledge of αt on generator (h/gx) ∈ G using any proof of knowledge

protocol, we know that the mapping between ~P and ~a′ is correct except for a negligible probability.

To prove the second sub-statement To prove the circuit output is correctly computed from
transformed inputs ~a′, the prover needs to show it knows the coefficients of all terms of the output
polynomial. For example, for a simple circuit that just outputs the sum of two inputs, the prover
needs to show it knows the constant term r and the coefficient of the degree 1 term ε of the output
polynomial :

o = a1
′ + a2

′ = r +X · ε (13)

Computing the output polynomial is the same as adding two polynomials, where r = (a1 +a2) and
the blinding key is ε = (α1 + α2). Likewise, multiplying two inputs a1

′, a2
′ is the same as multiplying

two polynomials:
o = a1 · a2 = r +X · ε+X2 · τ (14)

Where r = a1 · a2, ε = a2α1 + a1α2, and τ = α1 · α2. We use the label “o” to represent the
circuit output, which is equivalent to the output polynomial evaluated at a point X. The degree of the
polynomial will increase after each multiplication operation, so the efficiency will drop as the maximum
number of multiplications included in any path that leads to the circuit output (mp) increases.

We also need to reduce the circuit output from a degree mp + 1 polynomial to a linear polynomial
r′ = r + Xε maps to the commitment R = grhε. To get the linear polynomial we need from the raw
output o, the verifier needs to subtract out all terms with degrees higher than one. In the multiplication
circuit above, the verifier needs to eliminate the term of degree 2 to get the linear polynomial. To do
so, the prover commits to τ before the challenge x is known. When the challenge x is available, the
prover sends the evaluation of terms with degrees higher than one y to the verifier and engages with
the verifier to prove f(x) = X2τ = y. With y = X2τ validated, the verifier can subtract y from o to
get the output in linear polynomial form:

r′ = o− y (15)

We call y the “breaker” of our protocol, because it subtracts all noises (polynomial terms of degree
higher than one) from the raw circuit output o. In practice, the prover and the verifier engage in a
polynomial commitment protocol to confirm f(x) = y.

C =

mp∏
i=1

uτii ∈ G (16)

8

In the final version of our protocol, the polynomial commitment evaluation logic is broken apart
and integrated with our protocol (protocol 3), so that we no longer need to call a polynomial commit-
ment evaluation function as we do in Protocol 1 and Protocol 2 (see section 5). // // We define two
more functions for our protocol. function computeKeys is used by the prover to compute the keys
of a polynomial, and the function computeCircuit is used by verifiers to compute the value of the
result polynomial at an evaluation point X:
1. function computeKeys(“input values”, “input keys”) takes input values ~a and keys ~υ to com-
pute r, ε, ~τ (coefficients of o) using the circuit provided to the protocol. Function computeKeys uses
multiplies and adds input polynomials to compute coefficients of o.
2. function computeCircuit(“input values in linear polynomial form”) trivially computes the result
o from the inputs provided as they are integer values.

For example, if the circuit is to return the product of n inputs, then the computeCircuit function
simply performs o = a1 × a2×, ...,×an. Since a1, ..., an are linear polynomials evaluated at point X, o
is the evaluation of the resulting polynomial at point X, and the computeKeys function computes all
coefficients of the resulting polynomial.

We don’t waste space describing them in detail here since they are trivial to implement. With all
the information available, we now formally introduce Protocol 1:

Input : (~P ∈ Gl, ~u ∈ Gmp , g, h ∈ G,~a, ~υ ∈ Zlp) (17)

P ′s input : (~P , ~u, g, h;~a, ~υ) (18)

V ′s input : (~P , ~u, g, h) (19)

P compute : (20)

αi
$←− Zp, i = {1, ..., l} (21)

r, ε, ~τ = computeKeys(~a, ~α) (22)

R = grhε ∈ G (23)

C =

mp∏
i=1

uτii ∈ G (24)

P → V : C,R (25)

V compute : (26)

x
$←− Zp (27)

V → P : x (28)

P compute : (29)

a′i = ai + xαi ∈ Zp i = {1, ..., l} (30)

y =

mp∑
i

τi · xi+1 ∈ Zp (31)

trε = ProveDL((h/gx), ε) (32)

P → V : ~a ′, y, trε (33)

V verify final output R : (34)

o = computeCircuit(~a ′) (35)

r′ = o− y ∈ G (36)

PKε = R/gr
′
∈ G (37)

if PolyCommitEval(C, y, x;~τ) (38)

then continue (39)

9

else reject (40)

if V erifyDL((h/gx), PKε, trε) (41)

then continue (42)

else reject (43)

V compute : (44)

k
$←− Zp (45)

V → P : k (46)

P compute : (47)

αt =

l∑
i=1

αik
i ∈ Zp (48)

trαtµ = ProveEDL((h/gx), u, αt, µ) (49)

κ =

l∑
i=1

(αi − υi)ki ∈ Zp (50)

PKκµ = hκuµ ∈ G (51)

trκµ = ProveEDL(h, u, κ, µ) (52)

P → V : PKκµ, trκµ, trαtµ (53)

V verify inputs : (54)

Pt = (

l∏
i=1

P k
i

i) · PKκµ ∈ G (55)

t =

l∑
i=1

a ′ik
i ∈ Zp (56)

PKαtµ = Pt/g
t (57)

if V erifyEDL(h, u, PKκµ, trκµ), (58)

and V erifyEDL((h/gx), u, PKαtµ, trαtµ) (59)

then accept (60)

else reject (61)

Protocol 1

Theorem 1. (Input Transformation Based Zero Knowledge Argument for Arbitrary Circuits). The
proof system presented in this section has perfect completeness, perfect special honest verifier zero-
knowledge, and computational witness extended emulation.

The proof for Theorem 1 is presented in Appendix A.

The main idea of Protocol 1 is to convert commitments Pi to their linear polynomial form a′i
so that the verifier can just take linear polynomials as input values to the circuit and use standard
integer operations to compute the circuit. The circuit output o is a polynomial with mp + 1 degree.
By subtracting out all terms with degrees greater than one as in equation 15 explained, the verifier
gets the circuit output in linear polynomial form that maps to the commitment R.

10

3 Making Input Transformation Based Zero Knowledge Protocol Efficient
with NTT

Protocol 1’s prover isn’t efficient because O(mp
2) field operations in prover work can become expensive

as mp gets big. In this section, we introduce a mechanism that allows us to use the number theoretic
transform (NTT) to cut the prover’s field operation work to mp log mp.

3.1 Applying Number Theoretic Transform to Improve Prover Performance in Field
Operations

The objective of NTT is to multiply two polynomials such that the coefficients of the resultant polyno-
mials are calculated under a particular modulo in mp log mp, a major improvement over mp

2 runtime
of the trivial approach. However, a major drawback of NTT is that it requires a prime modulo q of the
form q = r ·2k+1 to be the prime order of the group, where k and c are arbitrary constants. Since the
prime order of widely used G in cryptography is usually not a prime with the aforementioned form, we
need a mechanism to map linear polynomials with a prime modulo q that satisfies the aforementioned
form to a group G with prime order p. q is expected to be smaller than p because: 1) computation
in p (e.g., polynomial commitment evaluation) won’t overflow 2) the smaller the q value in bits, the
lower the communication cost. In our benchmark testing, we set q to a 61-bit prime number for the
interactive case and to a 93-bit prime number for the non-interactive case.

We redefine equation 2 s.t. a′i and its blinding key αi are now in prime field q instead of the larger
prime field p.

a′i = ai + xαi ∈ Zq i = {1, ..., l} (62)

We define a new blinding key ωi ∈ Zp and mix that with the blinding key υi in Pi and its
corresponding blinding key αi in a′ to create Si, Ti.

Si = gωi·q ∈ G i = {1, ..., l} (63)

Ti = gυi−αi ∈ G i = {1, ..., l} (64)

The prover then sends Si, Ti for i = {1, .., l} to the verifier. When the challenge x ∈ Zq is available,
the prover sends ei s.t.:

ei = ((xαi mod q)− xαi) · x+ ωi · q ∈ Zp i = {1, ..., l} (65)

The idea here is that when we subtract ei from ai ·x in the next step, we can subtract out the blinding
modulo q element (x αi mod q) from a′i (e.g., a′i · x − ei = (ai + xαi) · x − ωiq), assuming there is
no overflow. The verifier can replace the x2αi − ωiq part with the new blinding element x2υi as the
exponent of generator g by adding the previously committed values Si, Ti.

ga
′
i·x−ei · T x

2

i · Si = (gx)ai+xυi ∈ G i = {1, ..., l} (66)

With (gx)ai+xυi available, the verifier can trivially divide each Pi and taking their sum with powers
of k to get PKυt .

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (67)

PKυt = ((h/g)x)υt . The verifier can confirm the correctness of the transformation except with negli-
gible probability if the prover can prove the knowledge of υt on generator (h/g)x ∈ G.

11

Finally, the verifier needs to make sure ei doesn’t alter the value of ai. This can be done by taking
the modulus q of ei and checking if it returns 0. This is trivial to understand since a′i is in Zq. If ei is
a multiple of q then it is obvious that it cannot alter the value of ai.

if (ei mod q)
?
= 0, then continue (68)

This test also implies the transformation process explained in this section is sound since the soundness
of equation 67 is trivial to prove except for a negligible probability. For example, If a′∗i = a∗i + xαi =
ai+δ+ xαi. Knowing that ei must be a multiple of q for equation 68 to be true, we have a′∗i ·x−ei =
(ai +xαi) ·x− ωiq = x(ai +xαi) +xδ. In order for equality 66 to be true, the left side of the equality
66 must offset xδ using committed values Ti and Si, s.t. xδ will be removed after applying challenge
x to these elements (i.e., T x

2

i · Si), which only happens for a negligible chance of 1/q.
This transformation process is zero-knowledge because ei does not leak any information to the

verifier either. This is because the first part of ei: ((x αi mod q) − x αi) · x is a multiple of q, and
can be represented as s · q for some s. This implies ei = (s + ω) · q for some randomly chosen ω.
Since every other transcript (in G) is trivially zero-knowledge, we say this transformation process is
zero-knowledge if ω is correctly chosen (e.g., any number between −s to p/q s.t. ei < p).

We have so far skipped the overflow problem. If ai + (x αi mod q) > q, then we will have an
overflow problem in equation 66 67 when computing a′i · x− ei. To get around this, the prover simply
needs to check if ai + (x αi) mod q overflows q, and subtract q · x from ei if that’s the case.

if ai + (xαi mod q) ≥ q, then ei = ei − q · x i = {1, ..., l} (69)

As a consequence of this transformation to a smaller group q, the security level of commitment R
is in question if q << p and r, ε need to be protected. So we need another generator u and blinding
key φ to protect r, ε in Zq s.t.

R = grhεuφ ∈ G (70)

We now merge the NTT conversion code introduced in this section and formally define the efficient
version of our protocol in Protocol 2.

Input : (~P ∈ Gl, ~u ∈ Gmp , g, h ∈ G,~a, ~υ ∈ Zlp) (71)

P ′s input : (~P , ~u, g, h;~a, ~υ) (72)

V ′s input : (~P , ~u, g, h) (73)

P compute : (74)

αi
$←− Zq, i = {1, ..., l} (75)

ωi
$←− Zp, i = {1, ..., l} (76)

φ
$←− Zp (77)

r, ε, ~τ = computeKeys(~a, ~α) ∈ Zmp+2
q (78)

R = grhεuφ ∈ G (79)

C =

mp∏
i=1

uτii ∈ G (80)

Si = gωi·q ∈ G i = {1, ..., l} (81)

Ti = gυi−αi ∈ G i = {1, ..., l} (82)

P → V : ~S, ~T ,C,R (83)

12

V compute : (84)

x
$←− Zq (85)

V → P : x (86)

P compute : (87)

a′i = ai + xαi ∈ Zq i = {1, ..., l} (88)

ei = ((xαi mod q)− xαi)x+ ωiq ∈ Zp i = {1, ..., l} (89)

if ai + (xαi mod q) ≥ q, then ei = ei − q · x i = {1, ..., l} (90)

y =

mp∑
i

τi · xi+1 ∈ Zq (91)

trε,φ = ProveEDL((h/gx), u, ε, φ) (92)

P → V : ~e,~a ′, y, trε,φ (93)

V verify final output : (94)

o = computeCircuit(equation,~a ′) ∈ Zq (95)

r′ = o− y ∈ Zq // r + x · ε (96)

PKε,φ = R/gr
′
∈ G // (h/gx)εuφ (97)

if PolyCommitEval(C, y, x;~τ), then continue (98)

else reject (99)

if V erifyEDL((h/gx), u, PKε,φ, trε,φ), then continue (100)

else reject (101)

V compute : (102)

k
$←− Zp (103)

V → P : k (104)

P compute : (105)

υt =

l∑
i=1

υik
i ∈ Zp (106)

trυt = ProveDL((h/g)x, υt) (107)

P → V : trυt (108)

V verify inputs : (109)

if (ei mod q)
?
= 0, then continue i = {1, ..., l} (110)

else reject (111)

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (112)

if V erifyDL((h/g)x, PKυt , trυt), then accept (113)

else reject (114)

Protocol 2

Theorem 2. (Input Transformation Based Efficient Zero Knowledge Protocol for Arbitrary Circuits).
The proof system presented in this section has perfect completeness, perfect special honest verifier zero-
knowledge, and computational witness extended emulation.

13

Protocol 2 is a simplified version of Protocol 3. The proof for Theorem 2 is presented in Appendix
B, which is also used to prove Theorem 3.

Since we are now evaluating the output polynomial at a smaller field q, the soundness error
is increased due to the existence of polynomial roots. We use two NTT friendly primes in our
implementation for performance test. One is a 61-bit prime q = 1945555039024054273, where r =
27, k = 56, g = 5 s.t. q = r ∗ 2k + 1 for the non-interactive case, and the second prime is a 93-bit
number q = 5241902353849032101525979137, where r = 271, k = 84, g = 3 for the non-interactive
case. The reason being that the smaller 61-prime number cannot provide soundness error at minimum
2−80 as required in most non-interactive use cases. See section 5 for a more detailed explanation.

3.2 The Asymptotic Cost of Protocol 2

The prover runtime of Protocol 2 is dominated by O(mp log mp+mp+ l) field operations and O(mp+
mp

1/2+l) group exponentiations; the verifier runtime is dominated by O(n+mp
1/2+l) field operations

and O(mp
1/2 + l) group exponentiations; and the communication cost is dominated by O(mp

1/2 + l)
group elements and O(mp

1/2 + l) field elements.
The worst possible scenario for our protocol is when we have a sequence of multiplications where

both multiplier and multiplicand are the product of the previous multiplication operation (e.g. ((a2)2)2

is technically 3 multiplications, but it will result in mp = 23), in such case mp will grow exponentially.
One way to tackle such a problem is to break the circuit into segments of smaller sub-circuits so that
the mp value will be refreshed whenever it grows oversize, similar to the idea of bootstrapping in fully
homomorphic encryption. We will explore this option in the next section.

4 Enhancing Efficiency for Circuits with High Depth

The efficiency of protocol 2 will degrade as the total number of multiplications in the path computing
the output (mp value) grows, a not-so-uncommon scenario for circuits with high depth. One way to
get around this problem is to have multiple breakers so that the number of polynomial terms will
never exceed b s.t. b =

mp

mb
(symbol mb stands for the number of breakers).

4.1 Batch Verification With Multiple Breakers

Each breaker yi is an evaluation at point x for terms x2, ..., xb+1 of the polynomial accumulated thus
far in the computation. Obviously, it is not efficient for us to commit and evaluate m number of
polynomials, where m stands for the number of breakers (y1, ..., ym) we use to evaluate a circuit.

Fortunately, we just need to make a simple modification to the polynomial commitment evaluation
protocol defined by Bootle et al. to enable verifiers to evaluate mb breakers all at once. We start by
aligning each breaker yi to the coefficients of the ith generator of vector commitments (columns of
the mb × b matrix).

u
y′1
1

u
y′2
2

u
y′3
3

.

.

u
y′mb
mb

=

u
τ1,1
1 u

τ1,2
1 . . u

τ1,b
1

u
τ2,1
2 u

τ2,2
2 . . u

τ2,b
2

u
τ3,1
3 u

τ3,2
3 . . u

τ3,b
3

.

.

u
τmb,1

mb u
τmb,2

mb . . u
τmb,b

mb

x2

x3

x4

.

.

xb+1

14

Figure 1

Let yi = (y′i) mod q, we can observe from figure 1 that each y′i can be computed from the sum
of products of exponents of ui (e.g. y′i = τi,1x

2 + τi,2x
3 + ...+ τi,bx

b+1).
In our protocol, the prover commits to the columns of the matrix in figure 1 in the same way as

that in Bootle et al.’s polynomial commitment evaluation scheme.

Cj =

mb∏
i=1

u
τi,j
i for j = {1, ..., b} (115)

When the evaluation point x is known, the verifier computes the exponent of each Cj . If the
equality below is true, all breakers are verified.

mb∏
i=1

u
y′i
i

?
=

b∏
j=1

Cx
j+1

j (116)

Note that if each breaker y′i is equal to the sum of products of b terms and each term is a product
of xj+1 ∈ Zq and τi,j ∈ Zq, then the bit length of |y′i| is approximately |y′i| ≤ 2 · |q| + |b|. The value
of y′i can also be expressed as y′i = yi + z · q for some z and |z| ≤ |q| + |b|. However, passing raw y′i
values to the verifier may leak some information about the coefficients.

To cope with that, we make the prover commit to a blinding vector ~β ∈ Zmb
m and m value is

unknown to the verifier 1. Each y′i is now computed as:

y′i =

b∑
j=1

τi,jx
j + βi for i = {1, ...,mb} (117)

Note that the power (exponent) of x in each term in the equation above is one degree lower than
it needs to be, so to get yi from y′i the verifier needs to multiply x one more time:

yi = (y′i · x) mod q ∈ Zq for i = {1, ...,mb} (118)

This implies the value of the circuit output r′ is now updated to mb number of r′i = ri+x(εi−βi) ∈
Zq, so we need to adjust the blinding key of r′ by adding βi to it in the computeKeys function. The
updated equality graph is shown in figure 2 below.

u
y′1
1

u
y′2
2

u
y′3
3

.

.

u
y′mb
mb

=

u
τ1,1
1 u

τ1,2
1 . . u

τ1,b
1

u
τ2,1
2 u

τ2,2
2 . . u

τ2,b
2

u
τ3,1
3 u

τ3,2
3 . . u

τ3,b
3

.

.

u
τmb,1

mb u
τmb,2

mb . . u
τmb,b

mb

x

x2

x3

.

.

xb

·

uβ1

1

uβ2

2

uβ3

3

.

.

u
βmb
mb

Figure 2

1 Alternatively, if m is a public information for whatever reason, one can set the upper bound of ~β ∈ Zmb

m′j
to

m′
j s.t. m′

j = m−
∑mb
i=1 u

τi,j
i · q

15

Let B =
∏mb

i=1 u
βi

i , the equality in figure 2 can also be expressed using the equality check below:

mb∏
i=1

u
y′i
i

?
=

b∏
j=1

Cx
j

j ·B (119)

If the commitments ~C,B and vector ~y satisfy the equation above, then we know breakers ~y are
valid. The verifier applies equation 118 to each y′i to get the actual breakers yi used in computing o.

Since we are now evaluating ”multiple commitments” by applying mb breakers, we break the
function computeCircuit we defined earlier to mb number of computeSubCircuiti functions.

function computeSubCircuiti (“inputs in linear polynomial form”, “output from the previous
computeSubCircuit function”): for i = {1, ..,mb}, it trivially computes the result oi from the inputs
to the whole circuit and output from the previous computeSubCircuit function.

We are now ready to introduce Protocol 3, which replaces the generic polynomial commitment
evaluation in Protocol 2 with the multi-breaker mechanism we introduced in this section.

Input : (~P ∈ Gl, ~u ∈ Gmb , g, h ∈ G,~a, ~υ ∈ Zlp) (120)

P ′s input : (~P , ~u, g, h;~a, ~υ) (121)

V ′s input : (~P , ~u, g, h) (122)

P compute : (123)

αi
$←− Zq, i = {1, ..., l} (124)

ωi
$←− Zp, i = {1, ..., l} (125)

βi
$←− Zm, i = {1, ...,mb} (126)

φ
$←− Zp (127)

r, ε, ~τ = computeKeys(~a, ~α) ∈ Zmp+2
q (128)

R = grhεuφ ∈ G (129)

Cj =

mb∏
i=1

u
τi,j
i ∈ G i = {1, ..., b} (130)

Si = gωi·q ∈ G i = {1, ..., l} (131)

Ti = gυi−αi ∈ G i = {1, ..., l} (132)

B =

mb∏
i=1

uβi

i ∈ G (133)

P → V : ~S, ~T , ~C,B,R (134)

V compute : (135)

x
$←− Zp (136)

V → P : x (137)

P compute : (138)

a′i = ai + xαi ∈ Zq i = {1, ..., l} (139)

ei = ((xαi mod q)− xαi)x+ ωiq ∈ Zp i = {1, ..., l} (140)

if ai + (xαi mod q) > q, then ei = ei − q · x i = {1, ..., l} (141)

16

y′i =

b∑
j

τi,j · xj + βi ∈ Zp i = {1, ...,mb} (142)

trε,φ = ProveEDL((h/gx), u, ε, φ) (143)

P → V : ~e,~a ′, ~y′, trε,φ (144)

V verify final output : (145)

if (

mb∏
i=1

u
y′i
i

?
=

b∏
j=1

Cx
j

j ·B) then continue (146)

else reject (147)

for i = 1, ...,mb { (148)

oi = computeSubCircuiti(~a
′, r′) ∈ Zp (149)

yi = (y′i · x) mod q ∈ Zq (150)

ri
′ = oi − yi ∈ Zp (151)

r′ = ri
′ ∈ Zq } (152)

PKε,φ = R/gr
′
∈ G // (h/gx)εuφ (153)

if V erifyEDL((h/gx), u, PKε,φ, trε,φ), then continue (154)

else reject (155)

V compute : (156)

k
$←− Zp (157)

V → P : k (158)

P compute : (159)

υt =

l∑
i=1

υik
i ∈ Zp (160)

trυt = ProveDL((h/g)x, υt) (161)

P → V : trυt (162)

V verify inputs : (163)

if (ei mod q)
?
= 0, then continue i = {1, ..., l} (164)

else reject (165)

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (166)

if V erifyDL((h/g)x, PKυt , trυt), then accept (167)

else reject (168)

Protocol 3

Theorem 3. (Input Transformation Based Efficient Zero Knowledge Argument for Arbitrary Circuits
with High Efficiency). The proof system presented in this section has perfect completeness, perfect
special honest verifier zero-knowledge, and computational witness extended emulation.

The proof for Theorem 3 is presented in Appendix C.

17

From line 149 to 153 in protocol 3 we assumed our circuit is a linear circuit where there is only one
straight path to the output because it is easy to explain. In practice, binary circuits generally have
multiple ”bit” paths that executes in parallel.

4.2 Booleanity Check and Bit Decomposition/Reposition

A common requirement in proving binary circuits is the need to enforce input data bi ∈ {0, 1} for
some i ∈ {1, ..., l}. In practice, it is useful to decompose l full integer inputs into l · 32 bits (assuming
we use 32 bits to represent a full integer, like the int type in Java) in order to perform comparison
operations on input data. If a committed value bi is in [0, 1], then its linear polynomial form bi must
have the following property:

(b′i · b′i − b′i) = δ1,ix+ δ2,ix
2 (169)

Where δ2,i = β2
i , and δ1,i = βi when bi is 1 and δ1,i = −β when bi is 0. To prove the correctness of all

bi ∈ {0, 1} , the prover commits to two polynomials K1,K2 s.t.

D = uδ11 u
δ2
2 ...u

δl
l h

ρ1 and E = uε11 u
ε2
2 ...u

εl
l h

ρ2 (170)

Where D commits to coefficients on x term for i ∈ {1, ..., l · 32} and E commits to coefficients on
x2 term for i ∈ {1, ..., l · 32}. The prover sends D,E to the verifier. After the challenge k is received,
the prover sends the evaluation results y1, y2 to the verifier, and the verifier uses the polynomial
commitment protocol to verify the correctness of y1, y2 at point k, and if the equality below is true:

y1 · x+ y2 · x2 =

l·32∑
j=1

(b′i · b′i − b′i) · ki (171)

Once we know all linear polynomials map to either 0 or 1, it is trivial to recompose the linear
polynomial form of a full integer input a′i from 32 decomposed bits b′i,j for j = {1, ..., 32}.

a′i =

32∑
j=1

b′i,j · 2j (172)

We define the protocol ValidateBooleanity below with the equations defined above

Input : (~b ′ ∈ Zq : ~b, ~β ′ ∈ Zq)

P ′s input : (~b ′ : ~b, ~β ′)

V ′s input : (~b ′)

P compute :

l = |~b ′| ∈ Zq

ρ1, ρ2
$←− Zq

δi = biβi + biβi − βi ∈ Zq i = {1, ..., l}
εi = β2

i ∈ Zq i = {1, ..., l}

D =

l∏
i=1

uδii · h
ρ1 ∈ G

E =

l∏
i=1

uεii · h
ρ2 ∈ G

18

P → V : D,E

V compute :

k
$←− Zq

V → P : k

P compute :

y1 =

l∑
i=1

δik
i ∈ Zq

y2 =

l∑
i=1

εik
i ∈ Zq

P → V : y1, y2

P,V engate to evaluate :

if PolyCommitEval(D, y1, k;~δ, ρ1)

∧ PolyCommitEval(E, y2, k;~ε, ρ2)

return true

else

return false

Protocol ValidateBooleanity

In practice, we will conduct booleanity test on all l ·32 bit values at once and then use equation 172
to convert them into l full integer values so that we can perform the ”linear polynomial to Pedersen
commitment” mapping test explained in the last two sections. In some special cases, one may also call
Protocol ValidateBooleanity in customized subcircuits as we will show in the next subsection.

4.3 Optimization Techniques and Custom Subcircuit

One way to optimize the prover performance of a circuit is by changing the strategy of setting the
breakers (y1, ..., ymb

).

Although we set mb = b in our earlier example, this is not necessarily the most efficient way of
setting breakers. For example, setting b smaller than mb could offer better prover runtime performance
in exchange for more expensive communication costs.

It is also not necessary that all breakers y1, ..., ymb
have the same b value. For example, If some

value ai is taken to its 100th power (a′100i , degree term mp = 100) and will be used as inputs in
multiple places of a circuit, then it would be wise to use a breaker to cut its degree to 1 (in linear
polynomial form a100i +Xαi) before being used as inputs in other places of a circuit.

Another way to optimize performance is through the use of specially designed subcircuits. The idea
is similar to ”custom gates” found in SNARKs protocols in principle, but our protocol likely offers
more freedom in designing and using these ”custom gates”. This is because both the prover and the
verifier evaluate the circuit in a linear fashion in our protocol, so we can insert any type of specially
designed gate at any point of the circuit.

For example, suppose there is a conditional statement in a circuit to test if some number b′ = b+Xβ
is less than 220, we can design a subcircuit (custom gate) just for this logic because it would be quite
inefficient to construct a binary circuit for it. So instead the prover can decompose the number b to
its bit representations (b′i = bi +Xβi s.t. b =

∑32
i=1 bi · 2i−1 ∧ bi ∈ {0, 1} for i = {1, ..., 32}) as shown

in the previous sub-section and prove that the sum of all bits greater than 20 is equal to zero.

19

The prover commits to βt =
∑32
i=21 βi (sum of blinding keys of bits higher than 21) with another

blinding key ρ (this is because βt is in Zq, which could be a much smaller field than Zp)

C = gβthρ ∈ G

If bi = 0 for i = {21, ..., 32}, the verifier can compute PKρ = hρ from bits ~b ′ s.t..

c =

32∑
i=21

b′i ∈ Zq

PKρ = C/g
c
x ∈ G

If the prover can prove the knowledge of ρ, then the statement of “ b < 220 ” is validated. The
“computeSubCircuit” function can move on to the next stage of the circuit computation.

We can also use a custom subcircuit to bypass the “inactive” part of a circuit (similar to that
of suBlonk (ePrint). For example, If a conditional statement is in the form of if x < 20 then “do
something” else “do something else”, then both the prover and the verifier can bypass the ”else” part
of the circuit if the condition returns true.

For example, we have a circuit that evaluates whether the average of all inputs is less than 220.
if true, it will perform some logic, otherwise, it will do something else (e.g. loop through all inputs
and take out the highest values until the condition is met). The ComputeSubCircuit function for this
circuit would look like:

computeSubCircuit : (~a ′,~b ′ ∈ Zq, trρ)

b = (

l∑
i=1

ai)/l ∈ Zq

if V alidateBooleanity(~b ′)

∧ b =

32∑
i=1

b′i ∈ Zq then

c =

32∑
i=21

b′i ∈ Zq

PKβt
= C/g

c
x ∈ G

if V erifyDL(h, PKρ, trρ) then

o = do something

else

o = do something else

else

o = do something

return o

Function computeSubCircuit (Customized)

If the conditions in both “if” conditions are both true, then logics in both “else” statements are
considered inactive and can be omitted altogether from the circuit.

However, it is worth noticing that using a customized subcircuit bypassing parts of the circuit may
leak information about data to attackers, so one must use such a strategy with extreme caution.

20

4.4 The Asymptotic Cost of Protocol 3

For a circuit with l input parameters s.t. each input parameter is composed of 32 bits, the prover

runtime of the final version (Protocol 3) of our protocol is dominated by O(mp log m
1/2
p + mp + l +

32 · l1/2) field operations (assuming additive operations in F are practically free) and O(mp+mp
1/2 +

l + 32 · l1/2) group exponentiations; the verifier runtime is dominated by O(n+mp
1/2 + l + 32 · l1/2)

field operations and O(mp
1/2 + l + 32 · l1/2) group exponentiations; and the communication cost is

dominated by O(mp
1/2 + l + 32 · l1/2) group elements and O(mp

1/2 + l + 32 · l1/2) field elements.

4.5 Memory Efficiency of Protocol 3

The memory consumption cost of protocol 3 is O(n). However, with a simple modification to protocol

3, we can improve the memory consumption cost of our protocol to mb + b or O(2 · n 1
2).

Instead of computing ~C after ~τ is computed s.t. |~τ | = n. We can break the “computeKeys”
function into mb “computeSubCircuitKeys” functions s.t. we only compute the coefficients for the ith
sub-circuit in each round and commit/update ~C after each round for mb rounds.

For example, let’s say we have Cj for j = 1, ..., b after round i, the protocol computes coefficients

τi′,1, ..., τi′,b for subCircuit i′ where i′ = i + 1. The protocol then updates each element of ~C to
C ′j = Cj · gτi,j for j = 1, ..., b and then discards the coefficients computed for subCircuit i′. This will

give us a memory consumption cost of O(2 · n 1
2). This can be achieved by replacing lines 128 to 130

with the following steps:

r, ε, ~τ1 = computeSubCircuit1(~a, ~α); (173)

Cj = u
τ1,j
i ∈ G i = {1, ..., b} (174)

for i = 2, ...,mb { (175)

~a′ = ~a || r, ~α′ = ~α || ε (176)

r, ε, ~τi = computeSubCircuiti(~a
′, ~α′); (177)

Cj = Cj · u
τi,j
i ∈ G i = {1, ..., b} } (178)

R = grhεuφ ∈ G (179)

In this example, outputs r, ε from the computeSubCircuitKeysi function are appended to the
circuit inputs ~a, ~α and then used as inputs for the computeSubCircuiti+1 function, which will output
a new pair of r, ε. Since coefficients ~τi will get discarded from the memory after each iteration, we
have to recompute them after challenge x is available. Replace line 142 with the following lines:

for i = 1, ...,mb { (180)

~a′ = ~a || r, ~α′ = ~α || ε (181)

r, ε, ~τi = computeSubCircuiti(~a
′, ~α′); (182)

y′i =

b∑
j

τi,j · xj + βi ∈ Zp } (183)

The obvious caveat is that we can no longer use Pippenger acceleration to compute each Cj as we
did in protocol 3, and we also have to recompute coefficients for each sub-circuit to get ~y. Although
the cost of recomputing coefficients is relatively cheap, the cost of leaving out Pippenger acceleration
is expensive.

A meet-in-the-middle approach is to break the computation of ~C into t segments, and in each
segment we compute n

t coefficients and update ~C after each segment. By doing so, we can achieve
a consumption cost of O(nt). This strategy really helps when the circuit is big (e.g., when the circuit
size is greater than 220, arguably the only time memory cost would even matter).

21

5 Performance Comparison

We compare the performance of our protocol to some of the most popular transparent zero-knowledge
protocols for which open source codes are available. Our test runs are performed on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60 Ghz. Only one core is being utilized, and all tests are run on a
single CPU thread. Our test code is a non-interactive implementation (using Fiat-Shamir heuristic)
of Protocol 3 (not the memory-efficient option mentioned in section 4.5 because we want to leverage
the Pippenger acceleration to get the most optimal runtime result).

The baseline protocols we picked are Hyrax, Ligero, Aurora, and Spartan-NIZK. These protocols
were chosen because they are the most representative of popular zero-knowledge protocols and can
be verified with open source code. In particular, Aurora outperforms STARK in all key parameters
(prover runtime, verifier runtime, proof size), and the NIZK version of Spartan offers the most balanced
performance across all performance parameters. We also do not consider SNARKs even though most
of them can be made transparent by switching to a transparent polynomial commitment scheme, as
they are hardly efficient after the switch.

We didn’t consider transparent protocols that depends on circuit depth such as GKR-based proto-
cols simply because they can’t handle 220 sequential multiplications. We also don’t consider voice-based
protocols, as they are only optimized for prover work and generally require one round of interaction.
Other popular transparent schemes such as Bulletproofs are also not being considered because they
have a linear verifier runtime and therefore are not succinct.

Spartan++ and Lakonia are two more recent developments that we didn’t include in our benchmark
testing but are worth mentioning. The improvement of Spartan++ over SpartanNIZK is marginal, and
the performance of Lakonia is largely comparable to that of SpartanNIZK (the prover performance of
SpartanNIZK is approximately 3X more efficient, and the verifier performance is 1.5X more efficient
than that of Lakonia, while Lakonia is 4X more efficient than SpartanNIZK in proof size).

We set the number of inputs to our protocol to 30 integers, and each input is represented by 32
bits so that there are a total of 30 · 32 = 960 input bits to the circuit. The circuit we use performs
n sequential multiplications on l inputs, so we have mp = n, likely much closer to the worst-case
scenario of our protocol than the test cases of other protocols that we are comparing against. If we
run a shallow circuit where mp number is small, the benchmark result will likely be significantly
better. For example, if we have a circuit where mp = 1, then its prover runtime performance will be
comparable to the verifier runtime of our protocol.

We picked two NTT prime numbers for our benchmark testing, one for the interactive case and
another for the non-interactive case.

The NTT prime number we picked for the non-interactive case is q = 1945555039024054273, a
61-bit number that implies the soundness error will be at most 2−51 for a circuit with 220 sequential
multiplications wheremp = n, which is more than enough in real-life applications where one interaction
is allowed.

For the non-interactive case (through using the Fiat-Shamir heuristic), the prime number for our
integer field is 5241902353849032101525979137, a 93-bit prime that implies the soundness error will
be at most 2−83 for a deep circuit with 220 sequential multiplications where mp = n.

To maximize the advantage of the NTT algorithm in computing sequential multiplications, we
process each segment (1, ...,mb) of our circuit in binary tree format to represent layers we would see
in the real world. Such tuning will likely not be required in real-world applications since large circuits
are usually layered and multiplication gates should be somewhat balanced out across layers already.

For group operations, we use the curve25519-dalek implementation, and Pippenger acceleration is
applied to all sum-of-product group operations. For field operations, we use the Montgomery algorithm
to accelerate modular multiplications on the prime q. One challenge we had was building an efficient
128-bit multiplication function. Unlike the 64-bit (provided by the CPU) and 256-bit (heavily opti-
mized with assembly code for various crypto computations such as ECC) multiplications, we couldn’t
find any efficient multiplication function for 128-bit multiplication so we had to do it ourselves. We

22

did the best we could to optimize our 128-bit multiplication without using assembly code, so there
are still rooms for improvement if assembly code is used.

We set mb = b to get a more balanced result. Alternatively, one can set mb > b to get better
prover runtime performance in exchange for more expensive communication costs. This is because
doing so will 1) evade expensive NTT computations at high degrees and 2) better leverage Pippenger

acceleration in computing ~C, which will continuously improve group exponentiation operations before
peaking out at around mb = 214.

Circuit size 210 212 214 216 218 220

Hyrax 1 2.8 9 36 117 486
Ligero 0.1 0.4 1.6 4 17 69
Aurora 0.5 1.6 6.5 27 116 485
SpartanNIZK 0.02 0.05 0.16 0.6 1.7 6.2

This Work(61 bit) 0.04 0.06 0.14 0.33 0.94 2.7
This Work(93 bit) 0.08 0.15 0.3 0.8 2 5.3

Table 1. Prover performance comparison (seconds)

Table 1 shows that as the circuit size gets bigger, the prover performance of our protocol is becoming
increasingly more efficient than all of our baseline protocols. This is because the cost associated with
the number of inputs to the circuit is fixed (960 bits), and its impact relative to the cost of evaluating
the whole circuit gradually declines as the circuit size gets bigger (the same effect will also apply to
verifier runtime and proof size benchmarks below). To the best of our knowledge, our protocol offers
the best prover performance in the non-interactive setting in the literature. If that’s not enough, we
can always set mb > b to get an even better prover runtime benchmark.

From the chart, we can observe that only SpartanNIZK offers comparable (only slightly worse)
prover runtime performance in the non-interactive case to that of our protocol, but it is worth noting
that this is not a fair comparison in our favor since we’re comparing the evaluation of 220 constraints
in SpartanNIZK (provided by its test code) with the unlikely scenario of 220 sequential multiplications
in that of our protocol.

Circuit size 210 212 214 216 218 220

Hyrax 14 17 21 28 38 58
Ligero 546 1,076 2,100 5,788 10,527 19,828
Aurora 477 610 810 1,069 1,315 1,603
SpartanNIZK 9 12 15 21 30 48

This Work(61bit) 16 17 21 27 39 65
This Work(93bit) 20 22 26 33 48 77

Table 2. Proof size comparison (kilobytes)

Table 2 shows that the communication cost of our protocol dominates that of Ligero and Aurora,
while largely comparable to SpartanNIZK and Hyrax. For higher input number counts, see Table 4
for more detail.

Table 1 and 2 show that our protocol is largely comparable to the current state of the art in
terms of prover runtime and communication cost. Table 3 demonstrates that our protocol achieves a

23

Circuit size 210 212 214 216 218 220

Hyrax 206 253 331 594 1.6s 8.1s
Ligero 50 179 700 2s 7.5s 33s
Aurora 192 590 2s 7.2s 29.8s 118s
SpartanNIZK 7 11 17 36 103 387

This Work(61bit) 5 5 6 7 9 15
This Work(93bit) 5 5 6 8 15 37

Table 3. Verifier performance comparison (milliseconds)

significant improvement of one order of magnitude in verifier runtime over all the baseline protocols
we are comparing against. Like that of communication cost, the verifier runtime of our protocol will
grow when the number of inputs to the protocol grows.

Some may consider 30 integer inputs and 960 input bits to a circuit too small, so in table 4
we list performance benchmarks for different numbers of inputs (l) to a circuit with 220 sequential
multiplications.

Input bits (l · 32) Input Integers (l) Prover time(s) Verifier time(ms) Proof size(kb)

base base 2.7 11 52
320 10 2.7 13 58
640 20 2.7 14 62
960 30 2.7 15 65

1,280 40 2.7 15 69
1,600 50 2.8 17 73
1,920 60 2.8 19 77
2,240 70 2.8 21 81
2,560 80 2.8 22 85
2,880 90 2.8 23 88
3,200 100 2.8 24 93

Table 4. Performance comparison for different input numbers of a circuit with 220 sequential multiplications
s.t. mp = n using 61-bit prime

In table 4 and table 5 we can observe that increases in prover runtime and verifier runtime are
small as the input bit count approaches 3, 200. This is because the total input number is still small
compared to the size of the circuit (220 sequential multiplications).

Communication costs get impacted the most as we add more inputs to the circuit. Generally
speaking, more inputs usually imply shallower circuit depth (e.g. mp << n) and less complex business
logic; therefore, a larger input number would generally result in better prover and verifier runtime
performance at the expense of a more costly proof size (communication cost).

It is worth noticing that input transformation costs can be shared across multiple circuits if the
inputs are reused in other circuit verifications. Only the “base” case is the pure circuit cost that cannot
be shared between circuits, this may lead to further reductions in communication costs in the real
world.

6 Related Work

Recursive SNARK is a hot area of research of late, they are especially useful for Blockchain use cases
where the proof of the earlier block can be used as an input to the circuit of proving the later block.

24

Input bits (l · 32) Input Integers (l) Prover time(s) Verifier time(ms) Proof size(kb)

base base 5.3 33 59
320 10 5.3 35 68
640 20 5.3 36 72
960 30 5.3 37 77

1,280 40 5.3 39 82
1,600 50 5.4 40 88
1,920 60 5.4 41 94
2,240 70 5.4 42 98
2,560 80 5.4 44 104
2,880 90 5.4 45 109
3,200 100 5.4 46 114

Table 5. Performance comparison for different input numbers of a circuit with 220 sequential multiplications
s.t. mp = n using 93-bit prime

Early recursive SNARKs [37] [23] [10] [8] [22] built a prover for the whole SNARK circuit and then
reuse this prover repeatedly. More recent recursive SNARKs are built on accumulation schemes [13] [18]
[11] [17] [32] that are more scalable. One requirement for recursive SNARKs is that the protocol needs
to have succinct proof size and verification time. Although our protocol performs well in practice, it is
not fully succinct as the verifier runs a linear number of field operations (in computeCircuit function).
This linear operation part constitutes approximately 25% of the total verification cost when running
a circuit with 220 sequential multiplications.

Appendix

A. Proof for Theorem One

Proof. Perfect completeness follows from the fact that Protocol 1 is trivially complete. To prove per-
fect honest-verifier zero-knowledge, we define a simulator S to show that protocol 1 has perfect special
honest verifier zero-knowledge for relation 4. S uses simulator SS to simulate proof transcripts for
proof of knowledge (or proof of discrete logarithm, which we know for a fact that exists) protocols,
and simulator Sp to simulate proof transcripts for polynomial commitment evaluation function Poly-
CommitEval (also known to exist).

Simulator S generates random group elements for C,R, proof of knowledge transcript trε. After
receiving challenge x from the verifier, the simulator generates l random integers to represent linear
polynomials ~a′ and one random integer to represent y and sends them to the verifier.

The verifier follows the protocol to compute PKε, then simulator S calls simulator SS to interact
with the verifier and generate all necessary transcripts to prove it knows the value of ε. This makes
sense since we already know for a fact that schnorr and many other proof of knowledge protocols
have perfect special honest verifier zero-knowledge. Similarly, the simulator S calls simulator SP to
simulate the transcripts for proving y is the evaluated value at point x for polynomial commitment
C.

The simulator then simulates the transcripts to prove it knows αt and κ. The simulator simply
sends randomly generated PKκµ and random transcripts for trκµ and trαtµ, and calls simulator SS
to simulate transcripts needed to prove the knowledge of κ and αt.

Simulator S chooses all proof elements and challenges according to the randomness supplied by the
adversary from their respective domains or computes them directly as described in the protocol. Since
all elements in proof transcripts are either independently randomly distributed or their relationship is
fully defined by the verification equations, we can conclude that protocol 1 has perfect special honest
verifier zero-knowledge.

25

To prove computational witness extended emulation, we construct an extractor X , which uses
extractor Xs to extract witnesses from proof of knowledge transcripts and extractor Xp to extract
witnesses from polynomial commitments (we know for a fact that there are various types of extractors
Xs and Xp exist).

We validate the soundness of Protocol 1 in three steps. First, we show how to construct an extractor
X for Protocol 1 s.t. on input ~P ∈ Gl, R ∈ G, it either extracts witnesses r, ε, ~τ for relation 4, or
discovers a non-trivial discrete logarithm relation among g, h, ~u ∈ G. Next, we show that the extractor
X either extracts witnesses ~a, ~υ s.t. ~υ maps to ~α or discovers a non-trivial discrete logarithm relation
among g, h, u ∈ G. Finally, we validate the proof by checking if r, ε, ~τ can be computed from witnesses
~a, ~α.

In step one, extractor X interacts with the prover in the same way as any verifier would and
receives C, R from the prover. The extractor X then generates a challenge x1 and forwards it to the
prover. After receiving ~a′1, y1, trε, the extractor rewinds the prover and sends another challenge x2
to retrieve ~a′2, y2, trε. The extractor then follows the protocol and computes o and PKε, then calls
extractor Xs to extract ε from trε and PKε. With either x1 or x2, we can trivially retrieve r, ε from
r′ since r′ = r + x · ε, and validate if R = grhε. To validate if r, ε is correctly computed from the
circuit, extractor X calls extractor Xp to retrieve set ~τ from polynomial commitment C. We have now
retrieved witnesses r, ε, ~τ using the prover committed values C,R, trε. We also know o is computed
from ~a, ~α and evaluation point x since:

o = r + ε · x+

n∑
i=1

τi · xi+1 (184)

Which is true except for an acceptable probability (soundness error).

In the second step, we validate if witnesses of ~a ′ (~a, ~α) used in computing o maps to ~a, ~υ in ~P by
checking if we can extract these witnesses. With ~a′1 and ~a′2, we can trivially retrieve ~a, ~α since for all
i = {1, ..., l} we have:

a′1i − a
′
2i = αi(x1 − x2) (185)

We then extracts witnesses ~a, ~υ using ~a′ and input commitments ~P . The extractor first generates
k1 and then follows the protocol to get PKκµ1 , trκµ1 , trαtµ1 from the prover. The extractor then
calls extractor Xs to retrieve κ1 and αt1. Rewind and repeat this procedure for another l times to
retrieve κ2, ..., κl+1 and αt2, ..., αtl+1 using evaluation points k2, ..., kl+1. (The extractor also retrieves
blinding keys ~µ in the process, which is also validated with extractor Xs). Through interpolation
technique the extractor retrieves (αi−υi) and αi for i in {1, ..., l}. With this information, we can now

trivially compute ~υ and verify if they can be mapped ~P s.t. Pi = gaihυi unless we found a non-trivial
relationship among generators g, h.

In the final step, we must be able to re-compute witnesses r, ε, ~τ from ~a, ~α for equality 184 to
be true except for an acceptable probability or we found a non-trivial relationship among generators
g, h, ~u. We can therefore conclude Protocol 1 has computational witness extended emulation.

B. Proof for Theorem Two

Proof. Perfect completeness follows from the fact that protocol 2 is trivially complete. To prove perfect
honest-verifier zero-knowledge, we define a simulator S to show that protocol 2 has perfect special
honest verifier zero-knowledge for relation 4. S uses simulator SS to simulate proof transcripts for
proof of knowledge (or proof of discrete logarithm) protocols.

The simulator S generates random group elements to represent ~S, ~T , ~C,B,R. After receiving chal-
lenge x from the verifier, the simulator generates l random integers to represent ~e, l random integers
to represent ~a′, mb random integers to represent breakers ~y, and the proof of knowledge transcript
trε,φ. The simulator then sends them to the verifier.

26

The simulator follows the protocol to compute r′ and PKε,φ, then the simulator S calls the
simulator SS to interact with the verifier to randomly generate all the necessary transcripts to prove
it knows the value of ε and φ.

Next, simulator S simulates transcripts proving the mapping from ~a′ to ~P . After challenge k is
received from the verifier, the simulator randomly generates trυt and then follows the protocol to
compute PKυt . In the final step, the simulatorS calls the simulator SS to prove the knowledge of υt.
The simulator chooses all proof elements and challenges according to the randomness supplied by the
adversary from their respective domains or computes them directly as described in the protocol. Since
all elements in proof transcripts are either independently randomly distributed or their relationship
is fully defined by the verification equations, we can conclude that protocol 2 is perfect special honest
verifier zero-knowledge.

To prove computational witness extended emulation, we construct an extractor X that also use
extractor Xs to extract witnesses from proof of knowledge transcripts. Like we did for Protocol 1,
we validate the soundness of protocol 2 in three steps. First, we show how to construct an extractor
X for protocol 2 s.t. on input ~P ,R, it either extracts witnesses r, ε, ~τ for relation 4, or discovers a
non-trivial discrete logarithm relation among g, h, ~u ∈ G. Second, we show that the extractor X either
extracts witnesses ~a, ~υ s.t. ~υ maps to ~α or discovers a non-trivial discrete logarithm relation between
g, h, ~u ∈ G. Third, check if r, ε, ~τ can be computed from witnesses ~a, ~α.

In the first step, the extractor X interacts with the prover in protocol 2 and receives ~S, ~T , ~C,
B,R from the prover. The extractor X then generates at least b+ 3 challenges ~x and forwards them
to the prover. After receiving ~e1,~a

′
1, ~y1, the extractor rewinds and repeats this step b + 2 times to

retrieve ~e2, ..., ~eb+3, ~a′2, ...,~a
′
b+3, ~y2, ..., ~yb+3, and trε,φ. The extractor then follows the protocol and

calls extractor Xs to extract ε, φ from trε,φ and computes PKε,φ from public inputs (R, r′). With any
two challenges xi, xi+1, we can trivially retrieve r, ε since r′ = r+x · ε, which must match the witness
r, ε retrieved from R = grhεuφ and PKε using extractor Xs except with a negligible probability or
discover a non-trivial discrete log relation among generators g, h, u ∈ G. With challenges x1, ..., xb+3

and evaluation (breaker) sets ~y1, ..., ~yb+3, we apply Lagrange polynomial interpolation to retrieve

witnesses ~τ1, ..., ~τmb
and ~β, coefficients of commitments ~C,B. which must be computed from ~a, ~α s.t.

~α maps to blinding keys ~υ except for negligible probability.
In the second step, we validate if witnesses ~a, ~α of ~a ′ used in computing o map to witnesses ~a, ~υ

of ~P by checking if we can extract these witnesses and that ~α map to ~υ. The extractor first generates
k1 and then follows the protocol to get trυt1 , PKυt1 , then calls the extractor Xs to retrieve υt1 . The
extractor then rewinds and repeats this step l times to retrieve υt2, ..., υtl+1. Through interpolation,
the extractor retrieves witnesses υi for all i in {1, ..., l}. Dividing dividing Pi by hυi we will get:

Pi/h
υi = gai (186)

Using any two different challenges xi, xi+1 we mentioned earlier, the extractor gets ~a′1 and ~a′2 from the
prover, which we can trivially retrieve ~a, ~α for all i = {1, ..., l} as equality 185 shows. Each υi must
map to each αi and commitments Si, Ti for equality 67 to be true except for a negligible probability.
This also implies that each ai must be the exponent of g in equality 186 or we find a non-trivial
relationship among generators g, h.

Finally, we validate the proof by checking if r, ε, ~τ can be computed from witnesses ~a, ~α. This
must be true for equality 184 to be true except for an acceptable probability (soundness error) or
we find a non-trivial relationship among generators g, h, ~u. We can therefore conclude protocol 2 has
computational witness extended emulation.

C. Extended Schnorr Protocol

An example implementation of Protocol ProveEDL and VerifyEDL:

27

Input :(g1, g2, PK ∈ G;α, β ∈ Zp)
P ′s input : (g1, g2, PK ∈ G;α, β ∈ Zp)
V ′s input : (g1, g2, PK ∈ G)

P computes :

δ, ε
$←− Zp

R = (g1)δ · gε2 ∈ G
P → V : R

V computes :

c
$←− Zp

V → P : c

P computes :

s1 = α · c+ δ ∈ Zp
s2 = β · c+ ε ∈ Zp

P → V : s1, s2

V validates :

if PKc ·R ?
= gs11 · g

s2
2 ∈ G

return true

else return false

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without
a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–
2104. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017). https://doi.org/10.1145/3133956.3134104

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approxima-
tion problems. In: 33rd FOCS. pp. 14–23. IEEE Computer Society Press, Pittsburgh, PA, USA (Oct 24–27,
1992). https://doi.org/10.1109/SFCS.1992.267823

3. Arora, S., Safra, S.: Probabilistic checking of proofs; A new characterization of NP. In: 33rd
FOCS. pp. 2–13. IEEE Computer Society Press, Pittsburgh, PA, USA (Oct 24–27, 1992).
https://doi.org/10.1109/SFCS.1992.267824

4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic
time. In: 23rd ACM STOC. pp. 21–31. ACM Press, New Orleans, LA, USA (May 6–8, 1991).
https://doi.org/10.1145/103418.103428

5. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive proto-
cols. In: 31st FOCS. pp. 16–25. IEEE Computer Society Press, St. Louis, MO, USA (Oct 22–24, 1990).
https://doi.org/10.1109/FSCS.1990.89520

6. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge proofs for boolean
and arithmetic circuits with nested disjunctions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021,
Part IV. LNCS, vol. 12828, pp. 92–122. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021).
https://doi.org/10.1007/978-3-030-84259-84

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 701–732. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019). https://doi.org/10.1007/978-3-030-
26954-823

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves.
Cryptology ePrint Archive, Report 2014/595 (2014), https://eprint.iacr.org/2014/595

28

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1145/103418.103428
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://eprint.iacr.org/2014/595

9. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.: Ligero++: A new
optimized sublinear IOP. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 2025–
2038. ACM Press, Virtual Event, USA (Nov 9–13, 2020). https://doi.org/10.1145/3372297.3417893

10. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS
and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp.
111–120. ACM Press, Palo Alto, CA, USA (Jun 1–4, 2013). https://doi.org/10.1145/2488608.2488623

11. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying data from additive polynomial
commitments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 649–
680. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/978-3-
030-84242-023

12. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arith-
metic circuits in the discrete log setting. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016).
https://doi.org/10.1007/978-3-662-49896-512

13. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a trusted setup. Cryptology
ePrint Archive, Report 2019/1021 (2019), https://eprint.iacr.org/2019/1021

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM Press, Toronto, ON, Canada (Oct 15–19, 2018).
https://doi.org/10.1145/3243734.3243868

15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Efficient two-round
OT extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 291–308. ACM Press, London, UK (Nov 11–15, 2019).
https://doi.org/10.1145/3319535.3354255

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation
generators: Silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 489–518. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22,
2019). https://doi.org/10.1007/978-3-030-26954-816

17. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without succinct arguments. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 681–710. Springer, Heidelberg,
Germany, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/978-3-030-84242-024

18. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from accumulation schemes.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 1–18. Springer, Heidelberg,
Germany, Durham, NC, USA (Nov 16–19, 2020). https://doi.org/10.1007/978-3-030-64378-21

19. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 677–706. Springer, Heidelberg, Germany,
Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-3-030-45721-124

20. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: Plonk with linear-time prover and high-degree
custom gates. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 499–
530. Springer, Heidelberg, Germany, Lyon, France (Apr 23–27, 2023). https://doi.org/10.1007/978-3-031-
30617-417

21. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Preprocessing zkSNARKs
with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I.
LNCS, vol. 12105, pp. 738–768. Springer, Heidelberg, Germany, Zagreb, Croatia (May 10–14, 2020).
https://doi.org/10.1007/978-3-030-45721-126

22. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive proofs from hologra-
phy. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 769–793. Springer,
Heidelberg, Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-3-030-45721-127

23. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: Yao, A.C.C.
(ed.) ICS 2010. pp. 310–331. Tsinghua University Press, Tsinghua University, Beijing, China (Jan 5–7,
2010)

24. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic; or: Can zero-knowledge be for
free? In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 23–27, 1998). https://doi.org/10.1007/BFb0055745

25. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with applications to efficient
zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
191–219. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015). https://doi.org/10.1007/978-
3-662-46803-67

29

https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2019/1021
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7

26. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019), https://
eprint.iacr.org/2019/953

27. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz,
T., Savage, S. (eds.) USENIX Security 2016. pp. 1069–1083. USENIX Association, Austin, TX, USA
(Aug 10–12, 2016)

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended
abstract). In: 17th ACM STOC. pp. 291–304. ACM Press, Providence, RI, USA (May 6–8, 1985).
https://doi.org/10.1145/22145.22178

29. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference
strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III.
LNCS, vol. 10993, pp. 698–728. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23,
2018). https://doi.org/10.1007/978-3-319-96878-024

30. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 569–598. Springer, Heidelberg, Germany,
Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-3-030-45727-319

31. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryptosystems. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 943–954. ACM Press, Berlin, Germany (Nov 4–8, 2013).
https://doi.org/10.1145/2508859.2516691

32. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments from folding schemes.
In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 359–388. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–18, 2022). https://doi.org/10.1007/978-3-031-
15985-513

33. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKs from linear-
size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128. ACM Press, London, UK (Nov 11–15, 2019).
https://doi.org/10.1145/3319535.3339817

34. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE: Improved constructions
and implementation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 1055–
1072. ACM Press, London, UK (Nov 11–15, 2019). https://doi.org/10.1145/3319535.3363228

35. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704–737. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17–21, 2020). https://doi.org/10.1007/978-3-030-56877-125

36. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology ePrint Archive, Report
2020/1275 (2020), https://eprint.iacr.org/2020/1275

37. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg, Germany, San Francisco,
CA, USA (Mar 19–21, 2008). https://doi.org/10.1007/978-3-540-78524-81

38. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted
setup. Cryptology ePrint Archive, Report 2017/1132 (2017), https://eprint.iacr.org/2017/1132

39. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted
setup. In: 2018 IEEE Symposium on Security and Privacy. pp. 926–943. IEEE Computer Society Press,
San Francisco, CA, USA (May 21–23, 2018). https://doi.org/10.1109/SP.2018.00060

40. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In: 2021 IEEE Symposium on Security and Pri-
vacy. pp. 1074–1091. IEEE Computer Society Press, San Francisco, CA, USA (May 24–27, 2021).
https://doi.org/10.1109/SP40001.2021.00056

41. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2986–3001. ACM
Press, Virtual Event, Republic of Korea (Nov 15–19, 2021). https://doi.org/10.1145/3460120.3484556

42. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for correlated OT with small
communication. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 1607–1626. ACM
Press, Virtual Event, USA (Nov 9–13, 2020). https://doi.org/10.1145/3372297.3417276

43. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero
knowledge proof. In: 2020 IEEE Symposium on Security and Privacy. pp. 859–876. IEEE Computer Society
Press, San Francisco, CA, USA (May 18–21, 2020). https://doi.org/10.1109/SP40000.2020.00052

30

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1145/2508859.2516691
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://doi.org/10.1007/978-3-540-78524-8_1
https://eprint.iacr.org/2017/1132
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SP40000.2020.00052

	Input Transformation Based Zero-Knowledge Argument System for Arbitrary Circuits with Both High Performance Efficiency and Memory Efficiency

