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Abstract—Domain Generation Algorithms (DGAs) are used by
malware to generate pseudorandom domain names to establish
communication between infected bots and Command and Control
servers. While DGAs can be detected by machine learning (ML)
models with great accuracy, offering DGA detection as a service
raises privacy concerns when requiring network administrators
to disclose their DNS traffic to the service provider. We propose
the first end-to-end framework for privacy-preserving classifica-
tion as a service of domain names into DGA (malicious) or non-
DGA (benign) domains. We achieve this through a combination
of two privacy-enhancing technologies (PETs), namely secure
multi-party computation (MPC) and differential privacy (DP).
Through MPC, our framework enables an enterprise network
administrator to outsource the problem of classifying a DNS
domain as DGA or non-DGA to an external organization without
revealing any information about the domain name. Moreover, the
service provider’s ML model used for DGA detection is never
revealed to the network administrator. Furthermore, by using
DP, we also ensure that the classification result cannot be used
to learn information about individual entries of the training data.
Finally, we leverage the benefits of quantization of deep learning
models in the context of MPC to achieve efficient, secure DGA
detection. We demonstrate that we achieve a significant speed-
up resulting in a 15% reduction in detection runtime without
reducing accuracy.

Index Terms—domain generation algorithm (DGA), machine
learning, neural network, secure multi-party computation, dif-
ferential privacy

I. INTRODUCTION

Malicious software (malware) is the class of software that
infects computers to perform unauthorized actions in the
system or gain unauthorized access to information. Malware is
a highly significant source of illicit activities with increasing
impact [1], [2], [3], [4], and substantial losses have been
sustained in sectors such as the government, energy, and man-
ufacturing [5]. Examples of malware families include trojan
horses, viruses, ransomware, key loggers, worms, spyware,
and hidden cryptominers. Some common objectives of these
types of malware are information or identity theft, espionage,
and service disruption [1], [2].

Botnets, i.e. computer networks infected by malware, are
commonly controlled, operated, and updated through commu-
nicating with a Command and Control (C&C) server that is
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under the control of an adversary or botmaster [6]. When
the IP address of the C&C server is hard-coded directly into
the malware, intrusion detection systems (IDS) or firewalls
on Domain Name System (DNS) servers can blacklist the
detected malicious domain names and block the connection
to the C&C server, effectively rendering the malware useless.
Cyber-attackers have therefore adopted innovative techniques
for obfuscating and concealing the C&C’s identity. Among the
most prevalent approaches are Domain Generation Algorithms
(DGA) [7].

DGAs are algorithms that periodically generate pseudoran-
dom combinations of characters or words to form hundreds or
even thousands of new domain names. The key idea is that
DGAs can generate the same set of new domain names when
executed by two different machines, such as by a botmaster
and on an infected machine. The botmaster registers one gener-
ated domain name, while the infected machines systematically
query the domains from the generated list until one of them
is resolved. The domains from the list that have not been
registered by the botmaster will typically result in a non-
existent domain response when queried, and can be discarded
by the infected machine. Once an infected machine queries the
registered domain name, communication between the infected
bot and the C&C center is established, and malicious activities
as instructed by the C&C center can be performed by the bot.
The constant changes to the domain name of the C&C server
make it much more difficult for IDS and firewalls to detect
and contain the attacks. The challenge of mitigating attacks
that use DGA techniques lies in identifying malicious domain
names. The DNS server must be able to detect and block
malicious domain names while keeping a normal operation
for benign domain names. In short, the ability to identify
malicious domains can drastically decrease the harm caused
by malware.

Using machine learning (ML) models to create classifiers
that can identify and separate benign domains from DGA-
generated malware domains is viable (see [8] and references
therein). Such classifiers (models) can be deployed as au-
tomatic malware detection systems in enterprise networks.
The state-of-the-art models use deep learning techniques that
achieve high accuracy but require large amounts of training
data [9]. Due to this data demand, models are usually available
with third-party organizations (service providers) as a DGA
detection service where the DNS traffic of an enterprise is sent
to the service provider who then classifies the incoming traffic
into malicious or benign domains and sends the classification
result to the enterprise [10]. Such an outsourced DGA detec-
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Fig. 1. Flow diagram illustrating end-to-end privacy-preserving DGA detection as a service. The DNS domain name classifier of the service provider (Bob)
is trained with DP-SGD to provide differential privacy (DP) guarantees (output privacy). New domain names coming from Alice are classified with Bob’s
model by secure multi-party (MPC) protocols executed by MPC servers in the cloud over encrypted data (input privacy).

tion as a service model presents numerous privacy challenges.
The DNS traffic of an enterprise holds sensitive information
that can impact the privacy of all the enterprise network users,
which raises privacy concerns for the users in the above DGA
detection as a service paradigm. A potential solution to address
this concern is to make the ML model used for DGA detection
available to enterprise network administrators so that it can be
deployed locally. This is, again, problematic as the model is
proprietary to the service provider. Moreover, the data used for
training such models can be private, and releasing the model to
the enterprises renders the underlying training data vulnerable
to attacks [11], [12]. Simultaneously protecting the sensitive
data of the enterprise and the service provider is a signif-
icant challenge. Our paper proposes an end-to-end privacy-
preserving framework for outsourced DGA classification that
preserves enterprise users’ and service providers’ privacy.

Our Contributions. We propose a novel framework that
provides the benefits of automated and outsourced DGA
detection while preserving the privacy of enterprise network
users’ and DGA detection service providers’ data. In our
framework, neither the DNS traffic is released in the clear
to the DGA detection service providers nor is the model
made available to the enterprise network administrators (also,
no private data is revealed to any other party). Furthermore,
we incorporate techniques that prevent attackers from gaining
additional information about the training data or reconstructing
the model from the classification results sent to the enterprise
network administrators.

Fig. 1 illustrates our framework at a high level. Alice
represents the enterprise and holds the DNS domains and
traffic. Bob represents the service provider and has the weights
(parameters) of the trained machine learning model. Bob
can choose to train a multi-layer perceptron (MLP), a one-
dimensional convolutional network (1D-CNN), or a recurrent

neural network model (LSTM), and the chosen model shall
be trained with differential privacy (DP) guarantees [13].
Furthermore, Alice wants her DNS traffic classified by Bob.
We hereafter refer to the Alice’s DNS data and Bob’s model
weights as private data.

Our proposed framework employs techniques from secure
multi-party computation (MPC) [14] to preserve input privacy.
To this end, Alice and Bob secret share their private data with
a set of untrusted computational servers (parties). The MPC
servers perform computations on the secret shares to label
domain names as benign or malicious in a way such that:

(P1) No individual MPC server should obtain any information
about Alice’s domain names;

(P2) No individual MPC server should learn any information
about the weights of Bob’s machine learning model;

(P3) The result of the classification should be revealed only
to Alice;

(P4) The result of the classification should reveal no private
information about individual entries in Bob’s training
data set to Alice.

We note that (P4) provides output privacy and is achieved
as Bob has trained the model with DP guarantees. (P1)–(P3)
provide input privacy and are achieved through the novel MPC
protocols that we propose for inference with a neural network
model trained for DGA detection. MPC protocols usually lead
to high communication and computation costs, thus impacting
the inference runtime and overall performance. To improve
the performance of our proposed MPC protocols for secure
classification of DGA domains, we leverage the benefits of
quantization schemes available in TensorFlow (TFLite).1 We
propose that Bob uses post-training quantization techniques on

1Quantization works by reducing the precision of the numbers used to
represent a model’s parameters, which by default are 32-bit floating point
numbers.
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the DP-trained model2 prior to using the model for classifica-
tion.

The closest related work [15] to ours on privacy-preserving
detection of DGAs (see Section VI for more details) provides
only input privacy through MPC, leaving the inference phase
vulnerable to privacy attacks on the training data. We propose
the first end-to-end privacy-preserving framework for DGA
classification, ensuring input and output privacy. We summa-
rize our contributions below:
• We propose a novel framework for private classification as a

service of domains into DGA/non-DGA, with input privacy
(MPC) and output privacy (DP) guarantees.

• Our proposed framework is the first that considers differen-
tially private training of models for DGA classification.

• Our proposed solution works with classifiers based on multi-
layer perceptrons (MLP), 1D convolutional neural networks
(1D-CNN), and long short-term memory networks (LSTM).
Our MPC protocol for LSTM is novel, efficient, and the first
ever implemented in the MP-SPDZ MPC framework [16].

• We evaluate our framework on real datasets – DGArchive
and Alexa – for binary and multiclass domain name clas-
sification tasks. The binary classification problem distin-
guishes a domain into benign and malicious. The multiclass
classification problem also outputs a malicious domain’s
corresponding DGA family.

• We empirically analyze the privacy and utility tradeoffs of
our approach when using MLP, 1D-CNN, and LSTM. We
observe that providing output privacy degrades the accuracy
by a small amount in our experiments due to the noise
introduced to provide DP guarantees. The use of our MPC
protocols to provide input privacy on the other hand does
not degrade the utility of the classification model.

• We demonstrate the efficiency of our proposed solution in
terms of runtime with 2 or 3 computing parties. With the
usage of quantization, we observe significant improvements
in the performance of our MPC protocols, leading to reduced
communication rounds and inference time. Our experiments
show a 15% improvement in inference time without affect-
ing accuracy, demonstrating that we can achieve near real-
time secure detection of DGA domains.

II. PRELIMINARIES

A. Domain Generation Algorithms

A Domain Generation Algorithm (DGA) is an algorithm
that generates artificial malicious domain names. DGAs play
a vital role in malware that relies on network communication
between a botmaster and the bots (infected clients) [7], [9],
[10]. As illustrated in Fig. 2, the key idea is for a botmaster
and for malware on infected bots to independently run the
same DGA with the same seed (e.g. based on the date) to
generate the same list of artificial domains. The botmaster
subsequently registers one or more of these automatically
generated domains, while the malware on the bots attempts
to resolve each domain with the DNS.

In Fig. 2, for example, the botmaster and the malware on
the bots all use the DGA “xxhex” to generate a list of domain

2https://www.tensorflow.org/lite/performance/post training quantization

Fig. 2. Illustration of the use of a DGA. The botmaster and malware on an
infected client generate the same list of domain names. The botmaster registers
a domain from the list. The malware attempts to resolve each domain from
the list with the DNS until it finds the registered domain and a connection
between the infected client and the C&C is successfully established.

names (pseudorandom strings of alphanumerical characters):
“xxd80cd4e0.cn”, “xxe0d80cd4.kz”, etc. Out of these, the
botmaster registers “xxe0d80cd4.kz” as the domain related
with IP “189.6.29.252”. The malware on an infected client
will then attempt to resolve each domain with the DNS. In
the example in Fig. 2, for domain “xxd80cd4e0.cn”, the DNS
returns a Non-Existent Domain (NXDOMAIN or NXD) error,
which indicates the DNS has no listing for “xxd80cd4e0.cn”.
In contrast, for domain “xxe0d80cd4.kz”, the DNS returns
IP “189.6.29.252”. Finally, the malware connects with IP
“189.6.29.252”, where the command and control (C&C) server
is registered. Communication then proceeds between the bot-
master and the infected machine.

The ability of the malware to dynamically generate and
use new domain names prevents ordinary blacklisting from
permanently blocking access between the botmaster and in-
fected machines. Indeed, if a firewall or intrusion detection
service detects and subsequently blocks one of these domains,
the botmaster will use the DGA to create and register a
new domain that is not yet blocked, and the malware will
then use the same DGA as the botmaster to make a new
connection. In this paper we train and use neural networks
that can distinguish such generated domains from real, benign
domains. Such machine learning models are used to recognize
DGA domains in DNS traffic and mitigate harm [8].

B. Neural Networks

1) Multilayer Perceptron (MLP): A MLP is a machine
learning model representing a fully connected neural network
architecture. This model has an input layer, an output layer,
and one or more hidden layers. Moreover, the neurons of
adjacent layers are connected to each other.

Equation 1 describes an MLP neuron where the output, y, is
derived from an activation function, σ. The argument for σ is
formed by taking the dot product of the neuron’s input vector
x with the weight vector w and then adding the bias scalar b.
In subsequent sections of this paper, the symbols x and y may
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be used in different contexts. We will explicitly define their
meanings each time they are referenced to prevent ambiguity.

y ← σ(x · w + b) (1)

2) Long Short-Term Memory networks (LSTM): Under-
standing and abstract reasoning about a given piece of in-
formation depends on previous experience. For some tasks,
such as reading text, humans can extract knowledge based on
the context of previous and recent parts of the text. Standard
neural networks do not have memory structures analogous to
the human brain. This shortcoming is addressed in recurrent
neural networks (RNNs), which closely resemble these mem-
ory processes. Therefore, with an RNN, it is possible to train
and learn based on a previous element of an input sequence.

With RNNs, it is also possible to model problems where
the input data is time-dependent or sequential, i.e., where the
next task depends on the previous one. Examples of this can
be found in activities such as temperature/weather forecasting,
historical air quality trends, vehicle traffic congestion patterns,
etc. Furthermore, in natural language processing, the meaning
of texts and language structures that humans produce depends
on previous texts’ content.

Long Short-Term Memory (LSTM) networks are a kind of
RNNs that are designed to resolve problems with vanishing
and exploding gradients that occur with long dependencies in
the traditional RNN models [17]. LSTMs are well suited for
DGA detection [18], [19], [20], [21], [22], [23], [24], [25],
[26], hence we wish to study the effectiveness of LSTMs for
the DGA detection problem when privacy is considered.

At their core, LSTM networks revolve around the concept of
a cell state, a form of internal memory. LSTM cells have gates
that regulate the flow of information into, within, and out of
the cell. These gates can add or remove information from the
cell state, acting as modification points in the memory system
of the network.

We now describe such a cell in more detail and how it is
used for inference, i.e. for computing outputs with a trained
LSTM. We use the notation and closely follow the explanation
presented in [27]. For our specific implementation, the input to
the network is a sequence of characters x1, . . . , xt, . . . , xn. We
refer to Section II-B4 for a description of how each character
is converted into a numeric representation. The inputs to the
t-th cell consist of the output of the previous cell ht−1, the
t-th character xt, and the state of the previous cell ct−1. The
cell outputs ht and its state ct. We now describe how these
quantities are computed.

We first define how much of the previous state ct−1 we
will “forget”, denoted by the parameter ft in equation 2. ft
is computed based on the dot product between the weights
wf and the concatenation of the output of the previous cell
ht−1 and the cell’s input xt and adding the result to the bias
bf . Weights and biases are learned during training. This result
is the input to the sigmoid function σ that returns values
between 0 and 1. We will see that ft equal to one means that
we keep all of the previous state, while an ft equal to zero
means we forget everything about it when computing the state
of the current cell.

ft ← σ(wf · [ht−1, xt] + bf ) (2)

The state of the t-th cell is computed according to equation
5. It is a weighted average of the previous cell state ct−1,
and a state that depends on the current input xt, here denoted
c
′

t. The weights are ft and it, a coefficient that tells us how
much of the “current” state (c

′

t) we want to keep. it and c
′

t are
computed according to equations 3 and 4. wi, wc are weights
and bi, bc are biases computed during training. tanh is the
hyperbolic tangent.

it ← σ(wi · [ht−1, xt] + bi]) (3)

c
′

t ← tanh(wc · [ht−1, xt] + bc]) (4)

ct ← ft · ct−1 · it · c
′

t (5)

Finally, the output of the t-th cell ht is computed according
to equations 6 and 7. wo and bo are weights and biases,
respectively.

ot ← σ(wo · [ht−1, xt] + bo]) (6)

ht ← ot · tanh(ct) (7)

ht, ct, and xt+1 are then fed into the next cell and the
computations happen similarly for the t+ 1-th cell.

3) Convolutional Neural Network (1D-CNN): A Convolu-
tional Neural Network (CNN) usually comprises convolution
blocks followed by a fully connected network. A standard
convolution block consists of a convolution layer, followed by
an activation layer, and then by a pooling layer. The standard
convolution layer (2D-CNN) takes a 3D input of height h,
width w, and depth c and consists of f number of 3D learnable
kernels each of size k × l × c. Each kernel moves along
two directions of the input to generate a 3D output. In a
1-dimensional CNN layer (1D-CNN), the input is instead a
matrix. The kernel moves along only one direction [28].

Let x be the input of a 1-dimensional convolution layer
(1D-CNN). Let y be the output of the 1D-CNN layer, k is
the total number of kernels, where the length of y is equal to
l − k + 1. The kernel applies a sliding window operation on
the input x.

The output of a 1D-CNN can be represented by equation 8,
where y[i] represents the output in the position i. The operation
involving x and w is a dot product; b is the bias; w is the
weight of the 1D-CNN trained and represents kernels; w[j] is
a kernel in the position j.

y[i]←
k−1∑
j=0

(x[i+ j] · w[j]) + b, (8)

4) Embedding layer: Embedding layers make representing
a text in a vector of finite precision real numbers possible. In
this work, each letter of a domain name is represented by a
vector of finite precision real numbers. Instead of manually
specifying the values for the embedding, they are trainable
parameters.

We provide the first protocol and implementation for an
embedding layer over MPC and implement it in the MP-SPDZ
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framework. The main idea behind our solution explained in
detail in Section IV is to represent Alice’s input to the protocol
as a matrix x where each row of x is a one hot encoding of a
character of the domain name to be classified. So, each row of
x consists of a binary vector with Hamming weight equal to 1.
A dot product is made between x and the private embedding
matrix w, resulting in y, and the result of the embedding layer
is the input to 1D-CNN, LSTM, and MLP models.

Our process to get the output of the embedding layer can
be described by Equation 9:

y ← x · w, (9)

where the matrix x of dimension l × c represents one-hot-
encoded inputs, the output of the embedding layer is the matrix
y of dimension l × d representing an embedding of the input
domain name to be classified, and matrix w of dimension c×d
represents an embedding matrix, where l is the length of input
domain, c is the length of the character set, and d is the size
of the dimensional vector space.

Drichel et al. [15] proposed a solution for MPC-based pri-
vate inference of DGA models. Their approach utilized several
publicly available MPC frameworks for implementation. At
the time, no protocol or implementation for private embedding
existed, so the authors assumed that the embedding layer
was publicly accessible and implemented in the clear by the
party responsible for classifying the domain. However, this
assumption could lead to information leakage about the model,
especially if the embedding was trained on private data.

C. Privacy-Enhancing Technologies

1) Differential Privacy (DP): Informally, a differentially
private (DP) algorithm produces a given output with approx-
imately the same probability, regardless of whether a single
entry is present or absent in a dataset used to compute the
algorithm output. This means that the output is negligibly
affected by the participation of a single user, thereby offering
privacy through plausible deniability.

We recall the definition of differential privacy:
Definition 1: (ε, δ) - Differential Privacy [13]: A randomized

algorithmM with domain D is (ε, δ) - differentially private if
for all S ⊆ Range(M) and for all x, y ∈ D such that ||x−y||1
≤ 1:

Pr[M(x) ∈ S] ≤ exp(ε)Pr[M(y) ∈ S] + δ (10)

Definition 1 implies that queries on datasets x and y differ-
ing on a single entry (||x−y||1 ≤ 1) should produce different
results with probability bounded by a quantity depending
on the parameters ε and δ. The constant ε is the privacy
budget. The smaller the value of ε, the more privacy the
randomized algorithm M offers. The constant δ captures a
small probability of violating the privacy guarantee. When δ
equals zero, we say we have pure DP. When δ > 0, we say
we have approximate DP. δ is usually heuristically chosen to
be smaller or equal to the reciprocal of the dataset size.

Deep learning models often leak information about their
training dataset. Moreover, that leak is possible even when

only black-box access is available, i.e. when an adversary only
observes the output of the deep neural network. Differential
privacy is used as a way to prevent such leaks. One can
train deep learning models with DP guarantees using DP-SGD
(differentially private stochastic gradient descent) [29].

The two essential steps in DP-SGD compared to traditional
SGD are gradient clipping and noise addition. Gradient clip-
ping is a technique that limits the magnitude of gradients
to a predetermined threshold. Gradient clipping means the
model’s gradients computed for each data point are scaled
down if their magnitude exceeds a certain threshold. This
step prevents individual data points from disproportionately
impacting the model’s learning process, thus reducing the
model’s sensitivity to any single data point. Once the gradients
have been clipped, noise is added to provide privacy. The
noise is typically sampled from a Gaussian distribution, with
the standard deviation or scale parameter proportional to the
chosen privacy budget ε. Smaller values of ε provide higher
privacy but require more significant amounts of noise to be
added to the model, which reduces the model’s accuracy.

To the best of our knowledge, we are the first to study the
trade-off between privacy and the utility of DP-SGD in the
context of DGA classification.

2) Secure Multi-Party Computation: Secure Multi-Party
Computation (MPC) protocols allow mutually distrustful par-
ties to engage in a computation so that, at the end of the
protocol, all the honest parties have received the correct output
of the computation. No collusion of dishonest parties can learn
any information other than what can be inferred from the
inputs and outputs of the dishonest parties in the computation.
We use a variant of the traditional MPC scenario, where
computing servers offer MPC as a service, and the inputs can
come from outside parties. These parties do not engage in the
MPC protocol. We refer the reader to one of the many available
introductions to MPC in the literature [30], [31], [32], [33].

The main idea behind all available MPC protocols is to
decompose the function to be privately computed into a
circuit consisting of addition and multiplication gates. Then,
we execute the underlying MPC protocol for evaluating each
addition and multiplication gate sequentially till the result is
computed and revealed to a designated receiver. Decomposing
the functions to be computed into circuits consisting of ad-
dition and multiplication gates is a non-trivial task. Efficient
representations can dramatically increase the performance of
an MPC computation of a given function.

We implement our solutions using MP-SPDZ [16]. MP-
SPDZ is a publicly available framework for implementing
multiple MPC protocols. MP-SPDZ has a high-level interface
in Python for presenting a circuit to be computed over an MPC
protocol. MP-SPDZ also has several circuit representations of
machine learning algorithms, including multilayer perceptrons
and 2D convolutional neural networks. However, no LSTM
implementation in MP-SPDZ is available in the literature.
Embedding layers are also not available in MP-SPDZ. This
work presents novel circuit representations for computing the
inference of LSTM networks and embedding layers.

We work with MPC protocols based on secret sharing.
Secret sharing is the computational process of splitting an
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input s into multiple secret shares xi and giving these shares
to shareholders. Only authorized families of the set of share-
holders can recover the secret. Notably, no shareholder can
obtain any information on the secret s. Secret sharing-based
MPC protocols work by having the inputs to the computation
secret shared among all the computing servers. Computations
happen on shares rather than on the inputs themselves [32].

D. Quantization

The precision used to represent a machine learning (ML)
model’s parameters impacts the accuracy, runtime, and size
of the model. The performance impact of such precision is
magnified when ML models are run on top of secure multi-
party protocols. So, it is desirable to quantize (reduce the
precision) used in ML models to make them lightweight. We
aggressively use quantization after training to optimize our
models [34]. By reducing the precision of the weights of our
models to 16 bits, we reduce runtimes by 15%, with a minimal
impact on accuracy.

III. PROPOSED FRAMEWORK, PRIVACY REQUIREMENTS,
AND THREAT MODEL

Overview of the Proposed Framework. We recall that Alice
holds a DNS domain to be classified, and Bob holds a machine
learning model that classifies DNS domains into malicious
or benign. Our framework consists of set of m untrusted
computing servers (MPC servers) S = {S1, S2, . . . , Sm}.
While our proposed MPC protocols are general and work
for any number of servers, we demonstrate our proposed
protocols for m = 2 and m = 3. We assume pairwise
authenticated and private communication channels between
the servers. The communication between Alice, Bob, and any
server Si ∈ S, is also authenticated and private. Our proposed
secure classification works as follows:
• Initially, Alice and Bob convert their real-valued private in-

puts (domains in the case of Alice and the model parameters
in the case of Bob) into fixed-point representations. They
then secret-share their respective fixed-point inputs with the
computing servers.

• The computing servers then engage in MPC-based commu-
nications and computations to execute the MPC protocols
to classify Alice’s domain names using Bob’s model.

• The inference result is secret shared among the computing
servers at the end of the MPC protocols. The computing
servers send their shares to Alice. Finally, Alice aggregates
the secret shares and retrieves the classification result.

Threat Model. We build our MPC protocols on existing
MPC primitives [16]. Our proposed protocols can be adapted
to any threat model by replacing the underlying primitives
available in the literature for the given threat model. We will
demonstrate the working of our protocols for the “honest-
but-curious” threat model. In that model, the MPC servers
follow the protocol instructions but try to obtain as much
knowledge as possible about the secret data. We consider
threat models (1) with two and three computing parties and (2)
that can withstand one corruption, i.e., the privacy guarantees
are maintained even when one of the MPC servers is corrupted.

Privacy Requirements. Bob should learn nothing about Al-
ice’s input. Alice should only learn the result of the classifica-
tion protected by (ε, δ)-differential privacy and learn nothing
else about Bob’s model and training data. The MPC servers
learn nothing about Alice’s and Bob’s private inputs.

IV. METHODOLOGY AND PROPOSED PROTOCOLS

A. Training DGA Classifiers using Differential Privacy

In our proposed solution, Alice is provided with the clas-
sification output of her domains. In the binary case it is
DGA/non-DGA. In the multiclass case, the output is non-DGA
or one specific DGA family. This output should preserve the
privacy of the individual entries of Bob’s training data set.
We employ the well-known DP-SGD (differentially private
stochastic gradient descent) technique [29] to mitigate privacy
concerns and provide DP guarantees for Bob’s training data
set according to Definition 1. We specifically train MLP, 1D-
CNN, and LSTM models with DP guarantees.

Post-training quantization is an effective technique to im-
prove the inference performance of a trained model. Post-
training quantization transforms the model’s weights and
activations from floating-point precision (32-bit) to lower-
precision representations. We propose to quantize the trained
model parameters to float16,3 which causes minimal loss in
accuracy and allows for wider deployment of machine learning
models with various hardware specifications (e.g. GPU, CPU
with float32 or float16 instruction sets). The DP guarantees
follow for the post-training quantized model due to the post-
processing property of DP. We note that our framework can
be adapted to other quantization schemes as well [35], [36],
[37]. By combining DP and quantization techniques, we can
preserve privacy for Bob’s training data set and enable faster
inference.

B. Secure Inference of DGA domains

During the inference stage, Alice has an instance (raw text
input, i.e., the domain name string) that needs to be classified
as a DGA or non-DGA domain. Alice begins by adjusting the
length of the given input text to a publicly known value l by
truncating the input text or padding the input text with zeros.
The fixed length text is then one hot encoded based on ASCII
characters resulting in a matrix x of dimension l×128.4 Alice
then secret shares matrix x and Bob secret shares the model
parameters with the computing servers. The architecture of
Bob’s model is publicly known.

The computing servers execute MPC protocols that output
the secret shares of the classification result to Alice. Our
proposed framework is equipped to provide inference using
models that use MLP, 1D-CNN, and LSTM architectures. All
of these models have an embedding layer as the first layer. We
next describe the proposed MPC protocols for these models
that perform secure inference.

3https://www.tensorflow.org/lite/performance/post training quantization#
float16 quantization

4ASCII is a set of 128 characters.
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Basic Building Blocks. We build our proposed protocols upon
a few building blocks that are already available in the MP-
SPDZ framework [16]. We use MPC protocols πSIGMOID for
the sigmoid function, πSOFTMAX for the softmax function,
πMUL for secure dot product, πTANH for the hyperbolic tangent,
πRELU for relu function, and πDENSE for dense layer. See [16]
for a detailed description of these primitives.

Privacy-Preserving Embeddings. The embedding layer trans-
forms the high-level input matrix x from Alice to provide a
dense vector representation of the characters in the input text
using Bob’s learned embedding weights w. Many previous
works for MPC-based privacy-preserving text classification,
including DGA detection, require Alice to embed the input
text, which in turn requires the trained embeddings to be
made public and may leak information regarding the training
data unless trained with DP guarantees [38], [15]. Moreover,
these trained embeddings may be proprietary. To mitigate
the above scenarios, we propose a novel MPC protocol for
the embedding layer to compute the embeddings of private
input text in an oblivious manner. The vectors resulting from
the embedding layer of our classification models represent
the lexical information of the characters in the given DGA
domain (URL) in the ASCII character set. The idea behind
πEMBEDDING is simple: we extract the vector representation of
each character in the input text (in our case, it is a domain or
URL) from the trained embeddings with DP guarantees. One
of the simplest ways to extract such embeddings (Protocol
1) is to represent the input text as a one hot encoded matrix
x of dimension l × 128 and multiply it with the weights of
trained embeddings w of dimension 128 × 128. The product
is a matrix y of dimension l×128 representing a set of vector
representations of each character in the input text. We note
that feature extraction done this way requires only multiplica-
tion operations for which state-of-the-art MPC primitives are
available and results in an optimized performance of the MPC
protocol for extracting embeddings of the input. Moreover,
our protocol is general enough to work with character sets of
arbitrary cardinality c.

Protocol 1: πEMBEDDING for secure inference of em-
bedding layer

Input : Secret shared matrices x of dimension (l × c)
representing one-hot-encoded inputs and w of
dimension (c× d) representing embedding weights,
where l is the length of the input text in characters,
c is the cardinality of the character set, and d is the
dimensionality of the embedding space.

Output: A secret shared embedding matrix y of dimension
(l × d) of the input domain to be classified.

1 y ← πMUL(x,w)
2 return y

Privacy-Preserving MLP
In our work, we leverage an existing implementation of an

MPC protocol for secure inference with an MLP, available
within the MP-SPDZ framework [16]. MLPs will be used as
a baseline method in our framework.

The input will be secret shared by Alice, while Bob secret-

shares the model’s weights. Bob’s model in the architecture
with MLP composes the weights of the embedding and dense
layers.
Privacy-Preserving 1-D Convolution

We now present our solution based on 1D-CNN. Our
architecture has an input layer with the protocol πEMBEDDING,
a layer with the protocol π1D−CNN, and a layer with protocol
πDENSE representing the dense layer in MPC. The input will
be secret shared by Alice, while Bob secret-shares the model’s
weights.

We leverage an existing proposal for a 1D-CNN [38] but
provide our own implementation. The protocol π1D−CNN for
secure inference with 1D-CNN is built upon (a) the existing
MPC protocols available in the literature for πRELU, and πMUL

(b) our proposed MPC protocols for embedding πEMBEDDING

and 1-D convolution π1D−CNN. Protocol 2 for secure infer-
ence with a 1-D convolutional layer takes as input (1) the
secret shared embeddings obtained as output from Protocol
πEMBEDDING and (2) the secret shared model parameters,
i.e. weights of the kernels (k in total) each of size k for the
1-D convolution layer from Bob.

Protocol 2: π1D−CNN for secure inference with 1-D
Convolution.

Input : The secret shared matrices x (obtained as output of
the private embedding computed by Protocol
πEMBEDDING), b, and w represent input, bias, and
weight. The constants k, l represents the number of
kernels, and rows of x

Output: A secret shared y of dimension l − k + 1
1 for i← 0 to l − k + 1 do
2 y[i]← b
3 for j ← 0 to k − 1 do
4 y[i]← y[i] + πMUL(x[i+ j], w[j])
5 end
6 end
7 return πRELU(y)

Privacy-Preserving LSTM Protocol
We now present our solution based on LSTM. Our architec-

ture has an input layer with the protocol πEMBEDDING, a layer
with the protocol πLSTM, and a layer with protocol πDENSE

representing the dense layer in MPC. The input will be secret
shared by Alice, while Bob secret-shares the model’s weights.
Protocol 3 describes the LSTM layer. The input for the LSTM
layer is the secret shared output of the embedding layer, while
Bob secret shares the kernel weights (wf , wi, wo, wc) and the
biases (bf , bi, bo, bc). We refer the reader to Section II-B2 for
an explanation of each one of these terms. The operations
involve MPC protocols πSIGMOID for sigmoid, πMUL for secure
multiplications and πTANH for the hyperbolic tangent.

V. RESULTS

A. Dataset

The DGA dataset was obtained from DGArchive5. The
dataset from DGArchive was the set containing all collected
DGA examples up to 2019. We remove DGA families with

5https://dgarchive.caad.fkie.fraunhofer.de/welcome/
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Protocol 3: πLSTM for secure LSTM
Input : Secret shared vector x (obtained as output of the

private embedding computed by Protocol
πEMBEDDING), and secret shared values of the
weights (wf , wi, wo, wc), and biases (bf , bi, bo,
bc). The input length is publicly known. Let [a, b]
denote the concatenation of a and b

1 . Output: A secret shared vector y containing the output
after the LSTM layer of the inference process.

2 h0 ← 0
3 c0 ← 0
4 for t← 1 to n do
5 ft ← πSIGMOID(πMUL(wf , [ht−1, x[t]]) + bf )
6 it ← πSIGMOID(πMUL(wi, [ht−1, x[t]]) + bi)

7 c
′
t ← πTANH(πMUL(wc, [ht−1, x[t]]) + bc))

8 ct ← πMUL(ft, πMUL(ct−1, πMUL(it, c
′
t)))

9 ot ← πSIGMOID(πMUL(wo, [ht−1, x[t]]) + bo)
10 ht ← πMUL(ot, πTANH(ct))
11 y[t]← ht

12 end
13 return y

low representation from the dataset (less than 30k samples).
We end up with 1,000,000 examples from the DGArchive
dataset for use as positive matches from the following fam-
ilies: bamital, banjori, bedep, beebone, blackhole, bobax,
conficker, corebot, cryptolocker, darkshell, dircrypt, dns-
benchmark, dnschanger, downloader, dyre, ekforward, emotet,
feodo, fobber, gameover, gameover p2p.csv, gozi, gspy, hes-
perbot, locky, madmax, matsnu, modpack, murofet, muro-
fetweekly, necurs, nymaim, oderoor, padcrypt, proslikefan,
pushdo, pushdotid, pykspa, pykspa2, pykspa2s, qadars, qakbot,
ramdo, ramnit, ranbyus, randomloader, redyms, rovnix, shifu,
simda, sisron, suppobox, sutra, symmi, szribi, tempedreve,
tinba, torpig, tsifiri, urlzone, vawtrak, virut, volatilecedar,
xxhex.

For negative DGA matches, we have acquired approxi-
mately 1,000,000 domains from the last known version of the
dataset “Alexa top 1 million domains”6, which are used for
training the model to recognize legitimate domains.

All data is shuffled and split into 80% for training and 20%
for testing for binary and multiclass model architectures.

We convert alphanumeric characters representing domain
names to lowercase for use in the model. Then, we convert
each character to its corresponding ASCII code, which lies
between the values of 0 to 127. Finally, the maximum length
of a domain ASCII string is set to 64 characters. For domains
whose size is less than 64, we prepend zero padding length to
64.

In this section, we evaluate our experimental results. First,
we compare the 1D-CNN, LSTM, and MLP models using
secure MPC when applied to binary and multiclass DGA
detection with and without differential privacy. We also ex-
perimented with quantizing the models after the DP training
(in which case, after training with DP, we applied quantization
to reduce the weights to 16 bits and thus achieve performance
gains in the inference phase with MPC).

6https://en.wikipedia.org/wiki/Alexa Internet

B. Model Architectures

All trained models have an embedding Layer as the first
layer, where the input is a vector of 64 numerical elements
resulting from transforming each character into ASCII code.
The result of embedding is a 128 by 128 dimension array.

The last layer in all binary models comprises one dense
layer with one neuron, activation function sigmoid, loss func-
tion binary cross-entropy, and optimizer Adam.

The last layer in all multiclass models comprises one dense
layer with 65 neurons representing all families, activation func-
tion softmax, loss function sparse categorical cross-entropy,
and optimizer Adam with a learning rate of 0.001, batch size
of 64, and 30 epochs.

We now provide further details about the other layers for
each one of the architectures we used.
MLP: The binary and multiclass MLP models have a flatten
layer to transform the data resulting from the embedding layer
into one dimension data followed by a dense layer with 100
neurons, ReLU activation function and dropout with rate 0.1.
The MLP binary model has 835,785 parameters, while the
MLP multiclass model has 842,249 parameters.
1D-CNN: The binary and multiclass 1D-CNN models have:
(1) a 1D-CNN with filters=32, kernels=2, ReLU activation
function and dropout with rate 0.1; (2) followed by a flatten
layer to transform the output of the previous layer into one-
dimensional data; (3) a dense Layer with 100 neurons, ReLU
activation function, dropout with rate 0.1. The 1D-CNN binary
model has 226,409 parameters, while the 1D-CNN multiclass
model has 232,671 parameters.
LSTM: The binary and multiclass LSTM models have: (1)
a LSTM with 32 units with ReLU activation function and
dropout with rate 0.1; (2) followed by a flatten layer to trans-
form the output of the previous layer into one-dimensional
data; (3) a dense layer with 100 neurons, ReLU activation
function and dropout with rate 0.1. The LSTM binary model
has 48,713 parameters, while the LSTM multiclass model has
55,177.

C. Experiments

Utility-Privacy Trade-Off: Table I provides a comprehensive
analysis of the trade-off between utility (as measured by
the accuracy of the model) and privacy (as represented by
differential privacy within a specific privacy budget, denoted
as ε) for all models. The privacy budget ε is a quantifiable
measure of privacy. As a rule of thumb, an ε value less than one
indicates high privacy, a value between one and two suggests
moderate privacy, while an ε exceeding two is considered
low privacy. ε equal to infinity represents a model without
any differential privacy guarantee. As expected, the model’s
accuracy decreases as the privacy budget reduces, thus entering
into a higher privacy regime. The decrease is more severe
for the multiclass case. This observation captures the trade-off
between utility and privacy in applying differential privacy.
Table I also presents the accuracy levels of each model when
quantization is applied. Note that the quantization step did not
change the accuracy even though that quantized models are
significantly faster than their non-quantized counterparts.
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Model Non-Quantized, ε = Quantized, ε =
0.1 2 5 ∞ 0.1 2 5 ∞

1D-CNN binary 90% 93% 93% 99% 90% 93% 93% 99%
1D-CNN multiclass 25% 47% 53% 88% 25% 47% 53% 88%
LSTM binary 88% 91% 92% 97% 88% 91% 92% 97%
LSTM multiclass 23% 46% 51% 88% 23% 46% 51% 88%
MLP binary 90% 93% 93% 96% 90% 93% 93% 96%
MLP multiclass 24% 46% 51% 87% 24% 46% 51% 87%

TABLE I
RESULTS ON THE DGA INFERENCE ACCURACY FOR DIFFERENT NOISE

LEVELS WITH AND WITHOUT QUANTIZATION

Runtimes. We implemented the MPC-based inference both in
the scenario of two computing servers (2PC) as well as three
computing servers (3PC) connected over a Gigabit Ethernet
local area network. In the inference experiments, we used three
Azure instances with 32 Cores of Intel(R) Xeon(R) Platinum
8272CL CPU @ 2.60GHz and 64GB of RAM. We used the
following underlying MPC protocols available on MP-SPDZ
[16] in our experiments: semi2k for 2PC and replicated secret
sharing for 3PC. The runtimes are available in Table II and
include communication and computation delays. The MLP
model had the best runtimes, but 1D-CNN had the better
accuracy, especially for higher values of ε (see Table I).

We note that runtimes are unaffected if the model is pro-
tected by differential privacy. Note also that runtimes strongly
depend on the corruption threshold: the three party protocols
(i.e., honest majority) are faster than the two-party protocols,
in which there is no honest majority.

Model Setting Inference
Time (sec)

Rounds Data Sent
(MB)

MLP Binary 3PC 0.0778787 2773 17.217
1D-CNN Binary 3PC 0.319441 8551 21.6062
LSTM Binary 3PC 10.4153 195131 1485.53

MLP Multiclass 3PC 0.133239 3615 24.8676
1D-CNN Multiclass 3PC 0.359278 9382 29.0157
LSTM Multiclass 3PC 10.5449 197123 1489.92

MLP Binary 2PC 14.2051 42923 3951.16
1D-CNN Binary 2PC 14.2954 54151 3983.37
LSTM Binary 2PC 103.472 441023 26752.6

MLP Multiclass 2PC 14.577 44599 4054.73
1D-CNN Multiclass 2PC 14.6503 55831 4089.34
LSTM Multiclass 2PC 104.077 443895 26820.1

TABLE II
INFERENCE USING MP-SPDZ PROTOCOL

We also performed the same experiments regarding MPC-
based inference but using the models that we quantized after
the DP training. The runtimes are presented in Table III.
Note that in the 3PC setting (using replicated secret sharing)
the quantization step reduced inference runtime by 15%, as
opposed to a 2% reduction in runtime for the 2PC setting
(using semi2k).

D. Security and Privacy

The security of our solution follows from the security
of the underlying MPC protocols (3-party replicated and 2-
party semi2k in MP-SPDZ [16]) and from the fact that we
only perform operations over secret shares. Therefore, the
computing servers responsible for the MPC operations never

Model Setting Inference
Time (sec)

Rounds Data Sent
(MB)

MLP Binary 3PC 0.0593449 2469 12.3028
1D-CNN Binary 3PC 0.223521 7371 12.3982
LSTM Binary 3PC 5.9959 137044 545.121

MLP Multiclass 3PC 0.076885 3038 15.0529
1D-CNN Multiclass 3PC 0.260958 7940 15.1483
LSTM Multiclass 3PC 6.15767 138573 546.706

MLP Binary 2PC 13.813 42723 3845.97
1D-CNN Binary 2PC 14.1394 51795 3937.96
LSTM Binary 2PC 60.3208 310659 15352.2

MLP Multiclass 2PC 13.9138 44599 3983.37
1D-CNN Multiclass 2PC 14.4177 54151 4054.73
LSTM Multiclass 2PC 60.247 312951 15388.2

TABLE III
INFERENCE USING MP-SPDZ PROTOCOL WITH QUANTIZATION AFTER DP

TRAINING

learn anything about Alice’s or Bob’s inputs. That provides
input privacy to our solution. Output privacy - the guarantee
that Alice does not learn information about individual entries
used in the training of Bob’s model - is provided by the DP
guarantees of DP-SGD [29] as utilized by Bob.

VI. RELATED WORKS

We now present the related literature and compare our
solution to previous ones.

A. DGA detection with deep learning

DGA detection methods did not rely on machine learning in
the early stages. For instance, Sharifnya et al. [39] developed
a technique that identifies hosts with a high volume of failed
DNS queries, subsequently adding these hosts to a “suspicious
failure matrix.” This section lists relevant works regarding
DGA detection using deep or machine learning without any
privacy guarantees.

Li et al. [40] propose several real-time detection models
and frameworks which utilize meta-data generated from do-
mains and combine the advantages of a deep neural network
model and a lexical features-based model using the ensemble
technique. Another work in this line is [41], which uses
Helix’s architecture that represents DGA as embeddings. The
utilization of Multilayer Perceptron (MLP) for DGA output
detection was also investigated [42], [43].

Huang et al. [44] propose a Helios architecture that uses
CNN to detect DGA. Zhou et al. [45] also uses 1D-CNN
to detect DGA and enables binary and multiclass analysis of
DGA. Berman [46] uses 1D-CNN with a convolutional layer
of one-dimensional data to detect DGA. Chen et al. [47] apply
1D-CNN and BiGRU to detect DGA.

Shahzad et al. [48] uses a recurrent neural network to
detect DGA outputs on a per-domain basis using the domain
name only, with no additional information, which the authors
compare to the performance of a DGA classifier based on the
following RNN architectures: Unidirectional LSTM network,
bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit
(GRU).

Zhang et al. [49] design and implement several DGA
classifiers based on machine learning (SVM and RF) and
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deep learning (CNN, LSTM, and Bi-LSTM) methods. Yang
et al. [50] exploits the character-level characteristics of the
DGA domain names and proposes a heterogeneous deep neural
network framework that includes 1D-CNN and LSTM. LSTM
has been used to detect binary DGA and multiclass DGA
by the alphanumeric domain name [18], [19]. Tran et al.
[21] present a new LSTM algorithm to address the multiclass
imbalance problem in DGA-related botnet detection. Strategies
with unbalanced datasets are vital for multiclass DGA detec-
tion. Balakrishna et al. [51] use an LSTM which is adapted to
predict better if the dataset is unbalanced. Josan et al. [22] use
a bidirectional LSTM network for binary DGA and multiclass
DGA detection. Other applications that use LSTM to detect
DGA are discussed in works [23], [24], [26], [52].

Liu et al. [53] combines a convolutional neural network
and a bidirectional long short-term memory network to detect
DGA. Yun et al. [54] show a method based on natural
language processing and Wasserstein Generative Adversarial
Networks and a new way to prevent attackers’ evasion of
neural network’s DGA detection.

Malware detection is relevant for IoT applications (Internet
of Things), and DGA detection for this IoT scenario has been
investigated [55].

Li et al. [56] make the inference using the Hidden Markov
Model (HMM). Koh et al. [57] uses a pre-trained context-
sensitive word embedding to classify DGA. Cucchiarelli et
al. [58] use the Kullback-Leibner divergence and the Jaccard
Index to estimate similarities to detect DGA. Finally, Yilmaz
et al. [59] use a method to detect DGA using LSTM and add
a GAN (generative adversarial network) to infer previously
unknown malicious domains.

Yu et al. [9] comment that simpler architectures are faster
in training and inference and are less prone to overfitting.
This conclusion is fundamental and was the focus of this
work, as we seek lighter architecture toward achieving greater
performance in protocols with MPC. Another work from
Yu et al. [8] proposes heuristics for automatically labeling
domain names monitored in real traffic. This labeled data is
essential for improving the accuracy of deep learning models
in detecting DGA. Finally, Yu et al. [10] propose a new way to
label a large volume of data collected from real traffic as DGA-
related and non-DGA-related, allowing models to be trained
with large amounts of real traffic.

Sivaguru et al. [60] strengthen DGA detectors against adver-
sarial attacks and evaluate deep learning models and random
forests (RFs) to detect DGA using information beyond the
domain name.

B. Secure Multi-Party Computation for DGA Detection

The work of Drichel et al. [15] is the one that is mostly
related to our proposal. That work proposes using MPC
protocols to classify domains into DGA and non-DGA. They
implement their proposals using several different MPC frame-
works: PySyft, TF-Encrypted, MP2ML, and SecureQ8 applied
in the classifiers Inline [10], NYU [9], ResNet [6], and FANCI.
However, despite its pioneering aspect, the work of Drichel et
al. [15] still has several deficiencies:

• It uses CNN2D for performing private inference of DNS
domains. This adds unnecessary complexity to the clas-
sifiers since 1D-CNN is best suited to text classification
problems.

• It does not use privacy-preserving embedded layers. In
practice, this assumes that Bob has to leak the embedding
layer to Alice for her to perform the embedding operation
in the clear. Thus, this solution is not end-to-end private.

• It does not consider LSTM models over MPC. Our work
develops the first LSTM implementation available in any
existing MPC framework.

• It considers only binary classification. We show how to
carry out binary and multiclass DGA predictions.

C. Secure Multi-Party Computation for Natural Language
Processing

Hao et al. [61] present private inference on transformer
BERT based models in a client-server setting. Clients have
private inputs, and servers hold proprietary models. One
contribution is a customized homomorphic encryption-based
method for matrix multiplication.

Adams et al. [38] present the first application of MPC pro-
tocols for CNN-based text classification. Their method adapts
a CNN2D from the Crypten framework into a 1D-CNN by
utilizing two 2D convolutional layers to emulate the behavior
of a 1D-CNN. In contrast, our work directly implements
a one-dimensional, private embedding layer, resulting in a
more efficient solution. Furthermore, [38] focuses on word-
level classifications, while our research emphasizes secure
character-level text classification. Lastly, Adams et al. [38]
does not address private embeddings. Their approach assumes
that Alice first converts her text into an embedded vector
using a publicly available BERT model before secret-sharing
it. This method is infeasible for a model where the embedding
is private and part of Bob’s confidential information. Our
work overcomes this limitation by providing protocols and
implementation for secure embeddings.

The model SecureNLP [62] has two security protocols
for LSTM and RNN in the honest-but-curious model. The
differences between SecureNLP and our solution are that
we use LSTM for inference with characters, and SecureNLP
conducts inference on words. Additionally, SecureNLP does
not work with private embedding layers.

Knott et al. [63] offers a comprehensive overview of the
Crypten framework, demonstrating its application in text clas-
sification, speech recognition, and image classification. In their
work, text classification is conducted through a sentiment
analysis experiment using a linear layer operating on word
embeddings. Our approach differs from theirs in focusing on
character-level rather than word-level classification. Moreover,
their work does not involve private embeddings or provide an
LSTM protocol and implementation.

VII. CONCLUSIONS AND FUTURE WORK

This work presents the first framework for performing
outsourced privacy-preserving DGA detection with input and
output privacy. Input privacy means that no information about
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the domain being classified leaks to the computing servers or
the model owner Bob, and no information about the model
leaks to the domain owner (Alice) or the computing servers.
Output privacy means that the output of the computation does
not allow the extraction of individual entries in the training
dataset of the ML model used in the framework.

We additionally contribute MPC protocols for LSTM and
embedding layer in the MP-SPDZ framework, furthering the
practical application of private and secure machine learning.

We compared the performance of CNN, LSTM, and MLP
trained with DP and secure inference with various MPC
protocols. The 1D-CNN presented better cost-benefit accuracy
and performance on MPC for two parties, and in the three
computing servers case there were trade-offs between CNN
and MLP.

We demonstrated that quantizing the weights to 16 bits after
training with DP improved our runtimes by 15% without a
significant drop in accuracy when we are in the setting of
three parties with honest majority.

In future work, we propose to apply the techniques of this
paper to general tasks of natural language classification.
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