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Abstract. An (n, t)-Non-Interactive Verifiable Secret Sharing (NI-VSS)
scheme allows a dealer to share a secret among n parties, s.t. all the
parties can verify the validity of their shares and only a set of them, i.e.,
more than t, can access the secret. In this paper, we introduce Π, as a
unified framework for building NI-VSS schemes in the majority honest
setting. Notably,Π does not rely on homomorphic commitments; instead,
builds upon any commitment scheme that extra to its core attributes
hiding and binding, it might be homomorphic and/or PQ-secure.

(i) When employing Discrete Logarithm (DL)-based commitments, Π
enables the construction of two novel NI-VSS schemes, named ΠP

and ΠF. In comparison to the well-known Pedersen and Feldman
VSS schemes, both ΠP and ΠF require O(1) exponentiations in the
verification process, as opposed to O(t), albeit at the expense of a
slightly slower sharing phase and increased communication.

(ii) By instantiating Π with a hash-based commitment scheme, we ob-
tain the first PQ-secure NI-VSS scheme in the plain model, labeled
ΠLA (pronounced [paI"la]1). ΠLA outperforms the recent random
oracle based construction by Atapoor, Baghery, Cozzo, and Peder-
sen from Asiacrypt’23 by a constant factor in all metrics. ΠLA can
also be viewed as an amplified version of the simple NI-VSS scheme,
proposed by Gennaro, Rabin, and Rabin, at PODC’98.

(iii) Building upon ΠF, we construct a Publicly VSS (PVSS) scheme,
labeled ΠS, that can be seen as a new variant of Schoenmakers’
scheme from Crypto’99. To this end, we first define the Polynomial
Discrete Logarithm (PDL) problem, as a generalization of DL and
then build a variant of the Schnorr Proof of Knowledge (PoK) scheme
based on the new hardness assumption. We think the PDL relation
and the associated PoK scheme can be independently interesting for
Shamir-based threshold protocols.

We believe Π is general enough to be employed in various contexts such
as lattices, isogenies, and an extensive array of practical use cases.

Keywords: Verifiable Secret Sharing · Polynomial Discrete Logarithm

1 In Turkish, ’Pay’ (pronounced [paI]) is a noun for Share and ’Payla’ means Share it.



1 Introduction

Secret sharing schemes have become foundational tools in threshold cryptog-
raphy and secure multi-party computation. These schemes facilitate the secure
distribution of sensitive information among multiple parties, allowing only qual-
ified shareholders to reconstruct the original secret collaboratively.

Traditional secret sharing schemes, like Shamir’s protocol [21], assume the
presence of honest parties but lack provisions for security against malicious ones.
To address this concern, Verifiable Secret Sharing (VSS) schemes [10, 12] have
been developed, aiming to withstand various attacks, including incorrect share
distribution by the dealer and malicious behavior by parties during the recon-
struction phase. A Non-Interactive VSS (NI-VSS) scheme allows a dealer to non-
interactively distribute a secret among n parties, such that all the parties can
verify the validity of their shares, and similar to a typical secret sharing scheme,
only a specific number of them can access the secret. Numerous VSS schemes
are build on regular secret-sharing protocols, adding verifiability features on
top [1,4,10,12,15–18,20]. Many of known NI-VSS schemes like Feldman [12] and
Pedersen [18] use Shamir secret sharing and exploit the homomorphic property of
the Discrete Logarithm (DL) and Pedersen commitment to achieve verifiability.
To this end, the dealer sends the shares securely to parties and publishes the ho-
momorphic commitments to the coefficients of the underlying secret polynomial.
Then, they leverage the homomorphic property of the DL group to convince the
shareholders that the secret sharing is performed correctly. Publicly Verifiable
Secret Sharing (PVSS) schemes additionally allow an external verifier to verify
the validity of the distributed shares (that are encrypted under the public key
of the shareholders) in a single round [7, 14,17,20,23].

In [15, Section 2], Gennaro, Rabin, and Rabin (GRR) proposed a simple VSS
scheme for n ≥ 2t+1 that does not need homomorphic commitments. However,
their construction achieves a weaker security in terms of reconstruction. Namely,
from the n distributed shares, any different t+ 1 honest shareholders might re-
construct a different secret. The reason is that in their construction [15, Fig.
1], the dealer does not prove that all the shares are generated using a unique
degree-t polynomial f(X). To deal with this concern, they propose an amplified
version of their simple construction, that uses homomorphic commitments (i.e.,
Pedersen commitment) and achieves the stronger notion of extractability, which
guarantees that any different t + 1 honest shareholders reconstruct a unique
secret f(0). The NI-VSS schemes in plain model, which are based on homomor-
phic commitments, e.g., [4, 12, 15, 18], have at the best O(tλ) communication
complexity and require O(n) or O(t) exponentiations, in the sharing and verifi-
cation sides, respectively, where λ denotes the security parameter. In [2, Section
3.1], Backes, Kate, and Patra proposed the first NI-VSS scheme for n ≥ 2t+ 1,
that do not require homomorphic commitments. However, their construction
uses bivariate polynomials [4] to achieve verifiability, that requires interaction
between the shareholders and imposes O(n2λ) bits of broadcast, O(n2λ) bits of
private communication in the sharing phase, as well as O(n2λ) broadcasts in the
reconstruction phase. In an elegant recent work, Atapoor, Baghery, Cozzo, and
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Pedersen (ABCP) [1] introduced the first Post-Quantum (PQ) secure NI-VSS
scheme for n ≥ 2t+1 which uses a Random Oracle (RO) and a hash-based com-
mitment scheme and boasts computational and communication costs of O(n)
and O(nλ), respectively. Notably, their scheme relies solely on lightweight oper-
ation, such as hashing and polynomial evaluations, making it significantly more
efficient than previous schemes in this setting. In a different setting, Shoup and
Smart [22] also recently unveiled a novel asynchronous VSS scheme that similarly
employs a random oracle (or a random beacon) and lightweight cryptographic
operations, specifically hashing and polynomial evaluations. Shoup and Smart’s
scheme is tailored for the asynchronous communication model and necessitates
the participation of at least 2/3 of the parties to be honest. Our study, con-
versely, assumes that the majority of parties are honest, does not need a random
oracle (or a random beacon), combines the strengths of both lightweight and
heavyweight cryptography (i.e., efficiency, perfect unpredictability and public
verifiability). But, our constructed protocols are in the synchronous setting.

The starting point for ABCP [1] is the construction of a Non-Interactive
Threshold Zero-Knowledge (NI-TZK) proof scheme for the following n-distributed
relations R1, . . . , Rn:

Ri = {(fi, f(X))|f(i) = fi}, i = 1, · · · , n. (1)

Here f(X) represents a witness polynomial in X of degree (at most) t with
coefficients defined over the ring ZN , and fi are the shares received by n parties.

NI-TZK proofs are formally defined and studied by Boneh et al. [6]. In a
NI-TZK proof scheme, a prover aims to convince n verifiers, holding a piece of
the statement, e.g., fi, that the main statement, e.g., f1 ∥ · · · ∥ fn (hidden from
an individual verifier) belongs to a specific language. Similar to the typical cases,
such proof systems must be complete, meaning that if the main statement is in
language, an honest prover will be able to convince honest verifiers. They should
satisfy soundness, meaning that if the main statement is not in the language, then
all verifiers will reject the verification except for a negligible probability. However,
in some cases a subset of verifiers, e.g., up to t of them, may be malicious and
collude with an adversarial prover. Finally, they need to satisfy a variant of ZK,
so called Threshold ZK (TZK)2, as introduced by Boneh et al. [6]. TZK implies
that any subset of the verifiers up to t, should learn no additional information
about the main statement, beyond their own shares of statement and the fact
that the main statement belongs to the language.

ABCP [1] coined the term ”Shamir relation” to describe the n-distributed re-
lation in Eq. (1). Subsequently, they used the proposed NI-TZK for the Shamir
relation and built an efficient computationally secure NI-VSS scheme in the
majority-honest setting, which exclusively relies on hash functions and polyno-
mial evaluations. Drawing upon the NI-TZK proofs, they also introduced a new
approach for secret reconstruction in VSS schemes. In certain scenarios, this ap-
proach can lead to the development of more efficient threshold protocols, such
as Distributed Key Generation (DKG) protocols and threshold signatures.

2 We adopt the term ”Threshold ZK” from [1] to refer this variant of zero-knowledge.
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1.1 Our Contributions

Π: A Unified Framework for NI-VSS Schemes. We present a unified
framework Π designed for constructing NI-VSS schemes in the majority honest
setting. Our framework is based on Shamir secret sharing and draws inspiration
from the simple construction by Gennaro, Rabin, and Rabin [15] and the NI-
VSS scheme recently introduced by Atapoor, Baghery, Cozzo, and Pedersen [1].
In its general form, Π is the plain model and avoids using random oracle, a
trusted Structured Reference String (SRS), or pairings, and does not necessarily
need a homomorphic commitment scheme (as in Feldman [12] and Pedersen [18]
schemes). Nevertheless, the option remains to instantiate it with homomorphic
commitments, and in order to construct NI-VSS schemes capable of achieving
stronger properties, such as Public Verifiability (PV) [20], one may use an (SRS,
RO, or pairing)-based NIZK proof scheme on top of it. At its core, the framework
boasts a simple, general, and efficient construction, enabling the creation of NI-
VSS schemes with diverse features.

Sharing. In the main construction of Π, given a secret f0 and a hiding and
binding commitment scheme C, the dealer proceeds as follows: 1) Does Shamir
secret sharing: samples a random degree-t polynomial f(X) with free term f0 and
sets fi = f(i) for i = 1, . . . , n. 2) Samples another random degree-t polynomial
r(X) and sets ri = r(i) for i = 1, . . . , n. 3) Sets ci = C(ri) (or ci = C(ri, γi),
where γi = γ(i) are evaluations of a new random degree-t polynomial γ(X) in
point i) for i = 1, · · · , n and z(X) = r(X) + f(X); Finally, securely transmit fi
(and the randomizer γi employed in the commitment C, if applicable) to party Pi,
and publish πShare := (z(X), c1, . . . , cn). In general, sharing can be as efficient as
performing two (or three) Shamir secret sharing in addition to n commitments.

Verification. In the general form, given (fi, z(X), ci), to verify the received share
fi (and γi if applicable), party Pi checks if ci = C(z(i) − fi) (or ci = C(z(i) −
fi, γi)). If the check does not pass, Pi broadcasts a complaint against the dealer.
If player Pj broadcasted a complaint, then the dealer broadcasts the share fj
(and γj if applicable), such that cj = C(z(j) − fj) (or cj = C(z(j) − fj , γj)). If
the dealer does not follow the protocol, he is disqualified, otherwise the protocol
continues as usual, and the conclusion is that a secret has been shared.

Reconstruction. Given t+1 valid shares, interpolate polynomial f̂(X) (and γ̂(X)

if applicable) of degree t that pass through those shares. Compute f̂i = f̂(i) and

r̂i = z(i) − f̂i (and γ̂i = γ̂(i) if applicable) and verify that ci = C(r̂i) (or

ci = C(r̂i, γ̂i)) for all i = 1, . . . , n. If yes, output f̂(0) else output false.

Security. In the majority-honest scenario where t + 1 of the parties are honest,
with n ≥ 2t + 1, the individual commitments ci can be opened. This opening
enables the reconstruction of a unique degree-t polynomial f(X) := z(X)−r(X)
using Lagrange interpolation. Consequently, any set of t+ 1 honest parties will
be able to collectively reconstruct a unique secret f0 = f(0).

It’s crucial to mention that when we use Π to build NI-VSS schemes aiming
to satisfy computational unpredictability, the dealer commits to random values
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ri = r(i), where these values are entirely random and possess sufficient entropy.
Consequently, there is no need for an additional randomizer in the commitment
process. However, when we use Π to build an NI-VSS scheme that satisfies In-
formation Theoretic (IT) unpredictability, the dealer must use a perfectly hiding
commitment scheme (e.g., Pedersen commitment). Then, the use of a separate
randomizer, i.e., γi, becomes essential. As can be seen, the strength of the new
framework lies in its simplicity and generality and it is flexible enough to be
tailored for constructing various VSS schemes with distinct properties. In addi-
tion to Shamir’s secret sharing, it only requires a secure commitment scheme.
Commitment schemes can be efficiently constructed using various fundamen-
tal primitives (such as hash functions, one-way functions, etc.), rendering Π a
unified framework for building NI-VSS schemes that can also achieve public ver-
ifiability and/or PQ security. Leveraging Π, we present a range of novel and
efficient NI-VSS schemes that, in general, can surpass current alternatives.

NI-VSS Schemes from DL-Based (Homomorphic) Commitments. By
instantiating Π with a DL-based computationally hiding commitment scheme,
we introduce an efficient alternative for the well-known Feldman scheme [12],
labeled as ΠF. When dealing with a DL-based perfectly hiding (homomorphic)
commitment, i.e., Pedersen commitment, Π enables the construction of a novel
IT-secure NI-VSS scheme referred to as ΠP. Similar to the Pedersen scheme, in
ΠP, fewer than t parties learn nothing about the secret, ensuring IT security.

In terms of efficiency, both ΠF and ΠP require O(1) exponentiations in the
verification, opposed to the O(t) in the Feldman [12] and Pedersen [18] schemes,
where t represents the threshold parameter. This improvement comes at the cost
of a constant factor of overhead in the sharing phase and communication.

A Practical NI-VSS Scheme from Hash Functions in the Plain Model.
Through the instantiation of Π using a non-homomorphic commitment scheme,
such as those based on Hash functions, we introduce a novel PQ-secure NI-VSS
scheme in the plain model, named ΠLA. To the best of our knowledge, ΠLA

stands as the first hash-based NI-VSS scheme in the plain model, requiring
O(nλ) bits for communication. It can be viewed as an improved alternative to
the recent RO-based scheme by ABCP [1], which employs a (quantum) RO and
a hash-based commitment scheme. Compared to the ABCP NI-VSS scheme [1],
ΠLA operates without the need for an RO, has much more simpler construction
(e.g., does not commit to the shares fi), and outperforms in terms of all effi-
ciency metrics. From a different view, ΠLA can be seen as an amplified version
of the weak NI-VSS scheme proposed by GRR in [15, Section 2], as their simple
construction is also in the plain model and works with non-homomorphic com-
mitments. However, compared to their weak NI-VSS scheme, ΠLA satisfies the
stronger notion of constructability, i.e., any different set of t + 1 honest parties
will reconstruct a unique secret.

Generalizing DL Relation and Schnorr’s Protocol Over Polynomials.
To construct a NI-VSS scheme, Π only requires a hiding and binding com-
mitment scheme. However, in practical scenarios where the goal is to integrate
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different instantiations of Π into a threshold protocol (e.g., DKGs and threshold
signatures), or when designing NI-VSS schemes that need to satisfy stronger
properties like public verifiability, the integration and design might indeed ne-
cessitate a ZK proof.

The well-known Schnorr ID protocol [19] allows one to prove knowledge of
witness for the relation RDL = {(g, F ), f | F = gf} where g is the group gen-
erator, f ∈ Zq is the witness value, which can also be interpreted as a degree-0
polynomial with a single coefficient defined over Zq. In Sec. 5, we generalize
RDL relation over polynomials and introduce the Polynomial Discrete Loga-
rithm (PDL) relation denoted as RPDL, which is defined as follows,

RPDL = {(g, xi, Fi), f(X) | Fi = gf(xi)} for i = 1, 2, . . . , n.

Here, f(X) ∈ Zq[X]t is a (at most) degree t ≤ n−1 witness polynomial with coef-
ficients from Zq, and {xi}ni=1 are n distinct elements from Zq. Then, we present
a Non-Interactive Zero-Knowledge (NIZK) Proof-of-Knowledge (PoK) scheme
πPDL based on Schnorr’s protocol, that allows a prover to prove knowledge of
a witness for RPDL relation. We believe πPDL can be a useful proof scheme for
constructing threshold protocols based on Shamir secret sharing, specifically for
n ≥ 2t+ 1 and x1 = 1, . . . , xn = n.

To the best of our knowledge, this marks the first explicit definition of the
PDL problem, even though it has been implicitly employed in certain prior VSS
schemes and protocols [7, 8, 12, 20]. In [8], Cascudo and David similarly defined
a slightly different variant of RPDL and built a sigma protocol for this variant.
However, there are certain security issues in their proposed sigma protocol, which
will be discussed in detail in Sec. 5. They also presented a probabilistic verifica-
tion protocol for the RPDL relation, which achieves soundness and probabilistic
completeness, in contrast to our proposed protocol πPDL, which achieves perfect
completeness and special soundness. A detailed comparison of our construction
with theirs is provided later in this paper.

A Novel PVSS Scheme Based on DL. Using the new NIZK PoK scheme
πPDL, and building upon VSS scheme ΠF, we introduce a novel Publicly Ver-
ifiable Secret Sharing (PVSS) scheme, designated as ΠS. ΠS serves as a more
efficient alternative to Schoenmakers’ PVSS scheme from Crypto’99 [20]. Com-
pared to Schoenmakers’ scheme [20], ΠS streamlines the verification complexity
from O(nt) to O(n), accelerates the sharing phase by more than two times, and
reduces the communication cost slightly. In essence, ΠS improves all efficiency
metrics in Schoenmakers’ scheme with no additional expense. In [7, 8], Cascudo
and David have proposed different variants of Schoenmakers’ PVSS scheme, all
reducing the verification complexity to O(n). In comparison to their schemes
from [7], ΠS generally demonstrates superior efficiency and does not use prob-
abilistic checks. Notably, its verification process is at least 3 − 4× faster than
the verification of their schemes. In their later work [8], Cascudo and David ex-
tended and optimized their RO-based construction from [7] to support packed
Shamir secret sharing. Notably, we found that ΠS shares similarities with the
unpacked case of their scheme [8]. Leveraging the optimization employed in ΠS,
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the unpacked version of their construction can achieve the same performance to
ΠS. It is important to note that ΠS is developed in a generic manner, with its
security reduced to the PDL problem, providing a clearer and simpler security
proof. The construction by Cascudo and David [8] relies on a sigma protocol
tailored for a variant of the RPDL relation. However, in their security proof of
sigma protocol [8, Proposition 1], there is a lack of a clear reduction to a hardness
assumption, and their security proof for special soundness lacks an extraction
algorithm. We elaborate more on this mater later in Sec. 5.

Efficiency comparisons of new VSS schemes. Table 1 provides a summary of
performance metrics for the proposed NI-VSS schemes, including ΠF, ΠP, and
ΠLA, as well as the PVSS scheme ΠS. These metrics are compared with relevant
schemes from the literature [1, 7, 8, 12,18,20].

Table 1. A comparison of new NI-VSS schemes with those of Feldman [12], Peder-
sen [18], Schoenmakers [20], Cascudo-David [7, 8], and ABCP [1]. Commu.: Commu-
nication, Comp.: Computation, DL: Discrete Logarithm, PDL: Polynomial Discrete
Logarithm, DDH: Decisional Diffie-Hellman, DBS: Decisional Bilinear Square, IT-U:
Information Theoretically Unpredictable, Classic: Classical security, PQ: Post-quantum
security, RO: Random Oracle, Plain: Plain Model, BC: Broadcast, n: Number of par-
ties, t: threshold parameter (t ≈ n/2), PG: Pairing Operation, EG: Exponentiation
in group G, MG: Multiplication in group G, PE : degree-t Polynomial Evaluation, H:
Hashing, |G|: G element size, |Zq|: Zq element size, |ZN |: ZN element size, |H|: Output
size of H, Dow: Download size, DV: Designated Verifier, PV: Publicly Verifiable.

VSS & Security Share Dealer’s Commu. Verification Cost

Feldman [12] 0.5n EG Private: 1n|Zq| Dow: 0.5n|G|, Type: DV
(DL, Plain, Classic) 1n PE BC: 0.5n|G| Comp.: n/2 EG + n/2 MG

Sec. 4.1, ΠF 1n EG Private: 1n|Zq| Dow: 0.5n|Zq|+ 1|G|, Type: DV
(DL, Plain, Classic) 2n PE BC: n|G|+ 0.5n|Zq| Comp.: 1 EG + 1 PE
Pedersen [18] 1n EG Private: 2n|Zq| Dow: 0.5n|G|, Type: DV

(DL, Plain, IT-U) 2n PE BC: 0.5n|G| Comp.: n/2 EG + n/2 MG

Sec. 4.2, ΠP 2n EG Private: 2n|Zq| Dow: 0.5n|Zq|+ 1|G|, Type: DV
(DL, Plain, IT-U) 3n PE BC: n|G|+ 0.5n|Zq| Comp.: 2 EG + 1 MG + 1 PE

ABCP [1] 2n H Private: 1n|ZN | Dow: 0.5n|ZN |+ 2n|H|, Type: DV
(Hash, RO, PQ) 2n PE BC: 2n|H|+ 0.5n|ZN | Comp.: 1 PE + 3 H (1 H for RO)

Sec. 4.3, ΠLA 1n H Private: 1n|ZN | Dow: 0.5n|ZN |+ 1|H|, Type: DV
(Hash, Plain, PQ) 2n PE BC: n|H|+ 0.5n|ZN | Comp.: 1 PE + 1 H

Schoenmakers [20] 4.5n EG Private: — Dow: 2.5n|G|+ n|Zq|, Type: PV
(DDH, RO, Classic) 1n PE BC: 1.5n|G|+ n|Zq| Comp.: nt+ 4n EG + 2.5n MG

Cas-Dav [7] 2n EG Private: — Dow: 3n|G|, Type: PV
(DBS, Plain, Classic) 1n PE BC: 2n|G| Comp.: 2n PG + n EG + n MG

Cas-Dav [7] 4n EG Private: — Dow: 3n|G|+ n|Zq|, Type: PV
(DDH, RO, Classic) 1n PE BC: 2n|G|+ n|Zq| Comp.: 5n EG + 3n MG

Sec. 6, ΠS & [8] 2n EG Private: — Dow: 2n|G|+ 0.5n|Zq|, Type: PV
(PDL, DDH, RO, Classic) 2n PE BC: n|G|+ 0.5n|Zq| Comp.: 2n EG +n PE +n MG
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1.2 Implications of Our Results

Our new framework for building NI-VSS schemes can lead to new directions
in construction of VSS schemes and threshold cryptographic protocols, with
significant implications. We expect any cryptographic construction that uses ei-
ther of the NI-VSS schemes of Feldman [12], Pedersen [18], ABCP [1], or PVSS
schemes [7, 8, 17, 20], or a variation of them, can be potentially affected by the
new results. Considering NIST’s Threshold Cryptography project3, which seeks
to standardize threshold schemes for cryptographic primitives, we think the im-
plications of our results can extend beyond theoretical implications, offering
practical promise for improving real-world (threshold) cryptographic systems.
Delving into the details of revisiting concrete threshold protocols lies beyond
the scope of this paper.

In this vein, our generalized variant of Schnorr’s NIZK PoK scheme to the
PDL relation (defined in Eq. (3)) can be a useful tool for constructing threshold
cryptographic protocols based on Shamir secret sharing. Notably, the idea behind
it is general enough for versatile deployment across PQ secure contexts.

1.3 Outline

In Sec. 2, we present an overview of some preliminary concepts. In Sec. 3, we
introduce the new framework Π devised for constructing NI-VSS schemes from
commitment schemes. Leveraging Π, in Sec. 4 we present several new NI-VSS
schemes, with different features. In Sec. 5, we generalizing DL problem and
Schnorr protocol over polynomials and present an efficient NIZK PoK scheme,
that can be a useful tool for Π, while also preserving potential interest for
different purposes. In Sec. 6, we present an efficient PVSS scheme. Finally, we
conclude the paper in Sec. 7.

2 Preliminaries

2.1 Notation, Fields, Groups, Exceptional Sets

We let λ denote a security parameter. We use the assignment operator ← to
denote uniform sampling from a set Ξ, e.g. x ← Ξ. Throughout this paper p
and q denote two large primes such that q divides p−1, G is the unique subgroup
of Z⋆

p of order q, and g is a generator of cyclic group G of prime order q. One
can test if an element a ∈ Z⋆

p is in G, by checking if aq = 1. The group G is
chosen such that computing Discrete Logarithms (DL) of h ∈ G, i.e., logg h, is
hard in this group. We write ZN := Z/NZ and ZN [X]t for polynomials of degree
t in the variable X and with coefficients in ring ZN . Similarly, we write Zq and
Zq[X]t for polynomials of degree t in the variable X and with coefficients in
finite field Zq, with known prime q. When we refer to groups we assume they
have known prime order and efficient algorithms to compute group operations.
It will be assumed that all parties know p, q, g, and N .

3 More on https://csrc.nist.gov/Projects/Threshold-Cryptography/.
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2.2 Shamir and Verifiable Secret Sharing

A (t + 1, n)-Shamir secret sharing scheme [21] allows n parties to individually
hold a share xi of a secret x0, such that any subset of t parties or less are unable
to learn any information about the secret f0, while any subset of at least t + 1
parties are able to efficiently reconstruct the secret f0. In more detail, this is
achieved via polynomial interpolation over the ring ZN . A secret polynomial
f(x) ∈ ZN [x]t is chosen and its free term is set to be the secret f0, namely
f(0) = f0. Each party Pi for i ∈ {1, · · · , n} is assigned the secret share fi = f(i).
Then any subset Q ⊆ {1, . . . , n} of at least t+1 parties can reconstruct the secret

f0 via Lagrange interpolation by computing f0 = f(0) =
∑

i∈Q fi · LQ
0,i, where

LQ
0,i :=

∏
j∈Q\{i}

j
j−i (mod N), are the Lagrange basis polynomials evaluated at

0. Any subset of less than t + 1 parties are unable to find f0 = f(0), as this is
information theoretically hidden from the other shares.

If ZN is a ring, the difference of any elements in {1, . . . , n} must be invertible
modulo N , thus {1, . . . , n} must be an exceptional set (defined in Def. 2.1). This
is the case if n is less than the smallest prime divisor q of N . In the case where
more than q parties want to participate in the protocol, we would have to work
in a subgroup ZN ′ ⊂ ZN such that the smallest divisor of N ′ is larger than q.
Next we recall the definition of (super)exceptional sets.

Definition 2.1 (Exceptional set [3, 5, 11]). An exceptional set (modulo N)
is a set Ξk = {c1, . . . , ck} ⊆ ZN , where the pairwise difference of all distinct
elements is invertible modulo N . If further the pairwise sum of all elements is
invertible modulo N , Ξk is called a superexceptional set (modulo N).

Verifiable Secret Sharing. Standard secret sharing schemes are secure against
passive attacks. In many applications, a secret sharing scheme needs to be secure
against the malicious dealer or parties with active attacks. This is achieved
through VSS schemes, which allow a dealer to share a secret among a group of
individuals in a verifiable manner [10]. VSS schemes allow a dealer to distribute
the secret in a verifiable manner, so that the shareholders can verify the validity
of the shares and only a specific number of them can access the secret.

2.3 Sigma Protocols

Next, we recall the definition of sigma protocols (Σ-protocols). Here the algo-
rithms are Probabilistic Polynomial-Time (PPT), unless mentioned. Let X =
X(λ) and W = W (λ) be sets. Let R be a relation on X × W that defines a
language L = {x ∈ X : ∃w ∈ W,R(x,w) = 1}. Given x ∈ L, an element w ∈ W
such that R(x,w) = 1 is called a witness. Let relation generator R be a PPT
algorithm such that R(1λ) outputs pairs (x,w) such that R(x,w) = 1.

A sigma-protocol (Σ-protocol) for the relation R is a 3-round interactive
protocol between two PPT algorithms: a prover P and a verifier V . P holds a
witness w for x ∈ L and V is given x. In first round, P sends a commitment
value a to V , and then in second round, V answers with a randomly sample
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challenge value d. Finally, P answers with a response z, and V verifies the proof
and outputs true or false. The triple trans := (a, d, z) is called a transcript
of the Σ-protocol. A Σ-protocol is supposed to satisfy Completeness, Honest
Verifier Zero-Knowledge (HVZK), and Special Soundness defined below.

Definition 2.2 (Completeness). A Σ-protocol with parties (P, V ) is complete
for R, if for all (x,w) ∈ R, the honest V will always accept the honest P .

Definition 2.3 (HVZK). A Σ-protocol with parties (P, V ) satisfies HVZK for
R, if there exists a PPT algorithm S that given x ∈ X, can simulate the trans
of the scheme, s.t. for all x ∈ L, (x,w) ∈ R,

trans(P (x,w)↔ V (x)) ≈ trans(S(x)↔ V (x))

where trans(P (·)↔ V (·)) indicates the transcript of the Σ-protocol with (P, V ),
and ≈ denotes the indistinguishability of transcripts.

Definition 2.4 (Special Soundness). A Σ-protocol with parties (P, V ) is spe-
cial sound for R, if there exists a PPT extractor E, such that for any x ∈ L,
given two valid transcripts (a, d, z) and (a, d′, z′) for the same message a but
d ̸= d′, then E(a, d, z, d′, z′) outputs a witness w for the relation R.

Withing the Random Oracle (RO) model, using Fiat-Shamir transform [13],
a public-coin, complete, HVZK, and special soundness Σ-protocol can be turned
into a Non-Interactive Zero-Knowledge (NIZK) proof or argument of knowledge.

2.4 Chaum-Pedersen Protocol for DL Equality

Let G be a group with hard DL, and g, h be two group elements, where g is
the group generator. Let a prover aim to convince a verifier that for the public
statement g, h, a, b, he knows a witness x which holds in the following relation,

RDLEQ = {(g, h, a, b), x | a = gx ∧ b = hx}. (2)

This relation is known as DL EQuality (DLEQ). In [9], Chaum and Pedersen
introduced an efficient NIZK proof of knowledge for DLEQ, as summarized in
Fig. 1. This protocol is widely employed in various cryptographic protocols (e.g.,
threshold decryption, e-voting systems, PVSS schemes, etc.).

Prover: Given the statement (g, h, a, b) ∈ G and the witness value x ∈ Zq, proceed
as follows and output a proof π.
1. Sample r ←$ Zq uniformly at random; and set c1 = gr and c2 = hr.
2. Set d← H(a, b, c1, c2), where H is a random oracle.
3. Set z = r + d · x mod q; and Return π := (d, z)

Verifier: Given the statement (g, h, a, b) ∈ G and the proof π = (d, z), checks if
d = H(a, b, gz

ad ,
hz

bd
) and outputs true or false.

Fig. 1. Chaum-Pedersen NIZK proof of knowledge for DLEQ [9].
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3 A Unified Framework for NI-VSS Schemes

The GRR simple VSS scheme [15] allows a dealer to perform Shamir secret shar-
ing and convince n verifiers that any t+1 of them can reconstruct a secret [15].
In their simple scheme, to share f0, the dealer first does Shamir secret sharing
and obtains the shares {fi}ni=1. Then, it samples another degree-t polynomial
r(X) and sets ri = r(i) for i = 1, . . . , n. After that, it commits to {fi}ni=1 with
{ri}ni=1, by setting ci = C(fi, ri), where C can be any commitment scheme. At
the end, it securely sends (fi, ri) to Pi, and broadcasts {ci}ni=1. Although their
scheme is highly efficient, it lacks the guarantee of a unique reconstructed secret.
In certain scenarios, such as robust cloud storage, this lack of uniqueness might
not be a concern since computations on the shares are not required. However,
when parties aim to perform computations on a unique value f(0), they must
get sure that they all possess distinct evaluations of a unique degree-t polyno-
mial f(X). This condition ensures that Lagrange interpolation with any of t+1
points will lead to a unique secret f(0). This property, termed verifiable secret
and polynomial sharing, is described by GRR [15]. To achieve verifiable secret
and polynomial sharing, the recent PQ-secure VSS scheme by ABCP [1] lever-
ages a RO-based NI-TZK proof scheme for the Shamir relation that employs
a hash-based commitment scheme. In a different setting, the recent lightweight
asynchronous VSS scheme by Shoup and Smart [22] also relies on hash-based
(thus non-homomorphic) commitments and either a random beacon or a random
oracle to achieve the mentioned property.

In this section, we introduce Π, designed for constructing NI-VSS schemes
with the flexibility to use both non-homomorphic and homomorphic commit-
ments. It is based on Shamir secret sharing, works in the majority honest setting,
in general avoids using a random oracle or a random beacon, and similar to other
schemes in the plain model, operates on the assumption that each shareholder
has registered his Public Key (PK), that can facilitate secure communications.
Π combines the strengths of the simple NI-VSS scheme from [15], and the stan-
dard NI-VSS scheme from [1], to achieve the best of both. With Π, we have
achieved a balanced and optimal approach to building NI-VSS schemes.

3.1 Our Definitions

Before going through the construction of Π, we summarize our definition of
NI-VSS schemes, which are adapted from [1,18,20].

Definition 3.1. An (n, t, f0)-NI-VSS consists of four PPT algorithms of (Ini-
tialization, Share, Verification, Reconstruction) as follows:

1. Initialization: In this phase, the public keys of parties are registered, public
parameters are sampled and all shared with the parties.

2. Share(n, t, f0)→ ({fi}ni=1, πShare): It secret shares f0 and outputs the shares
{f1, · · · , fn}, and a (non-interactive) threshold proof πShare to prove the
validity of the shares. Note that, πShare can only be verified by at least t+ 1
of the shares (or commitments/encryption of the shares).
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3. Verification(n, t, {fi}ni=1, πShare)→ true/false: Given n, threshold value t,
the shares {fi}ni=1 (or commitments/encryptions of them), and the threshold
proof πShare, generated by Share, the algorithm outputs either true/false.

4. Reconstruction({fi}i∈Q,|Q|=t+1)→ {f0, false}: Given any t+ 1 of the shares,

e.g., {fi}t+1
i=1, it returns either the main secret f0, or false.

A VSS further has two requirements, defined as follows [1, 20].

- Verifiability constraint: A shareholder must be able to verify the validity
of the received share. If they all are valid, then Reconstruction should produce
a unique secret f0 when run on any t+ 1 distinct valid shares.

- Unpredictability: The protocol must be unpredictable, meaning that there
is no strategy for selecting t shares of the secret that would enable someone
to predict the secret f0 with a significant advantage.

These definitions use TZK proofs over shared data [6] to prove the validity of
the distributed shares, which their verification requires at least t+1 honest par-
ties. Similar to the definition of threshold ZK [1,6], in some cases, the definition
of unpredictability can be strengthened by requiring that given the individual
statements (i.e., shares) of the t corrupted parties, the view of the adversary
can be simulated. This means that the adversary gains no knowledge more than
what publicly can be computed from the execution of the VSS protocol.

3.2 Construction of Π and Security Proofs

Let, D be a dealer and P1, . . . , Pn are n participants of a NI-VSS scheme. Let C
be a hiding and binding commitment scheme that is verifiable. Namely,

1. given c = C(r, γ), it is hard to learn any information about (r, γ),
2. it is infeasible (or computationally hard) to find two pairs (r, γ) and (r′, γ′)

s.t., C(r, γ) = C(r′, γ′),
3. given (c, r, γ) anyone can efficiently verify if c = C(r, γ).

The general construction of Π appears in Fig. 2, which uses a (computation-
ally or perfectly) hiding commitment scheme C.

Security. We prove the security of Π in the following theorem.

Theorem 3.1 (A Unified Framework for NI-VSS Schemes). If the com-
mitment scheme C is (computationally or perfectly) hiding and (perfectly or com-
putationally) binding, then the generic construction given in Fig. 2 is a secure
NI-VSS scheme. That is, (i) the Reconstruction protocol results in a unique
secret distributed by the dealer for any qualified set of shareholders, (ii) any
non-qualified set of shareholders is unable to recover the secret.

Proof. The proof of this theorem can be regarded as an extension of the proof
found in [15, Theorem 1]. Furthermore, we demonstrate that our proposed con-
struction can also satisfy the verifiable secret and polynomial sharing property.
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Initialization: Parties P1, · · · , Pn generate parameters for C and each one registers a
PK to facilitate secure communications. For the sake of simplicity, we presume
the existence of a dealer D and P1, · · · , Pn parties who will receive the shares.

Share: Given n and t, to share f0, the dealer D proceeds as follows:
1. Sample a uniformly random polynomial f(X) and r(X) of degree t with

coefficients in a ring ZN (or a field Zq), subject to f(0) = f0.
2. For i = 1, 2, · · · , n: set fi := f(i), and ri := r(i).
3. For i = 1, 2, · · · , n: set ci = C(ri) (or set ci = C(ri, γi), where γi = γ(i) are

obtained by evaluating a new random degree-t polynomial γ(X) in point i).
4. Set z(X) = r(X) + f(X) and πShare := (c1, . . . , cn, z(X));
5. Send share fi (and γi if applicable) securely to Pi and broadcast πShare.

Verification: Given πShare := (c1, . . . , cn, z(X)), and the individual shares:

1. Each party Pi first checks if z(X) is a degree t polynomial, and then uses
her/his share fi (and γi if applicable) and checks if ci = C(z(i) − fi) (or
ci = C(z(i) − fi, γi)). If the verification of Pi fails, then Pi broadcasts a
complain against the dealer.

2. If the number of shareholders complaining against the dealer exceeds a
threshold value t, the dealer will be disqualified, and the verification process
will result in a false outcome.

3. In case a shareholder Pi raises a complaint about the verification of their
part, the dealer will broadcast fi = f(i) (and γi if applicable) to enable ev-
eryone to verify it using the verification equation. If the verification passes,
the protocol continues as usual. However, if it fails, the dealer will be dis-
qualified, leading to a false verification outcome. Since the disqualification
decision is solely based on the information broadcasted, all honest share-
holders will ultimately reach a consensus either on a set of qualified parties
Q ⊆ {P1, P2, · · · , Pn} or on rejecting the final verification.

Reconstruction: Each party broadcasts the value fi (and γi if applicable). Take
t + 1 broadcasted values for which ci = C(z(i) − fi) (or ci = C(z(i) − fi, γi)),
and interpolate polynomial f̂(X) (and γ̂(X) if applicable) of degree t that pass
through those points. Compute f̂i = f̂(i) and r̂i = z(i) − f̂i (and γ̂i = γ(i) if
applicable) and verify that ci = C(r̂i) (or ci = C(r̂i, γ̂i)) for all i. If yes, output
f̂(0) else output false.

Fig. 2. Π: A Unified Framework for Building NI-VSS Schemes.

On another front, this proof can also be seen as a notably simplified version of
the proof in [1, Theorem 3.1], where the witness polynomial can be extracted
(reconstructed) through Lagrange interpolation, instead of rewinding the prover
(i.e., dealer). It’s worth noting that following a valid sharing phase, any coalition
of t+1 honest parties is capable of reconstructing the witness polynomial f(X).

As mentioned in the Verification algorithm, since the disqualification decision
is solely based on public (broadcast) information, all honest shareholders ulti-
mately reach the same decision. Moreover, if the dealer will be honest and follow
the Share algorithm, then the Verification algorithm will return true, and all the
honest shareholders will get a valid and distinct share of a unique secret.

Verifiability. In the majority-honest scenario where t+1 of the parties are honest,
with n ≥ 2t+1, this property is achieved via the (perfectly or computationally)
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binding property of the commitment scheme C. Assume w.l.o.g. that at least
P1, . . . , Pt+1 parties are honest. Let f(X), r(X) and z(X) := r(X)+f(X) be the
polynomials of degree t determined by values fi, ri, and fi+ri, for 1 ≤ i ≤ t+1.
If ci = C(z(i) − f(i)) for all i = 1, · · · , t + 1, then define fi := f(i). Otherwise,
set fi := 0.

The dealer has committed (in a distributed fashion) himself to the dis-
tinct values c1, . . . , cn by broadcasting πShare := (c1, . . . , cn, z(X)) and sending
{fi}ni=1 to n ≥ 2t+1 parties, where at least t+1 of them are honest. Therefore,
the values fi and ri := z(i)−fi for 1 ≤ i ≤ t+1 are set at the end of the sharing
phase, and consequently the polynomial f(x) is set. Then, the value of f0 is
well-defined at the end of the sharing phase, and given a degree-t polynomial
z(X), and opening of t+1 commitments with points ri := z(i)− fi, enables the
reconstruction of degree-t polynomials r(X) := z(X) − f(X) and f(X) using
Lagrange interpolation. Consequently, any t + 1 honest parties will be able to
collectively reconstruct the secret f(0).

It remains to show that at the end of the Reconstruction phase, any t+1 honest
parties output a unique value f0. Assume by contradiction that they reconstruct
f ′
0 ̸= f0 by choosing t + 1 values f ′

1, . . . , f
′
t+1, such that ci = C(z(i) − f ′

i). This
means that the t-degree polynomials f ′(X), and r′(X) interpolated by the points
f ′
i and z(i) − f ′

i (resp.) have the property that C(z(i) − f ′(i)) = C(r′(i)) = ci
for i = 1, . . . , t + 1, but f ′(X) ̸= f(X) (as they differ in the free term), thus
there must be an index j such that f ′(j) ̸= f(j). Since each degree-t polynomial
gets unique with its t+1 distinct evaluations, then the values (z(j)− f ′(j)) and
(z(j)−f(j)) are a double opening for the commitment, which is known to either
the dealer or Pj , which contradicts the hypothesis (the binding property of C).

Unpredictability. If the dealer is honest in the sharing phase, then the adversary
sees t points on a polynomial of degree t (i.e., f(X)) plus a masked degree-t
polynomial z(X) := f(X) + r(X) and all the commitment values ci := C(ri) for
i = 1, . . . , n. But as we assume that obtaining (random values) ri from ci is hard
(or infeasible in case of using a perfectly hiding commitment scheme C), then
from commitments {ci}ni=1 and the masked degree-d polynomial z(X), obtaining
the values of f(X) or r(X) in other points is computationally hard (or infeasible).
Note that t evaluations of a degree-t polynomial, information theoretically does
not reveal any information about the target polynomial. Hence, the adversary
cannot recover (or learn any information about) other points, including the secret
value f(0), from (z(X), c1, . . . , cn). In other words, given the individual shares
(i.e., statements) of t (corrupted) parties, it is possible to simulate the view of the
adversary. To this end, w.l.o.g., given the shares {fi}ti=1, the simulator samples
two random degree-t polynomials r′(X) and f ′(X), such that f ′(i) = fi for
i = 1, . . . , t. Then, the simulator sets c′i = C(r′(i)) for i = 1, . . . , n and z′(X) :=
r′(X) + f ′(X), and returns (c′1, . . . , c

′
n, z

′(X)) as the simulated transcript. It’s
worth noting that the proof can naturally be extended to the scenario where
we instantiate the commitment scheme C with a perfectly hiding commitment
scheme, such as Pedersen’s scheme [18]. In that case, the resulting VSS scheme
can also achieve information theoretical unpredictability. ⊓⊔
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Efficiency. Following Shamir secret sharing, the process of sharing f0 among n
parties with a threshold of t requires the dealer to compute n evaluations of a
degree-t polynomial f(X). Subsequently, to generate πShare, the dealer needs to
compute an additional set of n evaluations for r(X) (and γ(X) if applicable).
This process also involves generating n commitments and performing t subtrac-
tions between the coefficients of f(X) and r(X), which should ideally be highly
efficient in practice. During the verification phase, parties take part in the verifi-
cation of Π (outlined in Fig. 2) and disseminate the final output to the network.
As part of this procedure, each party needs to evaluate a degree-t polynomial
z(X) and compute a single commitment. Regarding communication, the dealer
broadcasts (c1, . . . , cn, z(X)), which consists of n commitments and t + 1 poly-
nomial coefficients. The dealer also securely sends a share to each participant.

Remark 3.1. In Π, it is assumed that given commitment scheme C and commit-
ments {ci = C(r(i))}ni=1, where r(X) is a random (at most) degree-t polynomial
and commitment is done without randomness, the task of obtaining the polyno-
mial r(X) is computationally hard. The hardness of this general problem can be
reduced to the hiding property of C. For instance, if given c1 and c2, an adversary
A can return r(X) = a+ bX such that c1 = C(a+ b) and c2 = C(a+2b), then we
can construct an adversary B that, given c1 = C(d), employs A as a subroutine
and computes d. This would break the hiding property (i.e., the one-wayness) of
C (e.g., DL problem or pre-image resistance of a hash function).

4 Constructing NI-VSS Schemes Via Π

The strength of Π lies in its generality, simplicity, and efficiency, as it only re-
quires a secure commitment scheme C. Such a commitment scheme is one of the
core primitives in cryptography, and it can be built efficiently. In this section,
we employ different commitment schemes for C and utilize Π to build several
NI-VSS schemes. The proposed schemes exhibit various trade-offs in terms of
efficiency and security. To achieve this goal, we commence by revisiting estab-
lished constructions from the existing literature. Subsequently, leveraging Π, we
introduce an alternative scheme for each NI-VSS scheme.

4.1 ΠF: A Novel NI-VSS Scheme from Discrete Logarithm

Overview of Feldman NI-VSS Scheme. One of the primary computation-
ally secure NI-VSS schemes is Feldman’s scheme, which is based on Shamir and
was proposed by Feldman in [12]. In Feldman’s scheme, given (n, t) and group
generator g, to share a high-entropy secret f0, the dealer proceeds as follows:

1. Sample a uniformly random degree-t polynomial f(X) := f0 + a1X + · · ·+
atX

t with coefficients in Zq, subject to f(0) = f0.
2. For i = 1, 2, · · · , n: set fi := f(i).
3. Compute c0 = gf0 and cj = gaj for j = 1, 2, · · · , t.
4. Set πShare := (c0, c1, . . . , ct); Sends share fi securely to party Pi and broad-

cast πShare as the proof.
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Then, to verify their received shares, given πShare := (c0, c1, . . . , ct), and the
individual shares {fi}ni=1: each party Pi uses her/his share fi and checks if gfi =∏t

j=0 c
ij

j and outputs either true or false. For n ≥ 2t + 1, if all n parties
return true, then the final Verification will return true. Otherwise, any possible
conflict between the dealer and the parties will be solved using a known conflict
resolution approach (also used in Π).

ΠF: An Efficient Alternative to Feldman Scheme. By instantiating Π
with a DL instance, namely by setting ci := gri , we obtain a novel NI-VSS
scheme, referred to as ΠF. This scheme provides an alternative construction
to the Feldman scheme [12]. In Fig. 3, we provide a concise overview of ΠF,
focusing solely on the steps that deviate from our general construction Π.

Share: Given group generator g, the parameters n and t, to share f0, the dealer
follows the steps outlined in Fig. 2, specifically, with the following deviations:
3. For i = 1, 2, · · · , n: Compute ci = gri .

Verification: Given g, πShare := (c1, . . . , cn, z(X)), and the shares {fi}ni=1:
1. Each party Pi first checks if z(X) is a degree t polynomial, and then uses

her/his share fi and checks if ci = gz(i)−fi . If the verification of Pi fails,
then Pi broadcasts a complain against the dealer.

Reconstruction: Using the reconstruction approach outlined in Fig. 2, each party
broadcasts the value fi. Take t + 1 broadcasted values for which ci = gz(i)−fi ,
and interpolate polynomial f̂(X) of degree t that pass through those points.
Compute f̂i = f̂(i) and r̂i = z(i)− f̂i and verify that ci = gr̂i for all i = 1. . . . , n.
If yes, output f̂(0), else output false.

Fig. 3. ΠF: A novel NI-VSS scheme based on discrete logarithm.

Under DL assumption, Theorem 3.1 and its security proof can be adapted for
ΠF. Note that, as in the Feldman scheme, in ΠF, given an acceptable πShare, an
adversary can compute gf0 . Consequently, f0 should contain sufficient entropy,
and the new VSS scheme is, at best, secure against computationally bounded
(classical) adversaries, meaning it relies on the intractability of computing the
DL. As can be seen, ΠF can have considerably faster verification compared to
the Feldman scheme. However, this advantage comes at the cost of slightly slower
sharing and increased communication. Please refer Tab. 1 for the details.

4.2 ΠP: A Novel NI-VSS Scheme from Pedersen Commitment

Overview of Pedersen NI-VSS Scheme. The Pedersen NI-VSS scheme is
a variation of Feldman’s scheme [12] that uses a perfectly hiding commitment
scheme. In Pedersen NI-VSS scheme, the commitment takes the form of a Ped-
ersen commitment, denoted as ci = gaihbi , where ai, bi are the coefficients of
two degree-t polynomials. This approach ensures that fewer than t parties re-
ceive no information about the secret, thereby achieving information-theoretical
unpredictability. In the Pedersen scheme, given two random group generators g
and h, and parameters n and t, the process of sharing f0 is done as follows:
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1. Sample two random degree-t polynomials f(X) := f0+a1X+ · · ·+atX
t and

r(X) := r0 + b1X + · · ·+ btX
t with coefficients in Zq, subject to f(0) = f0.

2. For i = 1, 2, · · · , n: set fi := f(i) and ri := r(i).
3. Compute c0 = gf0hr0 and cj = gajhbj for j = 1, 2, · · · , t.
4. Set πShare := (c0, c1, . . . , ct); Sends share (fi, ri) securely to party Pi and

broadcast πShare as the proof.

Then, to verify their received shares, given πShare := (c0, c1, . . . , ct), and the
individual shares {fi, ri}ni=1: each party Pi uses her/his share (fi, ri) and checks

if gfihri =
∏t

j=0 c
ij

j and outputs either true or false. The rest of the verification
is similar to the Feldman scheme.

ΠP: An Efficient Alternative to Pedersen Scheme. Instantiating Π with
the Pedersen commitment scheme, with two random group generators (g, h) ∈ G,
we obtain a novel DL-based NI-VSS scheme, named ΠP, that can be considered
as alternative to the Pedersen NI-VSS scheme. In ΠP, commitments ci are com-
puted using Pedersen commitment, i.e., ci = grihγi for i = 1, . . . , n, where
γi = γ(i) are new randomizers that are obtained by evaluating a new random
degree-t polynomial γ(X) for i = 1, . . . , n. In this case, the dealer also sends the
randomizer γi to party Pi. Then, given public values (g, h, ci, z(X)) and secret
values (fi, γi), party Pi first checks if z(X) is a degree t polynomial, and then
verifies if ci = gz(i)−fihγi and outputs either true or false. The description of
ΠP is summarized in Fig. 4.

Share: Given two random group generators (g, h), the parameters (n, t), to share f0,
the dealer follows the steps outlined in Fig. 2, but, with the following deviations:
3. Sample a new degree-t polynomial γ(X) with coefficients in Zq. For i =

1, 2, · · · , n, compute γi = γ(i) and set ci = grihγi .
5. Send shares (fi, γi) securely to party Pi and broadcast πShare as the proof.

Verification: Given (g, h), πShare := (c1, . . . , cn, z(X)), and the shares {fi, γi}ni=1:
1. Each party Pi first checks if z(X) is a degree t polynomial, and then uses

her/his share fi and checks if ci = gz(i)−fihγi . If the verification of Pi fails,
then Pi broadcasts a complain against the dealer.

Reconstruction: Using the reconstruction approach outlined in Fig. 2, each party
broadcasts the value fi and γi. Take t + 1 broadcasted values for which ci =
gz(i)−fihγi , and interpolate polynomial f̂(X) and γ̂(X) of degree t that pass
through those points. Compute f̂i = f̂(i), r̂i = z(i) − f̂i, and γ̂i = γ̂(i), and
verify that ci = gr̂ihγ̂i for all i = 1. . . . , n. If yes, output f̂(0), else output false.

Fig. 4. ΠP: A novel IT-secure NI-VSS scheme from Pedersen commitments.

Under DL assumption, Theorem 3.1 and its security proof can be adapted
for ΠP. Notably in this case, since the commitment scheme is perfectly hiding,
the resulting NI-VSS scheme can achieve IT unpredictability. As it can be seen,
the resulting NI-VSS scheme ΠP surpasses Pedersen NI-VSS scheme [18] in the
verification, and requires O(1) exponentiations in G. Please refer to Tab. 1, and
Tab. 2 for detailed comparisons.
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4.3 ΠLA: A Novel NI-VSS Scheme from Hash Functions

Overview of the RO-based NI-VSS Scheme of ABCP. Recently, Atapoor, Bagh-
ery, Cozzo, and Pedersen [1], proposed a general construction and showed that
given a NI-TZK proof scheme for the Shamir relation, given in eq. (1), one can
build a NI-VSS scheme based on Shamir secret sharing. Following their initial
result, they built a NI-TZK proof scheme for the Shamir relation, and then
used it to construct a novel NI-VSS scheme. Their resulting NI-VSS scheme
uses NI-TZK proofs, which uses a quantum RO and a quantum computationally
hiding commitment scheme, which both are built from hash functions. Their
construction is extremely efficient and outperforms the prior computationally
secure NI-VSS schemes from the literature. In their scheme, given n and t, to
share the secret f0, the dealer proceeds as follows:

1. Sample two random degree-t polynomials r(X) := r0+ b1X+ · · ·+ btX
t and

f(X) := f0+a1X+ · · ·+atX
t with coefficients in ZN , subject to f(0) = f0.

2. For i = 1, 2, · · · , n: set fi := f(i) and ri := r(i), and also samples two vectors
of randomnesses yi, y

′
i.

3. Compute ci = C(f(i), yi) and c′i = C(r(i), y′i) for i = 1, 2, · · · , n, where C is
a quantum computationally hiding commitment scheme.

4. Set the challenge value d = H(c1, . . . , cn, c′1, . . . , c′n), where H is an RO.
5. Set the response z(X) = r(X)− d · f(X);
6. Finally, set πShare := (c1, . . . , cn, c

′
1, . . . , c

′
n, Z(x)); Sends share fi and the

randomnesses (yi, y
′
i) securely to party Pi and broadcast πShare as the proof.

Verification. To verify their received shares, given πShare := (c1, . . . , cn, c
′
1, . . . , c

′
n,

z(X)), and the individual shares {fi}ni=1 and randomnesses {yi, y′i}ni=1: each
party Pi uses her/his share (fi, yi, y

′
i) and proceeds as follows: 1) checks if

C(fi, yi) = ci; 2) computes the challenge value d = H(c1, . . . , cn, c′1, . . . , c′n);
3) checks if C(z(i) + dfi, y

′
i) = c′i; and outputs either true or false. The rest of

the verification, i.e., conflict resolution, is the same as in Π (given in Fig. 2).

Reconstruction. The reconstruction phase can be done in a way similar to that of
Π. In [1], authors also introduced and employed a novel reconstruction approach
based on NI-TZK proofs, where the dealer discloses the main secret, and the par-
ties subsequently utilize their shares to confirm the authenticity of the revealed
secret f̂0. Intuitively, in this approach, the dealer employs the VSS scheme as a
distributed commitment to prove the authenticity of the disclosed secret f̂0.

ΠLA: A Practical NI-VSS Scheme from Hash Functions in the Plain Model.
By instantiating Π with a non-homomorphic commitment scheme, like those
based on hash functions, we obtain a novel PQ-secure NI-VSS scheme in the
plain model, named ΠLA. In ΠLA, commitments ci are computed as ci = H(ri)
for i = 1, . . . , n, where H is a well-defined secure hash function and the coef-
ficients of f(X) and r(X) are sampled randomly from ring ZN . Then, given
(fi, ci, z(X)), party Pi first checks if z(X) is a degree t polynomial, and then
verifies if ci = H(z(i) − fi) and outputs either true or false. The description
of ΠLA is summarized in Fig. 5.
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Share: Given a secure hash function H, the parameters n and t, to share f0, the
dealer follows the steps outlined in Fig. 2, but, with the following deviations:
3. For i = 1, 2, · · · , n: Compute ci = H(ri), where H is a secure hash function.

Verification: Given H, πShare := (c1, . . . , cn, z(X)), and the shares {fi}ni=1:
1. Each party Pi first checks if z(X) is a degree t polynomial, and then uses

her/his share fi and checks if ci = H(z(i)−fi). If the verification of Pi fails,
then Pi broadcasts a complain against the dealer.

Reconstruction: Using the reconstruction approach outlined in Fig. 2, each party
broadcasts the value fi. Take t+1 broadcasted values for which ci = H(z(i)−fi),
and interpolate polynomial f̂(X) of degree t that pass through those points.
Compute f̂i = f̂(i) and r̂i = z(i) − f̂i and verify that ci = H(r̂i) for all i =
1. . . . , n. If yes, output f̂(0), else output false.

Fig. 5. ΠLA: A novel PQ-secure NI-VSS scheme from hash functions.

Under pre-image resistance and collision resistance of hash function H, The-
orem 3.1 and its security proof can be adapted for ΠLA. Note that in this case ci
hides ri against computationally bounded (quantum) adversaries. ΠLA outper-
forms the ABCP scheme [1], by a constant factor in terms of all efficiency metrics
(please refer to Tab. 1, and Tab. 2), and notably does not require an RO. The
latter allows us to save considerably in the point-to-point communication cost
of ΠLA. One key reason is that in ΠLA, the parties do not need to download
the full proof πShare := (c1, . . . , cn, z(X)), to compute the challenge value, and
intuitively the challenge value always is equal to 1.

4.4 Efficiency Comparisons of New NI-VSS Schemes

We conducted an analysis of the asymptotic costs for the proposed NI-VSS
schemes (ΠF,ΠP,ΠLA) and compared them to relevant constructions from ex-
isting literature. A summary of the results can be found in Table 1.

Empirical Performance of Pedersen, ΠP, ABCP, and ΠLA Schemes.
In addition, we assessed the practical performance of ΠP and ΠLA through a
prototype implementation in SageMath and compared their performance with
the Pedersen scheme and the recently proposed ABCP construction [1]. We used
the source code implementations for the Pedersen and ABCP schemes from [1] 4.
Our experiments are done using the elliptic curve Ed25519 and the hash function
SHA256, on a laptop with Ubuntu 22.04 LTS, a 11th Gen Intel(R) Core(TM) i9-
11950H at base frequency 2.60GHz, and 64GB of memory. Both the sharing and
verification algorithms are executed in single-thread mode. We have summarized
our implementation results for various parameter sets in Tab. 2.

Upon comparing the implementation outcomes of the Pedersen scheme with
those ofΠP, it becomes apparent thatΠP yields a remarkable acceleration in the
verification phase. Notably, ΠP achieves verification times that are 20×, 261×,
and 490× faster in comparison to the Pedersen scheme for the parameter pairs
(n, t) equal to (128, 63), (2048, 1023), and (16384, 8191), respectively. In terms

4 Available on https://github.com/Baghery/VSS-ABCP23.
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Table 2. Implementation results of VSS schemes Pedersen [18], ΠP, ABCP [1], and
ΠLA. n: Number of parties, t: Threshold value, |Zq| = |ZN | = |G| = |H| = 256 bits.

(n, t) Metrics Pedersen [18] ΠP ABCP [1] ΠLA

Sharing 84.6 msec 167.4 msec 2.8 msec 1.8 msec
Verification 11.9 msec 5.4 msec 0.14 msec 0.09 msec

(32, 15) Dealer’s Broadcast 0.5 KB 1.5 KB 2.5 KB 1.5 KB
Dealer’s Private Com. 2.0 KB 2.0 KB 1.0 KB 1.0 KB
Parties’ Download 0.5 KB 0.53 KB 2.5 KB 0.53 KB

Sharing 342 msec 677 msec 15.1 msec 12.2 msec
Verification 112.0 msec 5.6 msec 0.46 msec 0.33 msec

(128, 63) Dealer’s Broadcast 2.0 KB 6.0 KB 10.0 KB 6.0 KB
Dealer’s Private Com. 8.0 KB 8.0 KB 4.0 KB 4.0 KB
Parties’ Download 2.0 KB 2.03 KB 10.0 KB 2.03 KB

Sharing 1.45 sec 2.82 sec 0.15 sec 0.13 sec
Verification 624 msec 6.5 msec 1.4 msec 1.1 msec

(512, 255) Dealer’s Broadcast 8.0 KB 24.0 KB 40.0 KB 24.0 KB
Dealer’s Private Com. 32.0 KB 32.0 KB 16.0 KB 16.0 KB
Parties’ Download 8.0 KB 8.03 KB 40.0 KB 8.03 KB

Sharing 7.24 sec 13.43 sec 2.09 sec 1.95 sec
Verification 2.61 sec 10.2 msec 5.6 msec 4.9 msec

(2048, 1023) Dealer’s Broadcast 32.0 KB 96.0 KB 160.0 KB 96.0 KB
Dealer’s Private Com. 128.0 KB 128.0 KB 64.0 KB 64.0 KB
Parties’ Download 32.0 KB 32.0 KB 160.0 KB 32.0 KB

Sharing 52.1 sec 88.6 sec 32.8 sec 31.1 sec
Verification 10.54 sec 0.042 sec 0.021 sec 0.019 sec

(8192, 4095) Dealer’s Broadcast 128 KB 384 KB 640 KB 384 KB
Dealer’s Private Com. 512 KB 512 KB 256 KB 256 KB
Parties’ Download 128 KB 128 KB 640 KB 128 KB

Sharing 164.6 sec 268.0 sec 129.0 sec 122.2 sec
Verification 21.1 sec 0.043 sec 0.046 sec 0.038 sec

(16384, 8191) Dealer’s Broadcast 256 KB 768 KB 1280 KB 768 KB
Dealer’s Private Com. 1024 KB 1024 KB 512 KB 512 KB
Parties’ Download 256 KB 256 KB 1280 KB 256 KB

of communication costs, ΠP demands a slightly larger data broadcast from the
dealer, amounting to 3× compared to 1× in the Pedersen scheme. We highlight
that these achievements within ΠP are accompanied by a slightly slower sharing
phase, resulting in speeds ranging from 1.62−1.97× in comparison to the baseline
of 1× in Pedersen scheme. Moreover, it’s worth noting that the disparity in costs
becomes less pronounced as the values of (n, t) increase. For instance, in the case
of (n, t) = (16384, 8191), the sharing phase of ΠP is approximately 62% slower
than the sharing phase of the Pedersen scheme. We believe that this gap can
be improved through various optimization techniques (e.g., by using improved
algorithms for evaluating a polynomial at multiple points).

Regarding, ΠLA, we can see that it surpasses the recent RO-based construc-
tion by ABCP [1] in terms of sharing, verification, and communication costs. Spe-
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cially, the shareholders required to download nearly 20% of the amount of data
compared to the their scheme. Notably, owing to their reliance on lightweight
cryptography and polynomial evaluations exclusively, both ΠLA and ABCP [1]
exhibit swifter performance than ΠP and the Pedersen scheme [18], which relies
on asymmetric cryptography.

It is worth mentioning that our implementation is done using SageMath, and
it remains relatively basic, functioning as a single-threaded process without spe-
cific optimizations. Given that our proposed schemes heavily rely on polynomial
evaluations, an effective optimization is to employ more efficient algorithms for
the evaluation of a polynomial at multiple points, as outlined in [24].

5 Generalizing DL and Schnorr Over Polynomials

As shown in Fig. 2, constructing an NI-VSS scheme via Π does not necessitate
the use of a random oracle. However, in various practical scenarios, particularly
when integrating distinct instantiations of Π into a threshold protocol (such
as DKGs and threshold signatures), or when designing a PVSS scheme, the
integration and design can require a ZK proof. This section introduces an efficient
NIZK PoK scheme that can serve as a tool for Π while maintaining relevance
for other threshold schemes and applications.

Let G be a group with hard DL, and g be the group generator. Let a prover
aim to convince a verifier that for the public statement F ∈ G, he knows a witness
f ∈ Zq which holds in relation RDL = {(g, F ), f | F = gf}. Schnorr’s known ID
protocol [19] allows a prover to efficiently achieve this goal. In the NIZK version
of Schnorr’s ID protocol, given g, f , a prover samples a randomness r ∈ Zq, sets
Γ = gr, and publishes Γ and z = r + d · f mod q as the proof, where d is the
challenge value obtained from the random oracle H, i.e., d := H(F, Γ ). Then,
given the statement (g, F ) and the proof (Γ, z), a verifier first sets d = H(F, Γ ),
and then checks if gz = ΓF d, and returns true or false.

Next, we generalize Schnorr’s ID protocol and present a NIZK PoK scheme
for the Polynomial DL (PDL) relation RPDL, defined as follows,

RPDL = {(g, xi, Fi), f(X) | Fi = gf(xi)}, i = 1, 2, . . . , n, (3)

where f(X) ∈ Zq[X]t is a (at most) degree t ≤ n − 1 witness polynomial with
coefficients defined over Zq, and x1, . . . , xn are n distinct elements from Zq. The
RPDL relation is base on the PDL problem defined as follows.

Definition 5.1 (Polynomial Discrete Logarithm Problem). Let G be a
finite cyclic group of order q generated by g. Given F1, . . . , Fn from G and distinct
elements x1, . . . , xn from Zq, find a polynomial f(X) ∈ Zq[X]t of (at most)
degree t, where 0 ≤ t ≤ n− 1, such that Fi = gf(xi) for all i = 1, . . . , n.

It can be seen that the hardness of the PDL problem can be reduced to
that of the DL problem. As an instance, let A be an adversary against the PDL
problem, and (g, h := gf ) be the challenge values for the DL problem. Then, one
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Prover: Given the statement (g, x1, . . . , xn, F1, . . . , Fn) and the witness polynomial
f(X), proceed as follows and output a proof π.
1. Sample a degree-t polynomial r(X) ∈ Zq[X]t; Set {Γi = gr(xi)}ni=1.
2. Set d← H(F1, . . . , Fn, Γ1, . . . , Γn), where H is a random oracle.
3. Set z(X) = r(X) + d · f(X) (mod q);
4. Return π := (Γ1, . . . , Γn, z(X))

Verifier: Given statement (g, {xi, Fi}ni=1) and π := (Γ1, · · · , Γn, z(X)), the verifier
first checks if z(X) is a degree-t polynomial. If so, then sets d← H(F1, . . . , Fn,
Γ1, . . . , Γn) and checks if: gz(xi) = Γi(Fi)

d for i = 1, . . . , n, and outputs true

or false. Note that to make the communication shorter, as in Schnorr’s ID
protocol, alternatively, the prover could publish π := (d, z(X)), and then
the verifier would need to check if z(X) is a degree-t polynomial and d =

H(F1, . . . , Fn,
gz(x1)

Fd
1

, . . . , gz(xn)

Fd
n

).

Fig. 6. πPDL: An efficient NIZK proof of knowledge for RPDL.

can construct an adversary B that acts as follows. B sets F1 := h, x1 := 1, x2 := 2,
and additionally samples another random element F2 fromG, and sends the tuple
(g, x1, x2, F1, F2) to the adversary A. If A returns f(X) such that F1 = gf(1)

and F2 = gf(2), then B returns f(1) as the answer to the DL challenge.
We assume t + 1 ≤ n in the PDL problem, however, it’s worth noting that

as we increase n, we add more evaluations of f(X) into the statement. Thus, we
anticipate the existence of an upper bound for n (probably for a specific t), and
we leave it as an interesting feature research question.

Generalization of Schnorr Protocol. In Fig. 6, we introduce a generalized
version of Schnorr’s NIZK PoK protocol, which enables a prover to generate a
NIZK proof of knowledge for the relation RPDL, as defined in Eq. (3).

Theorem 5.1 (A NIZK Proof of Knowledge for RPDL). Let g be the
generator of G, {Fi}ni=1 ∈ G, {xi}ni=1 be n distinct elements from Zq, and t be
the (maximum) degree of witness polynomial f(X). Assuming PDL is hard, for
0 ≤ t < n, the protocol πPDL (described in Fig. 6) is a NIZK PoK for RPDL in
the RO model.

Proof. We first prove the security of the interactive case, and then using standard
Fiat-Shamir transform, extend it to the non-interactive case in the RO model.

Completeness. If the prover and verifier honestly follow the protocol, for i =
1, . . . , n, we have

gz(xi) = gr(xi)+df(xi) = gr(xi) + (gf(xi))
d
= ΓiF

d
i .

Special Soundness: Let (Γi, d, z(X)) and (Γi, d
′, z′(X)) be two acceptable tran-

scripts with the same commitments and different challenge values, that are ob-
tained by rewinding. Then, from the verification equation, we know that for
i = 1, . . . , n :

gz(xi) = Γi(Fi)
d , gz

′(xi) = Γi(Fi)
d′

.
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This implies that, for i = 1, . . . , n:

gz(xi)−z′(xi) = F d−d′

i ⇒ Fi = g
z(xi)−z′(xi)

d−d′ .

Since z(X) is a degree-t polynomial, therefore, if all the n ≥ t+1 of the checks

pass, from fi := z(xi)−z′(xi)
d−d′ for i = 1, . . . , n, we can obtain n ≥ t + 1 distinct

evaluations of a unique degree-t polynomial at points x1, . . . , xn. Considering
the fact that any degree-t polynomial can be determined from its t+ 1 distinct
evaluations, using Lagrange interpolation, w.l.o.g. an extractor can use {fi}t+1

i=1

and reconstruct (extract) a unique degree-t polynomial f(X), which is a witness
(resp. solution) for RPDL relation (resp. PDL problem).

Honest Verifier Zero-Knowledge (HVZK): Next, we show that given the state-
ment (g, {xi, Fi}ni=1) and the challenge value d, a simulator can simulate the
transcript of the protocol. To this end, the simulator first randomly samples a

degree-t polynomial z′(X) ∈ Zq[X]t. Then, for i = 1, . . . , n: sets Γ ′
i = gz′(xi)

Fd
i

.

Finally, the simulator returns ({Γ ′
i}ni=1, z

′(X)) as the simulated proof. As it can
be seen, since z′(X) is sampled randomly, therefore {Γ ′

i}ni=1 are also random,
and the simulated proof is indistinguishable from the real one.

Since the interactive scheme is public coin, and satisfies completeness, (per-
fect) special soundness, and (computational) HVZK, then, in the random oracle
model, using Fiat-Shamir transform [13], it can be turn into a NIZK proof of
knowledge scheme for RPDL (defined in eq. (3)). ⊓⊔

Efficiency of πPDL and Related works. In πPDL, a prover needs to evaluate
a degree-t polynomial in n points, and compute n EXP in G and a single hash.
Subsequently, the prover publishes a proof π := (d, z(X)), comprising t+2 field
elements. On the other side, a verifier needs to evaluate a degree-t polynomial
in n points, and compute 2n EXP, and 1 hashing operation.

To the best of our knowledge, this is the first time that the problem PDL
(given in Eq. (3)) is explicitly defined and a NIZK PoK is presented for it.
However, it is worth noting that it has been implicitly used in previous VSS
schemes [7, 8, 12, 20]. In Feldman VSS scheme [12], given a set of commit-
ments {cj}tj=0, one can compute gf(i) for arbitrary value of i using the formula

gf(i) =
∏t

j=0 c
ij

j . In [8], Cascudo and David also developed a sigma protocol for
a variant of RPDL. In this variation, they utilize different generators, specifically

Fi = g
f(i)
i , instead of Fi = gf(i). However, when examining the proof of special

soundness in their sigma protocol [8, Proposition 1], certain steps are unclear.
Notably, there is an absence of a definitive statement and reduction to a hardness
assumption. In other words, their proof of special soundness lacks an extraction
algorithm. Furthermore, in their work [8], they introduce a probabilistic check
protocol for RPDL and specify that they have no prover. In a general sense, their
check protocol uses locally computable checks based on [7]. In this approach, ver-
ifiers employ a random codeword from the dual code of the Reed-Solomon code,
which was used in the statement. However, in essence, their check protocol can
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be seen as a non-interactive proof scheme that, in comparison to our perfectly
complete NIZK proof of knowledge scheme πPDL, achieves only plain soundness
and probabilistic completeness. Tab. 3 compares the performance metrics for our
proposed NIZK proof of knowledge πPDL and compares it with the probabilistic
check protocol from [8].

Table 3. A comparison of NIZK PoK πPDL with Cascudo and David’s probabilistic
check protocol for RPDL [8]. n: # Elements in the statement, t: degree of the witness
polynomial, EG: Exponentiation in group G, MG: Multiplication in G, PE : degree-t
Polynomial Evaluation, H: Hashing, |Zq/G|: Zq/G element size, |π|: proof size, |stat|:
Statement size.

Proof Schemes Prover |π|+ |stat| Verification

Check Protocol [8] n EG + n PE n |G| n EG + n PE + n MG

πPDL, Fig. 6 n EG + n PE + 1 H t |Zq| + n |G| 2n EG + n PE + 1 H

6 ΠS: A Novel PVSS Scheme from DL

Building upon the new NI-VSS scheme ΠF (from Sec. 4.1) and leveraging the
new NIZK PoK scheme πPDL (from Sec. 5), we present a novel PVSS scheme in
this section. It offers a more efficient alternative to Schoenmakers’ scheme [20].
To provide context, we initially provide an overview of Schoenmakers’ construc-
tion [20], and then we proceed to introduce the new scheme.

Overview of Schoenmakers PVSS Scheme. In Crypto 99, Schoenmakers
proposed a PVSS scheme, based on Feldman’s scheme, which allows a dealer
to encrypt the shares under the public key of the parties, and then generate a
publicly-verifiable non-interactive ZK proof to show that the secret sharing and
encryptions are done correctly.

Let g, h be two random generators of the group G. In the initialization step,
a party Pi generates a secret key si ←$ Zq and registers yi = gsi , as its pub-
lic key. Then, given n and t, to share a high-entropy secret f0, the dealer of
Schoenmakers’ construction proceeds as follows:

1. Sample a uniformly random degree-t polynomial f(X) := f0 + a1X + · · ·+
atX

t with coefficients in Zq, subject to f(0) = f0.

2. For i = 1, 2, · · · , n: set fi := f(i) and y′i = y
f(i)
i .

3. Set c0 = hf0 and cj = haj for j = 1, 2, · · · , t.
4. Let xi =

∏t
j=0 c

ij

j , for i = 1, 2, · · · , n. Then, the dealer shows that the
encrypted shares y′i are consistent by producing a proof of knowledge of the

unique f(X), 1 ≤ i ≤ n, satisfying: xi = hf(i) ∧ y′i = y
f(i)
i .

5. To generate the proof for above relation, the dealer uses an extended version
of Chaum-Pedersen PoK scheme for DLEQ [9] and acts as follows:

(a) For i = 1, 2, · · · , n, it samples ri ←$ Zq, and sets ai = hri and bi = yrii .
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(b) Using Fiat-Shamir transform, feeds {ai, bi, xi, y
′
i}ni=1 into the random

oracle H, an obtains a challenge value d ∈ Zq.
(c) For i = 1, 2, · · · , n: computes zi = ri − d · fi mod q.

6. Publish πShare := (h, cj , yi, y
′
i, d, zi) for 0 ≤ j ≤ t, and 1 ≤ i ≤ n.

Verification. To verify the shares, given πShare := (h, cj , yi, y
′
i, d, zi) for 0 ≤ j ≤

t, and 1 ≤ i ≤ n, the verifier acts as follows:

- For 1 ≤ i ≤ n: computes xi =
∏t

j=0 c
ij

j .

- For 1 ≤ i ≤ n: using (h, d, xi, yi, y
′
i, zi), computes ai and bi, as follows

ai := hzixd
i , bi := yzii (y′i)

d

and checks if the hash of {ai, bi, xi, y
′
i}ni=1 matches the challenge value d. If

so returns true, otherwise returns false.

Reconstruction. To reconstruct the secret gf0 , the parties proceed as follows.

1. They first use their secret key si, and obtain their share Fi := gfi from yi
by computing Fi = y

1/si
i . Then, they publish Fi plus a NIZK proof that the

value Fi is a correct decryption of yi. To this end, the party Pi needs to
prove knowledge of an si such that, (hi = gsi) ∧ (yi = F si

i ), which is done
using Chaum-Pedersen [9] proof system for DLEQ (described in Fig. 1).

2. Then, given any t+1 valid values of Fi, w.l.o.g. for i = 1, . . . , t+1, the secret
gf(0), can be obtained by Lagrange interpolation,∏t+1

i=1 F
λi
i =

∏t+1
i=1(g

fi)λi = g
∑t+1

i=1 fiλi = gf(0) = gf0 ,

where λi =
∏

j ̸=i
j

j−i is a Lagrange coefficient.

ΠS: An Efficient Alternative to Schoenmakers Scheme. Let g be a ran-
dom generator of group G. In the initialization step, a party Pi generates a secret
key si ←$ Zq and registers hi = gsi , as its public key.

As observed earlier, in a PVSS scheme, the dealer encrypts the shares under
the public keys of the parties and subsequently proves the validity of these en-
crypted shares. This means ensuring that all the encrypted shares are distinct
evaluations of a unique degree-t polynomial f(X). Next, we show that build-
ing upon ΠF and incorporating the NIZK PoK πPDL (shown in Fig. 6) for
n ≥ 2t+ 1, we can develop a more efficient PVSS scheme, designated as ΠS. In
ΠS, the dealer initially encrypts the shares fi under the public key hi by com-
puting yi = hfi

i for i = 1, . . . , n. Subsequently, the dealer employs a minimally
modified version of the prover from πPDL. This modified prover operates with
the inputs (h1, . . . , hn, 1, . . . , n, y1, . . . , yn) instead of (g, 1, . . . , n, y1, . . . , yn), and
generates a NIZK proof (d, z(X) = r(X) + df(X)). In this adapted version of

πPDL, the prover, for i = 1, . . . , n, sets ci = h
r(i)
i instead of the original pro-

tocol’s ci = gr(i). At the end, the dealer discloses {yi}ni=1 as the encryptions of
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Initialization: As in Π, given the generator g for G, parties register a PK hi := gsi .

Share: Given {hi}ni=1, the parameters n and t, to share f0, the dealer acts as follows:
- Samples a uniformly random polynomial f(X) of degree t with coefficients
in Zq, subject to f(0) = f0.

- For i = 1, 2, · · · , n: sets yi := hfi
i as the encryption of fi = f(i).

- Runs a minimally modified version of the prover of πPDL (outlined in Fig. 6)
with (hi, i, yi)

n
i=1 and obtains πShare := (d, z(X) = r(X) + df(X)).

- Broadcasts {yi}ni=1 as the encryption of shares, and πShare as the proof.

Verification: Given {hi}ni=1, ciphertexts {yi}ni=1, and the proof πShare := (d, z(X)),
a verifier first checks if z(X) is a degree-t polynomial. If so, it checks if d =

H(y1, . . . , yn, h
z(1)
1

yd
1

, . . . , h
z(n)
n

yd
n

) and returns true or false.

Reconstruction: Based on the reconstruction approach outlined in Fig. 2 and [20]
parties proceed as follows.
1. They first use their secret key si, and obtain their share Fi := gfi from yi

by computing Fi = y
1/si
i . Then, they publish Fi plus a NIZK proof that

the value Fi is a correct decryption of yi. To this end, the party Pi needs to
prove knowledge of an si such that, (hi = gsi) ∧ (yi = F si

i ), which can be
done by the NIZK proof scheme for the DLEQ relation (given in Fig. 1).

2. Then, given any t + 1 valid values of Fi, w.l.o.g. for i = 1, . . . , t + 1, the
secret gf(0), can be obtained by Lagrange interpolation,∏t+1

i=1 F
λi
i =

∏t+1
i=1(g

fi)λi = g
∑t+1

i=1 fiλi = gf(0) = gf0 ,

where λi =
∏

j ̸=i
j

j−i
is a Lagrange coefficients.

Fig. 7. ΠS: A novel PVSS scheme from discrete logarithm.

shares and πShare := (d, z(X)) as the proof 5. Its important to note that, in ΠS,
similar to Schoenmakers’ scheme [20], the secret is equal to gf(0).

Verification. Given ({hi, yi}ni=1, d, z(X)), to verify the shares, a public verifier
first checks if z(X) is a degree-t polynomial. If so, it checks if d = H(y1, . . . , yn,
h
z(1)
1

yd
1

, . . . ,
hz(n)
n

yd
n

), and outputs either true or false.

Reconstruction. The reconstruction phase can be done in the same way as in
Schoenmakers’ PVSS scheme [20], which we summarized before. Note that, as in
Schoenmakers’ scheme, to reconstruct the secret gf(0), the parties do not learn
and use the values of f(i), rather than Fi = gf(i). Also, they do not expose their
secret keys, and party Pi can reuse his key pair (hi, si) in several runs of the
PVSS scheme. The description of ΠS is summarized in Fig. 7.

5 It’s important to note that this variant of πPDL shares similarities with the sigma
protocol proposed in [8], but with two key differences. In our case, we make a crucial
assumption that n ≥ 2t + 1 (as opposed to their protocol where it’s n > t) and we
require at least t+1 of the public key owners to be honest and not collude with the
dealer. Relying on these two assumptions, we are able to prove the special soundness
of this variant, and given the secret keys of t+1 honest parties, construct an efficient
extraction algorithm that extracts the witness from the prover (i.e., the dealer). For
more details, please refer to the proof of Theorem 6.1.
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Security. The security of ΠS can be proven in the random oracle model through
some modifications in the proof of Theorem 5.1 and by referencing [20, Theorem
1, 2] under the PDL and Decisional Diffie-Hellman (DDH) assumptions.

Theorem 6.1 (Security of PVSS Scheme ΠS). Under the PDL and De-
cisional Diffie-Hellman (DDH) assumptions, the VSS scheme ΠS (outlined in
Fig. 7), is a secure PVSS scheme against an static adversary in the random ora-
cle model. That is, (i) the Reconstruction protocol results in the secret distributed
by the dealer for any qualified set of shareholders, (ii) any non-qualified set of
shareholders is unable to recover any (partial) information on the secret.

Proof. We need to show that for any group of t+1 honest parties (referred to as
a qualified set), the reconstruction protocol outlined in Fig. 7 results in a unique
secret gf(0), distributed by the dealer. Additionally, we need to show that the
new scheme satisfies unpredictability, meaning that, any subset of up to t parties
is unable to recover any (partial) information on the secret.

To begin, akin to the proof of Theorem 5.1, for proving the special sound-
ness of the interactive variant of the NIZK proof scheme employed during the
sharing phase, we can argue as follows. Given two acceptable transcripts of the
(interactive) protocol, denoted as (ci, d, z(X)) and (ci, d

′, z′(X)) for i = 1, . . . , n,
from the verification equation, we know that

h
z(i)
i = ci(yi)

d , h
z′(i)
i = ci(yi)

d′
for i = 1, . . . , n .

This implies that,

h
z(i)−z′(i)
i = yd−d′

i ⇒ yi = h
z(i)−z′(i)

d−d′
i for i = 1, . . . , n .

Then, if all n ≥ 2t+1 of the checks in the verification process successfully, given
the reconstruction protocol detailed in Fig. 7, any set of t+1 honest parties can

decrypt {yi}i∈Q,|Q|=t+1, as Fi := y
1/si
i , and rewrite the last equation as below,

gz(i)−z′(i) = F d−d′

i ⇒ Fi = g
z(i)−z′(i)

d−d′ for i ∈ Q, |Q| = t+ 1.

Now, since z(X) is a degree-t polynomial, and since from fi := z(i)−z′(i)
d−d′ for

i ∈ Q, |Q| = t + 1, we obtain t + 1 distinct evaluations of a degree-t polyno-

mial z(X)−z′(X)
d−d′ , therefore an extractor can use {fi}i∈Q,|Q|=t+1 and reconstruct

(extract) a unique degree-t polynomial f(X), which is a witness for the RPDL

relation (or PDL problem). This implies that, any set of t + 1 honest parties,

can use their individual (decrypted) shares Fi := y
1/si
i , employ Lagrange inter-

polation (as in Fig. 7), and evaluate a unique degree-t polynomial f(X) in the
exponent for i = 0, 1, . . . , n. By evaluating gf(X) at point 0, they can obtain a
unique secret value gf(0).

Regarding unpredictability, it’s important to first note that directly breaking
the encryption used in the PVSS scheme implies breaking the Computational
Diffie-Hellman (CDH) assumption. Because, given g, hi = gsi , yi = hfi

i = gsifi ,
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an adversary would need to compute gfi . It is not a difficult task to show that if
an adversary A, manages to compute gfi with some success probability, we can
construct another adversary B which employs A as a subroutine and breaks the
CDH assumption with the same success probability. However, this alone does not
show that parties cannot obtain partial information about the secret gf0 . Fur-
thermore, we show that the view of up to t parties is simulatable. To achieve this
goal, a simulator proceeds as follows. W.l.o.g., it first samples f(1), . . . , f(t) ran-

domly from Zq and sets F1 = gf(1), . . . , Ft = gf(t), and y1 = h
f(1)
1 , . . . , yt = h

f(t)
t ,

where h1, . . . , ht are public keys of the t parties. Then, he samples Ft+1 = gft+1

randomly, without knowing ft+1. Since the point ft+1 = f(t+1) is only given im-
plicitly, we cannot compute the point f(t+2), . . . , f(n). It suffices, however, that
we can compute Ft+2 = gft+2 , . . . , Fn = gfn by Lagrange interpolation, which
also yields the remaining shares. The simulator, now deviates from the protocol
by computing the public keys hi of parties {Pi}ni=t+1 as hi := gwi for random
wi ∈ Zq. Then, the simulator sets yi = Fwi

i for i = t + 1, . . . , n. This leads to

obtain h1, . . . , hn and y1 = h
f(1)
1 , . . . , yn = h

f(n)
n , as required. Next, we note that

the underlying proof scheme (i.e., a variant of πPDL from Fig. 6) is honest-verifier
zero-knowledge in the interactive case (and ZK in the non-interactive case). Akin
to the proof of Theorem 5.1, given the (simulated) statement {hi, yi}ni=1 and the
challenge value d, the simulator can sample a random degree-t polynomial z′(X)

and set c′i := h
z′(i)
i /ydi for i = 1, . . . , n. This results in a simulated transcript

which under Decisional Diffie-Hellman (DDH) assumption is indistinguishable
from the real view of up to t parties.

Note that the statement that parties cannot get any partial information
from (hsi

i = gsifi , hi = gsi) about the random secret si and fi holds under the
assumption that ElGamal encryption is semantically secure, which is known to
be equivalent to the DDL assumption. Recall that in ElGamal cryptosystem,
given the public key (g, h = gf ), an encryption of message m = 1 is equal to
(hs, gs), where s is a random value from Zq. ⊓⊔

Efficiency. Compared to Schoenmakers’ scheme [20] and its variants introduced
in [7], ΠS offers a better efficiency in general. However, it’s worth noting that by
applying the same optimization as used in ΠS to reduce the proof length, the
unpacked version of Cascudo and David’s scheme [8] can achieve a performance
level on par with ΠS. For a detailed comparison, please refer to Table 1.

7 Conclusion

We introduced Π, as a unified framework for building NI-VSS protocols based
on Shamir secret sharing [21] that only requires a secure commitment scheme,
works in the majority honest setting, and achieves optimal resilience.

Leveraging Π, we proposed three NI-VSS schemes, so called ΠF,ΠP, ΠLA,
and a PVSS scheme, labeled ΠS, which each satisfies different properties. ΠF

and ΠP are two alternatives to the well-known NI-VSS schemes proposed by
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Feldman [12] and Pedersen [18], while offering a significantly faster verification.
ΠLA is another instantiation ofΠ in the plain model which outperforms the RO-
based NI-VSS scheme of Atapoor, Baghery, Cozzo, and Pedersen [1] in terms of
both computational and communication costs. ΠS is a variation of Schoenmak-
ers’ construction [20] and represents a highly efficient PVSS scheme.

We evaluated the empirical performance of our proposed NI-VSS schemes
ΠP and ΠLA, and compared them with Pedersen [18] and ABCP [1] construc-
tions. Our asymptomatic comparisons and implementation results confirm that
in general our proposed constructions, outperform the state-of-the-art NI-VSS
schemes in the majority-honest setting. Particularity, ΠLA can be an attractive
scheme for post-quantum threshold cryptography.

We instantiated Π with DL-based and hash-based commitments. However,
it is general enough to be instantiated with different commitment schemes, par-
ticularity those that are based on PQ-secure cryptographic assumptions.

As a tool for Π, we proposed a novel NIZK proof scheme that might be
independently interesting. Specifically, we have defined an extended version of
the discrete logarithm relation over polynomials, named RPDL, and presented a
new variant of Schnorr’s NIZK proof of knowledge scheme for the RPDL relation.
We think that this new NIZK Proof of Knowledge scheme for the RPDL relation
can be a useful tool for the development of more efficient threshold protocols
based on Shamir secret sharing. As an example, we have already incorporated it
within PVSS scheme ΠS.

At the end, we highlight that the notable efficiency and simple nature of
the new framework makes it a valuable tool for constructing more efficient VSS
schemes and revisiting a wide range of threshold protocols (e.g. DKG protocols,
threshold signatures, threshold decryption, and more). Delving into the details
of such protocols lies beyond the main scope of this paper. Future research can
explore the further applications of Π and integration of new NI-VSS schemes
and the new NIZK proof scheme into various cryptographic protocols.
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