
Modular Design of KEM-Based

Authenticated Key Exchange

Colin Boyd Bor de Kock Lise Millerjord∗

NTNU – Norwegian University of Science and Technology, Trondheim, Norway.

colin.boyd@ntnu.no, bor.dekock@ntnu.no, lise.millerjord@ntnu.no

Abstract

A key encapsulation mechanism (KEM) is a basic building block for key exchange
which must be combined with long-term keys in order to achieve authenticated key
exchange (AKE). Although several KEM-based AKE protocols have been proposed,
KEM-based modular building blocks are not available. We provide a KEM-based
authenticator and a KEM-based protocol in the Authenticated Links model (AM),
in the terminology of Canetti and Krawczyk (2001). Using these building blocks we
achieve a set of generic AKE protocols. By instantiating these with post-quantum
secure primitives we are able to propose several new post-quantum secure AKE
protocols.

1 Introduction

Authenticated key exchange (AKE) is a fundamental tool for establishing secure com-
munications. An important component in the design of AKE protocols is Diffie–Hellman
(DH) key exchange, due to its versatility and potential for providing security properties
such as forward secrecy. Today many real-world AKE protocols are based on DH imple-
mentations, typically in elliptic curve groups; examples include TLS, IPSec, WireGuard
and the generic Noise Framework.

The looming threat of quantum computers has brought about an increasingly pressing
need to find post-quantum secure replacements for DH, which itself is well known to
be broken by Shor’s quantum algorithm for finding discrete logarithms [BL17]. In the
absence of many promising candidates for a post-quantum secure direct DH replacement,
designs for post-quantum AKE have tended to make use of key encapsulation mechanisms
(KEM). This approach aligns well with the research literature where many post-quantum
candidate KEMs have been proposed and also with the prominent NIST post-quantum
cryptography competition [AAC+22] which requests primitives of only two types, namely

∗Millerjord is supported by the Research Council of Norway under Project No. 288545. Author list in
alphabetical order; see https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

1

colin.boyd@ntnu.no
bor.dekock@ntnu.no
lise.millerjord@ntnu.no
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

Modular Design of KEM-Based Authenticated Key Exchange

a KEM 1 or a digital signature. Although DH can be framed as a KEM, DH has special
properties which prevent KEMs from being used as a drop-in replacement for DH. For
example, DH has the property that two parties can generate their DH shares completely
independently; this cannot be achieved in general with KEMs, but rather one party must
wait for the other party’s input.

Achieving the authenticated part of AKE has traditionally been done by applying a
digital signature scheme on the messages of a key exchange protocol, but authentication
can also be achieved in different ways, which can be advantageous for several reasons:
for instance to achieve a speed-up or use less memory, as other works have demonstrated
[SSW20].

Although the NIST competition for post-quantum secure cryptography (PQ or PQ-
crypto) has in 2022 led to the standardization of several KEMs, only the CRYSTALS-
Dilithium signature scheme was standardized along with an open call for more schemes
to be proposed [AAC+22]. To achieve authentication without depending on this one
scheme is a desirable property. One of the main motivations for our work is to be
flexible in the use of cryptographic primitives so that as the security of post-quantum
KEMs or signatures becomes better understood, and as new primitives are designed, it
is easy to swap in and out different ones.

1.1 Modular design of AKE

Over the past decade, several key exchange protocols using post-quantum candidate
KEMs have been proposed, both authenticated [DAL+17] and unauthenticated [DXL12,
Pei15, BCD+16]. Some of these protocols have been proposed based on specific KEM
constructions and the security proofs (where available) relate to specific computational
assumptions. These are essential constructions for instantiating protocols using abstract
primitives, but when using specific constructions as the basis of security for AKE there
is a loss of cryptographic agility. Our goal in this work is to design generic AKE pro-
tocols where we can be as flexible as possible with regard to choice of specific KEM
instantiations and how they are used.

Our protocol designs are based on the modular approach of Bellare, Canetti and
Krawczyk [BCK98, HBN06] (hereafter referred to as BCK98) and Canetti and Krawczyk
[CK01] (hereafter referred to as CK01). This approach entails defining protocols which
are secure in a world which is ideally authenticated and then compiling these protocols
with authenticators to achieve protocols secure in a world where adversaries completely
control the network. A brief introduction to this modular approach is given in Sec. 2.2.

A significant benefit of the modular approach is the ability to “mix-and-match” dif-
ferent components and to use different concrete instances of the same component within
one protocol instantiation. This leads to a plethora of different concrete protocols with
varying performance characteristics. For example, in our abstract protocol combining
our KEM-based ideal-world protocol with our KEM-based authenticator, choosing from

1Note that in some documents of the NIST competition [AASA+20], KEM is used as an abbreviation
for key establishment mechanism but we stick to the traditional name in cryptographic research.

2

Modular Design of KEM-Based Authenticated Key Exchange

a collection of, say, five different concrete KEMs for each usage, leads to 53 different
concrete protocols. Not all of these will be of independent interest, but many will have
distinctive properties.

We remark that there already exist several protocol designs which are generic in the
sense that they can use any specific (secure) instance of different cryptographic primitives
such as non-interactive key exchange (NIKE), signatures and/or KEMs [FSXY12, BJS15,
JKRS21]. However, such designs do not allow generic mixing of different generic prim-
itives as can be done with the modular approach. For example, the modular approach
can be used to replace a digital signature authentication method which a MAC-based
method in the case that a pre-shared key is available in a particular application.

While the motivation for this work comes from the goal of achieving post-quantum
secure AKE, we note that there is no requirement to use (only) post-quantum secure
components in instantiations. Interim solutions combining post-quantum secure ideal
KEMs with conventional established primitives for authentication, will lead to more
efficient AKEs secure against active attackers in the short-term and post-quantum ad-
versaries into the future. Furthermore, we can provide hybrid secure AKEs which remain
secure until both conventional and post-quantum secure components are broken. By us-
ing signature combiners or KEM combiners [BHMS17, GHP18, BBF+19] we can plug
hybrid-secure primitives into any of our generic constructions.

1.2 Contributions

We regard the following as the main contributions of this paper:

1. We develop a new KEM-based authenticator and prove its security as a valid
authenticator in the CK01 definition, relying on the established CCA-security def-
inition for KEMs.

2. We frame the well-known method of using an ephemeral KEM as a DH replacement
as a protocol in the authenticated-links model (AM) of CK01 and prove its security
in that model, relying on the established CPA-security definition for KEMs.

3. We derive efficient and secure generic AKE protocols which can be instantiated
with any appropriately secure KEMs and also matched with other primitives such
as signatures. Some of these generic protocols are completely new, allowing new
instantiations of concrete protocols.

1.3 Related work

In 2017, De Saint Guilhem, Smart and Warinschi [dSW17] presented a generic transfor-
mation to convert any two-round forward-secret, but only passively secure, key agree-
ment protocol into a three-round authenticated key agreement protocol. Recognising the
value of avoiding signatures for authentication in the post-quantum setting, their trans-
formation makes use of generic CCA-secure public key encryption and a secure MAC.
While the approach of De Saint Guilhem et al. has clear parallels with ours, they rely

3

Modular Design of KEM-Based Authenticated Key Exchange

on encryption rather than the often more efficient notion of KEMs. Moreover, they do
not allow mixing of different authentication methods as we do, nor provide KEM-based
concrete passively secure protocols. Furthermore, their proofs require a key derivation
function modelled as a random oracle. Interestingly, they dismiss the CK01 modular
approach stating that it necessarily results in increased number of rounds; below we will
explain why this is not the case.

Several recent works show that KEM-based approaches are suitable for replacing
signatures in real-world applications. The KEMTLS protocol of Schwabe, Stebila and
Wiggers [SSW20] is for instance a complete reworking of the TLS 1.3 handshake without
using signatures, showing that this would in theory require only half the bandwidth
compared to a classical approach — with additional improvements to be gained if the
public keys are exchanged in advance [SSW21]. Some of these theoretical improvements
turned out to be less impactful when looking at a real-world implementation [CFS+21].

Using KEM as a building block for AKE is also done in some other purpose-specific
works: examples of this include Post-Quantum Noise [ADH+22], FSXY [FSXY12] and
Post-Quantum WireGuard [HNS+20]. These are generic in the sense that any suitable
KEMs can be used, but they do not allow the flexibility of different authenticators that
we obtain. Specifically, they do not provide re-usable and interchangable components
for passive security and for authentication.

There exist many formal security models for AKE, amongst which several are in-
comparable [Cre11] in the sense that any one model is often neither stronger nor weaker
than another. The modular approach that we use [CK01] achieves security in the well-
established model known widely as the CK-model. This encompasses fundamental secu-
rity properties of session key indistinguishability against active attackers who can obtain
non-target session keys and adaptively corrupt non-target parties. Forward secrecy is
also captured. This model can be adapted [Kra05] if other security properties, such as
ephemeral key leakage, are desirable.

1.4 Outline

After presenting necessary definitions, Sec. 2 gives an overview of the CK01 modular
design methodology, including definitions such as message transmission (MT) and session
key indistinguishability (SK security), which we use extensively throughout this work.
This also includes an explanation of how to optimise compiled protocols securely through
the application of what we call compressed authenticators.

In Sec. 3 we define a new KEM-based MT-authenticator and prove it is a valid
authenticator as long as the underlying KEM is CCA-secure, and define a new KEM-
based AM protocol, Π which we prove SK-secure.

We then apply compressed authenticators to the authentic messages in Π which
results in a 3-message protocol Π’ secure in the unauthenticated links model (UM), in
Sec. 4. By removing repeated message fields from Π’ and combining parallel messages in
the same direction, we also obtain efficient generic UM-secure protocols in this section.

Finally, in Sec. 5, we compare the new protocols with existing KEM-based proto-
cols from other works, and examine concrete instantiations of our generic protocols by

4

Modular Design of KEM-Based Authenticated Key Exchange

plugging in concrete KEMs.

2 Background

The main goal of this section is to present the background necessary to understand the
modular approach of (Bellare), Canetti and Krawczyk [BCK98, CK01]. This includes
our method to optimise, in a rigorous way, protocols obtained through the approach.

2.1 Basic definitions

We use the following standard definitions for KEM, MAC, signatures etc. throughout
the paper. These can be found in, for example, the textbook of Katz and Lindell [KL14].

Definition 1. A key encapsulation mechanism (KEM) is a tuple of PPT algorithms
(Gen, Encap, Decap) such that:

1. The key generation algorithm Gen takes the security parameter 1n and outputs a
public-/private-key pair (sk, pk): (sk , pk)← Gen(1n).

2. The encapsulation algorithm Encap takes as input a public key pk. It outputs a
ciphertext c and a key k ∈ {0, 1}l(n): (c, k)← Encap(pk).

3. The deterministic decapsulation algorithm Decap takes as input a private key sk
and a ciphertext c, and outputs a key k or the special symbol ⊥ denoting failure:
k ← Decap(sk , c).

We require correctness from the KEM: If (sk , pk)← Gen(1n) and (c, k)← Encappk (1
n),

and k′ ← Decapsk (c), then k′ = k except with negligible probability.

Furthermore we show the CPA (resp. CCA) indistinguishability experiment(s) for
KEMs.

Definition 2. The CPA resp. CCA indistinguishability experiment proceeds as follows:

1. The key generation algorithm is run: (pk , sk)← Gen(1n).

2. The encapsulation algorithm is run: (c, k)← Encap(pk), with k ∈ {0, 1}n.

3. A uniform bit b ∈ {0, 1} is chosen. If b = 0, set k′ = k. Otherwise, if b = 1, choose
a uniform k′ ∈ {0, 1}n.

4. The experiments outputs (pk , c, k′) to A.

A is also given access to a decapsulation oracle, Decapsk (·), but cannot query
the decapsulation oracle on the ciphertext c.

5

Modular Design of KEM-Based Authenticated Key Exchange

5. A outputs a bit b′. If b′ = b, A wins and the experiment outputs 1. Otherwise, A
loses and the experiment outputs 0.

The advantage of the adversary A in the CPA CCA experiment is defined to be:

Adv
CPA CCA

KEM (A) = 2 ·
∣∣Pr [b′ = b

]
− 1/2

∣∣ .
Definition 3. A message authentication code or MAC consists of three probabilistic
polynomial-time algorithms (Gen,Mac,MacVer) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n and
outputs a key k with |k| ≥ n.

2. The tag-generation algorithm Mac takes as input a key k and a message m ∈
{0, 1}∗, and outputs a tag t. Since this algorithm may be randomized, we write this
as t← Mack(m).

3. The deterministic verification algorithm MacVer takes as input a key k, a message
m and a tag t. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning
invalid. We write this as b := MacVerk(m, t).

It is required that for every n, every key k and output by Gen(1n) and every m ∈ {0, 1},
it holds that MacVerk(m,Mac(m)) = 1.

Definition 4. The existential unforgeability under chosen message attacks (EUF-CMA)
experiment for MAC(Gen,Mac,MacVer) proceeds as follows:

1. A key is generated: k ← Gen(1n).

2. The adversary A gets oracle access to Mack(·). Let Q be the set of all queries A
made to the oracle. The adversary eventually outputs (m, t).

3. A wins if and only if

(a) MacVerk(m, t) = 1, and

(b) m /∈ Q.

In that case the experiment outputs 1. Otherwise, the experiment outputs 0.

The advantage of the adversary A in the EUF-CMA experiment is defined to be:

AdvEUF-CMA
MAC (A) = Pr

[
GEUF-CMA
MAC (A) = 1

]
.

Definition 5. A (digital) signature scheme is a tuple of three PTT-algorithms (Gen, Sign, SigVer)
such that:

1. The key generation algorithm Gen takes the security parameter 1n and outputs a
public-/private-key pair (sk, pk): (sk , pk)← Gen(1n).

6

Modular Design of KEM-Based Authenticated Key Exchange

2. The signing algorithm Sign takes as input a private key sk and a message m from
some message space (that may depend on pk). It outputs the signature σ and we
write this as σ ← Signsk (m).

3. The deterministic verification algorithm SigVer takes as input a public key pk, a
message m and a signature σ. It outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid. We write this as b := SigVerpk (m,σ).

We require correctness from the scheme: If (sk , pk) ← Gen(1n) then, except with negli-
gible probability, SigVerpk (m,Signsk (m)) = 1.

For brevity we often denote the key generation algorithms from the various primitives
as Gen(), omitting the security parameter.

2.2 Canetti–Krawczyk modular design

Themodular approach, arising originally in a 1998 paper of Bellare, Canetti and Krawczyk
[BCK98], is to first define protocols secure against a limited adversary which can then be
promoted to protocols secure against a realistic adversary using a generic compiler. In
the authenticated links model (AM) the adversary is not permitted to fabricate messages,
but can otherwise control the network and deliver messages out of order or to different
parties from those intended. Compilers, or authenticators, can be applied to messages in
an AM protocol to obtain protocols in the unauthenticated links model (UM) where the
adversary can alter or fabricate messages limited only by the available computational
power.

In both the UM and AM, adversaries control the execution of protocols by initiating
parties and then invoking parties with available queries, including with message inputs.
(In Sec. 2.4 we describe the available adversarial queries.) Parties respond to input
messages by following the protocol definition and to other queries as defined by the
query. Each party computes local output which is available to the adversary. The local
output includes protocol decisions, such as whether a message is accepted (see Sec. 2.4
for details).

Bellare et al. [BCK98] provide a theorem showing that a secure protocol, ΠAM, in
the AM maps to a secure protocol in the UM, ΠUM, if the mapping is defined by a valid
authenticator. An authenticator is valid if an observer, or distinguisher, is unable to
distinguish between the world where an adversary A is interacting with the ΠAM and
the world where an adversary U is interacting with the protocol ΠUM. This is captured
in the notion of protocol emulation in Definition 7.

Definition 6. The AM-UM distinguishing experiment, GAM-UM-dist
ΠAM-ΠUM

(D) proceeds as fol-
lows:

1. A uniform bit b ∈ {0, 1} is chosen. If b = 0, D will interact with A and the AM
protocol ΠAM. Otherwise, if b = 1, D will interact with U and the UM protocol
ΠUM.

7

Modular Design of KEM-Based Authenticated Key Exchange

2. To conclude the experiment, D will halt and output b′.

3. The experiment will output 1 if and only if b = b′.

We define the advantage of the distinguisher D to be

AdvAM-UM-dist
ΠAM-ΠUM

(D) = 2 ·
∣∣∣∣Pr [GAM-UM-dist

ΠAM-ΠUM
(D) = 1

]
− 1

2

∣∣∣∣ .
Definition 7. Let ΠUM and ΠAM be protocols in the UM and AM models respectively.
We say that ΠUM ϵ-emulates ΠAM in unauthenticated networks if for any UM-adversary
U interacting with ΠUM, there exists an AM-adversary A interacting with ΠAM such that
for any distinguisher D playing the AM-UM distinguishing game,

AdvAM-UM-dist
ΠAM-ΠUM

(D) ≤ ϵ.

An authenticator is a specific type of protocol compiler transforming one protocol into
another. The modularity of the approach relies on the observation that an authenticator
will actually preserve protocol security as we will see in Sec. 2.4.

Definition 8 ([BCK98]). An authenticator is a compiler, C, that takes an AM protocol
ΠAM as input and outputs a UM protocol ΠUM, such that ΠUM emulates ΠAM.

2.3 MT-authenticators

Defining an authenticator for any protocol, regardless of the number of messages, seems
at first a difficult problem. To deal with this, BCK98 [BCK98] define a simpler notion
of an MT-authenticator, designed to authenticate a single arbitrary message. They also
showed that repeated use of a valid MT-authenticator is a valid authenticator, so that
protocol messages can be treated separately.

A bit more formally we define MT as a message transmission protocol in authenti-
cated networks that works as follows: when Pi is activated with (Pj ,m), party Pi sends
the message (Pi,Pj ,m) to party Pj and outputs “Pi sent m to Pj”. Upon receiving
(Pi,Pj ,m), Pj outputs “Pj received m from Pi”. Note that the quoted outputs are local
outputs of the parties and are critical in proving proper emulation; however, when we
later show compiled protocols we omit mention of these local outputs.

An MT-authenticator, λ, is a protocol that emulates MT in unauthenticated net-
works. Given a sequence of MT-authenticators, Λ = (λ1, λ2, . . . , λt), the derived protocol
compiler, CΛ, uses the next MT-authenticator to authenticate the next message. More
precisely, given a protocol Π in the AM with t messages, m1,m2, . . . ,mt the protocol
Π′ = CΛ(Π) in the UM is defined as follows. For each message, mk, sent in Π, λk is run
to send the same message from the same initiator to the same recipient. Whenever a
party, Pj , outputs “Pj received m from Pi” in λk, then Π is activated at Pj with message
mk from Pi. If Λ is a sequence of t MT-authenticators then CΛ is an authenticator. We
restate this in Thm. 1 and give a sketch of the proof, which is given in full in [BCK98].

8

Modular Design of KEM-Based Authenticated Key Exchange

Theorem 1 ([BCK98]). Let Λ = (λ1, λ2, . . . , λt) be a sequence of t MT-authenticators
so that each λk ϵ-emulates MT. Then the compiler, CΛ, will be an authenticator such
that for any protocol Π in the AM, CΛ(Π) (t · ϵ)-emulates Π in the UM.

Proof. Let Π be an AM protocol. Let U be a UM-adversary interacting with CΛ(Π). A
runs U on a simulated interaction. Action requests from U to parties in the UM can be
mimiced by A in the AM and A relays its results back to U . The only problem with the
simulation could occur in the case that U specifies that a message is received by some
party Pj from some party Pi in the UM, but that message is not in the set of messages
waiting for delivery in the AM. But this can happen with probability bounded by ϵ.
Such an event could occur for any of the t messages and so the probability that the
simulation is correct is at least (1− ϵ)t ≥ 1− t · ϵ. Finally, any observer will be able to
distinguish between the run of Π in the AM and CΛ(Π) in the UM with advantage at
most ϵ′ = t · ϵ.

Note that although we have assumed that each MT-authenticator has the same se-
curity level ϵ, the theorem is still true if the MT-authenticators have different security
levels ϵ1, ϵ2, . . . , ϵt and we take ϵ = maxk(ϵk). In the cases we are interested in, we will
always have t = 2.

An example of an MT-authenticator is the encryption-based authenticator [BCK98]
shown in Fig. 1, where NB denotes a nonce and (eA, dA) an encryption-decryption key-
pair. This is a valid MT-authenticator as long as the public key encryption used is
CCA-secure and the MAC is secure. The protocol can be optimized in various ways, as
we will show later.

Encryption-based MT-authenticator [BCK98]

Alice Bob

“Alice sent m to Bob” m NB
$←− {0, 1}n

N′
B ← DecryptdA

(c) m, c = EncrypteA(NB)

m, τ = MacN′
B
(m,B) If MacVerNB

(τ,m,B) = 1

“Bob received m from Alice”

Figure 1: Bob authenticates message m from Alice.

There exist several otherMT-authenticators defined in the literature including signature-
based [BCK98], MAC-based [CK01] and password-based [HBN06]. We show, in com-
pressed form, the signature-based MT-authenticator later (Fig. 9). The modular ap-
proach allows combination of any MT-authenticator together with any AM-protocol,
resulting in automatically secure UM protocols. Therefore adding any new building

9

Modular Design of KEM-Based Authenticated Key Exchange

block, either an MT-authenticator or an AM-protocol, results in several new protocols
of potential interest.

2.4 SK-security

SK-security is the AKE security notion of CK01 [CK01], capturing session key indistin-
guishability and correctness of the protocol. To define this notion we need to state the
capabilities of the adversary and the indistinguishability experiment. Each protocol run
at a party A is associated with a session identifier s. In the AM the value s is an input at
the start of a run to the initiator party. Later we will see that session identifiers can be
replaced by protocol messages as long as parties can verify that no incomplete sessions
between the same parties have the same session identifier. The state of a session consists
of the following information:

• status – whether or not the session is complete, aborted, or still in progress;

• any ephemeral key material needed to complete the protocol;

• the session key, sk , if the protocol is completed and has not expired.

The global state of a party may include long-term authentication keys pkA, skA.
As in most AKE models, we do not explicitly model distribution of long-term keys.
Furthermore, we assume that long-term public keys are immediately available to any
party that needs them. This may be too strong an assumption in some real-world
protocols, such as TLS, and we remark further on this issue when we examine concrete
protocols in Sec. 5.

Definition 9 (Matching sessions [CK01]). The two sessions (A,B, s, role) and (A′,B′, s′, role′)
are matching if A = B′, B = A′ and s = s′.

The adversary may issue the following queries, subject to certain restrictions we will see
later.

• NewSession(A,B, s, r): the adversary issues the NewSession query to party A, spec-
ifying its intended partner B, the session identifier2 s, and the role r (initiator or
responder) of A in the session. A will follow the protocol definition and may return
an output message intended for B.

• Send(A,B,m): represents activation of A by an incoming message m (possibly
including a session identifier) from party B. A will follow the protocol and may
reject, accept, or return an output message intended for B.

• Corrupt(A): the adversary learns the whole state of A including any long-term
keys. The corruption event is recorded in the local output of A. Subsequently A
can never be activated but the adversary can take the role of A in the protocol.

2We remark that instantiation of session identifiers differs between the models. In UM, s can be blank
as the session identifier need not be determined by the adversary.

10

Modular Design of KEM-Based Authenticated Key Exchange

• RevealKey(A,B, s): the adversary learns the session key accepted in the session s
by A with partner B, if it exists. The reveal event is recorded in the local output
of A.

• RevealState(A,B, s): the adversary learns the state information associated with
session s at A, such as ephemeral keys. The reveal state event is recorded in the
local output of A.

• Expire(A,B, s): if there is a completed session s at A with B then any session key
associated with that session is deleted from the memory of A. The Expire event is
recorded in the local output of A.

• Test(A,B, s): this query can be asked only once and can only be made to a com-
pleted session s at A with partner B. Furthermore there cannot have been any of
the following queries made: RevealKey(A,B, s) or RevealState(A,B, s) or Corrupt(A)
or Corrupt(B). If the bit b specified by the challenger is b = 1 then the session key
is returned. Otherwise b = 0 and a random key from the keyspace are returned.

Now we are in a position to define the SK-security experiment.

Definition 10. The key indistinguishability experiment, GKey-Ind
Π (A) is defined as fol-

lows:

1. The challenger chooses a random bit b needed to define the Test query response.

2. The challenger initialises n parties and any long-term keys.

3. A may issue queries as defined above.

4. Eventually A halts and outputs a bit b′ to indicate its guess for b, based on the
response to the Test query. The experiment outputs 1 if and only if b′ = b.

Definition 11. A key exchange protocol Π is ϵ− SK-secure if the following holds for
any adversary A:

1. two honest parties (i.e. uncorrupted parties who faithfully execute the protocol
instructions) completing matching sessions of the protocol Π will output the same
key, except with negligible probability, and

2. the advantage of the adversary U in the key indistinguishability experiment is:

AdvKey-IndΠ (A) = 2 ·
∣∣Pr [b′ = b

]
− 1/2

∣∣ ≤ ϵ.

The final step needed to bring the modular approach together is to show that em-
ulation preserves SK-security. This was proven in CK01 and we restate it as Thm. 2
including concrete bouds. Note that using emulation of an ideal key exchange process
as a definition of security, the original idea of BCK98, results in too strong a definition
to allow some well-known protocols to be proven secure [CK01, Appendix A].

11

Modular Design of KEM-Based Authenticated Key Exchange

Theorem 2 ([CK01]). Let Π be an ϵ−SK-secure protocol in the AM with t messages. Let
CΛ be the compiler based on MT-authenticators λ1, λ2, . . . , λt such that for any protocol
Π in the AM, CΛ(Π) α-emulates Π in the UM. Then protocol Π′ = CΛ(Π) is an ϵ′−SK-
secure protocol in the UM with ϵ′ = ϵ+ α.

Proof. Assume to the contrary that there exists a UM adversary U that has advantage
ϵ′ in the UM. Using U , we build an AM adversary, A, playing the game of Defn. 10.
When A receives its setup information consisting of system parameters and public keys
from its challenger, A sends the same information to U . Then A invokes U and mimics
its behaviour in the AM, using its challenger to respond to the action requests when any
party is exposed.

When U sends a message to a party Pj from a party Pi in the UM, A sends the same
message between the same parties in the AM. The emulation will be perfect unless U
successfully sends a message m to some party Pj from Pi but m was never sent by Pi. In
this case we will say that U made a forgery and we let forge be the event that a forgery
happens at any time during the run of U .

If forge occurs then A will abort the simulation and return a random bit to its
challenger. Note that this also defines a distinguisher D which will always win in the
case that forge occurs. If forge does not occur then at some point U will ask its Test
query for a session s. A then announces session s for its own Test query in the AM,
receives a real or random key, and returns it to U . Eventually U will halt and output its
bit which A copies as its response. In this case, A wins whenever U wins.

Pr[A wins] = Pr[A wins|forge] · Pr[forge] + Pr[A wins|¬forge] · Pr[¬forge]
= 1/2 · Pr[forge] + Pr[B wins] · (1− Pr[forge])

≥ Pr[B wins]− 1/2 · Pr[forge]

We also implicitly defined a distinguisher, D, which wins when forge occurs or wins with
probability at least 1/2 when forge does not occur: Pr[D wins] ≥ Pr[forge]/2 + 1/2.
Putting this together we get:

AdvKey-IndΠ′ (U) ≤ AdvKey-IndΠ (A) + AdvAM-UM-dist
Π−Π′ (D).

2.5 Optimising the UM protocol

Simple application of an MT-authenticator to each message of an SK-secure AM protocol
results in an SK-secure UM protocol as proven in Thm. 2. However, such a protocol is
far from optimal. The most obvious drawback is that a two-message protocol, such
as Diffie–Hellman, compiles to a six-message protocol. The obvious way to optimise
such a protocol is to “piggyback” messages going in the same direction. The resulting
protocol may be secure, but formally this process may break the security proof because
it may alter the order of the local output of the parties, allowing trivial distinguishability
outputs of the AM protocol from the outputs of the compiled UM protocol [HBN06].

12

Modular Design of KEM-Based Authenticated Key Exchange

Because of such issues, the modular approach of CK01 has been criticised [dSW17] for
not achieving efficient protocols. There is some truth in such criticisms — for example,
when using signature- or encryption-based authenticators it is not possible to achieve
secure 2-message AKE protocols which are often seen in the literature. Fortunately, rig-
orous optimisations are not difficult to achieve, typically resulting in 3-message protocols
as efficient as real-world protocols. Indeed, 3-message AKE protocols are necessary in
any case to achieve desirable security properties such as mutual entity authentication or
key confirmation.

Hitchcock et al. [HBN06] designed a general technique for altering message ordering
in a security-preserving way. This involved defining an intermediate model between the
AM and UM, which they call the hybrid model. Rather than use this more comprehensive
approach, here we apply simple techniques to allow optimisation of the number of mes-
sages and re-use message components as session identifiers. Consequently, the drawbacks
of practical application of authenticators are removed resulting in generic protocols as
efficient as standalone protocols.

Compressed authenticators. The first step is to compress the authenticator to re-
move redundant elements. Notice that use of the authenticator in Fig. 1 expands each
message m from the AM into three messages in the UM. However, sending m in all three
messages is not actually needed (to achieve security), so we can simplify the encryption-
based authenticator into a compressed version shown in Fig. 2. It is not hard to see
[BCK98, HBN06] that removal of the repeated m fields does not affect the security of
the MT-authenticator. Depending on the application scenario, the version in Fig. 1 may
remain appropriate. The version in Fig. 2 is useful in a situation where Bob knows
that some message, as yet unknown, will be authentically received from Alice; this case
typically occurs in AKE protocols. Later we will see that to apply optimisation it is
important that the first message in Fig. 2 is independent of the message to be authen-
ticated, so that it can be generated and sent early in the protocol.

Compressed Encryption-based MT-authenticator

Alice Bob

N′
B ← DecryptdA

(c) EncrypteA(NB) NB
$←− {0, 1}n

“Alice sent m to Bob” m, τ = MacN′
B
(m,B)

If MacVerNB
(τ,m,B) = 1

“Bob received m from Alice”

Figure 2: Compressed version of MT-authenticator in Fig. 1.

13

Modular Design of KEM-Based Authenticated Key Exchange

Session identifiers. In the original formulation of CK01, session identifiers are sent in
each protocol run in the AM. These must be unique for each active protocol run between
the same parties, but it is not defined how they should be obtained in practice. Although
the only property required of session identifiers is uniqueness, a natural way of obtaining
them is to use random values chosen by each party; in that case the probability that
session identifiers are not unique is negligible. In practice it may not be a burden for
each party to ensure that there are no other incomplete sessions with the same identifier
so that uniqueness is unconditionally guaranteed.

We assume that higher communication layers will provide a mechanism to ensure
that messages get delivered to the correct session. They can also be explicitly added to
the protocol messages if desired.

3 KEM-based building blocks

This section defines and proves security for the basic KEM-based MT-authenticator and
AM protocol, which will be brought together in Sec. 4 as components in defining generic
efficient KEM-based AKE.

3.1 KEM-based MT-authenticator

Fig. 3 illustrates our KEM-based MT-authenticator. The construction is closely related
to the encryption-based authenticator of BCK98.

KEM-based MT-authenticator

Alice Bob

“Alice sent m to Bob” m (c, k)← Encap(pkA)

m, c

k ← Decap(skA, c)
m, τ = MACk(m,B) If MacVerk(τ,m,B) = 1

“Bob received m from Alice”

Figure 3: KEM-based MT-authenticator, λKEM: Bob authenticates m from Alice.

Next we give a theorem that λKEM is secure, meaning that it emulates MT in unau-
thenticated networks, as long as the KEM used achieves CCA security.

Theorem 3. The KEM-based MT-authenticator, λKEM, in Fig. 3, when instantiated with
a CCA-secure KEM and a secure MAC scheme, ϵ-emulates protocol MT in unauthenticated
networks such that ϵ ≤ l · (AdvCCAKEM(D) + AdvEUF-CMA

MAC (F)) where l = n2
P × nM , nP is the

14

Modular Design of KEM-Based Authenticated Key Exchange

number of parties that run the protocol and nM is the maximum number of challenge
messages that can be sent by any party.

The proof of Thm. 3 follows closely the proof of Bellare et al. [BCK98, Proposition
5]. We have included some extra details which we hope may be useful to the reader.

Proof. Let U be a UM-adversary that interacts with λKEM. We construct an AM-
adversary A such that for any distinguisher D observing, ViewMT

A (D) s
= ViewλKEM

U (D).
First note that A can simply copy all of the outputs of U unless the following event

bad happens.

bad: U outputs “Q received m from P” for some parties P and Q, but there was no
previous output “P sent m to Q”.

If we assume that bad happens with probability ϵ then for any distinguisher D we
must have Adv(D) ≤ ϵ. Thus from now on we focus on bounding ϵ. We construct an
experiment involving multiple adversaries as follows and illustrated in Fig. 4. We start
by describing the purpose and connections between the different entities. Afterwards we
give details of the security game.

C
CCA challenger

D
MAC challenger
Plays CCA game

F
UM challenger

Plays MAC game

U
UM adversary

Figure 4: Overview of the experiment in the proof of Thm. 3.

• U is the UM adversary running λKEM in such a way that event bad will occur with
probability ϵ. When bad happens U will produce a valid MAC for some session
without knowing the decapsulation key of the party P which should be producing
the MAC.

• F is going to interact with U in order to simulate all of the parties in the run of U .
We will see that F can make the simulation perfect in case bad happens only in a
chosen target session. F also is playing a forging game against the MAC scheme.
Since F also receives a ciphertext from its challenger it may not be playing the
usual EUF-CMA game, but in cases where that ciphertext is independent of the
MAC key the game F plays is equivalent to the EUF-CMA game.

• D is acting as the challenger for F in the EUF-CMA game, providing a MAC oracle.
D is also playing the IND-CCA game from Def. 2 against the KEM. D will provide
its challenge encapsulation to F .

• C is the IND-CCA challenger, providing the challenge encapsulation and the de-
capsulation oracle.

15

Modular Design of KEM-Based Authenticated Key Exchange

The experiment proceeds as follows.

1. D starts the CCA indistinguishability experiment with C. The first 4 steps in Def. 2
are run between D and C so that D gets (pk , c∗, k′) where k′ is either encapsulated
in c∗ (b = 0) or is a key chosen randomly in the range of Encap (b = 1).

2. D starts F by passing F the encapsulation c∗. From now on D will answer any
MAC oracle queries by using the key k′ to compute the correct MAC tag and
returning it to F . The goal of F is to produce a forgery (m∗, t) which is a valid
MAC (for key k′) which was never returned by D following a MAC oracle query
from F .
F is also provided with a decapsulation oracle for the key encapsulated in c∗. F
will need this oracle in order to properly simulate the parties for U . This oracle is
available to D through the game that D is playing with C so D can also simulate
the oracle for F .
Note that there are two cases.

(a) The encapsulation c contains key k′, the key for the MAC that F is attempting
to forge. In this case F has received some additional help in finding a forgery
by knowing c and having the decapsulation oracle for k′. Thus F is an aided
oracle [BCK98] and even though a correct forgery is produced and accepted
by D, this does not win the MAC security game in the EUF-CMA sense.

(b) The encapsulation c contains a random key, independent of k′. In this case
F does not receive any useful help in finding a forgery for k′. (Note that F
could easily simulate the “help” itself in this case.) Thus a forgery wins the
EUF-CMA MAC game in Def. 4.

3. F starts U and chooses two random parties P ∗ and P and a randomly selected
session s at P . This is the session where F guesses that event bad will happen. Note
that the probability that bad happens in session s is at least ϵ/l where l = n2

P ×nM

where nP is the number of parties and nM is the maximum number of challenge
messages that can be sent by party P .

F chooses public key pairs for all parties except P ∗ and assigns pk to party P ∗.
F can now simulate all parties in the run of U as long as U does not choose to
corrupt P ∗ or asks for a MAC for the message used in the target session s with
partner P ; however if either of these two things happen then F will abort and D
will return a random bit as its guess for b′.

When simulating a session involving party P ∗, but different from s, F has to
make use of the decapsulation oracle from D since it does not have the private
decapsulation key of P ∗. Then F can obtain the correct MAC key and provide the
correct third message for P . Also if F is asked by U to simulate a session where
P ∗ receives m, c∗ from from party Q with m ̸= m∗ or Q ̸= P , then F asks D for
the MAC tag in order to continue the simulation.

16

Modular Design of KEM-Based Authenticated Key Exchange

4. If bad does not happen in session s then F halts with no output and then D
returns a random bit at its guess for b′. With probability at least ϵ/l, event bad
does happen in session s. Since party P ∗ was never activated in this session, U will
directly activate party P with message m∗ to send the second (challenge) message
to party P ∗. Then F responds with m∗, c∗. When bad happens U will send a MAC
value t for message m∗ to party P which is then passed to F (who is simulating
P). F then sends (m∗, t) to D as its forgery attempt. Note that U cannot ask
for the MAC tag from P ∗ directly since P ∗ is not involved in the run when bad
happens, so the forgery must originate from U .

5. U receives the putative forgery (m∗, t) from F and checks its correctness using key
k′. If MacVerk′(m

∗, t) = 1 then U decides that encapsulation c contains key k′ and
returns its guess b′ = 0 to C. Otherwise U returns b′ = 1.

Analysis We consider two cases, each of which occurs with probability 1/2.

• If b = 0 then F will always return a correct MAC tag for key k′ when bad happens.
In this case D will return b′ = 0 and so will win the CCA game with C.

• If b = 1 then we have two possibilities.

1. If F returns an incorrect MAC tag for key k′ when bad happens then D will
return b′ = 1 and so will again win its CCA game with C.

2. If F returns a correct MAC tag for key k′ then D will return b′ = 0 and so
will lose the CCA game with C. However, F got no help in its forgery game
and so can win the EUF-CMA game against the MAC.

First note that

Pr[F wins] = Pr[F wins|bad] · Pr[bad] = Pr[F wins|bad] · ϵ
l

since Pr[F wins|bad] = 0. Also

Pr[D wins|bad] =
1

2
+

1

2
· (1− Pr[F wins|bad]) = 1− Pr[F wins] · l

2ϵ
.

Putting these together we get:

Pr[D wins] ≥
(
1− l

2ϵ
Pr[F wins]

)
· ϵ
l
+

1

2

(
1− ϵ

l

)
=

1

2
+

ϵ

2l
− 1

2
Pr[F wins].

Finally we re-arrange to obtain: 2 ·
(
Pr[D wins]− 1

2

)
+Pr[F wins] ≥ ϵ

l , and then by Def.

2 and 4, ϵ ≤ l ·
(
AdvCCAKEM(D) + AdvEUF-CMA

MAC (F)
)
.

17

Modular Design of KEM-Based Authenticated Key Exchange

Compressed KEM-based MT-authenticator

Alice Bob

c (c, k)← Encap(pkA)

k ← Decap(skA, c)
m, τ = MACk(m,B) If MacVerk(τ,m,B) = 1

“Alice sent m to Bob” “Bob received m from Alice”

Figure 5: λKEM, the compressed KEM-based MT-authenticator.

Now that λKEM is proven to be an MT-authenticator we can invoke Thm. 2 to con-
clude that λKEM can be used to authenticate messages in an SK-secure AM protocol and
results in a SK-secure UM protocol. In order to optimise the resulting protocol we will
want to use a compressed version of the authenticator (see Sec. 2.5) as shown in Fig. 5.

The security proof for the compressed authenticator is identical to the proof for the
full authenticator since the only difference is the deletion of plaintext messages in the
UM which are ignored in the security proof.

Corollary 1. Theorem 3 still holds if the authenticator in Fig. 3 is replaced by the
compressed KEM-based MT-authenticator, λKEM, in Fig. 5.

3.2 KEM-based AM protocol

In Fig. 6 we present a KEM-based protocol Π that is SK-secure in the AM. The protocol
is a generalisation of the basic Diffie–Hellman AM protocol of CK01 [CK01]. We assume
that a setup with parameters for the KEM are known already to all parties. The initiator
A will be invoked by the NewSession(A,B, s, r) query and responds with a new ephemeral
KEM public key pke. Upon receipt of (pke, s) the responder encapsulates a new session
key sk in c, and returns it to party A.

KEM-based AM-protocol

Alice Bob

(pke, ske)← Gen() pke, s (c, sk)← Encap(pke)

sk ′ ← Decap(ske, c)
c, s

Figure 6: KEM-based protocol with any CPA-secure KEM (see Def. 2).

Theorem 4. Let A be an adversary against the SK-security of protocol Π shown in
Fig. 6. Let A interact with at most q sessions of Π for each pair of parties. Let n be the

18

Modular Design of KEM-Based Authenticated Key Exchange

maximum number of parties involved in the protocol run. Then the advantage of A can
be bounded by: AdvSKΠ (A) ≤ n2q · AdvCPAKEM(B).

Proof. The definition of SK-security has two requirements. The first requirement is
achieved by the correctness of the KEM. For the second requirement we use adversary
A against the sk -security of the protocol Π to construct an adversary B against the
CPA-security of the KEM. Adversary B interacts with its challenger C in the GCPA

KEM(·)
experiment.

First B is given (pk∗, c∗, k∗) by C and should output b ∈ {0, 1} guessing if k∗ is the
real key (b = 1) or a random key (b = 0). Next A chooses random parties A∗ and B∗

from the set of all (n possible) parties and for these chooses a target session identifier s∗

by choosing a unique value in [1..q], where q is the maximum number of sessions at any
party. Then B invokes A and simulates all responses as follows.

• NewSession(A,B, r, s): if r is initiator then B checks whether A = A∗, B = B∗, and
s = s∗ and if so B returns (pk∗, s∗) to A. Otherwise B runs (pke, ske) ← Gen(),
returns (pke, s) to A and stores (s,A,B, ske) for answering later queries about
session s.

• Send(A,B,m ∥ s): if A is the responder in the run with session identifier s then m
is a public encapsulation key pke which can be used by B to compute the correct
response. If A is the initiator in the run with session identifier s then B will accept.
Note that if A = A∗, B = B∗ and s = s∗ then B does not have the decapsulation
key and cannot compute the session key.

• Corrupt(A): if A ∈ {A∗,B∗} then B aborts and returns a random bit to C. Otherwise
B returns any session key and ske value allocated to A. Note that for this protocol
there are no long-term keys.

• RevealKey(A,B, s): if A ∈ {A∗,B∗} and s = s∗ then B aborts and returns a random
bit to C. Otherwise B returns the session key value allocated to A with session
identifier s (or ∅ if it is undefined).

• RevealState(A,B, s): if A = A∗, B = B∗ and s = s∗ then B aborts and returns a
random bit to C. Otherwise, if A is the initiator in the run with session identifier
s then B returns the private ephemeral key, ske, or ∅ if it is undefined.

• Expire(A,B, s): if there is a completed session s at A with B then B will return a
success flag to A or otherwise return a failure flag to A.

• Test(A,B, s): if A = A∗, B = B∗ and s = s∗ then B returns k∗ to A. Otherwise B
aborts and returns a random guess for b.

As long as B does not abort then A will eventually halt and output its bit b′. Then
B sets b← b′ and returns b to its challenger C.

19

Modular Design of KEM-Based Authenticated Key Exchange

If A chooses the target session as its test session then B wins whenever A wins. This
happens with probability at least 1/n2q. Note that this necessarily means that B does
not abort on any query. Then we have

Pr[B wins] ≥ 1

2
·
(
1− 1

n2q

)
+ Pr[A wins] · 1

n2q

or Pr[B wins]− 1

2
≥ 1

n2q

(
Pr [A wins]− 1

2

)
.

Thus the theorem statement follows.

4 Generic KEM-based AKE protocols

With the building blocks from Sec. 3 we now apply MT-authenticators to AM protocols
and optimise them to obtain protocols which are both SK-secure in the realistic UM
security model and efficient in comparison with other protocols in the literature. There
is no restriction to apply the new MT-authenticator in Fig. 5 only to the new AM
protocol in Fig. 6; the authenticator can be applied to any SK-secure AM protocol and
any authenticator can be applied to the KEM-based AM protocol. Furthermore, we may
apply different MT-authenticators to each of the messages in an AM protocol [HBN06,
Thm. 6] resulting in yet more ways to construct different secure protocols.

Due to our field’s focus on post-quantum security in recent years, we emphasise
KEM-based and signature-based components in this section, allowing us to apply any of
the primitives from the NIST competition library. We illustrate this usage with several
different examples in this section, applying both our new KEM-based authenticator and
the existing signature-based authenticator to achieve a variety of protocols. Another
example, also with potential for post-quantum security, is to apply the MAC-based
authenticator of CK01 to our KEM-based AM protocol. This results in a protocol
suitable for pre-shared key environments which is a common scenario, for example in
TLS and IPSec. Details of a MAC-based generic protocol construction are available in
Appendix 4.3.

4.1 Compiled KEM-based protocol and optimization

We start with the AM-secure protocol from Fig. 6 and then apply the compiler consisting
of application of the compressedMT-authenticator to each of its two messages. This leads
to the 4-message protocol of Fig. 7.

Messages 1 and 2 are the result of applying the compressed MT-authenticator to
authenticate the ephemeral public key pke generated by Alice. Messages 3 and 4 are the
result of applying the compressed MT-authenticator to authenticate the encapsulated
shared key c∗ generated by Bob. The difference between m1 and m′

1 (resp. m2 and m′
2)

in Fig. 7 is that both players have their own version of s — the MAC verifies the integrity
of both the message and the session.

20

Modular Design of KEM-Based Authenticated Key Exchange

Generic authenticated KEM-based protocol (unoptimised)

Alice Bob

(pke, ske)← Gen() c1 (c1, k1)← Encap(pkA)

k′1 ← Decap(skA, c1)

m1 ← (pke ∥ s)

τ1 ← Mack′
1
(m1 ∥ B) m1, τ1 m′

1 ← (pke ∥ s)

If MacVerk1
(τ1,m

′
1 ∥ B) = 0

Abort

(c2, k2)← Encap(pkB)
c2 k′2 ← Decap(skB, c2)

(c∗, k∗)← Encap(pke)

m2 ← (c∗ ∥ s)

m′
2 ← (c∗ ∥ s) m2, τ2 τ2 ← Mack′

2
(m2 ∥ A)

If MacVerk2
(τ2,m

′
2 ∥ A) = 0

Abort

k∗ ← Decap(ske, c
∗)

Figure 7: Generic 4-message protocol obtained by compiling the KEM-based AM proto-
col with the compressed KEM-based MT-authenticator.

To optimise the 4-message protocol in Fig. 7 we take four simple steps:

1. The messages that were numbered 2 and 3 will be sent in parallel as a new message
with number 2. This does not change the order or contents of any messages.

2. The session identifier, s, will be constructed by the parties as part of the protocol,
instead of taking it as an external input to the protocol. Recall that the only
requirements on s are to be unique between the parties amongst any incomplete
protocol session between the two parties. We choose s = c1 ∥ c2 where c1 and c2
are the (randomised) encapsulations (ciphertexts) generated by each party.

3. Repeated message fields and fields previously generated by message receivers are
removed from messages.

4. The protocol parties are re-labelled so that Alice becomes the protocol initiator.

21

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol

Alice Bob

(c1, k1)← Encap(pkB)
c1 (pke, ske)← Gen()

(c2, k2)← Encap(pkA)

s← c1 ∥ c2
k′1 ← Decap(skB, c1)

s← c1 ∥ c2 pke, τ1, c2 τ1 ← Mack′
1
(pke ∥ s ∥ A)

If MacVerk1
(τ1, pke ∥ s ∥ A) = 0

Abort

k′2 ← Decap(skA, c2)

(c∗, k∗)← Encap(pke)

τ2 ← Mack′
2
(c∗ ∥ s ∥ B) c∗, τ2 If MacVerk2

(τ2, c
∗ ∥ s ∥ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Figure 8: Optimised UM protocol from the KEM-based AM protocol and the KEM-based
MT-authenticator.

Combining all of these steps we obtain the optimised protocol shown in Fig. 8.
As far as we are aware, the precise protocol of Fig. 8 is new in the literature. There are

several existing protocols aimed also at achieving AKE based only on KEMs [FSXY12,
SSW20, HNS+20] or encryption [dSW17]. Several of these are motivated by the de-
sire to avoid signatures, which tend to suffer efficiency disadvantages compared with
KEMs in the post-quantum examples from the NIST competition. The security varies
between of each these protocols. For example, the FSXY protocol [FSXY12] provides
security against ephemeral key leakage whereas KEMTLS [SSW20], like the protocol of
Fig. 8, lacks this property. On the other hand, our protocol does allow state reveals
from non-target sessions. KEMTLS is also designed to provide only one-way (server)
authentication. Making a judgement on which of these protocols is “better” is therefore
difficult since it depends on the security requirements and implementation details. In
Sec. 5 we compare efficiency using concrete KEMs and signature schemes to get a better
feel for the relative efficiencies.

4.2 Generic protocols using signatures

We now look at two further generic protocols which we can obtain by using signatures in
combination with our KEM-based AM protocol. We will need to apply the compressed

22

Modular Design of KEM-Based Authenticated Key Exchange

signature-based authenticator shown in Fig. 9.

Compressed Signature-based MT-authenticator

Alice Bob

NB NB
$←− {0, 1}n

σ ← SignskA
(m,B, NB)

m,σ If SigVerpkA
(σ,m,B) = 1

“Alice sent m to Bob” “Bob received m from Alice”

Figure 9: λSign, a compressed signature-based MT-authenticator.

The authenticator λSign is derived from the authenticator of BCK98 by removing the
unnecessary message components in exactly the same way as for the encryption- and
KEM-based authenticators. As before, the existing proof that the full authenticator is
a valid MT-authenticator [BCK98] still holds.

The optimised protocol for the KEM-based AM protocol compiled with the signature-
based authenticator is shown in Fig. 10. The optimisation follows the same process as
described in Sec. 4.1. Although more general, the resulting protocol has much in common
with the signed Diffie–Hellman protocol which has been widely known and deployed for
many years and is today the usual AKE in the latest version of TLS (though with only
one-sided authentication).

We have another way to authenticate the KEM-based AM protocol, namely to au-
thenticate its two messages with different MT-authenticators. As far as we are aware
there are no examples of such a protocol in the existing literature. There can be practical
usages, for example when signatures are very expensive to generate but very cheap to
verify. In such a case, when a powerful server authenticates its AM message it can shift
computation away from a lightweight client by using the signature-based authenticator,
while the client can avoid generating signatures by using a different KEM-based authen-
ticator. In Fig. 14 we show the optimised protocol using the KEM-based authenticator
for the first message and the signature-based authenticator for the second message. A
mirror protocol results from using the two authenticators the other way around. For
completeness this optimised protocol is given as Fig. 11.

4.3 MAC-based MT-authenticator

Canetti and Krawczyk [CK01] present also a MAC-based MT-authenticator (interest-
ingly described only in compressed form) as shown in Fig. 12. This authenticator can be
useful in scenarios where pre-shared keys exist such as in many use-cases of TLS with
lightweight entities and also in session resumption in the latest TLS 1.3 version.

Since MACs are expected to remain secure in the post-quantum setting it makes

23

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with signature authentication

Alice Bob

NA
$←− {0, 1}n NA (pke, ske)← Gen()

NB
$←− {0, 1}n

s← NA ∥ NB

s← NA ∥ NB
pke, NB , σ1 σ1 ← SignskB

(pke ∥ s ∥ A)

If SigVerpkB
(σ1, pke ∥ s ∥ A) = 0

Abort

(c∗, k∗)← Encap(pke)

σ2 ← SignskA
(c∗ ∥ s ∥ B) c∗, σ2 If SigVerpkA

(σ2, c
∗ ∥ s ∥ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Figure 10: Optimised UM protocol from the KEM-based AM protocol and the signature-
based MT-authenticator.

sense to combine this authenticator with our KEM-based AM protocol to obtain a post-
quantum secure AKE protocol suitable for pre-shared key applications. Fig. 13 shows
the resulting optimised protocol.

5 Concrete post-quantum secure AKE protocols

In the previous section we have presented optimised generic AKE protocols which will
be secure as long as the KEM, signature and MAC primitives are instantiated with
secure instances. Even restricting to a handful of currently best-trusted post-quantum
primitives, this leads to hundreds of potential concrete protocols, bearing in mind that we
have shown that different KEMs and signatures can be mixed in the same protocol and
observing that the generic protocols are not symmetric between initiator and responder.
The question of whether the concrete instantiated protocols are practical in terms of
computational efficiency and message size is a natural one.

5.1 Comparison of different implementations

Tables 1a and 1b present the computational efficiency of various KEMs and signa-
tures from the NIST competition. The figures are taken from two recent reports from
ETSI [Sec21a, Sec21b]. They are not intended as definitive efficiency comparisons —
indeed some of the figures have already been improved upon — but rather to illustrate

24

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with SIG/KEM authentication

Alice Bob

NA
$←− {0, 1}n NA (pke, ske)← Gen()

(c1, k1)← Encap(pkA)

s← NA ∥ c1

s← NA ∥ c1 pke, σ1, c1 σ1 = SignskB
(pke ∥ A ∥ s)

If SigVerpkB
(σ1, pke ∥ A ∥ NA) = 0

Abort

k′1 ← Decap(skA, c1)

(c∗, k∗)← Encap(pke)

τ2 ← Mack′
1
(c∗ ∥ s ∥ B) c∗, τ2 If MacVerk1

(τ2, c
∗ ∥ s ∥ B) = 0

Abort

k∗′ ← Decap(ske, c
∗)

Figure 11: Optimised UM protocol from the KEM-based AM protocol and the signature-
based MT-authenticator used for authenticating the first message, and the kem-based
MT-authenticator authenticating the second message.

typical ballpark figures and highlight the big variation between many of the existing
proposals.

5.2 Computational cost

To give an impression of the computational costs of our new protocols we summarize
the number of public key operations needed in each of our optimised protocols in the
upper part of Table 2. The lower part of the same table includes the number of similar
operations for some prominent existing protocols.

All of the protocols in Table 2 use three passes and three rounds. However, they
do not all have the same goals or assumptions. TLS and KEMTLS only aim for
server-side authentication while our protocol in Fig. 13 assumes pre-shared keys. PQ-
WireGuard [HNS+20] is a variant of the WireGuard protocol using only KEMs. Its
design is based on the FSXY protocol [FSXY12]. All of the protocols in the lower half
of Table 2 use only KEMs, both for authentication and key exchange. When comparing

3Using Diffie-Hellman as an ephemeral KEM. Unilateral authentication
4Unilateral authentication
5Assuming that our KEM-based AM protocol is used as the base protocol.
6Encryption is needed in the full protocol, not encapsulation

25

Modular Design of KEM-Based Authenticated Key Exchange

Compressed MAC-based MT-authenticator [CK01]

Alice Bob

NB
$←− {0, 1}n

NB

τ ← MACk(m,B,NB)

m, τ

“Alice sent m to Bob” If MacVerk(σ,m,B) = 1

“Bob received m from Alice”

Figure 12: λMAC, a compressed MAC-based MT-authenticator with shared key k.

with our KEM-only protocol of Fig. 8 we see that the main computational effort is the
same as in the three bottom protocols which are all KEM-only protocols. We conclude
that our protocols are comparable in computation to existing ones. Another difference
between the various protocols is on which side most computations are performed, e.g.
in Fig. 14 the initiator Alice encapsulates twice while Bob performs computationally
heavier decapsulations and generation of the ephemeral key.

The most obvious difference between the upper and lower part of the table is that
our designs have the responder generating the ephemeral KEM key while all existing
protocols shown give this task to the initiating party. We do not believe that either option
is inherently better, rather it depends on the relative costs of generation, encapsulation
and decapsulation of the instantiating ephemeral KEM. For some well-known KEMs
(Table 1a), key generation is far more costly than encapsulation or decapsulation. To
minimise the overall protocol cost to both parties it seems better to use an algorithm
with more uniform cost for the three KEM operations, but if it is desired to reduce the
cost of one party at the expense of the other then different algorithms can be better.

It can be argued that implementation is most efficient when the same concrete KEM
is used for all three of the KEM instances in the all-KEM protocols. This should be
true at least with regard to the codebase needed in any implementation. However, this
may not be the case when it comes to counting computation cycles. Recall that the AM
protocol includes generation of an ephemeral public key, while the long-term keys are
generated only once before the protocol runs. Therefore it can make sense to use a KEM
with an efficient key generation algorithm for the ephemeral KEM, and a different one
with a much less efficient key generation algorithm for the KEM using the long-term
keys. PQ-WireGuard [HNS+20] does exactly this, using Classic McEliece for the long-
term KEM and a variant of Saber for the ephemeral KEM. The size of its public key
(Table 1a) shows why using Classic McEliece for the ephemeral KEM seems to be a bad

26

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with MAC authentication using pre-shared MAC key k

Alice Bob

NA
$←− {0, 1}n NA (pke, ske)← Gen()

NB
$←− {0, 1}n

s← NA ∥ NB

s← NA ∥ NB
pke, NB , τ1 τ1 ← MACk(pke ∥ s ∥ A)

If MacVerk(τ1, pke ∥ s ∥ A) = 0

Abort

(c∗, k∗)← Encap(pke)

τ2 ← MACk(c
∗ ∥ s ∥ B) c∗, τ2 If MacVerk(τ2, c

∗ ∥ s ∥ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Figure 13: Optimised UM protocol from the KEM-based AM protocol and the MAC-
based MT-authenticator.

idea.
Current known post-quantum signatures tend to be computationally less efficient

than KEM constructions (Table 1b) where signing is much more expensive than decap-
sulation in known algorithms. It is therefore natural that KEM-based authentication
currently is seen favourably. This can change in the future, and the NIST focus on
new post-quantum signature proposals may well lead to more efficient post-quantum
secure signature algorithms. To our knowledge, there is no analog to our KEM/Sig or
Sig/KEM protocols in the literature, neither are we aware of post-quantum proposals
for the pre-shared key case.

Remark. We find it interesting to remark on a major difference regarding the sym-
metry of the computation requirements between Diffie–Hellman and the AM protocol
(Fig. 6) which can be regarded as a generalisation. The computational requirements for
Diffie–Hellman are the same for both initiator and responder. In the AM protocol the
initiator runs Gen and Decap while the responder runs only Encap. Of itself this is not
significant, since Encap really has two purposes: to generate the new key for the respon-
der and to generate the encapsulation for the initiator. Thus in the Diffie–Hellman case
the cost of Encap is the same as the cost of Gen plus the cost of Decap. However, in all
the examples in Table 1a this is nowhere close to being true. Indeed Encap is always
significantly cheaper than Gen plus Decap, which may be important when deciding which
party take the role of initiator in a protocol run.

27

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with KEM/SIG authentication

Alice Bob

(c1, k1)← Encap(pkB)
c1 (pke, ske)← Gen()

NB
$←− {0, 1}n

s← c1 ∥ NB

k1 ← Decap(skB, c1)

s← c1 ∥ NB
pke, NB , τ1 τ1 ← Mack1

(pke ∥ s ∥ A)

If MacVerk1
(τ1, pke ∥ s ∥ A) = 0

Abort

(c∗, k∗)← Encap(pke)

σ2 ← SignskA
(c∗ ∥ s ∥ B) c∗, σ2 If SigVerpkA

(σ2, c
∗ ∥ s ∥ B) = 0

Abort

k∗ ← Decap(ske, c
∗)

Figure 14: Optimised UM protocol from the KEM-based AM protocol and the KEM-
based MT-authenticator used for the first message, and the signature-based MT-
authenticator for the second message.

5.3 Communications cost

In Table 3 we take an inventory of the message fields in each of our abstract protocols.
Due to the optimisation techniques explained earlier, the number of fields sent and
received by each party is three in all cases. Informally, at least, this is a minimum since
the ephemeral public key needs to communicated and then used in the response, and
each of these two messages must be authenticated using a fresh value chosen by the other
party.

The size of these fields depends on the parameters of the concrete primitives cho-
sen. In July 2022, NIST announced a first list of selected candidates as a result of its
Post-Quantum Cryptography competition [AAC+22], pointing out CRYSTALS-Kyber
as their selected KEM and CRYSTALS-Dilithium as their selected signature algorithm.
Using the real-world efficiency of the Kyber KEM and the Dilithium signature scheme,
in Tables 1a and 1b and naively adding up these numbers, all messages in our Fig. 14
protocol would be under under 5 kB for Kyber-1024, which definitely is practical. An-
other look at the ephemeral public key sizes in Table 1a shows why the choice of Saber
in PQ-WireGuard [HNS+20] is an obvious one. We note that before its recent demise,
SIKE looked an even more promising candidate to minimise the ephemeral key size.

Just as for computation efficiency, currently accepted post-quantum secure signature

28

Modular Design of KEM-Based Authenticated Key Exchange

Table 1: The efficiency of selected post-quantum algorithm proposals. Algorithms Gen,
Encap, Decap, Sign and SigVer, are measured in clock cycles on a standard processor.
Parameters public key size (pk), ciphertexts (encapsulations) (ct) and signatures (σ) are
measured in bytes.

(a) The efficiency of various KEMs [Sec21a].

NIST security
Gen Encap Decap pk ct category

mceliece348864 36641040 44 350 134 745 261120 128 1
mceliece460896 117067765 117 782 271 694 524160 188 3

KYBER512 33856 45 200 59 088 800 768 1
KYBER1024 73544 97 324 115 332 1568 1568 3

ntruhps2048677 309216 83 519 59 729 930 930 1
ntruhps4096821 431667 98 809 75 384 1230 1230 3

LightSaber 45152 49 948 47 852 672 736 1
Saber 66727 79 064 76 612 992 1088 3

(b) The efficiency of various signature schemes [Sec21b].

NIST security
Sign SigVer σ category

Dilithium-3 269 000 118 000 3293 3
Dilithium-5 429 000 179 000 4595 5

FALCON-512 386 678 82 340 666 1
FALCON-1025 789 564 168 498 1280 5

candidates do not look attractive for communications efficiency as shown in Table 1b.
To minimise signature size FALCON is a better choice than Dilithium, but requires a
trade-off with computation.

We reiterate that Table 3 assumes that authentic long-term public keys are available
to all parties by some external channel. This fits some real-world protocols (such as
WireGuard) but not others (such as TLS). Post-quantum signatures used to certify
the long-term public keys can be chosen independently of other concrete choices in the
protocol. This choice will obviously affect both the computation for each party and
the size of the protocol messages. Although registration of public keys can avoid use
of post-quantum signatures [GHL+22], it seems necessary to use signatures to achieve
usual certificate properties.

6 Conclusion and future work

As summarized in Sec. 1.2, the main contributions of this work are the new KEM-based
authenticator and corresponding security proof, the new proofs in the AM-model and the

29

Modular Design of KEM-Based Authenticated Key Exchange

Table 2: The number of public key operations for ours and existing protocols.

Initiator Responder
Gene Encap Decap Sign SigVer Gene Encap Decap Sign SigVer

Fig 8. KEM/KEM 0 2 1 0 0 1 1 2 0 0
Fig 10. Sig/Sig 0 1 0 1 1 1 1 0 1 1
Fig 14. KEM/Sig 0 2 0 1 0 1 0 2 0 1
Fig 11. Sig/KEM 0 1 1 0 1 1 1 1 1 0
Fig 13. MAC/MAC 0 1 0 0 0 1 0 1 0 0

TLS 1.33 1 0 1 0 1 0 1 0 1 0
KEMTLS4 [SSW20] 1 1 1 0 0 0 1 1 0 0
KEMTLS-pdk
[SSW21]

1 1 2 0 0 0 2 1 0 0

PQ-WireGuard
[HNS+20]

1 1 2 0 0 0 2 1 0 0

SSW175[dSW17] 1 16 2 0 0 0 2 1 0 0

Table 3: What comprises the messages sent in each protocol.

Message 1 Message 2 Message 3

Fig 8. KEM/KEM ct pk , ct , MAC ct , MAC
Fig 10. Sig/Sig N pk , N, σ ct , σ
Fig 14. KEM/Sig ct pk , N, MAC pk , MAC
Fig 11. Sig/KEM N pk , σ, ct ct , MAC
Fig 13. MAC/MAC N pk , N, MAC ct , MAC

derivation of several new generic AKE protocols. We hope that the flexibility of protocol
designs can be useful in fitting AKE protocols to different application use cases and that
as new concrete KEMs and signature schemes are developed the generic protocols will
yield new and interesting instantiations. Some of the ways to extend the work are the
following.

• Adding additional security properties; for example, application of the twisted-PRF
trick [FSXY12] can likely be added to an AM-protocol to secure against ephemeral
leakage.

• Check whether use of hybid-KEMs (secure against conventional adversaries based
on traditional assumptions and secure against post-quantum adversaries based on
new assumptions) can be usefully applied to obtain hybrid-secure AKE [BBF+19].

• Since the modular approach does not naturally lead to tight reductions, it would be
useful to improve on this, although in the end it may be necessary to complement
new protocol designs obtained from the modular approach with a monolithic proof
in a stronger model for some concrete protocol.

• Applying an authenticator just to one message (from a two-message AM protocol)

30

Modular Design of KEM-Based Authenticated Key Exchange

will allow for unilateral authentication such as is common in TLS. The security
and efficiency of such a generic protocol deserves analysis.

• Real-world implementations of the generic protocols is also left to future work —
obviously this would be a prerequisite for future adaptation, and give us a more
concrete comparison of their efficiency in the real world.

References

[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,
John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, Daniel Smith-Tone, and Yi-Kai Liu. Status
Report on the Third Round of the NIST Post-Quantum Cryptography Stan-
dardization Process. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/publications/

detail/nistir/8413/final.

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status Report on
the Second Round of the NIST Post-Quantum Cryptography Standardiza-
tion Process. Technical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/publications/detail/

nistir/8309/final.

[ADH+22] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and
Florian Weber. Post quantum noise. Cryptology ePrint Archive, Report
2022/539, 2022. https://eprint.iacr.org/2022/539.

[BBF+19] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Dou-
glas Stebila. Hybrid key encapsulation mechanisms and authenticated key
exchange. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019, pages 206–
226. Springer, Heidelberg, 2019. doi:10.1007/978-3-030-25510-7_12.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! Practical, quantum-secure key exchange from LWE. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1006–1018. ACM
Press, October 2016. doi:10.1145/2976749.2978425.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach
to the design and analysis of authentication and key exchange protocols
(extended abstract). In 30th ACM STOC, pages 419–428. ACM Press, May
1998. doi:10.1145/276698.276854.

31

https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://eprint.iacr.org/2022/539
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/276698.276854

Modular Design of KEM-Based Authenticated Key Exchange

[BHMS17] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila.
Transitioning to a quantum-resistant public key infrastructure. In Tanja
Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography - 8th In-
ternational Workshop, PQCrypto 2017, pages 384–405. Springer, Heidel-
berg, 2017. doi:10.1007/978-3-319-59879-6_22.

[BJS15] Florian Bergsma, Tibor Jager, and Jörg Schwenk. One-round key exchange
with strong security: An efficient and generic construction in the standard
model. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
477–494. Springer, Heidelberg, March / April 2015. doi:10.1007/978-3-

662-46447-2_21.

[BL17] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549(7671):188–194, 2017.

[CFS+21] Sof́ıa Celi, Armando Faz-Hernández, Nick Sullivan, Goutam Tamvada, Luke
Valenta, Thom Wiggers, Bas Westerbaan, and Christopher A. Wood. Im-
plementing and measuring KEMTLS. Cryptology ePrint Archive, Report
2021/1019, 2021. https://eprint.iacr.org/2021/1019.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Birgit Pfitzmann, editor, EURO-
CRYPT 2001, volume 2045 of LNCS, pages 453–474. Springer, Heidelberg,
May 2001. doi:10.1007/3-540-44987-6_28.

[Cre11] Cas Cremers. Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In Bruce S. N.
Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong,
editors, ASIACCS 11, pages 80–91. ACM Press, March 2011.

[DAL+17] Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael
Snook. Provably secure password authenticated key exchange based on
RLWE for the post-quantum world. In Helena Handschuh, editor, CT-
RSA 2017, volume 10159 of LNCS, pages 183–204. Springer, Heidelberg,
February 2017. doi:10.1007/978-3-319-52153-4_11.

[dSW17] Cyprien Delpech de Saint Guilhem, Nigel P. Smart, and Bogdan Warinschi.
Generic forward-secure key agreement without signatures. In Phong Q.
Nguyen and Jianying Zhou, editors, ISC 2017, volume 10599 of LNCS,
pages 114–133. Springer, Heidelberg, November 2017.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key
exchange scheme based on the learning with errors problem. Cryptology
ePrint Archive, Paper 2012/688, 2012. https://eprint.iacr.org/2012/

688. URL: https://eprint.iacr.org/2012/688.

32

https://doi.org/10.1007/978-3-319-59879-6_22
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://eprint.iacr.org/2021/1019
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-319-52153-4_11
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/688

Modular Design of KEM-Based Authenticated Key Exchange

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama.
Strongly secure authenticated key exchange from factoring, codes, and lat-
tices. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012, volume 7293 of LNCS, pages 467–484. Springer, Heidelberg,
May 2012. doi:10.1007/978-3-642-30057-8_28.

[GHL+22] Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth, Douglas Ste-
bila, and Greg Zaverucha. Proof-of-possession for KEM certificates using
verifiable generation. Cryptology ePrint Archive, Report 2022/703, 2022.
https://eprint.iacr.org/2022/703.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM combiners.
In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume
10769 of LNCS, pages 190–218. Springer, Heidelberg, March 2018. doi:

10.1007/978-3-319-76578-5_7.

[HBN06] Yvonne Hitchcock, Colin Boyd, and Juan Manuel González Nieto. Modular
proofs for key exchange: rigorous optimizations in the Canetti-Krawczyk
model. Appl. Algebra Eng. Commun. Comput., 16(6):405–438, 2006. doi:
10.1007/s00200-005-0185-9.

[HNS+20] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and
Philip R. Zimmermann. Post-quantum WireGuard. Cryptology ePrint
Archive, Report 2020/379, 2020. https://eprint.iacr.org/2020/379.

[JKRS21] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-secure
authenticated key exchange, revisited. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of
LNCS, pages 117–146. Springer, Heidelberg, October 2021. doi:10.1007/
978-3-030-77870-5_5.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Mod-
ern Cryptography, Second Edition. CRC Press, 2014. URL:
https://www.crcpress.com/Introduction-to-Modern-Cryptography-

Second-Edition/Katz-Lindell/p/book/9781466570269.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman proto-
col. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
546–566. Springer, Heidelberg, August 2005. doi:10.1007/11535218_33.

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint
Archive, Paper 2015/939, 2015. https://eprint.iacr.org/2015/939.
URL: https://eprint.iacr.org/2015/939.

[Sec21a] ETSI Technical Committee Cyber Security. Quantum-safe public-key
encryption and key encapsulation. ETSI TR 103823, ETSI, October

33

https://doi.org/10.1007/978-3-642-30057-8_28
https://eprint.iacr.org/2022/703
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/s00200-005-0185-9
https://doi.org/10.1007/s00200-005-0185-9
https://eprint.iacr.org/2020/379
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1007/11535218_33
https://eprint.iacr.org/2015/939
https://eprint.iacr.org/2015/939

Modular Design of KEM-Based Authenticated Key Exchange

2021. URL: https://www.etsi.org/deliver/etsi_tr/103800_103899/
103823/01.01.01_60/tr_103823v010101p.pdf.

[Sec21b] ETSI Technical Committee Cyber Security. Quantum-safe sig-
natures. ETSI TR 103616, ETSI, September 2021. URL:
https://www.etsi.org/deliver/etsi_tr/103600_103699/103616/

01.01.01_60/tr_103616v010101p.pdf.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS
without handshake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1461–1480. ACM
Press, November 2020. doi:10.1145/3372297.3423350.

[SSW21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. More efficient post-
quantum KEMTLS with pre-distributed public keys. In Elisa Bertino, Haya
Shulman, and Michael Waidner, editors, ESORICS 2021, Part I, volume
12972 of LNCS, pages 3–22. Springer, Heidelberg, October 2021. doi:

10.1007/978-3-030-88418-5_1.

34

https://www.etsi.org/deliver/etsi_tr/103800_103899/103823/01.01.01_60/tr_103823v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103800_103899/103823/01.01.01_60/tr_103823v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103600_103699/103616/01.01.01_60/tr_103616v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103600_103699/103616/01.01.01_60/tr_103616v010101p.pdf
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/978-3-030-88418-5_1

	Introduction
	Modular design of AKE
	Contributions
	Related work
	Outline

	Background
	Basic definitions
	Canetti–Krawczyk modular design
	MT-authenticators
	SK-security
	Optimising the UM protocol

	KEM-based building blocks
	KEM-based MT-authenticator
	KEM-based AM protocol

	Generic KEM-based AKE protocols
	Compiled KEM-based protocol and optimization
	Generic protocols using signatures
	MAC-based MT-authenticator

	Concrete post-quantum secure AKE protocols
	Comparison of different implementations
	Computational cost
	Communications cost

	Conclusion and future work

