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Abstract—Large transformer-based models have realized state-
of-the-art performance on lots of real-world tasks such as
natural language processing and computer vision. However,
with the increasing sensitivity of the data and tasks they
handle, privacy has become a major concern during model
deployment. In this work, we focus on private inference in
two-party settings, where one party holds private inputs and
the other holds the model. We introduce BumbleBee, a fast
and communication-friendly two-party private transformer
inference system. Our contributions are three-fold: Firstly,
we present optimized homomorphic encryption-based proto-
cols that enable the multiplication of large matrices with
80 – 90% less communication cost than existing methods.
Secondly, we offer a general method for designing efficient
and accurate protocols for non-linear activation functions
in transformers. Our activation protocols have demonstrated
speed and reduced the communication overhead by 80 – 95%
over two existing methods. Finally, we conducted intensive
benchmarks on several large transformer models. Results show
that BumbleBee is more than one order of magnitude faster
than Iron (NeurIPS22).

1. Introduction

Large transformer-based models such as BERT [20, 46],
GPT [54] and ViT [21] have realized state-of-the-art (SOTA)
performance on lots of real-world tasks including person
re-identification [43], voice assistant [15] and code auto-
completion [68]. As the transformer models are handling
increasingly sensitive data and tasks, privacy has become
one of the major concerns during the model deployment.

Private inference aims to protect model weights from
users, while guaranteeing that the server learns no infor-
mation about users’ private inputs. Many recent works
have introduced cryptographic frameworks based on Secure
Multi-party Computation (MPC) [7, 23] to enable private
inference on deep learning models such as convolution
neural networks (CNN) [2, 29, 35, 56] and transformer-
based models [27, 44, 66, 71]. While Secure Two-party
(2PC) CNN inference could already be done in a few
minutes, the private inference on transformer-based mod-
els introduce new efficiency challenges, particularly from
the perspective of communication overhead. For example,

[27] reports about 90 GB communication for one private
inference on a 12-layer BERT model. Moreover [66, Table
1] reports one private inference on a 12-layer Vi might
need to exchange about 262 GB messages. Thus, a high-
speed bandwidth is indispensable for these communication-
intensive approaches. Indeed [66] used a 100Gbps Ethernet
cable in their experiments.

We can summarize two major challenges in developing a
computational fast and communication-friendly 2PC frame-
work for private inference on large transformers.

1) Multiplication of large-scale matrices. The inference
of a transformer-based model can involve hundreds of
multiplications of large matrices. For instance, Natural
Language Processing (NLP) transformers use embed-
ding tables to convert a query of words into a nu-
merical representation. An embedding table lookup can
be defined as a matrix multiplication EV where each
row of E is a one-hot vector corresponding to the
index of each word in the input query. In other words,
the dimensions of this multiplication can be parsed as
numbers of words × vocabulary size × embedding size
which is significantly larger than the matrix in Cains.
Vision transformers can also involve large size matrices
due to a relatively larger embedding size than the NLP
transformers.
Most of the existing cryptographic protocols for pri-
vate matrix multiplication rely on either Oblivious
Transfer (OT) [19, 52, 53] or Homomorphic Encryp-
tion (HE) [11, 28, 29, 35]. However, these two line
of approaches have their limitations. The OT-based
methods for private matrix multiplication require less
computation time but necessitate the transmission of an
enormous amount of messages. On the other hand, the
HE-based methods demand significantly more compu-
tation but are more communication-friendly than the
OT approaches.
The first challenge is to develop a matrix multiplica-
tion protocol that is both speedy and communication-
friendly.

2) More complicated activation functions. In contrast
to the straightforward ReLU activation employed in
CNNs, the transformer consists of complex activation
functions like softmax, Gaussian Error Linear Unit
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(GeLU), and Sigmoid Linear Unit (SiLU). The eval-
uation of these activation functions requires fundamen-
tal functions such as the exponentiation, division and
hyperbolic. While researchers have developed specific
protocols for these fundamental functions [10, 39, 55,
56], however, it is still not practical to use them directly
in transformer models. The primary reason is that the
number of activations in the transformer models is ex-
ceedingly large. For example, a single inference on the
GPT2 model [16] requires evaluating about 3.9 × 106

point-wise GeLUs.
Our second challenge is to design efficient 2PC proto-
cols for these complex activation functions.

1.1. Our Technical Results

Efficient protocols for two types of oblivious linear evalu-
ation (OLE). The multiplication of two private matrices can
be achieved using a primitive called Matrix Oblivious Linear
Evaluation (mOLE). We propose a computationally fast
and communication-friendly mOLE protocol using a lattice-
based HE. The coefficient encoding approaches of [27, 29]
provide a good starting point. However, the major drawback
of these works is the significant communication overhead
due to a sparse format of the resulting ciphertexts. To
overcome this shortage, we present a local procedure to
compress many of these “sparse” ciphertexts into a “dense”
form using the property of the underlying HE. Compared
to a previous ciphertext compression method [12], our com-
pression procedure is about 20× faster. Overall, we observed
80 – 90% less communication costs over [27, 29] which
leads to a shorter end-to-end time on a low bandwidth.

Beside the matrix multiplications, the point-wise mul-
tiplication x0 · y0, x1 · y1, · · · , xn · yn is also an important
computation in the transformer inference. A batch of point-
wise multiplications can be privately achieved via a batch
OLE (bOLE) primitive [18]. The bOLE protocol takes two
private vectors as input and produces the point-wise results
with a suitable random masking. In this work, we enhance
the HE-based protocol [57] by leveraging a plaintext lifting
technique. This eliminates the need for statistical random
masking, enabling us to instantiate the bOLE protocol with
a smaller HE parameter. Our empirical results demonstrate
that our approach is 1.3× more efficient than [57] in terms
of computation time and communication.
A framework for constructing efficient and accurate
protocols for the activation functions in transformers. We
first propose a general framework for construct efficient and
precise 2PC protocols for the activation functions used by
many transformer models. These activation functions share a
common property: they are relatively smooth within a short
interval round the origin and nearly linear on two sides. With
this characteristic in mind, we propose using one or two low-
degree polynomials to approximate the activation function
within the short interval, and using the identity function
on the two sides. For example, we suggest to approximate

GeLU with two polynomials P (x) and Q(x) of low degree
that minimize the least square error, as follows.

GeLU(x) ≈


−10−5 x < −5
P (x) −5 < x ≤ −2
Q(x) −2 < x ≤ 3

x− 10−5 x > 3

Then we propose optimizations based on three key insights.
Firstly, we exploit the smoothness of the activation function
to enhance efficiency. The smooth function give us some
“error” tolerance for selecting a wrong but still nearby
segment. For example, the evaluation of an input x = −1.98
on the (wrong) 2nd segment can also give a similar result,
i.e., P (−1.98) ≈ Q(−1.98). This give us some room to
design a more efficient method at the cost of introducing
a mild error. Secondly, our method reduces the number of
segments required for approximation by employing multiple
low-degree polynomials. For example, while [45] requires
over 12 splines to approximate an activation function, our
approach only requires 3 – 4 segments. Finally, we introduce
optimizations to improve the amortized efficiency when
evaluating multiple polynomials over the same input point.
For instance, our optimized 2PC protocol can evaluate one
million points of GeLU within 10 seconds, exchanging about
700MB of messages. That is 93% less time and 95% less
communication than the existing numerical approach [55].

Our protocols for the activation function may not be
as precise as the sophistic approaches such as [37, 55].
However, we want to emphasize that the approximation
error in our protocol does not negatively impact transformer
accuracy. We have performed private inference on two large
transformers using four public datasets. We have run private
inference on more than 3000 samples. The results demon-
strate that our private inference achieves the same level of
accuracy as the inference on cleartext even without model
fine-tuning.

1.2. Contributions

To summarize, we make four key contributions:
1) We have designed a matrix multiplication protocol that

is optimized for communication efficiency. In fact, our
protocol has been shown to require 80 – 99.9% less
communication compared to existing methods based on
HE and OT. Also, our protocol is speedy. For instance,
the private matrix multiplication in the dimensions
128× 768× 768 can be done within 1.0 second.

2) We provide methods to design efficient and accurate
protocols for the activation functions used in trans-
formers. Unlike prior methods [27, 44, 52] that rely
on rough substitutions, our approach does not require
changing any components in the transformer model.
Therefore, we do not need any additional model fine-
tuning when using our private activation protocols.

3) We have implemented all the proposed protocols and
developed a new MPC back-end called BumbleBee into
the SPU library [48]. To compare, we also implemented
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a baseline using several SOTA 2PC protocols based on
the SPU library. This baseline is already more efficient
than the 2PC approach Iron (NeurIPS22) [27], par-
ticularly in terms of communication. Upon quick ex-
amination, Figure 1 illustrates the improvements made
by the proposed protocols compared to the baseline. In
summary, we have a reduction of communication costs
by 60% over our baseline, and by 83% over Iron.

4) BumbleBee enables easy-to-use private transformer in-
ference1. Indeed, we have successfully run BumbleBee
on 5 pre-trained transformer models utilizing the model
weights and the Python programs available on Hug-
gingFace’s website2 including BERT-base, BERT-large,
GPT2-base, LLaMA-7B, and ViT-base. We also evalu-
ated the accuracy of BumbleBee across four datasets,
including a 1000-size subset from ImageNet [58]. Im-
portantly, all our experiments were conducted using the
proposed protocols, rather than through simulation. Our
approach provides a promising evidence that accurate
private transformer inference is possible.

1.3. Some Observations and Practices

Many private machine learning frameworks utilize a
high-level front-end to translate a deep learning program
(e.g,. written in PyTorch or JAX) to an Intermediate Rep-
resentation (IR). By running a MPC back-end engine on
each operation defined by the IR, we can obtain the pri-
vate evaluation of the deep learning program. However,
the development of a deep learning program without a
thorough understanding of the behavior and properties of
the underlying MPC primitives can significantly diminish
the performance of the private evaluation, which unfortu-
nately is a common occurrence. We present examples from
two frameworks from the industry, i.e., CrypTen [40] and
SPU [48]. The first example is SPU’s JAX front-end for the
softmax function.
1. def _softmax(x, axis = -1):
2. x_max = jnp.max(x, axis,

keepdims=True)↪→

3. unnormalized = jnp.exp(x - x_max)
4. sum_exp = jnp.sum(unnormalized,

axis, keepdims=True)↪→

5. result = unnormalized / sum_exp
6. return result

The issue lies at Line 4 and Line 5 where perform a keep-
dimension-then-division workflow. This will significantly
increases the costs for the division part. The proper approach
is to perform the reciprocal operation first and then broad-
cast the shape for multiplication. Indeed, several of recent
papers on private transformer inference have claimed that
the softmax function is the bottleneck [3, 44, 66]. However,
we believe that the primary reason for this is the improper
calling order, rather than the inherent complexity of the
softmax function itself.

1. Our implementation is available in https://github.com/secretflow/spu.
2. https://github.com/huggingface/transformers
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Figure 1: The overall bandwidth improvements of the pro-
posed optimizations on the BERT-base model with 128 input
tokens. The baseline consists of many SOTA 2PC protocols
that are already communication-friendly.

A second example can be found in the LayerNorm op-
eration in transformers which involves the evaluation of the
divide-square-root x/

√
y formula. One possible approach to

evaluating this formula is to sequentially execute the 2PC
protocols of square root, reciprocal, and multiplication, as is
done in the CrypTen [40]. However, in the MPC side, the
costs of computing the reciprocal of square root y−1/2 is
similar to that of the square-root operation using the methods
from [33, 39]. Thus the former should be used to save the
computation of reciprocal. When implementing BumbleBee,
we prioritize the use of just-right protocols and ensure that
they are employed in a right order to minimize the overhead.

2. Preliminaries

2.1. Notations

We write x = y to mean x is equal to y and write x := y
to assign the value of y to the variable x. For an interactive
protocol Π, we write JxK ← Π to denote the execution of
the protocol. We denote by [n] the set {0, · · · , n − 1} for
n ∈ N. For a set D, x ∈R D means x is sampled from D
uniformly at random. We use ⌈·⌉, ⌊·⌋ and ⌊·⌉ to denote the
ceiling, flooring, and rounding function, respectively. The
logical AND and XOR is ∧ and ⊕, respectively. Let 1{P}
denote the indicator function that is 1 when the predicate P
is true and 0 when P is false. We use lower-case letters with
a “hat” symbol such as â to represent a polynomial, and â[j]
to denote the j-th coefficient of â. We use the dot symbol ·
such as â · b̂ to represent the multiplication of polynomials.
We denote Zq = Z ∩ [0, q) for q ≥ 2. The congruence
x ≡ y mod 2ℓ will be abbreviated as x ≡ℓ y. For a 2-power
number N , and q > 0, we write AN,q to denote the set of
integer polynomials AN,q = Zq[X]/(XN +1). We use bold
letters such as a,M to represent vectors and matrix, and
use a[j] to denote the j-th component of a and use M[j, i]
to denote the (j, i) entry of M. The Hadamard product is
written as a⊙ b.

2.2. Cryptographic Primitives

2.2.1. Additive Secret Sharing. We use 2-out-of-2 additive
secret sharing schemes over the ring Z2ℓ throughout this
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manuscript. An ℓ-bit (ℓ ≥ 2) value x is additively shared as
JxK0 and JxK1 where JxKl is a random share of x held by Pl.
We can write the multiplication of two shared value as JxK ·
JyK ≡ℓ (JxK0+JxK1)·(JyK0+JyK1) ≡ℓ JxK0JyK0+JxK1JyK1+
JxK0JyK1 + JxK1JyK0 where the mixed-terms JxK0JyK1 and
JxK1JyK0 are computed using homomorphic encryption. For
a real value x̃ ∈ R, we first encode it as a fixed-point value
x = ⌊x̃2f⌋ ∈ [−2ℓ−1, 2ℓ−1) under a specified precision
f > 0 before secretly sharing it. We write J·; fK to explicitly
denote the shared value is using f -bit fixed-point precision.
When ℓ = 1, we use JzKB to denote Boolean shares. Also
we omit the subscript and only write JxK or JzKB when the
ownership is irrelevant from the context.

2.2.2. Oblivious Transfer. We rely on oblivious transfer
(OT) for the non-linear computation. In a general 1-out-
of-2 OT

(
2
1

)
-OTℓ, a sender inputs two messages m0 and

m1 of length ℓ bits and a receiver inputs a choice bit c ∈
{0, 1}. At the end of the protocol, the receiver learns mc,
whereas the sender learns nothing. When sender messages
are correlated, the Correlated OT (COT) is more efficient in
communication [5]. In our additive COT, a sender inputs a
function f(x) = x + ∆ for some ∆ ∈ Z2ℓ , and a receiver
inputs a choice bit c. At the end of the protocol, the sender
learns x ∈ Z2ℓ whereas the receiver learns x+ c ·∆ ∈ Z2ℓ .
In this work, we use the Ferret protocol [70] for a lower
communication COT.

2.2.3. Lattice-based Additive Homomorphic Encryption.
A homomorphic encryption (HE) of x enables computing
the encryption of F (x) without the knowledge of the decryp-
tion key. In this work, we use an HE scheme that is based on
Ring Learning-with-Error (RLWE) [47]. The RLWE scheme
is defined by a set of public parameters HE.pp = {N, q, t}.

• KeyGen. Generate the RLWE key pair (sk, pk) where
the secret key sk ∈ AN,q and the public key pk ∈ A2

N,q.
• Encryption. An RLWE ciphertext is given as a poly-

nomial tuple (b̂, â) ∈ A2
N,q. We write RLWEN,q,t

pk (m̂)
to denote the encryption of m̂ ∈ AN,t under a key pk.

• Addition (⊞). Given two RLWE ciphertexts ct0 =
(b̂0, â0) and ct1 = (b̂1, â1) that respectively encrypts
m̂0, m̂1 ∈ AN,t under a same key, the operation
ct0⊞ct1 computes the RLWE tuple (b̂0+ b̂1, â0+â1) ∈
A2

N,q which can be decrypted to m̂0 + m̂1 mod AN,t.
• Multiplication (⊠). Given an RLWE ciphertext ct =
(b̂, â) that encrypts m̂ ∈ AN,t, and a plain polynomial
ĉ ∈ AN,t, the operation ct⊠ ĉ computes the tuple (b̂ ·
ĉ, â · ĉ) ∈ A2

N,q which can be decrypted to m̂ · ĉ mod
AN,t.

• SIMD Encoding. By choosing a prime t such that
t ≡ 1 mod 2N , the SIMD technique [60] allows to
convert vectors v,u ∈ ZN

t of N elements to polyno-
mials v̂, û ∈ AN,t. The product polynomial v̂ · û can be
decoded to the point-wise multiplication u⊙ v mod t.
In the context of private evaluation using RLWE-based
HEs, the SIMD technique can amortize the cost of
point-wise multiplication by a factor of 1/N . We de-

TABLE 1: The proposed protocols in BumbleBee. Also we
use some existing protocols as the building blocks.

Proposed Protocols Descriptions

JzK← ΠbOLEe(x,y) such that Batch OLE with Error
z ≡ℓ x⊙ y + e for ∥e∥∞≤ 1 (§4)
Jx⊙ yK← Πmul(JxK, JyK) Point-wise mult.
Jx2K← Πsquare(JxK) Square

JZK← ΠmOLE(X,Y) Matrix OLE (§3)
such that Z ≡ℓ X ·Y
JX ·YK← Πmatmul(JXK, JYK) Matrix mult.

Jỹ; fK← ΠGeLU(Jx̃; fK) GeLU (§5.1)
Jỹ; fK← Πsoftmax(Jx̃; fK) Softmax (§5.2)

Ideal Functionalities Descriptions

Jx̃; fK← Ff
trunc(Jx̃; 2fK) Truncation [17, 29]

Jc?x : yK← Fmux(JcKB , JxK, JyK) Multiplexer
J1/
√
x̃; fK← Frsqrt(Jx̃; fK; f) Reciprocal Sqrt [39]

J1{x < y}KB ← Flt(JxK, JyK) Less-then [56]
JxK← FH2A(RLWE(x)) HE to share [29, 57]

note v̂ := SIMD(v) as the SIMD encoding, and write
SIMD−1(·) as the decoding function.

• Automorphism. Given a RLWE ciphertext ct ∈ A2
N,q

that encrypts a polynomial m̂(X) ∈ AN,t, and an odd
integer g ∈ [1, 2N), the operation ct′ := Auto(ct, g)
computes ct′ ∈ A2

N,q which decrypts to m̂′(X) =
m̂(Xg) ∈ AN,t. In this work, we use the automorphism
to compress the volume of RLWE ciphertexts.

From HE to Arithmetic Share. The RLWE ciphertexts
have a noise associated with them which would leak infor-
mation about the homomorphic computation. As a result, we
need a mechanism to hide the noise in the RLWE ciphertexts
particularly when we need to convert an encrypted message
to arithmetic shares. We abstract this mechanism as a FH2A

functionality which takes as input an RLWE ciphertext of
m̂ and outputs the arithmetic share Jm̂K to each party. Con-
cretely, we can adopt the noise flooding [57] and the 1-bit
approximated resharing [29] to implement this functionality.

2.3. Transformer-based Models

Many modern language pre-processors such as GPT [16]
and BERT [20] are Transformer-based. These models consist
of an input embedding layer followed by multiple lay-
ers of Transformers [63]. Similarly, Vision Transformers
(ViTs) [4, 21] also employ a similar architecture, except
that they do not incorporate an input embedding layer.
There are two major computation blocks for Transformer-
based models: a multi-head attention mechanism and a feed-
forward network. Besides, layer normalization are employed
around each of the two consequent layers.
Multi-head Attention.. An attention mechanism computing
Attention(Q,K,V) = softmax(QK⊤ + M)V, can be
described as mapping a query Q and a set of key-value pairs
(K,V) to a weighted sum. Note Q,K,V are different linear
projections of an input matrix. The multi-head attention vari-
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Figure 2: Overview of BumbleBee’s private transformer in-
ference. The dash arrows indicate secretly shared messages.

ant computes a H-parallel attention Attention(Qj ,Kj ,Vj)
for j ∈ [H] and then concatenate these H resulting matrices.
Layer Normalization. For a vector x ∈ Rd, let µ = (1/d) ·∑

j x[j] ∈ R and σ =
∑

j∈[d](x[j] − µ)2 ∈ R. The layer
normalization is denoted by LayerNorm(x) = γ · (x− µ) ·
σ−1/2 + β, where γ, β ∈ R are two hyper-parameters.
Feed-forward. A feed-forward network typically includes
two linear projections, with an activation function applied
between them, i.e., FFN(X) = W0 · F (W1X), where F :
R∗ 7→ R∗ is an activation function such as GeLU or SiLU.

2.4. Threat Model and Private 2PC Inference

Similar to previous work [3, 29, 35, 50, 56], we tar-
get privacy against a static and semi-honest probabilistic
polynomial time (PPT) adversary following the ideal/real
world paradigm [9]. That is, we consider a computationally
bounded adversary that corrupts one of the parties at the
beginning of the protocol execution, follows the protocol
specification, but tries to learn additional information about
the honest party’s input.

BumbleBee invokes several sub-protocols of smaller pri-
vate computations that summarized in Table 1 . To simplify
the protocol description and security proofs, we describe
BumbleBee using the hybrid model. A protocol invoking a
functionality F is said to be in “F-hybrid model”. Also,
some functions are computed approximately in BumbleBee
for the sake of a better efficiency. According to the defi-
nition [22], a protocol constitutes a private approximation
of F if the approximation reveals no more about the inputs
than F itself does. In the context of private 2PC inference
(Figure 2), a server S holds a transformer model while a
client C queries to the model such as a piece of texts.
Assuming semi-honest S and C, BumbleBee enables C to
learn only two pieces of information: the architecture of the
transformer, and the inference result. S is either allowed to
learn the result or nothing, depending on the application
scenario. All other information about C’s private inputs
and the model weights of S should be kept secret. Formal
definitions of the threat model are provided in the Appendix.

Toy example over Z25 .

Q =

1 2
3 4
5 6
7 8

 ,V =

[
9 10
11 12

]
⇒ QV ≡

31 2
7 14
15 26
23 6

 mod 25

Compute QV with q̂ := πlhs(Q) and v̂ := πrhs(V).

q̂ = 1X0 − 2X15 + 3X4 + 4X3 + 5X8 + 6X7 + 7X12 + 8X11

v̂ = 9X0 + 11X1 + 10X2 + 12X3

⇓ q̂ · v̂ mod (X16 + 1, 25)

q̂ · v̂ ≡ 31X0 + 31X1 + 2X2 + 16X3 + 7X4 + 9X5+

14X6 + 26X7 + 15X8 + 19X9 + 26X10 + 4X11+

23X12 + 29X13 + 6X14 + 2X15

Figure 3: Example for πlhs and πrhs with N = 16 and ℓ = 5.

3. Fast and Communication-Light 2PC Proto-
col for Large Matrix Multiplication

Transformer-based models rely heavily on multiplication
of high-dimensional matrices. For the private transformer
inference, we introduce a primitive called Matrix OLE
(mOLE). We describe the mOLE as a 2-party protocol that
takes two private (might be random) matrices X and Y from
the two parties, respectively, and generates the share JXYK
between them. We compute the multiplication of two shared
matrices JQKJVK by computing the mixed terms JQ0V1K
and JQ1V0K which thus needs two mOLE executions.

3.1. Existing HE-based Approaches

Our starting point is the RLWE-based matrix mul-
tiplication from [49]. We denote this method as KRDY.
Specifically, they use two encoding functions πlhs and πrhs

to achieve efficient private matrix multiplication protocol
πlhs : Zkw×mw

2ℓ
7→ AN,2ℓ and πrhs : Zmw×nw

2ℓ
7→ AN,2ℓ .

q̂ := πlhs(Q) and v̂ := πrhs(V) such that (1)
q̂[0] = Q[i, j] for i = 0 ∧ j = 0,

q̂[N + i · kw ·mw − j] = −Q[i, j], for i = 0 ∧ j ∈ [mw]/{0}
q̂[i · kw ·mw − j] = Q[i, j] for i > 0 ∧ j ∈ [mw]

v̂[k ·mw + j] = V[j, k] for j ∈ [mw], k ∈ [nw].

All other coefficients of q̂ and v̂ are set to 0. The product
polynomial q̂ · v̂ directly gives the resultant matrix QV in
some of its coefficients. Figure 3 provides a simple illustra-
tion of the ideas behind πlhs and πrhs encodings. Indeed, we
made slight modifications to the encodings for our purpose.
In particular, the first row of Q are encoded in different
positions. More information is provided in the Appendix.

Proposition 1 (Modified from [49]). Assuming 1 ≤ kw ·
mw · nw ≤ N . Given two polynomials q̂ = πlhs(Q), v̂ =
πrhs(V) ∈ AN,2ℓ , the multiplication U ≡ℓ Q · V can be
evaluated via the product û = q̂ · v̂ over the ring AN,2ℓ . That
is U[i, k] = û[i ·mw ·nw+k ·mw] for all i ∈ [kw], k ∈ [nw].
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Input: â ∈ AN,q for an odd q and 1 ≤ 2r ≤ N .
Output: b̂ ∈ AN,q such that b̂[i] is zero if 0 ̸≡ i mod 2r.
Also b̂[i] = â[i] mod q for all 0 ≡ i mod 2r.

1: Compute â0 := h · â mod q for h ≡ 2−r mod q.
2: for j ∈ [r] do
3: âj+1 := âj + Auto(âj ,

N
2j + 1).

4: end for
5: return âr.

Figure 4: ZeroGap: Zero-out a given gap of polynomial.

When matrix shape k · m · n > N , we can split them
into smaller sub-matrices and apply KRDY to each pair of
the corresponding sub-matrices. We denote the partition
windows as (kw,mw, nw). In terms of communication cost,
[49] needs to exchange O(min( km

kwmw
, mn
mwnw

) + kn
kwnw

) ci-
phertexts. To provide an example, let consider a set of
dimensions commonly used in transformer models such as
k = 16,m = 768, and n = 3072. In this scenario, the Iron
protocol requires exchanging about 25 MB of ciphertexts.
This can be a substantial communication overhead since the
transformer models often contain hundreds of such large-
scale matrices. The following section will elaborate on
methods for reducing this communication burden.

3.2. Less Communication via Ciphertext Packing

According to Proposition 1, only kwnw coefficients of
the resulting polynomial û are necessary out of the N
coefficients. However, even if kwnw ≪ N , we still need
to transmit the entire RLWE ciphertext of û for decryption.
This leads to communication inefficiency for large matrices.
To alleviate this issue, we propose applying a PackLWEs
procedure from [12] to KRDY, which we refer as KRDY+

hereafter. The PackLWEs procedure allows us to choose
arbitrary coefficients from multiple RLWE ciphertexts and
combine them into a single RLWE ciphertext by perform-
ing homomorphic automorphisms. In the case of KRDY+,
we can reduce the number of resulting ciphertexts from
O(kn/(kwnw)) to O(kn/N) ciphertexts at the costs of
O(kn) homomorphic automorphism operations. Let take the
matrix shape (k,m, n) = (16, 768, 3072) again. KRDY+ now
exchanges about 2.9 MB of ciphertexts which is a significant
reduction from the 25 MB of KRDY. It should be noted
that for matrices with large kn, the compression step in
KRDY+ can become much more computationally expensive
than the homomorphic multiplication step. Overall, KRDY+
successfully minimizes communication overhead but it may
also significantly increase the computation time.

3.3. Less Communication and Less Computation
via Ciphertext Interleaving

We now present a more efficient method to reduce
the number of ciphertexts generated from KRDY’s matrix
protocol. Our method can run 20× faster than the PackLWEs

Input: {âj ∈ AN,q}j∈[2r] for an odd q and 1 ≤ 2r ≤ N .
Output: ĉ ∈ AN,q such that ĉ[i] = âi mod 2r [⌊i/2r⌋·2r].

1: for ∀j ∈ [2r] in parallel do
2: b̂j := ZeroGap(âj , 2

r) ▷ zero-out the 2r gap
3: b̂j := b̂j ·Xj ∈ AN,q ▷ right-shift by j unit
4: end for
5: return the sum of polynomials

∑2r−1
j=0 b̂j .

Figure 5: IntrLeave: Coefficients interleaving.

of [12]. Recall that there are mw irrelevant coefficients in the
resulting polynomial, for each of the two needed values. To
clean up the irrelevant coefficients, in Figure 4, we introduce
a procedure ZeroGap which has a logarithmic complexity.
The key concept is to compute â+ Auto(â, N + 1). Let us
use N = 8 and â(X) =

∑i=7
i=0 aiX

i as an example. By def-
inition, the automorphism Auto(â, 9) yields

∑i=7
i=0 aiX

i·9,
which is equivalent to
i=7∑
i=0

aiX
i·9 ≡

i=3∑
i=0

a2iX
2i −

i=3∑
i=0

a2i+1X
2i+1 mod X8 + 1.

Here, the sign of coefficients in odd positions is flipped.
Hence, evaluating â+ Auto(â, N + 1) will cancel out odd-
indexed coefficients and double the even-indexed coeffi-
cients. In more general, let us compute â+Auto(â, N/2j+1)
for any power of two factor 2j of N . Take the N = 8
example again, and let us consider 2j = 2:

Auto(â, 8/2 + 1) =

i=7∑
i=0

aiX
i·5

≡ a0 − a2X
2 + a4X

4 − a6X
6 +

∑
i∤2j

aiX
i·5 mod X8 + 1.

In brief, coefficients in odd multiples of 2j are sign-flipped.
Suppose the coefficients of â for all i ∤ 2j are zeros already.
Then â+Auto(â, N/2j+1) will cancel out the odd multiples
of 2j while doubling the positions of even multiples of 2j .
Indeed, by repeatedly applying the formula

â := â+ Auto(â, N/2j + 1) for j = 0, 1, · · · , r − 1

we can retain only the (scaled) coefficients that lie at the
2r-multiple positions. To eliminate the scaling factor, we
can first multiply its inverse 2−r mod q at the beginning
of the procedure. This implicitly requires an odd modulus
q, which is commonly satisfied in RLWE-based HE that
uses modulus q ≡ 1 mod 2N . Also our ZeroGap procedure
requires the gap between two needed coefficients is a two-
power number which equals to the partition window mw in
the πlhs and πrhs encodings. Note that this partition window
can be chosen freely as long as 1 ≤ kwmwnw ≤ N is
satisfied.

With the ZeroGap procedure in hand, we present the
procedure IntrLeave in Figure 5. This procedure allows
us to interleave 2r polynomials into a single polynomial
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(a) k = 128,m = 768, n = 768
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(b) k = 196,m = 768, n = 3072

Figure 6: Computation & Bandwidth cost under different
partition window mw and matrix dimensions. Polynomial
degree N = 213. The pink (left) part is dominated by
sending too much ciphertexts in Step 1 while the gray (right)
part is dominated by the homomorphic automorphisms.

with the input coefficients arranged in a stride of 2r steps.
We would like to emphasize that the rotation over the
coefficients can be achieved much more efficiently than the
SIMD rotation [26] in the ciphertext domain. A toy example
of IntrLeave is given in Figure ??. Briefly, IntrLeave
needs about O(2r · r) automorphisms to combine N coeffi-
cients. For an appropriate choice of r, IntrLeave can re-
quire significantly fewer automorphisms than the PackLWEs
procedure. Furthermore, it is noteworthy that IntrLeave
is multi-core friendly since the 2r calls to the ZeroGap
procedure can be executed fully in parallel.

In Algorithm 1, we describe our matrix OLE protocol.
The first three steps in Algorithm 1 are similar to those in the
protocols [27, 29, 49]. Specifically, we divide a large matrix
into sub-blocks and encode each block as a polynomial using
πlhs and πrhs. However, we intentionally select a two-power
partition window mw in our approach. The main difference
between our protocol and theirs is the use of the IntrLeave
procedure in Step 4 to decrease the number of RLWE
ciphertexts from O(kn/(kwnw)) to O(kn/N). The process
of parsing the interleaved polynomials and constructing the
resultant matrix is explained in Figure 8 in the Appendix.

Theorem 1. The protocol ΠmOLE in Algorithm 1 privately
realizes the mOLE functionality in presence of a semi-honest
admissible adversary under the FH2A hybrid.

Parameters Selection via Cost Model. To achieve a bal-
ance between computation and communication overhead,
it is essential to choose an appropriate partition window
mw. A smaller value of mw might increase the communi-
cation overhead in Step 1 excessively while a larger value
of mw results in more homomorphic automorphisms in
Step 4. Given the matrix shape (k,m, n) and the partition
windows (kw,mw, nw), the number of ciphertexts sent in
Step 1 is n1 := m′ · min(k′, n′). The total number of
homomorphic automorphisms to perform IntrLeave in
Step 4 is n2 := k′n′mw log2 mw. After the interleaving,

n3 := ⌈m
′n′

mw
⌉ ciphertexts are sent in Step 5. To choose the

Algorithm 1 Proposed Matrix OLE Protocol ΠmOLE

Private Inputs: Sender S: Q ∈ Zk×m
2ℓ

and secret key sk.
Receiver R: V ∈ Zm×n

2ℓ
.

Output: JUK such that U ≡ℓ Q ·V.
Public Params: pp = (HE.pp, pk, (kw,mw, nw))

• The size mw is a 2-power value, and 1 ≤ kwmwnw ≤ N .
• k′ = ⌈ k

kw
⌉, m′ = ⌈ m

mw
⌉, n′ = ⌈ n

nw
⌉, and m̃ = ⌈k′n′

mw
⌉.

• Note: If k′ > n′ then flip the role of sender and receiver.

1: S first partitions the matrix Q into block matrices
Qα,β ∈ Zkw×mw

ℓ . Then S encodes each block ma-
trices as a polynomial q̂α,β := πlhs(Qα,β) for α ∈
[k′] and β ∈ [m′]. After that S sends {ct′α,β :=

RLWEN,q,2ℓ

sk (q̂α,β)} to R.
2: R first partitions the matrix V into block matrices

Vβ,γ ∈ Zmw×nw

ℓ . Then R encodes each block matrices
as a polynomial v̂β,γ := πrhs(Vβ,γ) for β ∈ [m′] and
γ ∈ [n′].

3: On receiving {ct′α,β} from S, R computes a vector of
RLWE ciphertexts, denoted as c, where

c[αn′ + γ] := ⊞β∈[m′]

(
ct′α,β ⊠ v̂β,α

)
.

for α ∈ [k′], γ ∈ [n′],
4: To compress the the vector c of k′n′ ciphertexts into m̃

ciphertexts without touching the needed coefficients, R
runs IntrLeave on subvectors of c. For example

c̃[θ] := IntrLeave([c[θ ·mw], c[θ ·mw + 1], · · ·︸ ︷︷ ︸
mw

]),

for θ ∈ [m̃]. ▷ Pad with zero(s) when k′n′ ∤ mw.
5: S and R jointly call ĉi,0, ĉi,1 ← FH2A(c̃[i]) on each

ciphertext in c̃, where S obtains ĉi,0 ∈ AN,2ℓ and R
obtains ĉi,1 ∈ AN,2ℓ , respectively. After that both S
and R can derive their share using a local procedure
JUKl := ParseMat(ĉ0,l, ĉ1,l, · · · ) in Appendix.

proper partition window, we can minimize

argmin
kw,mw,nw

PC · n2 + PB · (n1 + n3) (2)

under the constrain that mw is a 2-power value and 1 ≤
kwmwnw ≤ N . Here PC models the price for computing
one homomorphic automorphism and PB models the price
for sending one ciphertext. Indeed, only the ratio PC/PB

is relevant for minimizing (2). A smaller ratio PC/PB can
indicate the scenario of powerful computing or constraint
bandwidth condition. For such cases, we prefer to set a
larger mw. Conversely, if an ample amount of bandwidth
is accessible, a smaller value for mw can be chosen to
lighten the time taken for ciphertext interleaving. Based on
our empirical results, it appears that selecting mw ≈

√
N is

a viable choice. Then the protocol in Algorithm 3 requires
about O(kn log2 N/(2

√
N)) homomorphic automorphisms

for the ciphertexts interleaving. To compare, the KRDY+

baseline needs O(kn) homomorphic automorphisms. As an
example, let mw = 26 with N = 213. Under this setting,
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the ciphertext compression time of our protocol is approxi-
mately 26 · 6/213 ≈ 5% of the ciphertext compression time
of PackLWEs.

3.4. Further Optimizations

3.4.1. Batched Matrix Multiplications. Recall that each
multi-head attention in a transformer model involves H > 1
parallel matrix multiplications, e.g., Qj · Kj for j ∈ [H].
When each of these resulting matrix is small, i.e., |Qj ·
Kj | ≤ N/2, we prefer to apply IntrLeave to compress
the ciphertexts from the batch multiplications. Briefly, the
O(H) RLWE ciphertexts of the batch multiplications are
further packed into O((H · kn)/N) ciphertexts.

3.4.2. Dynamic Compression Strategy. We adopt a dy-
namic strategy for ciphertext compression that allows us
to strike a balance between reducing communication and
incurring additional computation costs. Specifically, we do
not use any ciphertext compression when there is only one
RLWE ciphertext to send, i.e., ⌈k/kw⌉ · ⌈n/nw⌉ = 1. Also
when kn ≪ N , we use PackLWEs instead of IntrLeave
where the former can run faster for such small cases.

3.4.3. Using Symmetric Encryption & Modulus Reduc-
tion. We mention two common optimizations used by many
HE-based applications [13, 14, 26]. One is to use the
symmetric version of the RLWE encryption for the sender
S. In the symmetric ciphertext, one of the ciphertext com-
ponent is sampled uniformly at random. Thus we can just
send a random seed (e.g., 256 bits) and saving about half
of the communication size. Secondly, whenever a receiver
responses a RLWE ciphertext ct ∈ A2

N,q to S, it can first
apply the modulus reduction technique [8] to convert the
ciphertext to a smaller modulus ct′ ∈ A2

N,q′ for q′ < q
without affecting the decryption result. We note that both of
these optimizations are compatible with the bOLE protocol
in the next section.

4. Faster Batch OLE from RLWE

Batch OLE (bOLE) can be described as a 2-party com-
putation protocol that takes a vector x from a sender S, and
vectors y from a receiver R, and generates the share Jx⊙yK
between them [18]. In the context of private inference, we
demonstrate that a variant of bOLE with Error (bOLEe)
is sufficient. We can build more efficient bOLEe protocol
using a smaller RLWE parameter. This approach may intro-
duce Least-Significant-Bit (LSB) errors in the final output.
Nonetheless, due to the use of fixed-point representation,
the LSB errors can be safely removed through a subsequent
truncation protocol, without affecting the overall accuracy
of the computation.

Similarly to the RLWE-based bOLE protocol from [57],
we also apply the SIMD technique [60] to implement
the bOLE functionality with a better amortized effi-
ciency. In [57], a sender S pre-processes its private in-
put x ∈ ZN

2ℓ as SIMD(x), and sends the ciphertext

Algorithm 2 bOLE with Error Protocol ΠbOLEe

Input: Sender S: x ∈ ZN
2ℓ , secret key sk. Receiver R:

y ∈ ZN
2ℓ . Public parameters pp = {N, t} such that t =

1 mod 2N is a prime and t > 22ℓ and the public key pk.
Output: JzK ∈ ZN

2ℓ such that ∥z− x⊙ y mod 2ℓ∥∞≤ 1.

1: S sends RLWEN,q,t
sk (x̂) to S, where x̂ := SIMD(Lift(x)).

2: R computes ŷ := SIMD(y).
3: On receiving the ciphertexts RLWEN,q,t

sk (x̂), R computes
ct := RLWEN,q,t

sk (x̂)⊠ ŷ.
4: Call JûK← FH2A(ct) to convert to arithmetic share where

R inputs ct and S inputs its secret key sk. Suppose S’s
share is JûK0 ∈ AN,t and R’s share is JûK1 ∈ AN,t.

5: S outputs Down(SIMD−1(JûK0)).
6: R outputs Down(SIMD−1(JûK1)).

RLWEN,q,t
S (SIMD(x)) the receiver R. Then R responses the

ciphertext RLWEN,q,t
S (SIMD(x))⊠ SIMD(y)⊞ SIMD(r) to S

with a masking vector r ∈ ZN . To provide a statistical
security of σ-bit (e.g., σ = 40), R samples the vector r
from ZN

22ℓ+σ . To prevent the overflow from addition, [57]
needs to set a large plaintext modulus t > 22ℓ+σ+1. We
present how to avoid this extra σ-bit overhead, at the cost
of 1-bit LSB error. We first introduce two helper functions:

Lift(x) : ZN
2ℓ 7→ ZN

t via ⌊ t
2ℓ
· x⌉ mod t,

Down(y) : ZN
t 7→ ZN

2ℓ via ⌊2
ℓ

t
· y⌉ mod 2ℓ.

The major differences with [57] are two-fold. In Figure 2,
S sends RLWEN,q,t

S (SIMD(Lift(x))) in the first step. Also R
samples an informatics masking r ∈R ZN

t . With the lifting
function, we can achieve modulo-2ℓ arithmetic even t ∤ 2ℓ.

Proposition 2. If t > 22ℓ then Down(Lift(x) · y mod t) ≡ℓ

x · y given any x, y ∈ Z2ℓ .

Proof. It suffices to show the error term can be rounded to
zero. Lift(x) · y mod t can be written as

t

2ℓ
· ((x · y mod

2ℓ) + re · y for a round error |re| ≤ 1/2. Then the term is

rounded as ⌊2
ℓ

t
· (re ·y)⌉ = 0 given t > 22ℓ and y < 2ℓ.

We now able to use informatics random masking which
allows us to avoid the extra σ-bit overhead. There might be
a chance of introducing 1-bit error in the result.

Proposition 3. Suppose x, y ∈ Z2ℓ and r ∈ Zt. Let u′ =
Down(Lift(x) · y − r mod t) and v′ = Down(r). If t > 22ℓ

and r distributes uniformly over Zt, then u′+v′ ≡ℓ x ·y+e
for e ∈ {0,±1}.

The proof basically follows the similar argument in [29,
full version, Appendix C].

Theorem 2. The protocol ΠbOLEe in Algorithm 2 privately
realizes the bOLEe functionality in presence of a semi-
honest admissible adversary.
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Figure 7: (Left) The maximum absolute error between
Seg4GeLU and GeLU within the interval [−5, 3] is about
1.5×10−2. (Right) We use a wider range for the polynomial
fitting which gives P 3(x) ≈ P 6(x) for x around the pivot.

For the concrete improvements, our bOLEe protocol
requires t ≈ 2128 for ℓ = 64, whereas the approach of
[57] requires a larger value of t ≈ 2168. Our empirical
results show that our protocol is about 1.3× faster than their
protocol.
Beaver’s Triples on-the-fly. The point-wise multiplication
protocol Πmul(JxK, JyK) is commonly implemented using
Beaver’s triple [6]. A batch of Beaver’s triples (JaK, JbK, JcK)
such that c ≡ℓ a ⊙ b are usually pre-generated in an
input-independent phase using two calls to the bOLE proto-
col [19, 57]. However, in BumbleBee, we employ a slightly
different approach. Specifically, we compute the cross terms
JxK0 ⊙ JyK1 and JxK1 ⊙ JyK0 directly using two bOLEs
when the input size is large enough, i.e., |x| ≥ N/2. On
the other hand, when |x| < N/2, we utilize Beaver’s triples
to take full advantage of the SIMD batching used by our
ΠbOLEe protocol. More specifically, we first generate N/2
Beaver’s triples, and then consume parts of them to perform
Πmul(JxK, JyK). The remaining triples are stored locally by
each player, and will be used for subsequent multiplications.

We generate a batch of N/2 Beaver’s triples on-the-fly
using a single bOLE as follows. S and R samples x ∈R ZN

2ℓ

and y ∈R ZN
2ℓ , respectively and then feed it to ΠbOLEe. By

parsing S’s input as x = a0∥b0 for |a0| = |b0| = N/2, and
parsing R’s input as y = b1∥a1 for |a1| = |b1| = N/2,
they obtain the share Ja0 ⊙ b1∥b0 ⊙ a1K at the end of the
ΠbOLEe execution. Then each player can locally compute
the triple (al,bl, cl := al ⊙ bl + Ja0 ⊙ b1Kl + Ja1 ⊙ b0Kl)
such that (a0 + a1) ⊙ (b0 + b1) ≡ℓ c0 + c1 + e for small
errors ∥e∥∞≤ 2. This idea can be extended for the square
function as well.

The on-demand approach, which needs a small local
cache, is relatively easy to integrate into existing the private
frameworks such as SPU and SiRNN. This is because these
frameworks were originally designed without considering
the input-independent stage.

5. Optimized 2PC Protocols for the Activation
Functions in Transformers

We first describe our protocol for the GeLU function.
Note that the method and optimizations described in this

section can also be used for other activation such as SiLU
and ELU. See Appendix B for the details.

5.1. Gaussian Error Linear Unit (GeLU)

A common definition of the GeLU function is

GeLU(x) = 0.5x(1 + tanh(
√

2/π(x+ 0.044715x3))).

We approximate the GeLU function using 4 segments

Seg4GeLU(x) =


−ϵ x < −5
P 3(x) =

∑i=3
i=0 aix

i −5 < x ≤ −1.97
P 6(x) =

∑i=6
i=0 bix

i −1.97 < x ≤ 3

x− ϵ x > 3
(3)

where P b(x) a degree-b polynomial that approximates the
GeLU function in a short interval. For instance, setting
ϵ = 10−5 we plot Seg4GeLU in Figure 7a. We can see that
Seg4GeLU approximates the GeLU function very well. To
find the approximation polynomials P 3(x) and P 6(x), we
can use the numpy.polyfit API. To ensure better accuracy
and error tolerance, we recommend fitting these polynomials
using a wider approximation range. For example, the coef-
ficients of P 3(x) can be fitted from the range of [−6,−1].
This wider range helps to avoid large fluctuations on the
margins and provides more room for error tolerance in
subsequent optimizations. Our goal is to obtain polynomials
that P 3(x) ≈ P 6(x) for x around the pivot point, i.e.,
−1.97 in our case. Also, we suggest to fit the higher degree
polynomial within a symmetric interval such as [−4, 4]. This
will give us a “sparse” approximation polynomial which are
cheaper to evaluate. For instance, the coefficients b3 and b5
in (3) are actually 0.

We note that in our GeLU protocol, we respond with a
small value ϵ instead of 0 on the branch x < −5. This is to
avoid the gradient vanishing issue if one apply our GeLU
protocol for a private training task.

Theorem 3. The protocol ΠGeLU in Algorithm 3 privately
realizes (3) in presence of a semi-honest admissible adver-
sary under the Ftrunc-, Flt-, and Fmux- hybrid.

The number of activation can be massive in a trans-
former inference. We present three optimizations to further
improve the concrete efficiency of Algorithm 3.

5.1.1. Approximated Segment Selection. The segment se-
lection in (3) can be privately achieved using a private
less-than 1{x < y} for x, y ∈ Z2ℓ . The private less-
than is commonly obtained via computing the most sig-
nificant bit (MSB) of x − y mod 2ℓ [29, 51, 56]. Our
second optimization is to take advantage the smoothness
of the activation function. For example, the evaluation of
an input point x̃ = −1.95 should be assigned to the 3rd
segment and results at P 6(−1.95) ≈ −0.049938 while the
evaluation on the 2nd segment can also give a similar result
P 3(−1.95) ≈ −0.050821. Given these observations, we
suggest to compute the less-than bit with some low-end f ′
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Algorithm 3 Private GeLU protocol ΠGeLU

Input: Jx̃; fK with f -bit fixed-point precision. The poly-
nomial coefficients {a0, a1, a2, a3} in P 3(x) and the
coefficients {b0, b1, b2, b4, b6} in P 6(x).
Output: JSeg4GeLU(x̃); fK. See (3) for definition.

1: Jointly compute the powers Jx̃2K← Πsquare(Jx̃K), Jx̃4K←
Πsquare(Jx̃2K), Jx̃3K ← Πmul(Jx̃2K, Jx̃K), and Jx̃6K ←
Πsquare(Jx̃3K). The truncations are implicitly called.

2: Jointly evaluate JP 3(x̃)+ϵ; fK← Ff
trunc(⌊(ϵ+a0)·22f⌋+∑3

k=1Jx̃
kK ·⌊ak ·2f⌋), and JP 6(x̃)+ϵ; fK← Ff

trunc(⌊(ϵ+
b0) · 22f⌋+

∑
kJx̃k; fK · ⌊bk · 2f⌋).

3: Jointly compute the comparisons for segement selection

Jb0KB ← Flt(Jx̃K,−5) ▷ b0 = 1{x̃ < −5}
Jb1KB ← Flt(Jx̃K, T ) ▷ b1 = 1{x̃ < −1.97}
Jb2KB ← Flt(3, Jx̃K) ▷ b2 = 1{3 < x̃}

Locally sets Jz0KBl := Jb0KBl ⊕ Jb1KBl , Jz1KBl := Jb1KBl ⊕
Jb2KBl ⊕ l and Jz2KBl := Jb2KBl . Note z0 = 1{−5 < x̃ ≤
−1.97}, z1 = 1{−1.97 < x̃ ≤ 3}, and z2 = 1{3 < x̃}.

4: Jointly compute the multiplexers Jz0 · (P 3(x̃) + ϵ)K, Jz1 ·
(P 6(x̃) + ϵ)K, and Jz2 · x̃K using the Fmux functionality.
Then Pl locally aggregates them and outputs as the share
of JSeg4GeLU(x̃); fKl after subtracting ⌊ϵ · 2f⌋.

bits ignored to reduce the communication overhead. That is
1{x < y} ≈ MSB((x − y)/2f

′
) and setting f ′ < f . We

now compute the MSB over shares of (ℓ− f ′) bits length.
Empirically, the approximated segment selection helps re-
ducing 8% communication overhead of the GeLU protocol
in Algorithm 3.

5.1.2. Batching (Approximated) Segment Selection. Our
second optimization is specified for the concrete OT-based
MSB protocol of [29, 42]. These protocol compute the MSB
of an arithmetic share JxK using the formula

MSB(JxK0)⊕MSB(JxK1)⊕ 1{2ℓ−1 − JxK1 < JxK0},
where the computation of the last bit needs one

(
M
1

)
-OT2.

We thus need 3 calls of
(
M
1

)
-OT2 for the segment selection

in (3) while the choice bits to these
(
M
1

)
-OT2 are identical.

We suggest to combine the 3 calls of
(
M
1

)
-OT2 as one(

M
1

)
-OT6, i.e., 1-of-M OT on 6-bit messages. While this

OT combination may not reduce communication overhead
by too much, it can help reduce computation time of GeLU
by 20% according to our experiments. This is because the
running time of one

(
M
1

)
-OT2 execution is almost the same

as that of one
(
M
1

)
-OT6 execution when using the Ferret

OT protocol [70].

5.1.3. Optimizing Polynomial Evaluation. For the evalua-
tion of P 3(x) and P 6(x) in (3), we suggest to use the faster
square protocol Πsquare to compute all even-power terms,
such as x2, x4 and x6. Additionally, we present a method
to reduce the communication cost for the odd-power terms
by half. As an example, let us consider the computation
of Jx3K given JxK and Jx2K. We can employ two calls

Algorithm 4 Private Softmax Protocol Πsoftmax

Input: Jx̃; 2fK ∈ Zd
2ℓ with double-precision.

Output: Jsoftmax(x̃); fK ∈ Zd
2ℓ . See (4) for definition.

1: Jointly compute JbKB ← Flt(Jx̃; 2fK, ⌊Texp · 2f⌋).
2: Jointly compute the maximum Jx̄; 2fK← Fmax(Jx̃; 2fK).
3: Pl locally computes Jỹ = x̃− x̄; 2fK.
4: Jointly compute Jz̃0; fK← 1 · 2f + Fn+f

trunc(Jỹ; 2fK).
5: for i = 1, 2, · · · , n sequentially do
6: Jz̃i; fK← Πsquare(Jz̃i−1; fK)▷ z̃i = (z̃i−1)

2

7: end for
8: Pl locally aggregates Jz̃; fKl ∈ Z2ℓ ←

∑
i∈[d]Jz̃n[i]Kl.

9: Jointly compute J1/z̃; fK ∈ Z2ℓ ← Frecip(Jz̃; fK).
10: Joint compute Jz̃n/z̃; fK← Πmul(Jz̃nK, J1/z̃K).
11: Output Jb⊙ (z̃n/z̃); fK using the Fmux functionality.

of bOLEs to compute Jx3K, i.e., FbOLE(JxK0, Jx2K1) and
FbOLE(Jx2K0, JxK1). For our bOLE construction in Algo-
rithm 2, P0 need to send the ciphertexts of SIMD(Lift(JxK0))
and SIMD(Lift(Jx2K0)) to P1. We note that these two ci-
phertexts are already sent to P1 when computing Jx2K and
Jx4K, respectively. Therefore, to compute the cubic term,
the players can skip Step 1 in Algorithm 2, and follow the
remaining steps identically.

5.2. Attention and Softmax

For the sake of numerical stability [25, Chapter 4], the
softmax function is commonly computed as

softmax(x)[i] =
exp(x[i]− x̄)∑
i exp(x[i]− x̄)

, (4)

where x̄ is the maximum element of the input vector x. For
a two-dimension matrix, we apply (4) to each of its row
vector. It is worth noting that all inputs to the exponentiation
operation in (4) are negative. We leverage the negative
operands to accelerate the private softmax. Particularly, we
compute the exponentiation using the Taylor series with a
simple clipping branch on a hyper-parameter Texp < 0

exp(x) ≈

0 x < Texp(
1 +

x

2n

)2n

x ∈ [Texp, 0].

For the clipping range Texp, we simply set Texp such that
exp(Texp) ≈ 2−f where f is the fixed-point precision.
Suppose our MPC program uses f = 18. Then we set
Texp = −13 since exp(−13) < 2−18. When Texp is fixed,
we can empirically set the Taylor expansion degree n for
a targeting precision. For instance, in our experiments, we
set n = 6 for Texp = −13 to achieve an average error
within 2−10. Also we apply the approximated less-than
proposed in the previous section for the branch selection
since the exponentiation on negative inputs are smooth too.
The division by 2n can be achieved using a call to Fn

trunc,
and the power-to-2n is computed via a sequences of Πsquare.

Our second optimization involves fusing a portion of
the linear projection in the Attention mechanism with the
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softmax function. More specifically, we propose combining
the truncation Fn

trunc used for division by 2n with the
truncation Ff

trunc used in the matrix multiplication operation
Q · K⊤, into a single truncation operation Ff+n

trunc. This
modification does not affect correctness, as the max protocol
lacks awareness of fixed-point precision.

Theorem 4. Πsoftmax in Algorithm 4 privately realizes (4)
in presence of a semi-honest admissible adversary under the
Flt-, Fmux-, Ftrunc-, and Frecip-hybrid.

6. Related Work

Private Transformer Inference. Several frameworks for
privacy-preserving machine learning (PPML) are capable
of conducting private inference on transformers, including
CrypTen [40], SiRNN [55], MP-SPDZ [39] and SPU [1, 48].
CrypTen and SiRNN support 2PC, with CrypTen demand-
ing an additional trusted dealer for the optimal efficiency.
On the other hand, MP-SPDZ and SPU can support both
2PC and three-party computation (3PC). Furthermore, re-
searchers have improved the existing PPML frameworks
and developed systems for private transformer inference.
For instance, [27] is a 2PC inference system that integrates
SiRNN’s OT-based protocols for the non-linear functions.
[44] is built on-top of CrypTen but heavily relies on a trusted
dealer for performance. Both of [27, 44] require extensive
communication.
Low Communication mOLE. Many works that leverages
the homomorphic SIMD [60] can be directly used for the
mOLE functionality with a relatively small communication,
such as [11, 26, 28, 32]. The SIMD technique in turn
demands a prime plaintext modulus t rather than 2ℓ. One can
use the Chinese Remainder Theorem to accept secret shares
from Z2ℓ at the cost of increasing the computation and
communication overheads on the HE-side by many times.
Non-linear Functions. To evaluate the softmax function,
CrypTen and CryptGPU [61] also use the Taylor series
(1 + x/2n)2

n

to approximate the exponentiation. But they
do not apply the range clipping. For example, CryptGPU
empirically sets n = 9 according to their examination on
some datasets. On the other hand, MP-SPDZ and SPU [48]
uses the formula exp(x) = 2x·log2(e). SiRNN uses a pri-
vate Look-up-Table for an initial guess with a few Newton
iterations. These approaches do provide a more stable and
precise exponentiation but also expensive for 2PC. SPU also
approximates tanh(x) ≈ (x + x3/9.0 + x5/945.0)/(1 +
4x2/9.0 + x4/63.0). MiniONN [45] also uses splines to ap-
proximate activation functions while they use Garble Circuit
for the branch selection. Kelkar et al. [36] propose a novel
2PC exponentiation protocol but with limitations of using a
large ring ℓ ≈ 128 or to strictly constrain the input domain
(e.g., |x| ≤ 5) due to a failure probability.

Instead of calculating the complicated softmax and acti-
vations, many frameworks turn to alternatives that are easy
to compute privately. For instance [52] replaces the soft-
max function as ReLU(x[i])∑

i ReLU(x[i])
. Also [44] adapts (x[i]+c)2∑

i(x[i]+c)2

as the alternative for softmax and replaces GeLU(x) ≈

x2/8 + x/4 + 1/2. However, some works have shown
that such MPC-friendly replacements might deteriorate the
accuracy [38].

7. Evaluations

Models & Datasets. We evaluate BumbleBee on 5 Trans-
former models, including four NLP models, i.e., BERT-base,
BERT-large [20], GPT2-base [16], and LLaMA-7B [62], and
a computer vision model ViT-base [21, 67]. All these pre-
trained models are downloaded from HuggingFace. These
models are parameterized by three hyper-parameters: the
number of blocks B, the dimension of representations D
and the number of heads H . A detailed description of these
transformer models can be found in Table 6 in the Appendix.

To demonstrate the effectiveness of BumbleBee, we
conducted private inference on 4 datasets, which includes
CoLA, RTE, and QNLI from the GLUE benchmarks [64] for
NLP tasks, and ImageNet-1k [58] for image classification. In
more details, the ImageNet-1k dataset is a classification task
of 1000 different classes, while the three from the GLUE
benchmarks are binary classification tasks.
Testbed Environment. All of the experiments described in
this paper were conducted on two cloud instances, equipped
with 104 processors (on two physical sockets), operating
at 2.50GHz, and 384 GB of RAM. We utilize the multi-
threading as much as possible. To simulate different net-
work conditions, we manipulated the bandwidth between the
cloud instances using the traffic control command in Linux.
Specifically, we conducted our benchmarks in two network
settings: a Local Area Network (LAN) with a bandwidth of
1 gigabit per second (1 Gbps), and a ping time of 0.5ms, and
a Wide Area Network (WAN) with a bandwidth of 400Mbps
and a ping time of 4ms.
Metrics. We do not distinguish between the “offline” and
“online” costs as in some prior works, such as [50, 56]. We
report the end-to-end running time including the time of
transferring ciphertexts through the network. However, we
have not included the time taken for loading the transformer
model from the hard disk. We measure the total communi-
cation including all the messages sent by the two parties.
We write 1GB = 210MB = 230 bytes.
Concrete Parameters. We set ℓ = 64 for the secret sharing
and set the fixed-point precision f = 18. HE.ppbOLE =
{N = 4096, q ≈ 260+52, t ≈ 245×3} for the bOLEe
protocol, and HE.ppmOLE = {N = 8192, q ≈ 259+55, t =
264, q′ = 249} for the mOLE protocol, where q′ is needed
for the homomorphic automorphism. We apply [30] to
accelerate SEAL on Intel CPUs. We extend the Ferret
implementation in the EMP library [65] to support various
application-level OT types, such as

(
M
1

)
-OT6. The protocols

Πtrunc [17], Πmax [41], Πrecip [10] and Πrsqrt [33] protocol
are already implemented in the SPU framework [1].

For the approximated less-than, we set flt = 16. In other
words, we evaluate an MSB protocol on 48-bit inputs for
the segment selection in (3). Also, for the concrete MSB
protocol [56], we use the M = 16 hyper-parameter. For
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TABLE 2: Comparison of proposed protocols with SOTA
in terms of running time and communication costs. Each
machine was tested with 25 threads. Timing results are
averaged from 20 runs.

ΠmOLE(X,Y)

(k,m, n)
Comm. LAN WAN

(1, 50257, 768)

[59] 9.41GB 96.22s 217.03s
KRDY 20.84MB 0.45s 0.73s
KRDY+ 1.38MB 0.46s 0.46s
Ours∗ 1.38MB 0.46s 0.46s

(128, 768, 768)

[59] 18.41GB 159.98s 397.83s
KRDY 30.16MB 0.66s 1.06s
KRDY+ 5.02MB 7.07s 7.85s
Ours 5.02MB 0.82s 0.84s

ΠbOLE(x,y)
Comm. LAN WAN

|x| = |y| = 215
[57] 7.54MB 0.07s 0.17s
Ours 5.78MB 0.05s 0.14s

|x| = |y| = 220
[57] 241.26MB 2.39s 5.33s
Ours 184.46MB 1.71s 4.02s

ΠGeLU(x)
Comm. LAN WAN

|x| = 220

[55] 16.06GB 141.52s 353.76s
[48] 3.54GB 66.50s 103.68s

Ours† 0.77GB 10.73s 17.84s
Ours‡ 0.75GB 8.21s 15.71s
Ours 0.69GB 6.89s 13.77s

Πsoftmax(W)
|W| Comm. LAN WAN

(960, 180)
[55] 1697.86MB 16.39s 40.84s

[39, 48] 435.14MB 9.28s 14.53s
Ours 162.24MB 2.11s 5.79s

∗ Ours is identical to KRDY+ in this case due to the dynamic strategy.
† We call 3

(M
1

)
-OT2 without approximated less-than in this run.

‡ We call 1
(M
1

)
-OT6 without approximated less-than in this run.

approximating the exponentiation, we set Texp = −14 and
use n = 6. We fixed the ratio PC/PB = 10−3 in (2).

7.1. Microbenchmarks

In Table 2, we compare the performance of the proposed
protocols with many SOTA approaches.
Linear Operations. To demonstrate the performance of
the proposed mOLE protocol, we have implemented the
RLWE-based approach from Iron [27] and our baseline
KRDY+ which adapts the PackLWEs [12] procedure to re-
duce the communication overhead of Iron. We also com-
pared our protocols with the OT-based approach from the
SCIOT library [59], which leverages the IKNP OT [31].
The three RLWE-based approaches were found to be more
communication-friendly than the OT-based method. Our
mOLE protocol was shown to be rapid and light With our
ciphertext interleaving technique, our mOLE protocol is 80
– 90% less communication intensive than Iron. In terms
of computation time, our ciphertext interleaving approach
was found to be 7 – 14× faster than the PackLWEs-based

TABLE 3: Prediction accuracy on the GLUE bench-
marks using BERT-base, and classification accuracy on the
ImageNet-1k dataset using ViT-base. We report Matthews
correlation (higher is better) for CoLA and Top-1 accuracy
for the ImageNet-1k dataset.

Dataset Size Class Distribution Plaintext BumbleBee

RTE 277 131/146 0.7004 0.7004
QNLI 1000 519/481 0.9030 0.9020
CoLA 1043 721/322 0.6157 0.6082

ImageNet-1k 985 one img one class 0.8944 0.8913

KRDY+. Although we need to perform some homomorphic
automorphisms to reduce the number of RLWE ciphertexts,
this helps reduce the computation of decryption. Conse-
quently, the overall running time of our mOLE protocol is
only slightly larger than that of Iron in LAN.
Non-linear Activation Functions. We compare our non-
linear protocols with the default implementations in the SPU
library [1] by changing their underlying OT to Ferret [65].
Also, we compare with SiRNN using their codes from [59].
The results in Table 2 demonstrate that our protocols yielded
a significant decrease in communication costs, resulting in
savings of 95% communication for GeLU and 90% for
softmax. Additionally, we run our GeLU protocol without
the two optimizations, namely the approximated less-than
(§5.1.1) and batched MSBs (§5.1.2). Our findings indicate
that these two optimizations can reduce the computation
time of GeLU by about 12% and 23% respectively.
Overall Improvements. To show the overall improvements
by our protocols, we compare with a baseline that is im-
plemented on top of the SPU library [1]. We defer the
details of this artificial baseline to Appendix. We summarize
the results in Figure 1, which are produced by replacing
the protocols in the baseline with our proposed protocols.
From the results, we observe that our softmax and GeLU
protocols make significant contributions towards reducing
the running time while our mOLE protocol results in a
substantial decrease in the overall communication.

7.2. Evaluation on Large Transformers

We have successfully run BumbleBee on five trans-
former models, including four NLP models (BERT-base,
BERT-large, GPT2-base, and LLaMA-7B) and one vision
transformer (ViT-base). Note we select top-1 token int the
GPT2 and LLaMA models.
Accuracy. To demonstrate the effectiveness of BumbleBee,
we performed private inference on the BERT-base and ViT-
base models on four datasets. Specifically, we randomly
selected 1000 texts from the QNLI dataset, we also removed
a total of 15 grayscale images from the ImageNet-1k dataset.
We note that all our experiments were conducted using
the proposed 2PC protocols, rather than through fixed-point
simulation. The results are given in Table 3. As shown in
the table, BumbleBee attains comparable levels of accuracy
when compared to the cleartext prediction.
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TABLE 4: Performance breakdown of BumbleBee on two transformers. The input to the GPT2 model and LLaMA-7B
model consist of 128 and 8 tokens, respectively. Both model generate 1 token. The LAN setting was used.

Operation Used by GPT2-base (B = 12, D = 768, H = 12) LLaMA-7B (B = 32, D = 4096, H = 32)
#Calls Time (sec) Sent (MB) Recv (MB) #Calls Time (sec) Sent (MB) Recv (MB)

i equal token-id to one-hot 128 9.08 98.24 61.44 8 3.76 11.10 9.64
mixed mmul embedding lookup 128 38.06 229.01 180.71 8 30.89 18.31 16.39

f mmul linear projections 49 75.95 740.10 693.35 225 747.25 1303.14 1272
f batch mmul multi-head attention 24 15.05 165.72 156.02 64 10.94 403.26 400.21

f less max / argmax 131 3.17 157.88 30.01 117 0.73 6.08 1.31
multiplixer max / argmax 411 0.55 19.71 19.71 155 0.30 1.20 1.20

f exp softmax 12 12.14 805.49 663.88 32 2.27 39.33 36.08
f reciprocal softmax 12 2.54 29.55 18.45 32 1.36 12.87 7.95

f mul layer norm, softmax 174 8.68 779.62 749.68 356 10.53 758.30 730.10
f rsqrt layer norm 25 1.88 5.31 2.90 65 1.14 0.81 0.58

f seg4 act GeLU / SiLU 12 30.79 1951.34 1226.35 32 17.99 1175.45 745.04

Total 3.41min 4.87GB 3.71GB Total 13.87min 3.66GB 3.16GB

Break-down. Table 4 breaks down the BumbleBee infer-
ence runtime and communication for GPT2-base (left) and
LLaMA-7B (right). The input to these two models consist of
128 and 8 tokens, respectively. The first column of Table 4
indicate a specific operation in the SPU framework. Oper-
ations beginning with the “i ” prefix take integer inputs,
while those beginning with the “f ” prefix take fixed-point
values. The truncation protocol [17, 29] may be implicitly
invoked within these fixed-point operations. In terms of
communication, the activations make up about 60% of the
communication costs. In contrast, matrix multiplication is
the most expensive operation which takes 70 – 95% of the
total inference time. Due to the space limit, we provide the
performance breakdown of ViT-base in Appendix.

We note that the i equal operation can be saved by
allowing the client to directly query the one-hot vector.
Nonetheless, there are scenarios where a private conversion
from token-id to one-hot vector is still required, such as
when outsourcing private inference to two collusion-free
servers, where the generated token (in the middle of the
computation) is also unknown by both servers.

7.3. Comparison with Existing Methods

In Table 5, we compare the performance of BumbleBee
with three private transformer solutions. In summary, we
have achieved a 10-fold improvement in inference time
while and a reduction of communication costs by 90%
compared to the Iron framework, even they have used
a smaller ring ℓ = 37, compared to ours ℓ = 64. As
Iron’s implementation is not publicly available, we have
also compared our approach with our artificial baseline on
two additional transformers. Our results indicate that our
approach has achieved about 1.7 – 2× improvement in
inference time and reduced communication costs by 60 –
80% when compared to the artificial baseline.

We also provide the performance of MPCFormer [44], an
efficient 3-party (or dealer-aided) private inference frame-
work for transformer. These results are obtained by re-
running their implementation under ours environment. As
shown in the table, BumbleBee is about 1.5× slower than

TABLE 5: End-to-end comparisons with two existing private
inference frameworks and a baseline built from SPU. The
numbers of Iron are estimated from their paper. GPT2
models generated 1 token.

Model Framework Time (min) Comm.
LAN WAN (GB)

BERT-large
MPCFormer 4.52 9.81 32.58

Iron ≈ 100 – ≈ 200
128 input tokens Artificial basline 11.88 18.37 52.14

BumbleBee 6.74 9.88 20.85

GPT2-base MPCFormer 0.72 1.96 4.98
Artificial basline 1.52 2.64 6.36

32 input tokens BumbleBee 0.92 1.32 1.94

GPT2-base MPCFormer 1.10 2.85 7.32
Artificial basline 2.74 4.45 11.55

64 input tokens BumbleBee 1.55 2.53 3.90

MPCFormer in LAN, which is expected since their solution
is cryptographic-free, and its performance heavily relies
on the trusted dealer. However, BumbleBee is faster than
MPCFormer on WAN since BumbleBee introduces 35 – 60%
less communication than theirs.

Conclusion and Future Work

Private and accurate two-party inference on large trans-
former is possible. We present a highly optimized 2PC
framework BumbleBee that can run large transformers with
a significantly less overhead than the previous arts. Our
approach offers a promising way forward for advancing
the use of privacy-preserving deep learning techniques in
a variety of applications.

In the furture, we would like to apply specialized hard-
ware to accelerate the ciphertext interleaving procedure. A
number of studies have demonstrated that the use of GPUs
can improve the speed of homomorphic automorphisms by
up to two orders of magnitude [34, 69].
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Appendix

1. An Artificial Baseline

We present a baseline for the 2PC private infer-
ence on transformer through the combination of existing
methods. For the matrix multiplication protocol, we sug-
gest using RLWE-based methods [49] as they are more
communication-friendly compared to OT-based approaches.
For the truncation protocol, we propose combining the
approximated truncation [29] with the positive heuristic
from [17]. As for the softmax protocol, we suggest using
the Taylor expansion from [61] and computing exp(x) ≈
(1 + x/2n)2

n

for n = 9 without a range clipping. For
the activation functions, we use the spline-based approach
from [45], which approximates them using 12 splines. All
of these protocols can be implemented using the HE/OT
primitives from the SPU library.

def parse_mat(polys: Array<Poly>, dim3, win3):
# matrix shape
(k, m, n) = dim3
# partition windows
(k_w, m_w, n_w) = win3
# number of blocks along each axis
k_prime = ceil(k / k_w)
m_prime = ceil(m / m_w)
n_prime = ceil(n / n_w)
# expected polys to parse
m_tilde = ceil(k_prime * n_prime / m_w)
assert(len(polys) == m_tilde)
out = Matrix(k, n) # initialize
# each poly are packed from `m_w` polys
for i in range(k_prime * n_prime, step=m_w):

pidx = i // m_w
for j in range(m_w):

# we assume row-major packing
row_blk, col_blk = j // mprime, j % mprime
rbgn = row_blk * k_w
rend = min(rbgn + k_w, k) # min on margin cases
cbgn = col_blk * n_w
cend = min(cbgn + n_w, n) # min on margin cases
for r in range(rend - rbgn):

for c in range(cend - cbgn):
# flatten index of this (r, c) entry
fidx = r * n_w + c
# `+ pidx` due to some packing
# might across two mult.
cidx = fidx * m_w + (j + pidx) % m_w
out[rbgn + r, cbgn + c] = polys[pidx][cidx]

return out

Figure 8: ParseMat Parse the packed polynomials as matrix

2. Activation Functions

We use the following coefficients of (3) for the GeLU
approximation.

a0 = −0.5054031199708174, a1 = −0.4222658115198386
a2 = −0.1180761295118195, a3 = −0.0110341340306157
b1 = 0.5

b0 = 0.0085263215410380, b2 = 0.3603292692789629

b4 = −0.037688200365904, b6 = 0.0018067462606141.

Using the method described in §5.1, we can approximate
the SiLU function SiLU(x) =

x

1 + exp(−x) as

SiLU(x) ≈


−ϵ x < −8
a2x

2 + a1x+ a0 −8 < x ≤ −4
b6x

6 + b4x
4 + b2x

2 + b1x+ b0 −4 < x ≤ 4

x− ϵ x > 4

where the coefficients

a0 = −0.3067541139982155 a1 = −0.0819767021525476
a2 = −0.0055465625580307 b0 = 0.0085064025895951

b1 = 0.5 b2 = 0.2281430841728270

b4 = −0.011113046708173 b6 = 0.0002743776353465

are fitted using numpy.polyfit API.
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TABLE 7: Zoom-in the matrix multiplications involved in GPT2-base in Table 4.

k ×m× n kw ×mw × nw Operation Sent Recv IntrLeave / PackLWEs #Calls

1× 50257× 768 1× 8192× 1 mixed mmul 1.24MB 0.13MB 90.63ms 128
128× 768× 2304 128× 64× 1 f mmul 2.12MB 8.73MB 740.69ms 12
H@128× 64× 128 128× 64× 1 f batch mmul 2.12MB 5.82MB 490.20ms 12
H@64× 128× 128 64× 128× 1 f batch mmul 2.12MB 2.91MB 531.93ms 12
128× 768× 768 128× 64× 1 f mmul 2.12MB 2.91MB 245.01ms 12
128× 768× 3072 128× 64× 1 f mmul 2.12MB 11.64MB 999.85ms 12
128× 3072× 768 128× 64× 1 f mmul 8.47MB 2.91MB 238.33ms 12
128× 768× 50257 128× 16× 4 f mmul 8.47MB 190.66MB 7257.34ms 1

TABLE 8: Performance breakdown of BumbleBee on ViT-
base. The input is one 224 × 224 RGB image. The LAN
setting was used.

Operation ViT-base (B = 12, D = 768, H = 12)
#Calls Time (sec) Sent (MB) Recv (MB)

f mmul 74 85.59 1144.05 1098.31
f batch mmul 24 28.32 393.50 373.20
multiplixer 145 1.34 43.13 43.65

f less 145 20.34 392.31 73.48
f exp 12 28.35 1910.65 1579.13

f reciprocal 12 5.73 46.12 28.49
f mul 174 15.03 1385.10 1333.12

f rsqrt 25 0.67 6.21 4.13
f seg4 gelu 12 48.10 3000.59 1898.47

Total 3.90min 8.14GB 6.30GB

Also we can approximate the ELU function for α > 0

ELU(x) =

{
α · (exp(x)− 1) x < 0

x x ≥ 0

using the proposed exponential protocol on the first branch.

3. More Experiment Results

In Table 7, we present more details on each matrix
multiplications in the GPT2 inference. We know that the
final matrix multiplication for token generation is very large,
which needs more optimizations. In Table 8, we present the
running details of BumbleBee on a Vision Transformer. In
Table 9, we compare the performance of IntrLeave with
PackLWEs. We can see that IntrLeave is about 20× faster
than PackLWEs.

4. From HE to Arithmetic Share FH2A

We mention two different methods to convert RLWE
ciphertext to arithmetic secret sharing. The first one is
used for ciphertexts of SIMD-packed messages, e.g., ct =
RLWEN,q,t

pk (SIMD(m)) for m ∈ ZN
t for a prime mod-

ulus t. The sender S needs some random masking be-
fore sending ct for decryption. Specifically, S computes
ct′ := ct ⊞ RLWEN,q,t

pk (SIMD(r); e′) where the random
vector r ∈R ZN

t . As mentioned in [57], we need a noise-
flooding step by using a large enough random e′ to sta-
tistically hide the noises in ct. Also one need to choose

TABLE 9: Compared with PackLWEs. Fixing mw = 64 for
IntrLeave. 4C means 4 threads were used.

Matrix Shape (16, 768, 768) (256, 768, 768) (128, 768, 3072)

PackLWEs (4C) 4901.00ms 74.85s 150.35s
IntrLeave (4C) 206.17ms 3.43s 6.55s

Speedup 23.77× 21.82× 22.95×

PackLWEs (16C) 1714.42ms 21.01s 38.87s
IntrLeave (16C) 82.28ms 1.16s 2.03s

Speedup 20.83× 18.11× 19.15×

PackLWEs (26C) 1204.57ms 17.39s 35.12s
IntrLeave (26C) 52.22ms 0.81s 1.58s

Speedup 23.07× 21.47× 22.23×

a proper ciphertext modulus q so that the ciphertext ct′

can be correctly decrypted even applying the noise-flooding.
Suppose the decryption is correctly done. Then we can have
−r mod t as one of the arithmetic share of m, and having
the decryption of ct′ as the other share.

The second conversion is used for RLWE ciphertext of a
normal polynomial, e.g., ct = RLWEN,q,2ℓ

pk (m̂). Let parse ct

as a tuple (b̂, â) ∈ A2
N,q. To properly masking ct, the sender

S computes ct′ := (b̂ + r̂, â) ⊞ RLWEN,q,2ℓ

pk (0) where the
random polynomial r̂ ∈R AN,q. Let the decryption of ct′

be û ∈ AN,2ℓ , which can be viewed as one share of m̂. On

the other hand, we have v̂ := −⌊2
ℓ · r̂
q
⌉ mod 2ℓ as the other

share of m̂. However, generating a uniform random r̂ may
lead to decryption failure. According to the analysis in [29],
it will introduce at most a 1-bit error into the arithmetic
share, i.e., ∥m̂− (û+ v̂ mod 2ℓ)∥∞≤ 1.

5. Threat Model and Security

We provide security against a static semi-honest prob-
abilistic polynomial time adversary A following the simu-
lation paradigm [24]. That is, a computationally bounded
adversary A corrupts either the server S or the client C at
the beginning of the protocol ΠF and follows the protocol
specification honestly. Security is modeled by defining two
interactions: a real interaction where S and C execute the
protocol ΠF in the presence of A and the environment E and
an ideal interaction where the parties send their inputs to a
trusted party that computes the functionality F faithfully.
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Security requires that for every adversary A in the real
interaction, there is an adversary Sim (called the simulator)
in the ideal interaction, such that no environment E can
distinguish between real and ideal interactions.

We recap the definition of a cryptographic inference
protocol in [50]. S holds a model W consisting of d layers
W1, · · · ,Wd, and C holds an input vector x.

Definition 1. A protocol Π between S having as input model
parametersW = (W1, · · · ,Wd) and C having as an input
vector x is a cryptographic inference protocol if it satisfies
the following guarantees.

• Correctness. On every set of model parametersW that
the server holds and every input vector x of the client,
the output of the client at the end of the protocol is the
correct prediction W(x).

• Privacy. We require that a corrupted, semi-honest client
does not learn anything about the server’s network
parameters W . Formally, we require the existence
of an efficient simulator algorithm SC to generate
SC(meta, out) ≈c ViewΠ

C . Here ViewΠ
C is the view

of C in the execution of Π, meta includes the meta
information (i.e., the public parameters HE.pp, the
public key pk, the number of layers, the size and type
of each layer, and the activation) and out denotes
the output of the inference. We also require that a
corrupted, semi-honest S does not learn anything about
the private input x of the client. Formally, we require
the existence of an efficient simulator algorithm SS to
generate SC(meta) ≈c ViewΠ

S where ViewΠ
S is the view

of the server in the execution of Π.

6. Proofs

Proof of Theorem 1. The correctness of Theorem 1 is di-
rectly derived from Proposition 1. We now show the the
privacy part.
(Corrupted Receiver.) Receiver’s view of ViewΠmOLE

R . con-
sists of RLWE ciphertexts {ct′α,β} for α ∈ [k′] and β ∈ [m′].
The simulator SΠmOLE

R for this view can be constructed as
follows.

1) Given the access to meta, SΠmOLE

R outputs the cipher-
texts {c̃tα,β := RLWEN,q,2ℓ

pk (0)} to R.
The security against a corrupted R is directly reduced to
the semantic security of the underlying RLWE encryption.
Thus we have ViewΠmOLE

R ≈c SΠmOLE

R (meta).
(Corrupted Sender.) Sender’s view of ViewΠmOLE

S consists
of an array of RLWE ciphertexts c (that encrypted under
S’s key), and the decryption of these ciphertexts in the
execution in FH2A. The simulator SΠmOLE

S for this view
can be constructed as follows.

1) On receiving the RLWE ciphertexts {ct′} from R
and given the access to meta, SΠmOLE

S samples uni-
form random polynomial r̂i ∈R AN,q and computes
cti := RLWEN,q,2ℓ

pk (0)⊞ (r̂i, 0) for i ∈ [m̃].
2) SΠmOLE

S computes the rounding r̂′i := ⌊2ℓ · r̂i/q⌉ mod
2ℓ for i ∈ [m̃], then outputs a matrix Ũ :=

ParseMat(r̂′0, r̂
′
1, · · · , r̂′m̃−1,meta) using the parsing

procedure in Figure 8.
Similarly, the RLWE ciphertexts c[i] ≈c cti due to the
informatics masking r̂i and the semantic security. Also,
the values in the output matrix JUKl of S in ΠmOLE

distribute uniformly in Z2ℓ which is exact the same dis-
tribution SΠmOLE

S creates Ũ. Thus we have ViewΠmOLE

S ≈c

SΠmOLE

S (meta, out).

The security proofs for ΠbOLEe (Theorem 2) can be
given in a similar manner while the simulator SΠbOLEe

S
invoke a different FH2A function for SIMD-packed mes-
sages. Also, we argue that the security proofs for Theorem 3
and Theorem 4 simply follow in the hybrid model since
only OT messages and properly masked HE ciphertexts are
exchange.
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