
Nomadic: Normalising Maliciously-Secure Distance with Cosine
Similarity for Two-Party Biometric Authentication

Anonymous Author(s)

ABSTRACT
Computing the distance between two non-normalized vectors 𝑥
and 𝑦, represented by Δ(𝑥,𝑦) and comparing it to a predefined pub-
lic threshold 𝜏 is an essential functionality used in privacy-sensitive
applications such as biometric authentication, identification, ma-
chine learning algorithms (e.g., linear regression, k-nearest neigh-
bors, etc.), and typo-tolerant password-based authentication. Tack-
ling a widely used distance metric, Nomadic studies the privacy-
preserving evaluation of cosine similarity in a two-party (2PC)
distributed setting. We illustrate this setting in a scenario where
a client uses biometrics to authenticate to a service provider, out-
sourcing the distance calculation to two computing servers. In this
setting, we propose two novel 2PC protocols to evaluate the nor-
malising cosine similarity between non-normalised two vectors
followed by comparison to a public threshold, one in the semi-
honest and one in the malicious setting. Our protocols combine
additive secret sharing with function secret sharing, saving one
communication round by employing a new building block to com-
pute the composition of a function 𝑓 yielding a binary result with a
subsequent binary gate. Overall, our protocols outperform all prior
works, requiring only two communication rounds under a strong
threat model that also deals with malicious inputs via normalisation.
We evaluate our protocols in the setting of biometric authentication
using voice, and the obtained results reveal a notable efficiency
improvement compared to existing state-of-the-art works.

KEYWORDS
privacy-preserving protocols, malicious security, function secret
sharing, cosine similarity

ACM Reference Format:
Anonymous Author(s). 2018. Nomadic: Normalising Maliciously-Secure
Distance with Cosine Similarity for Two-Party Biometric Authentication.
In Proceedings of Make sure to enter the correct conference title from your
rights confirmation emai (Conference acronym ’XX). ACM, New York, NY,
USA, 17 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Computing distance metrics of sensitive data and comparing to
a predefined public threshold in a privacy-preserving way is an
indispensable building block for a wide range of privacy-sensitive
applications including biometric authentication and identification,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

machine learning (e.g., linear regression, matrix multiplication)
as well as typo-tolerant (fuzzy) password based authentication.
However, in the absence of trusted parties it is challenging to eval-
uate thresholded distance metrics over sensitive data. Although
privacy-preserving computations of linear distance metrics have
been widely covered in the literature, protecting non-linear com-
putations (e.g., comparison) are not easy to compute efficiently.

In this paper, we focus on protecting the computation of co-
sine similarity between two vectors, one of the most commonly
employed distance metrics, subsequently comparing the similar-
ity score to a public threshold 𝜏 . We present two novel privacy-
preserving protocols to realize this thresholded distance functional-
ity with high efficiency in a two-party setting (2PC) for outsourced
computation, achieving passive and active security respectively.

As an ideal application of our protocols due to the sensitive na-
ture of the data, biometric authentication consists of verifying a the
identity of a user by comparing a fresh compact representation of
the biometric trait with a pre-existing (claimed) reference provided
during an enrolment phase. The authentication is granted or denied
based on whether or not the obtained similarity score is below a
pre-fixed threshold. Although biometrics hold significant promise
as a convenient authentication method, privacy concerns have hin-
dered public trust and created obstacles to widespread adoption.
For instance, in December 2021, the Flagstar Bank breach leaked
sensitive data of 1.5 million customers and forced the financial
institution to pay 5.9 million Dollars in out-of-court settlements1.

To showcase Nomadic, we implement and evaluate our proto-
cols in a biometric authentication use-case with voice biometrics.
Furthermore, we provide a detailed experimental evaluation of
our proposed protocol by employing benchmark speech recogni-
tion datasets (i.e., VoxCeleb2). Our results show that the proposed
scheme is not only efficient requiring only two communication
rounds, but also maintains the same accuracy as the plain-text
systems while guaranteeing security under a strong threat model.

Related Work. Several techniques have been proposed in the
literature to address the privacy challenges for the computation
of distance metrics (such as Hamming distance [42], cosine simi-
larity) followed by comparison with a public threshold, based on
advanced cryptographic primitives like Fully Homomorphic En-
cryption (FHE) [27, 28], Multi-Party Computation (MPC) [29, 55, 63]
and Functional Encryption (FE) [1, 10]. FHE relies on performing an
arbitrary number of arithmetic operations (i.e., additions and mul-
tiplications) between ciphertexts. MPC-based techniques involve
distributing data among non-colluding parties to collectively com-
pute a desired function over the private data, covering two main
security models: semi-honest or malicious depending on whether
the involved parties are assumed to follow the protocol or may

1https://www.cpomagazine.com/cyber-security/flagstar-bank-data-breach-leaked-
sensitive-information-of-1-5-million-customers/

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Table 1: Number of communication rounds required by recent MPC protocols to compute a Sign, a pre-normalised thresholded
inner product FSign(IP(𝑥,𝑦)−𝜏) and a full thresholded cosine similarity FScaledCosAuth. Security covers one semi-honest /
malicious client-only / malicious (+ for fairness, ★ for robustness) corruption. Primitives include Secret Sharing (SS),
unbalanced SS (u-SS), Replicated SS (RSS), optimized SS (o-SS), (Correlated) OT extension (COTe), Garbled Circuits (GC), Binary
Adder circuits (BA), Distributed Comparison Function (DCF), Interval Containment (IC), Zero-Knowledge Proofs (ZKP).

Work Type Security Protocol for IP Protocol for Sign FSign FSign(IP(𝑥,𝑦)−𝜏) FScaledCosAuth
Blaze [49] 3PC +

Πdotp, u-3SS Πbitext, GC log2 (𝑙) + 1 log2 (𝑙) + 2 log2 (𝑙) + 4
Falcon [62] 3PC SS ΠWA, Arith. curcuit log2 (𝑙) + 3 log2 (𝑙) + 4 log2 (𝑙) + 6
SWIFT [38] 3PC ★

Πdotp, 2SS & u-2SS Πbitext, GC log2 (𝑙) + 1 log2 (𝑙) + 2 log2 (𝑙) + 4
Trident [17] 4PC Π𝐷𝑜𝑡𝑝 , u-4SS [49] log2 (𝑙) + 1 log2 (𝑙) + 2 log2 (𝑙) + 4
Flash [15] 4PC ★

Πdp, 2× u-2SS Πmsb, BA of [44] log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
SWIFT [38] 4PC ★

Πdotp4, 3PC & masks Πbitext4, GC log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
Fantastic Four [21] 4PC ★ Mult, RSS Share splitting, BA log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
Tetrad [39] 4PC ★

Πdotp, RSS & masks Πbitext, BA of [48] log4 (𝑙) + 1 log4 (𝑙) + 2 log4 (𝑙) + 4
ABY [24] 2PC SS GC log2 (𝑙) + 2 log2 (𝑙) + 3 log2 (𝑙) + 5
ABY2.0 [48] 2PC o-SS BitExtraction, mi-BA log4 (𝑙) + 1 log4 (𝑙) + 2 log4 (𝑙) + 4
Cryptflow [40] 2PC SS dReLU, Arith. circuit log2 (𝑙) + 4 log2 (𝑙) + 5 log2 (𝑙) + 7
Cryptflow2 [52] 2PC ΠUmult, COTe ΠMill, OT ext. log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
Muse [41] 2PC Linear layer, o-SS Non-linear layer, GC log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
SIMC [16] 2PC ΠLin, HE & ZKP FNon−lin, GC log2 (𝑙) log2 (𝑙) + 2 log2 (𝑙) + 6
AriaNN [53] 2PC SS DCF gate of [13], FSS 1 2 4
Boyle et. al. [11] 2PC SS IC gate, FSS 1 2 4
Llama [30] 2PC Gsmult, FSS FSS IC gate of [11] 1 2 4
Funshade [33] 2PC o-SS IC gate of [11], FSS 1 1 3
Ours 2PC o-SS & CondEval CondEval 1 2 2

deviate from it. FE are public-key encryption schemes that en-
ables authorized parties to evaluate specific linear functions (e.g.,
inner products [4, 23, 58]) during ciphertext decryption. Efficient
FE-based techniques are restricted to linear function evaluations.

Privacy-preserving comparison: Although linear operations such
as scalar products are efficiently addressed by these techniques [31,
51, 56, 60], non-linear operations like comparisons to a public
threshold are still a challenge and are often inefficient for real-
time applications. Privacy-preserving comparison is possible in
the FHE setting using computationally intensive polynomial ap-
proximations [18, 34]. In contrast, many MPC-based solutions and
frameworks realize privacy-preserving comparison in various set-
tings [36, 40, 52, 62]. Mixed protocols (i.e., protocols that combine
the use of arithmetic circuits with homomorphic encryption, gar-
bled circuits and/or Boolean circuits) compute scalar products using
arithmetic protocols and switch from arithmetic to binary/garbled
circuits in order to compute comparisons [15, 17, 24, 38, 44, 48, 49].
However, the vast majority of these frameworks either requires an
honest majority (3PC, 4PC) to achieve active security (against one
malicious corruption) or settles with security against a semi-honest
or a one-sided malicious corruption in the 2PC setting. Veugen et
al. [61] proposed a 2PC framework that improves comparison com-
putation in the SPDZ protocol [22] which is a mixed protocol that
takes into account the presence of malicious parties. However, these
two solutions incurr in intensive communication costs (size and/or
number of rounds). Recently, Function Secret Sharing (FSS)-based

protocols have been proposed to efficiently compute the compari-
son to a public threshold operation [11, 13, 30, 33, 54]. Nevertheless,
the mentioned protocols focus mainly on the semi-honest model
and barely address security against malicious adversaries.

Privacy-preserving biometrics: Boddeti [9] presented a privacy-
preserving solution for facial recognition based on FHE. The face
similarity score is computed in the encrypted domain using scalar
multiplications and additions. [32] extended FHE-based face iden-
tification to also compute the secure comparison in the FHE do-
main. In [45], the authors made use of an FHE scheme to compute
the Hamming distance for iris authentication. The work proposed
in [50] makes use of FHE to privately compute the cosine similar-
ity for an Automatic Speaker Verification (ASV) system. However,
the authors focused solely on studying the similarity computation,
without carrying out the crucial step of comparing the result to the
threshold. They assumed that the decision score would be received
and decrypted by the client’s device, which could potentially create
a security vulnerability in the event of a malicious client attempting
to modify the score to gain unauthorized access. Kim et al. [35]
presented a fingerprint authentication system using FHE to com-
pute the Square Euclidean Distance between two encrypted vectors,
also performing the threshold comparison in the encrypted domain.
Despite the potential shown by FHE in these works, its utiliza-
tion in real-world applications is still restricted by the significant
computational overheads.

Alternatively, MPC-based techniques have been successfully
used to protect sensitive data like face [5, 33], iris [5, 26], and
voice [47, 59]. Barni et al. [5] introduced a secure multi-modal
biometric authentication, that combines face and iris features, based
on secure two-party computation against one malicious party. The
two non-colluding parties compute the Hamming distance and the
Euclidean distance and later evaluate the comparison of the fused
scores with a public threshold. The work in [26] proposes a secure
two-party computation solution for an iris verification that is secure
in the semi-honest adversary model. The Hamming distance along
with the threshold comparison is computed securely.

Nautsch et al. [47] provided the first computationally feasible
privacy-preserving ASV system with cohort score normalization
based on 2PC. However, this work only provides security against a
semi-honest adversary. In [59], Treiber et al. proposed a 2PC-based
ASV system secure against a malicious client device that can change
the score to get authenticated by the service provider. However, the
2PC servers are assumed to be semi-honest.

Our Contributions. We propose a novel two-party protocol for
secure computation of cosine similarity followed by comparison to
a threshold, leveraging secure 2PC and FSS primitives for both the
semi-honest and the malicious setting. As shown in Table 1, our
protocol outperforms prior work by requiring just two rounds of
communication in the online phase. In addition, and contrary to
prior work that assumes honest normalisation performed by the
client, we allow the client to submit any fresh template and we
incorporate a mechanism to check that the secret sharing of the
fresh (as well as the reference) template was performed correctly.
Our main contributions are:
• A 2PC protocol for thresholded cosine similarity computation

between two vectors relying on authenticated 2PC secret shar-
ing as well as FSS. We develop two variants: one version for
the semi-honest setting and one for the malicious setting. As a
distinguishing feature, the protocol (and not the input holder)
carries out the normalisation of the input vectors, guaranteeing
their well-formedness.

• A new building block, CondEval, to compute the composition
of an input bit and a binary function 𝑓 (evaluated via FSS) i.e.,
𝑠 ◦ 𝑓 (𝑥) for an input value 𝑥 . This building block, proven secure
under both the semi-honest and malicious model, may be of
independent interest for general 2PC secure computation.

• A rigorous security analysis of both protocols of Nomadic as
well as the CondEval primitive.
• An evaluation of the proposed protocols employing voice bio-

metrics as a use case. Comparing to existing state-of-the-art
(SOTA) work, our experiments demonstrate the efficiency im-
provement of our protocols in both the semi-honest and ma-
licious setting thanks to the reduction of one communication
round due to CondEval.
The paper is organised as follows. Section 2 describes the problem

statement, introducing the application scenario alongside the threat
model, and outlining a technical overview of our solution. In Section
3, we revisit the cryptographic 2PC primitives we rely on, namely
additive secret sharing and function secret sharing. In Section 4, we
introduce CondEval, a building block that allows the composition
of an input bit and a binary function 𝑓 evaluated via FSS, and

prove its security in both the semi-honest and malicious settings.
Section 5 covers our two novel protocols for the privacy-preserving
computation of thresholded cosine similarity for both the semi-
honest and the malicious settings as well as their corresponding
security analysis. Section 6 presents our experimental evaluation
and results, concluding the paper in Section 7.

2 PROBLEM STATEMENT
2.0 Notation
Y empty string.
[𝑛] set of integers {1, 2, . . . , 𝑛} for a positive integer 𝑛.
𝑠 [𝑖] 𝑖th leftmost bit of a binary string 𝑠 , where 𝑖 ≤ |𝑠 |.
𝑠 [𝑖 .. 𝑗] substring {𝑠 [𝑖], 𝑠 [𝑖 + 1], . . . , 𝑠 [𝑗]} of binary string 𝑠 .

𝑎𝑖 : 𝑖th element of a vector 𝑎 where 𝑖 < |𝑎|.
IP(𝑥,𝑦) Inner product of two vectors 𝑥,𝑦.
Prod(𝑥,𝑦) Element-wise product of two vectors 𝑥,𝑦.
Shift(𝑥, 𝜌, ℓ) Outputs an encoding in Z2ℓ of left/right logical shift-

ing |𝜌 | bits over 𝑥 respectively if 𝜌 < 0 or 𝜌 > 0.
Sign(𝑥) Outputs 1 if 𝑥 ≥ 0 and 0 otherwise.
(𝑀𝑏 , Y) ← FOT (𝑏, {𝑀0, 𝑀1}) Given a pair of messages {𝑀0, 𝑀1}

from a sender and a choice bit 𝑏 ∈ {0, 1} from a receiver, it
returns𝑀𝑏 to the receiver and Y to the sender.

𝑟 ← Frand (1_, 𝑛,U𝑁) Given a security parameter _ and a posi-
tive integer 𝑛, it outputs a random vector 𝑟 ∈ U𝑛

𝑁
.

FPermu (𝜋, {𝑎0, 𝑎1}) Given a list {𝑎0, 𝑎1} and a permutation bit
𝜋 ∈ {0, 1}, it outputs {𝑎0, 𝑎1} if 𝜋 = 0 and {𝑎1, 𝑎0} other-
wise.

[𝑥]B Boolean secret sharing of 𝑥 ∈ Z2.
[𝑥]A Arithmetic/Additive secret sharing of 𝑥 ∈ U𝑁 .
⟨𝑥⟩A Optimized secret sharing of 𝑥 .
[𝑥]A

𝑏
, [𝑥]B

𝑏
, ⟨𝑥⟩A

𝑏
Share of 𝑥 held by party 𝑏.

2.1 Application Scenario
Let us examine a scenario in which a client C requests access to a
service, such as an online bank, that uses a biometric-based authen-
tication system. During the authentication process, the client’s fresh
biometric template is compared to the stored reference biometric
template using the cosine similarity distance, and the authentica-
tion decision is taken based on a pre-determined threshold. This
application scenario is depicted in Figure 1.

For privacy reasons, the client does not want to disclose his
biometric data in clear to any party, considering their sensitive
nature and the high risk of a data breach in a centralised database.
We therefore consider two additional non-colluding servers, S0 and
S1, in charge of collecting and privately storing the secret shares of
the clients’ reference templates upon their registration during the
enrollment phase, performing the biometric verification process
(i.e., matching of the templates) and disclosing the decision output
to the service provider B (i.e., the bank).

2.2 Threat Model
In this paper, we assume that the client has already registered
and submitted her biometric data (e.g., voice reference template)
in a privacy-preserving manner to the two non-colluding servers.
Then, in the authentication process the comparison between the

Figure 1: Privacy-preserving biometric authentication system
based on cosine similarity in the 2PC setting.

fresh biometric template and the registered reference template is
performed by the two servers. Note that neither any server nor
the service provider have access to any biometric templates in
cleartext. We also assume that the protocol is running through
secure channels providing security against any external adversary
that can compromise the transmission.

In the considered setting, we have four players playing three
different roles. We assume a semi-honest dealer (e.g., the central
bank B) distributing reliable correlated randomness to two com-
puting servers in the setup phase. We consider that the client may
act maliciously i.e., may attempt to impersonate a legitimate user
and deduce information for the corresponding templates. Thus, we
require the client to submit a non-normalised reference template
and we incorporate a mechanism to check that the secret sharing
of the fresh (as well as the reference) template have been secret
shared correctly. Finally, we consider two non-colluding servers
that tolerate one corruption from an active adversary deviating
from the correct execution of the protocol (i.e., perform wrong
computation in the matching process between the fresh and stored
template and/or try to infer information about the fresh and/or
stored biometric templates). We highlight that if both servers de-
viate from the protocol, they don’t obtain any useful information
related to the client’s data as long as they don’t collude.

2.3 Cosine Similarity for Authentication
Let 𝑥 and 𝑦 of dimension 𝑛 denote the fresh template received from
the user requesting to authenticate and the reference template sub-
mitted upon enrollment, respectively. The cosine similarity metric
between them would then computed as:

𝑐𝑜𝑠 (𝑥,𝑦) = IP(𝑥,𝑦)
∥𝑥∥ · ∥𝑦∥ =

∑𝑛
𝑖=1 𝑥𝑖 · 𝑦𝑖√︃∑𝑛

𝑖=1 𝑥
2
𝑖
·
√︃∑𝑛

𝑖=1 𝑦
2
𝑖

(1)

To authenticate the owner of 𝑥 against the reference 𝑦, the
resulting score of 𝑐𝑜𝑠 (𝑥,𝑦) would then compared with a public
threshold 𝜏 ∈ [−1, 1]. If the similarity score is greater than or equal
to 𝜏 , then the user is successfully authenticated, otherwise, the
authentication fails. Overall, we can define the biometric authenti-
cation functionality as:

FCosAuth (𝑥,𝑦, 𝜏) = Sign(𝑐𝑜𝑠 (𝑥,𝑦) − 𝜏) (2)

In designing a privacy-preserving protocol for this functionality,
we tweak FCosAuth to avoid expensive non-linear operations (di-
vision, square-root), obtaining an equivalent MPC-friendly circuit
𝑐 = C(𝑥,𝑦, 𝜏) as follows:

𝑐1 = Sign([IP(𝑥,𝑦)]A)

𝑐2 = Sign([1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)]A)

𝑐 =

𝑐1 ∧ 𝑐2 if 𝜏 > 0
𝑐1 if 𝜏 = 0

𝑐1 ∨ 𝑐2 if 𝜏 > 0

(3)

One can easily verify the equivalence C ≡ FCosAuth. For the
remnant of this paper, w.l.o.g., we assume 𝜏 > 0, and define the
following functionality accordingly:
FScaledCosAuth (𝑥,𝑦, 𝜏) = Sign(IP(𝑥,𝑦))∧

Sign(1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦))
(4)

3 PRELIMINARIES
3.1 Two-Party Secure Computation
Secure two-party computation allows two non-colluding parties
𝑃0 and 𝑃1 to compute a function 𝑓 on their private inputs (e.g., 𝑥
and 𝑦) without revealing any information beyond the final value of
𝑓 (𝑥,𝑦). 2PC protocols are based on either: (i) Secret Sharing (SS)
techniques i.e., arithmetic SS, like additive SS [6] and replicated
SS [3], or Boolean SS like GMW [43]; or (ii) Garbled Circuits (CG)
like Yao’s GCs [64], BMR [7].

Optimized Additive SS. we make use of an optimized additive
SS with function dependent pre-processing as our building block [8].
In the setup phase, correlated random offset shares are generated
for input wires and output wires of each gate of the arithmetic
circuit. These shares are input-independent and can be executed at
any time before the online/data-dependent phase where the actual
function 𝑓 is evaluated. In the evaluation phase, efficient online
secure computation is performed. We denote by ⟨𝑥⟩A the optimized
additive SS of a secret 𝑥 in a two-party setting of S0, S1, where
∀𝑏 ∈ {0, 1}, S𝑏 holds partial shares

⟨𝑥⟩A
𝑏

: (𝛿𝑥 , [𝑟𝑥]A𝑏)
in which 𝛿𝑥 = 𝑥 + 𝑟𝑥 , [𝑟𝑥]A is the associated random offset of
the secret value 𝑥 . One share alone does not disclose any infor-
mation about 𝑥 but when summed together, they reconstruct it
(𝑥 = 𝛿𝑥 − [𝑟𝑥]A0 − [𝑟𝑥]

A
1). The parties interact with each other to

compute any desired function from the input secret shares. We
denote by FReveal ([𝑥]A) the functionality that inputs an arithmetic
secret sharing of 𝑥 from two servers and outputs 𝑥 . Given ⟨𝑥⟩A and
⟨𝑦⟩A, we demonstrate how addition and multiplication gates are
performed in the following.

Addition. It requires no communication between the two parties.
The two parties simply locally add the shares they hold. More
precisely, each party 𝑏 ∈ {0, 1} computes:

⟨𝑥 + 𝑦⟩A
𝑏
= (𝛿𝑥 + 𝛿𝑦, [𝑟𝑥]A𝑏 + [𝑟𝑦]

A
𝑏
)

Multiplication. It requires interaction between the two parties
and relies on additional input-independent but function-dependent
random pre-computed secret shares named Beaver’s triples [7]. To
compute [𝑧]A where 𝑧 = 𝑥𝑦, with the corresponding Beaver’s triples
[𝑟𝑥]A,[𝑟𝑥]A, [𝑟𝑥𝑟𝑦]A generated in the setup phase, the parties are
able to locally compute the additive secret shares of 𝑧. i.e., ∀𝑏 ∈
{0, 1}, S𝑏 holds {⟨𝑥⟩A

𝑏
= (𝛿𝑥 , [𝑟𝑥]A𝑏), ⟨𝑦⟩

A
𝑏

= (𝛿𝑦, [𝑟𝑦]A𝑏), [𝑟𝑥𝑟𝑦]
A
𝑏
}

in which 𝛿𝑥 = 𝑥 + 𝑟𝑥 , 𝛿𝑦 = 𝑦 + 𝑟𝑦 . Then, 𝑆𝑏 computes:

[𝑧]A
𝑏
= 𝑏 · 𝛿𝑥𝛿𝑦 − 𝛿𝑥 [𝑟𝑥]A𝑏 − 𝛿𝑦 [𝑟𝑦]

A
𝑏
+ [𝑟𝑥𝑟𝑦]A𝑏 . (5)

However, to conform the multiplication output to an optimized
secret sharing format, the parties locally compute [𝑧 + 𝑟𝑧]A and
reveal 𝑧+𝑟𝑧 in one round, where 𝑟𝑧 is a pre-generated random output
wire offset in the setup phase. Thus, obtaining ⟨𝑧⟩A = (𝑧+𝑟𝑧 , [𝑟𝑧]A).

Throughout this paper, we denote [𝑥]A ← SS.Share(𝑥,Z2ℓ)
as the algorithm dividing a secret into secret sharing in the do-
main Z2ℓ , where 𝑥 can be a single value or an 𝑛-sized vector;
SS.MUL(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑟𝑥𝑟𝑦]A) as the multiplication process shown
in Eq. 5, SS.IP(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑢]A) as the inner product of two vec-
tors 𝑥,𝑦 where 𝑢 is the correlated product of randomness.

SPDZ2k protocol. The SPDZ2k protocol [20] is a MPC protocol
works in the context of the dishonest majority setting, or assuming
onemalicious server in the 2PC setting. In this work, we apply it in a
2PC setting. It performs secure operations over authenticated secret
sharing in a ring, and manages to detect any cheating behavior
by introducing a message authentication code Δ secretly shared
between the two servers. Through out this paper where we deal
with 2PC setting, we denote an authenticated arithmetic secret
sharing of a secret 𝑥 as

J𝑥KA : ([𝑥]A, [Δ · 𝑥]A)

and ⟨⟨𝑥⟩⟩A as the authenticated optimized arithmetic secret sharing
of 𝑥 . Naturally, we use notations J𝑥KA

𝑏
and ⟨⟨𝑥⟩⟩A

𝑏
to denote the share

held by S𝑏 . After the online secure computation, two servers work
together to verify the integrity of every revealed value in the secure
computation by using a final MAC verification algorithm, as shown
in Fig.6 of [20]. In the case when the verification fails, malicious
behaviors are detected and the parties abort the protocol.

When working with authenticated optimized secret sharing
in the malicious setting, we use same notation SS.MUL(⟨⟨𝑥⟩⟩A,
⟨⟨𝑦⟩⟩A, J𝑟𝑥𝑟𝑦KA) and SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑢KA) to denote secure
multiplication and secure inner product, respectively.

3.2 Secure Truncation
Given an arithmetical secret sharing [𝑥]A where 𝑥 ∈ Zℓ and a trun-
cation parameter 𝜌 ∈ Z+, a secret sharing based truncation opera-
tion aims to compute the truncated secret sharing [Shift(𝑥, 𝜌, ℓ)]A.
In the proposed protocols of section 6, we use a secure truncation
operation over random secret sharing results in the pre-processing
model. We employ the truncation pair (𝑟, Shift(𝑟, 𝜌, ℓ)) introduced

in [44]. More precisely, in our model, we generate a truncation pair
(𝑟, Shift(𝑟, 𝜌, ℓ)) as follows:
(1) In the setup phase, a random offset 𝑟 ∈ Z2ℓ is generated, both
[𝑟]A and [Shift(𝑟, 𝜌, ℓ)]A are distributed among S0 and S1;

(2) In the evaluation phase, to truncate a secret sharing [𝑥]A
where 𝑥 ∈ Z2ℓ , the servers run Freveal ([𝑥 +𝑟]A) to obtain 𝑥 +𝑟 ,
∀𝑏 ∈ {0, 1} then S𝑏 computes Shift(𝑥+𝑟, 𝜌, ℓ)−[Shift(𝑟, 𝜌, ℓ)]A

𝑏

as [Shift(𝑥, 𝜌, ℓ)]A
𝑏
.

3.3 Function Secret Sharing
Function Secret Sharing (FSS) was first introduced by Boyle et
al. [12] as a cryptographic primitive that secretly shares a function
𝑓 . Informally, in a two party setting with a function 𝑓 : D → R,
FSS comprises a key generation algorithm Gen𝑓 (1_) producing a
key pair (𝑘0, 𝑘1), and an evaluation algorithm Eval𝑓 , which takes
in one shared key and a value 𝑥 , ensuring that ∀𝑥 ∈ D that the sum
of Eval𝑓 (𝑘0, 0, 𝑥) and Eval𝑓 (𝑘1, 1, 𝑥) is equal to 𝑓 (𝑥).

Shortly after, a secure computation scheme with pre-processing
via FSS was proposed by Boyle et al. [13]. In this scheme, nonlin-
ear gates (e.g., for equality tests, integer comparison, etc.) can be
computed with a relatively small amount of communication in one
round. We give an example how in this model a secure equality
check is conducted between S0 and S1.

Let us consider the case of a point function 𝑓𝑎 : {0, 1}ℓ → {0, 1}
corresponding to a special point 𝑎 ∈ {0, 1}ℓ , ∀𝑥 ∈ {0, 1}ℓ that
outputs 1 if 𝑥 = 𝑎 and outputs 0 otherwise. In the pre-processing
phase, a trusted dealer distributes S0, S1 additive secret shares 𝑟0, 𝑟1
of a random mask value 𝑟 ← {0, 1}ℓ and FSS key shares 𝑘0, 𝑘1
correspond to the random point function 𝑓𝑟 . In the online phase,
∀𝑖 ∈ {0, 1}, 𝑃𝑖 holds 𝑥𝑖 , 𝑟𝑖 and 𝑘𝑖 , and 𝑃𝑖 exchanges 𝑥𝑖 +𝑟𝑖 with 𝑃1−𝑖 .
After revealing the masked value 𝑥 + 𝑟 , ∀𝑖 ∈ {0, 1}, 𝑃𝑖 computes
𝑓𝑟,𝑖 (𝑥 + 𝑟 − 𝑎) and thus, obtains secret shares of 𝑓𝑎 (𝑥). Boyle et al.
also proposed FSS schemes for comparison functions in [12, 14].

In constructing all our protocols, we make use the interval con-
tainment function secret sharing (IC-FSS) ([11], Section 4.1) as our
secure comparison primitive, as the same as in Funshade [33].

Definition 1. Interval containment function secret sharing. There
is a key generation algorithm Gen[𝑝,𝑞]

ℓ
(·), and an evaluation al-

gorithm Eval[𝑝,𝑞]
ℓ
(·), given an interval containment [𝑝, 𝑞] where

𝑝, 𝑞 ∈ Z2ℓ and 𝑝 < 𝑞, ∀𝛼 ∈ Z2ℓ , ∀𝛽1, 𝛽2 ∈ U𝑁 ,

(𝑘0, 𝑘1) ← Gen[𝑝,𝑞]
ℓ
(1_, 𝛼, 𝛽1, 𝛽2,U𝑁)

for ∀𝑥 ∈ Z2ℓ denote 𝛿𝑥 = 𝑥 + 𝛼 , it holds that:
1∑︁

𝑏=0
Eval[𝑝,𝑞]

ℓ
(𝑘𝑏 , 𝑏, 𝛿𝑥) =

{
𝛽1, if 𝑥 ∈ [𝑝, 𝑞]
𝛽2, if 𝑥 not in [𝑝, 𝑞]

4 TECHNICAL OVERVIEW
To realize FScaledCosAuth with passive security, we study its required
components and immediately reach two preliminary protocols,
ΠNaiveSH and ΠOptimSH. Further enhancements in this paper will
later lead to our novel Nomadic protocols. The online evaluation
steps for all the protocols described in this section are outlined in
Table 2, with associated online costs detailed in Table 3.

Table 2: Online steps of protocols for FScaledCosAuth.

Round-1 Round-2 Round-3 Round-4

ΠNaiveSH

[IP(𝑥,𝑦)]A [𝑐1]B ← Sign([IP(𝑥,𝑦)]A)

[𝑐2]B ← Sign([𝑢]A) [𝑐]B ← [𝑐1 ∧ 𝑐2]B
[IP(𝑥,𝑥)]A [𝑢1]A ← [IP(𝑥,𝑥) · IP(𝑦,𝑦)]A
[IP(𝑦,𝑦)]A [𝑢2]A ← [IP(𝑥,𝑦)2]A

[𝑢]A ← [𝑢1 − 1/𝜏2 · 𝑢2]A

ΠOptimSH

[IP(𝑥,𝑦)]A [𝑢1]A ← [IP(𝑥,𝑥) · IP(𝑦,𝑦)]A

[𝑐]B ← [𝑐1 ∧ 𝑐2]B -[IP(𝑥,𝑥)]A [𝑢2]A ← [IP(𝑥,𝑦)2]A
[IP(𝑦,𝑦)]A [𝑢]A ← [𝑢1 − 1/𝜏2 · 𝑢2]A
[𝑐1]B ← Sign([IP(𝑥,𝑦)]A) [𝑐2]B ← Sign([𝑢]A)

ΠNomadicSH

[IP(𝑥,𝑦)]A [𝑢1]A ← [IP(𝑥,𝑥) · IP(𝑦,𝑦)]A

- -[IP(𝑥,𝑥)]A [𝑢2]A ← [IP(𝑥,𝑦)2]A
[IP(𝑦,𝑦)]A [𝑢]A ← [𝑢1 − 1/𝜏2 · 𝑢2]A
[𝑐1]B ← Sign([IP(𝑥,𝑦)]A) [𝑐]B ← CondEval([𝑐1]B, Sign([`]A))

Table 3: Comparative overview of online costs for ΠNaiveSH, ΠOptimSH, ΠMal1, ΠNomadicSH and ΠNomadicM. Here "Comm." refers to
the total communication volume among two servers, 𝑛 is the length of the input vector, ℓ the length of the operational ring, 𝐿
the communication volume for a single evaluation of CondEval, and ^ the amount of parallel CondEval executions in ΠNomadicM.

Model Primitive Comm. #Rounds
ΠNaiveSH SH SS + FSS 6𝑛ℓ + 4𝑛ℓ + 2ℓ + 2 4
ΠOptimSH SH Optimized SS + FSS 6ℓ + 2 3
ΠNomadicSH SH Optimized SS + CondEval 7ℓ + 𝐿 2
ΠNaiveM M Authenticated (Optimized SS + FSS) 6ℓ + 2 3

ΠNomadicM M Authenticated (Optimized SS + CondEval) 6ℓ + ^ (ℓ + 𝐿) 2

As a first approach [11, 30, 53], ΠNaiveSH employs additive SS
and FSS. This protocol requires four communication rounds.

Next, we follow the guidelines of Funshade [33] to get ΠOptimSH,
introducing optimized secret sharing paired with FSS compari-
son gates. By its online phase, ΠOptimSH necessitates pre-prepared,
circuit-dependent correlated randomness, generated offline by a
dealer and distributed to two computing servers. As highlighted in
Funshade [33], this approach improves communication efficiency
over ΠNaiveSH in terms of rounds and data volume. For instance,
computing [𝑐1]B of FScaledCosAuth in ΠOptimSH requires only one
round and a single group element exchange, compared to ΠNaiveSH
(two rounds and 2𝑛 group elements). Consequently, ΠOptimSH re-
duces to three communication rounds: the first for 𝑐1, the second
for 𝑐2, and the third for the final output 𝑐 = 𝑐1 ∧ 𝑐2.

Further refining ΠOptimSH, we decrease communication rounds
to two using a novel component, CondEval. This new primitive
introduces a conditional evaluation gate: (𝑐, 𝑥, 𝑓 , ◦) → 𝑐 ◦ 𝑓 (𝑥),
traditionally executed in two rounds but here accomplished in one.
It is designed for computing the composition of a function 𝑓 (𝑥)
with a logical AND (∧) or OR (∨) operation, integrating optimized
secret sharing and novel FSS key generation steps. This innovation
enables efficient computation of 𝑐 = 𝑐1 ∧ 𝑐2 in the second round,
thus saving a communication round.

We specify and prove the security of the CondEval primitive
in the semi-honest setting, incorporating it to the full protocol in
ΠNomadicSH. As a result, ΠNomadicSH encompasses the following
four distinct phases:

(1) Setup: Generating correlated randomness for FScaledCosAuth.

(2) Input: Both the client and entity B independently input their
secret vectors, x and y, respectively.

(3) Evaluation: Conducted by two servers, this phase includes:
• First round: Computation of a Boolean sharing [𝑐1]B.
• Second round: Computation of the final Boolean sharing
[𝑐]B = [𝑐1]B ◦ 𝑓 (𝑥). In a malicious setting, this includes
generating [𝑐]B and a proof [𝜎]A for verification.

(4) Reveal: The service provider B constructs the value of 𝑐 in
clear-text. In a malicious context, B also validates [𝑐]A and
assesses the proof [𝜎]A.

Additionally, we extend the construction and security proof of
CondEval to the malicious setting. To provide active security in
the FSS gates we resort to the parallel execution of multiple in-
stances for the conditional evaluation gate with independent FSS
keys. A subset of these instances, chosen at FSS key generation
and unknown to the computing servers, act as "trap" instances,
allowing the detection of malicious behavior in a single comput-
ing server. For a fully maliciously-secure protocol ΠNomadicM, we
employ homomorphic MACs when using additive secret shares (as
in the SPDZ2k protocol [20] but we use a simplified variant). The
full maliciously-secure protocol ΠNomadicM follows a similar online
evaluation pipeline to what in ΠNomadicSH, thus, we don’t repeat it
in Tab. 2.

5 REALIZING CONDEVAL IN 2PC
We introduce CondEval as key element to optimize our thresholded
cosine similarity protocols. Following circuit C (Eq. 3), the eval-
uation of a biometric matching protocol splits into (i) computing

shares of boolean values 𝑐1 and 𝑐2 (see Equation 3) and (ii) comput-
ing 𝑐1 ∧ 𝑐2 or 𝑐1 ∨ 𝑐2 depending on the value of 𝜏 . FSS can be used
to efficiently compute the Sign for 𝑐1 and 𝑐2. Computing the last
boolean gate (∧ or ∨) in secret shares would require at least one
communication round. CondEval integrates this boolean gate into
the FSS evaluation of 𝑐2, saving up one communication round in
the pre-processing model. We formalize this functionality as:

[𝑠 ◦ 𝑓 (𝑥)]B ← CondEval(◦,K◦, [𝑠]B, [𝑥]A)
where we compute a two-input boolean gate with a bit 𝑠 and
a function 𝑓 (𝑥) (instantiated with FSS). We would then apply
CondEval to FScaledCosAuth by setting 𝑠 = 𝑐1 and 𝑓 (𝑥) = 𝑐2 =

Sign([1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)]A).
In the reminder of this section, and w.l.o.g., we consider the ∧

operation and we describe how CondEval computes 𝑠 ∧ 𝑓 (𝑥) in
a symmetric 2PC setting in both the semi-honest and malicious
models2. It is worth noting that CondEval can be used as an inde-
pendent building block to compute the boolean composition of a
bit 𝑠 and a function 𝑓 (𝑥) evaluated with FSS for 2PC protocols.

5.1 High-level Overview
CondEval seeks to evaluate 𝑠 ∧ 𝑓 (𝑥) using FSS with two computing
servers S0 and S1. The inputs to this protocol are mainly secret
shares of a bit 𝑠 and an input 𝑥 know to both parties. To avoid the
additional communication round that the ∧ gate would require, we
aim to merge it with the FSS evaluation of 𝑥 . Indeed, from Table 4
(which corresponds to the truth table of 𝑠∧ 𝑓 (𝑥)), we observe that if
𝑠 = 0, then the output is 0 and if 𝑠 = 1 then the output is the actual
output of 𝑓 (𝑥). In cases where the output range is in Z2, 𝑓 (𝑥) is
obtained when each server S𝑏 (𝑏 ∈ {0, 1}) runs Eval𝑓 (𝑘𝑏 , 𝑥) and the
output would reconstruct with an XOR of these. If each server runs
Eval𝑓 over the same keys, the reconstructed output would become
0, which corresponds to the case when 𝑠 = 0. Hence, the overall
idea is to make sure that when running Eval, the two servers use
the same FSS key if 𝑠 = 0 and different FSS keys if 𝑠 = 1. This is
illustrated in the 2PC setting (note that 𝑠 is secretly shared among
the two servers as well) in Table 4. Each server must retrieve the
correct FSS key according to 𝑠 , without leaking any information
neither about 𝑠 , nor the other FSS key.

Table 4: Truth table of [𝑠 ∧ 𝑓 (𝑥)]B.

𝑠 𝑠 ∧ 𝑓 (𝑥) 𝑠0 𝑠1 [𝑦]B0 [𝑦]B1 [𝑦]B0 ⊕ [𝑦]
B
1

0 0 0 0 Eval𝑓 (𝑘0, 0, 𝛿𝑥) Eval𝑓 (𝑘0, 0, 𝛿𝑥) 0
1 1 Eval𝑓 (𝑘1, 1, 𝛿𝑥) Eval𝑓 (𝑘1, 1, 𝛿𝑥)

1 𝑓 (𝑥) 1 0 Eval𝑓 (𝑘0, 0, 𝛿𝑥) Eval𝑓 (𝑘1, 1, 𝛿𝑥)
𝑓 (𝑥)

0 1 Eval𝑓 (𝑘1, 1, 𝛿𝑥) Eval𝑓 (𝑘0, 0, 𝛿𝑥)

Such a protocol can be designed if the two FSS keys 𝑘0 and 𝑘1
generated by the bank3 were randomly mapped to the values of 𝑠
(𝑘1−𝑠 if 𝑠 = 0, 𝑘𝑠 if 𝑠 = 1). Then, each server would run a private
information retrieval protocol with the bank to retrieve the actual
key corresponding to its share without revealing the actual share.
In order not to involve an additional party on the computation

2Details on the ∨ operation are provided in Appendix D.
3The entity in charge of generating pre-processing material (Fig. 1).

and save in the number of communication rounds, we propose
to store these two keys at both servers in an encrypted manner.
More precisely, server S0 will store the two FSS keys, encrypted
beforehand and will receive one decryption key from server S1
based on its share of 𝑠 and vice versa. Hence, the key required to
decrypt the FSS key (stored on one server) is stored on the other
server. This implies that each server S𝑏 will store both encrypted
FSS keys but will only be able to decrypt one of them according to
the value of 𝑠 . The goal is to receive and decrypt the correct FSS
key, without disclosing 𝑠 nor the FSS key not used by S𝑏 .

Now, we need to prevent any leakage about [𝑠]B
𝑏
from S1−𝑏 , and

the other FSS key not used by S1−𝑏 (where 𝑏 ∈ {0, 1}):
• since Eval𝑓 also takes as input the index of the FSS key (0 or

1), this index should not leak any information about 𝑠 . Hence,
the mapping between the FSS key index and [𝑠]B

𝑏
needs to be

protected as well, this is realized by set the initial FSS key pair
as (𝑘𝑡 , 𝑘1−𝑡) where 𝑡 ←$ {0, 1}.

• to protect [𝑠]B
𝑏
, a random permutation is applied to (𝑘𝑡 , 𝑘1−𝑡);

• to protect the unused FSS key, the permuted keys are one-time-
pad encrypted before their storage and only one decryption key
will be sent from S𝑏 to S1−𝑏 in the key decryption step.
Overall, CondEval is thus specified with four algorithms:
• During the setup phase, a trusted dealer generates the key-

ing material using CondEval.KeyGen and protects the FSS key
pair with CondEval.KeyEnc. These encrypted FSS keys and the
keying material are distributed to the servers;

• During the online phase, each server who has received the
share of 𝑠 and the randomized input 𝛿𝑥 = 𝑥 + 𝑟 , will send
the correct decryption key 𝑠𝑘 according to its share of 𝑠 to
the other server. Once the correct FSS key is decrypted using
CondEval.KeyDec, the server finishes the protocol by running
CondEval.Eval to obtain the share of the output 𝑠 ∧ 𝑓 (𝑥).
Note that, whilewe only demonstrate the construction ofCondEval

for 𝑠∧ 𝑓 (𝑥), the protocol for computing 𝑠∨ 𝑓 (𝑥) is defined similarly
and can be performed either by using:

𝑠 ∨ 𝑓 (𝑥) = ¬(¬𝑠 ∧ ¬𝑓 (𝑥))

or directly by relying on a slightly different key preparation and
evaluation. We refer the avid reader to Appendix D for the details.

5.2 CondEval in the Semi-Honest setting
We propose the building block CondEval which can be used to
evaluate 𝑠 ◦ 𝑓 (𝑥). In this section, we introduce the CondEval con-
struction that is secure in the semi-honest setting and focus on
the ∧ operation only. It works in the pre-processing model, and is
composed of two functionalities:

K∧ ← CondEval.Setup(∧, 1_, ℓ) and

[𝑦]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A)

that are run respectively in the setup and online phase. The construc-
tion ofCondEval.Setup is shown in Table 5.CondEval.Setup, inputs
a security parameter 1_ and outputsK∧. After KeyGen and KeyEnc,
it outputs correlated random keys which are then distributed to
the two servers. CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) inputs K∧ gen-
erated by CondEval.Setup as well as [𝑠]B, [𝑥]A. Then, within one

Table 5: The construction ofK∧ ← CondEval.Setup(∧, 1_, ℓ) in
the semi-honest setting, where _ is the security parameter
used in generating FSS keys, ℓ defines the domain of the
secret sharing.

KeyGen

𝑟 ←$Z2ℓ , [𝑟]A ← SS.Share(𝑟,Z2ℓ)
(𝑘0, 𝑘1) ← Gen𝑓 (1_, 𝑟 , 1, 0,Z2) (|𝑘0 | = |𝑘1 | = 𝐾);

𝑡 ←$Z2, 𝜋0 ←$Z2, 𝜋1 ←$Z2;𝐿 := 𝐾 + 1;
sk(0)0 ∥sk

(0)
1 ∥sk

(1)
0 ∥sk

(1)
1 ←$ {0, 1}4𝐿,

|sk(0)0 | = |sk
(0)
1 | = |sk

(1)
0 | = |sk

(1)
1 | = 𝐿.

KeyEnc

𝑚0 = {sk(0)0 ⊕ (𝑘𝑡 ∥𝑡), sk(0)1 ⊕ (𝑘1−𝑡 ∥(1 − 𝑡))}
𝐶0 = FPermu (𝜋0,𝑚0); SK0 = {(sk(1)0 , sk(1)1), 𝜋1}
𝑚1 = {sk(1)0 ⊕ (𝑘𝑡 ∥𝑡), sk(1)1 ⊕ (𝑘1−𝑡 ∥(1 − 𝑡))}
𝐶1 = FPermu (𝜋1,𝑚1); SK1 = {(sk(0)0 , sk(0)1), 𝜋0}
Outputs K∧ = {𝐶𝑖 , SK𝑖 , [𝑟]A𝑖 }𝑖∈{0,1}

round of communication, 𝛿𝑥 is revealed and one clear-text FSS key
is obtained from both servers with KeyDec being performed, and
finally it outputs [𝑦]B.

Functionality [𝑠 ∧ 𝑓 (𝑥)]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A)
Players: S0, S1.
Functionality: [𝑠 ∧ 𝑓 (𝑥)]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) .
Input: [𝑠]B, [𝑥]A from two servers, and K∧ prepared in the setup phase as

shown in Table 5 where K∧ = {𝐶𝑏 , SK𝑏 , 𝑟𝑏 }𝑏∈{0,1} , more specifically
each S𝑏 (𝑏 ∈ {0, 1}) inputs {𝐶𝑏 , SK𝑏 , 𝑟𝑏 }. (Note that (𝑟0, 𝑟1) consti-
tutes [𝑟]A).

Output: [𝑠 ∧ 𝑓 (𝑥)]B.
1: 𝛿𝑥 ← FReveal ([𝑥]A + [𝑟]A)
2: for 𝑏 = 0 to 1 do
3: S𝑏 : 𝑝 (1−𝑏) ← [𝑠]B𝑏 ⊕ 𝜋1−𝑏 , sk(1−𝑏) ← sk(1−𝑏)

[𝑠]B
𝑏

.

4: S𝑏 : Sends 𝑝 (1−𝑏) ∥sk(1−𝑏) to S1−𝑏 . ⊲ Key decryption
5: for 𝑏 = 0 to 1 do
6: S𝑏 : 𝑘 (𝑏) ∥ id(𝑏) ← 𝐶𝑏 [𝑝 (𝑏)] ⊕ sk(𝑏)

7: S𝑏 : [𝑦]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿𝑥)
8: Outputs [𝑦]B.

Theorem 1. Correctness. If two servers follow CondEval.Eval(
∧,K∧, [𝑠]B, [𝑥]A) honestly, then it outputs [𝑦]B = [𝑠 ∧ 𝑓 (𝑥)]B.

Proof. If 𝑠 = 0, then ([𝑠]B0 , [𝑠]
B
1) is equal to either (0, 0) or

(1, 1). Thus, in the online phase after the decryption of FSS keys,
the servers obtain either {𝑘𝑡 , 𝑘𝑡 } or {𝑘1−𝑡 , 𝑘1−𝑡 }, which implies:

𝑦 =

{
Eval𝑓 (𝑘0, 0, 𝛿𝑥) ⊕ Eval𝑓 (𝑘0, 0, 𝛿𝑥) or
Eval𝑓 (𝑘1, 1, 𝛿𝑥) ⊕ Eval𝑓 (𝑘1, 1, 𝛿𝑥) .

In either case, 𝑦 = 0, as desired. On the other hand, if 𝑠 = 1, then
([𝑠]B0 , [𝑠]

B
1) equals either (0, 1) or {1, 0}, which implies that 𝑦 =

⊕1
𝑡=0Eval

𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥). In either case, we obtain 𝑦 = 𝑓 (𝑥), as desired.
Thus, 𝑦 = 𝑠 ∧ 𝑓 (𝑥). □

Theorem 2. Security. In the presence of a passive PPT adver-
saryA corrupting one of the two servers in CondEval.Eval (∧,K∧,
[𝑠]B, [𝑥]A), we assert that A learns nothing about the inputs 𝑥 , 𝑠 ,
nor about the output 𝑠 ∧ 𝑓 (𝑥).

Proof. After online evaluation, for each 𝑏 ∈ {0, 1} we denote
S𝑏 ’s transcript view as:

View𝑏 := {[𝑟]A
𝑏
, 𝛿𝑥 , 𝑘𝑡⊕[𝑠]B1−𝑏

∥(𝑡 ⊕ [𝑠]B1−𝑏), [𝑠]
B
1−𝑏 ⊕ 𝜋𝑏 }

From this transcript, {𝑘𝑡⊕[𝑠]B1−𝑏 , [𝑟]
A
𝑏
, 𝛿𝑥 } correspond to the FSS

evaluation in the pre-processing model, and we resort to the secu-
rity proof in [13] (Definition 2) of Boyle et al. to argue the compu-
tational indistinguishability of the ideal and real-world executions;
Regarding the remaining items of the view transcripts, since both 𝜋𝑏
and 𝑡 are uniformly selected, both [𝑠]B1−𝑏⊕𝜋𝑏 and 𝑡⊕[𝑠]

B
1−𝑏 provide

information-theoretic secrecy for [𝑠]B1−𝑏 . Therefore, from View𝑏 ,
A learns nothing about the input 𝑥 , 𝑠 , nor the output 𝑠 ∧ 𝑓 (𝑥). □

5.3 CondEval in the Malicious Setting
We extend the setting to an active adversary. Since the two servers
are symmetric, for the sake of clarity, we consider that S0 is ma-
licious. Assume we run CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) in the
malicious setting where S0 is malicious and K∧ is the output of
K∧ ← CondEval.Setup(∧, 1_,Z2ℓ), then we report three disrup-
tions from S0 that might compromise the scheme:
• S0 may dishonestly report [𝑥 + 𝑟]A0 when revealing 𝑥 + 𝑟 to

introduce errors and thus disrupt the computation;
• S0 may flip [𝑠]B0 during the key decryption step, thus potentially

flipping [𝑦]B to be equal to [¬(𝑠 ∧ 𝑓 (𝑥))]B;
• After the online evaluation, S0 may submit ¬[𝑦]B0 to B, poten-

tially resulting in a flipped authentication bit 𝑦 = ¬(𝑠 ∧ 𝑓 (𝑥)).
To counter the first attack, we incorporate a homomorphic MAC

scheme from the spdz2k framework [20]. More specifically, dur-
ing the setup phase, a trustworthy dealer generates random offset
shares and the corresponding authenticated shares. This enables
an additional verification step to be performed over all partially
disclosed intermediate values at the end of the online evaluation
phase. The final output is only deemed valid if the verification is
successful, thereby deterring any fraudulent disclosure of secret
sharing. In order to safeguard against the remaining attacks, we
require a separate scheme that protects Boolean secret sharings.
As a solution, we propose the use of authenticated Boolean secret
sharing defined as below.

Definition 2. An authenticated Boolean secret sharing (𝑣)𝑚 of bit
𝑣 ∈ {0, 1} is a list of Boolean secret shares defined with a secret
authentication key𝜓 ∈ {0, 1}𝑚,𝑚 ∈ Z+, denoted as:

(𝑣)𝑚 : {[𝑣1]B, · · · , [𝑣𝑚]B},∀𝑖 ∈ [𝑚]

𝑣𝑖 =

{
𝑣, if𝜓 [𝑖] = 0
0, if𝜓 [𝑖] = 1

By extending the semi-honest CondEval constructions with the
above two authentication schemes, we realize CondEval in a mali-
cious setting which contains three functionalities:

K∗∧ ← CondEval.Setup∗ (∧, 1_, ℓ0, ℓ1,𝑚),

(𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA) and

𝑧 ← CondEval.Verify((𝑦)𝑚, [𝜎]A,𝜓)
CondEval.Setup∗ is shown in Table 6, where a trustful dealer pre-
pares 𝑚 instances of FSS key pairs based on a uniform random

string 𝜓 ←$ {0, 1}𝑚 . More precisely, for all 𝑖 ∈ [𝑚], let us denote
𝐾𝑖 as the 𝑖th FSS key pair prepared. Then, if 𝜓 [𝑖] = 0, the dealer
outputs 𝐾𝑖 as a normal FSS key pair, which means that the evalua-
tion result is equal to 𝑠 ∧ 𝑓 (𝑥); Otherwise, if 𝜓 [𝑖] = 1, the dealer
outputs 𝐾𝑖 as a trap FSS key pair which guarantees that the corre-
sponding evaluation result will be equal to 0 for whatever value of
𝑥 . Furthermore CondEval∗ .Setup generates additional proof string
differently due to the FSS key type (normal or trap) which are ap-
pended at each FSS key. With these designs, any manipulation from
A in the KeyDec step of CondEval.Eval∗ will be captured with high
probability (assuming that A does not know 𝜓). As a result, the
probability that A flips (𝑠 ∧ 𝑓 (𝑥))𝑚 to (¬(𝑠 ∧ 𝑓 (𝑥)))𝑚 without
being detected is in negligible probability. In conclusion, compared
with the construction of CondEval.Eval, this extended construction
CondEval.Eval∗ comes at a cost of𝑚 times the computation time
and communication volume when dealing with FSS gates; Never-
theless this malicious construction retains the advantage of the
optimized one round communication.

The concrete construction of CondEval.Eval∗ is shown in the
following pseudo code, where it takes in the desired operation ∧,
as well as K∗∧, (𝑠)𝑚, J𝑥KA from the two servers; During the online
evaluation, for each 𝑖 ∈ [𝑚], within one round of communica-
tion 𝛿𝑥𝑖 is revealed, and simultaneously one clear-text FSS key is
obtained by each of the two servers by decrypting one FSS key
from other party’s choice; By line 16 of CondEval.Eval∗, we run
FMacVryGen in Fig. 4 to generate a proof to verify that each mask
value 𝛿𝑥 (𝑖) for 𝑖 ∈ [𝑚] is revealed honestly. Finally, CondEval.Eval∗
outputs (𝑦)𝑚 and an associated proof [𝜎]A which can only be vali-
dated if they could pass the verification procedure in functionality
CondEval.Verify as shown below.

We have the theorem of correctness, security and soundness
for CondEval that work in the malicious setting in the following,
however, due to page limit, we have attached their associated proofs
in Appendix A.

Theorem 3. Correctness. Assuming all servers indeed honestly
follow CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA), i.e., none of the servers
deviate from the protocol description, then they obtain ((𝑦)𝑚, [𝜎]A).
Denote 𝑝 the probability that CondEval.Verify((𝑦)𝑚, [𝜎]A, 𝜓) is
equal to 𝑠 ∧ 𝑓 (𝑥), we claim 𝑝 = 1 − 1/2𝑚 .

Theorem 4. Security. In the presence of an active PPT adversaryA
among two servers in CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA), where
K∗∧ comes from the output of functionality CondEval.Setup∗, we
assert that A learns no information about 𝑥 , 𝑠 , 𝑠 ∧ 𝑓 (𝑥) or𝜓 .

Theorem5. Soundness. Assuming the existence of an active PPT ad-
versaryA (S0 or S1) when performingCondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚 ,
J𝑥KA) that outputs ((𝑦)𝑚, [𝜎]A). We denote by 𝑝 the probability
that CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓) = ¬(𝑠 ∧ 𝑓 (𝑥)). We claim

𝑝 < 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1)

where ℓ1 denotes the length of the MAC key.

6 SECURE COSINE SIMILARITY
COMPUTATION AND VERIFICATION

In this section, we provide comprehensive constructions for co-
sine similarity back-end verification (matching fresh and reference

Functionality (𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA)
Players: S0, S1.
Functionality: (𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA) .
Input: For each 𝑏 ∈ {0, 1} that K∗∧ [𝑏] = {{𝐶𝑖,𝑏 , SK𝑖,𝑏 , J𝑟𝑖KA𝑏 }𝑖∈ [𝑚] ,
[𝜓]B

𝑏
, [Δ]A

𝑏
} are obtained by S𝑏 in the setup phase, and authenticated

secret sharing (𝑠)𝑚 whose secret authentication key is equal to𝜓 in
K∗∧.

Output: ((𝑠 ∧ 𝑓 (𝑥))𝑚, [𝜎]A) .
1: ({ [𝑠1]B, · · · , [𝑠𝑚]B}) ← (𝑠)𝑚
2: 𝑉 ← [∅]𝑚
3: for 𝑏 = 0 to 1 do
4: [𝜎]A

𝑏
← 0

5: {𝐶𝑏 , SK𝑏 , J𝑟KA
𝑏
, [𝜓]B

𝑏
} ← K∗∧ [𝑏]

6: for 𝑖 = 1 to𝑚 do
7: J𝛿

𝑥 (𝑖) K
A ← J𝑥KA + J𝑟𝑖KA

8: 𝛿
𝑥 (𝑖) ← FReveal ([𝛿𝑥 (𝑖)]

A)
9: 𝑉 [𝑖] ← (𝛿

𝑥 (𝑖) , [Δ · 𝛿𝑥 (𝑖)]
A)

10: for 𝑏 = 0 to 1 do
11: S𝑏 : Sends { [𝑠𝑖]B𝑏 ⊕𝜋1−𝑏 , sk

(1−𝑏)
[𝑠𝑖]B𝑏

} to S1−𝑏 as {𝑝 (1−𝑏) , sk(1−𝑏) }

⊲ Key decryption
12: for 𝑏 = 0 to 1 do
13: S𝑏 : 𝑘 (𝑏) ∥ id(𝑏) ∥b (𝑏) ← 𝐶𝑖,𝑏 [𝑝 (𝑏)] ⊕ sk(𝑏)

14: [𝜎]A
𝑏
← [𝜎]A

𝑏
+ b (𝑏)

15: [𝑦𝑖]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿
𝑥 (𝑖))

16: [𝜍]A ← FMacVryGen ([Δ]A,𝑉)
17: [𝜎]A ← [𝜍]A + [𝜎]A
18: (𝑦)𝑚 ← {[𝑦1]B, · · · , [𝑦𝑚]B}
19: Output (𝑦)𝑚, [𝜎]A

Functionality 𝑧 ← CondEval.Verify((𝑦)𝑚, [𝜎]A,𝜓)
Players: S0, S1,B.
Functionality: 𝑠 ← CondEval.Verify({ ((𝑦)𝑚

𝑏
, [𝜎]A

𝑏
) }𝑏∈{0,1},𝜓) .

Input: ((𝑦)𝑚
𝑏
, [𝜎]A

𝑏
) from S𝑏 for each 𝑏 ∈ {0, 1}, and𝜓 from B.

Output: 𝑧 ∈ {−1, 0, 1,⊥}.
1: 𝑧 ← −1
2: if 𝜓 ≠ {1}𝑚 then
3: if [𝜎]A0 + [𝜎]A1 = 0 then
4: for 𝑖 = 1 to𝑚 do
5: 𝑦𝑖 ← [𝑦𝑖]B0 ⊕ [𝑦𝑖]B1
6: if 𝜓 [𝑖] = 0 then
7: if 𝑧 = −1 then
8: 𝑧 ← 𝑦𝑖

9: else
10: if 𝑦𝑖 ≠ 𝑠 then
11: 𝑧 ← ⊥, abort
12: else
13: if 𝑦𝑖 ≠ 0 then
14: 𝑧 ← ⊥, abort
15: else
16: 𝑧 ← ⊥, abort
17: Outputs 𝑧.

templates) in both semi-honest and malicious settings, utilizing
building blocks from Section 4. For example, in the semi-honest
setting within a pre-processing model, our proposed protocol ini-
tially calculates a Boolean secret sharing [𝑐1]B and an arithmetic

Table 6: The construction of K∗∧ ← CondEval.Setup∗ (∧, 1_, ℓ0, ℓ1,𝑚) in the malicious setting, it inputs a security parameter _, ℓ0
and ℓ1, where ℓ0 is both used in generating FSS keys and it also defines the domain of the input secrets, ℓ1 defines the domain of
authenticated secret key Δ,𝑚 ∈ Z+ defines the secret key for authenticated Boolean secret sharing.

Let𝜓 ←$ {0, 1}𝑚, [𝜓]B0 ←$ {0, 1}𝑚, [𝜓]B1 ← 𝜓 ⊕ [𝜓]B0 ;Δ←$Z2ℓ1 , [Δ]A ← SS.share(Δ,Z2ℓ0+ℓ1)
then it does KeyGen and KeyEnc for each 𝑖 ∈ [𝑚] as follows:

KeyGen

If𝜓 [𝑖] = 0 (Normal) Otherwise if𝜓 [𝑖] = 1 (Trap)
𝛽1 ← 1, 𝛽2 ← 0 𝛽1 ← 0, 𝛽2 ← 0

𝑟𝑖 ←$Z2ℓ0 , [𝑟𝑖]A ← SS.share(𝑟𝑖 ,Z2ℓ0+ℓ1), J𝑟𝑖KA ← {[𝑟𝑖]A, SS.share(𝑟𝑖 · Δ,Z2ℓ0+ℓ1)};
(𝑘0, 𝑘1) ← Gen(1_, 𝑟𝑖 , 𝛽1, 𝛽2,Z2) (|𝑘0 | = |𝑘1 | = 𝐾)

𝑡 ←$Z2, 𝜋0 ←$Z2, 𝜋1 ←$Z2;𝜔 ←$Z2; b1 ←$Z2ℓ0+ℓ1 , b2 ←$Z2ℓ0+ℓ1 ;𝐿 := 𝐾 + ℓ0 + ℓ1 + 1;
sk(0)0 ∥sk

(0)
1 ∥sk

(1)
0 ∥sk

(1)
1 ←$ {0, 1}4𝐿, |sk(0)0 | = |sk

(0)
1 | = |sk

(1)
0 | = |sk

(1)
1 | = 𝐿

KeyEnc

𝑀𝑖,0 = {𝑘𝑡 ∥𝑡 ∥b1, 𝑘1−𝑡 ∥(1 − 𝑡)∥b1} 𝑀𝑖,0 = {𝑘𝑡 ∥𝑡 ∥b1, 𝑘1−𝑡 ∥(1 − 𝑡)∥b2}
𝑀𝑖,1 = {𝑘𝑡 ∥𝑡 ∥(−b1), 𝑘1−𝑡 ∥(1 − 𝑡)∥(−b1)} 𝑀𝑖,1 = {𝑘𝑡 ∥𝑡 ∥(−b1), 𝑘1−𝑡 ∥(1 − 𝑡)∥(−b2)}
𝐶𝑖,0 = FPermu (𝜋0, {𝑀𝑖,0 [0] ⊕ sk(0)0 , 𝑀𝑖,0 [1] ⊕ sk(0)1 }), SKi,0 = {(sk

(1)
0 , sk(1)1), 𝜋1}

𝐶𝑖,1 = FPermu (𝜋1, {𝑀𝑖,1 [0] ⊕ sk(1)0 , 𝑀𝑖,1 [1] ⊕ sk(1)1 }), SKi,1 = {(sk
(0)
0 , sk(0)1), 𝜋0}

Outputs𝜓,K∗∧ = {{𝐶𝑖, 𝑗 , SK𝑖, 𝑗 , J𝑟𝑖KA}𝑖∈[𝑚], 𝑗∈{0,1} , [Δ]A}

secret sharing [𝑧]A using optimized secret sharing and FSS. Then, it
employsCondEval.Eval(∧, [𝑐1]B, [𝑥]A) to compute [𝑐1∧Sign(𝑧)]B
as the final authentication bit.

The solutions we propose for evaluating FScaledCosAuth in a 2PC
model has the dual objectives of minimizing the number of commu-
nication rounds and communication volume. Our method leverages
optimized secret sharing and CondEval to perform secure addition,
multiplication, and comparison operations within FScaledCosAuth.
The online evaluation process requires two communication rounds,
with a communication cost of four ring elements (corresponds
to the four times of Freveal invocations) and two decryption keys
transmitted for decrypting the FSS keys.

When using floating-point numbers as input for a secure com-
putation framework, these secret floating-point numbers need to
be converted to fixed-point representation by multiplying them
by a precision parameter 2𝜌 . This process occurs before entering
the secure computation framework, where 𝜌 defines the preserved
precision in the fraction part. In a standard way, a secure truncation
operation is required to obtain the same precision when performing
one multiplication over two fixed point values. This is meaningful
in the sense of performing an operation within a smaller ring and
also outputs an arithmetical result with the same precision. How-
ever, in our actual evaluation of FScaledCosAuth, where the input
vectors are small float point numbers, in order to reduce the cost
of the underlying FSS module, we perform truncation once over
1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦) in FScaledCosAuth, such that it
results in a smaller input domain of FSS.

6.1 Full protocol in the semi-honest setting
In the semi-honest setting, our final full protocol ΠNomadicSH com-
prises of three sub-protocols: Setup, FInput and Eval, executed in
the Setup, Input, and Evaluation phases, respectively. Sub-protocol 1
details the setup phase, integrating CondEval.Setup and generating
correlated randomness depends on FScaledCosAuth. Next, the client
and B input their secret vectors 𝑥,𝑦 by running FInput in Fig. 5.

Lastly, with correlated randomness and input prepared, Eval pro-
duces the Boolean secret sharing of the desired authentication bit
[𝑦]B, where 𝑦 = Sign (cos(x, y) − 𝜏).

6.1.1 Correctness. From Theorem 1 we know that Protocol 2 out-
puts [𝑐]B where 𝑐 = 𝑐1∧𝑐2, 𝑐1 = Sign(IP(𝑥,𝑦)) and 𝑐2 = Sign(1/𝑡2 ·
IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)), thus computes Sign (cos(x, y) − 𝜏)
as shown in Eq. 3.

6.1.2 Security. Our goal is to prove that sub-protocols 1 and 2
provide a secure implementation of FScaledCosAuth when faced with
a semi-honest PPT adversary A in a 2PC setting. We assert that,
with the correlated randomness provided in sub-protocol 1, and
following the online evaluation of sub-protocol 2,A learns nothing
about the input 𝑥, 𝑦, or Sign(cos(𝑥,𝑦) − 𝜏).

Proof. By applying Theorem 2, we ensure that there is no infor-
mation leakage from the internal view tapes of CondEval.Evaltrunc
(∧, K̄∧, [𝑐1]B, [𝑧]A). However, we need to consider the other view
transcripts View𝑏 for each 𝑏 ∈ {0, 1}, where:

View𝑏 := {𝑘 (1)
𝑏
, 𝛿𝑢 , 𝛿𝑣, 𝛿𝑤}

As 𝛿𝑣 and 𝛿𝑤 hide the correlated intermediate values of 𝑥 and
𝑦, we argue that the view 𝑘

(1)
𝑏

is pseudo-random (computation-
ally indistinguishable from the real random key) as proved in Fig.
1 from [11], thereby concealing the information of 𝛼 (1) that is
contained in (𝑘 (1)0 , 𝑘

(1)
1) from A. □

We realize the full protocol ΠNomadicM in the malicious setting,
due to page limit, we have attached it in Appendix C.

7 EXPERIMENT
In this section, we aim to test the improved efficiency ofΠNomadicSH
over the naive protocol ΠOptimSH in the semi-honest setting, as well
as ΠNomadicM over the naive protocol ΠNaiveM in the malicious
setting. To achieve that, we implement all four protocols in Python
3.10 [2] and have performed assessments of them through a use
case of voice biometric authentication. In the following, we first

Protocol 1 ([R]A,K∧,K0) ← Setup(1_, ℓ, 𝜌)
Players: The central bank B.
Functionality: ([R]A,K) ← Setup(1_, ℓ, 𝜌) .
Input: A security parameter _, element encoding length ℓ , and a truncation

parameter 𝜌 ∈ Z+ where 𝜌 < ℓ .
Output: ([R]A,K) .
1: (𝑥𝑖𝑛,𝑦𝑖𝑛) ←$Z2𝑛

2ℓ ,𝑢𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑦𝑖𝑛)
2: 𝑣𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑥𝑖𝑛),𝑤𝑖𝑛 ← Prod(𝑦𝑖𝑛,𝑦𝑖𝑛)
3: K∧ ← CondEval.Setup(∧, 1_, ℓ)
4: {𝐶𝑖 , SK𝑖 , [𝑟]A𝑖 }𝑖∈{0,1} ← K∧
5: 𝛼 (2) ← [𝑟]A0 + [𝑟]A1
6: 𝑣 ←$Z2𝜌 , [[]A ← SS.Share(Shift(𝛼 (2) , −𝜌, ℓ) + 𝑣,Z2ℓ+𝜌)
7: K̄∧ ← {𝐶𝑖 , SK𝑖 , [[]A𝑖 }𝑖∈{0,1}
8: 𝛼 (1) ←$Z2ℓ

9: (𝑘0, 𝑘1) ← Gen[0,2
ℓ−1]

ℓ (1_, 𝛼 (1) , 1, 0,Z2)
10: R ← {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2), 𝛼 (1) , (𝛼 (1))2}
11: K0 ← {𝑘0, 𝑘1}
12: Outputs ([R]A, K̄∧,K0)

Protocol 2 [𝑐]B ← Eval([R]A, K̄∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A, 𝜏, 𝜌, ℓ)
Players: S0, S1.
Functionality: [𝑐]B ← Eval([R]A, K̄∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A, 𝜏, 𝜌, ℓ) .
Input: [R]A,K∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A from S0 and S1 respectively. A public

threshold 𝜏 ∈ (0, 1], element encoding length ℓ ∈ Z+, and a truncation
parameter 𝜌 ∈ Z+ where 𝜌 < ℓ .

Output: [𝑐]B
1: {𝑘0, 𝑘1} ← K0
2: {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2), 𝛼 (1) , (𝛼 (1))2} ← R
3: [𝑢]A ← SS.IP(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑢𝑖𝑛]A)
4: [𝑣]A ← SS.IP(⟨𝑥⟩A, ⟨𝑥⟩A, [𝑣𝑖𝑛]A)
5: [𝑤]A ← SS.IP(⟨𝑦⟩A, ⟨𝑦⟩A, [𝑤𝑖𝑛]A)
6: 𝛿𝑢 ← FReveal ([𝑢 + 𝛼 (1)]A) ⊲ First round
7: ⟨𝑢 ⟩A ← (𝛿𝑢 , [𝛼 (1)]A)
8: ⟨𝑣⟩A ← (FReveal ([𝑣 + 𝑟1]A), [𝑟1]A) ⊲ First round
9: ⟨𝑤⟩A ← (FReveal ([𝑤 + 𝑟2]A), [𝑟2]A) ⊲ First round
10: for 𝑏 = 0 to 1 do
11: [𝑐1]B𝑏 ← Eval[0,2

ℓ−1]
ℓ (𝑘𝑏 , 𝑏, 𝛿𝑢)

12: 𝑇 ← Shift(1
𝜏2 , −𝑝, ℓ) ⊲ after shifting,𝑇 ∈ Z2ℓ

13: [𝑧]A ← 𝑇 · SS.MUL(⟨𝑢 ⟩A, ⟨𝑢 ⟩A, [(𝛼 (1))2]A)
14: [𝑧]A ← [𝑧]A − 2𝜌 · SS.MUL(⟨𝑣⟩A, ⟨𝑤⟩A, [𝑟1𝑟2]A)
15: [𝑐]B ← CondEval.Evaltrunc (∧, K̄∧, [𝑐1]B, [𝑧]A) ⊲ Second round
16: Outputs [𝑐]B

describe the dataset being used, then the experimental setting, and
finally present the performance comparison of all protocols.

7.1 Data preparation
We propose to use a pre-trained model of the ECAPA-TDNN [25]
model available in 4 to extract speaker embeddings. The model was
trained using the development part of the VoxCeleb2 dataset [19]
with 5994 speakers. The datasets RIR [37] and MUSAN [57] were
also used for data augmentation. The model is composed of 3 SE-
Res2Block modules. The channel size and the dimension of the
bottleneck in the SEBlock are set to 1024 and 256, respectively.

4https://github.com/TaoRuijie/ECAPA-TDNN

The entire utterance is fed into the ECAPA-system to finally ob-
tain a vector of 192-dimensional speaker embedding. We get our
experiments’ input from the test set of VoxCeleb1-E [46], which
consists of 37720 pairs of enrolment and verification ECAPA-TDNN
embeddings, in which we have approximately half target and half
non-target speakers. It is important to note that the resulting thresh-
old 𝜏 in FScaledCosAuth was established at a point where the FAR
and FRR are equal.

7.2 Experiment setting
We have performed all experiments on a relatively low-spec ma-
chine with 12th Gen Intel(R) Core(TM) i7-12700K processor, and 2
x 16 GB dual-channel DDR5 4400 MHz RAM. The hosting machine
runs Ubuntu 22.04 LTS. We separately compared the performance
of all protocols in the offline and online phase. Specifically, for the
evaluation of the online phase, we created three simulated net-
work environments using traffic control tools to emulate real-world
network conditions.

To adapt the raw data from the ECAPA-TDNN embeddings [46]
with float-point numbers to our protocols that deal with integers, we
multiply the floating-point numbers with 28 (𝜌 = 8) and keep only
the integer digits of the multiplication result to maintain precision
in the fractional part of the raw data. We remark that employing a
conversion parameter of 𝜌 = 8 yields a non-significant deviation
(0.003%) in terms of false acceptance rate (FAR) and false rejection
rate (FRR), when compared to directly using floating-point numbers.

Regarding the FSS module underlines our protocols, which in-
cludes the interval containment FSS and our CondEval, we univer-
sally set the security parameter ^ = 128, the input domain {0, 1}32

that is sufficient to cover our use case, and we do implementation
as per in Fig.3 of [11].

Specifically, we perform all the secure computation operation in
a ring of 64 bits for protocols ΠOptimSH and ΠNomadicSH in the semi-
honest setting; in the malicious setting we perform all operations in
a ring of 64 + 32 bits, where 64 bits covers the circuit computation
and 32 bits is the size of the secret authentication parameter 𝛼 we
selected. Additionally, in the implementation of ΠNomadicM we set
𝑚 = 30 which is marginally smaller than the length of the secret
authentication parameter 𝛼 , according to Theorem 5 it gives us a
soundness 𝑝 < 2−26.

(a) Generation time (ms) (b) Commu. volume (KB)

Figure 2: Offline costs measured per server

https://github.com/TaoRuijie/ECAPA-TDNN

Figure 3: Online performance comparison of ΠNomadicSH to
ΠOptimSH, and ΠNomadicSH to ΠNaiveM in different network set-
tings.

7.3 Experiment results
We measured the offline computation time and communication
volume as illustrated in Fig. 2, required by executing each pro-
tocol once. These results are quantified per server; specifically,
the communication volume represents the data transmitted from
the dealer to each server, while the computation time pertains to
the duration required to generate correlated randomness data for
each server. It is important to note that, across all four protocols,
the dealer distributes correlated randomness in accordance with
FScaledCosAuth. This distribution is independent of the actual inputs
used later in the online phase. Therefore, it is typically accept-
able to incur higher costs during the offline phase. As depicted
in Fig. 2, when comparing our protocol ΠNomadicSH with proto-
col ΠOptimSH, ΠNomadicSH incurs a marginally higher cost in both
computation time and communication volume. In contrast, for our
protocol ΠNomadicM compared to ΠOptimSH, there is a noticeable
increase in both computation time and communication volume.
This escalation is attributed to the utilization of multiple FSS keys
in computing 𝑐1 and 𝑐2 of FScaledCosAuth, and is considered an ac-
ceptable trade-off for the offline phase.

Fig. 3 presents the online execution time to run FScaledCosAuth
with one pair of enrolment (reference) and verification (fresh) vec-
tors as input in different network settings for all protocols. These
measurements started from the moment all input secret sharing was
in place and continued until the final secret sharing of the output
bit 𝑐 of FScaledCosAuth was obtained. Here, the execution time for
each protocol is further divided into two parts, the local computa-
tion time and communication time. We have set up three common
network settings with different network latency and bandwidth,
which are denoted as LAN (10ms, 1Gbit), WAN1 (80ms, 100Mbit)
and WAN2 (500ms, 10Mbit). The cost is measured for 20 runs on
average. The online communication volume measured from our ex-
periments are 0.09 KB, 0.69 KB, 0.21 KB, and 20.77 KB respectively
for protocol ΠOptimSH, ΠNomadicSH, ΠNaiveM and ΠNomadicM.

In the semi-honest setting, ΠNomadicSH demonstrates a signifi-
cant improvement in efficiency over the naive protocol ΠOptimSH.
Specifically, ΠNomadicSH achieves a 31% reduction in online exe-
cution time compared to ΠOptimSH, even though we cost much

more communication volume (0.69 KB) than what in ΠOptimSH
(0.09 KB). This efficiency is attributed to the reduced number of
rounds required; ΠNomadicSH operates in two rounds, as opposed
to ΠOptimSH that requires three rounds.

In the malicious setting, ΠNomadicM requires less communication
time compared to the naive protocolΠNaiveM in each of the network
settings, however, it does not exhibit efficiency gains over the naive
protocol ΠNaiveM in total except for the WAN2 setting. This perfor-
mance characteristic primarily results from the use of multiple FSS
keys, specifically𝑚 = 30 in our experiments. Our tests revealed a
total computational cost of approximately 45ms for completing eval-
uations of 𝑐1 and 𝑐 in our protocol ΠNomadicM. This computational
burden, however, is not intractable. One approach, as demonstrated
in Funshade [33], involves using an efficiency-focused program-
ming language. Their C implementation, for instance, requires a
local computation time of just 0.55 ms, including the evaluation of
one interval containment gate and a local inner product. Based on
this, the local computation time for the multiple FSS components
in our protocol ΠNomadicM is estimated to be no more than 16.5ms
if implemented in C. Alternatively, using more powerful hardware
can certainly reduce the computation overhead.

Considering that reducing wide area network latency will likely
remain challenging in the near future, our ΠNomadicM protocol
becomes a preferable choice. This is due to one round reduction
compared to ΠNaiveM, making it more effective despite potentially
higher computational demands. In summary, our experimental re-
sults demonstrate an online evaluation efficiency improvement for
our proposed protocols over the SOTA when computing the cosine
similarity functionality in the squared domain, especially in the
WAN setting, where the network latency is a bottleneck for efficient
secure computation, making it suitable for real-world applications.

8 CONCLUSION
Privacy-preserving cosine similarity computation and comparison
to a predefined threshold is an important building block that has
multiple applications (e.g., biometric authentication and identifi-
cation, privacy-preserving machine learning). In this paper, we
introduce two novel protocols to compute the cosine similarity and
compare to a threshold in a privacy-preservingway, i.e.,ΠNomadicSH
for the semi-honest setting, and ΠNomadicM the malicious setting.
Both ΠNomadicSH and ΠNomadicM rely on the recent advances of
FSS [11, 13]. And Π𝑁𝑜𝑚𝑎𝑑𝑖𝑐𝑀 additionally relies on 2PC authenti-
cated secret sharing and our proposed use of multiple instances of
random FSS keys (either normal or trap). All our protocols are based
on a new primitive CondEval that allows computing the composi-
tion of an input bit 𝑠 and a binary function 𝑓 (evaluated via FSS) on
an input 𝑥 i.e., 𝑠 ◦ 𝑓 (𝑥). CondEval is provably secure under both the
semi-honest and malicious setting, is general and of independent
interest; Thus, could be used in general 2PC computations.

Furthermore, we provide a detailed security analysis of the pro-
posed protocols and introduced building block and evaluate the
proposed protocols in the biometric authentication setting. Our re-
sults show that the proposed protocols are not only round-efficient,
necessitating merely two communication rounds, but also proved to
exhibit enhanced efficiency though our experiment in comparison
to SOTA.

REFERENCES
[1] Shashank Agrawal and David J Wu. 2017. Functional encryption: deterministic

to randomized functions from simple assumptions. In Advances in Cryptology–
EUROCRYPT 2017: 36th Annual International Conference on the Theory andApplica-
tions of Cryptographic Techniques, Paris, France, April 30–May 4, 2017, Proceedings,
Part II 36. Springer, 30–61.

[2] Anonymous. 2023. A Python Implementation of Nomadic. https://anonymous.
4open.science/r/CondEval-F022.

[3] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
2016. High-throughput semi-honest secure three-party computation with an
honest majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 805–817.

[4] Manuel Barbosa, Dario Catalano, Azam Soleimanian, and Bogdan Warinschi.
2019. Efficient function-hiding functional encryption: From inner-products to
orthogonality. In Topics in Cryptology–CT-RSA 2019: The Cryptographers’ Track
at the RSA Conference 2019, San Francisco, CA, USA, March 4–8, 2019, Proceedings.
Springer, 127–148.

[5] Mauro Barni, Giulia Droandi, Riccardo Lazzeretti, and Tommaso Pignata. 2019.
SEMBA: secure multi-biometric authentication. IET Biometrics 8, 6 (2019), 411–
421.

[6] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.
In Advances in Cryptology — CRYPTO ’91, Joan Feigenbaum (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 420–432.

[7] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round complexity
of secure protocols. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing. 503–513.

[8] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. 2019. Turbospeedz: double
your online SPDZ! improving SPDZ using function dependent preprocessing. In
International Conference on Applied Cryptography and Network Security. Springer,
530–549.

[9] Vishnu Naresh Boddeti. 2018. Secure face matching using fully homomorphic
encryption. In 2018 IEEE 9th International Conference on Biometrics Theory, Ap-
plications and Systems (BTAS). IEEE, 1–10.

[10] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Defi-
nitions and challenges. In Theory of Cryptography: 8th Theory of Cryptography
Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8.
Springer, 253–273.

[11] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. 2021. Function secret sharing for mixed-mode
and fixed-point secure computation. In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part
II. Springer, 871–900.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. InAnnual
international conference on the theory and applications of cryptographic techniques.
Springer, 337–367.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure computation with prepro-
cessing via function secret sharing. In Theory of Cryptography: 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1–5, 2019, Proceedings,
Part I 17. Springer, 341–371.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure computation with pre-
processing via function secret sharing. In Theory of Cryptography Conference.
Springer, 341–371.

[15] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2019. FLASH:
Fast and robust framework for privacy-preserving machine learning. Cryptology
ePrint Archive (2019).

[16] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and Akash
Shah. 2022. {SIMC}:{ML} Inference Secure Against Malicious Clients at {Semi-
Honest} Cost. In 31st USENIX Security Symposium (USENIX Security 22). 1361–
1378.

[17] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2019. Trident: Efficient
4pc framework for privacy preserving machine learning. arXiv preprint
arXiv:1912.02631 (2019).

[18] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo
Lee. 2019. Numerical method for comparison on homomorphically encrypted
numbers. In Advances in Cryptology–ASIACRYPT 2019: 25th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8–12, 2019, Proceedings, Part II. Springer, 415–445.

[19] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. 2018. Voxceleb2: Deep
speaker recognition. arXiv preprint arXiv:1806.05622 (2018).

[20] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping
Xing. 2018. SPDZ2𝑘 : efficient MPC mod 2𝑘 for dishonest majority. In Annual
International Cryptology Conference. Springer, 769–798.

[21] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic
four:{Honest-Majority}{Four-Party} secure computation with malicious secu-
rity. In 30th USENIX Security Symposium (USENIX Security 21). 2183–2200.

[22] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. 2013. Practical covertly secure MPC for dishonest majority–or:
breaking the SPDZ limits. In European Symposium on Research in Computer
Security. Springer, 1–18.

[23] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. 2016. Functional encryp-
tion for inner product with full function privacy. In Public-Key Cryptography–PKC
2016: 19th IACR International Conference on Practice and Theory in Public-Key
Cryptography, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I. Springer, 164–
195.

[24] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In NDSS.

[25] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. 2020. Ecapa-
tdnn: Emphasized channel attention, propagation and aggregation in tdnn based
speaker verification. arXiv preprint arXiv:2005.07143 (2020).

[26] Diana-Elena Fălămaş, Kinga Marton, and Alin Suciu. 2021. Assessment of Two
Privacy Preserving Authentication Methods Using Secure Multiparty Computa-
tion Based on Secret Sharing. Symmetry 13, 5 (2021), 894.

[27] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive (2012).

[28] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental

game, or a completeness theorem for protocols with honest majority. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. 307–328.

[30] Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, and Divya Gupta.
2022. Llama: A low latency math library for secure inference. Cryptology ePrint
Archive (2022).

[31] Haiping Huang, Tianhe Gong, Ping Chen, Reza Malekian, and Tao Chen. 2016.
Secure two-party distance computation protocol based on privacy homomor-
phism and scalar product in wireless sensor networks. Tsinghua Science and
Technology 21, 4 (2016), 385–396.

[32] Alberto Ibarrondo, Hervé Chabanne, Vincent Despiegel, and Melek Önen. 2023.
Grote: Group testing for privacy-preserving face identification. In Proceedings
of the Thirteenth ACM Conference on Data and Application Security and Privacy.
117–128.

[33] Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2022. Funshade: Func-
tional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation.
Cryptology ePrint Archive (2022).

[34] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison opera-
tions for BGV and BFV. Proceedings on Privacy Enhancing Technologies 2021, 3
(2021), 246–264.

[35] Taeyun Kim, Yongwoo Oh, and Hyoungshick Kim. 2020. Efficient privacy-
preserving fingerprint-based authentication system using fully homomorphic
encryption. Security and Communication Networks 2020 (2020), 1–11.

[36] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure multi-party com-
putation meets machine learning. Advances in Neural Information Processing
Systems 34 (2021), 4961–4973.

[37] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev
Khudanpur. 2017. A study on data augmentation of reverberant speech for
robust speech recognition. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 5220–5224.

[38] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. {SWIFT}:
Super-fast and robust {Privacy-Preserving} machine learning. In 30th USENIX
Security Symposium (USENIX Security 21). 2651–2668.

[39] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2021. Tetrad: Actively
secure 4pc for secure training and inference. arXiv preprint arXiv:2106.02850
(2021).

[40] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 336–353.

[41] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada
Popa. 2021. Muse: Secure inference resilient to malicious clients. In 30th USENIX
Security Symposium (USENIX Security 21). 2201–2218.

[42] Shaofeng Lu, Cheng Li, Xinyi Feng, Yuefeng Lu, Yulong Hu, and Wenxi Li. 2021.
Privacy-preserving Hamming distance Protocol and Its Applications. In 2021
2nd International Conference on Electronics, Communications and Information
Technology (CECIT). IEEE, 848–853.

[43] Silvio Micali, Oded Goldreich, and Avi Wigderson. 1987. How to play any mental
game. In Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC.
ACM, 218–229.

[44] PaymanMohassel and Peter Rindal. 2018. ABY3: Amixed protocol framework for
machine learning. In Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security. 35–52.

[45] Mahesh Kumar Morampudi, Munaga VNK Prasad, and USN Raju. 2020. Privacy-
preserving iris authentication using fully homomorphic encryption. Multimedia
Tools and Applications 79 (2020), 19215–19237.

https://anonymous.4open.science/r/CondEval-F022
https://anonymous.4open.science/r/CondEval-F022

[46] A. Nagrani, J. S. Chung, and A. Zisserman. 2017. VoxCeleb: a large-scale speaker
identification dataset. In INTERSPEECH.

[47] Andreas Nautsch, Jose Patino, Amos Treiber, Themos Stafylakis, Petr Mizera,
Massimiliano Todisco, Thomas Schneider, and Nicholas Evans. 2019. Privacy-
preserving speaker recognition with cohort score normalisation. arXiv preprint
arXiv:1907.03454 (2019).

[48] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. {ABY2.
0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation. In 30th
USENIX Security Symposium (USENIX Security 21). 2165–2182.

[49] Arpita Patra and Ajith Suresh. 2020. BLAZE: blazing fast privacy-preserving
machine learning. arXiv preprint arXiv:2005.09042 (2020).

[50] Yogachandran Rahulamathavan. 2022. Privacy-preserving similarity calcula-
tion of speaker features using fully homomorphic encryption. arXiv preprint
arXiv:2202.07994 (2022).

[51] Yogachandran Rahulamathavan, Safak Dogan, Xiyu Shi, Rongxing Lu, Muttukr-
ishnan Rajarajan, and Ahmet Kondoz. 2020. Scalar product lattice computation
for efficient privacy-preserving systems. IEEE Internet of Things Journal 8, 3
(2020), 1417–1427.

[52] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 325–342.

[53] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2020. Ariann:
Low-interaction privacy-preserving deep learning via function secret sharing.
arXiv preprint arXiv:2006.04593 (2020).

[54] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2022. Ariann:
Low-interaction privacy-preserving deep learning via function secret sharing.
Proceedings on Privacy Enhancing Technologies 2022, 1 (2022), 291–316.

[55] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[56] LI Shundong, ZHANG Mengyu, and XU Wenting. 2021. Secure Scalar Product

Protocols. Chinese Journal of Electronics 30, 6 (2021), 1059–1068.
[57] David Snyder, Guoguo Chen, and Daniel Povey. 2015. Musan: A music, speech,

and noise corpus. arXiv preprint arXiv:1510.08484 (2015).
[58] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. 2016. Efficient functional

encryption for inner-product values with full-hiding security. In Information
Security: 19th International Conference, ISC 2016, Honolulu, HI, USA, September
3-6, 2016. Proceedings 19. Springer, 408–425.

[59] Amos Treiber, Andreas Nautsch, Jascha Kolberg, Thomas Schneider, and
Christoph Busch. 2019. Privacy-preserving PLDA speaker verification using
outsourced secure computation. Speech Communication 114 (2019), 60–71.

[60] Florian VanDaalen, Lianne Ippel, Andre Dekker, and Inigo Bermejo. 2023. Privacy
Preserving 𝑛-Party Scalar Product Protocol. IEEE Transactions on Parallel and
Distributed Systems (2023).

[61] Thijs Veugen, Robbert de Haan, Ronald Cramer, and Frank Muller. 2014. A
framework for secure computations with two non-colluding servers and multiple
clients, applied to recommendations. IEEE Transactions on Information Forensics
and Security 10, 3 (2014), 445–457.

[62] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. 2021. F: Honest-majority maliciously secure framework
for private deep learning. Proceedings on Privacy Enhancing Technologies 2021, 1
(2021), 188–208.

[63] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
annual symposium on foundations of computer science (Sfcs 1986). IEEE, 162–167.

[64] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

A SUPPLEMENT FOR CONDEVAL IN THE
MALICIOUS SETTING

A proof of theorem 3. Assume all servers follow CondEval.Eval∗ (
∧,K∗∧, (𝑠)𝑚, J𝑥KA) honestly. ∀𝑖 ∈ [𝑚], if𝜓 [𝑖] = 0. From Theorem 1,
we know [𝑦𝑖]B is equal to [𝑠 ∧ 𝑓 (𝑥)]B as expected. Otherwise if
𝜓 [𝑖] = 1, since [𝑠]B0 , [𝑠]

B
1 is either {0, 0} or {1, 1}, which implies

𝑦𝑖 = Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥)⊕Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) or𝑦𝑖 = Eval𝑓 (𝑘1−𝑡 , 1−𝑡, 𝛿𝑥)⊕
Eval𝑓 (𝑘1−𝑡 , 1−𝑡, 𝛿𝑥), then [𝑦𝑖]B is equal to [0]B. Thus, the function-
ality outputs a valid authenticated Boolean secret sharing. However,
in the case of𝜓 = {0, 1}𝑚 which has a probability of 1/2𝑚 the pro-
tocol CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓) outputs −1. Thus, 𝑝 is equal
to 1 − 1/2𝑚 .

A proof of theorem 4. After online evaluation, for each 𝑏 ∈
{0, 1}, S𝑏 ’s transcript view is composed of transcript views of

CondEval.Eval(K∗∧ [𝑖], [𝑠𝑖]B, [𝑥]A) for each 𝑖 ∈ [𝑚]. From The-
orem 2, we know that CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA) does not
leak any information about 𝑥 , 𝑠 , or 𝑠 ∧ 𝑓 (𝑥). Furthermore, owing
to the computational indistinguishability of FSS keys from entirely
random keys, based on the security of the pseudorandom genera-
tor [11], a probabilistic polynomial-time (PPT) the probability that
A distinguishes between a trap key instance, a completely random
key, or a normal key instance is negligible. Consequently, A gains
no information about𝜓 .

A proof of theorem 5. If CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓) =
¬(𝑠 ∧ 𝑓 (𝑥)), w.l.o.g., we assume S0 is the malicious server in the
functionality CondEval∗. The actual computation can be performed
in the following two ways, only:

• Case 1: S0 honestly follows CondEval.Eval∗ (∧, K∗∧, (𝑠)𝑚,
J𝑥KA).

• Case 2: S0 arbitrarily deviates from CondEval.Eval∗ (∧,K∗∧,
(𝑠)𝑚 , J𝑥KA),
– either by flipping [𝑠𝑖]B0 (𝑖 ∈ [𝑚]) when performing the

KeyDec step OT,
– or, by dishonestly flipping partial shares when report-

ing (𝑠)𝑚 to the receiver.
We denote by𝑝1 and 𝑝2 the probability thatCondEval.Verify ((𝑦)𝑚, [𝜎]A,
𝜓) = ¬(𝑠 ∧ 𝑓 (𝑥)) under cases 1 and 2, respectively.

In the first case, from Theorem 3 we know that the protocol
outputs −1 with probability 1/2𝑚 , and 𝑠 ∧ 𝑓 (𝑥) with probability of
1 − 1/2𝑚 it outputs. Thus, the protocol never outputs ¬(𝑠 ∧ 𝑓 (𝑥))
and hence, 𝑝1 = 0.

In the second case, we claim there are three events A, B, C in
which S0 that could manipulate the protocol and thus, which may
result in outputting a flipped authentication bit (¬(𝑠 ∧ 𝑓 (𝑥)))𝑚 :

(1) 𝐴: S0 reports one or more incorrect arithmetic shares, sub-
mits a manipulated proof 𝜎∗0 such that, still, 𝜎∗0 +𝜎1 = 0, and
resulting to a valid flipped authenticated bit (𝑦∗)𝑚 where
𝑦∗ = ¬(𝑠 ∧ 𝑓 (𝑥)).

(2) B: S0 manages to flip the computation result (𝑦)𝑚 to (¬𝑦)𝑚
by flipping [𝑠𝑖]B0 for all𝜓 [𝑖] = 0, 𝑖 ∈ [𝑚] when performing
the KeyDec step, and also presents a correct proof that
passes the final verification.

(3) C: ∀𝑖 ∈ [𝑚], S0 manages to flip each [𝑦𝑖]B0 for𝜓 [𝑖] = 0, and
keeps [𝑦𝑖]B0 unchanged for𝜓 [𝑖] = 1 . In the end, S0 submits
his manipulated sharing of (𝑦)𝑚 to B.

Each event is considered independently. Concerning event 𝐴,
according to [20], it is known that the probability that event 𝐴
occurs is no greater than 2−ℓ1+log (ℓ1+1) .

Regarding event 𝐵, the final outcome is altered when 𝑓 (𝑥) = 1
and only when all the normal indexes (𝜓 [𝑖] = 0) are flipped during
the KeyDec step. We analyse the probability that S0 successfully
flips all normal indexes without being detected as follows: First, we
distinguish two complementary events 𝐵1 and 𝐵2 that are covered
by 𝐵. We denote by 𝐵1 the event that S0 manages to flip the corre-
sponding bit [𝑠𝑖]B0 for each 𝑖 ∈ [𝑚] where𝜓 [𝑖] = 0, and keeps the
corresponding bit [𝑠𝑖]B0 unchanged for each 𝑖 ∈ [𝑚] where𝜓 [𝑖] = 1.
On the other hand, 𝐵2 corresponds to the event when S0 manages
to flip the corresponding bit [𝑠𝑖]B0 for each 𝑖 ∈ [𝑚] where𝜓 [𝑖] = 0,
and at least one of the corresponding bit [𝑠𝑖]B0 is wrongly flipped

FUNCTIONALITY [𝜍]A ← FMacVryGen ([Δ]A, 𝐿)
Players: S0, S1.
Input: An arithmetic secret sharing of the MAC authentication

key [Δ]A, along with a list 𝐿 = (𝑥𝑖 , [Δ · 𝑥𝑖]A)𝑖∈[𝑛] , in which
∀𝑖 ∈ [𝑛] that 𝑥𝑖 , 𝑟𝑖 is public and [Δ ·𝑥𝑖]A is the arithmetic secret
sharing over Δ · 𝑥𝑖 .

Output: [𝜍]A
1: for 𝑏 = 0 to 1 do
2: [𝜍]A

𝑏
← 0

3: for 𝑖 = 1 to 𝑛 do
4: [𝜍]A

𝑏
← [𝜍]A

𝑏
+ [Δ]A

𝑏
· 𝑥𝑖 − [Δ · 𝑥𝑖]A𝑏

5: S0 and S1 re-randomize [𝜍]A locally.
6: Outputs [𝜍]A

Figure 4: Our Homomorphic MAC Verification proof genera-
tion in the malicious setting.

for 𝜓 [𝑖] = 1, i.e., S0 does not perfectly correctly guesses all 𝜓 [𝑖]
where𝜓 [𝑖] = 1, instead S0 wrongly determines𝜓 [𝑖] = 0 by at least
one index 𝑖 where in fact 𝜓 [𝑖] is equal to 1. The reason why we
distinguish 𝐵1 from 𝐵2 is because for event 𝐵1 the adversary S0 does
not need to do anything to pass the verification. However, for event
𝐵2 the adversary S0 needs to select a random offset value 𝑒 added to
[𝜎]A0 to pass the verification (it happens with probability 2−(ℓ0+ℓ1)),
the reason is because in event 𝐵2 that S0 wrongly assumed𝜓 [𝑖] = 0
by at least one index 𝑖 for𝜓 [𝑖] = 1, under this case servers obtain
an associated secret share of a non-zero random value.

Because we know𝜓 is uniformly generated, say S0 flips each bit
[𝑠𝑖]B0 independently for each 𝑖 ∈ [𝑚] with probability 𝑞. Then, we
have the probability of event 𝐵1

𝑃 (𝐵1) =
(𝑞
2
+ 1 − 𝑞

2
)𝑚

= 2−𝑚,

and the probability of event 𝐵2

𝑃 (𝐵2) =
((𝑞

2
+ 1

2
)𝑚 − 𝑃 (𝐵1)

)
· 2−(ℓ0+ℓ1) < 2−(ℓ0+ℓ1) .

Let 𝑝∗ ∈ [0, 1] be the probability when the input 𝑓 (𝑥) is equal
to 1, then we have

𝑃 (𝐵) = 𝑃∗ · (𝑃 (𝐵1) + 𝑃 (𝐵2)) < 𝑃∗ · (2−𝑚 + 2−(ℓ0+ℓ1))

Denote 𝑃 (𝐵∗) the probability that an occurrence of event 𝐵 results
in an flipped result 𝑦 = ¬(𝑠 ∧ 𝑓 (𝑥)), which we know it happens
only when𝜓 ≠ {1}𝑚 , so we have 𝑃 (𝐵∗) < 𝑃 (𝐵).

For event C, 𝑃 (𝐶) = 1/2𝑚 . Thus,

𝑝2 < 𝑃 (𝐴) + 𝑃 (𝐵∗) + 𝑃 (𝐶)
< 𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶)

< 2−ℓ1+log (ℓ1+1) + 𝑝
∗ + 1
2𝑚

+ 2−(ℓ0+ℓ1)

< 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1) .

In conclusion,

𝑝 = 𝑝1 + 𝑝2 < 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1) .

FUNCTIONALITY ⟨𝑥⟩A or ⊥ ← FInput (𝑥, [𝑟in]A):
Players: A client C, S0 and S1.
Input: A secret 𝑥 from C, and [𝑟in]A from S0, S1.
Output: ⟨𝑥⟩A or ⊥.
1: ∀𝑏 ∈ {0, 1}, S𝑏 sends [𝑟in]A𝑏 to C.
2: ∀𝑏 ∈ {0, 1}, C returns 𝛿𝑏𝑥 = 𝑥 + [𝑟in]A0 + [𝑟in]

A
1 to S𝑏 .

3: ∀𝑏 ∈ {0, 1}, S𝑏 exchanges 𝛿𝑏𝑥 with S1−𝑏 to check if 𝛿𝑏𝑥 is equal
to 𝛿1−𝑏

𝑥 . If both the verification pass, denote 𝛿𝑥 = 𝛿0
𝑥 = 𝛿1

𝑥 , then
servers output ⟨𝑥⟩A = (𝛿𝑥 , [𝑟in]A𝑏), otherwise output ⊥.

Figure 5: Input validation protocol in the semi-honest setting.

B FInput IN THE SEMI-HONEST SETTING
C OUR FULL PROTOCOL FOR FScaledCosAuth IN

THE MALICIOUS SETTING
We present sub-protocols 3 and 4 which evaluate FScaledCosAuth in a
stronger threat model, with one malicious server whomight deviate
from the protocol description in sub-protocol 2. More specifically:

• In sub-protocol 3, B first runs CondEval∗ .Setup(1_), then
from those results it obtains Δ and𝜓 , which are secret keys
for authenticating an arithmetical revelation and a Boolean
revelation in the later online evaluation. Afterwards, B addi-
tionally generates an authenticated random secret sharing
I𝑥 ,I𝑦 to be used in input phase. It also generates a function
dependent authenticated correlated random secret sharing
JRKA from Δ, and random FSS keys K0 from𝜓 for comput-
ing 𝑐1;

• After the setup phase is done, whenever the input is ready,
(i.e., the client provides her fresh template 𝑥), the client and
the two servers coordinately run:

⟨⟨𝑥𝑖 ⟩⟩A ← FInput∗ (𝑥𝑖 , [Δ]A, J𝑟 (𝑥)𝑖𝑛
[𝑖]KA, J𝑥𝑖𝑛 [𝑖]KA)

where FInput∗ is shown in Fig. 6;
• Then in the evaluation phase, the two servers execute the

online evaluation sub-protocol 4 Eval∗ in which we in-
corporate a variant version of CondEval.Eval∗ denoted as
CondEval.Eval∗trunc, whose sole difference to the former
is to perform a local truncation after each 𝛿𝑥 is revealed
(similarly to the process applied in the semi-honest setting);
• After completing the evaluation phase in Protocol 4, the

servers obtain a final authenticated boolean secret sharing
(𝑦)𝑚 and an associated proof [𝜎]A.

• Upon receiving (𝑦)𝑚 and [𝜎]A from the servers, with value
𝜓 already known in the setup phase,B runsCondEval.Verify
((𝑦)𝑚, [𝜎]A,𝜓) and outputs a symbol 𝑧 ∈ −1, 0, 1,⊥. B ac-
cepts the authentication bit as 𝑧 if 𝑧 is not in {−1,⊥}.

We note here that via sub-protocol 4, we are able to capture a
client who may act maliciously i.e., may attempt to impersonate
a legitimate user and deduce information for the corresponding
templates. Thus, we incorporate a mechanism to check that the
secret sharing of the fresh (as well as the reference) template have
been secret shared correctly.

Protocol 3 (I𝑥 ,I𝑦, JRKA, K̄∗∧,K0) ← Setup∗ (1_,𝑚, ℓ0, ℓ1, 𝜌)
Players: B.
Functionality: (I𝑥 , I𝑦, JRKA, K̄∗∧,K0) ← Setup∗ (1_,𝑚, ℓ0, ℓ1, 𝜌) .
Input: A security parameter _, ℓ, ℓ1, 𝜌 ∈ Z+.
Output: (I𝑥 , I𝑦, JRKA, K̄∗∧,K0) .
1: K∗∧ ← CondEval∗ .Setup(∧, 1_, ℓ0, ℓ1,𝑚)
2: {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝑟𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓]B, [Δ]A} ← K∗∧
3: Δ← [Δ]A0 + [Δ]A1 ,𝜓 ← [𝜓]A0 ⊕ [𝜓]A1
4: 𝑟 (𝑥)

𝑖𝑛
←$Z𝑛2ℓ , J𝑟

(𝑥)
𝑖𝑛

KA ← SS.Share({𝑟 (𝑥)
𝑖𝑛

,Δ · 𝑟 (𝑥)
𝑖𝑛
},Z2ℓ0+ℓ1)

5: 𝑟 (𝑦)
𝑖𝑛
←$Z𝑛2ℓ , J𝑟

(𝑦)
𝑖𝑛

KA ← SS.Share({𝑟 (𝑦)
𝑖𝑛

,Δ · 𝑟 (𝑦)
𝑖𝑛
},Z2ℓ0+ℓ1)

6: (𝑥𝑖𝑛,𝑦𝑖𝑛) ←$Z2𝑛
2ℓ , 𝑢𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑦𝑖𝑛)

7: 𝑣𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑥𝑖𝑛),𝑤𝑖𝑛 ← Prod(𝑦𝑖𝑛,𝑦𝑖𝑛)
8: (𝑟1, 𝑟2) ←$Z2

2ℓ
9: for 𝑖 = 1 to𝑚 do
10: 𝛼 (1,𝑖) ←$Z2ℓ
11: 𝑟 ←$Z2𝜌

12: 𝛼 (2,𝑖) ← [𝑟𝑖]A0 + [𝑟𝑖]A1
13: [𝑖 ← Shift(𝛼 (2,𝑖) , −𝜌, ℓ) + 𝑟
14: (𝑘 (1,𝑖)0 , 𝑘

(1,𝑖)
1) ← Gen[0,2

ℓ−1]
ℓ (1_, 𝛼 (1,𝑖) , 1 −𝜓 [𝑖], 0,Z2)

15: J[𝑖KA ← (SS.Share([𝑖 ,Z2ℓ0+ℓ1), SS.Share(Δ · [𝑖 ,Z2ℓ0+ℓ1))
16: K̄∗∧ ← {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J[𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓]B, [Δ]A}
17: R ← {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2), (𝛼 (1,1))2}
18: JRKA ← (SS.Share(R,Z2ℓ0+ℓ1), SS.Share(R · Δ,Z2ℓ0+ℓ1))
19: K0 ← {𝑘 (1,𝑖)0 , 𝑘

(1,𝑖)
1 }𝑖∈ [𝑚]

20: I𝑥 ← (J𝑟 (𝑥)𝑖𝑛
KA, J𝑥𝑖𝑛KA), I𝑦 ← (J𝑟 (𝑦)𝑖𝑛

KA, J𝑦𝑖𝑛KA)
21: Outputs (I𝑥 , I𝑦, JRKA, K̄∗∧,K0)

FUNCTIONALITY ⟨⟨𝑥⟩⟩A or ⊥ ← FInput∗ (𝑥, [Δ]A, J𝑟KA, J𝑟inKA):
Players: A client C, S0 and S1.
Input: A secret 𝑥 from C, and J𝑟KA, J𝑟inKA from S0, S1.
Output: ⟨⟨𝑥⟩⟩A
1: ∀𝑏 ∈ {0, 1}, S𝑏 sends [𝑟]A

𝑏
to C.

2: ∀𝑏 ∈ {0, 1}, C returns 𝛿𝑏𝑥 = 𝑥 + [𝑟]A0 + [𝑟]
A
1 to S𝑏 .

3: ∀𝑏 ∈ {0, 1}, S𝑏 computes

J𝑥KA
𝑏
= (𝑏 · 𝛿𝑏𝑥 − [𝑟]A𝑏 , [Δ]

A
𝑏
· 𝛿𝑥 − [Δ · 𝑟]A𝑏)

4: Servers run FReveal ([𝑥 + 𝑟in]A) and obtain 𝑥 + 𝑟in. After that,
∀𝑏 ∈ {0, 1} S𝑏 computes

⟨⟨𝑥⟩⟩A
𝑏
= (𝑥 + 𝑟in, J𝑥KA𝑏 , J𝑟inK

A
𝑏
)

5: Outputs ⟨⟨𝑥⟩⟩A

Figure 6: Input validation protocol in the malicious setting.

C.0.1 Soundness. In sub-protocol 4, assuming an active adver-
sary A, the soundness of functionality CondEval.Eval∗trunc has
been proven in Theorem 5. Furthermore, thanks to the protec-
tion provided by the MAC scheme of other operations using au-
thenticated arithmetic sharing, let 𝑝 represent the probability that
CondEval.Verify((𝑦)𝑚 , [𝜎]A, [𝜓]B) = 1−Sign(cos(𝑥,𝑦) −𝜏). Con-
sequently, we can deduce

𝑝 < 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1) .

Protocol 4 ((𝑦)𝑚, [𝜎]A) ← Eval∗ (JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A,K̄∗∧,K0,
𝜏, 𝜌)
Players: S0, S1.
Functionality: ((𝑦)𝑚, [𝜎]A) ← Eval∗ (JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A,K̄∗∧,K0,

𝜏, 𝜌) .
Input: Secret sharing [Δ]A, JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A and K1 from S0, S1, K2

from B, a public threshold 𝜏 ∈ (0, 1] and a truncation parameter 𝜌 ∈ Z+.
Output: ((𝑦)𝑚, [𝜎]A) .
1: 𝑝← [∅]𝑚+2
2: J𝑢KA ← SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑢𝑖𝑛KA)
3: J𝑣KA ← SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑥⟩⟩A, J𝑣𝑖𝑛KA)
4: J𝑤KA ← SS.IP(⟨⟨𝑦⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑤𝑖𝑛KA)
5: 𝛿𝑣 ← FReveal ([𝑣 + 𝑟1]A) ⊲ First round
6: 𝛿𝑤 ← FReveal ([𝑤 + 𝑟2]A) ⊲ First round
7: 𝑝[1] ← (𝛿𝑣, [Δ · 𝛿𝑣]A),𝑝[2] ← (𝛿𝑤 , [Δ · 𝛿𝑤]A)
8: ⟨⟨𝑣⟩⟩A ← (𝛿𝑣, J𝑣KA, J𝑟1KA)
9: ⟨⟨𝑤⟩⟩A ← (𝛿𝑤 , J𝑤KA, J𝑟2KA)
10: {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝑟𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓]B, [Δ]A} ← K∗∧
11: {𝑘 (1,𝑖)0 , 𝑘

(1,𝑖)
1 }𝑖∈{0,1} ← K0

12: for 𝑖 = 1 to𝑚 do
13: J𝛿

𝑢 (𝑖) K
A ← J𝑢KA + J𝛼 (1,𝑖) KA

14: 𝛿
𝑢 (𝑖) ← FReveal ([𝛿𝑢 (𝑖)]

A) ⊲ First round
15: for 𝑏 = 0 to 1 do
16: [𝑠𝑖]B𝑏 ← Eval[0,2

ℓ−1]
ℓ (𝑘 (1,𝑖)

𝑏
, 𝑏, 𝛿

𝑢 (𝑖))
17: 𝑝[2 + 𝑖] ← (𝛿

𝑢 (𝑖) , [Δ · 𝛿𝑢 (𝑖)]
A)

18: (𝑠)𝑚 ← {[𝑠1]B, · · · , [𝑠𝑚]B}
19: 𝑇 ← Shift(1

𝜏2 , −𝜌, ℓ)
20: J𝑧KA ← 𝑇 · SS.MUL(⟨⟨𝑢 (1) ⟩⟩A, ⟨⟨𝑢 (1) ⟩⟩A, J(𝛼 (1,1))2KA)
21: J𝑧KA ← J𝑧KA − 2𝜌 · SS.MUL(⟨⟨𝑣⟩⟩A, ⟨⟨𝑤⟩⟩A, J𝑟1𝑟2KA)
22: ((𝑦)𝑚, [𝜎]A) ← CondEval.Eval∗trunc (∧, K̄∗∧, (𝑠)𝑚, J𝑧KA) ⊲ Second

round
23: [𝜍]A ← FMacVryGen ([Δ]A,𝑝)
24: [𝜎]A ← [𝜎]A + [𝜍]A
25: Outputs ((𝑦)𝑚, [𝜎]A) .

C.0.2 Security. We assert that, sub-protocols 3 and 4 provide a
secure implementation of FScaledCosAuth when faced with an ac-
tive PPT A in the 2PC setting. Specifically, with the correlated
randomness provided in Protocol 3, following the online evalua-
tion of sub-protocol 4, A learns nothing about the inputs 𝑥, 𝑦, or
Sign(cos(𝑥,𝑦) − 𝜏).

Proof. From Theorem 4, we first exclude information leak-
age within CondEval.Eval∗trunc (∧, K̄∗∧, (𝑠)𝑚, J𝑧KA). Still, we need
to prove that the view transcript

View𝑏 := {{𝑘 (1,𝑖)
𝑏

, 𝛿𝑢 (𝑖) }𝑖∈[𝑚] , 𝛿𝑣, 𝛿𝑤}

of S𝑏 for each 𝑏 ∈ {0, 1} does not leak any information. This is true,
as 𝛿𝑣, 𝛿𝑤 ∼ U𝑁 information theoretically hide the associated inter-
mediate computation results; Nevertheless, for {(𝑘 (1,𝑖)

𝑏
, 𝛿𝑢 (𝑖))}𝑖∈[𝑚]

which are correlated, we argue that A has only the view 𝑘
(1,𝑖)
𝑏

which is pseudo-random (computationally indistinguishable from
a real random key) as proved in Fig. 1 in [11]; Thus, hiding the
information of 𝛼 (1,𝑖) contained in (𝑘 (1,𝑖)0 , 𝑘

(1,𝑖)
1) from A. □

C.1 Truncating 𝛿𝑥
It is worth to note that while executing Eval, a variant version of
CondEval.Eval which we denote as CondEval.Evaltrunc is incorpo-
rated whereby 𝛿𝑥 is truncated additionally. Namely, it performs

𝛿𝑥 ← Shift(𝛿𝑥 , 4𝜌, ℓ)
in CondEval.Evaltrunc while the remaining steps in CondEval.Eval
remain unchanged. Previously, when dealing with the truncation
of [𝑥]A, [[]A was generated and corresponds to the secret sharing
result of the sum of the shifting of 𝑟 to the left by 𝜌 and a random
value 𝑣 ∈ Z2𝜌 ; In the above equation, the fractional part of 𝛿𝑥 is
truncated by 4𝜌 bits due to the accumulation of the three multiplica-
tions over secret sharing and one multiplication over a public scalar
value (𝑇, 2𝜌 resp. in line 12,14). Such a truncation does not imply
any additional communication round and is performed during the
second communication round. Furthermore, as it will be shown in
section 7.3, such a truncation has almost no impact on the actual
accuracy of the protocol.

D CONDEVAL OVER THE OR GATE
In this section, we demonstrate a direct method of computing 𝑠 ∨
𝑓 (𝑥) instead of computing ¬(¬𝑠∧¬𝑓 (𝑥)). The pipeline is similar to
that of computing a logical-and gate, including the CondEval.Setup
and CondEval.Eval functions. In Table 7 we provide the details
of CondEval.Setup (∨, 1_, ℓ) for the semi-honest setting, which
only differs from the construction of CondEval.Setup((∧, 1_, ℓ))
by appending an additional random secret bit 𝜔 . We construct
CondEval.Eval(∨,K∨, [𝑠]B, [𝑥]A) fromCondEval.Eval(∧,K∧, [𝑠]B,
[𝑥]A), which follows all the steps except tweaking the evaluation
step for each 𝑏 ∈ {0, 1} where i.e., we perform

[𝑦𝑖]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿𝑥) ⊕ 𝜔 (𝑏) .

Theorem6. Correctness. If S0 and S1 honestly followCondEval.Eval
(∨,K∨, [𝑠]B, [𝑥]A), which uses the correlated FSS key pairs pre-
pared in Table 7, then CondEval.Eval(∨,K∨, [𝑠]B, [𝑥]A) outputs
[𝑦]B = [𝑠 ∨ 𝑓 (𝑥)]B.

Proof. If 𝑠 = 0, then ([𝑠]B0 , [𝑠]
B
1) is equal to either (0, 0) or (1, 1),

which implies

𝑦 = (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ 𝜔)

⊕ (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ 𝜔)
or

𝑦 = (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))

⊕ (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))
In either case, 𝑦 = 𝑓 (𝑥), as desired. On the other hand, if 𝑠 = 1, then
([𝑠]B0 , [𝑠]

B
1) equals either (0, 1) or (1, 0), which implies

𝑦 = (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))

⊕ (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ 𝜔)
or

𝑦 = (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ 𝜔)

⊕ (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))
In either case, 𝑦 = 1, as desired. Thus, 𝑦 = 𝑠 ∨ 𝑓 (𝑥). □

KeyGen

𝑟 ←$Z2ℓ , [𝑟]A ← SS.share(𝑟,Z2ℓ);
(𝑘0, 𝑘1) ← Gen𝑓 (1_, 𝑟 , 1, 0,Z2) (|𝑘0 | = |𝑘1 | = 𝐾);
𝑡 ←$Z2;𝜋0 ←$Z2, 𝜋1 ←$Z2;𝜔 ←$Z2;𝐿 := 𝐾 + 2

sk(0)0 ∥sk
(0)
1 ∥sk

(1)
0 ∥sk

(1)
1 ←$ {0, 1}4𝐿,

|sk(0)0 | = |sk
(0)
1 | = |sk

(1)
0 | = |sk

(1)
1 | = 𝐿.

KeyEnc

𝑚0 = {sk(0)0 ⊕ (𝑘𝑡 ∥𝑡 ∥𝜔), sk(0)1 ⊕ (𝑘1−𝑡 ∥(1 − 𝑡)∥(1 − 𝜔))}
𝐶0 = FPermu (𝜋0,𝑚0), SK0 = {(sk(1)0 , sk(1)1), 𝜋1}

𝑚1 = {sk(1)0 ⊕ (𝑘1−𝑡 ∥(1 − 𝑡)∥𝜔), sk(1)1 ⊕ (𝑘𝑡 ∥𝑡 ∥(1 − 𝜔))}
𝐶1 = FPermu (𝜋1,𝑚1), SK1 = {(sk(0)0 , sk(0)1), 𝜋0}
Outputs K∨ = {𝐶𝑖 , SK𝑖 , [𝑟]A𝑖 }𝑖∈{0,1}

Table 7: The construction of K∨ ← CondEval.Setup(∨, 1_,Z2ℓ)
in the semi-honest setting, where _ is the security parameter
used in generating FSS keys, Z2ℓ defines the domain of the
secret sharing.

Naturally, we have same security guarantee for CondEval.Eval
(∨,K∨, [𝑠]B, [𝑥]A) following theorem 2. The detailed construction
in the case of malicious setting follows similarly with the protocols
in section 5.3 and we omit the details here.

	Abstract
	1 Introduction
	2 Problem statement
	2.0 Notation
	2.1 Application Scenario
	2.2 Threat Model
	2.3 Cosine Similarity for Authentication

	3 Preliminaries
	3.1 Two-Party Secure Computation
	3.2 Secure Truncation
	3.3 Function Secret Sharing

	4 Technical Overview
	5 Realizing CondEval in 2PC
	5.1 High-level Overview
	5.2 CondEval in the Semi-Honest setting
	5.3 CondEval in the Malicious Setting

	6 Secure Cosine similarity Computation and Verification
	6.1 Full protocol in the semi-honest setting

	7 Experiment
	7.1 Data preparation
	7.2 Experiment setting
	7.3 Experiment results

	8 Conclusion
	References
	A Supplement for CondEval in the malicious setting
	B F_Input in the semi-honest setting
	C Our full protocol for F_ScaledCosAuth in the malicious setting
	C.1 Truncating _x

	D CondEval over the OR gate

