
New Public-Key Cryptosystem Blueprints Using
Matrix Products in Fp

Remi Geraud-Stewart2,⋆,[0000−0001−8719−1724] and David Naccache1

1 DIÉNS, ÉNS, CNRS, PSL University, Paris, France
david.naccache@ens.fr

2 Qualcomm Inc., San Diego, USA
rgerauds@qti.qualcomm.com

Abstract. Given a set of matrices A := {A0, . . . , Ak−1}, and a matrix
M guaranteed to be the product of some ordered subset of L ⊂ A, can
L be efficiently recovered? We begin by observing that the answer is
positive under some assumptions on A.
Noting that appropriate transformations seem to make L’s recovery
difficult we provide the blueprint of two new public-key cryptosystems
based upon this problem.
We term those constructions “blueprints” because, given their novelty, we
are still uncertain of their exact security. Yet, we daringly conjecture that
even if attacks are found on the proposed constructions, these attacks
could be thwarted by adjustments in the key generation, key size or
the encryption mechanism, thereby resulting on the long run in fully-
fledged public-key cryptosystems that do not seem to belong to any of
the mainstream public-key encryption paradigms known to date.

1 Introduction

There are relatively few known public-key cryptosystem families, and despite
multiple efforts such schemes have largely resisted classification attempts. While
interest in novel cryptosystems was recently reignited by progress in quantum
computing, most alternative constructions only provide key encapsulation mech-
anisms (KEMs), which are sufficient in many practical settings as substitutes
to key exchange. Such constructions involve for instance lattices [Pei15], isoge-
nies [SHS21], or even plactic monoids [Bro21,Mon22].

Still the challenge remains to identify less restricted structures upon which the
most general public-key encryption paradigms can be built. This paper introduces
new public-key encryption mechanisms that seem to have been overlooked.

A word of caution: We term the constructions given here “blueprints” as, given
their novelty, we are uncertain of their exact security. Yet, we daringly conjecture

⋆ The bulk of this work was performed when this author was with ÉNS.

that even if attacks are to be found on the proposed constructions in the future,
these attacks could be thwarted by proper modifications in the key generation or
in the encryption mechanism, thereby resulting on the long run in fully-fledged
public-key cryptosystems that do not seem to belong to any of the mainstream
public-key encryption family known to date. Part of the reason of our shyness
here is that we are well aware of many broken attempts at non-commutative
cryptography (see, e.g., the review in [PQ11] or [HS03]). We were made aware of
a possibly similar construction in concurrent work [PLZG23, Sec. 3]; it seems
that this is a special case of the ideas discussed here.

1.1 The intuition

Fix a finite field Fp of odd prime order, a positive integer n, and consider n× n
matrices with entries in Fp. Fix a set of such matrices A := {A0, . . . , Ak−1}. For
every permutation σ of the set {0, . . . , k − 1} let:

σA :=

k−1∏
i=0

Aσ(i).

Assuming that every choice of σ yields a different matrix σA (i.e., that σ 7→ σA
is injective), can we efficiently recover σ given A and σA? We refer to this
problem as the decomposition of σA over A.

How hard the decomposition problem is depends on the choice of p, n, k, and
A. In the worst case k! products are to be considered, which makes exhaustive
search intractable even for small k (e.g., 24! ≃ 279). Indeed, matrix product is in
general non-commutative and therefore order matters.

However for appropriate choices of A we propose a polynomial-time algorithm3

solving the decomposition problem (see Section 2 for details).

Interestingly, it appears that a simple reversible transformation of A (all other
parameters being fixed) into a new set A makes that algorithm fail (see Section 3
for details). This yields the following two cryptosystem blueprints:

1. Direct decomposition. Define a set of matrices A upon which decomposition
is easy, and transform A into A over which decomposition is hard. The
public key is A. Map the plaintext to a permutation σ and define σA as
the ciphertext. To decrypt, transform σA back into a σA which is easy to
decompose over A thereby yielding the message σ.

2. Alternating decomposition. Define two sets of matrices Ab = {Ab
0, . . . , A

b
k−1}

with b ∈ {0, 1} on which decomposition is easy4. Transform Ab into public-key

3 O(k2n3 log2 p) assuming no sophisticated asymptotic optimizations such as [AW20].
4 It is straightforward to extend the scheme to non-binary bases, e.g. 0 ≤ b ≤ ℓ− 1.
The case ℓ = 2 just makes our exposition simpler.

2

matrices A
b
over which decomposition is hard. Given a plaintext m ∈ {0, 1}k,

form the ciphertext:

mA :=

k−1∏
i=0

A
mi

i ,

where A := (A0,A1) and A := (A
0
,A

1
). To decrypt, use the reverse

transformation to obtain mA, from which m is recovered.

To the best of our knowledge, these constructions do not belong to any of the
well-established public-key cryptosystem families known to date.

1.2 Structure of this paper

The rest of this paper is structured as follows. Section 2 provides details on the
decomposition algorithm and its complexity. Section 3 describes the trapdoor
allowing to switch between easy and hard decomposition instances. Section 4
describes both cryptosystems in their bare, deterministic form. Section 5 discusses
security and suggests concrete implementation parameters. Finally, Section 6
discusses some questions requiring further scrutiny regarding the security of our
constructions.

2 Decomposition algorithm

A number of clarifications are necessary to introduce the decomposition algorithm
mentioned in the introduction. Consider a set A of non-singular matrices.

To illustrate the idea, consider three matrices A0, A1, A2 over Q, with positive
integer entries. The product A0A1 has positive integer entries, which cannot be
smaller than those of A0 of A1. In general, the inverses A−1

0 , A−1
1 , A−1

2 do not
have positive integer entries — this is easily seen using the adjoined formula for
matrix inversion. Therefore, in general, a product of the form A−1

i M does not
have positive integer entries, even though M does. This leads to the following
observation: if we assume that M is the product of A0, A1, A2 in some order,
then with high probability only one of the products A−1

i M will feature integer
entries. For instance if M = A1A2A3 then only A−1

1 M will succeed. In addition,
in the very rare event where, following a bad guess, entries will result in integers,
then their sizes will betray the bad guess.

Our constructions will not use matrices over Q, because there appears to be no
set of matrices on which decomposition is hard over Q. We make the following
assumption5:

5 This conjecture is supported both by theoretical results [BG08,BS92,BKT04] and
empirical evidence.

3

Conjecture 1. Fix a security parameter λ. There exist values p, k, n polynomial in
λ such that, if A ⊂ GLn(Fp) of size k is sampled uniformly without replacement
and σ is a uniformly sampled permutation, no probabilistic algorithm can solve
the decomposition problem of σA over A with non-negligible probability in time
polynomial in λ.

To translate the intuition underlying the decomposition algorithm over finite
fields, we need a notion of “size” for field elements. This is why we restrict
ourselves to prime finite fields6. The size of an element x ∈ Fp shall be its
representation as an integer in {0, . . . , p− 1}. We denote the size of x by |x|.
We extend this notion entry-wise to matrices and write M1 ≤M2 if |(M1)i,j | ≤
|(M2)i,j | for all i, j. Fix a parameter 0 < α < p. We will refer to matrices M
such that |M | ≤ α as dwarves; in contrast, unconstrained matrices over Fp will
be referred to as elves7. Formally, let:

E := GLn(Fp)− Z(GLn(Fp)),

D := {M ∈ E such that |M | ≤ α},

respectively the set of elves and of dwarves. We exclude the center for technical
reasons, as we know ahead of time that such matrices won’t be usable.

Let A ⊂ D. Then the largest coefficient in σA does not exceed nk−1αk. If nk−1αk

doesn’t exceed p, then we are in fact operating over the integers. Therefore we
can use the above discussion about integers, materialized in the algorithm of
Figure 1, to recover σ (see Remarks 1 and 6 for some precision about this).

Input: p prime, n > 1, M an n× n matrix over Fp,
A = {A0, . . . , Ak−1} invertible matrices over Fp

Output: {Ai0 , . . . , Aik−1} such that M =
∏

Aij , or ⊥

Decompose(A,M):

1. if |A| = 0 return ⊥.
2. if |A| = 1 and M /∈ A return ⊥ else return A.
3. for A ∈ A,

3.1 M ′ ← A−1M .
3.2 if M ′ ≤M ,

3.2.1. L← Decompose(A− {A},M ′).
3.2.2. if L = ⊥ return ⊥ else return {A} ∪ L.

4. return ⊥ // as no matrix worked.

Fig. 1. Polynomial-time decomposition algorithm over A in Fp.

6 Another reason to avoid field extensions is to avoid having to worry about subfields.
7 Besides the allusion to size difference, as we shall see, dwarves are less affected by
the ring than elves, which is consistent with prior work [Tol12, Part V].

4

However, if there is even one matrix in A that doesn’t belong to D, then this
algorithm is likely to fail. This motivates the following conjecture, which is well
supported by empirical evidence:

Conjecture 2. There exist values n and k such that no efficient algorithm can
solve the decomposition problem σA over Fp, for a uniformly sampled subset
A ⊂ E.

Remark 1 (Incorrect guesses and backtracking). Algorithm Decompose assumes
that only one matrix can satisfy the constraint; but because we work in Fp, there
is a non-zero probability η that an incorrect candidate will still result in smaller
coefficients by chance. Should this occur, it is likely that an incorrect guess would
negatively affect the next decomposition step, resulting in no candidate being
selected, and the algorithm returning ⊥.
Fortunately, this rare situation is nicely handled by low-depth (and hence efficient)
backtracking. If η is small enough, as is the case for well-chosen parameters, the
overall algorithm remains polynomial-time. Note that η decreases rapidly at each
algorithm step.

Remark 2 (Complexity and memory). If we ignore backtracking, assuming that
elements in A are provided together with their inverses, and that Decompose
completes without returning ⊥, we can see that Decompose claims k(k − 1)/2
matrix multiplications, and n2 field element comparisons. The latter is negligible
when compared to the former so Decompose’s overall complexity is dominated
by O(k2) matrix products over Fp: with textbook algorithms this is a total of
O(k2n3 log2 p) time. Using efficient data structures, Decompose uses at most k
temporary matrices, and can reuse that memory to return the final list, totaling
a memory footprint of O(kn2 log p).

Remark 3 (Speed versus accuracy trade-off). We can quickly eliminate some
candidates by checking only one matrix entry (or a few), rather than all entries.
This increases η. Therefore the gains of this approach are to be balanced against
the extra backtracking caused by it. Note however that such shortcuts leak
information to an attacker knowing which matrix element is about to be tested by
the receiver. This leakage may can be reduced by checking one or a few random
entries at each round instead of a fixed one.

Example 1. Let σ = (2, 1, 3) and {n, k, α, p} = {2, 3, 3, 1234567891}. We have
A = {A1, A2, A3} with:

A1 =

(
0 1
2 0

)
, A2 =

(
1 2
3 1

)
, A3 =

(
2 1
3 2

)
, and σA =

(
11 6
13 8

)
.

5

We can now compute A−1
i × σA for i = 1, 2, 3 (decreasing entries are in blue,

whereas increasing one are in red):

A−1
1 σA =

(
617283952 4

11 6

)
,

A−1
2 σA =

(
3 2
4 2

)
,

A−1
3 σA =

(
9 4

1234567884 1234567889

)
,

Only A2 results in a matrix with all coefficients smaller. The only and best
candidate is therefore A2. Continuing, we multiply on the left by the inverses of
A1 and A3:

A−1
1

(
A−1

2 σA
)
=

(
2 1
3 2

)
, A−1

3

(
A−1

2 σA
)
=

(
2 2

1234567890 1234567889

)
.

Here only A1 produces a smaller coefficients matrix. A1 it hence the only and
best candidate. We check that A−1

1 A−1
2 σA = A3. Therefore σA = A2A1A3 and

σ = (2, 1, 3).

3 Trapdoor construction

Since Decompose works for A ⊂ D but (conjecturally) fails for elves, it is natural
to look for a trapdoor transformation (spell) turning dwarves into elves. Our
general strategy is to replace each dwarf A ∈ A by an elf of the form XAY ,
where X and Y are secret. This idea is embodied slightly differently in each of
the cryptosystem blueprints.

1. Trapdoor for the direct construction. Let D ∈ D and E ∈ E be two secrets.
For each Ai ∈ A, let Ai := EAiY , where Y := DE−1.

Indeed, with this choice, we have:

σA =

k−1∏
i=0

Aσ(i) =

k−1∏
i=0

EAσ(i)Y = E

(
k−1∏
i=0

Aσ(i)D

)
E−1.

The trapdoor consists in computing E−1(σA)ED−1, which is a product of
dwarves only — more specifically the k dwarves Aσ(0), . . . , Aσ(k−1) and k− 1
copies of the dwarf D8. Therefore this product can be Decompose-d.

8 We do not recover exactly σA through this process, but it is sufficient for correct
decryption with well-chosen parameters.

6

2. Trapdoor for the alternating construction. Let E0, . . . , Ek be secret distinct

elves. For each Ab
i ∈ Ab let A

b

i := EiA
b
iE

−1
i+1. With this choice, we have:

mA =

k−1∏
i=0

A
mi

i =

k−1∏
i=0

EiA
mi
i Ei+1 = E0(mA)E−1

k .

The trapdoor consists in computing E−1
0 (mA)Ek which yields mA. The

latter is a product of dwarves and can hence be Decompose-d.

Remark 4 (Why D in the direct construction trapdoor?). A natural question
is whether we could have taken D = 1 (the identity matrix) in the trapdoor,
as this would halve the number of products in the ciphertext. Another natural
question is whether we need to use the same D for all elements of the public key,
or we can instead have a unique Di for each Ai. These two variations are indeed
legitimate and strike different tradeoffs; the former seems to make cryptanalysis
simpler, while the latter results in a very large private key while only making
cryptanalysis marginally harder.

4 Formal description of the algorithms

We use in this section the following standard notations: assignment (and, if
necessary, unpacking) is denoted as ←, checking for equality is denoted by =,
and uniformly sampling an element from a set is denoted $←. We extend the
latter notation to tuples, to mean sampling without replacement : for instance,
(x, y) $← X does not have the same effect as x $← X followed by y $← X. The
symbol ⊥ means “failure” and should be treated as an error condition.

Our algorithms are provided public parameters pp = (n, p, k, α), that have been
chosen to meet a certain security level λ (see Section 5 for more about this).

Both variants described in Figures 2 and 3 call Decompose. Note that Decompose
can be optimized to fit either the direct or the alternating cryptosystem. Indeed the
general algorithm iterates overall all matrices in A. For the direct cryptosystem,
we know in advance that every other matrix in the decomposition should be
D; for the alternating cryptosystem, there are only two matrices to distinguish
between, at any given rank: A0

i versus A1
i . Using these optimized versions of

Decompose not only makes it faster, it also substantially reduces η (and thereby,
the likelihood and cost of any backtracking). This algorithm is described in
Figure 4 and has two new arguments: the current position 0 ≤ i ≤ k − 1 and a
selection function Sel taking as input i and the set of matrices A, and returning
a subset of A that can be found at this position:

– For the direct cryptosystem, Sel(i,A) returns A if i is even, otherwise {D};
– For the alternating cryptosystem, Sel(i,A) returns {A0

i , A
1
i }.

7

Remark 5. The decomposition algorithm for A can be modified to allow for faster
decryption, at the cost of some precomputations. Indeed, at every position i there
are only two matrices in Sel(i,A): should the first one fail, we may assume that
the other one passes (we don’t check it directly). For instance, givenM = A1

0A
0
1A

1
2,

the first iteration computes (A0
0)

−1M and compares it to M — the comparison
fails and therefore m0 ̸= 0. Rather than confirming that (A1

0)
−1M ≤ M , we

assume that it does, and directly pass to test:

(A1
0A

0
1)

−1M
?
≤M.

If that comparison succeeds, we found m0m1 = 10; otherwise we assume m1 = 1
and pass to test :

(A1
0A

1
1A

0
2)

−1M
?
≤M

and so forth. The matrices (A1
0 . . . A

1
jA

0
j+1)

−1 can be precomputed. Note however
that this version of Decompose may never return ⊥, even when given a product
of matrices not in A, and therefore does not return a valid decomposition in all
cases.

D.KeyGen(pp):

1. (A0, . . . , Ak−1, D) $← D
2. E $← E
3. for i = 0 to k − 1:

Ai ← EAiDE−1

4. sk← (E,D, {Ai})
5. pk← {Ai}
6. return sk, pk.

D.Encrypt(pp, pk, σ):

1. A← pk
2. C ← σA
3. return C.

D.Decrypt(pp, sk, C):

1. (E,D,A)← sk
2. T ← E−1CED−1

3. A′ ← A ∪ {D}k−1

4. S ← Decompose(A′, T)
5. if S = ⊥ return ⊥
6. (Ai0 , . . . , Aik−1)← S
7. σ ← (i0, . . . , ik−1)
8. return σ

Fig. 2. Direct cryptosystem: D.KeyGen, D.Encrypt, and D.Decrypt.

5 Security discussion and parameter selection

Let us turn to the selection of parameters (p, n, k, α) for each cryptosystem, as
well as to the resulting key and ciphertext sizes as a function of the security level
λ. We give examples for λ = 128.

5.1 Preliminaries

We need the following results:

8

A.KeyGen(pp):

1. for i = 0 to k − 1:
(A0

i , A
1
i)

$← D
with detA0

i = detA1
i .

2. (E0, . . . , Ek)
$← E

3. for i = 0 to k − 1:
for b = 0 to 1:
A

b
i ← EiA

b
iE

−1
i+1

4. sk← (E0, Ek, {Ab
i})

5. pk← {Ab
i}

6. return sk, pk.

A.Encrypt(pp, pk,m):

1. A← pk
2. C ← mA
3. return C.

A.Decrypt(pp, sk, C):

1. (E0, Ek,A)← sk
2. T ← E−1

0 CEk

3. T ← Decompose(A, T)
4. if T = ⊥ return ⊥
5. (Am0

i0
, . . . , A

mk−1

ik−1
)← T

6. m← (m0, . . . ,mk−1)
7. return m.

Fig. 3. Alternating cryptosystem: A.KeyGen, A.Encrypt, and A.Decrypt.

Input: p prime, n > 1, M an n× n matrix over Fp,
A = {A0, . . . , Ak−1} invertible matrices over Fp

Output: {Ai0 , . . . , Aik−1} such that M =
∏

Aij , or ⊥

DecomposeS(A,M, i,Sel):

1. if |A| = 0 return ⊥.
2. if |A| = 1 and M /∈ A return ⊥ else return A.
3. for A ∈ Sel(i,A),

3.1 M ′ ← A−1M .
3.2 if M ′ ≤M ,

3.2.1. L← DecomposeS(A− {A},M ′, i+ 1,Sel).
3.2.2. if L = ⊥ return ⊥ else return {A} ∪ L.

4. return ⊥

Fig. 4. Rank-aware decomposition algorithm over A in Fp.

Lemma 1. Let n > 0, p prime, 0 < x ≤ p. There are:

β(n, x) :=

n−1∏
i=0

(
xn − xi

)
− (x− 1)

n×n matrices over Fp which are invertible, not in the center, and have coefficients
at most x (excluded). Consequently, there are |E| = β(n, p) elves and |D| =
β(n, α+ 1) dwarves.

Proof. The proof relies on the classical result that Z(GLn(Fp)) = F×
p 1 together

with an adaptation of the fact that GLn(Fp) = (pn − 1)(pn − p) · · · (pn − pn−1)
to basis vectors having bounded entries.

9

Lemma 2. Consider the entry-wise infinity norm9 on n× n matrices, defined
by ∥M∥∞ := maxi,j |Mi,j |. Then for any two n × n matrices M,N we have
∥MN∥∞ ≤ n∥M∥∞∥N∥∞.

Corollary 1. The product of k dwarves has infinity norm at most αknk−1.

Remark 6. Corollary 1 is a conservative estimate — in fact, its upper bound
cannot be reached, because we constrain dwarves to be invertible. The only way
to attain the stated bound would be with matrices having all entries equal to α
— which would be neither invertible, nor distinct.

For instance, with n = 9, α = 1, k = 40, Corollary 1 gives an upper bound of
about 2124; but in reality that product doesn’t exceed 290.

5.2 What can be said about security?

While we do not have any formal security reductions for the proposed schemes,
we note the following observations as a collection of arguments rather than a
thorough structured analysis:

Algebraic relations. We adopt here an algebraic point of view to identify what
information is available to an attacker through multiplicative manipulations of
the public material, which seems to be the most natural approach against such a
highly structured construction.

The direct construction provides many equations for an attacker to play with: in
particular, it should in principle be possible to eliminate E by combining the Ai,
resulting in a problem only involving dwarves. We suspect that an appropriate use
of Coppersmith’s algorithm (or a variant thereof) might then recover the secret
Ab

is, if there aren’t too many variables. Independently, an attacker successfully
recovering a product of the form AiA

−1
j for any two indices i, j10 can attempt

solving the conjugacy search problem (CSP), to obtain E. We conjecture that
for large enough parameters, these attacks are impractical. Nevertheless, the
possibility of their existence is one motivation to also consider the alternating
construction.

Indeed the alternating construction leaves much fewer equations for an attacker to
hook onto. Nonetheless, attackers still obtain some information, as the following
lemma shows:

Lemma 3. From the alternating trapdoor, attackers can obtain the values of all
products of the form:

E0(A
1
0A

1
1 · · ·A1

ℓ)(A
1
ℓ+1(A

0
ℓ+1)

−1)(A1
0A

1
1 · · ·A1

ℓ)
−1E−1

0

9 This is not the norm induced on matrices by the infinity norm on vectors, and in
particular it is not submultiplicative.

10 Or equivalently AiD
−1 for any index i.

10

for all ℓ = 0, . . . , k − 2.

Proof. Strong induction, see Appendix B.

This gives k − 1 equations, but the number of unknowns increases quadratically;
even though the remaining unknowns are known to be small. Again, it seems
hard to exploit this information algorithmically for cryptanalytic purposes.

Remark 7. One key aspect of the alternating cryptosystem, which remains true
before and after using this trapdoor, is that different ciphertexts will have different
determinants. This could be a source of leakage, as it presents the attacker with
an instance of a multiplicative knapsack problem over Fp. This can be avoided
by selecting the dwarves A0

i and A1
i to have the same determinant, and each elf

Ei to be of same determinant xi, at each position i. The exact values of those
determinants is unimportant.

Note that determinant values are far from being uniformly distributed. This
effect is even more striking with small α values11. Consequently, we can easily
find matrices with the desired property and avoid this leakage.

It may be that we are too cautious here, and that this leakage is actually
unexploitable in practice for large enough parameters.

Determinant ratio attacks. Consider two public-key elements in the alternat-

ing cryptosystem A
0

i , A
1

i at some rank i and let:

∆ =
detA

1

i

detA
0

i

mod p =
detA1

i

detA0
i

mod p

Because decryption must be possible we see that the following holds in Z:

∆ · detA0
i = detA1

i

It is hence possible to infer the secret-key by solving a Diophantine equation
of total degree n in n2 unknowns. Even though the equation is known to have
a small solution, to the best of our knowledge, there is no general method for
finding it efficiently.

Source entropy ratio. Collect all the randomness used in generating a key pair
and call this the “source entropy”. The source entropy will be shared between
the private and public key, and some will not feature in either. Let Ξ be the ratio
between the information consumed to produce that key and the size of the public
key, i.e.:

Ξ :=
source entropy

public key size
.

11 For α = 1 and n = 9, the distribution of dwarf determinants has a Shannon entropy
of 4 bits, regardless of p.

11

Although there may be no concrete way to exploit a low value of Ξ nor state that
a scheme a high Ξ is “secure”, we make the heuristic argument that cryptanalysis
is “plausibly harder” when Ξ is larger.

The new cryptosystems have respectively:

ΞD =
(k + 1) log2 β(n, 1 + α) + log2 β(n, p)

k log2 β(n, p)

ΞA =
2k log2 β(n, 1 + α) + (k + 1) log2 β(n, p)

2k log2 β(n, p)

Note that ΞA > ΞD which seems to indicate that A is a seemingly “stronger”
variant as per this criterion. The effect of α is negligible at practical security
levels λ.

Normal forms and divisors While we can easily select matrices having the
same determinant, there could be additional invariants that our trapdoor doesn’t
hide, in particular similarity invariants. We describe here two lesser known
invariants, which seem to yield some information about the plaintext in theory,
although we could not make a concrete attack from them.

Let M be a matrix, its Smith normal form (SNF, [Smi62,Div20,Tou13]) is given
by three matrices B, T, S such that BMT = S and

S = BMT = diag(γ1, γ2, . . . , γr, 0, . . . , 0)

with r is the matrix rank12. Applied to invertible matrices, this normal form is
diagonal. While the SNF of a matrix product is not the product of the factors’
SNFs, there are relationships between them [MU72]. Most of these properties
are only valid over Z and break down over finite fields. We could not turn the
remaining properties into a concrete attack, but there could be a thread to pull
there.

A related potential source of leakage is given by determinantal divisors: let M

be an n × n matrix and i ∈ {1, . . . , n}. Choose (in all possible
(
n
i

)2
ways) i

row indices and i column indices, and compute all the determinants of the sub-
matrices constructed from these choices. Take the gcd of all of these determinants,
written di(M), and called the i-th determinantal divisor of M . We have γi =
di(M)/di−1(M) where γi are the diagonal entries of M ’s Smith normal form,
and d0(M) = 1.

It is known [New97, p. 371] (see also [New82]) that di(AB) = di(A)di(B) for
all i ∈ {1, . . . , n}. The successive gcds quickly sanitize information from high-i
determinantal divisors. We thus conjecture that this property is also inexploitable
by attackers.

Nonetheless, the observations just made indicate that the algebraic properties
underlying the proposed cryptosystems should be carefully investigated.

12 If computed over Z rather than over Fp, we also have γi | γi+1 for 1 ≤ i < r.

12

5.3 Parameters for D

The parameters (p, n, k, α) must satisfy several constraints:

– Brute-force exhaustion of the ciphertext should be intractable: k! ≥ 2λ.
– Encryption must be injective, which implies that |E| > k!.
– There should be enough dwarves to choose from, both to avoid attacks that

guess a dwarf and to have enough choice in the private key: |D| > 2λ.
– Decomposition works under the assumption that ∥E−1(σA)DE−1∥∞ < p,

which is guaranteed by Corollary 1 if α2kn2k−1 < p13,14.

It is challenging to find parameters simultaneously satisfying all these constraints.
Identifying the most relevant trade-offs is an interesting question in its own right.
As highlighted in Appendix C, there are some forbidden parameter ranges.

Here is one strategy that seems to work: start from β(n, α+1) > 2λ which relates
n and α, then select the values such that nα is smallest; then fix k and select the
smallest prime p bigger than α2kn2k−1. Then, by design, all the above constraints
are satisfied15.

The secret key consists in k + 1 dwarves and one elf, the public key consists of k
elves, the ciphertext is an elf.

5.4 Parameters for A

The constraints are slightly different:

– Brute-force exhaustion of the ciphertext should be intractable: k ≥ λ.
– Encryption must be injective, which implies that |E| > 2k.
– There should be enough dwarves to choose from, both to avoid attacks that

guess a dwarf and to have enough choice in the private key: |D| > 2λ.
– Decompose works under the assumption that ∥E−1

0 (mA)Ek∥∞ < p, which is
guaranteed by Corollary 1 if αknk−1 < p16.

Finding n and α can be done in the same way as for the direct cryptosystem.
Once k is fixed we can select the smallest prime p bigger than αknk−1. Then, by
construction, all the above constraints are satisfied.

The secret key consists in 2k dwarves and two elves, the public key consists in
2k elves, the ciphertext is an elf.

13 Note that neither of these conditions is necessary, in light of Remark 6, although we
treat them as such.

14 This condition must be adapted in case we select the D = 1 variant discussed in
Remark 4

15 Additional parameter sets, complete with worked out examples, can be found in
Appendix D.

16 Here again, Remark 6 indicates that this choice is overly conservative.

13

5.5 Proposed parameter sets

We provide in tables 1 and 2 four sets of parameters for each construction,
dubbed “toy”, “challenge”, “recommended”, “large”. These parameters were
chosen minimally for a given target security parameter according to the procedure
described above. They are intended as targets for cryptanalysis, with increasing
levels of (conjectured) difficulty.

We provide private key (sk), public key (pk), and ciphertext (C) sizes in bytes.

Table 1. Suggested parameter sets for D.

Version Toy Challenge Recommended Large

λ 16 64 128 512
k 9 21 35 99
n 4 8 10 24
α 2 2 2 2
p 253 + 5 2167 + 83 2302 + 307 21105 − 1335

pk (B) 7776 28 224 132 580 7 876 440
sk (B) 904 1696 4688 93 960
C (B) 864 1344 3788 79 560

Table 2. Suggested parameter sets for A.

Version Toy Challenge Recommended Large

λ 16 64 128 512
k 16 64 128 512
n 4 8 10 24
α 2 2 2 2
p 247 + 5 2255 − 19 2553 + 549 22859 + 641

pk (B) 3072 261 120 1 772 800 210 862 080
sk (B) 320 6128 20 250 559 296
C (B) 96 2040 6925 205 920

6 Open questions & further research

The novelty of the proposed constructions naturally raises a wealth of open
questions. We hereafter list a few:

14

Security reduction. A very natural and somewhat frustrating question is to
determine whether our constructions’ security can be related to the hardness of
existing, well-studied problems. Indeed it is possible that we overlooked a very
natural, simple and devastating attack: a security proof would alleviate such
concerns.

Security against active attacks. Being deterministic, our constructions can’t hope
to achieve semantic security, let alone stronger properties such as IND-CCA2.
Furthermore, there are homomorphisms (see below) that may allow for some
ciphertext malleability. This is not in itself a death blow, as the same can be said
of e.g., textbook RSA, and there are known ways around this limitation17,18,19.

Public-key compression. Shortening pk is beneficial for two reasons. The first
is the quadratic size of each Ai. In addition, publishing less Ais may expose
less information to the attacker (if the specific way of using a lesser number of
public-key elements does not introduce new risks!).

We suggest the following idea applicable to the alternating version. Instead of
encoding only one bit using either A0

i or A1
i , pick for each position i a family of

u pairs of scalars:

(τvi,0 , ρvi,0), (τvi,1 , ρvi,1), . . . (τvi,u−1 , ρvi,u−1) such that ∀j, gcd(τvi,j , ρvi,j) = 1

Use a different linear combination τvi,u−1
A0

i + ρvi,u−1
A0

i to encode each plaintext
chunk. Typically, if we allow each chunk to be represented by a couple (τvi,j , ρvi,j)
such that max(τvi,j , ρvi,j) ≤ 41 we can encode at each position 1061 ≃ 210

values, i.e. 10 bits. This shortens the public-key by a factor of 10 but increases
decryption time by a factor of 1024. cf. Table 3. Note that the slowdown can be
reduced a factor of n2 by just testing, during Decompose, one coordinate of the
intermediate matrix and if a decrease is witnessed, confirm the decrease over all
other coordinates.

We did not investigate the security of this variant nor its impact on p.

Key generation. A central assumption underlying our schemes is that private
keys allowing decryption can be efficiently generated. The exact requirements are

17 Our cryptosystems do not provide a straightforward pseudo-random permutation, so
techniques such as OAEP or OAEP+ are not directly applicable [Sho02].

18 There seems to have been multiple attempts to extend OAEP to work for generic
hard to invert functions (e.g., [Jon02,KI02]), but to the best of our knowledge they
have not made their ways into peer-reviewed journals or conferences. We recall in
Appendix A one such mechanism from [FN19].

19 Neither OAEP nor its variants are quantum secure, unless appropriate modifications
are applied, cf. [Ebr22].

15

ϕ 1 2 3 5 7 10 14 20 29 41

η 1 2 3 4 5 6 7 8 9 10

ζ 1 4 8 16 32 64 128 256 512 1024

Table 3. ϕ = max(τvi,j , ρvi,j). η is the factor by which pk size is reduced. The decryption
slowdown is ζ = 2η.

not the same for the direct and the alternating cryptosystem. Empirical evidence
suggests that for suggested parameters, random invertible matrices (obtained
e.g. by reversing LU decomposition) almost always work. However, it is also
easy to fix p, n, and α small enough to make finding a valid key impossible
(see Appendix C). Therefore the following questions are open: under what exact
conditions on A is σ 7→ σA (resp. m 7→ mA) injective? Can we always find such
matrices efficiently? Can we force them to have a certain determinant?

Finding alternative key generation methods is also an interesting research direc-
tion. The following example proceeds in several steps, assuming that k− 1 is odd
(i.e., that pk contains an even number of elements).

Example 2. Consider A0
4, A

1
4, A

0
5, A

1
5 ∈ D, used to encode two successive plaintext

bits (say bits 4 and 5) as in the alternating construction. We wish all four products
Ai

4A
j
5 for (i, j) ∈ ((0, 0), (0, 1), (1, 0), (1, 1)) to be simultaneously dwarves.

Pick four M i,j
4,5 ∈ D and set the following system of equations:

Ai
4A

j
5 = M i,j

4,5 mod p.

Here, there are 4n2 unknowns in 4n2 equations; these unknowns are the coefficients
of A0

4, A
1
4, A

0
5 and A1

5. We can solve it exactly, and having solved those equations
we repeat the process for matrices at other ranks. Upon encryption we now have:

mA = E0(A
m0
0 Am1

1) · · · (Amk−2

k−2 A
mk−1

k−1)E−1
k

= E0M
m0,m1

0,1 · · ·Mmk−2,mk−1

k−2,k−1 E−1
k

= E0(mA)E−1
k

where each matrix Ma,b
i,j ∈ D by design. This could result in a more compact

ciphertext, or improve decryption, as the total number of products decreased
from k− 1 down to k/2− 1. Whether this can be fully fleshed out securely is left
as an open question.

Homomorphisms. The schemes are not straightforwardly multiplicatively homo-
morphic; for instance σ1Aσ2A ̸= (σ1σ2)A in general. Yet there is a natural map
sending (σ1, σ2) to a permutation τ over A2 := A⊔A such that σ1Aσ2A = τA2.
The consequences of this homomorphism — and others — have yet to be investi-
gated.

16

Digital signatures. An interesting challenge consists in deriving digital signatures
based on the proposed trapdoor. Because the proposed trapdoor is not a permu-
tation, signing by message decryption is impossible. Similarly, the deterministic
nature of the proposed cryptosystems seems to ban the use of Fiat–Shamir trans-
forms. Signatures can also be obtained using ad hoc constructions (e.g. [BFJN20])
but we could not adapt any such approaches so far.

KEMs. We can build key-encapsulation mechanisms from our constructions,
for instance as follows: Starting from the alternating cryptosystem20, select a
prime t < α, and publish as part of pk the matrices sbi := SiA

b
iSi+1 mod t where

the Si are new random elves. Let s denote the set of the sbi . Encapsulation is
performed by computing mA for a randomly chosen m to get the ciphertext,
and K = H(ms mod t) to get the shared key, where H is a hash function.
Decapsulation computes:

K = H
(
S0

(
E−1

0 (mA)Ek mod p
)
Sk+1 mod t

)
.

Other rings. We may wonder whether it is necessary to use matrices at all: indeed,
nothing in our alternating construction in particular relies on matrix-specific
properties. One tempting idea is for instance to use a ring of polynomials instead,
which would reduce the number of entries and the cost of arithmetic operations.
However our attempts to do so have all resulted in reduced η or insecure variants.
Of course, further rings such as quaternions or even octonions could be considered,
and there could be room for new discoveries in such generalizations.

Higher dimensions. The scheme can be generalized to higher dimension constructs
such as tensors — thereby yielding cubic monomials and hence higher degree
equations. Because many unknowns in our cryptosystem are small with respect
to p, increasing the degree of the equations is likely to better resist resolution
attempts using Gröbner bases, linearization attacks and Coppersmith’s algorithm
[Cop96b,Cop96a,Cor04,BJ07,Cor07]. We implemented the proposed algorithms
on tensors to assess soundness (the possibility to successfully encrypt and decrypt)
but did not further investigate the security of such generalizations.

Repeated indices and matrix powers. We made the simplifying hypothesis that all
matrices were distinct. Allowing for repeated matrices (at different, nonadjacent
positions), or even matrix powers could increase the schemes’ bandwidth, or
reduce keysize. The entropy loss caused by such variants might affect both security
and η and should hence be carefully assessed. In a sense, this is reminiscent of
the Tillich–Zémor construction and may suffer from similar attacks.

20 The same idea can be adapted to the direct cryptosystem.

17

Compression. The private key can be generated on the fly from a random seed,
and only the inverse matrices need to be stored in full for decryption or calculated
on the fly and dropped after use.

References

AW20. Josh Alman and Virginia Vassilevska Williams. A refined laser method and
faster matrix multiplication, 2020. 2

BFJN20. Éric Brier, Houda Ferradi, Marc Joye, and David Naccache. New number-
theoretic cryptographic primitives. Journal of Mathematical Cryptology,
14(1):224–235, 2020. 17

BG08. Jean Bourgain and Alex Gamburd. Uniform expansion bounds for cayley
graphs of. Annals of Mathematics, pages 625–642, 2008. 3

BJ07. Aurélie Bauer and Antoine Joux. Toward a rigorous variation of Copper-
smith’s algorithm on three variables. In Moni Naor, editor, Advances in
Cryptology - EUROCRYPT 2007, pages 361–378, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. 17

BKT04. Jean Bourgain, Nets Katz, and Terence Tao. A sum-product estimate in finite
fields, and applications. Geometric & Functional Analysis GAFA, 14(1):27–57,
2004. 3

Bro21. Daniel R.L. Brown. Plactic signatures (insecure?). Cryptology ePrint Archive,
Paper 2021/938, 2021. https://eprint.iacr.org/2021/938. 1

BS92. László Babai and Ákos Seress. On the diameter of permutation groups.
European journal of combinatorics, 13(4):231–243, 1992. 3

Cop96a. Don Coppersmith. Finding a small root of a bivariate integer equation:
Factoring with high bits known. In Advances in Cryptology - EUROCRYPT
’96, pages 178–189. Springer Berlin Heidelberg, 1996. 17

Cop96b. Don Coppersmith. Finding a small root of a univariate modular equation. In
Advances in Cryptology - EUROCRYPT ’96, pages 155–165. Springer Berlin
Heidelberg, 1996. 17

Cor04. Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial
equations revisited. In Advances in Cryptology - EUROCRYPT 2004, pages
492–505. Springer Berlin Heidelberg, 2004. 17

Cor07. Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial
equations: A direct approach. In Alfred Menezes, editor, Advances in Cryp-
tology - CRYPTO 2007, pages 379–394, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg. 17

Div20. Jose Divasón. A verified algorithm for computing the smith normal form of
a matrix. Arch. Formal Proofs, 2020, 2020. 12

Ebr22. Ehsan Ebrahimi. Post-quantum security of plain OAEP transform. In
Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key
Cryptography - PKC 2022 - 25th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022,
Proceedings, Part I, volume 13177 of Lecture Notes in Computer Science,
pages 34–51. Springer, 2022. 15

FN19. Houda Ferradi and David Naccache. Integer reconstruction public-key en-
cryption. In Yi Mu, Robert H. Deng, and Xinyi Huang, editors, Cryptology
and Network Security, pages 412–433, Cham, 2019. Springer International
Publishing. 15, 20

18

https://eprint.iacr.org/2021/938

HS03. Dennis Hofheinz and Rainer Steinwandt. A practical attack on some braid
group based cryptographic primitives. In Yvo Desmedt, editor, Public Key
Cryptography - PKC 2003, 6th International Workshop on Theory and Prac-
tice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Pro-
ceedings, volume 2567 of Lecture Notes in Computer Science, pages 187–198.
Springer, 2003. 2

Jon02. Jakob Jonsson. An OAEP variant with a tight security proof. IACR Cryptol.
ePrint Arch., page 34, 2002. 15

KI02. Kazukuni Kobara and Hideki Imai. OAEP++ : A very simple way to apply
OAEP to deterministic OW-CPA primitives. IACR Cryptol. ePrint Arch.,
page 130, 2002. 15

Mon22. Chris Monico. Division in the plactic monoid. Cryptology ePrint Archive,
Paper 2022/1684, 2022. https://eprint.iacr.org/2022/1684. 1

MU72. Marvin Marcus and Ernest E. Underwood. A Note on the Multiplicative
Property of the Smith Normal Form. J. of research of the Notional Bureau
of Standards - B. Mathematical Sciences, 76B(3 and 4):205–206, 1972. 12

New82. Morris Newman. A result about determinantal divisors. Linear and Multilin-
ear Algebra, 11(4):363–366, 1982. 12

New97. Morris Newman. The Smith normal form. Linear Algebra and its Applications,
254(1):367–381, 1997. Proceeding of the Fifth Conference of the International
Linear Algebra Society. 12

Pei15. Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive,
Paper 2015/939, 2015. https://eprint.iacr.org/2015/939. 1

PLZG23. Jacques Peyriere, Fengxia Liu, Zhiyong Zheng, and Zixian Gong. Public key
cryptosystems based on iterated functions systems, 2023. 2

PQ11. Christophe Petit and Jean-Jacques Quisquater. Rubik’s for cryptographers.
IACR Cryptol. ePrint Arch., page 638, 2011. 2

Sho02. Victor Shoup. OAEP reconsidered. J. Cryptol., 15(4):223–249, 2002. 15
SHS21. Philipp Stratil, Shingo Hasegawa, and Hiroki Shizuya. Supersingular isogeny-

based cryptography: A survey. Interdisciplinary Information Sciences, 27(1):1–
23, 2021. 1

Smi62. Henry John Stephen Smith. I. On systems of linear indeterminate equations
and congruences. Proceedings of the Royal Society of London, 1(11):86–89,
1862. 12

Tol12. J.R.R. Tolkien. The Silmarillion. HarperCollins, 2012. 4
Tou13. Vasilios Evangelos Tourloupis. Hermite normal forms and its cryptographic

applications. Master’s thesis, University of Wollongong, 2013. 12

A Generic transformation

The cryptosystems presented in this article are entirely deterministic and there-
fore cannot hope to be semantically secure. We propose the following hybrid
construction to address this point: the message m is encrypted using a symmetric
algorithm (e.g., AES) denoted F , with a key derived by hashing m with a random
r. Importantly this derivation happens in two steps, and the intermediary value
is encrypted using the new public key cryptosystem. Derivation makes use of two
independent hash functions H,H′, which can be implemented concretely using
e.g. SHA3 with domain separation.

19

https://eprint.iacr.org/2022/1684
https://eprint.iacr.org/2015/939

For decryption, the intermediary value is obtained using the new decryption
algorithm, and reveals the secret key used for the symmetric algorithm, so
that m can be recovered. At the end of this process, we have also recovered the
randomness r, and we can check that the message derives the correct intermediary
value. This is summarized in Figure 5.

This construction, inspired by [FN19], is generic, and does not depend on the
specific public-key cryptosystem used.

RNG H(r,m) H′(ρ) Fκ(r,m)

Encrypt

r
ρ

κ

mm

C′

C

pk

Decrypt H′(ρ) F−1
κ (C′) �← r m

m valid if ρ = H(r,m)

ρ κ r,m

C′

C, sk

Fig. 5. Schematic view of the proposed generic transformation.

B Proof of Lemma 3

It is convenient, for the context of this proof, to introduce the following shorthand
notation:

Ja0, a1, . . . , aℓK := Aa0
0 Aa1

1 · · ·A
aℓ

ℓ .

Let’s first establish the base case: the value E0 J1K (E0 J0K)−1 is public. Indeed, this

is exactly A1
0(A

1
0)

−1. Now assume that the lemma holds for all ranks ℓ = 0, . . . , r,
and denote by L(ℓ) the value that the lemma asserts can be computed. We show
that is it established for r+1, i.e., that we can express L(r+1) only from previous
values of L and public key elements.

20

By combining the public key elements A
b

i for i = 0, . . . , r + 1, we always get (up
to inversion of the whole expression) a quantity of the form:

X0 Ja0, . . . , arKA0
r+1(E0 Jb0, . . . , brKA1

r+1)
−1

If a0 = 0, then multiplying the above expression by L(0) ensures that a0 = 1.
After that, if a1 = 0 then multiplying the expression by L(1) ensures that a1 = 1.
We can continue this process until a0 = a1 = · · · = ar = 1. Multiplying on the
right by appropriate inverses of L(0), . . . , L(r) similarly brings b0 = · · · = br = 1.

Consequently, we have obtained L(r+1) = E0 J1, . . . , 1KA1
r+1(E0 J1, . . . , 1KA0

r+1)
−1,

which concludes the proof by strong induction.

Remark 8. This shows that if we combine in any multiplicative way further
information coming of any additional public-key element, we introduce two
unknown matrices to the system while adding one equation only.

Evidently there are two caveats here:

1. We consider only key products and not any operator (e.g. matrix addition)
in general.

2. While we add at each step 2n2 unknowns, those unknowns are known to be
small.

A complete example is worked out in Appendix D.3.

C The problem with small matrices over small fields

When n = p = 2 the only invertible matrices are:

I =

(
1 0
0 1

)
M1 =

(
1 1
0 1

)
M2 =

(
1 0
1 1

)
J =

(
0 1
1 0

)
M3 =

(
1 1
1 0

)
M−1

3 =

(
0 1
1 1

)
Note that this fixes α = 1. In particular:

(M1M2)
−1 = (JM1)

−1 = M2M1 = JM2 = M3

M3M
−1
3 = M2

1 = M2
2 = J2 = M3

3 = I

Therefore if M1 and M2 belong to the the private key, then J , M3, and M−1
3

cannot as this would break the injectivity of encryption. In fact, selecting any
two matrices in the list excludes the others (of course I can never be part of this
key). But then, it is impossible to generate a public key! Indeed, doing so would

21

introduce more invertible matrices into the product, which inevitably causes
collisions.

Evidently, the parameters p = n = 2 are anyhow out of the security range but
the question of determining how this phenomenon scales-up to higher p, n values
is yet to be fully investigated.

D Toy examples

D.1 Direct cryptosystem

The following example artificially use artificially small (insecure) parameters.
The point is only to illustrate key generation, encryption, and decryption. Let
{n, k, α, p} = {2, 3, 3, 877}.

Key generation. We obtain the following private key:

E =

(
169 315
450 395

)
, D =

(
2 3
3 3

)
, A0 =

(
1 3
2 0

)
, A1 =

(
1 2
3 2

)
, A2 =

(
3 2
1 0

)
.

The public key is:

A0 =

(
235 402
479 659

)
, A1 =

(
416 510
608 484

)
, A2 =

(
36 846
845 856

)
.

Encryption. Consider the plaintext σ = (213), then the ciphertext is

C = σA = A1A0A2 =

(
521 99
347 464

)
.

Decryption. First we compute the temporary value

T = E−1CED−1 =

(
522 248
810 384

)
then we run the optimized decomposition algorithm of Figure 4 on T . Below we
show what happens at each step.

1. (i = 0) We test up to three matrices A0, A1, A2:

T0 = A−1
0 T =

(
405 192
39 311

)
, T1 = A−1

1 T =

(
144 68
189 90

)
,

T2 = A−1
2 T =

(
810 384
800 425

)
We can check that T0, T1 ≤ T . It is true that T1 ≤ T0, and we could use
this to select T1 directly, but for the sake of illustration we will perform
backtracking and fork two branches.

22

2. (i = 1, branch 0) We update T with the only available matrix at this step,
D:

T ← D−1T0 =

(
511 119
379 277

)
We see here that this operation has caused an increase in coefficients, and
therefore this branch is invalid: we prune it.

3. (i = 1, branch 1) We update T with the only available matrix at this step,
D:

T ← D−1T1 =

(
45 22
18 8

)
4. (i = 2) We test up to two matrices A0, A2:

T0 = A−1
0 T =

(
9 4
12 6

)
, T2 = A−1

2 T =

(
18 8
434 876

)
There is only one admissible choice which is T0.

5. (i = 3) We update T with the only available matrix at this step, D:

T ← D−1T1 =

(
3 2
1 0

)
6. (i = 4) There is only one matrix remaining in our list, A2, and we check

that indeed T = A2. The algorithm successfully terminates and has correctly
recovered our plaintext.

D.2 Alternating cryptosystem

Set {n, k, α, p} = {2, 4, 100, 800000011}. Pick:

A0
0 =

(
24 94
91 45

)
A0

1 =

(
63 51
26 57

)
A0

2 =

(
85 42
16 15

)
A0

3 =

(
44 29
49 12

)
A1

0 =

(
27 23
41 22

)
A1

1 =

(
41 36
70 38

)
A1

2 =

(
73 69
87 47

)
A1

3 =

(
52 33
80 67

)

E0 =

(
181465853 489998889
586318319 354105151

)
E1 =

(
737027227 204799375
240734459 201952588

)
E2 =

(
462605764 533199356
028731110 540728462

)
E3 =

(
153582549 270321504
280451465 475609880

)
E4 =

(
493998496 252943122
113547886 273933344

)

23

The public key is therefore:

A
0

0 =

(
430791889 308371533
407818308 626147730

)
A

1

0 =

(
167388491 602359514
514933164 574622894

)
A

0

1 =

(
604792527 259342305
521877729 466004522

)
A

1

1 =

(
140711117 204642304
589035509 414102339

)
A

0

2 =

(
641418896 051951188
188365934 615393743

)
A

1

2 =

(
037157200 763989885
222238244 774810537

)
A

0

3 =

(
535108422 653847419
486148410 280095663

)
A

1

3 =

(
119122866 072507688
076310737 183717366

)

Consider the plaintext m = (1, 0, 1, 0). The corresponding ciphertext is:

C = A
1

0A
0

1A
1

2A
0

3 =

(
736131904 041083532
281879757 104491974

)
To decrypt C we first strip-off E0 and E4:

T3 = E−1
0 CE4 =

(
31637435 15068411
41309110 19617490

)
We try to strip-off A0

3 or A1
3:

T3A
0

3 =

(
401683 284967
521330 374910

)
≤ T3A

1

3 =

(
748950526 383577638
363505113 24238044

)
⇓

T2 = T3A
0

3

⇓

T2A
0

2 =

(
744281048 796032103
553236859 210961813

)
≥ T2A

1

2 =

(
2299 2688
3155 3345

)
⇓

T1 = T2A
1

2

⇓

T1A
0

1 =

(
27 23
41 22

)
≥ T1A

1

1 =

(
761746477 330977107
390852515 113929291

)
⇓

T0 = T1A
0

1 = A1
0 ⇒ m = (1, 0, 1, 0)

24

We instrument this example to also illustrate the leakage through the determinant
addressed in the paper. We purposely took in the example dwarves A0

i , A
1
i having

nonidentical determinants. Compute for instance:

∆ =
detA

1

0

detA
0

0

mod p =
detA1

0

detA0
0

mod p = 213112125

We note that detA0
0 = −349 and detA1

0 = −7474 and that 349 × 7474 =
2608426 < p. Hence LLL can be used to write ρ as a modular ratio and reveal
the determinants of the Ab

0. There are 103020000 ≃ 226.61 invertible matrices
with coefficients bounded by 100. All matrix pairs whose ∆ = 213112125 have
determinants equal to ±{349∆, 7474} mod p. Each of the two pairs appears
9702 ≃ 213.24 times. Hence, the determinant leaked about 13 entropy bits about
the concerned pair of key elements.

D.3 Application of Lemma 3

For the sake of concision, we denote in this example M−1 = M̂ . We start with
one public-key element e.g.:

{A0

3, A
1

3} = {E3A
0
3Ê4, E3A

1
3Ê4}

Form A
0

3Â
1

3 = E3A
0
3Ê4E4Â

1
3Ê3 = E3A

0
3Â

1
3Ê3: we are left with n2 equations in

n2 large unknowns (the elements of E3) and 2n2 small unknowns (the elements
of A0

3 and A1
3).

Take two successive public-key elements for instance at rank 3 and 4 and form

the 4 quantities.Sb3,b4 = A
b3
3 A

b4
4 = E3A

b3
3 Ê4E4A

b4
4 Ê5 = E3A

b3
3 Ab4

4 Ê5.

At a first resolution step we eliminate E5. There are 16 ways to do so (of which
4 are trivial that we remove):

S0,0Ŝ0,1 S0,0Ŝ1,0 S0,0Ŝ1,1

S0,1Ŝ0,0 S0,1Ŝ1,0 S0,1Ŝ1,1

S1,0Ŝ0,0 S1,0Ŝ0,1 S1,0Ŝ1,1

S1,1Ŝ0,0 S1,1Ŝ0,1 S1,1Ŝ1,0

The above set contains 10 distinct matrices of which only 6 are not inverses of
others:

25

E3A
1
3Â

0
3Ê3

E3A
0
3A

1
4Â

0
4Â

0
3Ê3

E3A
1
3A

0
4Â

1
4Â

0
3Ê3

E3A
1
3A

0
4Â

1
4Â

1
3Ê3

E3A
1
3A

1
4Â

0
4Â

0
3Ê3

E3A
1
3A

1
4Â

0
4Â

1
3Ê3

(1)

(2)

(3)

(4)

(5)

(6)

Multiplying (2),(3) and (5) by (̂1) we get:

E3A
1
3Â

0
3Ê3

E3A
0
3A

1
4Â

0
4Â

1
3Ê3

E3A
1
3A

0
4Â

1
4Â

1
3Ê3

E3A
1
3A

0
4Â

1
4Â

1
3Ê3

E3A
1
3A

1
4Â

0
4Â

1
3Ê3

E3A
1
3A

1
4Â

0
4Â

1
3Ê3

(7)

(8)

(9)

(10)

(11)

(12)

Eliminating duplicates we get:

E3A

1
3Â

0
3Ê3

E3A
0
3A

1
4Â

0
4Â

1
3Ê3

E3A
1
3A

0
4Â

1
4Â

1
3Ê3

E3A
1
3A

1
4Â

0
4Â

1
3Ê3

(13)

(14)

(15)

(16)

We note that (15) = (̂16):

E3A

1
3Â

0
3Ê3

E3A
0
3A

1
4Â

0
4Â

1
3Ê3

E3A
1
3A

0
4Â

1
4Â

1
3Ê3

(17)

(18)

(19)

(17)(18) = (̂19):

{
E3A

1
3Â

0
3Ê3

E3A
1
3A

1
4Â

0
4Â

1
3Ê3

(20)

(21)

We are hence left with 2n2 equations in 5n2 unknowns (the elements of E3, A
0
3

A1
3, A

0
4 and A1

4) and the resulting system is of the prescribed form.

26

	New Public-Key Cryptosystem Blueprints Using Matrix Products in Fp

