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Abstract. We consider the mainstream model in secure computation known as the bare PKI setup, also as the
bulletin-board PKI. It assumes that players can broadcast once and non-interactively before they receive their in-
puts and start the execution. We consider both the problems of consensus with strong unanimity, also known
as “Byzantine agreement” (BA), and of “Validated Byzantine agreement” [CKPS, Crypto’01] (VBA, also known as
MVBA). Most works on BA use a bulletin-board PKI setup only for the purpose of publishing veri�cation keys.
This implements the messages-authentication model, i.e., when P is forwarded a message issued by R, it is con-
vinced thatR is the author. Without messages-authentication, it is known since [Lamport et al’82] that BA under
honest majority is impossible, let alone secure computation. Thus, since the bare PKI setup and the messages-
authentication model seem close, this raizes the question whether there is a separation between the two. In the
bare PKI setup, the most communication-e�cient synchronous BA is the one of [Boyle-Cohen-Goel, Podc’21 & J.
Cryptol.’24], which has O(n.polylog(n)) bit complexity, f < n(1/3 − ε) resilience and tolerates an adversary
which cannot adaptively corrupt after the setup. Our main upper-bound are BA and VBA in this same model with
strictly better parameters: quasi-optimal resilience f < n(1/2 − ε), with an expected bit complexity of commu-
nications which is linear in n, and tolerance to an adaptive rushing adversary (but which unavoidably cannot
remove messages sent). As [BCG’21], they have constant expected latency. All previous BAs or VBAs achieving
the same metrics as our upper bound, are either in the static adversary model: Sleepy [Pass-Shi, Asiacrypt’17],
Snow White [Daian-Pass-Shi, FC’19], or assume more than a bare PKI setup: (i) The model of Thunderella [Pass-
Shi, EC’17], Algorand [Gilad et al, SOSP’17], Praos [David et al, EC’18], [Goyal et al, FC’21] and [Momose et al,
CCS’22 and CCS’23] assumes a public random seed which is unpredictable until strictly after all players published
on the bulletin board; (ii) [Abraham et al, Podc’19] assume a trusted entity which honestly samples the keys of
all players; (iii) All known implementations of the setups (i) and (ii), as well as the setup of [Blum et al, TCC’20],
require interactions, furthermore in the form of BAs. (iv) [Garay-Kiayas-Shen ’23] assume that honest players
work more than the adversary, or, [Eckey-Faust-Loss et al ’17 ’22] at least as fast.
Of independent interest, our tool is a very simple non-interactive mechanism which sets-up a self-sortition function
from non-interactive publications on the bulletin board, and still, guarantees an honest majority in every committee
up to probability exponentially small in both ε and in the multicast complexity. 1 We provide the following further
results.
- Optimality. We show that resilience up to a tight honest majority f < n/2 is impossible for any multicast-based
adaptively secure BA with subquadratic communication, whatever the setup.
- Separation. We show impossibility of subquadratic multicast-based BA in the messages-authentication model.
Our model for this lower bound is even stronger, since it onboards other assumptions at least as strong as all
popular implications of a bulletin-board PKI setup: secure channels, a (possibly structured) random string, NIZK.
- Partial synchrony. We then show that the separation also holds under partial synchrony. On the one hand,
our upper-bound also holds, with f < n(1/3 − ε) resilience. On the other hand, we show that any partially-
synchronous BA in the messages-authentication model and linear message complexity, has necessarily latency
logarithmic in f . Of independent interest, our baseline technique provides a simpler proof of the unauthenticated
quadratic lower bound of [Blum et al, TCC’20].
- Extension to VBA. We extend to VBA the logarithmic latency lower bound. This is the �rst communication
lower bound for adaptively secure VBA to our knowledge. It shows that the separation under partial synchrony
also holds for VBA. Along the way, we close the categorization of [Civit et al, Podc’23] of validity conditions
in authenticated consensus, by apparently new results on VBA: both BA and VBA are infeasible under partial
synchrony beyond f < n/3, whatever the setup and even randomized; whereas VBA is feasible under synchrony
up to f = n− 1 (contrary to BA).

1 Further illustrated slide 8 of https://perso.telecom-paristech.fr/rambaud/talks/2023-11-03_pkicons_UmdCrg.pdf
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A high level introduction is provided by the abstract. Due to the number of results, we cut the introduction
in three: Section 1 for the results under synchrony, Section 2 for those under partial synchrony and Section 3
for those related to external validity. Section 1 is self-contained since in Section 1.1 we give the model, then
in Section 1.2 we give brief motivations then state the results, then in Section 1.3 we explain the techniques.
Finally in Section 1.4 we discuss the impact of both the results and techniques, by putting them in perspective
of previous works, which we hope will give further intuition. Sections 2 and 3 follow the same outline, although
they build on the model of Section 1.1.

1 Introduction for the results under synchrony

1.1 Model and main driving questions

We state the model which holds for all our results stated under synchrony. Then, result-by-result, we will
comment on the assumptions which can be modi�ed so as to make the results further stronger. Let n be an
integer. We consider a set P = (P1, . . . , Pn) of n probabilistic polynomial time (PPT) machines denoted
players, and a PPT machine called the adversary A.

1.1.1 Communication. Players are connected by pairwise public authenticated channels, i.e., the adversary
A reads the content of all messages sent. In our lower bounds the channels will be upgraded to secure, i.e.,
only the lengths of messages are leaked toA, which thus makes the bounds stronger. We consider the classical
synchronous round-based model of [LSP82; DS83; DR85], which we now recall. Players have access to a global
clock ticking every ∆, where ∆ is a �xed public duration. To ease the notation, we set the unit of time equal
to ∆. Hence, when we note time t = 1, this actually means t = ∆. For r a positive integer, the time interval
[r − 1, r] is called the r-th round. Players send messages at the beginning of every round, these messages are
delivered before the end of the round. Players are assumed to have the time to process all the messages received
before the next round starts.
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1.1.2 Corruptions. Let f ≤ n be an integer,A can corrupt up to a total of f players in the execution.A can
corrupt any player at any point in time, up to the following limitations. As in [DGKR18; GHM+17; ACD+19;
BKLL20], A cannot corrupt a player in the middle of sending a batch of messages, possibly with di�erent
contents to possibly di�erent receivers. Moreoever, as in [DGKR18; GHM+17; BKLL20], players are able to
securely erase part of their memory, or the totality of it, just after they sent a batch of messages and before the
adversary can corrupt them. Upon corrupting a player P ,A learns all its current state and has full control over
it. It can possibly instruct P to send one or more messages in the same round in which it has been corrupt. The
adversary is rushing, in the sense that it can use its knowledge of the messages sent by honest players in a given
round to determine the messages of corrupted players in this same round. However, unlike in [ACD+19, Thm
1], the adversary cannot retract messages which have been sent. At any time, players that remain honest so far
are referred to as so-far-honest, and the ones which remain honest until the end of the protocol are referred to
as forever-honest.

1.1.3 Model for upper-bounds: the bare / bulletin-boardPKI setup. This model is singled-out in [CGGM00],
and is also known as “bare PKI”. Denote t = 0 the time at which parties receive their inputs and start the pro-
tocol execution. Parties can publish any string strictly before t = 0. Players are instructed to publish once and
non-interactively, in particular, independently of the strings already published (otherwise, this would allow the
MPC implementation of any setup). On the other hand, the adversary can wait that all honest players published
their strings, before adaptively choosing the strings which corrupt players will publish. The bulletin-board PKI
model is equivalent to allowing players to register the string of their choice to the ideal certi�cation authority
of FCA [Can04] which we recall in Appendix A.3. Then during the execution, players can retrieve to FCA the
keys published by other players. Note that by de�nition, FCA does not accept two di�erent strings from the
same player P , thus it shows the same string from P to all honest players (otherwise FCA would have little
power, as noticed in [Bor96]).

1.1.4 Consensus protocols.

De�nition 1 (BA). A consensus with strong unanimity ([DLS88]) up to probability of failure η, also known as
Byzantine agreement and shortened as η-BA, is a protocol Π such that every player starts at time t = 0 with
one input value, outputs at most one value, and such that the following holds. For any �xed adversary A, and
any �xed input assignment, then we have with probability at least 1 − η that an in�nite execution satis�es
simultaneously:

• Consistency. if two honest players P, P ′ output x and x’, then x = x’;
• Strong unanimity. if all forever honest players have the same input, x, then this is the only possible output;
• Termination. all honest players output.

De�nition 2 (Latency and communication). We say that an execution of a BA has latency ofR rounds, also
known as the round complexity, if all players output by time t = R+1. The bit complexity of communications
is the total number of bits sent by honest players, while the (smaller) message complexity is the number of
messages which they sent.

We denote κ the security parameter. In our lower bounds, we call “world” a probabilistic set of executions
of a given consensus protocol, under a given adversary and a given assignment of inputs.

1.1.5 The idealizedmessage authenticationmodel, andMain driving question 1. Following [LSP82; DR85;
DS83], most works on consensus implicitly assume what we call the idealized message-authentication function-
ality. It is formalized in [Can04, Figure 2], under the name FCERT. Informally, each player P can submit any
message m of its choice to FCERT, then is returned a bitstring σ called a signature on m. Anyone can query
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FCERT to verify if some bitstring σ is a signature of any given player P on any given message m. More pre-
cisely, the de�nition, recalled in Appendix A.4, makes it impossible for A to forge a signature σ which would
be recognized as valid on a message m for a player P , if P did not submit m to FCERT in the �rst place. As a
result, when R is forwarded by Q a signed message (m,σ), if FCERT certi�es to R that σ is a valid signature
of P on m, then R is convinced that P issued m. Notice that in the consensus literature, the FCERT model
is called the authenticated one. To be sure, what is authenticated here are messages. So this is stronger than
just assuming authenticated channels, which guarantee only the identity of the person at the other side of the
channel. As observed in Section 1.4.5, all previous existing lower bounds for an adaptive adversary assumed
only authenticated channels (or, alternatively, an adversary which can delete messages sent).

In presence of a PPT adversary, the bulletin-board PKI setup implements the idealized message-authentication
model, i.e., FCERT. The implementation is that each player generates a signature key pair, then publishes the
public key on the bulletin board, then signs all its messages in the subsequent protocol. This is further formal-
ized in [Can04, Claim 3]. Most works on consensus, when they do not directly assume an idealized message-
authentication functionality, often use a bulletin-board PKI setup only for the purpose of implementing ideal-
ized message-authentication: [MR21; SBKN21].

This raizes the question whether or not the bulletin-board PKI setup model has strictly more power than
message-authentication.

1.1.6 Model for the (separation) lower-bounds (Theorem4 andTheorem7): idealizedmessage-authentication
(FCERT) andmore. To address the Main driving question 1 even more tightly, we now de�ne an even stronger
model than message-authentication for our lower bounds. Our lower bounds Theorem 4 and Theorem 7 hold
under theFCERT model, added with the following bonus assumptions which are at least as strong as all popular
implications of the bulletin-board PKI setup: privacy of the content of messages sent, as formalized in the end
of Appendix A.1; a public random string fairly sampled from any speci�ed distribution, but possibly known to
the adversary before corrupt players publish their keys; and non-interactive zero-knowledge ([GO14]).

1.1.7 Main driving question 2. All works on consensus achieving a communication complexity linear in n
under honest majority (some of them also achieve constant expected latency) are either in the static adver-
sary model [DPS19; PS17; ACKN23], and/or, use a mechanism known as self-sortition. Namely, for a player
to be allowed to multicast a message in a given round, it must append to the message a publicly veri�able
proof of eligibility to speak in the round. Players reject messages which are not appended with such a valid
proof. However, all existing works implement this mechanism from a setup which is strictly stronger than
the bulletin-board PKI: (i) [GHM+17; CM19; DGKR18; PS18] assume a public random seed which is revealed
after players published their keys; (ii) [ACD+19; ACD+23; HPS19; CPS20; BKLL20; BBCL23] assume a trusted
entity which honestly samples the keys of all players; (iii) Some works propose to implement the setups of (i)
or (ii) using interactions [GHM+17; DPS19; DGKR18], which is also the case of the related setups of [BKLL20;
ACKN23]. Furthermore, all these interactive setups consist of consecutive BA instances, but no BA under hon-
est majority with linear complexity is known in the bulletin-board PKI setup model. (iv) [GKS23] is in the
ressource-restricted cryptography model and [EFL17; ALPT22] in the related time-based cryptography model
(see Section 1.4.8 for many other non-constant round BAs in these models). This raizes the question whether
strict linear communication complexity and constant expected latency are achievable under a bare bulletin-
board PKI setup. The best known consensus in this setup so far is [BCG21; BCG24], which has communication
O(npolylogn) messages, f < n(1/3− ε) corruption tolerance and does not resist adaptive corruptions after
the setup.

1.2 Results and technical overview of the upper bound Theorem 3

We �rst answer the main driving question 2 by a feasibility result in Section 1.2.1 under the bulletin-board PKI
setup, which is of independent interest. In Section 1.2.3 we state a lower bound showing that its corruption
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tolerance is close to optimal. In Section 1.2.2 we answer the main driving question 1 by a quadratic lower
bound on the communication complexity in the message-authentication model (further strenghtened as in
Section 1.1.6).

1.2.1 Main upper bound under synchrony, and technique

Theorem 3. Using the de�nitions of Section 1.1, consider: synchronous authenticated channels with public content,
a bulletin-board PKI setup and an adaptive rushing adversary. Let ε ∈ ]0, 1[ and λ < n be �xed parameters.
Then there exists a BA tolerating any number f < (1/2−ε)n of corruptions, and such that, except with probability
η exponentially small in both λ, every execution satis�es:

{
Consistency, Strong unanimity, Termination within a

�xed number of roundsR independent from n, at most λ(1 + ε) honest players send (multicast) messages in each
round, and each message is of bitsize O(λ(1 + ε))

}
.

In particular, the expected bit complexity is linear in n. We prove Theorem 3 by instantiating a proto-
col which we call genericBA. genericBA is obtained from the adaptively secure synchronous BA protocol of
[ACD+19, §5.2], by making some simpli�cations. In particular, we now assume memory erasures and do not
specify a termination mechanism, so that we will measure latency and communication only until the point
where all players have output. We refer to Section 5.3 for how to remove these simpli�cations.

In every round r of genericBA, every player P is instructed to conditionally multicast a speci�ed round-r
message. The latter means that P multicasts the message only if allowed by an ideal functionality, which we
call Feligib. In detail: the player queries Feligib.speak-request(r), then Feligib returns a binary value called
coin[P, r] (the same coin value is delivered again in subsequent identical requests Feligib.speak-request(r)). If
the coin is 1 then we say that P is eligible to speak in round r. If so, then it multicasts the round-r message with
its signature, then updates its signing key to round-(r+ 1), and �nally erases its old (round-r) signing key. In
turn, upon receiving a round-r message from some P , a player Q queries Feligib.verify(P, r) to check if P did
query Feligib.speak-request(r) and was made eligible, i.e., obtained a coin equal to 1. If so then Q processes
the message, else, it ignores it. Importantly, and contrary to [ACD+19, §5.2], in Figure 1 we purposedly specify
Feligib as only an interface, leaving unspeci�ed the internal computations which it does.

The Feligib-interface

Request to speak in round r On receive speak-request(r) from player P for the �rst time:
do some internal computations, and return coin[P, r].

Verify On receive verify(P, r): if speak-request(r) was queried by P , return coin[P, r]; else return 0.

Figure 1: Interface of an ideal functionality for eligibility to speak in a given round. It is obtained from the ideal
functionality Fmine of [ACD+19; ACD+23] (adapted into round-based eligibility) by leaving unspeci�ed its internal
computations.

In [ACD+19, §5.2], the Feligib-interface is instantiated by an ideal functionality which they call Fmine and
which we recall in Figure 2. It has the ideal behavior that all round-r coins are tossed with some speci�ed public
probability called p(r). Let us recall how Fmine is implemented in [ACD+23, §9.4], omitting some re�nements.
They consider any public veri�able random function (VRF): vrf . In the setup, a trusted entity fairly samples,
for each player P , a VRF key-pair (sk, vk). The entity gives sk to P and publishes the public key vk. When
being instructed to conditionally multicast a round-r message, a player P evaluates vrf .evalProve(sk, r) and
obtains an evaluation y with a proof π of correct evaluation. We normalize y ∈ [0, 1] for convenience. If y is
lower than a publicly speci�ed target value p(r), then we say that P is eligible to speak in round r. In this case,
it appends (y, π) to its multicast message. In turn, upon receiving a round-r message from P appended with
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some (y, π), players check it vrf .verify(vk, r) = accept and if y is low enough. If the checks do not pass then
they ignore the message.

Fmine instantiates the Feligib-interface

It is parametrized by a function p : r ∈ {1, 2, . . ., } −→ [0, 1] which maps each round number r to a probability to be eligible
to speak in r.

Request to speak in round r On receive speak-request(r) from player P for the �rst time:
toss coin[P, r] $←−Bernoulli(p(r)) and return coin[P, r] to both P and A.

Verify On receive verify(P, r):
leak (P, r) to A; then: if speak-request(r) was queried by P then return coin[P, r], else, return 0.

Figure 2: The Ideal functionality of [ACD+19; ACD+23] (adapted into round-based eligibility), for eligibility to speak
in a given round. For technical reasons we added that all requests and outputs are leaked to the adversary.

In Properties 14 we state some conditions on the sole outputs of the Feligib interface in a given execution of
genericBA, which automatically imply that the execution has safety, consistency, termination within a speci�ed
number of rounds and constant bit complexity of communications per round. Remarkably, these conditions are
independent from the execution of genericBA, and (by de�nition) are not linked to any speci�c implementation
of the Feligib-interface. These conditions are matched with overwhelming probability by the instantiation of
Feligib done by [ACD+23, §9.4], called Fmine and recalled above. In order to downgrade to the bulletin-board
PKI setup, we are going to provide a less e�cient instantiation of the Feligib-interface, which we call Fbias

eligib,
but which still matches the conditions of Properties 14 with overwhelming probability. So in a nutshell, our
main technical contribution to obtain Theorem 3 is a mechanism implementing (fair-enough) self-sortition
from a single bulletin-board PKI setup. It is of independent interest, since it applies to all other BAs mentioned
in Sections 1.4.1 and 1.4.3, as well as to the partially-synchronous ones [ACD+23; BBK+23]. To convey its
idea, we �rst describe its implementation, which is very simple, then formalize the ideal functionality which it
implements.

In our implementation, every request to the VRF is pre-pended by a public seed denoted σ. In the idealized
random oracle model of a VRF, by domain-separation, every new pre�x σ reinitializes afresh the VRF. However
the σ must not be learned by the adversary A before A is committed to the VRF evaluation keys of corrupt
players. Otherwise this would allow the well-known one-by-one adversarial key picking attack, as recalled in
Section 1.4.1. Since our setup allows only one non-interactive publication on the bulletin-board, and since the
adversary can see the publications of honest players before choosing the publications of corrupt players, the
objective seems infeasible.

Our solution is as simple as follows. Let vk1, . . ., vkn the VRF keys of players published on the bulletin-board,
then de�ne σ as the hash of their list:

(1) σ = H
(
(vk1, . . . , vkn)

)
whereH is any collision-free function, e.g., the identity. The condition for eligibility for a player P to speak in
a given round r is unchanged, i.e., i� the VRF queried by P on r returns a value lower than the same threshold
(p(r)) as before.

Interestingly, the proof of Theorem 3 is less obvious than in previous models which assumed an unpre-
dictable seed revealed after publication of keys (Section 1.4.1). In our model, we cannot reason anymore on the
eligibilities of corrupt players one-by-one. Let us consider only a �xed given round r for simplicity, and let us
denote p(r) = λ/n, so that (λ/2 + ε) is the expected number of honest players eligible to speak in round r.
The adversary observes all keys published by the (1/2+ ε)n honest players: (vki)i ∈H , then its goal is to �nd
a vector of keys for corrupt players: (skj)j ∈ [n]\H so that at least λ/2 of them grant eligibility. For each such

6



vector, it queries the VRF for the eligibilities of all corrupt players in round r, then repeats until it wins. We see
that it takes only a few trials (n/λ in expectation), until the adversary �nds a vector of keys (skj)j ∈ [n]\H such
that the �rst corrupt player, call it j1, is eligible. By contrast, the adversary did not have such power in previous
stronger setups (Sections 1.4.1 and 1.4.3): this is what makes less obvious the analysis of our mechanism. But
the added power of the adversary essentially stops there. Indeed, let us say that the adversary now wants to
also make the second corrupt player also eligible, call it j2. So from there (unless it was already lucky), it will
have either to try another key for j2, and/or, another seed. But since our mechanism automatically changes the
seed for evey change of key, we see that the new trial by the adversary will in any case be with a new seed. With
this new seed, the VRF is completely reinitialized, so all eligibilities of corrupt players are re-sampled afresh, in
particular the eligibility of j1. In conclusion, if the adversary wants to �nd a vector of keys of corrupt players:
(skj)j ∈ [n]\H which makes both j1 and j2 eligible, it will have to try (n/λ)2 vectors of keys in expectation.
More generally, if the adversary wants to �nd a vector of keys such that all the λ/2 �rst corrupt players are
eligible, then it will need (n/λ)λ/2 trials in expectation before it �nds one. Since the adversary is polynomial,
we assume that it stops after a polynomial number q of trials. Hence, the probability that it wins for a �xed q
is exponentially small in λ, as claimed by Theorem 3. Of course the previous argument is too optimistic, since
the adversary actually wins as soon as any set of λ/2 corrupt players is eligible, not necessarily the λ/2 �rst
ones. So our actual argument uses instead the Cherno� bound.

More formally, in our proof we show the intermediary step that our mechanism implementsFbias
eligib, de�ned

in Figure 3. Roughly,Fbias
eligib o�ers to the adversary a setup phase, in which the adversary can try di�erent seeds.

For every new seed σ, the adversary is o�ered a fresh instance of Fmine, called Fmine[σ]. At time t = 0 the
setup phase times-out: Fbias

eligib freezes forever to the same behavior as the last instance, Fmine[σ], queried by
the adversary.

Fbias
eligib instantiates the Feligib-interface

It is parametrized by a function p : r ∈ {1, 2, . . ., } −→ [0, 1] which maps each round number r to a probability to be eligible
to speak in r. All instances of Fmine below have parameter p.

Setup. - Launch an instance of Fmine, called Fmine[0]. Set Fmine ← Fmine[0], called the current instance.
- On receive (re-seed, σ) from the adversary:

if received after t = 0, ignore it. If this is the �rst re-seed request for σ, then launch a new instance of Fmine called
Fmine[σ]. In any case, set the current instance Fmine ← Fmine[σ].

Requests to speak & Verify are answered by the current instance Fmine.

Figure 3: Ideal functionality for eligibility to speak in a given round, with setup biasable by the adversary.

1.2.2 Separation between the bulletin-board PKI setup and the idealized message-authentication model
+ more ([ACD+23]) In a large-scale peer-to-peer network, it is usually much cheaper for a node to multicast
the same message to everyone [CKMR22; LMM+22; LMT22], than to unicast n di�erent messages, even though
the two have identical communication complexity in the standard pair-wise model. Indeed, all known con-
sensus protocols deployed in a decentralized environment (e.g. Bitcoin [Nak09], Ethereum [ZLD23], Algorand
[BBK+23]) work in the multicast fashion. This is also the case for the protocol underlying Theorem 3. The
following impossibility implies that the asymptotic complexities of Theorem 3, for multicast-based protocols,
cannot be achieved when downgrading the bulletin-board PKI to message-authentication (even with CRS, se-
cret channels etc.). At the end of the proof in Section 1.3.1, we will explain how adding a bulletin-board PKI
setup defeats the proof strategy of Theorem 4 (as expected from Theorem 3).
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Theorem 4. Consider the model de�ned in Section 1.1.6, i.e., message-authentication (and any CRS, secure chan-
nels and NIZK) and an adaptive rushing adversary which cannot remove messages after they were sent. If a BA
guarantees simultaneously {Termination + Consistency + Strong Unanimity and 6 f players send messages in
the execution}, except with probability η, then necessarily η > 1/6.

In particular, this rules-out multicast-based BA with subquadratic communication complexity in the message-
authentication model.

1.2.3 Impossibility of a tight corruption tolerancewith a sublinearmulticast complexity under any setup
The following lower bound shows that the corruption tolerance of Theorem 3, i.e., honest-majority-plus-ε , is
optimal, in the sense that ε > 0.

Theorem 5. Consider any setup. Consider a BA with a (tight) corruption tolerance of f corruptions out of n =
2f +1 players, and such that executions satisfy simultaneously: {termination, consistency, strong unanimity and
at most C distinct honest players send messages}, excepted with at most probability η, where C 6 f/4 is any
integer. Then η > (1− 4C

f+1
)/(7− 4C

f+1
)> (1/7)(1− 4C

f+1
).

In particular, this rules-out BA with tight corruption tolerance with < n2/8 messages complexity in which
players only multicast. Note that the proof uses a speci�c adversary, which is proven to exist in a total set of
O(exp(n)) adversaries, but does not give a method sub-exponential in n to construct this adversary.

1.3 Technical overview for the synchronous lower bounds

1.3.1 Proof of Theorem 4. We detail the proof, because it is useful to understand why it would not hold
under the bulletin-board PKI setup. The proof technique is a variant of the one of [ACD+19, Thm 3], which
shows that in an f -resilient synchronous broadcast protocol, without the message-authentication model, then
there are at least f+1 which speak in a given execution. Let us �rst recall their argument (with our notation).

Warmup: the unauthenticated multicast lower bound of [ACD+19, Thm 3] for broadcast. Let S be the designated
broadcast sender and let p ∈ P be any �xed player, e.g., p = P1. We consider four worlds: Wc,0 ↔Wh,0 ↔
Wh,1↔Wc,1, where each↔ denotes an identical distribution of views, in some nonnegligible events, for some
honest player(s).
• world Wc,b: only p is corrupt, sender S is honest with input b. In addition to playing the real execution

honestly, p also simulates an execution in its head where S would have input 1 − b. In every round, in
addition to receiving messages from honest players inWc,b, p simulates the receipt of messages multicast by
all other players in world Wc,1−b, until f multicasts have occurred in the simulated execution. The corrupt
player p treats the received messages (from both the real world Wc,b and the simulated world Wc,1−b) as if
they are from the same execution. When p multicasts a message in the real execution, the message arrives
in both the real as well as the simulated execution.
Hence,p looks somehow “schizophrenic” to the other players.Note that simulation ofmessages fromS without
corruption of S, are possible due to absence of message-authentication.
• world Wh,b: all players are initially honest, including p. The sender is corrupt, it behaves honestly as if

having input b. The adversary A initiates a simulated execution where the sender S would be honest and
have input 1 − b. At the start of each round, the adversary simulates this round for all players except p
in the simulated execution Wh,1−b in its head, and checks to see which players will send a message in this
round of the simulated execution. For such a simulated playerQ, if there have not been f multicast messages
from players other than p in this execution, the adversary adaptively corrupts the real player Q (unless it is
already corrupt) in world Wh,b. When p multicasts a message in the real execution, the message arrives in
both the real as well as the simulated execution. Upon being corrupt, a player Q:
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- keeps its internal state and keeps following the protocol as if it had never been corrupt: we will call
this the honest thread of Q;

- in addition, the adversary makes Q follow a parallel thread of actions, which denote Q: the corrupt
thread of Q. Q (run by Q) sends the messages to p in the real execution, that the simulated Q sends
to p in the simulated execution Wh,1−b; note that these messages are sent to player p only and not to
anyone else.

We now brie�y recall the indistinguishabilities leading to a consistency violation, the intersection bounds be-
tween probabilities being formalized in Appendix C.

- For each b ∈ {0, 1}, the joint view of all forever honest players other than p has the same distribution in
worlds Wh,b and Wc,b. Indeed: the corrupt p in Wc,b behaves exactly like the honest p in Wh,b [in particular,
the simulated execution stops in both worlds in the event where a (f + 1)-th simulated player would need to
multicast.] Corrupt players in Wh,b behave honestly towards forever-honest players other than p.

-Wh,1 andWh,0 are indistinguishable to p, up to the event where the real or the simulated execution would
have more than f multicast complexity (in a sense to be made precise in Appendix C).

In conclusion (omitting intersection bounds): forever honest player must output b inWh,b to ensure validity
of broadcast, and since they must also output b inWc,b by indistinguishability, it follows from Consistency that
p must also output b in Wh,b, which contradict indistinguishability between Wh,1 and Wh,0.

Our proof, for BA in the message-authentication model. We consider a BA satisfying the assumptions of Theorem 4.
Since our complexity measure does not count the bitsize of messages, we can assume without loss of generality
that all messages are signed. Hence when we write “messagem”, we implicitely mean thatm carries a signature
We now describe the two slight changes to the warmup proof described above. The �rst di�erence is that we
now consider BA, so there is no more designated sender S but instead input bits:

- In both Wc,b and Wh,b, for b ∈ {0, 1}, we assign input bit b to all honest players other than p.
- In both Wh,0 and Wh,1, p is given the same �xed input bit B. We leave B unspeci�ed, in order to make

clear that its actual value plays no role in the proof.
Brie�y, the second change is that in Wc,b, simulated players which speak also get adaptively corrupt, and

follow the same strategy as in Wh,b. In more detail, recall that in both worlds Wh,b b ∈ {0, 1}, the messages
multicast by p potentially contain forwarded messages from all corrupt threadsQwhich talked to p so far. Un-
der our model, these forwarded messages may now be authenticated, i.e., contain an idealized digital signature
of Q. Thus we must ensure that in the messages sent by p in both Wc,b b ∈ {0, 1}, whenever the contain a
forwarded message m of some simulated Q, then m also carries the signature of the real Q. The only possibil-
ity to obtain such a signature is to corrupt Q in the real execution. Hence, our second change to the warmup
strategy is that, in both Wc,b b ∈ {0, 1}, players Q which multicast in the simulated execution are now also
adaptively corrupt. Upon being corrupt inWc,b, a playerQ behaves following the same strategy as inWh,b, i.e.,
continues its honest thread, and in addition opens a corrupt thread Q which sends to p the (signed) messages
that the simulated Q sends to p.

The indistinguishabilities are unchanged. The formal di�erence is that, while in the warmup strategy so far
honest players had to output b in Wc,b to respect broadcast validity, now the reason why they have to output
b in Wc,b is instead to guarantee strong unanimity.

Comments: why the proof would fail under a bulletin-board PKI setup (and why it would also fail for authenticated
broadcast) To argue indistinguishability between Wh,b, b ∈ {0, 1} we must argue that, in each Wh,b up to
multicast complexity f , then the simulated execution in indistinguishable from p from the real one. In presence
of a bulletin board, the adversary would not be anymore able to correctly simulate an execution. The best
counter-example is Theorem 3: each real player Q secretly generates a VRF secret key sk and publishes the
public key vk on the bulletin board. Then, Q speaks in round r only if its evaluation vrf .eval(sk, r) is lower
than a threshold number. In conclusion, the set of rounds r in which the real Q speaks is correlated to the
private randomness sk of Q, hence, correlated to vk. Since the adversary ignores sk, it is unable to reproduce
the correlation between the speaking pattern of Q and the published vk.
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The proof would also fail for broadcast in the message-authentication model. Indeed, in Wh,b, in order to
make p forward signed messages from a simulated S claiming to have a con�icting input 1− b, we would have
to corrupt S, so we could not use anymore broadcast validity to conclude that so honest players must output
b. Hence, our contribution over [ACD+19, Thm 3] is to observe that, by switching the problem to BA, then the
strategy can be successfully adapted.

1.3.2 Outline of the Proof of Theorem 5

Warump: the impossibility of Fitzi. The strategy is somehow to bring back the situation to the impossibility proof
of randomized BA beyond f < n/2 corruptions whatever the setup, shown in [Fit03, Prop 3.1], which we now
recall. It considers two players, which we call S ,S ′, and three worlds, which we call WHA, WHH and WAH .
In all three worlds, S and S ’ behave honestly as if having inputs 0 and 1. However the corruptions formally
change as follows: inWHA S is honest and S ’ is corrupt; inWHH both are honest; while inWAH : S is corrupt
and S ’ is honest. Assume a BA with probability of failure η < 1/3. Then in WHA, by strong unanimity S
must output 0 with probability > 2/3. Since its view is equally distributed as in WHH , it must do so in WHH

with the same probability. But symetrically, S ’ must output 1 with probability > 2/3 in WHH , thus breaking
consistency with probability > 1/3.

Proof of Theorem 5. We assume a η-BA. Since there is one more honest player than corrupt players, we are going
to ensure that one honest player often does not speak, in order to restablish the symmetry of the argument of
Fitzi. Let us consider any partition of players into three disjunct subsets:P = S∪{h}∪S ′, with |S | = |S ′| = f ,
to be carefully chosen later. Given this partition, let us de�ne the three worldsWHA,WHH andWAH as follows.
All players behave honestly in all worlds, and h is never corrupt.
• WHA: assign input 1 to S and {h}, they are honest. The adversary A corrupts S ′ and have them play

honestly as if they had input 0.
• WHH : assign input 1 to S , and 0 to both {h} and S ′. All players are honest.
• WAH : assign input 0 to both {h} and S ′, they are honest. A corrupts players in S and have them play

honestly as if having input 1.
Denote XHA and XHH the events in worlds WHA and WHH where h never sends any message. Then by

the important Lemma 15, proven in Section 6, it is possible to choose the partition P = S ∪ {h} ∪ S ′ such
that each of XHA and XHH have a probability at least as high as some 1− ph, of which the actual value will
be used below. We now assume such a choice of partition.

By strong unanimity in WAH , both h and S ′ output 0 with at least 1− η probability. The views of both h
and S ’ being identically distributed in WHH and WAH , we have:

(2) P
(
both S and h output 0 in WHH

)
> 1− η .

On the other side, by η-termination and strong unanimity in WHA,

(3) P
(
S outputs 1 in WHA

)
> 1− η .

Seeking a consistency failure in WHH , we thus aim at showing that S also output 1 in WHH with high
probability. However it would be fallacious to state that the view of S has the same distribution under events
XHA and XHH : indeed, since h has di�erent inputs in those two worlds, its silence is possibly not triggered
by the same events. To repair the problem, the idea is to use indistinguishability of the views of S in the
intersection event where h stays silent whatever its input. Formally, make the mental experiment that h opens
a parallel thread in its head inWHH , called h, in which it would have input 1. When hwants to send a message
for the �rst time, then h kills it (so h never takes any real action based on h). Consider the eventXHH ofWHH
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where h is never killed. Then, the view of S inXHH ∩XHH is identically distributed as inXHA∩XHA, where
the event XHA is de�ned in a symmetric way. Let us argue that

(4) P(XHA ∩XHA) = P(XHH ∩XHH) > 1− 2ph .

The equality is because the only di�erence between these two events is formal: in the left one we call h-with-
input-1 the real thread and h-with-input-0 the simulated thread, while in the right one it is on the contrary
h-with-input-0 which we call real thread and h-with-input-1 the simulated one. The inequality on the right is
by Lemma 15 and an intersection bound.

By intersecting Equation (4) with Equation (3), we obtain P
(
XHA∩XHA∩ (S outputs 1 in WHA)

)
> 1−

2ph − η.
In conclusion, since the view of S is equally distributed inXHH ∩XHH andXHA∩XHA, we deduce from

Equation (4) again that

(5) P
(
XHA ∩XHA ∩ (S outputs 1 in WHH)

)
> 1− 2ph − η

Intersecting with Equation (2), we obtain a consistency failure in WHH with probability > 1− 2ph − 2η. By
the η-BA assumption, this probability must be smaller than η. Replacing ph by its value given by Lemma 15:
ph(η, C) := 2

(
(1−η)C
t+1

+ η
)
, a straightforward computation shows that this implies the lower-bound on η

claimed by Theorem 5 (in detail: 3η > 1− 4
(
(1−η)C
f+1

+ η
)

thus 7η − 4C
f+1

η > 1− 4C
f+1

).

1.4 Related works

1.4.1 The post-publishing-of-keys-unpredictable-seed setup, and the one-by-one adversarial key picking
attack. Some consensus algorithms [GHM+17; CM19; DGKR18] [PS18, §4.2.1] assume a setup which fairly
samples the seed σ of the VRF used for self-sortition, then publicly reveals it after all participants published
their keys. In those works, the seed σ (called “nonce” in [DPS19; DGKR18]) appears in a so-called “genesis
block”. Note that in [PS18, §4.2.1], the VRF is implemented from a fresh random oracle: H which appears after
publication of keys. But as noticed in [PS17], assuming a fresh random oracle trivially falls back to the fresh
seed model: simply use an old random oracle (in their case: a PRF) with inputs pre-pended by the fresh seed. Let
us recall why this model cannot be simply downgraded into a seed which would be known the the adversaryA
before corrupt players publish their VRF keys. Consider the scenario where this would happen. Let us consider
simultaneously the examples of: Thunderella, where an output can be reached in 2 rounds by [PS18, Thm
10] (propose, then 3/4 majority of votes); Algorand [GHM+17], where it is reached in in 4 rounds (page 5,
“E�ciency”); and [ACD+19; ACD+23] (§5.1) which take 3 rounds. So in order to break consistency of all those
consensus protocols, it is enough for the adversary to ensure that a corrupt player is eligible as leader in the �rst
round (in order to make equivocating proposals), and that > λ/2 corrupt players are eligible as voters of the
subsequent rounds 2, 3 and 4. The adversaryA can easily achieve this objective in our σ-known-to-A scenario,
by choosing the VRF keys of corrupt players as follows. Denote λ the expected number of eligible voters per
round. For one �xed corrupt P , try on average n key pairs (sk,vk) until the VRF.eval(sk, σ|1) returns a value
eligible to be the �rst leader. Then for every other corrupt player Q, one-by-one until λ/2 of them, try on
average (n/λ)3 keys pairs (sk,vk) until the VRF.eval(sk, σ|i) returns an eligible value for all i = 2, 3, 4.

On the face of it, the VRF in the works [GLR21; MR23; MMR22] does not take any public seed, and further-
more players are allowed to pick their VRF secret keys. Note that they call “seeds” these secret keys. So a priori
this allows the above adversarial key picking attack. From [GLR21]: “Due to the complexity of instantiating
VRFs when players may choose their own seeds, we model them as random oracles, and direct readers to [Al-
gorand] for a more in-depth treatment of the subject.”, our best guess is that their model is that a fresh ideal
VRF appears after players published their keys. Again, by domain-separation, this fresh ideal VRF could be im-
plemented as an old ideal VRF, of which the inputs would be pre-pended with a fresh random seed implicitely
assumed by the model.

11



1.4.2 How our mechanism of Theorem 3, with a weaker setup, defeats this attack. For each new attempt
of a new key pair (ski, vki) for some corrupt Pi, since this modi�es vki, this modi�es the potential seed σ =
H
(
(vk1, . . . , vkn)

)
, so completely re-samples afresh the eligibilities of all other corrupt players. We observe

that a related mechanism is proposed in [BDN18], to defeat rogue-key attacks on pairing-based multisignatures.

1.4.3 The Honestly-sampled-keys setup. Some feasibility results on consensus [LLR02; ACD+23; HPS19;
CPS20; BKLL20; BBCL23] assume a setup which is strictly stronger than the bulletin-board PKI. There, the
VRF secret keys of corrupt players are honestly sampled (either by restricting the adversary, or, by assuming
a trusted third-party). So this model makes impossible, by de�nition, the above attack where the adversary
repeatedly samples the VRF secret key of each corrupt player P , until it chooses one which grants eligibility
of P in su�ciently many committees.

1.4.4 Static adversaries. In both [DPS19; ACKN23], there is a public function which returns if a given player
is eligible to speak in a given round, e.g., in [ACKN23] for dealing a coin. But the eligibility function takes
only public inputs. Thus, the adversary knows in advance all eligible honest players. So if it were adaptive,
it could block the protocol by corrupting all eligible players in advance (notice that it could also corrupt in
advance all share-holders in [ACKN23], since they are also visible). The model of [DPS19] explicitely handles
this limitation by �xing the corruption delay equal at least as large as the delay to reach consensus, on a so-called
checkpoint. For our concern of a single consensus instance (not a blockchain, as them), this is equivalent to a
static corruptions. Turning to [PS17], in §7.4 the proof for adaptive security does a reduction to static security
with 2n loss. So this is incompatible with our main concern, which is the regime of asymptotic complexity in
n. As regards complexity, the adaptively-secure mechanism of [PS17, §6.1] is openly stated to be prone to a
one-by-one adversarial key picking attack. They give the example of a lazy adversary which picks the key of
each corrupt player P so as to grant P one leader slot (as noticed in Section 1.4.1, o�ering v leader slots to P
would take only nv trials of keys in expectation). They deduce that the round complexity is linear in f , so this
is incompatible with our concern, which is constant round complexity.

The synchronous BA of [BCG21; BCG24] is in the bulletin-board PKI model, however their adversary cannot
adaptively corrupt players after the setup. It has f < (1/3 − ε)n corruption resilience and O(npolylog(n)
communication complexity. With this respect, our upper-bound Theorem 3 has strictly better parameters: f <
(1/2− ε)n corruption resilience, O(n) complexity and tolerance to a rushing adaptive adversary. Their BA is
balanced, in that each player sends messages to no more than polylog(n) peers. Since our protocol proceeds
by simultaneous multicasts, those can also be implemented by protocols in which players speak only to a few
peers [CKMR22; LMM+22; LMT22].

1.4.5 The lower bounds Theorems 4 and 5 are in stronger models than previously. To our knowledge,
all previous lower bounds for consensus with an adaptive adversary are in strictly weaker models. Those of
[BKLL20, §7], [BCG21; BCG24, Thm 1.5] and [ACD+19, Thm 3] do not assumemessage-authentication. Whereas,
the one of [ACD+19, Thm 1] assumes that the adversary can remove messages which were already sent in the
round. We now compare more particularly to the one of [ACD+19, Thm 3], since the technique is similar. It is
stated for broadcast, instead of for BA. As explained at the end of Section 1.3.2, their proof technique does not
provide a lower bound for broadcast in the message-authentication model. Hence, our contribution consisted in
observing that their proof technique, when upgrading to the message-authentication model, can be successfully
adapted provided switching the problem to BA.

1.4.6 Are distributed samplers of any help? In [ASY22; AOS23] they implement a functionality (Figure 5)
which, upon being queried by the adversary, (re-)samples from any prescribed distribution; then upon being
allowed by the adversary, publishes the last sample obtained. The protocol operates in one round of publications
on a bulletin-board, so falls under our de�nition of a bulletin-board PKI setup. However, it is orthogonal from
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our needs since the functionality does not return secret VRF keys to players. If we had used naively their
functionality to set the public seed of the VRF, independently of the VRF public keys of players and in parallel of
their publication, then this would have allowed the same attack as above. Namely: the adversary would observe
the output s of the functionality, then choose the VRF secret key of each corrupt player P in order to maximize
its eligibility.

1.4.7 Setups with interactions (and at least quadratic complexity). If we had allowed two consecutive
rounds of publication on the bulletin-board followed by all-to-all messages, then this would have enabled to
implement the unbiased idealized self-sortition functionality Fmine of [ACD+19; HPS19; CPS20] as follows: 1.
players publish their VRF public keys, as well as public encryption keys, 2. each player publishes a PVSS of a
random value, 3. players open the published PVSSs, and de�ne the VRF seed σ equal to the sum of the opened
values. The setups of [BKLL20; ACKN23] are also interactive, since they proceed by such several consecutive
broadcasts or consensus instances. Since before Theorem 3, no consensus with linear complexity was known in
the bulletin-board PKI model, thus a fortiori no algorithm with linear complexity was either known to imple-
ment these setups. Likewise, [GHM+17; DGKR18; CM19] consider an ever-growing chain of consensus (VBA)
instances. The VRF seed of later instances is determined by the output of older instances. However this does
not settle how the VRF seed of the �rst consensus instance is set, which is what our work is addressing. Hence
it is not apples-to-apples to compare our single-shot instance with the performances of their later instances.
But surprisingly, we observe that we are on par with theirs. Indeed, in all works [GHM+17; DPS19; DGKR18;
CM19] the seed is publicly deterministically obtained from the outputs of older instances. Roughly, the adver-
sary can incorporate arbitrary salt to these outputs, after having seen the contributions from honest players
to these outputs. In the eligibility functionality of [DGKR18, Fig. 8] this power is very roughly modelled as: A
is o�ered to test eligibilities with a polynomial number of seeds, each sampled at random by the functionality.
ThenA chooses to set the seed of the equal to the one it likes the most among those tried. Hence, this power is
equivalent to the one of ourFbias

eligib. Note that the functionality of [DPS19, Figure 7] o�ers even more power the
the adversary, since it can choose each seed tried. However this is mitigated by their static adversary model.

1.4.8 Ressource-restricted cryptography, and a failed attempt. This model [GKOPZ20], initiated by the
Bitcoin protocol [Nak09], assumes that honest players are able to collectively spend more ressources than the
adversary. It is shown in [Nak09; GKL15] how to implement BA under honest majority in this model, using only
plain synchronous authenticated channels, thereby circumventing the f > n/3 impossibility of [LSP82; Bor96].
Let us recall the technique of [AD15; GKLP18] which removes the need for an unpredictable seed in the genesis
block of Bitcoin. To send a message in a given round r, a player must solve a challenge derived from, roughly, a
quorum of round-(r-1) messages. Then in its round-rmessage, the player includes some randomness: as a result,
as long as a quorum of round-r messages contain at least one issued by an honest player, the challenge will be
fresh. In our setting, it was tempting to adapt this technique by using a quorum of round-(r-1) randomnesses
as a seed in the VRF evaluation. Unfortunately, VRF evaluations are much cheaper than PoW challenges. So the
adversary could, for each corrupt player P one by one, try di�erent quorums of messages until one yields a VRF
seed granting eligibility to P . Hence, this falls back to the attack of Section 1.4.2. A related model is time-based
cryptography, in which honest players are assumed to compute a function as fast as the adversary [WXDS20]
(time-lock puzzles) or [ALPT22] (VDFs).

2 Introduction to the second separation, under partial synchrony

2.1 Model and upper bound The model is as is Section 1.1, except the communication model, which is now
the one de�ned in [DLS88, §2.3 3)] under the name “∆ holds eventually”. Let us recall it. In every execution
the adversary initially sets a �nite round number, denoted global stabilization time (GST), such that from GST
the execution is synchronous as in the previous model of Section 1.1. Players are never aware when GST
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happens: indeed, nothing distinguishes an execution where GST = 0, from one in which GST is very high
but the adversary synchronously delivers messages from the beginning.A can delay untilGST+1 all messages
which were sent before GST, in particular, it cannot erase them. The latency and communication complexity
are then measured only after GST. We now make the simple but possibly new observation that, with this
de�nition, no protocol can o�er any guarantee if players are PPT machines. Indeed, the adversary could just
set GST = 2κ, so that players exhaust their polynomial budget and halt before GST. So we propose a �x to the
model, consisting in restricting∆ to be a polynomial value. In Appendix A.2 we formalize this in UC, by forcing
the adversary to set GST in unary notation. This formalism is a straightforward adaptation of [CGHZ16].

On the one hand, the bulletin-board PKI-based setup mechanism of Theorem 3 obviously holds under partial
synchrony. Applying it to the partially synchronous BA of [ACD+23, §6.2] (or a simpli�cation of, as done in
genericBA), immediately yields:

Theorem 6 (Theorem 3 adapted to partial synchrony). Using the de�nitions of Sections 1.1 and 2, consider:
partially synchronous authenticated channels with public content, a bulletin-board PKI setup and an adaptive
rushing adversary. Let ε ∈ ]0, 1[ and λ < n be �xed parameters.
Then there exists a BA tolerating any number f < (1/3−ε)n of corruptions, and such that, except with probability
η exponentially small in both λ, every execution satis�es: Consistency, Strong unanimity, Termination within an
expected constant number of rounds after GST, at most λ + ε honest players send (multicast) messages in each
round, and each message is of bitsize O(λ+ ε).

2.2 Lower bound and the second separation On one hand, the lower bound on the multicast complexity of
Theorem 4, under synchrony, a fortiori holds under partial synchrony. Together with Theorem 6, this shows
a separation between the bulletin-board PKI setup and the message-authentication model under partial syn-
chrony, for the class of multicast-based consensus protocols. We are now going to show another separation
between those two models under partial synchrony, which applies to consensus protocols with any commu-
nication pattern. We obtain it from the following lower bound, of which the proof is the most technical one.
Precisely, Theorem 7 states that if a partially synchronous BA in the message-authentication model has linear
communication complexity, then it has round complexity at least logarithmic in f . So this draws a separation
with the constant round complexity provided by the Theorem 6 under a bulletin-board PKI.

Theorem 7. Consider partial synchrony, and the model of Section 1.1.6, i.e., message-authentication (and secure
channels, any CRS, NIZK) and an adaptive rushing adversary which cannot remove messages sent. If there exists a
BA with f corruption tolerance such that:

(6) P
[
Consistency, Strong Unanimity, Termination within R(f, λ) rounds after GST
where R(f, λ) 6 Ω(log f/ log λ)(to be precised) and λf message complexity

]
> 1− η

Then η > (1− (f/2n))/3 > 1/3− 1/18.

2.3 Warmup: unauthenticated quadratic communication lower bound. The proof strategy of Theorem 7
builds on the the strategy of the following warmup result. It states that, without even the message-authentication
model, then partially synchronous BA has quadratic communication complexity.

Theorem 8. Using the de�nitions of Section 1.1, consider: partially synchronous secure channels (and any CRS,
NIZK), and an adaptive rushing adversary which cannot remove messages sent. Suppose that there exists a BA
protocol with f corruption tolerance such that:

(7) P
[
Consistency, Strong Unanimity, Termination and 6 εnf message complexity after GST

]
> 1− η .

Then η > (1− ε)/3.
Furthermore one can assume secret channels and any CRS, which both make the bound stronger.
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The proof adapts the impossibility argument of [DR85, Thm 1] to randomized protocols, by using the two
additional tools at our disposal: (i) partial synchrony enables to delay the messages sent to the isolated player
p, and (ii) adaptive corruptions enable to produce on-the-�y a faithfully sampled parallel view to p (which we
will call blue) without knowing in advance to whom p will send messages to.

Proof. For any �xed world, up to replacing η by any arbitrarily close value η − µ, we can consider that Equa-
tion (7) is strenghtened with: [all players output withinR(n) rounds], whereR(n) is some �xed function in n,
µ (and taking poly(κ)-bounded values). For ease of notation we will call R(n) an “essential upper-bound on
the round complexity” in the given world.

We consider three worlds: still ↔ real ↔ blue, where the↔ denotes an indistinguishability between the
views of some players.

- World blue: GST = 0, all players are honest and are assigned input 0.
- World still: GST = 0. Only p is corrupt, it never sends messages. All other players are honest and are

assigned input 1.
- World real: GST = max(Rblue(n), Rstill(n))+1, whereR(n)blue andRstill(n) denote essential upper-

bounds on the round complexities in the blue and still worlds. All players are initially honest. The adversary
A selects a player p uniformly at random, it is assigned input 0. All other players are assigned input 1. A acts
according to the following strategy, of which the e�ect is to provide to p a view distributed as in blue until
GST, and to forever-honest players other than p a view distributed as in still until GST. A initiates in its
head a simulated execution of the blue world. In more detail, it initializes a simulated copy of all players other
than p, assigns to them input 0 and sets GST = 0 in this simulation. Then at the start of each real round,
the adversary simulates this round for every player other than p in the simulated execution. For a real player
Q, we denote Q its counterpart in the simulated execution. The adversary A interacts with the real players as
follows:
• If a real honest player, or honest thread (see below): Q sends a message m to p, then: delay the delivery

of m until GST + 1;
• If a simulated player Q sends a message to p in the simulated blue execution, if there have not been f

corruptions yet, the adversary adaptively corrupts the real player Q (unless it is already corrupt) in the
real execution;
• If p sends a message m to a real player Q, then A makes m delivered to the counterpart of Q in the

simulation.
• Upon being corrupt, a player Q:

- keeps its internal state and keeps following the protocol as if it had never been corrupt: we will call
this the honest thread of Q;

- in addition, the adversary makes Q follow a parallel thread of actions, which denote Q: the corrupt
thread of Q. Q (run by Q) sends the messages to p in the real execution, that the simulated Q sends
to p in the simulated blue execution; note that these messages are sent to player p only and not to
anyone else.

Indistinguishability between the real and still world. The view of so-far honest players other than p in the real
world, is equally distributed to their view in still. Indeed, in real they interact only with honest threads, of
which the behavior does not depend on the corruptions. We further formalize this in Lemma 16 of Section 7.1.
As a result, so-far honest players other than p in the real world output 1 with (high) probability > 1− η.

Indistinguishability between the real and blue worlds, for p. Intuitively, since p outputs 0 with (high) > 1 − η
probability in the blue world, it thus also outputs 0 in the real world as long as the simulation fairly follows
the blue world. This happens when there are no more than f distinct players in the simulation which ever
send messages to p. By the Markov bound, this has probability > 1 − η − ε . Thus, p outputs 1 with (high)
probability > 1 − η − ε in the real world. Making rigorous the previous hand-waiving argument is done

15



in Lemma 17 of Section 7.1. The proof is not completely trivial due to a circular dependency: the simulation
depends on the messages of the real p, which themselves depend if less or more than f simulated players
talk to p. We solve this apparent problem by a series of hybrid distributions, in particular in one of them we
consider > f corruptions. We believe this proof technique might be of independent interest, since it may apply
to rigorously proving all lower bounds which follow a strategy as in [ACD+19, Thm 3], i.e., where adaptive
corruptions depend on simulation(s) made by the adversary.

Conclusion. Intersecting the two previous events in the real world, i.e., p outputs 0 and the other honest players
1, we obtain a consistency violation with probability > 1 − 2η − ε . So the latter probability must by 6 η,
yielding the claimed η > (1− ε)/3.

2.4 Sketch proof of Theorem 7 We de�ne more precisely

(8) R(f, λ) :=
log f − log 2

log λ+ log 2

and aim at exhibiting a consistency failure in real, following the warmup argument. However, the upgrade to
the message-authentication model imposes the following two changes.

First change: corrupting all issuers of signatures received by p. In the blue execution, the messages sent to p may
contain signatures of other players. To enable A to create these signatures in the simulated execution, A now
also corrupts all players which potentially issued signatures sent of forwarded to p. We call the set of such
players as those which reached to p, denoted RT(p) and which we de�ne precisely as follows. Let Q be any
player, we call RT1(Q) the set of players from which Q received messages in the �rst round. Then we de�ne
recursively, for every round number r: RTr(Q), called the set of players which reached toQ within the �rst r
rounds, as equal to:

(9) RTr(Q) = RTr−1(Q) ∪
⋃

P→rQ

RTr−1(P )

where the subscript P→rQ denotes the union over all P from which Q received a round-r message. Hence,
our �rst change is formalized as follows:

- Modi�cation to world real: If a simulated player Q sends a message to p in some round r the
simulated blue execution, the adversary adaptively corrupts all the setRTr−1(Q) (unless those already corrupt)
in the real execution. It raizes a “RT (p) over�ow” �ag upon being required to corrupt more than f/2 players
for this reason.

Second change: corrupting all “popular” players in the blueworld, in order to keep small the number of signatures received
by p. We now need to control the size of RT(p). This is our main technical contribution: we modify the blue
execution (and, accordingly, the blue simulation in the real execution!) as follows:

- Modi�cation to both {world blue } and to {the simulated execution in world real }: At
the end of each round r, de�ne the “popular” players as those which received more than c := (2n/t)λ mes-
sages in the round.A immediately corrupts them and makes them silent forever. The adversaryA corrupts up
to f/2 popular players. If their number gets larger, then it raizes a “popular over�ow”-�ag and gives up. So A
does not raize the �ag in good executions, since there the communication complexity in these is 6 fλ. Recall
that those good executions have probability > 1− η.

An easy recursion on r shows that, with this strategy and in every execution where the �ag is not raized,
we have that for each so-far honest player Q and round r:

(10) RTr(Q) 6 cr+1 .
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Deriving the probability that p is forever honest and its view is fairly sampled as in blue. On the one hand, in those
good executions, a player p sampled at random has probability > 1− (f/2)/n not to be popular, and thus to
be left forever honest. To ease notation, we set ε := (f/2)/n. In particular, equation Equation (10) holds for
any such forever honest player; note that we did not need to apply anymore the Markov bound, as we did in
the proof of Theorem 8 (hence the ε appearing in its statement).

Moreoever, in those good executions, the precise choice of R (in Equation (8)) ensures that the adversary
never raizes a “RT(p) over�ow”-�ag. This follows from taking the logarithm of Equation (10).

In conclusion, a randomly sampled p stays forever honest and outputs 0 in the real execution, with proba-
bility > (1− η)(1− ε) > 1− ε − η.

Conclusion: probability of consistency failure and round complexity. Since the forever honest players other than p
output 1 with probability 1− η, as follows from indistinguishability with still, it follows a consistency failure
with probability > 1 − ε − 2η. Since the latter probability must be smaller than η, we obtain the claimed
bound by replacing ε by its value (f/2)/n.

Related works under partial synchrony, novelty. Notice that [ACD+19; ACD+23] consider the variant of
partial synchrony with an unknown ∆. All our bounds also hold in this variant, up to adapting the de�nitions
of complexities, with more protocol-speci�c de�nitions of latency and communication.

To our knowledge, Theorem 7 is the �rst communication lower bound for partially synchronous randomized
consensus.

The unauthenticated warmup Theorem 8 can be seen as an upgrade to partial synchrony of the lower bound
of [BKLL20, §7]. In addition, our proof strategy simpli�es the one of [BKLL20, §7] (in which our concurrent
bound is kindly mentioned).

3 Model and results for external validity

Following [LLTW20] we denote as external validity predicate any e�ciently computable function of the form
ext-valid : {0, 1}∗ → {accept or reject}. Notice that in the original de�nition [CKPS01], ext-valid checks the
validity of values against validity certi�cates. All our bounds hold unchanged in this generality.

De�nition 9. A validated Byzantine agreement (VBA, also known as MVBA) is the following variant of the
De�nition 1 of a BA. Now,Π also takes as public parameter an external validity predicate ext-valid; and Strong
unanimity is replaced by:

• External Validity. if a player P outputs x, then ext-valid(x) = accept.
Then, the probability to have simultaneously Consistency, External Validity and Termination, is measured in the
worst-case over: all adversaries, plus all e�ciently computable external validity predicates, plus all assignments
of valid inputs to honest players.

A number of use-cases of VBA use validity predicates which we call protocol-dependent. This means that
ext-valid may not by publicly veri�able, and that the time taken by a player to evaluate ext-valid depends
on its state in a higher-level protocol. Most such use-cases [YXXM23; Yua22; GLL+22] are more or less equal to
agreement on a common (or “core”) subset (ACS). Roughly, a vector of 2f+1 values (xi)i is considered valid by a
player P as soon as, for each i, P has output xi from the reliable broadcast from Pi. Our feasibility results The-
orems 11 and 13 also hold for protocol-dependent predicates. Whereas, our impossibility results Theorems 10
and 12 hold for the most mainstream non-protocol-dependent predicate: validity of a signature of some exter-
nal entity, so this makes them stronger. Note that they hold only for polynomially-bounded honest players,
since otherwise VBA would be trivial: brute-force the smallest valid value, then output it.

We measure the latency of a VBA as a worst-case over all validity predicates, from the point in the execution
where each honest player received at least one valid value (this precision is important for protocol-speci�c
predicates, for which players take variable times until they obtain valid values).
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3.1 Elementary-but-new results on consensus with external validity (VBA) Theorem 10 shows impos-
sibility of partially synchronous randomized VBA or BA beyond f < n/3 corruptions, whatever the setup.

Theorem 10. Consider partial synchrony with known∆, as de�ned above. Consider any setup, PPT honest players
(for BA: they can even be assumed in�nitely powerful), a static adversary. If f > n/3 players are corrupt, then
any partially synchronous VBA or BA (De�nition 1) has probability of failure η > 1/3.

The proof is an easy adaptation of the impossibility proof of [DLS88, §4.3] for deterministic partially syn-
chronous BA. The novelty consists in choosing the validity predicate equal to validity of the signature of some
external entity. Hence, players cannot forge valid values which they did not see, let alone output them. The
latter guarantee is weaker than strong unanimity, yet su�cient to carry out the proof. The details are provided
in Appendix D.

Theorem 11. Under synchrony and assuming message-authentication, then VBA is feasible for any number
f 6 n− 1 of corruptions

Proof. The following protocol is a VBA: every player broadcasts its input using the Dolev-Strong [DS83] proto-
col, which we recall terminates within f +1 rounds, whatever the sender. After all instances terminate, denote
(x1, . . . , xn) the list of outputs. Note that some of them may be invalid, e.g., equal to ⊥. Output the valid xi
with the smallest index i.

3.2 Variants of our bounds for consensus with external validity (VBA)

Theorem 12. Theorem 8 and Theorem 7 also hold for VBA.

The modi�cations to the proofs are the same as described for Theorem 10, namely: in place of strong unanimity,
use the weaker guarantee that honest players cannot output valid values which they did not see (provided a
suitable ext-valid). Let us give the details for Theorem 7.

Proof. Consider an entity E controled by the adversary, and such that players can verify its signatures (via
FCERT). Set ext-valid the validity predicate which accepts a value if and only if it is a signature of E. In the
proof of Theorem 7, replace the inputs 0 and 1 by signatures ofE: σ0 and σ1 on 0 and 1. Replace the application
of strong unanimity by the application of external validity, as follows.

Since in the blue execution p sees only σ0, it cannot forge σ1. So the only possible valid output of p is σ0.
Likewise, in the still execution, honest players see only σ1, i.e., their view is generated using solely σ1. So they
cannot forge σ0. So their only possible valid output is σ1.

Theorem 13. Theorem 3 and Theorem 6 also hold for VBA.

The result follows from adding external validity checks in genericBA.

3.3 Novelty of the results To our knowledge, no corruption lower bound was previously stated for any
form of partially synchronous randomized consensus (synchronous BA being dealt with in [Fit03]). To our
knowledge ([CKN21; CGG+23]), we are not either aware of any corruption bound for validated Byzantine
agreement (VBA), neither under synchrony nor partial synchrony.

4 Model

The model provided in Sections 1.1, 2 and 3 is enough for the understanding of the results and their compar-
ison with related works. However for the interested reader, in Appendix A we further formalize it with ideal
functionalities, following the standard literature [Can20; KMTZ13]. Two small contributions which we make
are: in Appendix A.2, emulating partial synchrony in the UC model; and, in Appendix A.3: formalizing, in the
UC model, the bulletin board PKI setup essentially as a synchronous broadcast.
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5 Formalizing the proof of Theorem 3

5.1 Building blocks

The �rst ingredient is the BA called genericBA and further formalized in Appendix B.1. Let us brie�y recall
from Section 1.2.1 the following. genericBA is obtained by simplifying [ACD+19, §5.2] by two non-essential
aspects, and by generalizing it to any ideal functionality-interface granting eligibility to speak in a given
round. We called Feligib such interface, and speci�ed it in Figure 1. In every round r of genericBA, every
player P is instructed to conditionally multicast a speci�ed round-r message, denotedm. To this end, it queries
Feligib.speak-request(r). If returned 1, then we say that it is eligible to speak in round r. If so, then it multicasts
the message m along with its signature on m, then rotates its signing key to the new one of the next round
r+1, then erases its old round-r signing key. On receiving a round-r signed message from some player P , a
player Q processes it if and only if Feligib.verify(P, r) returns 1.

Only for convenience of the phrasing of Properties 14, we introduce the following terminology. The protocol
runs in iterations v = 1, 2, . . . . The �rst iteration consists of the two rounds r = 1, 2, which for convenience
we dub vote and commit. Higher iterations v > 2 consist of four rounds r = 2+4(v−1)+ j, j ∈ {1, 2, 3, 4},
which we dub respectively status,propose,vote, and commit. We purposedly do not specify genericBA in the
main body (it can be found in Appendix B.1). Indeed, our main message is that all its guarantees, which we
single-out in Properties 14, solely follow from the outputs of the Feligib interface. Since every player queries
Feligib(r) in every round r, independently of the execution, this shows that the guarantees below depend solely
on how Feligib will be instantiated. The conditions below involve a parameter λ, and a threshold number of
corruptions equal to f 6 n(1/2− ε), where ε is a parameter.

Properties 14. Consider the protocol genericBA described in Appendix B.1 (a simpli�cation of [ACD+19, §5.2]).
Denote V luck the smaller iteration number (possibly∞) for which both conditions hold:
committees. in both the vote and commit rounds: > λ/2 honest players eligible to speak, and < λ/2 corrupt

players are eligible to speak;
leader. if furthermore V luck > 2, then: there exists exactly one player eligible to speak in the propose round,

and this player is furthermore honest;
then all players terminate by the �rst round of iteration V luck + 1.
If furthermore for all iterations v 6 V luck we have: (i) at least one honest player is eligible to speak in the status
round, and (ii) in both the vote and commit rounds we have: > λ/2 honest players eligible to speak, and < λ/2
corrupt players eligible to speak; then, the execution satis�es Consistency and Strong unanimity.

The proof is obtained by compiling the one given in [ACD+23, §5.3], which is simpli�ed by our two sim-
pli�cations. The compilation essentially consists in replacing every occurence of “By Lemma 1 / By Cherno�,
except for exp(−Ω(λ)) probability” by: “by de�nition of V luck ” or “by condition (i)/(ii)”, depending on the
case. We provide more details in Appendix B.2, and also explain in Appendix B.3 how to adapt the statement
and the proof to when the termination mechanism is reincorporated.

From Properties 14, it follows that the only ingredient needed to obtain Theorem 3 is an instantiation of
Feligib in the bulletin-board PKI model, such that: V luck is independent of n, and such that conditions (i) and (ii)
hold, for a given ε, up to exponentially small probability in λ the number of players which speak. All the ideas
to implementFbias

eligib in the bulletin-board PKI model were conveyed in Section 1.2.1, we now formalize them as
protocol Πbias

eligib, which we give in Figure 4. To describe it, we borrow the ideal functionality called FVRF of a
veri�able random function (VRF) from [DGKR18, Fig. 2], which we recall in Figure 9 of Appendix B. ThisFVRF

model further simpli�es the syntax of a VRF which we used in Section 1.2.1. Indeed, instead of manipulating
secret keys, FVRF directly ignores requests for provable evaluations if they do not come from the same entity
which generated the public key vk.

The proof that Πbias
eligib implements Fbias

eligib follows from a straightforward simulation, which is furthermore
perfect. The only subtlety is when the simulator S receives an FVRF-evaluation request from the adversary,
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Πbias
eligib(p)

Setup. Before time t = 0: each player queries FVRF.keyGen, then upon receiving a key vk, publishes it on the bulletin-
board.
At time t = 0: players retrieve the keys published on the bulletin-board. Denote their list as: σ ← (vk1, . . . , vkn) (unpub-
lished keys are set to ⊥).

Request to speak in round r. Player P queries FVRF.evalProve((σ, r)). Upon being returned the provable evaluation
(y, π): if y < p(r), then output 1, i.e., eligible in r, then multicast (r, y, π). Else, output 0.

Verify(P, r). If no (r, y, π) was received from P , output 0. Else, let vk by the public veri�cation key of P (retrieved from
the bulletin-board). Query FVRF.Verify((σ, r), y, π, vk), and output the response received from FVRF.

Figure 4: Protocol implementingFbias
eligib. The two di�erences with the implicit implementation ofFmine in [ACD+23,

§9.4] are: the setup (there is no longer a trusted party generating the keys) and for the publication on the bulletin
board), and our pre-pending of the seed σ to all VRF evaluations. To highlight these di�erences, the rest is shaded-
out. We further simpli�ed Section 1.2.1 by setting H equal to the identity function. For convenience we normalize
to [0, 1] the set of evaluations of FVRF. As in [DGKR18, Fig. 2], recalled in Figure 9, the veri�cation key lengths are not
speci�ed. Recall that in the FVRF model, all public keys returned by keyGen are chosen by the adversary, at the only condition
that the keys of players are all distinct and distinct from the ones registered directly by A in its name.

for a key vk which was not yet assigned to a corrupt player. Then S predicts for which corrupt player vk will
be used in conjunction with the given seed σ. To do this, it looks at which position the key vk appears in the
seed σ (or in the preimage of the seed, in case H would not be the identity function but a simulated oracle).
We defer the details to Appendix B.5.

5.2 Deriving Theorem 3

In conclusion, it remains to prove the claimed asymptotic complexities of genericBA instantiated with Fbias
eligib.

Given Properties 14, we obviously specify Fbias
eligib with the same probabilities to be eligible in a round as those

in [ACD+23, §5.2], i.e.: p(propose) = 1/n and p(status/vote/commit) = λ/n. For simplicity we use a
complexity model where the adversary A can query Fbias

eligib on at most q distinct seeds. Then for each seed,
we consider that A can make an unlimited number of queries for all eligibilities of all corrupt players in all
rounds. We refer to [DPS19, Lemma 1] for a thinner model and analysis (their functionality Fbias, which they
implement using a costlier setup, looks similar to Fbias

eligib).
We �rst prove that all criterions in Properties 14 of the type > λ/2 and < λ/2 are matched with over-

whelming probability, then in the next paragraph we will address the remaining [leader.] criterion. Consider a
�xed seed σ which was not queried before to Fbias

eligib. Then, by de�nition of Fbias
eligib, all eligibilities of all players

in all rounds are sampled independently from all previous queries with other seeds, and also sampled inde-
pendently from each other. In particular, consider a �xed status/vote/commit round r. Then by the Cherno�
bounds, applied as detailed in Appendix A.5, the probability of the bad event badr,σ that > λ/2 corrupt
players are sampled eligible in round r is 6 exp(−ε2Ω(λ)). From now on we drop the dependency in ε for
simplicity, i.e., we consider a �xed ε. By independence of the eligibilities in distinct rounds, for a given number
of rounds R, we obtain that the bad event badr,σ does not happen in any r ∈ [1, . . . , R] with probability at
least (1− exp(−Ω(λ)))R. By independence of the eligibilities sampled over distinct seeds, we obtain that the
bad event badr does not happens in any round for any of the q seeds tried by A, with probability at least
(1 − exp(−Ω(λ)))qR. Notice that, by contrast, the probabilities of the other bad event: existence of a round
r ∈ [1, . . . , R] such that < λ/2 honest players are eligible in r, stays equal to (1 − exp(−Ω(λ)))R what-
ever the number q of re-seedings in the setup. Indeed, the eligibility of each honest player in a given round r
is sampled only when it (privately) queries it to Fbias

eligib, and by de�nition is sampled independently from the
outcome of all previous queries of the adversary.
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We now turn to upper-bound the probability that a given iteration v satis�es the [leader.] criterion. Consider
one �xed seed σ. Then the probability that, in one given iteration v, there is no corrupt player eligible to
propose, is > ((n − 1)/n)n/2 ∼= e−1/2. Thus the probability that at least one corrupt player is eligible to
propose, is 6 1− e−1/2. By independence of eligibilities in distinct iterations, the probability pbad(σ) that in
each of the V �rst iterations there is at least a corrupt player eligible to propose, is thus 6 (1 − e−1/2)V .
Taking the union bound over the q di�erent seeds tried by the adversary, it follows that the probability pbad
that in each of the V �rst iterations there is at least a corrupt player eligible to propose, is 6 q(1−e−1/2)V . In
conclusion, the probability that the [leader.] condition fails in all V �rst iterations is exponentially decreasing
in V , which shows our constant round complexity claim. Note that in the previous conclusion we neglected the
event where one round may fail to match the [committee.] condition, since this event has negligible probability
in λ by the previous paragraph. Note that in the previous conclusion we overlooked the other requirement of
[leader.] that exactly one honest player is eligible. So we would have had to multiply the previous upper-bound
by the probability that exactly one honest player is eligible to propose in a given iteration. Neglecting ε , the
latter is roughly equal to

(11) n/2.
1

n
.
(n− 1

n

)n/2−1∼= 1/2.e−1/2 .

But this latter detail is irrelevant with respect to the substantial optimization described in the beginning of
Section 5.3 (imported from Algorand).

5.3 Optimizations, and removing the simpli�cations made in genericBA

In Algorand [GHM+17], there is a much more e�cient self-sortition of a leader than the one of [ACD+19],
which we imported in genericBA. The implementation is that, in a propose round r, a player multicasts as
soon as its VRF evaluation is below the threshold: 20/n. The number 20 is from [BBK+23] but can be adapted,
the idea is that it is larger than the threshold which we speci�ed so far following [ACD+19], i.e., 1/n. Thus 10
honest players in expectation are eligible to propose. Each player considers as the proposer the one with the
smallest VRF evaluation (and ignore the other propose messages). So with this re�ned mechanism, the [leader.]
condition fails if the VRF evaluation of a corrupt player is smaller than the smallest one of all honest players.
Although the adversary can try q di�erent seeds during the setup, the interesting point is that it doesn’t know
the VRF evaluations of honest players corresponding to each seed. So it could be the case that, over the q di�erent
seeds tried, it adopts one σ such that a honest player will turn out to have a lower VRF evaluation in one of
the V �rst iterations, whereas this would not have happened with another seed σ′ tried. So intuitively, there is
hope to obtain an upper-bound on the probability of failure which is strictly better than the union bound over
all q tried seeds. We leave it for future work.

We furthermore believe that there may exist a tighter upper-bound for the round complexity of genericBA
than the one given by Properties 14, in particular in the case of binary BA. Concretly, it is possible that players
terminate in an iteration with an honest player eligible to propose, despite some corrupt players concurrently
multicasting propose. For instance, we could optimize the protocol by specifying that, if in a given iteration
v + 1, players are reported an iteration-v certi�cate c (likely: from an honest player eligible to speak in the
status round), then they consider c as a propose. From there, assuming ties to vote between two con�icting
iteration-v certi�cates are in favour of c, we thus have that all players terminate in v+ 1.

We now turn to instantiations of the VRF. The idealized model of VRF which we used, borrowed from
[DGKR18] and de�ned in Appendix B.4, can be instantiated as suggested by [GHM+17] and adopted in [PS18,
§4.2.1]. Namely: sign the value to-be-evaluated with a unique signature scheme, then apply a random oracle
on the signature. Turning to post-quantum VRFs, the most promising one is the one introduced in [EEK+23],
which realizes a weaker-but-su�cient primitive. Namely, they allow a maximum number of evaluations �xed
from the public key (which is the root of a Merkle tree), and each proof of evaluation has logarithmic size in
this maximum number.
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We now explain how to possibly remove the use of secure memory erasures, which we assumed in genericBA.
To this end, let us recall the technique of [ACD+19, §5.2], which applies only of the space of values is small,
e.g., typically binary BA. In [ACD+23, §5.2] Feligib checked eligibility to send every speci�c message content
m, instead of just the round number of the message, as we did. Hence in [ACD+23, §5.2], even if a player P
gets corrupt after eligibly multicasting a round-r messagem, the adversary may not be able to make P eligibly
multicast a round-r con�icting m′. So this removed the need for P to securely erase its round-r signing key
from its memory. Our mechanism for implementing Feligib is obviously compatible with this re�nement. In
turn, not to degrade too much the probabilities with the union bound over all message contents m, the BA of
[ACD+23, §5.2] applies to only a small number of possible values (in their case: binary). That way, the number
of possible message contents m is limited (in their case: two). It seems to us that secure memory erasure is
regarded as a realistic, given the number of areas based on it (forward secrecy, e.g., in TLS and Signal, and
proactive security [CKLS02]).

We will explain in Appendix B.3 how to re-incorporate the termination mechanism of the BA of [ACD+19,
§5.2], at the cost of a larger ε as in [ACD+19, §5.3]. Notice that termination is unecessary in a chain-of-BA-
instances regime, i.e., a blockchain ([GHM+17; DPS19; DGKR18]).

It should be clear from the statement of Properties 14 that our mechanism also applies to bootstrap the setup
of other baseline BAs than [ACD+19, §5.2], e.g., those [GHM+17; DPS19; DGKR18] in which players output an
old-enough pre�x of their observed chain of proposed blocks. Notice that those alternative BAs o�er a trade-
o�: by increasing the round complexity, they enable to reduce the corruption threshold gap: ε, since they allow
con�icting chains to be produced.

6 The important Lemma 15 for the proof of Theorem 5

Recall that the proof of Theorem 5 relied on the existence of a partition of players:P = S0∪{h0}∪S ′0, such that
the player h0 often sends no message in both worldsWAH andWHH . This is somewhat analogous to the proof
of [DR85, Theorem 1], which was based on existence of a player which sends few messages. However, existence
in [DR85, Theorem 1] is easily proven since they consider a �xed world (in which all players are honest). By
contrast, the additional di�culty here is that the de�nitions of both worldsWAH andWHH themselves depend
on the choice of the partition of players P = S0 ∪ {h0} ∪ S ′0. Thus, a standalone averaging over players does
not prove anymore existence of such a h0. Instead, we must consider simultaneously many worlds, thus the
following notations.

For I any set of players, we denote WHA(I) the world in which I is honest and assigned input 1, while
the adversary corrupts I := P\I and makes them play honestly as if having input 0. For instance, with the
previous notations of Section 1.3.2, we have WHA =WHA(S ∪ {h}).

For S any set of players, we denote WHH(S) the world in which S is honest with input 1, the remaining
players S := P\S are also honest with input 0. For instance, with the previous notations of §1.3.2, we have
WHH =WHH(S).

Likewise, we denote PHA(I) and PHH(S), and EHA(I) and EHH(S) the probability laws and expectations
in WHA(I) and WHH(S).

Lemma 15. Let η ≥ 0 be such that, with probability at least 1 − η, at most C distinct honest players send
messages in the whole execution. Then there exists a player h0 ∈ P , along with a subdivision of the set of players:
S0 ∪ {h0} ∪ S ′0 = P with |S0| = |S ′0| = f , such that, denoting

(12) ph0
(η, C) := 2

((1− η)C
f + 1

+ η
)

then in each worldWHA(S0 ∪ {h0}) andWHH(S0) it holds that, with probability at least 1− ph0
, h0 sends no

message.
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Proof. For every h, we denote 1h the function equal to 1 when h sends at least one message in the execution
and 0 otherwise. For a �xed set S of cardinality f not containing h, we denote ph(S) := EHA(St{h})

(
1h
)
+

EHH(S)
(
1h
)
. Then, to prove the Lemma, it is enough to show existence of a S0 and h0, such that ph0

(S0) ≤
2
(

(1−η)C
f+1

+ η
)

To this end, let us upper-bound the following double sum: Sum :=
∑
|S|=f

∑
h/∈S ph(S). We replacing

ph(S) by its expression. To sum the �rst summand: EHA(St{h})
(
1h
)
, we make the change of variable I :=

St{h}, i.e., we add h to the summation index set S . We leave unchanged the summation of the other summand
EHH(S)

(
1h
)
. We deduce:

(13) Sum =
∑
I

∑
h∈I

EHA(I)
(
1h

)
+
∑
S

∑
h/∈S

EHH(S)
(
1h

)
.

Let us consider the left double-sum. In each �xed I , we are summing, over honest players h, the expectation of
h to send at least one message in the execution. By assumption,

∑
h∈I 1h ≤ C with probability at least 1− η

in WHA. On the remaining events, this sum
∑

h∈I 1h over some f + 1 honest players cannot exceed f + 1

by de�nition. Overall, we deduce this upper bound on the left summand:
∑

h∈I EHA(I)
(
1h
)
6 (1 − η)C +

η(f + 1).
Let us consider the right double-sum, and repeat the same argument. We obtain the same upper-bound on

the right summand:
∑

h/∈S EHH(S)
(
1h
)
6 (1− η)C + η(f + 1).

Upper-bounding Equation (13) using the upper bounds just obtained, we obtain two sums, over summation
indices: I and S , which both vary in a set of cardinality

(
n
f+1

)
=
(
n
f

)
. Overall, we deduce the upper-bound

Sum ≤
(
n
f

)
2((1 − η)C + η(f + 1)). But coming back to the de�nition of Sum, it consists of

(
n
f

)
(f + 1)

summands (since it is summed over (S , h /∈ S)) which are all non-negative. From this we deduce existence of
one index, which we denote as (S0, h0), such that the corresponding summand ph0

(S0) is lower than or equal
to the claimed ph0

(η, C).

7 Details for Theorems 7 and 8

7.1 Details for Theorem 8

Lemma 16. The view of so-far honest players other than p in real, is equally distributed to their view in still until
GST.

Proof. Consider since the set S in real consisting of (1) so-far honest players, (2) and of for each other player
Q than p: {the initially honest Q then its honest thread}. Their initial inputs are as in still. They honestly
follow the protocol, their internal states evolve according to an honest protocol execution, and the messages
which they receive are exactly those sent to each-other, which are delivered within GST. In conclusion, the
distribution of the views of honest players in S is the same as in the still world.

In the blue world, consider the “good” event:

(14) Gblue :=
[
Strong unanimity and Consistency and Termination

and
(
Total number of messages sent 6 εfn

)]
.

Since GST = 0 in the blue execution, the total number of messages sent is equal to the message complexity,
since we recall the latter is the number of messages sent by honest players after GST. Thus, by assumption
we have P[Gblue] > 1− η. In the real word, consider the “good” event:

(15) Greal :=
[
the simulated (“blue ”) execution has Strong unanimity and Consistency and Termination

and
(
Total number of messages sent 6 εfn

)]
.
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For a �xed player P , denote

(16) RT(P ) resp. RT′(P ) the sets of players which send messages to P in the real, resp. blue world.

RT(P ) reads “reached to p ”. Technically, RT(P ) is a random variable in the real world, while RT′(P ) is
a random variable in the blue world. Note that by construction, RT(P ) are exactly the corrupt players. By
construction, these are also equal to the players of which the counterpart in the blue simulation sent a message
to p.

Likewise, we de�ne the events Xblue (resp. X real) that a uniformly sampled p receives messages from at
most f players in the blue world (resp. in the simulated execution in the real world). By the Markov bound,
(Appendix A.5) we have P

[
Xblue |Gblue

]
> 1−ε thus P

[
Gblue∩Xblue

]
> 1−ε−η. By de�nition, p outputs 0 in

Gblue. Towards exhibiting consistency failure in real, we would like to show that the same holds inGreal∩X real,
and furthermore that the later has as high probability. This is the purpose of the following lemma.

Lemma 17. P
[
Greal ∩X real

]
= P

[
Gblue ∩Xblue

]
. Thus, the former is also > 1− ε − η. Moreover, the view of

p is distributed in Greal ∩X real identically as in Gblue ∩Xblue.

Proof. We start from the real execution. We �rst make the change that the adversary corrupts all players other
than p since the beginning. Their behavior is as speci�ed, i.e., then keep their honest thread and open a corrupt
thread towards p only. This change is purely formal since the corrupt threads do not send messages to p until
their counterpart does. In particular, both the distributions and probabilities of theGreal∩X real event obtained
stay the same. In what follows we shorten this last sentence as “this does not impact the Greal ∩ X real event
obtained”.

We then make the change that honest threads never send messages. This does not impact the Greal ∩X real

event obtained.
We make the formal change that all players are initially honest with input 0. This does not impact the

execution, in particular, does not impact the Greal ∩X real event obtained. What we obtained is the blue world,
in particular the Greal ∩X real event obtained coincides with Gblue ∩Xblue.
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A Additional details on modeling

Recall that the UC model [Can20] considers a PPT machine called the environment Z , which controls the
adversary and assigns their inputs to players. Moreoever, when de�ning external validity (De�nition 9), it
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should be formalized that Z de�nes the predicate ext-valid. An example is that ext-valid checks validity of
signatures of an entity controled byZ . Another (generic) example is to formalize ext-valid as an oracle controled
by Z , to the extend that it always return the same output when queried twice on the same input.

Moreoever, Z controls the pace at which each player does its actions, in particular, can completely stall the
execution. This latter limitation does not impact our results since all our speci�cations, e.g., De�nition 1, apply
only to in�nite executions.

Notice that we do not require the UC implementation of BA as an ideal functionality. Hence, we do not
specify that the environment observes the outputs of players and tries to distinguish the protocol from a dummy
interaction with an ideal functionality of BA Instead, we stay at the level of our property-based De�nition 1
(which thus makes our impossibilities stronger). Requiring so is orthogonal to our contributions.

A.1 Public authenticated channels FAUTH, and synchrony

We recall below the functionality of public authenticated message transmitting of [Can20] and [CDN15, §4.2.3].

FS→RAUTH

1. On input (send, ssid,m) fromS, leak (sent, ssid,m) toA and store (ssid,m). Ignore any later input of the form (send, sid, _).

2. Upon receiving (ok, ssid) from A, if some (ssid,m) is stored, then output (ssid,m) to R and delete (ssid,m).

Figure 5: Public authenticated message transmitting. It is parametrized by a sender S and a receiver R

The functionality of secure message transmitting, formalized as FSMT in [Can20] and [CDN15, §4.4.2], is
the upgrade where the content of the message is kept secret. Concretely, it leaks only (sent, ssid, |m[) to A,
where |m| is the bitlength of m, instead of (sent, ssid,m).

Formalizing synchrony. Since the previous formalism does not capture synchrony, since the adversary can
block the output forever, we now describe the �x proposed in [KMTZ13, §3.3]. There, FAUTH (in their case:
FSMT) is upgraded as follows. FAUTH is parametrized by a public integer ∆. When the S inputs a message
(send, ssid,m), FAUTH initializes a counter D ← 1 which models the delivery delay for the message id ssid.
The adversary can make requests to FAUTH increase D by +1, up to a total number of ∆ − 1 requests. On
the other hand, for every message id ssid which the receiver R expects from the sender S, R can make fetch
requests toFAUTH which have for e�ect to decreaseD by−1. WhenD reaches 0,FAUTH delivers the message
toR. Note that, in Section 1 and in the paper in general, we set the unit of time equal to∆. Hence, the notation
time t = 1 actually means t = ∆.

The other ingredient needed to emulate synchrony is the global clock, which [KMTZ13] emulate as follows.
They introduce a clock functionality accessible by all players, which roughly does the following. When a player
has fetched ∆ times all the messages of a round r that it expected to receive, and done all the processing of
messages that it needed to do, it noti�es the clock that it is ready. Upon being noti�ed by all honest players
that they are ready, the clock ticks r + 1, i.e., allows them to proceed to sending their round r + 1 messages.

A.2 Partial synchrony

The bounds in Section 2 are stated in the model of partial synchrony de�ned as “∆ holds eventually” in [DLS88,
§2.3 3)]. As explained in the beginning of Section 2, a partially synchronous protocol can o�er meaningful
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guarantees only if we further restrict GST to be polynomial. Let us propose a UC formalism of this restriction,
which parallels the one of [KMTZ13; CGHZ16; LLM+20] for asynchronous eventual delivery of messages.

It is conveniently described by merging all FS→RAUTH into one single FAUTH which accepts all senders and
receivers. We enrich FAUTH with a counter D′, initialized to 0. The adversary can set D′ equal to a value,
denoted GST, which it must input in unary notation before the protocol begins. Since the adversary is polyno-
mial, it follows that GST is polynomial. At the end of every round, FAUTH sets D′ ← D′− 1 by one. As long
as D′ does not reach 0, FAUTH operates as asynchronous message transmitting with eventual delivery as in
[KMTZ13; CGHZ16; LLM+20]. WhenD′ reaches 0 for the �rst time,FAUTH switches forever to the mechanism
of Figure 5. Moreover at this point, if some messages not delivered yet has a current delay D> ∆, then their
delay D is set to D = ∆.

A.3 Formalizing the bulletin-board PKI setup

Let us slightly more formalize the bulletin-board PKI setup, which we speci�ed following [CGGM00]. We de-
�ned it as a setup protocol: Πs, played before the time t = 0 at which players receive their inputs. Moreover,
Πs has the following form. Before t = 0, each player P has writing access to a public bulletin board. The Πs

instructs P to generate a string then write it on the bulletin board. The Πs is non-interactive, i.e., the string
does not depend on the other strings which have possibly been written by other players. On the other hand,
the adversary learns instantaneously the strings written by honest players. Thus it can adaptively choose the
strings on behalf of corrupt players, and is allowed to write them after all honest players wrote. Then from
t = 0, all players have read-only access to the bulletin board. The closest formalization of such a bulletin-
board which we found in the litterature is the ideal functionality FCA introduced in [Can04], and which we
reproduce in Figure 6.

FCA

1. Upon receiving the �rst message (register, v) from a player P , send (registered, P, v) to A; upon receiving ok from A,
and if this is the �rst request from P, then record the pair (P, v).
2. Upon receiving a message (retrieve, P ) from playerQ, send (retrieve, P,Q) toA, and wait for an ok from it. Then, if there
is a recorded pair (P, v), output (retrieve, P, v) to Q. Else output (retrieve, P,⊥) to Q.

Figure 6: The certi�cation authority functionality: FCA.

We found that FCA is equivalent to a broadcast channel. Hence, we give below the ideal functionality of
broadcast, adapted from [GO14]. It is parametrized by a sender S and a set R of receivers. In our context of
bulletin-board PKI: there are n instances, in instance i the i-th player acts as the sender, and the set of receivers
is equal to all players P .

FS,RBC

Upon receiving for the �rst time:
{
(v ∈ {0, 1}∗) from S if S honest

}
OR

{
(v ∈ {0, 1}∗ t{⊥}

)
fromA if S corrupt

}
. Then

hand v to A, and when A allows then send (v) to every R ∈ R.

Figure 7: One broadcast instance, parametrized by a sender S and a set of receiversR.
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Formalizing delivery before t = 0 Whatever the formalism, FCA or FBC, the formalism above does not yet
capture the timing assumption that all players are delivered an output by time t = 0. We now propose a
mechanism to emulate this timing assumption in UC model, following the mechanism of [KMTZ13] which is
recalled above for point-to-point message transmitting. Namely: FCA or FBC initialize a counter 1← DS←R
for each pair of sender (S, receiver R). The adversary can make up to ∆ − 1 requests to increase it by +1,
while R can make repeated fetch requests to decrease it by−1. Upon the event where, for the �rst time, there
is a receiver R ∈ P which made ∆ requests. Then, if A input nothing on behalf of the corrupt sender S, we
specify that FBC sets the output to ⊥. Then it delivers ⊥ to R, as well as to every subsequent R which will
reach a number ∆ of fetch requests.

A.4 Ideal message-authentication functionality

We copy in Figure 8 the ideal message-authentication functionality of [Can04]. It is parametrized by a player
S, denoted signer.

FSCERT

Signature Generation: Upon receiving (sign-request, sid,m) from S, check if sid = (S, sid′) for some sid′. If not, then
ignore the request. Send (sign-request, sid,m) to A. Upon receiving (signature, sid,m, σ) from A, verify that no entry
(m,σ, 0) is recorded. If it is, then output an error message to S and halt. Else, output (signature, sid,m, σ) to S, and record
the entry (m,σ, 1).
Signature Veri�cation: Upon receiving a value (verify, sid,m, σ) from some player P, hand (verify, sid,m, σ) to A. Upon
receiving (verification, sid,m, ϕ) from A, do:
1. If (m,σ, 1) is recorded then set b = 1.

2. Else, if the signer is not corrupted, and no entry (m,σ′, 1) for any σ′ is recorded, then set b = 0 and record the entry
(m,σ, 0).

3. Else, if there is an entry (m,σ, b′) recorded, then set b = b′.

4. Else, set b = ϕ, and record the entry (m,σ′, ϕ).
Output (verification, sid,m, b) to P.

Figure 8: Ideal digital signature functionality, dubbed as “signing oracle”, for player S.

On the face of it, a corrupt P can possibly query (verify) on many triples (sid,m, σ) and then A forces
FCERT to record (m,σ, 0), preventing the subsequent use of these parameters by the signer S. But actually,
as explained in [Can04, p 10], the (verify) requests are ignored if they do not come with a sid which was used
by the signer S in the �rst place.

Notice also thatAmay block the delivery of the signature, by never answering (signature, sid,m, σ). Thus,
the advancement of the BA protocol is stalled. This is a formal problem since, on the other hand, the Environ-
ment Z allows players to take an in�nite number of steps, so the execution is still considered as in�nite and
thus the Termination requirement of De�nition 1 should apply. This problem could be easily �xed by specify-
ing FCERT to issue a signature generated in a prescribed distribution, in case A would take too much time to
respond. The mechanism in UC would follow the same fetch-and-delay mechanism as the one of [KMTZ13]
for synchronous FAUTH, recalled above. Notice that this �x is enough, thanks to the synchronous UC clock of
[KMTZ13] recalled above. Namely, whatever �nite time it takes to FSCERT to deliver its output, the clock waits
until S receives it and �nishes its computations, before ticking the next round.

Notice that, without such a clock, so under asynchrony, nothing would prevent FSCERT from taking more
delay than a number of messages delays. This artifact of the UC model is observed in [CEK+16], which point
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some failures in security proofs due to it. For this reason, they propose a UC mechanism which forces func-
tionalities such as FCERT, i.e., modeling local computations, to deliver their output in priority before other
functionalities.

A.5 Probabilistic inequalities

Proposition 18 (Markov bound). Let X be a non-negative random variable. Then for any a> 0,

P[X > a] 6
E[X]

a
.

Proposition 19 (Cherno� bounds). Consider X1, . . . , Xm Bernoulli variables, each of expected value p , i.e.,
P[Xi = 1] = p and P[Xi = 0] = 1 − p ∀i ∈ [m]. So µ := E

[∑
iXi

]
= pm. Then for every 0 ≤ δ < 1 we

have:

P
[∑

i

Xi ≥ (1 + δ)µ
]
≤ e−δ

2µ/3(17)

P
[∑

i

Xi ≤ (1− δ)µ
]
≤ e−δ

2µ/2(18)

In our applications p := λ
n

. Equation (17) will be applied to m := (1 − ε)n/2 and 1 + δ = 1/(1 − ε), while
Equation (18) will be applied to m := (1 + ε)n/2 and 1− δ = 1/(1 + ε)

B Extra details for Theorem 3

B.1 BA with uninstantiated self-sortition: genericBA

To obtain Theorem 3, we introduce a general setup mechanism which we are going to illustrate on the following
protocol, which we call genericBA. It is obtained from [ACD+23, §5.2] as follows. We simpli�ed it by down-
grading eligibility-to-send-a-given-message, into eligibility to speak in a given round, and also by removing
the termination mechanism. Moreoever, we generalized it by leaving it operate from an ideal functionality for
eligibility to speak, as long as it has the interface Feligib-interface, which we speci�ed in Figure 1. All messages
are signed. We assume a key-evolving signature scheme as in [GHM+17; DGKR18] (we refer to the formal-
ism of [DGKR18, Figure 1], and their proof in §B that it is implemented by the standard de�nition). When
being instructed to conditionally multicast a given round-r message, a player P does the following. It queries
Feligib.speak-request(r). If returned 1, then we say that it is eligible to speak in round r. If so, then it multicasts
the message with its signature, then updates its signing key to round-(r+1), and �nally erases its old (round-r)
signing key. Hence, even if it gets corrupt in the same round r, the adversary cannot anymore make P issue
signed round-r messages.

On receiving a round-rmessage from some playerP , a playerQ processes it if and only ifFeligib.verify(P, r)
returns 1.

The protocol runs in iterations v = 1, 2, . . . . The �rst iteration consists of the two rounds r = 1, 2, while,
higher iterations v > 2 consist of four rounds r = 2+4(v− 1)+ j, j ∈ {1, 2, 3, 4}. To ease the presentation,
for each iteration v > 2 we call status,propose,vote, and commit the round numbers corresponding to j =
1, 2, 3, 4, while the �rst two round numbers r = 1, 2 are dubbed vote and commit.

A collection of λ (signed and Feligib-eligible) iteration-v vote messages for the same value x from distinct
players is said to be a view -v certi�cate for x. A certi�cate from a higher iteration is said to be a higher
certi�cate. Below is the protocol for an iteration. The protocol for the �rst iteration v =1 skips the �rst two
rounds (status and propose).
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1. Status. Every player conditionally multicasts a status message of the form (status, r, x, c) containing the
highest certi�ed value x it has seen so far as well as the corresponding certi�cate c.

2. Propose. Every player P conditionally multicasts a propose message of the form (propose, r, x, c) where x is
a value with a highest certi�cate known to P , denoted c. Ties between two highest ranked values are broken
arbitrarily. To unify the presentation, we say that a value without any certi�cate has an iteration-0 certi�cate
and it is treated as the lowest ranked certi�cate.

3. Vote. In the �rst iteration v = 1, a player conditionally multicasts (vote, v = 1, x) where x is its input value.
For all iterations v > 2, if a (signed and Feligib-eligible) (propose, v, x, c) message has been received with a
certi�cate c for x, and if the player has not observed a strictly higher certi�cate for a con�icting value x’ 6= x,
it conditionally multicasts an iteration-v vote message for x, of the form (vote, v, x), attached with the above
iteration-v propose message.
//Importantly, even if the player has observed a certi�cate for a con�icting value x’ 6= x from the same iteration as v, it will still
vote for x.

4. Commit. If a player has received λ/2 iteration-v (Feligib-eligible and signed) votes for the same x from distinct
players (which form an iteration-v certi�cate for x) and no iteration-v vote for a con�icting value x’ 6= x, it
multicasts an iteration-v commit message for x of the form (commit, v, x) with the certi�cate c attached.
∗ output - without termination. (This step is not part of the iteration and can be executed at any time.) If a player

has received λ/2 commit messages for the same x from the same iteration from distinct player, it outputs
x. This last message will make all other honest player conditionally multicast the same terminate message,
output x and terminate in the next round.

B.2 Proof of Properties 14

[Round complexity to output.] In the proof of their [ACD+23, Corollary 1] it is used that, if an iteration v
satis�es both conditions [leader] and [committees], then all players output by the end of v. This shows that
all players output by the end of V luck. Notice that they call “good” an iteration are soon as it satis�es [leader],
thus con�icting with our terminology.

[Consistency.] In the proof of [ACD+23, Thm 5] it is shown that consistency holds if both conditions (i) and
(ii) hold.

[Strong unanimity.] In the proof of [ACD+23, Thm 6] it is shown that strong unanimity (which is called
“validity”) holds if both conditions (i) and (ii) hold.

Notice that all probabilities of success stated in [ACD+23, §5.3] are implicitely exponentiated by the (con-
stant) expected number of rounds before all players output.

B.3 Adding termination to genericBA

Now, in addition, there is one type of message which players may be instructed to conditionally multicast at
anytime, called terminate. To unify the presentation, we say that it is a “round-⊥ message”. In turn, Feligib is
updated to allow ⊥ round numbers as input.

∗ output - with termination. (This step is not part of the iteration and can be executed at any time.) If a
player has received λ/2 commit messages for the same x from the same iteration from distinct players, it
conditionally multicasts a termination message of the form (terminate, x) with the λ/2 commit messages
attached. The player then outputs x and terminates. This last message will make all other honest player
conditionally multicast the same terminate message, output x and terminate in the next round.

Since players can terminate, the upper-bound V luck on the round complexity is not good anymore for some
executions. Indeed, it could be the case that half of the honest players terminate beforeV luck happens, then from
this point there will not be enough honest players querying Feligib to become eligible, hence V luck may well
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never happen. For this reason we now bound the round complexity byV := min(V term, V luck), whereV term is
the �rst iteration from which enough players have terminated. Precisely, we de�ne a parameter εterm < ε such
that, when a threshold fraction of players εtermn2 have terminated, hence, queried Feligib.speak-request(⊥),
then with overwhelming probability at least one of them was eligible, hence has made all other players termi-
nate. In [ACD+19, §5.3] it is implicitely set εterm = ε/2. Moreoever, for all rounds before V term, ε must be set
large enough such that, despite up to < εtermn honest players having terminated, the remaining ε − εterm)n
are numerous enough to guarantee the conditions [committees], (i) and (ii) of Properties 14 with overwhelming
probability.

B.4 Reminder of the idealized VRF of [DGKR18]

FVRF

FVRF interacts with all players P ∈ P and the adversary A. Session identi�ers (sid) are omitted.
Key generation Upon receiving (keyGen) from a player P , hand (keyGen, P ) to A. Upon receiving (verificationKey,P ,
vk) from A, if P is honest, verify that no pair of the form (·, vk) is already stored, store the pair (P, vk) and return
(verificationKey, vk) to P . Initialize the table T (vk, ·) to empty.

Malicious key generation Upon receiving (keyGen, vk) fromA, ignore if vk is already stored. Initialize the table T (vk, ·)
to empty and record the pair (A, vk).

VRF evaluation Upon receiving a message (eval,m) from P , verify that some pair (P , vk) is recorded. If not, then ignore
the request. Then, if the value T (vk,m) is unde�ned, pick a random value y $←−{0, 1}κ and set T (vk,m) = (y,∅). Then
output (eval, y) to P , where y is such that T (vk,m) = (y, S) for some S.

VRF evaluation and proof Upon receiving (evalProve,m) from a player P , ignore if no pair (P, vk) is recorded. Else,
send (evalProve, P,m) to A. Upon receiving (evalProve,m, π) from A, if value T (vk,m) is unde�ned, verify that π
is unique, pick a random value y $←−{0, 1}κ and set T (vk,m) = (y, {π}). Else, if T (vk,m) = (y, S), set T (vk,m) =
(y, S ∪ {π}). In any case, output (eval, y, π) to P .

Malicious VRF evaluation Upon receiving (eval, vk,m, S)∗ from A for some vk, do the following. First, if
{
(A, vk) or

(P, vk) forP corrupt
}

is recorded andT (vk,m) is unde�ned, then choose a random value y $←−{0, 1}κ and setT (vk,m) =
(y, S) and output (eval, y) to A. Else, if T (vk,m) = (y, S′) for some S′ 6= ∅, union S to S′ and output (eval, y) to A,
else ignore the request.

Verification Upon receiving (verify,m, y, π, vk) from some player P , send (verify,m, y, π, vk′) to A. Upon receiving
(verification,m, y, π, vk′) from A do:

1. If vk′ = vk for some stored (·, vk) and the entry T (vk,m) equals (y, S) with π ∈ S, then set b = accept.

2. Else, if vk′ = vk for some stored (·, vk), but no entry T (vk,m) of the form (y, S 3 π) is stored, then set b = reject.

3. Else, initialize the table T (vk′, ·) to empty, and set b = reject.

Output (verification,m, y, π, b) to P .

∗ The π in [DGKR18, Fig. 2] obviously seemed to be an S.

Figure 9: VRF, idealized as an ideal functionality, following [DGKR18, Fig. 2].

B.5 Proof of implementation of Fbias
eligib byΠbias

eligib

We describe a simulator in Figure 10.
The comments in the description make it clear that the evaluations y ∈ [0, 1] returned by the simulated

FVRF are compatible with the eligibility bits sampled by Fbias
eligib (both for simulated corrupt players and for

dummy honest players). It remains to show that these evaluations are uniformly independently distributed
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Simulator S for Πbias
eligib

The simulator S initializes simulated honest players, simulated corrupt players, and internal copies of a bulletin-board and of
FVRF. In particular, in addition to its interfaces for the simulated players, the simulated FVRF o�ers its adversary interface
to the environment Z . The simulated bulletin-board follows its intended behavior.
The simulated FVRF processes all FVRF.verify requests following its intended behavior.

Setup. - S makes simulated honest players follow the protocol, i.e., query FVRF.keyGen, then publish on the bulletin-
board the keys received. It makes the simulated FVRF process the keyGen requests as speci�ed, in particular, it forwards
them to A then delivers the keys received from A to the simulated honest players.

- eval(vk,m, π) during setup. Upon receiving such a request on behalf ofFVRF during the setup, so which comes from
a corrupt player or A directly, check if m is of the form:

(19) m = (σ′, r) s.t. σ′ = (vk′1, . . . , vk
′
n) and ∃i, vk = vk′i

and furthermore if it comes from a corrupt Pj , then: check if j = i. If not, then FVRF processes the request following its
intended behavior. Else, i.e., if all checks pass:
//now, S must craft a VRF output value which is compatible with the output bit which the environment will observe upon
instructing a dummy honest player to check if Pi is eligible to speak in round r.
send (re-seed, σ′) to Fbias

eligib then send speak-request(r) to Fbias
eligib on behalf of the simulated corrupt Pi. Upon receiving

the output, which we denote coin[σ′, Pi, r]: if it is equal to 0, then set the evaluation as y $←− U([p, 1]), i.e., equal to a
uniform sample in [p, 1], else, set it as y $←− U([0, p]).
- Just before t = 0: denote

(20) σ ← (vk1, . . . , vkn)

the list of keys published on the bulletin-board. Send (re-seed, σ) to Fbias
eligib one last time.

Real honest request to speak. Upon being leaked by Fbias
eligib that one real dummy honest player Pj was returned an

output bit: coin[σ, Pj , r] to its request to speak in some round r. //now, S must set a VRF evaluation which is compatible
with the output bit: coin[σ, Pj , r] which the environment observed output by the dummy honest Pj .
Make the simulated honest Pj request FVRF.evalProve((σ, r)). Set the evaluation T (vkj , (σ, r)) ← y as follows: if
coin[σ, Pi, r] = 0, then set y $←− U([p, 1]), else, set it as y $←− U([0, p]). Finally, make the simulated honest Pj multicast
(r, y, π), where π is the VRF proof received on behalf of the adversary from the environment.

Malicious eval(vk,m, π) a�er setup upon receiving such request from a corrupt player or A directly, check if m is of
the form:

(21) m = (σ, r) and ∃i, vk = vki

and furthermore if it comes from a corrupt Pj , then: check if j = i. If not, then FVRF processes the request following its
intended behavior. Else, i.e., if all checks pass:
//now, S must craft a VRF output value which is compatible with the output bit which the environment will observe upon
instructing a dummy honest player to check if Pi is eligible to speak in round r.
send speak-request(r) to Fbias

eligib on behalf of the simulated corrupt Pi. Upon receiving the output, which we denote
coin[σ, Pi, r]: if it is equal to 0, then set the evaluation as y $←− U([p, 1]), i.e., equal to a uniform sample in [p, 1], else, set it
as y $←− U([0, p]).

Figure 10

distributed in [0, 1], each conditioned on the corresponding output bit. This fact follows from the way the
y ∈ [0, 1] are sampled, since each of them is sampled equal to:

(22) y ← 1y 6 p.1 + 1y > p.0 .
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C Details for the proof of Theorem 4

Let us formalize the bounds on the probabilities of failure in Theorem 4, in order to derive the claimed η > 1/6.
For each b ∈ {0, 1}, let us denote Xh,b and Xh,1−b the events in Wh,b that the real execution, resp., the

simulated one, satis�es simultaneously consistency and multicast complexity at most f . Then by assumption
and an intersection bound, we have:

(23) P(Xh,b ∩Xh,1−b) > 1− 2η .

Furthermore, the distribution of the view of p is the same in both Xh,b ∩Xh,1−b , b ∈ {0, 1}. So there is a
bit B′ that p does not output in both Xh,b ∩Xh,1−b, b ∈ {0, 1} with probability at least 1/2. Assume without
loss of generality that this bit B′ is 1. Combined with Equation (23), this yields in particular:

(24) P(Xh,1 ∩Xh,1 ∩ {p does not output 1}) > 1/2(1− 2η) .

On the other hand, recall that the view of so far honest players other than p is equally distributed inWc,b and
Wh,b, and recall furthermore that in eachWc,b they output bwith probability at least 1−η. Hence, they output
1 in eachWh,b with probability at least 1−η, in particular, output 1 inWc,1 with probability 1−η. Intersecting
with Equation (24), we obtain a consistency violation with probability at least 1/2(1− 2η)− η = 1/2− 2η.
By assumption, this quantity must itself be smaller than η. In conclusion, we obtain η > 1/6, as claimed.

D Proof of Theorem 10: impossibility of partially synchronous randomized
consensus for f ≥ n/3

We show the result for n = 3 players: P0, P1, η of which at most f = 1 is corrupt. The case of general n
follows from the well-known reduction technique of [LSP82, §2]. We show the result for VBA, then explain
how to adapt the proof to BA. We consider the classical validity predicate which returns accept on a value σ
if and only σ is a valid signature (on any message) of some prede�ned external entity called E. For simplicity
we consider idealized digital signatures, as recalled in Appendix A.4. Concretely, we will consider a scenario
(called real below) where the honest player P0 saw only a signature σ0 on 0, so is unable to forge any other
valid value. In this same scenario, honest player P1 saw only a signature σ1 on 1, so is unable to forge any
other valid value

Let us formalize the assumption: there exists a VBA and a �xed probability η such that for all adversaries
and input assignment,

(25) P
[
Consistency, External validity and Termination

]
> 1− η .

We now use the same reduction as in Section 2.3. Namely, for any �xed world, up to replacing η by any arbi-
trarily close value η−µ, we can consider that Equation (25) is strenghtened with: [all players output withinR
rounds], where R depends on µ (and which takes poly(κ)-bounded values). For ease of notation we will call
R an “essential upper-bound on the round complexity” in this given world.

We consider three worlds: W0 ↔ real ↔ W1, where the↔ denotes an indistinguishability between the
views of some players.

- World W0: GST = 0, P0 and P2 are honest and are assigned input σ0, P1 is corrupt and forever silent.

- World W1: GST = 0, P1 and P2 are honest and are assigned input σ1, P0 is corrupt and forever silent.

- World real: GST = max(R(0), R(1))+ 1, whereR(0) andR(1) denote essential upper-bounds on the
round complexities in theW0 andW1 worlds. P0 and P1 are honest with inputs σ0 and σ1, while P2 is corrupt.
All messages sent between P0 and P1 are delayed until GST + 1. P2 runs two threads in parallel denoted
P

(0)
2 and P (1)

2 . For each b ∈ {0, 1}, P (b)
2 follows honestly the protocol as if starting with input σb, but ignores

P1−b. A way to formalize this is that messages from P1−b to P2 are delivered only to the thread P (1−b)
2 , while

messages in the outgoing mailbox from P
(b)
2 to P1−b are destroyed by the adversary instead of being sent.

34



Indistinguishability between W0 and real. The view of P0 in real until GST is distributed as in W0. Thus, P0

ouputs a valid value in real before GST with probability > 1 − η. This output can only be σ0, since P0 did
not see any other valid value.

Indistinguishability between W0 and real. The view of P1 in real until GST is distributed as in W1. Thus P1

ouputs a valid value in real before GST with probability > 1 − η. This output can only be σ1, since P1 did
not see any other valid value.

In conclusion, the probability of a consistency violation in real is > 1− 2η, which must be smaller than η
by assumption, hence η > 1/3 as claimed.

The proof carries unchanged over BA. The only di�erence lies in the argumentation. Namely, P0 now
outputsσ0 inW0 by strong unanimity, not anymore by unforgeability of any other valid value thanσ0. Likewise,
P1 now outputs σ1 in W1 by strong unanimity.
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