
Biscuit: New MPCitH Signature Scheme from
Structured Multivariate Polynomials

Luk Bettale1, Delaram Kahrobaei2,3,4,5, Ludovic Perret6, and Javier Verbel7

1 IDEMIA, France
2 Departments of Computer Science and Mathematics, Queens College, City

University of New York, USA
3 Initiative for the Theoretical Sciences, Graduate Center, City University of New

York, USA
4 Department of Computer Science, University of York, UK

5 Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, USA

6 Sorbonne University, CNRS, LIP6, PolSys, Paris, France
7 Technology Innovation Institute, UAE

Abstract. This paper describes Biscuit, a new multivariate-based signa-
ture scheme derived using the MPC-in-the-Head (MPCitH) approach. The
security of Biscuit is related to the problem of solving a set of structured
quadratic algebraic equations. These equations are highly compact and
can be evaluated using very few multiplications (one multiplication per
equation). The core of Biscuit is a rather simple MPC protocol for secure
multiplications using standard optimized multiplicative triples. This pa-
per also includes several improvements toward the initial version of Bis-
cuit submitted to the NIST PQC standardization process for additional
signature schemes. Notably, we introduce a new hypercube variant of
Biscuit, refine the security analysis with recent third-party attacks, and
present a new AVX2 implementation of Biscuit.

Keywords: Post-Quantum · Digital Signature · MPC-in-the-Head · Multivari-
ate Polynomials

1 Introduction

Biscuit is a new multivariate-based digital signature scheme submitted to the
recent NIST standardization process for additional post-quantum signature
schemes [1]. The security of Biscuit is proven assuming the hardness of the
so-called PowAff2 problem (Definition 1), which is a structured version of the
well-known Multivariate Quadratic (MQ) problem [16].
Biscuit is in the lineage of the Picnic signature scheme [21,36], which was se-
lected as an alternate candidate in the first NIST post-quantum cryptography
standardization process [6]. The security of Picnic relies on the hardness of a
key-recovery attack for a lightweight block cipher. The design of Picnic builds
over a Multi-Party Computation (MPC) protocol for multiplicative triples and

2 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

follows the MPC-in-the-Head (MPCitH) paradigm [28] to obtain a Zero-Knowledge
Proof-of-Knowledge (ZKPoK) for the key-recovery problem. Finally, the signature
scheme is obtained by applying the Fiat-Shamir transformation [26] to the ZKPoK
protocol.

As in Picnic, the design of Biscuit follows the MPCitH paradigm and relies es-
sentially on the same MPC protocol to check multiplicative triples. Biscuit is build
on top of a ZKPoK for the problem of finding a pre-image s ∈ Fn

q of a system
of structured quadratic multivariate polynomial equations f ∈ Fq[x1, . . . , xn]

m

over a finite field. The private and public keys in Biscuit are respectively s ∈ Fn
q

and (f , t) ∈ Fq[x1, . . . , xn]
m
× Fm

q , where t = f(s).

The performance of Picnic is proportional to the number of multiplications
required to evaluate the circuit defining the underlying block-cipher with the
secret-key. This fact motivates the use of a set f = (f1 . . . , fm) ∈ Fq[x1, . . . , xn]

m

of polynomial equations that require a small number of multiplications to be
evaluated. Biscuit considers polynomials of the form fi = A0 + A1 ⋅ A2, where
each Ai ∈ Fq[x1, . . . , xn] is an affine polynomial. These polynomials can be eval-
uated using only one multiplication, while a random quadratic polynomial would
require O(n2

) multiplications.

1.1 Overview of MPCitH-Based Signature Schemes

Since Picnic, the use of MPCitH for designing post-quantum signature schemes
has become extremely popular. This is evidenced in the new NIST standardiza-
tion process for post-quantum signature schemes, where eight8 among forty of
the submitted schemes are using the MPCitH framework. These schemes follow
the same design methodology but differ in the hard problems considered.
AIMer is based on the hardness of key-recovery of a MPC-friendly block-cipher
[32], MIRA and MiRitH are based on the MinRank problem [9,4], MQOM is based
on the problem of solving random quadratic equations [24], PERK is based on
the Permuted Kernel Problem [3], RYDE is based on the rank syndrome decoding
problem [8], and SDith relies on the syndrome decoding problem [33]. All these
schemes proposed several parameter sets to optimize either the signature size
(short variant) or the signing and verification times (fast variant). In Table 1,
we overview the performances of these NIST candidates with the version of Biscuit
described in this paper. The table also includes FAEST [13] whose security is based on
AES but uses a new zero-knowledge technique, named VOLE-in-the head, that improves
the MPCitH approach.

For each scheme9, we report on a short variant achieving NIST level-I security (i.e.
equivalent to the security of AES128). The key-generation (keygen), signature genera-
tion (sign), and verification (verify) times are shown in clock-cycles (cycles). These
numbers have been extracted directly from the corresponding submissions and we refer
to these documents for details. The purpose of these numbers is to give a rough global

8 https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
9 A few days before finalizing this manuscript a new preprint appeared [25] that seems
to significantly improve MQOM as well as many MPCitH-based signature schemes (in-
cluding Biscuit).

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures

Biscuit: New MPCitH Signature Scheme 3

Name
Performance (cycles) Size (bytes)

keygen sign verify sk pk σ

AIMer-L1PARAM4 54 435 78 022 625 73 813 256 16 32 3 840
MIRA-128s 112 000 46 800 000 43 900 000 16 84 5 640
MiRitH-Ias 108 903 41 220 707 40 976 634 16 129 5 673

MQOM-L1-gf31-short 67 000 44 360 000 41 720 000 78 47 6 352
PERK-I-short5 91 000 36 000 000 25 000 000 16 24 6 006

RYDE128s 33 100 23 400 000 20 100 000 32 86 5 956
SDith-L1-hyp 7 083 000 13 400 000 12 500 000 404 120 8 260

Biscuit-128s (this work) 62 484 27 922 077 28 484 726 16 68 5 748

FAEST-128s 200 000 25 580 000 25 830 000 32 32 5 006

Table 1: Performance of level-I short variants of MPCitH-based candidates submit-
ted to the first round of the new NIST call for post-quantum signature schemes.

perspective as the methodology to derive clock-cycles, as well as the level of optimiza-
tion, could differ between submissions. Table 1 also includes secret-key (sk), public-key
(pk) and signature (σ) sizes in bytes.

1.2 Organization of the Paper and Main Results

After this introduction, the paper is organized as follows. Section 2 introduces basic no-
tations, the new hard problem considered in Biscuit (PowAff2 problem, Section 2.2), as
well as the basic cryptography building blocks underlying its design: Multi-Party Com-
putation (MPC), MPC-in-the-Head approach (MPCitH), Zero-Knowledge Proof of Knowl-
edge (ZKPoK), proof systems using multiplicative triples and the hypercube technique
for MPCitH-based signature schemes.
Section 3 describes the core sub-protocols underlying Biscuit. Due to the structure
of the algebraic systems considered in Biscuit, the evaluation of a PowAff2 solution
requires only one multiplication per equation. This leads to a rather simple MPC protocol
(Section 3.1) for PowAff2 that is based on the parallel execution of secure multiplication
using Beaver multiplicative triples [15] with some optimizations from [14,30]. Then, we
derive a new ZKPoK for PowAff2 (Section 3.2) using the MPCitH approach. Note that the
protocol presented here (Figure 3) differs from the one described in the initial Biscuit
submission [19]. In particular, we use the hypercube technique [34] and also include a
security proof (Theorem 1) of the new ZKPoK.
Section 4 presents the Biscuit signature scheme and details the key generation, signature
generation (Figure 7) and verification (Figure 8) algorithms. Biscuit is constructed
using the traditional Fiat-Shamir transform from the ZKPoK described in Figure 3.
We conclude this part with Table 2 that summarizes the secret-key, public-key, and
signature sizes for the three security levels of NIST. In particular, Biscuit achieves a
signature of 5.7KB for the first security level. This is comparable to other recent MPCitH-
based signature schemes (Section 1.1).
Section 5 analyzes the security of the parameters proposed in Table 2. This section
revisits the security analysis performed in the initial submission of Biscuit by tak-
ing into account a new third-party analysis [20]. In Section 5.1, we first explain the
connection between the hardness of PowAff2 and the difficulty of solving the Learning

4 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

With (bounded) Errors (LWE) problem [35]. In Section 5.2, we consider the key-recovery
problem where the best attack against is a new dedicated hybrid approach, i.e. that
combines exhaustive search and Gröbner bases [18,17,12], for solving PowAff2 equa-
tions described in [20]. In Section 5.3, we refine the analysis of Kales and Zaverucha
[29] for forgery attacks against 5-pass Fiat-Shamir based signature schemes. This leads
us to introduce a variant of the PowAff2 problem where the attacker has to solve a
sub-system with fewer equations; leading to the introduction of the PowAff2u problem
(Definition 1).
Finally, Section 6 presents an optimized implementation of Biscuit which outperforms
the previous implementation. First, we use a new canonical representation of the
PowAff2 equations (Lemma 1), which allows us to simplify their evaluation further.
Then, we integrate the hypercube framework for even further improvements.

2 Preliminaries

This section presents preliminary concepts and notations used in this paper.

2.1 Notations

Throughout this paper, we use λ for the security parameter. Also, [n] refers to the set
{1, . . . , n} for an integer n ∈ N, Fq is the finite field of q elements (where q is prime or a
prime power), Fm

q denotes the vector space of dimension m over Fq and Fq[x1, . . . , xn]
is the ring of polynomials in the variables x1, . . . , xn over the field Fq.

Bold lower-case letters denote vectors, x+y denotes the element-wise addition. We use

a← A(x) to indicate that a is the output of an algorithm A on input x, a
$← S means

that a is sampled uniformly at random from a set S.
Let R be a ring and a ∈ R. The additive sharing of a, denoted by JaK, is a tuple
JaK ∶= (JaK1 , . . . , JaKN) ∈ R

N such that a = ∑N
i=1 JaKi. Each component JaKi of JaK is

called a share of a. Throughout this paper, we only consider additive sharing and use
the word sharing to refer to additive sharing.

A Multi-Party Computation (MPC) protocol is an interactive protocol executed by a
set of N parties knowing a public function f . Its goal is to compute the image z =
f(x1, . . . , xN), where the value xi is only known by the i-th party. A MPC protocol is
considered secure and correct if, at the end of the protocol, every party i knows z, and
no information about its secret input value xi is revealed to the other parties.

2.2 The PowAff2u Problem

The core problem considered in Biscuit is the one of solving a system of multivariate
equations defined as the product of two affine forms. Denoted by PowAff2u, the problem
is parameterized by a tuple of positive integers (n,m,u, q), where n is the number of
variables, m the number of equations, u is a parameter related to forgery (Section 5.3),
and q is the finite field size.

Definition 1 (The PowAff2u problem).
Let A1,0,A1,1,A1,2, . . . ,Am,0,Am,1,Am,2 ∈ Fq[x1, . . . , xn] be affine forms, i.e.:

Ak,j(x1, . . . , xn) = a(k,j)0 +
n

∑
i=1

a
(k,j)
i xi, with a

(k,j)
0 , . . . , a(k,j)n ∈ Fq. (1)

Biscuit: New MPCitH Signature Scheme 5

Input. A vector t = (t1, . . . , tm) ∈ Fm
q and multivariate polynomials f = (f1, . . . , fm) ∈

Fq[x1, . . . , xn]m defined as:

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +
2

∏
j=1

Ak,j(x1, . . . , xn),∀k ∈ [m]. (2)

Question. Find – if any – a vector (s1, . . . , sn) ∈ Fn
q and set J ⊆ [m] of size m − u

such that:

fj(s1, . . . , sn) = tj , ∀j ∈ J.

Definition 2 (The PowAff2 problem). We use PowAff2 to denote the PowAff20
problem. We call PowAff2 algebraic system the set of non-linear equations f1, . . . , fm ∈
Fq[x1, . . . , xn] defined as in (2).

PowAff2 is the problem corresponding to key-recovery whilst PowAff2u, with u > 0, is a
relaxation that corresponds to signature forgery whose hardness is detailed in Section 5.
The current best attack against Biscuit has been described in [20]. In particular, it was
mentioned that the multivariate equations defined as in Definition 1 can be reduced to
a simple, but equivalent, structure.

Lemma 1. Let f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m be a PowAff2 algebraic system.
Then, with high probability, there exists an invertible matrix L ∈ GLn (Fq) such that :

f(x ⋅L) = (u1(x) ⋅ (x1 + c1) +w1(x), . . . , un(x) ⋅ (xn + cn) +wn(x),

A′n+1,0(x) +
2

∏
j=1

A′n+1,j(x), . . . ,A′m,0(x1, . . . , xn) +
2

∏
j=1

A′m,j(x))

where x = (x1, . . . , xn),An+1,0,An+1,1,An+1,2, . . . ,Am,0,Am,1,Am,2, u1, . . . , un, v1, . . . , vn
∈ Fq[x1, . . . , xn] are affine polynomials and c1, . . . , cn ∈ Fq.

Proof. By construction, we have :

fk(x1, . . . , xn) = Ak,0 +
2

∏
j=1

Ak,j ,∀k ∈ [m],

with A1,0,A1,1,A1,2, . . . ,Am,0,Am,1,Am,2 ∈ Fq[x1, . . . , xn] affine forms as in (1). Thus,

we can write Ak,2(x1, . . . , xn) = (x1, . . . , xn) ⋅bk+ck, where bk = (a(k,2)1 , . . . , a
(k,2)
n) ∈ Fn

q

and ck = a(k,2)0 ∈ Fq. Let C ∈ Fn×n
q be the matrix whose rows are b1, . . . ,bn. We want to

find a non-singular matrix L ∈ GLn (Fq) such that In = C ⋅L, where In is the identity
matrix of size n. This reduces to compute, if any, the inverse of C. ⊓⊔

2.3 Digital Signature Scheme

Definition 3. A Digital Signature Scheme (DSS) is a tuple of three probabilistic
polynomial-time algorithms (KeyGen,Sign,Verify) verifying:

1. (pk, sk) ← KeyGen(1λ). The key-generation algorithm KeyGen takes as input a
security parameter 1λ and outputs a pair of public/private keys (pk, sk).

2. σ ← Sign(sk,msg). The signing algorithm Sign takes a private key sk and a message
msg ∈ {0,1}∗ and outputs a signature σ.

6 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

3. b ← Sign(pk, σ,msg). The verification algorithm Verify is deterministic. It takes as
input a message msg ∈ {0,1}∗, a signature σ, and a public key pk. It outputs a
bit b ∈ {0,1}, 1 means that it accepts σ as a valid signature for msg, otherwise it
rejects returning 0.

A signature scheme is correct if for every security parameter λ ∈ N, every (pk, sk) ←
KeyGen(1λ), and every message msg ∈ {0,1}∗, it holds that

1← Verify(pk,msg,Sign(sk,msg)).

The standard security notion for a DSS is Existential Unforgeability under Adaptive
Chosen-Message Attacks (EU-CMA). We say that a signature scheme is EU-CMA-secure
if for all probabilistic polynomial-time adversaries A, the probability

Pr [1← Verify(pk,msg∗, σ∗) ∣ (pk, sk)← KeyGen(1λ)
(msg∗, σ∗)← AOSign(sk,⋅)(pk)]

is a negligible function in λ, where A is given access to a signing oracle OSign(sk,⋅), and
msg∗ has not been queried to OSign(sk,⋅).

Auxiliary Functions. Biscuit also relies on further basic cryptographic building
blocks that we do not explicitly introduce such as commitments, collision-resistant
hash functions, key-derivation functions, and pseudo-random number generators. As
explained in [19], we can use the SHAKE256 [22] extendable-output function (XOF) to
instantiate these functions.

During signature, the signer must generate a set of N seeds and reveal N − 1 of them
to the verifier for each iteration (TreePRG). The verifier then uses these seeds to check
that the MPC protocol was correctly simulated. A binary tree structure allows generating
the seeds using one root seed from a binary tree. Instead of sending N − 1 seeds in the
signature, this allows sending only ⌈log2N⌉ seeds that will be used to reconstruct all
N − 1 seeds required. We refer to [19] for the description of TreePRG.

2.4 5-Pass Identification Schemes

An Identification Scheme (IDS) is an interactive protocol between a prover P and a
verifier V, where P wants to prove its knowledge of a secret value sk to V using a public
value pk.

Definition 4 (5-pass identification scheme). A 5-pass IDS is a tuple of three prob-
abilistic polynomial-time algorithms (KeyGen,P,V) such that

1. (pk, sk) ← KeyGen(1λ). The key-generation algorithm KeyGen takes as input a
security parameter 1λ and outputs a pair of public/private keys (pk, sk).

2. P and V follow the protocol in Figure 1, and at the end of this, V outputs 1, if it
accepts that P knows sk, otherwise it rejects returning 0.

A transcript of a 5-pass IDS is a tuple (com, ch1, rsp1, ch2, rsp2), as in Figure 1, includes
all the messages exchanged between P and V in one execution of the IDS.

We require an IDS to fulfill the following security properties.

Biscuit: New MPCitH Signature Scheme 7

– Correctness: if for any security parameter λ ∈ N and (pk, sk) ← KeyGen(1λ) it
holds, Pr [1← V(pk, com, ch1, rsp1, ch2, rsp2)] = 1, where (com, ch1, rsp1, ch2, rsp2) is
the transcript of an execution of the protocol between P(pk, sk) and V(pk).

– Soundness (with soundness error ε): if, given a key pair (pk, sk), for every
polynomial-time adversary A the difference

Pr [(pk, sk)← KeyGen(1λ)
1← V (pk, comA, ch1, rsp1,A, ch2, rsp2,A)

] − ε

is a negligible function in λ, where (comA, ch1, rsp1,A, ch2, rsp2,A) is the transcript
of one execution of the protocol between A and V both with input pk.

– Honest-verifier zero-knowledge: if there exists a polynomial-time probabilis-
tic algorithm S(pk), called a simulator, that can produce transcripts (sequences
of the form (com, ch1, rsp1, ch2, rsp2)), that are computationally indistinguishable
from the distribution of transcripts of an honest execution of the protocol between
P(pk, sk) and V(pk).

P(pk, sk) V(pk)

com← P0(pk, sk)
com

ch1
$← ChallengeSet1

ch1

rsp1 ← P1(pk, sk, com, ch1)
rsp1

ch2
$← ChallengeSet2

ch2

rsp2 ← P2(pk, sk, com, ch1, rsp1, ch2)
rsp2

V (pk, com, ch1, rsp1, ch2, , rsp2)

Fig. 1: Canonical 5-pass IDS.

2.5 MPC-in-the-Head : From MPC to Zero-Knowledge

MPC-in-the-Head (MPCitH) is a generic technique, introduced as “IKOS” [28], that allows
to build a Zero-Knowledge Proof of Knowledge (ZKPoK) from a secure MPC protocol.

Consider a MPC protocol where N parties P1 . . . , PN collaborate to securely evaluate a
public function f on a secret input x. Assuming that the protocol is perfectly correct
and that the views of t < N parties leak no information on x, then one can construct
a ZKPoK from the MPC protocol as follows:

1. Simulation.

– Prover P generates a random sharing JxK ∶= (JxK1 , . . . , JxKN) of x such that
x = ∑N

i=1 JxKi and assign a share JxKi to each party Pi.

8 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

– P emulates “in his/her mind” execution of the MPC protocol with N parties
P1 . . . , PN .

– P commits on the views of each Pi, meaning the messages they send/receive
during the protocol execution and their internal states. These commitments
are sent to the verifier V.

2. Challenges.
– P possibly receives random challenges from V on the MPC, executes local com-

putations accordingly and sends the results to V. This step can be repeated
several times.

– V challenges P to open a random subset of t parties.
– P returns the requested views.

3. Verification.
– P then checks that the views10 are consistent, and the output of the circuit

corresponds to the result expected.

Since its introduction, the initial approach for MPCitH from [28] has been improved
in different ways. In particular, Katz, Kolesnikov and Wang (KKW, [31]) extended the
MPCitH paradigm to support the preprocessing model, where MPC protocols are split
into an offline phase that is independent of the sensitive inputs, and an online phase,
with the former being typically the bottleneck in terms of efficiency. The benefit is
that the prover does not need to include the preprocessing as part of the views of the
parties, and instead, the preprocessing can be checked. As an application, KKW allowed
to significantly decrease the signature size of the initial Picnic version.

In [34], the authors described the so-called hypercube variant of MPCitH that allows
improving efficiency for a large number of parties in the MPC protocol. Indeed, a large
number of parties leads to shorter signatures but increases signature generation and
verification times. We detail the approach in the case of Biscuit in Section 3.1. Note
that the hypercube technique is generic and could be then used for most MPCitH-based
signature schemes.

2.6 Proof Systems for Arbitrary Circuits

In [27], Giacomelli, Madsen and Orlandi demonstrated the efficiency of the MPCitH

approach for generating ZKPoK. Doing so, the authors also introduced a new generic
proof system, called ZKBoo, which ultimately resulted in the first version of the Picnic
signature scheme. In such work, the virtual/emulated parties actually execute some MPC
protocols, and the verifier checks this execution. In [14], Baum and Nof proposed an
improved proof system, called BN, for arithmetic circuits. The authors of [14] observed
that the prover knows all the wire values in the circuit, and instead of computing a
protocol, the prover can distribute sharings for each intermediate wire value, and the
virtual parties only need to execute a protocol that checks the correctness of the multi-
plication gates. This allows batching the checks by taking random linear combinations.
In [30], Kales and Zaverucha built on top of BN with several optimizations leading to
BN++ with roughly 2.5× communication improvement.

The BN and BN++ proof systems rely on the concept of multiplicative triple (or Beaver
triple [15]). Given x, y, z ∈ Fq, we say that the triple (JxK , JyK , JzK) ∈ FN

q × FN
q × FN

q is

10 If only one party is opened then there are no pairs to check consistency. In this case,
the prover does not commit to the views, but actually to the point-to-point channels
between the parties.

Biscuit: New MPCitH Signature Scheme 9

a multiplicative triple if it holds that z = x ⋅ y. The Biscuit MPC protocol will rely on a
somewhat standard protocol introduced in [14] (along with the optimization given in
[30, Section 2.5]) to check multiplicative triples of sharing (Section 2.6). A multiplicative
triple (JxK , JyK , JzK) ∈ FN

q ×FN
q ×FN

q can be checked using a helping triple (JaK , JyK , JcK) ∈
FN
q × FN

q × FN
q with a ∈ Fq and c = a ⋅ y ∈ Fq as follows:

1. The parties get a random element ε
$← Fq.

2. The parties locally set JαK← JxK ⋅ ε + JaK.
3. The parties open JαK so that they all obtain α.

4. The party locally compute JvK = JyK ⋅ α − JzK ⋅ ε − JcK.
5. The parties open JvK to obtain v.

6. The parties output accept if v = 0 and reject otherwise.

The security of this simple protocol has been proven in [30]. In particular, the false
success probability is given by:

Lemma 2. Let x, y, z, a, c ∈ Fq. If the shared multiplicative triple (JxK , JyK , JzK) ∈ FN
q ×

FN
q × FN

q is incorrect, i.e. z /= x ⋅ y, or the helping multiplicative triple (JaK , JyK , JcK) ∈
FN
q × FN

q × FN
q is incorrect, i.e. c /= a ⋅ y, then the parties output accept with probability

at most 1/q.

3 Interactive Protocols for PowAff2

This section describes the MPC protocol underlying Biscuit (Section 3.1) and the cor-
responding ZKPoK (Section 3.2) obtained using the MPCitH paradigm (Section 2.5) to-
gether with the hypercube technique [5].

3.1 Multi-Party Computation Protocol for PowAff2

In Figure 2, we detail the MPC protocol used in Biscuit to check a solution of a
PowAff2 algebraic system. The protocol is executed by N parties sharing a secret
vector s ∈ Fn

q . Every party knows the target vector t = (t1, . . . , tm) ∈ Fm
q , affine forms

A1,0,A1,1,A1,2, . . . ,Am,0,Am,1,Am,2 ∈ Fq[x1, . . . , xn] as in (1) and the corresponding
PowAff2 algebraic equations f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m defined as:

fk = Ak,0 +Ak,1 ⋅Ak,2,∀k ∈ [m]. (3)

The MPC protocol (Figure 2) consists of m iterations of the multiplicative checking
protocol described in Section 2.6. At the end of the protocol, the parties output accept
indicating they are convinced that the shared vector s satisfies t = f(s). Otherwise, they
output reject.

The following proposition follows easily from Lemma 2.

Proposition 1. Suppose that a set of N parties genuinely follow the MPC protocol given

in Figure 2 with inputs t ∈ Fm
q , f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m, and JsK ∈ (Fn

q)
N
.

Suppose s ∈ Fn
q is a solution to PowAff2u(f , t) but not a solution to the PowAff2u−1(f , t).

If u = 0, i.e., t = f(s), then the parties accept. Otherwise, the parties accept with
probability at most 1/qu.

10 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

Public data: t = (t1, . . . , tm) ∈ Fm
q , affine polynomials A1,0, . . . ,Am,2 ∈ Fq[x1, . . . , xn]

and f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m as defined in (3).

Inputs ∶ The i-th party knows JsKi ∈ F
n
q , JaKi ∈ F

m
q where a = (a1, . . . , am)

$← Fm
q , and

JcKi ∈ F
m
q where c = (c1, . . . , cm) ∈ Fm

q such that ck = Ak,2(s) ⋅ ak,∀k ∈ [m].
MPC protocol:

for k ∈ [m] do
1 ∶ Each party compute JzkK← tk −Ak,0(JsK), JxkK← Ak,1(JsK), and JykK← Ak,2(JsK).

2 ∶ The parties get a random element εk
$← Fq.

3 ∶ The parties locally set JαkK← JxkK ⋅ εk + JakK.
4 ∶ The parties open JαkK so that they all obtain αk.

5 ∶ The parties locally compute JvkK = JykK ⋅ αk − JzkK ⋅ εk − JckK.
6 ∶ The parties open JvkK to obtain vk.

The parties output accept if vk = 0,∀k ∈ [n] and reject otherwise.

Fig. 2: MPC protocol Π to check that t = f(s).

3.2 Zero-Knowledge Proof of Knowledge for PowAff2

In Figure 3, we derive a zero-knowledge proof of knowledge (ZKPoK) for the PowAff2
problem using the MPC protocol Π of Figure 2. We use the traditional MPCitH approach
combined with the recent hypercube technique. To do so, let D be such that N = 2D.

In Phase 1, for each ℓ ∈ [D]: the prover generates an input set Sℓ =
(JsK(ℓ,j) , JcK(ℓ,j) , JaK)

j∈[2] for a two parties instance the MPC protocol Π (Figure 2).

The set Sℓ is called the ℓ-th set of main shares. The sets of main shares are com-
puted in two steps. First, the prover generates and commits to inputs (JsKi , JcKi , JaKi)
of one of N = 2D parties instance of Π. Then, for each (ℓ, j) ∈ [D] × [2], the main
share JsK(ℓ,j) is computed as the sum of the shares JsKi for which j equals the ℓ-

th bit of i plus 1. Similarly, the main shares JcK(ℓ,j) and JaK(ℓ,j)). In Phase 3,
the prover executes the protocol Π for every set of main shares using ε1, . . . , εm ∈
Fq as the random elements for all D executions. This particular execution of the
protocol Π on the set of main shares Sℓ is shown in Figure 4. The outputs of
ℓ-th execution are the shares (JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2] and its correspond-

ing hash Hℓ = H ((JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2])
11. In Phase 5, the prover sends

((seed(i), ρi)i≠i , com(i),∆s,∆c, JαKi) to the verifier, where JαKi = (Jα1Ki , . . . , JαmKi),
JαkKi = JxkKi ⋅ εk + JakKi and JxkKi = Ak,0(JsKi). We highlight that the prover does not

send explicitly instead of sending N − 1 strings of the form (seed(i), ρi) but it sends
instead the log2(N) nodes of the tree TreePRG(root) so that the verifier can recom-
pute the values (seed(i), ρi)i≠i. Finally, in the verification phase, the verifier recomputes

11 As noted in [10], the security of proof knowledge protocols using the hypercube
technique with additive shares is the same with or without these intermediate hash
values Hℓ. Still, it might help reduce the protocol’s memory demand when the im-
plementation of the hash H is not incremental.

Biscuit: New MPCitH Signature Scheme 11

(seed(i), ρi)i≠i, and uses them to recompute the sets main shares partially. We say par-
tially recompute and not just recompute because for each set Sℓ one of the main shares
triples (either the one corresponding to j = 1 or j = 2) is missing the addition of the
shares corresponding to the i-th party. After, for every set of main parties, the verifier
follows the algorithm in Figure 5 to check the execution of the MPC protocol Π. Finally,
the verifier recomputes h0 and h2 and outputs accept if these two values match the
ones the prover sent. Otherwise, the verifier rejects.

The result below establishes the zero-knowledge property of the protocol described in
Figure 3.

Theorem 1. The protocol described in Figure 3 has the following properties:

– Completeness. A Prover with the knowledge of a solution s ∈ Fn
q to an instance

(f , t) ∈ Fq[x1, . . . , xn]m × Fm
q of the PowAff2 is always accepted by the Verifier.

– Soundness. Let ϵ = 1
N
+ 1

qu
⋅(1− 1

N
), where p = 1/qu. Suppose there exists a prover

P̃ who convinces the verifier to accept with probability ϵ̃ > ϵ. Then there is an
efficient probabilistic extraction algorithm E, which has rewindable black-box access
to P̃, that, in expectation, with at most

4

ϵ̃ − ϵ ⋅ (1 + ϵ̃ ⋅
2 ln(2)
ϵ̃ − ϵ) ,

calls to P̃ outputs either a solution to an instance (f , t) of the PowAff2u−1 problem
or a collision to the commitment scheme Com or the hash H.

– Honest-verifier zero-knowledge. If the outputs of the pseudo-random genera-
tor PRG and the commitment scheme com are indistinguishable from the uniform
random distribution, then the protocol of Figure 3 is honest-verifier zero-knowledge.

Proof. (sketch) The proof is similar to, for instance, [10, Theorem 1]. Here, we describe
the main parts of the proof and will refer [10, Theorem 1] for similar details.

– Completeness. By following, step by step, the protocol in Figure 3, it is not hard
to see that a Prover that follows the protocol with inputs (f , t, s) such that t = f(s)
will always be accepted.

– Soundness. The structure of the proof is as follows:
1. We prove that a prover P̃ who does not know any solution for the PowAff2u−1

problem can cheat with probability at most ϵ = 1
N
+ 1

qu
⋅ (1 − 1

N
).

2. Assuming that
(a) No collisions to Com nor H can be found.
(b) There exists a cheater P̃ who has cheating probability ϵ̃ > ϵ.
We show how to extract a solution for the PowAff2u−1 problem whenever
rewindable black-box access to P̃ is given.

For part 1, suppose that at step 7 the vector s = JsK1 +⋯ + JsKN is not a solution
of the PowAff2u−1 problem defined by (f , t). With such a vector s the prover can
be accepted by the verifier in only two situations:
● (False-positive case) The prover honestly follows the protocol, and for each

k ∈ [m], the value vk = ykαk − zkεk − ck, which is the value that would be
obtained from a genuine execution of the MPC protocol with challenges εk (see
Figure 2), equals to zero, or

● (Cheating case) The prover dishonestly deviates from the protocol, yet the
verifier believes that all the honest vk are zero, but in reality, at least one of
them is not.

12 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

PoK(Prover(f , t, s), Verifier(f , t))

Phase 1: Prover commits to the inputs of the MPC protocol in Figure 4

1 ∶ root
$← {0,1}λ, (seed(i), ρ(i))

i∈[N] ← TreePRG(root)

for i ∈ [N] do
2 ∶ JsKi , JcKi , JaKi ,← PRG(seed(i))
3 ∶ com(i) ← Com(seed(i), ρi)

4 ∶ h0 ← H(com(1), . . . , com(N)), and send h0 to Verifier

5 ∶ a←∑i∈[N] JaKi , c← (Ak,2(s) ⋅ ak)k∈[m]
6 ∶ ∆s← s −∑i∈[N] JsKi , ∆c← c −∑i∈[N] JcKi
7 ∶ JsK1 ← JsK1 +∆s and JcK1 ← JcK1 +∆c

8 ∶ Initialize JsKp , JcKp and JaKp to zero objects for each p ∈ [D] × [2]
for i ∈ [N] do

9 ∶ (i1, . . . , iD)← i // Binary representation of i.

for ℓ ∈ [D] do
10 ∶ JsK(ℓ,iℓ+1) ← JsK(ℓ,iℓ+1) + JsKi , JcK(ℓ,iℓ+1) ← JcK(ℓ,iℓ+1) + JcKi and

11 ∶ JaK(ℓ,iℓ+1) ← JaK(ℓ,iℓ+1) + JaKi
Phase 2: First challenge

12 ∶ Verifier samples ε1, . . . , εm
$← Fq and sends them to Prover

Phase 3: Prover’s first response // Prover executes MPC protocol for every set of main shares.

for ℓ ∈ [D] do
13 ∶ Prover gets Hℓ and (JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2] from algo. in Figure 4

14 ∶ h1 ← H(H1, . . . ,HD) and send h1 to Verifier

Phase 4: Second challenge

15 ∶ Verifier samples i
$← [N] and sends it to Prover

Phase 5: Prover’s second response

16 ∶ JαKi ← (Jα1Ki , . . . , JαmKi),where JαkKi = JxkKi ⋅ εk + JakKi, JxkKi = Ak,0(JsKi)

17 ∶ rsp← ((seed(i), ρi)i≠i , com
(i),∆s,∆c, JαKi) and send rsp to Verifier

Verification:

18 ∶ Verifier partially recomputes (JsKp , JcKp , JaKp)p∈[D]×[2] from (seed
(i), ρi)i≠i

by following Phase 1 but skipping the steps involving a i-th share or seed(i)

for ℓ ∈ [D] do
19 ∶ Verifier gets Hℓ and (JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2] from algo. in Figure 5

20 ∶ Verifier accepts if and only if h0 = H(com(1), . . . , com(N)) and
h1 = H(H1, . . . ,HD), where com(i) = Com(seed(i), ρi) for each i ≠ i.

Fig. 3: Proof of Knowledge protocol for PowAff2.

Biscuit: New MPCitH Signature Scheme 13

Inputs ∶ A set of main shares ((JsK(ℓ,j) , JcK(ℓ,j) , JaK(ℓ,j)))j∈[2] and the challenges ε1, . . . , εm

Outputs ∶Hℓ and (JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2]
for k ∈ [m] do

for j ∈ [2] do
1 ∶ JxkK(ℓ,j) ← Ak,1(JsK(ℓ,j))
2 ∶ JαkK(ℓ,j) ← JxkK(ℓ,j) ⋅ εk + JakK(ℓ,j)
3 ∶ αk ← JαkK(ℓ,1) + JαkK(ℓ,2) // The parties open JαkK

(ℓ,j) to obtain αk.

4 ∶ JzkK(ℓ,1) ← tk −Ak,0(JsK(ℓ,1))
5 ∶ JykK(ℓ,1) ← Ak,2(JsK(ℓ,1))
6 ∶ JvkK(ℓ,1) ← JykK(ℓ,1) ⋅ αk − JzkK(ℓ,1) ⋅ εk − JckK(ℓ,1)
7 ∶ JvkK(ℓ,2) ← − JvkK(ℓ,1)

8 ∶ Hℓ ← H ((JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2])

Fig. 4: Simulation of the MPC protocol Π for the ℓ-th set of main shares.

In the first case, we would have a false positive case of the MPC protocol in Figure 2.
By Proposition 1, this happens with probability at most 1/qu. In the second case,
the prover cheats during the simulation of at least one party. Since the verifier
checks the correct execution of all the parties but one, the prover has to cheat on
exactly one party. Otherwise, the verifier rejects. Cheating in one party i′ means
that the prover uses a set of different shares than an honest party, holding the

same input seed seed(i
′), would use. Since every party aggregates to exactly one

of the main shares for all of the D bi-party protocols. For each of these bi-party
protocols, one share has been dishonestly computed, i.e., not following the MPC

protocol. Thus, the prover won’t be detected with probability 1
N
. Consequently, a

prover without a correct solution of the PowAff2u−1 problem will be accepted with
probability at most ϵ = 1

N
+ 1

qu
⋅ (1 − 1

N
).

Now, for the second part, we assume that no collisions to Com nor H can be found
and there exists a cheater P̃ who has cheating probability ϵ̃ > ϵ. First, we prove that
a solution s of the PowAff2u−1 problem can be extracted from two valid transcripts
of the form T1 and T2 produced by P̃ that have the same initial commitment h0

and different second challenges ī1 (for T1) and ī1. Finally, we prove that such
transcripts T1 and T2 can be extracted from P̃ (assuming rewindable black-box
access to P̃) with an expected number of calls upper bounded by

4

ϵ̃ − ϵ ⋅ (1 + ϵ̃ ⋅
2 ln(2)
ϵ̃ − ϵ) .

This second part is proven analogously as in [10, Theorem 1].
– Honest-verifier zero-knowledge: Now we sketch the proof of the honest-verifier

zero-knowledge property of the protocol in Figure 3. The goal here is to show that
the distribution of the transcripts output by the simulator described in Figure 6
on input (f , t) are indistinguishable from those coming from a genuine interaction

14 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

Inputs: Partially computed main shares ((JsK(ℓ,j) , JcK(ℓ,j) , JaK(ℓ,j)))j∈[2] ,

the first challenges ε1, . . . , εm, the second challenge i, and the JαKi
Outputs ∶Hℓ and (JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2]
1 ∶ (i1, . . . , iD)← i // Binary representation of i.

2 ∶ Jα1Ki , . . . , JαmKi ← JαKi
for k ∈ [m] do

for j ∈ [2] do
3 ∶ JxkK(ℓ,j) ← Ak,1(JsK(ℓ,j))
4 ∶ JαkK(ℓ,j) ← JxkK(ℓ,j) ⋅ εk + JakK(ℓ,j)
5 ∶ JαkK(ℓ,iℓ+1) ← JαkK(ℓ,iℓ+1) + JαkKi // Adding missing share of JαkK

(ℓ,iℓ+1)
.

6 ∶ αk ← JαkK(ℓ,1) + JαkK(ℓ,2) // The parties open JαkK
(ℓ,j) to obtain αk.

7 ∶ Set i∗ = 2 if iℓ = 0, otherwise set i∗ = 1.
8 ∶ JykK(ℓ,i∗) ← Ak,2(JsK(ℓ,i∗))
9 ∶ JzkK(ℓ,i∗) ← tk −Ak,0(JsK(ℓ,i∗))

10 ∶ JvkK(ℓ,i∗) ← JykK(ℓ,i∗) ⋅ αk − JzkK(ℓ,i∗) ⋅ εk − JckK(ℓ,i∗)
11 ∶ JvkK(ℓ,iℓ+1) ← − JvkK(ℓ,i∗)

12 ∶ Hℓ ← H ((JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2])

Fig. 5: Check the simulation of the MPC protocol Π in the ℓ-th set of main shares.

between a prover and an honest verifier, where the prover input is (f , t,s) and
t = f(s).
The idea is to create a sequence of simulators that ends with the simulator de-
scribed in Figure 6. The first simulator of the sequence consists of a legitimate
prover, which holds a solution s and simulates the verifier by randomly sampling
the challenges, as an honest verifier would do. These transcripts are indistinguish-
able from those coming from a legitimate execution of the protocol in proof of
knowledge protocol.

Finally, the proof is completed by showing that the transcripts outputs by any sim-
ulator in the sequence are indistinguishable from those in the previous simulator.
This implies that the transcripts of the simulator in Figure 6 are indistinguishable
from those produced by the actual protocol. Details of this part follow similarly as
shown in [10, Theorem 1].

⊓⊔

4 Biscuit Signature Scheme

In this part, we describe the Biscuit signature scheme. It is obtained by applying the
Fiat-Shamir transformation [26] to the zero-knowledge protocol given in Figure 3. The

Biscuit: New MPCitH Signature Scheme 15

Simulator(f , t)

1 ∶ Sample first challenge: ε = (ε1, . . . , εm)
$← Fm

q

2 ∶ Sample second challenge: i
$← [N]

3 ∶ root
$← {0,1}λ

4 ∶ (seed(i), ρ(i))
i∈[N] ← TreePRG(root)

for i ∈ [N] do
5 ∶ JsKi , JcKi , JaKi ,← PRG(seed(i))
6 ∶ com(i) ← Com(seed(i), ρi)

7 ∶ h0 ← H(com(1), . . . , com(N))

8 ∶ ∆s
$← Fn

q , ∆c
$← Fm

q

9 ∶ JsK1 ← JsK1 +∆s and JcK1 ← JcK1 +∆c

10 ∶ Initialize JsKp , JcKp and JaKp to zero objects for each p ∈ [D] × [2]
for i ∈ [N] ∖ {̄i} do

11 ∶ Simulate the i party to obtain JαkKi and JvkKi for each k ∈ [m]

12 ∶ JαkKi
$← Fq and JvkKi

$← Fq for each k ∈ [m]

13 ∶ com(i)
$← {0,1}λ

14 ∶ For each (k, ℓ, j) ∈ [m] × [D] × [2] compute JαkK(ℓ,j) and JvkK(ℓ,j)

15 ∶ Set Hℓ ← H ((JαkK(ℓ,j) , JvkK(ℓ,j))(k,j)∈[m]×[2]) for each ℓ ∈ [D]

16 ∶ h1 ← H(H1, . . . ,HD)

17 ∶ rsp← ((seed(i), ρi)i≠i , com
(i),∆s,∆c, JαKi), where JαKi = (Jα1Ki , . . . , JαmKi)

Output (h0,ε, h1, i, rsp)

Fig. 6: Honest-verifier zero-knowledge simulator.

corresponding signing, and verification algorithms are described in Figures 7 and 8,
respectively.

The secret-key is a random vector s ∈ Fn
q and the public-key is a pair (f =

(f1, . . . , fm), t = f(s)) ∈ Fq[x1, . . . , xn]m × Fm
q such that for all k ∈ [m]:

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +Ak,1(x1, . . . , xn) ⋅Ak,2(x1, . . . , xn), (4)

where A1,0, . . . ,Am,2 ∈ Fq[x1, . . . , xn] are random affine forms as in (1).

We use two seeds seedf , seeds ∈ {0,1}λ that are extended via PRG to obtain the public
polynomials f ∈ Fq[x1, . . . , xn]m and the secret vector s ∈ Fq[x1, . . . , xn]m. Finally, the
vector t ∈ Fm

q is computed as t = f(s).
The signing procedure Biscuit.Sign is given in Figure 7. It takes as input a key-pair
(sk,pk) and the message msg ∈ {0,1}∗ to sign. It is obtained by applying the Fiat-

16 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

Shamir transformation to the ZKPoK for PowAff2 (Section 3.2) with N = 2D parties.

Remark 1. The notation f ← PRG(seedf) is a shortcut for extending the seed from
a PRG and casting the bit string into a set of algebraic equations as in (4). Similarly,
s← PRG(seedsk) stands for extending the seed and interpreting the bit string as a vector
in Fn

q .

The verification process (Figure 8) is very similar to the signature process (Figure 7)
as the verifier has to replay the MPC protocol for each of the N participants except one.
The algorithm takes as input a message msg ∈ {0,1}∗, a signature sig and a public-key
pk. It returns a bit b ∈ {0,1}.

4.1 Parameters

Table 2 provides the parameter sets Biscuit, along with the corresponding size of the
keys and signatures. Each parameter set aims to provide a security level of either I,
III or V according to the NIST guidelines. A more detailed description of the claimed
security level of each parameter set is given in Section 5.

Level Version λ q n m N τ Bit-Security sk pk σ

I
short

128 256 50 52
256 18 143

16 68
5748

fast 32 28 143 7544

III
short

192 256 89 92
256 25 207

24 116
12969

fast 32 40 210 17784

V
short

256 256 127 130
256 33 272

32 162
23523

fast 32 53 275 32575

Table 2: Parameters of Biscuit, bit security, public-key (pk), secret-key (sk) and
signature (σ) sizes in bytes.

The size of the public-key is λ+ log2(q) ⋅m bits, the size of the secret-key is λ bits and
the bit-size of the signature is:

6λ
´¸¶

salt,h1,h2

+ τ

⎛
⎜⎜⎜⎜⎜⎜
⎝

(n + 2m) log2 q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆s(e),∆c(e),JαK(e)
ie

+ λ ⋅D
´¸¶

(seed(e,i))
i≠ie

+ 2λ
´¸¶

com(e,ie)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

5 Security Analysis

This part is dedicated to the security analysis of Biscuit against key-recovery (Sec-
tion 5.2) and forgery (Section 5.3) attacks. Before that, Section 5.1 discusses the moti-
vations for using structured systems as PowAff and the connection with the Learning
With Errors (LWE, [35]) problem.

Biscuit: New MPCitH Signature Scheme 17

Sign(pk, sk,msg)

1 ∶ (seedf , t)← pk, seedsk ← sk

2 ∶ f ← PRG(seedf), s← PRG(seedsk)
Step 1: Commit to the inputs of the MPC protocol in Figure 4

3 ∶ salt
$← {0,1}2λ

for e ∈ [τ]

4 ∶ root(e)
$← {0,1}λ, (seed(e,i))

i∈[N] ← TreePRG(salt, root(e))

for i ∈ [N] do
5 ∶ JsK(e)i , JcK(e)i , JaK(e)i ← PRG(seed(e,i))
6 ∶ com(e,i) ← H0 (salt, e, i, seed(e,i))

7 ∶ a(e) ←∑i∈[N] JaK(e)i , c(e) ← (Ak,2(s) ⋅ a(e)k)k∈[m]
8 ∶ ∆s(e) ← s −∑i∈[N] JsK

(e)
i , ∆c(e) ← c(e) −∑i∈[N] JcK

(e)
i

9 ∶ JsK(e)1 ← JsK(e)1 +∆s(e) and JcK(e)1 ← JcK(e)1 +∆c(e)

10 ∶ h
(e)
0 ← H1(salt, e, com(e,1), . . . , com(e,N),∆s(e),∆c(e))

11 ∶ Initialize JsK(e)p , JcK(e)p and JaK(e)p to zero objects for each p ∈ [D] × [2]
for i ∈ [N] do

12 ∶ (i1, . . . , iD)← i // Binary representation of i.

for ℓ ∈ [D] do
13 ∶ JsK(e)(ℓ,iℓ+1) ← JsK(e)(ℓ,iℓ+1) + JsK(e)i , JcK(e)(ℓ,iℓ+1) ← JcK(e)(ℓ,iℓ+1) + JcK(e)i and

14 ∶ JaK(e)(ℓ,iℓ+1) ← JaK(e)(ℓ,iℓ+1) + JaK(e)i

15 ∶ h1 ← H2 (salt,msg, h(1)0 , . . . , h
(τ)
0)

Step 2: First challenge

16 ∶ ((ε(e)1 , . . . , ε(e)m))e∈[τ]
$← PRG(h1)

Step 3: First response

for e ∈ [τ] do
for ℓ ∈ [D] do

17 ∶ Follow the algorithm in Figure 4 to get H
(e)
ℓ , which is defined instead as

18 ∶ H
(e)
ℓ = H3 (salt, ℓ, JαkK(e)(ℓ,j) , JvkK(e)(ℓ,j))(k,j)∈[m]×[2])

19 ∶ h2 ← H4(salt,msg, h1, (H(e)1 , . . . ,H
(e)
D)e∈[τ])

Step 4: Second challenge

20 ∶ i1, . . . , iτ
$← PRG(h2)

Step 5: Second response

for e ∈ [τ] do

21 ∶ JαK(e)
ie
← (Jα1K(e)

ie
, . . . , JαmK(e)

ie
),where JαkK(e)

ie
= JxkK(e)

ie
⋅ ε(e)k + JakK(e)

ie
, and

JxkK(e) = Ak,1(JsK(e)
ie
)

22 ∶ σ ← (salt, h1, h2, ((seed(e,i))i≠ie , com(e,ie))
e∈[τ], (∆s(e),∆c(e), JαK(e)

ie
)
e∈[τ])

23 ∶ Output σ

Fig. 7: Biscuit signing algorithm.

18 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

Verify(pk, σ,msg)

1 ∶ (seedf , t)← pk, f ← PRG(seedf)
Step 1: Parse signature

2 ∶ (salt, h1, h2, ((seed(e,i))i≠ie , com(e,ie))
e∈[τ], (∆s(e),∆c(e), JαK(e)

ie
)
e∈[τ])← σ

3 ∶ ((ε(e)1 , . . . , ε(e)m))e∈[τ]
$← PRG(h1)

4 ∶ i1, . . . , iτ
$← PRG(h2)

Step 2: Recompute h1 and the inputs of the MPC protocol

for e ∈ [τ]
for i ∈ [N] ∖ {ie} do

5 ∶ JsK(e)i , JcK(e)i , JaK(e)i ← PRG(seed(e,i))
6 ∶ com(e,i) ← H0 (salt, e, i, seed(e,i))

7 ∶ h
(e)
0 ← H1(salt, e, com(e,1), . . . , com(e,N),∆s(e),∆c(e))
if ie ≠ 1 then

8 ∶ JsK(e)1 ← JsK(e)1 +∆s(e) and JcK(e)1 ← JcK(e)1 +∆c(e)

9 ∶ Initialize JsK(e)p , JcK(e)p and JaK(e)p to zero objects for each p ∈ [D] × [2]
for i ∈ [N] ∖ {ie} do

10 ∶ (i1, . . . , iD)← i // Binary representation of i.

for ℓ ∈ [D] do
11 ∶ JsK(e)(ℓ,iℓ+1) ← JsK(e)(ℓ,iℓ+1) + JsK(e)i , JcK(e)(ℓ,iℓ+1) ← JcK(e)(ℓ,iℓ+1) + JcK(e)i and

12 ∶ JaK(e)(ℓ,iℓ+1) ← JaK(e)(ℓ,iℓ+1) + JaK(e)i

13 ∶ h1 ← H2 (salt,msg, h(1)0 , . . . , h
(τ)
0)

Step 3: Recompute h2

for e ∈ [τ] do
for ℓ ∈ [D] do

14 ∶ Use (ε(e)1 , . . . , ε(e)m), JαK(e)
ie

and the ℓ-th set of main shares as inputs in

15 ∶ the algorithm in Figure 5 to get H
(e)
ℓ , which is defined instead as

16 ∶ H
(e)
ℓ = H3 (salt, ℓ, JαkK(e)(ℓ,j) , JvkK(e)(ℓ,j))(k,j)∈[m]×[2])

17 ∶ h2 ← H4 (salt,msg, h1, (H
(e)
1 , . . . ,H

(e)
D)e∈[τ])

Step 4: Verify signature

18 ∶ Output (h1 = h1) ∧ (h2 = h2)

Fig. 8: Biscuit verification algorithm.

Biscuit: New MPCitH Signature Scheme 19

From now on, let (f = (f1, . . . , fm), t = f(s)) ∈ Fq[x1, . . . , xn]m×Fm
q be a Biscuit public-

key and s ∈ Fn
q be the corresponding secret-key.

5.1 About the Hardness of PowAff2

A fundamental assumption in the design of Biscuit is that solving algebraic systems
generated essentially from the power of affine forms are not much easier to solve than
a random system of quadratic equations. Whilst the complexity of solving structured
equations can be difficult to assess in general, the hardness of solving random quadratic
equations has been deeply investigated and only exponential algorithms are known, e.g.
[12,16,17,18].

We emphasize PowAff2 algebraic equations already appeared previously in the liter-
ature. In particular, the authors of [7,11] demonstrated that attacking the Learning
With Errors (LWE) problem [35] reduces to solve a structured algebraic system similar
to PowAff2. An instance of LWE is given by a pair (A = {ai,j},c = sA + e) ∈ Fn×m

q × Fm
q

where s ∈ Fn
q is a secret and e ∈ Fm

q is an error vector. LWE (search) asks to recover the
secret s. Arora and Ge exhibit in [7,11] a rather natural algebraic modeling of LWE.
More precisely, Arora and Ge show that LWE secrets can be recovered by solving:

f1(x1, . . . , xn) = P (c1−
n

∑
k=1

ak,1xk) = 0, . . . , fm(x1, . . . , xn) = P (c1−
n

∑
k=1

ak,mxk) = 0, (5)

where P depends on the error distribution. In particular, P (X) = X(X − 1) ∈ Fq[X]
for binary errors and [7] introduced the assumption that a system such as (5) behaves
such as a semi-regular sequence. As a consequence, a new fast algorithm for PowAff2
will lead to a new fast algebraic algorithm for binary LWE.

5.2 Key Recovery Attacks

A key-recovery attack against Biscuit consists of solving the PowAff2 problem, i.e.
recovering s ∈ Fm

q from the system defined as :

t = f(x), with x = (x1, . . . , xn). (6)

Currently, the best attack against Biscuit is a dedicated hybrid approach for solving
PowAff2 equations described in [20]. The hybrid approach is a classical technique for
solving algebraic systems that combines exhaustive search and a Gröbner basis-like
computations [12,17,18]. The efficiency of such approach is related to the choice of a
trade-off, denoted k ≤ n, between these two methods.

We sketch below the approach described in [20]. Let g = (g1(x) = u1(x) ⋅ (x1 +
c1) + w1(x), . . . , gn(x) = un(x) ⋅ (xn + cn) + wn(x)) ∈ Fq[x1, . . . , xn]n, with x =
(x1, . . . , xn), u1, . . . , un, v1, . . . , vn ∈ Fq[x1, . . . , xn] affine polynomials and c1, . . . , cn ∈
Fq. According to Lemma 1, with high probability, there exists L ∈ GLn (Fq) such that:

f(x ⋅L) = (g,A′n+1,0(x) +
2

∏
j=1

A′n+1,j(x), . . . ,A′m,0(x) +
2

∏
j=1

A′m,j(x))

where An+1,0,An+1,1,An+1,2, . . . ,Am,0,Am,1,Am,2 ∈ Fq[x1, . . . , xn] affine forms.

Then, for every guess (a1, . . . , ak) ∈ Fk
q of the k first variables (x1, . . . , xk), we obtain k

linear polynomials, namely g1(a1, . . . , ak, xk+1, . . . , xn), . . . , gk(a1, . . . , ak, xk+1, . . . , xn).

20 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

These k linear polynomials are expected to be linearly independent with a probability
close to 1 − 1/q. Hence we can use them to substitute k additional variables in the
remaining polynomials. The attack is finalized by solving the resulting quadratic system
of m − k equations in n − 2k variables.

Complexity. The cost of the attack is dominated by

min
0≤k<n

2

qk ⋅MQ(n − 2k,m − k, q), (7)

where MQ(n,m, q) denotes the complexity of solving a random system of m
quadratic equations over n variables over Fq. To compute the exact complexity,
we rely on the MQEstimator software tool, which is part of the more general
CryptographicEstimators12 library [23].

5.3 Forgery Attacks

In the context of forgery, the attacker has to solve the PowAff2u problem (Definition 1),
which is a variant of the problem considered before for key-recovery (Section 5.2). In
the PowAff2u problem, the goal is to find a vector s′ ∈ Fn

q that vanishes a subset of
size m − u of the system (6). Without loss of generality, we assume that s′ vanishes
the first m − u polynomials and not the remaining equations. That is, fk(s′) = tk, for
k ∈ [m − u], and fk(s′) ≠ tk for k =m − u + 1, . . . ,m.

By Proposition 1, a set of N parties that follows the MPC protocol in Figure 2 on inputs
Js′K and (f , t) will output accept with false positive rate p1 = 1/qu.
Thanks to Kales and Zaverucha, [30], it is known that MPCitH-based signature scheme
that consists of τ repetitions of a MPC protocol with false positive rate p1 can be forged
by computing on average

KZτ(p1, p2) = min
{τ1,τ2 ∣τ1+τ2=τ}

⎧⎪⎪⎨⎪⎪⎩

1

∑τ
i=τ1 (

τ
i
)pi1(1 − p1)τ−i

+ 1

pτ22

⎫⎪⎪⎬⎪⎪⎭
,

calls to some hash functions, where p2 is the probability of guessing some of the views
of parties that remain unopened, e.g., p2 = 1/N for Biscuit.

Let Cu(q, n,m) denote the complexity of finding a preimage to a chosen subset S of
the system t = f(x) of size m − u and s′ ∈ Fn

q be a solution that vanishes the equations
of S. Then, s′ might, by chance, be a solution of any equation in Sc, i.e., any equation
that is not in S. If there remain k ∈ [u] equations in Sc for which s′ is not a solution,
then an attacker can mount a forgery attack with complexity KZτ(q−k,N−1).
Let (f , t) be a Biscuit public-key selected uniformly at random, and let S be a subset
of the equations t = f(x) of size m − u selected uniformly at random. Then, a random
solution s′ ∈ Fn

q of the equations in S follows a uniform distribution. Hence, fk(s′) is
a uniform element in Fq. Therefore, the probability that s′ is a solution of exactly j
equations in Sc is (u

j
) ⋅ (q − 1)u−j/qu. Consequently, if pk denotes the probability that

s′ is not the solution of at most k equations in Sc, then,

pk =
∑u

j=u−k+1 (uj) ⋅ (q − 1)
u−j

qu
.

12 https://github.com/Crypto-TII/CryptographicEstimators

https://github.com/Crypto-TII/CryptographicEstimators

Biscuit: New MPCitH Signature Scheme 21

In order to secure Biscuit against forgery attacks, we must have for every pair (k, u),
where 0 ≤ k ≤ u ≤m:

1. KZτ(q−k,N−1) > 2λ, or

2. 1
pk
⋅ Cu(q, n,m) > 2λ+Cλ ,

where Cλ = 15 if λ = 128 or 192 and Cλ = 16 otherwise.

Following these analyses, we propose in Table 2 a set of 3 parameters for 128,192 and
256 bits of classical security.

5.4 Existential Unforgeability

The existential unforgeability of Biscuit is stated in Theorem 2.

Theorem 2 (EU-CMA security). Let PRG be a (t, ϵPRG)-secure pseudo-random gen-
erator function, and that any adversary running in time t has an advantage of at most
ϵPowAff2 against the underlying PowAff2u−1 problem. Suppose that the hash functions
H0,H1,H2 H4 behave as random oracles that output binary strings of size 2λ. Let A be
an adversary who has access to a signing oracle, making qi queries to Hi and qs queries
to the signing oracle. Then, the probability that A outputs a forgery for the Biscuit
signature scheme (Figure 7) is:

Pr[Forge] ≤ 3(q + τN ⋅ qs)2
2 ⋅ 22λ + qs(qs + 5q)

22λ
+ ϵPRG + ϵPowAff2 +Pr[X + Y = τ],

where τ is the number of repetitions of the ZKPoK protocol (Figure 3), X =maxi∈[q2]{Xi}
with Xi ∼ B(τ, 1

qu
), and Y =maxi∈[q4]{Yi} with Yi ∼ B(τ −X, 1

N
).

Proof. Overall the proof works as follows: First, we assume the existence of an adver-
sary A that can forge Biscuit signatures with probability Pr[Forge] after interacting
with a signing oracle and the random oracles H0,H1,H2,H3 and H4. Then, we show how
to simulate such an interaction so that we can use A to either:

1. Find collisions on the oracles H0,H1, or H3.
2. query an oracle Hi with an input used to query Hi while replaying signing query,
3. distinguish between outputs of PRG from random ones,
4. solve an instance of the PowAff2u−1 problem, or
5. obtain an event that happens with probability at most Pr[X + Y = τ].

In Game1, we simulate for A a real interaction with the signature scheme and the
random oracles Hi.

Game1: We generate a pair (sk,pk) ← KeyGen(), give pk to the adversary A, sim-
ulate the random oracles Hi, and any signing query msg from A is replied with
Sign(pk, sk,msg), where Sign is the algorithm shown in Figure 7. We allow A to make
qi queries to Hi and qs queries to the signing oracle. At the end, A outputs a pair
(msg, σ). We denote by Forge the event where (msg, σ) is a forgery, i.e., σ is a valid
signature for the message msg, and msg was not queried for signing.

For each of the subsequent games, Pri[Forge] denotes the probability that Forge hap-
pens in Gamei. In particular, we are interested in an upper bound for Pr[Forge] =
Pr1[Forge].

22 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

Game2: We proceed as in Game1 with the only exception that we abort if, during
the game, a collision of H0, H1, or H3 is found.

Every signing query yields τN queries to H0, τ to H1, and τD to H3, and one to H2
and H4. Hence, during this game, the total number of queries to H0, H1 or H3 is at
most q + τNqs, where q = max{q0, q1, q3}. Therefore, using the classic bound for the
probability of a collision of a hash function13, we have that

∣Pr1[Forge] −Pr2[Forge]∣ ≤
3(q + τNqs)2

22λ+1
.

Game3: We proceed as in Game2, but we abort if, while replying to a signing query,
the input to any Hi was used to answer a previous query to Hi made either directly by
A or by another signing query.

For each signing query, the probability of aborting in this game is, at most, the proba-
bility that the salt sampled in the signature query is equal to a salt used in a previous
query to any Hi. Therefore, we have that

∣Pr2[Forge] −Pr3[Forge]∣ ≤
qs(qs + q0 + q1 + q2 + q3 + q4)

22λ
≤ qs(qs + 5 ⋅ q)

22λ
.

Game4: This game differs from the previous one in how the signing queries are replied.
In this case, instead of querying H2 and H4 to obtain h1 and h2, respectively. The values
h1 and h2 are sampled uniformly at random from {0,1}2λ.
Notice that Game3 and Game4 differ only in the case of a query to either H2 or H4
is repeated while answering a signing query. This cannot happen since we would have
already aborted. So,

Pr4[Forge] = Pr3[Forge].
Game5: This game changes how the signing queries are answered. We highlight that, in
this game, the private key is no longer used to answer signing queries. Here, the values
h1, h2, the salt and all the seeds (seed(e,i)) are computed as in Game4. Contrarily,

for each e ∈ [τ], the values (ε(e)1 , . . . , ε
(e)
m), ie , com(e,ie),∆s(e),∆c(e) and JαK(e)

ie
are

sampled uniformly at random as it is done by the Simulator (see Figure 6). From the
security of the PRG we obtain that

∣Pr4[Forge] −Pr5[Forge]∣ ≤ εPRG.

Now we introduce a definition. Let e∗ ∈ [τ] and Q4 be a query to H4 with input

(salt,msg,pk, h1, (H(e)1 , . . . ,H
(e)
D)e∈[τ]).

We say that the e∗-th execution of Q4 defines a good witness s if

1. Each H
(e)
ℓ is an output of a query to H3.

2. There is a previous query h1 ← H2 (salt,msg, h(1)0 , . . . , h
(τ)
0).

3. There are previous queries
h
(e)
0 ← H1(salt, e, com(e,1), . . . , com(e,N),∆s(e),∆c(e)), for e ∈ [τ].

4. For each (e, i) ∈ [τ] × [N], there is a query of the form
com(e,i) ← H0 (salt, e, i, seed(e,i)).

13 By mathematical induction, we can prove that probability to find at least one colli-
sion of random oracle H ∶ {0,1}∗ → {0,1}2λ after n calls is at most n(n − 1)/22λ+1.

Biscuit: New MPCitH Signature Scheme 23

5. A solution s to the PowAff2u−1 instance (f , t) can be extracted from (seed(e
∗,i))i∈[N]

and ∆s(e
∗).

At the end of Game5, for each Forge, i.e., whenever A outputs a forgery (msg, σ), one
can check if any execution e ∈ [τ] defines a good witness. We define by Solve the event in
which there exists at least one good execution e∗ ∈ [τ], where query to H4 is built from
σ and following the verification algorithm (see Figure 8), and the (∆s(1), . . . ,∆s(τ))
are the one in σ. Consequently, Pr5[Forge ∩ Solve] = εPowAff2.
We finalize the proof by showing that Pr5[Forge ∩ Solve] ≤ Pr[X + Y = τ], where X =
maxi∈[0,q2]{Xi} Xi ∼ B(τ, 1

qu
), and Y =maxi∈[0,q4]{Yi} with Yi ∼ B(τ −X, 1

N
).

In the event Forge∩ Solve, (by the soundness part of Theorem 1) we either get a false-
positive case of the MPC protocol (see Figure 2), or A have cheated in exactly one party.
We analyze each scenario separately.

(False-positive case) We denote by h1 the output of a given query Q2 to H2 made by A.
After the MPC protocol is executed in the main shares as described in Figure 4, A can
count the number of indexes e ∈ [τ] for which the e-th execution yields a false-positive,

we use F2(h1) to denote that number. Since the first challenge ε(e) = (ε(e)1 , . . . , ε
(e)
m)

is sampled uniformly at random independently of h1, by Proposition 1, we have that
Pr[e ∈ F2(h1) ∣ Solve] ≤ 1

qu
for any e ∈ [τ]. Therefore, Xi ∼ B(τ, 1

qu
), where Xi denotes

#F2(h1) in the i-th query Q2 of A to H2. Let us define the random variable X =
maxi∈[q2]Xi.

(Cheating case) Let us assume X = τ1 = #F2(h1). For any e ∈ [τ] ∖ F2(h1), by the
soundness part of Theorem 1, we know that A has to cheat in exactly one party in
order to have a nonzero probability (which is 1

N
) that the e-th execution is accepted.

Notice, the verification is accepted if and only if the e-th execution is accepted for each
e ∈ [τ] ∖ F2(h1). Now, let us define the random variable Y = maxi∈[q4] Yi, where Yi is
the random variable returning the number of indexes e ∈ [τ] ∖ F2(h1) for which the
e-th execution is accepted in the i-th query to H4. Hence, in the particular case X = τ1,
the probability that the verification is accepted is given by Pr[Y = τ − τ1 ∣ X = τ1].
Therefore, by summing over all possible values of X, we obtain that

Pr5[Forge ∩ Solve] ≤ Pr[X + Y = τ].

The proof is concluded by the fact that.

Pr[Forge] = Pr1[Forge] ≤
4

∑
j=1
∣Prj[Forge] −Prj+1[Forge]∣ +Pr5[Forge]

=
4

∑
j=1
∣Prj[Forge] −Prj+1[Forge]∣

+Pr5[Forge ∩ Solve] +Pr5[Forge ∩ Solve].

6 Implementation

6.1 Canonical Representation Optimization

As seen in Lemma 1, an equivalent system where, for the first n equations, one of the
affine forms is only composed of one variable. Without loss of generality, we can choose

24 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

to have this variable in Ak,0. In other words, we can choose for the algorithm a system
f1, . . . , fm as

fk(x1, . . . , xn) = (xk + ak) +Ak,1(x1, . . . , xn) ⋅Ak,2(x1, . . . , xn),

for k ⩽ n, and

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +Ak,1(x1, . . . , xn) ⋅Ak,2(x1, . . . , xn),

for n < k ⩽m, where Ak,j are affine forms.

The effect is that the evaluation of the polynomial will be much faster as only 2 affine
form evaluations have to be performed instead of 3 for most of the equations. In the
implementation, we chose to simplify Ak,0 to save some code, as Ak,1 and Ak,2 can be
computed in the same way in a loop.

6.2 Hypercube Optimization

The algorithms described in Figures 7 and 8 use the hypercube variant. The simulation
of the MPC protocol does not need to compute all the values as in Figure 4. We first
compute αk using directly the opened values s and a. Then, we need to compute
JαkK(ℓ,j) only for j = 1. The value for j = 2 can be derived from α. Similarly, we can do
the same for JvkK(ℓ,j). This can also be applied to the verification. All in all, we usually
require to keep only log2(N) shares.

6.3 Vectorization

The main data structure in the algorithm is a vector of value in Fq. We have:

– The secret value, which is a vector of n elements in Fq.
– The public key, which is a vector of m elements in Fq.
– Intermediate values, which are vectors of m elements in Fq.

For each of these vectors, we need to compute operations component-wise. We can then
pack all elements in the largest possible integer handled by the CPU. Typically, this
could be a 64-bit word that can contain 8 elements in F28 for instance.

When vectorized instructions are available (SSE, AVX, . . .), even larger integer types
can be used. For instance, with AVX2 a 256-bit integer can be used to pack a vector of
Fq elements. In characteristic 2, the component-wise addition of a vector of elements
can be done in one instruction using the VPXOR instruction.

6.4 Performances and Memory Consumption

In this section, we show the performance and memory consumption of our instances.
Our implementation is optimized to use AVX2 vectorized instructions on a little-endian
64-bit CPU.

The code is compiled with GCC version 12.2.0 on Debian GNU/Linux. Number of cycles
was measured by counting PERF HW COUNT CPU CYCLES events on an 11th Gen Intel(R)

Core(TM) i7-1185G7 @ 3.00GHz CPU (Tiger Lake). Even if frequency modification
should not affect this metric, we deactivated Intel’s TurboBoost feature anyway. The
number of cycles is taken as the median over 1000 executions.

Biscuit: New MPCitH Signature Scheme 25

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 512 1 654 288 122 480 88 484 69 418 295 68 984 920

biscuit128f 512 329 904 25 712 88 477 13 711 517 13 007 550

biscuit192s 608 3 438 832 194 544 251 806 191 442 370 190 138 451

biscuit192f 608 708 944 49 392 252 106 38 677 691 37 087 201

biscuit256s 800 7 414 000 335 312 504 021 635 749 877 632 271 590

biscuit256f 800 1 537 904 98 768 504 983 128 098 892 124 921 246

Table 3: Time performance and memory consumption of Biscuit on avx2 impl.

In Table 3, we give the figures for the implementation strictly following the description
in the NIST submission but with the new parameters proposed in Table 2.

In Table 4, we include the canonical representation optimization as described in Sec-
tion 6.1. This improves the performances by 18 to 28 percent.

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 512 1 651 088 122 480 61 755 60 785 166 59 198 143

biscuit128f 512 326 704 25 712 61 757 11 507 884 10 695 367

biscuit192s 608 3 430 288 194 544 172 825 151 956 515 152 714 889

biscuit192f 608 700 400 49 392 172 446 30 476 727 29 191 279

biscuit256s 800 7 393 680 335 312 343 001 472 774 277 468 258 145

biscuit256f 800 1 517 584 98 768 341 156 93 221 776 89 507 805

Table 4: Time performance and memory consumption of Biscuit on avx2 impl.
using canonical optimization.

Finally, in Table 5, in addition to the previous optimization, we integrated the hyper-
cube variant. With this variant, the memory consumption is greatly improved especially
for large values of N . This is because we have to keep track of only log2(N) shares
instead of N . The performances are improved by 50 to 83 percent for the small variant,
and by 41 to 69 percent for the fast variant. The code is available in [2].

26 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 576 814 256 40 144 61 697 27 930 795 28 323 314

biscuit128f 576 201 744 14 096 61 682 6 581 004 6 166 694

biscuit192s 704 1 686 416 67 376 173 044 49 890 911 49 914 321

biscuit192f 704 433 008 28 272 172 667 13 594 397 12 916 931

biscuit256s 960 3 556 624 117 424 341 657 77 620 375 77 447 430

biscuit256f 960 928 368 57 648 340 649 28 219 223 27 341 671

Table 5: Time performance and memory consumption of Biscuit on avx2 impl.
using canonical and hypercube optimization.

7 Acknowledgements

The authors would like to thank Daniel Escudero for meaningful insights on an early
version of this paper and the referees of ACNS24 that helped to improve the paper.

The third author would like to thank Charles Bouillaguet and Julia Sauvage for discus-
sions on the hardness of PowAff2, Google which partially supported this work thanks
to a gift for supporting post-quantum research, and the European Union’s Horizon
Europe research and innovation program that partially supported this research un-
der the project “Quantum Secure Networks Partnership” (QSNP, grant agreement No
101114043).

References

1. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process . https://csrc.nist.gov/csrc/media/

Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.

pdf.

2. Biscuit github repository, 2023. https://github.com/BiscuitTeam/Biscuit.

3. Najwa Aaraj, Slim Bettaieb, Löıc Bidoux, Alessandro Budroni, Victor Dyseryn,
Andre Esser, Philippe Gaborit, Mukul Kulkarni, Victor Mateu, Marco Palumbi,
Lucas Perin, and Jean-Pierre Tillich. PERK specification. 2023. available at
https://pqc-perk.org/assets/downloads/PERK_specifications.pdf.

4. Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-
Zamarripa, Carlo Sanna, Javier Verbel, and Floyd Zweydinger. MiRitH specifi-
cation. 2023. available at https://pqc-mirith.org/assets/downloads/mirith_
specifications_v1.0.0.pdf.

5. Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David
Joseph, and Dongze Yue. The return of the SDitH. pages 564–596, 2023.

6. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
and Angela Robinson abd Daniel Smith-Tone. Status Report on the Second Round

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://github.com/BiscuitTeam/Biscuit
https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf

Biscuit: New MPCitH Signature Scheme 27

of the NIST Post-Quantum Cryptography Standardization Process. Technical Re-
port NISTIR 8309, NIST, 2022. https://nvlpubs.nist.gov/nistpubs/ir/2020/
NIST.IR.8309.pdf.

7. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret. Al-
gebraic algorithms for lwe. Cryptology ePrint Archive, Paper 2014/1018, 2014.
https://eprint.iacr.org/2014/1018.

8. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Vic-
tor Dyseryn, Thibauld Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain,
Jean-Pierre Tillich, and Adrien Vinçotte. RYDE specification. 2023. available at
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf.

9. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Victor
Dyseryn, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain,
and Jean-Pierre Tillich. MIRA specification. 2023. available at https://pqc-mira.
org/assets/downloads/mira_spec.pdf.

10. Nicolas Aragon, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Thibauld Feneuil,
Philippe Gaborit, Romaric Neveu, and Matthieu Rivain. Mira: a digital signa-
ture scheme based on the minrank problem and the mpc-in-the-head paradigm,
2023.

11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiŕı Sgall, editors, Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland,
July 4-8, 2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer
Science, pages 403–415. Springer, 2011.

12. Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer.
On the Complexity of Solving Quadratic Boolean Systems. J. Complex., 29(1):53–
75, 2013.

13. Carsten Baum, Lennart Braun, Michael Klooß, Christian Majenz, Shibam Mukher-
jee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy,
and Peter Scholl. FAEST specification. 2023. available at https://faest.info/
faest-spec-v1.1.pdf.

14. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-
Key Cryptography – PKC 2020, pages 495–526, Cham, 2020. Springer International
Publishing.

15. Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-
15, 1991, Proceedings, volume 576 of Lecture Notes in Computer Science, pages
420–432. Springer, 1991.

16. Emanuele Bellini, Rusydi H. Makarim, Carlo Sanna, and Javier A. Verbel. An
estimator for the hardness of the MQ problem. pages 323–347, 2022.

17. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solv-
ing multivariate systems over finite fields. J. Math. Cryptol., 3(3):177–197, 2009.

18. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial sys-
tems over finite fields: improved analysis of the hybrid approach. In Joris van der
Hoeven and Mark van Hoeij, editors, International Symposium on Symbolic and
Algebraic Computation, ISSAC’12, Grenoble, France - July 22 - 25, 2012, pages
67–74. ACM, 2012.

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://eprint.iacr.org/2014/1018
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://faest.info/faest-spec-v1.1.pdf
https://faest.info/faest-spec-v1.1.pdf

28 L. Bettale, D. Kahrobaei, L. Perret, J. Verbel

19. Luk Bettale, Ludovic Perret, Delaram Kahrobaei, and Javier Verbel. Biscuit:
Shorter MPC-based Signature from PoSSo, June 2023. Specification of NIST post-
quantum signature.

20. Charles Bouillaguet and Julia Sauvage. Preliminary Cryptanalysis of the Biscuit
Signature Scheme. Preprint, January 2024.

21. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
quantum zero-knowledge and signatures from symmetric-key primitives. pages
1825–1842, 2017.

22. NIST Computer Security Division. SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions. FIPS Publication 202, National Institute of
Standards and Technology, U.S. Department of Commerce, May 2014.

23. Andre Esser, Javier Verbel, Floyd Zweydinger, and Emanuele Bellini.
CryptographicEstimators: a software library for cryptographic hardness estima-
tion. Cryptology ePrint Archive, Paper 2023/589, 2023. https://eprint.iacr.

org/2023/589.
24. Thibauld Feneuil and Matthieu Rivain. MQOM specification. 2023. available at

https://mqom.org/docs/mqom-v1.0.pdf.
25. Thibauld Feneuil and Matthieu Rivain. Threshold computation in the head: Im-

proved framework for post-quantum signatures and zero-knowledge arguments.
Cryptology ePrint Archive, Paper 2023/1573, 2023. https://eprint.iacr.org/

2023/1573.
26. Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Iden-

tification and Signature Problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

27. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster Zero-
Knowledge for Boolean Circuits. In 25th USENIX Security Symposium (USENIX
Security 16), pages 1069–1083, 2016.

28. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 21–30, 2007.

29. Daniel Kales and Greg Zaverucha. An attack on some signature schemes con-
structed from five-pass identification schemes. In Stephan Krenn, Haya Shulman,
and Serge Vaudenay, editors, Cryptology and Network Security, pages 3–22, Cham,
2020. Springer International Publishing.

30. Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-knowledge proofs
and post-quantum signatures. Cryptology ePrint Archive, Paper 2022/588, 2022.
https://eprint.iacr.org/2022/588.

31. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive
zero-knowledge with applications to post-quantum signatures. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 525–537, 2018.

32. Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon, Byeonghak
Lee, Joohee Lee, Jooyoung Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and
Hyojin Yoon. AIMER specification. 2023. available at https://aimer-signature.
org/docs/AIMer-NIST-Document.pdf.

33. Carlos Aguilar Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron, James
Howe, David Joseph, Antoine Joux, Edoardo Persichetti, Tovohery H., Randria-
narisoa, Matthieu Rivain, and Dongze Yue. SDITH specification. 2023. available
at https://sdith.org/docs/sdith-v1.0.pdf.

https://eprint.iacr.org/2023/589
https://eprint.iacr.org/2023/589
https://mqom.org/docs/mqom-v1.0.pdf
https://eprint.iacr.org/2023/1573
https://eprint.iacr.org/2023/1573
https://eprint.iacr.org/2022/588
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://sdith.org/docs/sdith-v1.0.pdf

Biscuit: New MPCitH Signature Scheme 29

34. Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David
Joseph, and Dongze Yue. The return of the sdith. In Carmit Hazay and Mar-
tijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Lyon, France, April 23-27, 2023, Proceedings, Part V, volume 14008 of
Lecture Notes in Computer Science, pages 564–596. Springer, 2023.

35. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. J. ACM, 56(6):34:1–34:40, 2009.

36. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, Jonathan Katz, Xiao
Wang, Vladmir Kolesnikov, and Daniel Kales. Picnic : Algorithm specification and
design document.

	Biscuit: New MPCitH Signature Scheme from Structured Multivariate Polynomials

