
Beyond Security: Achieving Fairness in Mailmen-Assisted Timed
Data Delivery

Shiyu Li

Shai_Li@yeah.net

University of Electronic Science and

Technology of China

Yuan Zhang
∗

ZY_LoYe@126.com

University of Electronic Science and

Technology of China

Yaqing Song

YaqingS@163.com

University of Electronic Science and

Technology of China

Hongbo Liu

hongbo.liu@uestc.edu.cn

University of Electronic Science and

Technology of China

Nan Cheng

dr.nan.cheng@ieee.org

Xidian University

Hongwei Li

hongweili@uestc.edu.cn

University of Electronic Science and

Technology of China

Dahai Tao

atfwuswy@163.com

University of Electronic Science and

Technology of China

Kan Yang

Kan.Yang@memphis.edu

University of Memphis

ABSTRACT
Timed data delivery is a critical service for time-sensitive applica-

tions that allows a sender to deliver data to a recipient, but only be

accessible at a specific future time. This service is typically accom-

plished by employing a set of mailmen to complete the delivery

mission. While this approach is commonly used, it is vulnerable

to attacks from realistic adversaries, such as a greedy sender (who

accesses the delivery service without paying the service charge)

and malicious mailmen (who release the data prematurely without

being detected). Although some research works have been done to

address these adversaries, most of them fail to achieve fairness.

In this paper, we formally define the fairness requirement for

mailmen-assisted timed data delivery and propose a practical scheme,

dubbed DataUber, to achieve fairness. DataUber ensures that honest

mailmen receive the service charge, lazy mailmen do not receive the

service charge, and malicious mailmen are punished. Specifically,

DataUber consists of two key techniques: 1) a new cryptographic

primitive, i.e., Oblivious and Verifiable Threshold Secret Sharing

(OVTSS), enabling a dealer to distribute a secret among multiple

participants in a threshold and verifiable way without knowing

any one of the shares, and 2) a smart-contract-based complaint

mechanism, allowing anyone to become a reporter to complain

about a mailman’s misbehavior to a smart contract and receive a re-

ward. Furthermore, we formally prove the security of DataUber and

demonstrate its practicality through a prototype implementation.

CCS CONCEPTS
• Security and privacy→ Security protocols; Public key encryp-
tion.

KEYWORDS
Timed data delivery, smart contract, fairness, complaint-supported

∗
Corresponding author

1 INTRODUCTION
Time-sensitive applications (e.g., sealed-bid auctions, electronic vot-

ing, and digital time capsules) have become increasingly prevalent

in digital worlds [3, 5, 6]. In these applications, a sender needs to

deliver some data in a timed-release manner such that the recipi-

ent can access the data content only after a duration specified by

the sender. For instance, in a sealed-bid auction, bidders deliver

their bids to an auctioneer, and to ensure fairness, the bids can be

“opened” by the auctioneer only after the bidding closes [23, 31].

Existingworks for timed data delivery can be broadly categorized

into two types: the time-locked puzzles (TLPs)-based ones and

mailman-assisted ones. TLP-based schemes adopt an encrypt-then-

solve paradigm: the sender generates a cryptographic puzzle, in

which a decryption key is embedded as the solution; the sender

encrypts the data using the key and sends the ciphertext along with

the puzzle to the recipient; the recipient recovers the key by solving

the puzzle and further decrypts the ciphertext [10, 26, 43]. TLP-

based schemes do not introduce any additional entities and are very

efficient on the sender side (since creating a cryptographic puzzle is

easy). However, these schemes are computationally expensive for

recipients due to the continuous computations required to search

for the puzzle’s solution.

Another line of research employs a set of mailmen to assist the

sender in delivering the data in a threshold manner [9, 24, 47].

These schemes essentially share the same encrypt-then-release

paradigm: the sender encrypts the data and sends the ciphertext

to the target recipient, employs a set of mailmen by compensating

them with a service charge and distributes the decryption key

among the mailmen in a threshold way; at a prescribed (future)

time, the mailmen jointly release the decryption key, allowing the

recipient to recover the data content [49]. However, these schemes

are vulnerable to misbehaved mailmen. Specifically, a lazy mailman

may be absent in the delivery mission, while a malicious mailman

might collude with the recipient to prematurely leak his share for

personal gain. Worse still, both the lazy and malicious mailman

1

would always receive the service charge, regardless of whether the

data is delivered on time
1
.

In order to resist misbehaved mailmen, a promising solution is

to leverage a smart-contract-based complaint mechanism, wherein

a smart contract is utilized to verify the trustworthiness of the mail-

men [40, 47]. To identify malicious mailmen, before the prescribed

delivery time arrives, anyone (including the sender, the receiver, the

mailmen, and the general public) can act as a reporter and complain

about that some mailman has prematurely leaked the share by sub-

mitting a witness to the smart contract. If the complaint is valid, the

reporter can receive a reward, and the sender can get compensation

(both from the misbehaved mailman). With this mechanism, the

smart contract can continuously detect whether each mailman mis-

behaves from beginning to end in a delivery mission. Moreover, to

distinguish the honest mailmen from lazy ones, the smart contract

checks whether each share is correctly released. Consequently, only

the mailman who honestly follows the prescribed scheme would

receive the service charge.

Nevertheless, new challenges arise due to the adoption of the

complaint mechanism. Notably, a greedy sender may maliciously

complain against innocent mailmen for profits. Additionally, when

a reporter submits a complaint transaction to the smart contract

regarding a premature leakage, there is a potential vulnerability to

blockchain adversaries who “copy” the transaction and execute the

“front-running” attack to steal the rewards [15, 22, 27].

Putting things together. As such, in addition to achieving timed

data delivery, a secure and practical scheme should provide the

following guarantees, which we subsume as a fundamental property

of fairness:

- (honest mailman fairness) an honest mailman, who faithfully

adheres to the prescribed scheme, would always receive the

designated service charge

- (lazy mailman fairness) a lazy mailman, who aborts the de-

livery mission, would not receive the service charge,

- (malicious mailman fairness) a malicious mailman, who pre-

maturely leaks the share, would be penalized,

- (reporter fairness) a reporter, who submits the first valid

complaint of a leaked share, would receive the reward.

Despite the significance of fairness, it is not well investigated in

existing schemes. In particular, some existing schemes assume that

the mailmen will always honestly complete the delivery mission,

making fairness trivial to achieve [9, 24, 30, 44]; others only provide

weak fairness and are vulnerable to sophisticated attacks [40, 47]

(which will be detailed in Section 2 and Section 4).

In this paper, we propose a complaint-supported timed data

delivery scheme dubbed DataUber to achieve fairness. Particularly,

we design a smart-contract-based complaint mechanism to verify

the trustworthiness of the mailmen. With this mechanism, if a

mailman prematurely leaks a share, anyone can complain to a

smart contract, and the misbehaved mailman would be penalized; if

a mailman honestly completes the data delivery mission, it would

always receive the service charge.

1
This issue cannot be trivially addressed by utilizing the “pay-on-delivery” paradigm

for transferring the service charge, since everyone can maliciously send data to the

recipient, and the latter has to pay for each delivery mission.

To prevent the greedy sender from breaking honest mailman

fairness, we propose a new cryptographic primitive dubbed oblivi-

ous and verifiable threshold secret sharing (OVTSS). With OVTSS,

the sender can distribute a secret among the mailmen in a threshold

way without gaining any knowledge about the shares, and each

mailman can verify the validity of the corresponding share. To

prevent the blockchain adversary from breaking reporter fairness,

we utilize a prover-designated zero-knowledge proof (ZKP) for the

complaint mechanism. This prover-designated ZKP ensures that

when a reporter complains about a premature share leakage, ad-

versaries cannot generate a valid complaint transaction to steal the

reporter’s rewards.

The contributions of this paper are summarized as follows.

Fairness formalization.We investigate the practical requirements

of mailmen-assisted timed data delivery and formalize a new no-

tion, i.e. fairness, within a decentralized environment. Through an

analysis of existing schemes, we conclude that none of them (or

their slight extensions) achieve fairness in the context of mailmen-

assisted timed data delivery.

OVTSS. We propose a powerful cryptographic primitive dubbed

oblivious and verifiable threshold secret sharing (OVTSS), which

we believe is of independent interest. OVTSS enables a dealer to

share a secret among a set of participants in a threshold manner,

while the dealer will not gain any information about each share,

and each participant can verify the validity of the designated share.

DataUber construction.We develop DataUber, a mailmen-assisted

timed data delivery scheme with fairness, upon OVTSS and the

smart-contract-based complaint mechanism. We give a formal anal-

ysis showing that DataUber realizes fair timed data delivery.]

Prototype implementation. We implement a DataUber prototype

based on Goerli [4] and present a comprehensive performance

evaluation, which demonstrates its practicality.

Roadmap. The remainder of this paper is organized as follows.

We review the related works in Section 2 and state the problem in

Section 3. We overview DataUber in Section 4, define it in Section 5

and detail it in Section 6. We present the security proofs in Section

7 and present the implementation details and evaluation results in

Section 8. Finally, we draw the conclusions and outlook the future

work in Section 9.

2 RELATEDWORK
The notion of timed data delivery was first proposed by May in a

technique report [45]. May observed that numerous time-sensitive

applications require the delivery of data in a timed-release man-

ner, leading to the proposition of an escrow-based approach for

implementing timed data delivery.

The first timed data delivery scheme was proposed by Rivest et

al. [52], wherein a time-locked puzzle (TLP) is utilized in tandem

with an encryption algorithm. Specifically, the decryption key is

embedded within the solution to the puzzle, requiring the recipient

to solve it in order to retrieve the data content [51]. Subsequent

works following this research line focus on constructing puzzles

using diverse cryptographic primitives to improve efficiency (e.g.,

the time spent in generating a puzzle is independent of the solving

time) or enrich functionality (e.g., homomorphism) [7, 16, 38].

2

Scheme

Fairness Honest mailman would

receive the service charge

Malicious mailman would

not receive the service charge

Reporter’s rewards

would not be stolen

Key-servers-based [2, 9, 30, 44]

YOSO-style [14, 32]

SWE-based [24, 42]

SilentDelivery [40]

NDHC19 [47]
2

DataUber

Table 1: Comparison between DataUber and related works

Nevertheless, the practicality of TLP-based schemes is debatable

due to the following reasons. On the one hand, it is challenging

for the sender to precisely control the delivery time. Factors be-

yond their control, such as the solver’s computational capabilities

and equipment, significantly impact the time required to solve the

puzzle. This creates an opportunity for the recipient to outsource

the solving process to a powerful server, allowing them to prema-

turely access the data content. On the other hand, solving the puzzle

necessitates continuous computations, which not only introduces

substantial costs but also causes a waste of resources [25].

Another research line employs a mailman to facilitate data de-

livery. Such a mailman-assisted paradigm originates from May’s

report [45], and prior schemes were proposed by Rivest et al. [52]

and Bellare et al. [12]. In these schemes, a sender employs amailman

to release the decryption key at the designated time for delivering

the data. Subsequently, various mailman-assisted schemes were pro-

posed to enrich functionality [20, 49]. Compared with TLP-based

schemes, mailman-assisted ones offer the advantage of achieving

precise delivery without computationally expensive operations.

However, mailman-assisted schemes suffer from critical threats:

once the mailman is breached, the data content would be prema-

turely recovered, undermining the primary goal of timed data de-

livery schemes. Furthermore, fairness poses an inherent challenge

in mailman-assisted schemes, with limited investigation thus far. In

cases where a mailman honestly fulfills its delivery duties, it is enti-

tled to receive a service charge, ensuring fairness straightforwardly.

If the mailman misbehaves, fairness can be easily compromised. For

example, if the mailman colludes with the recipient to prematurely

recover the data content for profits and cheats the sender, it would

still receive the service charge, resulting in a breach of fairness.

To mitigate the above “single-point-of-failure” problem, sub-

sequent works, such as YOSO-style protocols [14, 32], signature-

based-witness-encryption (SWE)-based schemes [24, 42], and key-

servers-based schemes [2, 9, 30, 44], essentially share a common

paradigm: employing a committee comprising multiple members in-

stead of a single one to reconstruct a secret in a threshold way. They

can be utilized for timed data delivery, however, none of them focus
on fairness, nor can they be straightforwardly extended to achieve
fairness. We analyze these schemes in terms of fairness below.

YOSO-style protocols [14, 32]. In a YOSO MPC protocol, each

party sends a single message and never speaks again in the protocol

execution. The key idea behind the YOSO-style protocols is that

when a party S speaks, S also conveys the message that it needs

to speak later to another partyM (M is typically a committee

−→
M

to avoid the single-point-of-failure issue). Then,

−→
M will take the

place of S to speak at the future time.

Regarding functionality, YOSO-style protocols imply mailmen-

assisted timed data delivery, where S acts as a sender and delegates

−→
M as a set of mailmen to deliver some message at a future time. In

terms of security, YOSO-style protocols require correctness of the

message sent into the future, i.e., the message delivered by

−→
M is

the same as that transmitted from S. With correctness, YOSO-style

protocols can be easily extended to achieve the honest mailman

fairness defined in our work. However, they do not focus on the

obliviousness of the transmission from S to

−→
M, i.e., S can know

the message obtained (and thereby will be published) by eachM𝑖 .

Therefore, applying YOSO-style protocols in timed data delivery

fails to achieve honest mailman fairness.

SWE-based schemes [24, 42]. In SWE-based schemes, timed data

delivery is achieved by a proposed 𝑡-out-of-𝑛 signature-based wit-

ness encryption (SWE). SWE allows to encrypt some data with

respect to 𝑛 mailmen’s public keys and some message 𝑇 (which

can be the prescribed delivery time), such that after 𝑡 mailmen

generate valid signatures on 𝑇 under their private keys, the data

can be decrypted using these signatures. For instance, in McFly

[24], with the mailmen’s public keys 𝑝𝑘1, ..., 𝑝𝑘𝑛 , for the data 𝑠 to

be delivered, a sender splits 𝑠 into 𝑠𝑠1, ..., 𝑠𝑠𝑛 in a (𝑡, 𝑛)-threshold
way such that 𝑠 =

∑𝑡
𝑗=1 𝜔𝑖 𝑗 𝑠𝑠𝑖 𝑗 , where 𝜔𝑖 𝑗 is the corresponding La-

grange coefficient, and generates the ciphertext 𝑐 = {𝑐0, 𝑐1, ..., 𝑐𝑛}
as 𝑐0 = 𝑔𝑟

2
, 𝑐𝑖 = (𝑒 (𝐻 (𝑇), 𝑝𝑘𝑖)𝑟 ·𝑔𝑠𝑠𝑖𝑇

∀𝑖 ∈ [1, 𝑛], where 𝑟 is a random-

ness, 𝑒 : 𝐺1 ×𝐺2 → 𝐺𝑇 is a bilinear map, 𝑔2 and 𝑔𝑇 are generators

of𝐺2 and𝐺𝑇 , respectively, and 𝐻 : {0, 1}∗ → 𝐺1 is a hash function.

To deliver 𝑠 , each mailman generates a BLS signature 𝜎𝑖 using the

secret key 𝑠𝑘𝑖 . With 𝑡 valid signatures (say, 𝜎1, ..., 𝜎𝑡), 𝑚 can be

recovered by decrypting 𝑐 as𝑚 =
∏𝑡

𝑖=1 𝑐
𝜔𝑖

𝑖
/𝑒 (∏𝑡

𝑗=1 (𝜎𝑖)𝜔𝑖 , 𝑐0).
This paradigm can be extended to ensure malicious mailman

fairness: when a mailman prematurely leaks a valid signature on 𝑇 ,

the leakage can be detected by verifying the signature. However,

it cannot be trivially tweaked to achieve honest mailman fairness.

Once a sender employs some mailmen for a delivery with regard

to the message 𝑇 , anyone can generate a ciphertext that can be

decrypted by those mailmen’s signatures on𝑇 using only the public

keys. A greedy sender can enjoy the delivery services provided by

the mailmen employed by other senders without paying. In this

case, McFly fails to achieve honest mailman fairness.

Key-servers-based schemes [2, 9, 30, 44]. In these schemes, a set

of mailmen jointly share a master secret key, periodically derive a

new one at each epoch, and publish their shares at the end of the

3

epoch. To deliver some data at a future epoch, a sender encrypts

the data using the corresponding master public key, and the data

will be delivered after the mailmen publish the shares.

Due to the adoption of asymmetric encryption, key-servers-

based schemes cannot resist the greedy sender as SWE-based schemes

do. Moreover, to achieve malicious mailman fairness, key-servers-

based schemes implicitly require a verifiable distributed secret shar-

ing to ensure that the benchmark used to assess each mailman’s

behavior corresponds to its share.

In the pursuit of fairness in timed data delivery, there are also

some works such as NDHC19 [47] and SilentDelivery [40]. They

leverage smart contracts to verify the trustworthiness of the mail-

men and transfer the service charge to the honest ones. However,

they are confronted with security and fairness issues. Particularly,

NDHC19 is vulnerable to curious mailman: a single mailman can

obtain the decryption key by launching a “zero-attack” as elabo-

rated in Section 4. SilentDelivery fails to achieve honest mailman

fairness since a sender can refuse to pay a well-behaved mailman:

the mailmen’s identity information recorded in the smart contract

for payment is provided by the sender (please refer to [40] for

more details), the sender can upload an incomplete one to avoid

paying the service charge. Additionally, both of them suffer from

front-running attacks [15, 22], failing to achieve reporter fairness.

A comparison betweenDataUber and the state-of-the-art schemes

is provided in Table 1, where denotes the property is not consid-

ered/achieved and denotes that it is achieved.

3 PROBLEM STATEMENT
3.1 Notation and basic theories
In this paper, 𝑟

$← 𝑆 denotes randomly choosing an element 𝑟 from

a set 𝑆 , 𝑖 + + denotes 𝑖 = 𝑖 + 1, |𝑟 | denotes the bit length of 𝑟 , {𝑥𝑖 }𝑛
1

denotes the set {𝑥1, ..., 𝑥𝑛}, and 𝑥𝑖 denotes 𝑥 to the power of 𝑖 . Given

two assertions 𝐴1 and 𝐴2, 𝐴1 ∧𝐴2 is true iff they are both true.

Interactive algorithms. We use the notation below for an inter-

action Π between two partiesM1 andM2:(
𝑜𝑢𝑡1
𝑜𝑢𝑡2

)
← Π

〈
M1 (𝑖𝑛1)
M2 (𝑖𝑛2)

〉
(𝑝𝑝),

where for each 𝑖 ∈ {1, 2},M𝑖 takes its private input 𝑖𝑛𝑖 , has access to

some public parameter 𝑝𝑝 , and outputs 𝑜𝑢𝑡𝑖 . For ease of readability,

in case that the output ofM𝑖 is not explicitly needed, we write ∗
instead of 𝑜𝑢𝑡𝑖 .

Blockchain and smart contract. Blockchain is an append-only

ledger. It records every change of participants’ funds by a transac-

tion [46, 56]. Every participant can generate and verify the trans-

action data, but no entity can fully control it. Smart contracts on

the blockchain are public and transparent protocols. Once a smart

contract is deployed, it will execute automatically as designed with-

out a third party [17]. Due to the space limitation, please refer to

[39, 53] for more details.

Shamir’s secret sharing [54]. Shamir’s secret sharing protocol

enables a dealer holding a secret 𝑠 to share it among a set of 𝑛

participants {M𝑖 }𝑛
1
. Any 𝑡 participants can pool their shares and

reconstruct 𝑠 , but no coalition of fewer than 𝑡 participants can get

2
In NDHC19 [47], one single mailman can obtain the decryption key of the data to be

delivered without being detected by the sender.

…

… … … …

…

…

Share

Service charge

Time of
delivery

Time of
distribution

Sender

Mailmen

Recover

Shares
distribution

Recipient

Arbitrary entity

Complaint

Before time
of delivery

Figure 1: System model

any information about 𝑠 from their collective shares. It is described

as follows. Let 𝑍𝑞 be a finite field that contains the domain of

possible secrets, and with |𝑍𝑞 | > 𝑛. Let 𝑢1, ..., 𝑢𝑛 ∈ 𝑍𝑞 be distinct,

nonzero elements. Given a secret 𝑠 ∈ 𝑍𝑞 , the dealer chooses uniform
𝑎1, ..., 𝑎𝑛 ∈ 𝑍𝑞 and defines the polynomial 𝑓 (𝑥) = 𝑠 + ∑𝑡−1

𝑖=1 𝑎𝑖𝑥
𝑖
.

The share of M𝑖 is 𝑠𝑠𝑖 = 𝑓 (𝑢𝑖) ∈ 𝑍𝑞 . After collecting 𝑡 shares

(say, 𝑠𝑠1, ..., 𝑠𝑠𝑡), the secret can be reconstructed as 𝑠 =
∑𝑡−1
𝑖=1 𝑠𝑠𝑖 ·∏𝑡

𝑗=1, 𝑗≠𝑖

𝑢 𝑗

𝑢 𝑗−𝑢𝑖 .
Additively homomorphic encryption [13]. An encryption algo-

rithm is additively homomorphic if fixing a plaintext spaceM, and

a ciphertext space C, given two plaintexts𝑚1,𝑚2 ∈ M and their

corresponding ciphertexts 𝑐1, 𝑐2 ∈ C under a public key 𝑝𝑘 , 𝑐1 · 𝑐2
results in an encryption of𝑚1 +𝑚2.

Zero-knowledge proof (ZKP) [34]. In a ZKP for some relation 𝑅,

a prover P holds a secret 𝑥 , and a verifierV holds𝑤 . P is able to

convinceV that 𝑅((𝑤), (𝑥)) = 1 while “no knowledge” is yielded

beyond the validity of the assertion.

Cryptographic commitment [19]. A party can “commit” to a mes-

sage by generating a commitment, while nothing about the message

is revealed. Later, the commitment can only “open” as the commit-

ted message.

Discrete logarithm (DL) assumption [21]. Given a cyclic group 𝐺

and 𝑔, ℎ
$← 𝐺 , it is hard to compute 𝑑 = log𝑔 ℎ in polynomial time.

3.2 System model
As depicted in Fig. 1, a typical complaint-supportedmailmen-assisted

timed data delivery scheme involves four entities:

• Sender. The sender publishes a timed data delivery mission via

a smart contract, employs multiple mailmen for the mission, and

distributes a portion of the data to each mailman.

• Mailmen. All mailmen collectively deliver the data by pub-

lishing their assigned shares through the smart contract at the

designated time.

• Recipient. The recipient can recover the data content using the

published shares when the delivery time has been reached.

• Smart contract. The smart contract assesses the behavior of

mailmen and transfers some service charge to them based on its

evaluation. The entities involved can complain about any premature

share leakage to it.

We outline a general workflow of complaint-supported mailmen-

assisted timed data delivery schemes as follows.

4

(1) Encryption. A sender S encrypts the data to be delivered

under a random key 𝑘 using a symmetric-key encryption algorithm,

sends the ciphertext to some recipient(s) and publishes a timed

delivery mission via a smart contract.

(2) Distribution. S employs 𝑛 mailmen, and each mailman con-

tributes a deposit to the smart contract. Then, S splits 𝑘 into multi-

ple shares in a (𝑡, 𝑛)-threshold way and distributes these shares to

the employed mailmen.

(3) Complaint. Prior to the delivery time, any entity can complain

to the smart contract about a premature share leakage by submitting

the share. Then, the smart contract evaluates the complaint.

(4) Delivery. Once the designated delivery time arrives, mailmen

submit their shares to the smart contract to deliver the data. The

smart contract assesses mailmen’s behaviors by verifying the sub-

mitted shares. After collecting at least 𝑡 shares, the recipient can

reconstruct 𝑘 and further recover the data content.

3.3 Threat model and goals
We provide an intuitive discussion about threat model and design

goals here and formalize them in Section 5.2.

Threat model. We consider all entities in DataUber to be rational

and driven by the maximization of their own profits. Based on

this premise, the complaint-supported mailmen-assisted timed data

delivery is confronted with the following adversaries.

• Malicious recipient. A malicious recipient may compromise

certain mailmen to prematurely recover the data.

• Greedy sender. A greedy sender may falsely accuse an honest

mailman of prematurely revealing the share to benefit from the

mailman’s deposit. Additionally, the sender may attempt to avoid

paying the service charge to an honest mailman.

• Lazy mailman. A lazy mailman may be absent during a delivery

mission without being detected.

• Malicious mailman. A malicious mailman may intentionally

leak their share ahead of schedule.

• Blockchain adversary. A blockchain adversarymaymonitor the

transactions sent to the smart contract, copy a reporter’s complaint

transaction and execute a front-running attack.

What we do not focus on. Regarding the threat model of DataUber,

we consider all mailmen to be rational. This assumption seems to

conflict with the general threat model under the threshold para-

digm, since the number of compromised mailmen may exceed the

threshold in order to maximize their profits. However, this conflict

can be eliminated by properly setting the amount of the deposit and

the service charge. The orthogonal mechanisms, such as pricing

mechanisms [18, 58], can be integrated as plug-in tools. Therefore,

instead of going into the details of the case amount of the deposit

and service charge, we follow the general threshold cryptosystems
and restrict our attention to the fact that the number of compromised
mailmen will not exceed the threshold.

Under this threat model, we require the following properties

from a fair mailmen-assisted timed data delivery scheme.

• Time-locked confidentiality. As long as the number of misbe-

haved mailmen is less than the threshold, the data remains

confidential to all entities (except the sender) until the desig-

nated delivery time.

• Mailman fairness.

- Honest mailman fairness. A mailman should obtain the

service charge if it faithfully adheres to the scheme, even in

the presence of malicious complaints from the sender.

- Lazy mailman fairness. A mailman absent in a delivery

mission should not receive the service charge.

- Malicious mailman fairness. If a mailman prematurely leaks

its share and is complained against, it should be punished.

• Reporter fairness. If a reporter complains about the prema-

ture leakage of a share, others cannot steal its rewards.

4 TECHNICAL OVERVIEW OF DATAUBER
Plain scheme. Before presenting DataUber, we start with a plain

instantiation of the workflow described in Section 3.2.

A sender S encrypts the data to be delivered under a random

key 𝑘 using a symmetric-key encryption algorithm and sends the

ciphertext to the target receiver. S also publishes a timed-delivery

mission via a timed-publishing smart contract TimedPub. After
receiving applications, S selects 𝑛 mailmen (denoted by {M𝑖 }𝑛

1
)

out of all applicants. EachM𝑖 pays some deposit to TimedPub. Then,
S generates a polynomial 𝑓 (𝑥) = 𝑘 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1, splits
𝑘 into 𝑛 shares as {𝑠𝑠𝑖 = 𝑓 (𝑖)}𝑛

1
using the Shamir’s secret sharing

protocol, and distributes 𝑠𝑠𝑖 to M𝑖 . Finally, S uploads the hash

values of the shares (denoted by ℎ(𝑠𝑠𝑖),∀ 𝑖 ∈ [1, 𝑛]) to TimedPub as
“benchmarks” for subsequent verifications.

Before delivery, any entity can complain about some mailman’s

premature leakage to TimedPub by submitting a leaked share (say,

𝑠𝑠𝑖). TimedPub judges the complaint by comparing 𝑠𝑠𝑖 with ℎ(𝑠𝑠𝑖).
If it is valid, some of the deposit paid by the misbehaved mailman is

reassigned to the reporter as a reward and the rest part is transferred

to S as compensation.

Challenge-1: resistance against greedy sender. The above plain

scheme fails to achieve fairness since it is vulnerable to a greedy

sender: as shown in Fig. 2- 1○, S knows all shares, he himself can

complain about thatM𝑖 has prematurely leaked 𝑠𝑠𝑖 by submitting

it to TimedPub as witness
3
. Then, S can obtain any mailman’s

deposit even if the mailman is well-behaved. It may appear that

senders would not be motivated to launch such an attack, as they

would want to prevent the publication of shares to maintain data

confidentiality due to privacy reasons. However, a greedy sender

can exploit the delivery of non-confidential data, such as public

information or meaningless messages. By doing so, the sender

can maliciously complain against all mailmen to get their deposits

without privacy concerns.

The above attack can be resisted by making the share distri-

bution oblivious: M𝑖 chooses 𝑢𝑖 , obtains the secret share 𝑠𝑠𝑖 =

𝑓 (𝑢𝑖), and knows nothing else about 𝑓 (𝑥), while S learns nothing

about 𝑠𝑠𝑖 . This can be achieved by utilizing Paillier encryption[29].

Specifically, let 𝑝𝑘𝑖 denote M𝑖 ’s public key, Paillier.Enc(𝑝𝑘𝑖 , 𝑢𝑖)
denote a Paillier encryption of 𝑢𝑖 under 𝑝𝑘𝑖 .M𝑖 computes 𝑐𝑢

(𝑗)
𝑖

=

Paillier.Enc(𝑝𝑘𝑖 , 𝑢 𝑗
𝑖
), 𝑗 = 1, ..., 𝑡 − 1 and sends the ciphertexts to

S. Then, S encrypts 𝑘 as 𝑐𝑘 = Paillier.Enc(𝑝𝑘𝑖 , 𝑘). With 𝑐𝑘 and

{𝑐𝑢 (𝑗)
𝑖
}𝑡−1
𝑗=1

, S can compute 𝑐𝑠𝑠𝑖 = 𝑐𝑘 · ∏𝑡−1
𝑗=1 (𝑐𝑢

(𝑗)
𝑖
)𝑎 𝑗

due to the

additive homomorphism of Paillier encryption and send 𝑐𝑠𝑠𝑖 toM𝑖 .

Upon receiving 𝑐𝑠𝑠𝑖 ,M𝑖 can decrypt it to get 𝑠𝑠𝑖 .

3
A smarter attacker would collude with another mailman or control a blockchain

account as a mailman to avoid detection.

5

Greedy sender Mailman

1. 𝑘 → 𝑠𝑠! = 𝑓 𝑥! !"#
$

3. Complain using 𝑠𝑠!

2. 𝑠𝑠! 3. 𝑐𝑠𝑠!⋆
1. c𝑢!

2. Choose 𝑢!⋆ ≠ 𝑢! 	
compute 𝑐𝑠𝑠!⋆ using 𝑢!⋆

5. Complain using 𝑠𝑠!⋆
4. Obtain 𝑠𝑠!⋆

using 𝑐𝑠𝑠!⋆

Greedy sender Mailman
3. 𝑐𝑠𝑠!
2. c𝑢!

1. 𝑓 𝑥 = 𝑘
5. Complain using 𝑘

4. Always obtain
𝑠𝑠! = 𝑘

Greedy sender Mailman

① ② ③

Figure 2: Vulnerabilities to greedy sender.

② ③①

Curious mailmanSender 4. 𝑐𝑠𝑠$
2. c𝑢$

3. Compute 𝑐𝑠𝑠!
using c𝑢!

1. 𝑢! = 0

4. Obtain 𝑠𝑠! = 𝑘

2. 𝑆$⋆ as the
benchmark

1. Compute a commitment
𝑆!⋆ on 𝑠𝑠!⋆

Smart contract Malicious mailman

Smart contract
Reporter

Blockchain
adversary

1. 𝑠𝑠$

2. 𝑠𝑠$

Figure 3: Vulnerabilities to adversarial mailman (1○ and 2○) and blockchain adversary (3○)

However, two sophisticated attacks from the greedy sender still

work: i) as shown in Fig. 2- 2○, S chooses an arbitrary 𝑢★
𝑖
and sends

𝑐𝑠𝑠★
𝑖
= Paillier.Enc(𝑝𝑘𝑖 , 𝑓 (𝑢★𝑖)) instead of 𝑐𝑠𝑠𝑖 toM𝑖 ; ii) as shown

in Fig. 2- 3○,S sets 𝑓 (𝑥) = 𝑘+0·𝑥+· · ·+0·𝑥𝑡−1 and honestly executes
the prescribed scheme, andM𝑖 will always obtain 𝑠𝑠𝑖 = 𝑘 with any

𝑢𝑖 . As 𝑓 (𝑥) is oblivious toM𝑖 , it can verify neither whether the

underlying plaintext of 𝑐𝑠𝑠★
𝑖
is indeed computed from 𝑢𝑖 selected

by herself/himself nor whether the coefficients of 𝑓 (𝑥) are all 0.
Subsequently, even ifM𝑖 follows the prescribed scheme, S can

know the exact value of the share and submit it to TimedPub to

complain aboutM𝑖 , andM𝑖 ’s deposit would be transferred to S.
To resist greedy sender, DataUber further makes the secret shar-

ing verifiable to the mailmen: before interacting withM𝑖 , S gener-

ates a set of commitments enablingM𝑖 to verify the correspondence

between 𝑐𝑠𝑠𝑖 and𝑢𝑖 . The key technique used here is Pedersen’s com-

mitment [57], which has additive homomorphism and is compatible

with Paillier encryption. S further generates a ZKP 𝜋NZM to prove

that the underlying message of one commitment is not 0. By doing

so, 𝑠𝑠𝑖 is verifiable toM𝑖 while is oblivious to others. Moreover, the

non-zero property of the 𝑓 (𝑥)’s coefficients is also verifiable toM𝑖 ,

while no additional knowledge of them is revealed. This ensures

that no information helping adversaries prematurely recover the

data content is exposed.

Challenge-2: resistance against curiousmailmen.The above scheme

fails to resist a curious mailman, who launches a so-called “zero-

attack” shown in Fig. 3- 1○: ifM★
𝑖
chooses 𝑢𝑖 = 0 to execute the

above scheme together with S, he can obtain 𝑓 (𝑢𝑖) = 𝑘 . Since

Paillier encryption is indistinguishable against chosen-plaintext

attacks (IND-CPA) [11], S cannot detect such an attack, and no

security would be guaranteed.

To thwart the zero-attack, the key observation is that iff 𝑢𝑖 ≠ 0,

then ∃ 𝑣𝑖 s.t. 𝑤𝑖 = 𝑢𝑖 · 𝑣𝑖 ≠ 0. Furthermore, when 𝑢𝑖 and 𝑣𝑖 are

both chosen byM𝑖 , given 𝑤𝑖 , S can confirm 𝑢𝑖 ≠ 0 by verifying

𝑤𝑖 ≠ 0 without gaining any additional knowledge about 𝑢𝑖 . With

this observation, we propose a non-zero plaintext ZKP 𝜋NZP and

integrate it into DataUber to resist the zero-attack. The integration

of Paillier encryption, Pedersen’s commitment, and 𝜋NZP yields an

oblivious and verifiable threshold secret sharing (OVTSS). We defer

its formal definition and construction to Appendix A.

Challenge-3: judgment delegation. In the above scheme, we can-

not directly extend TimedPub to support the judgment, since it

cannot verify the validity of the submitted shares for judging com-

plaints or paying the service charge. The fundamental reason is that

before 𝑠𝑠𝑖 is published, it is oblivious to all entities exceptM𝑖 . We

stress that enabling contract judging cannot be trivially achieved

by integrating a commitment scheme, i.e.M𝑖 generates a commit-

ment 𝑆𝑖 on 𝑠𝑠𝑖 and uploads 𝑆𝑖 to TimedPub as the benchmark for

subsequent judgments, since as shown in Fig. 3- 2○, a malicious

M★
𝑖
could generate a commitment 𝑆★

𝑖
on an arbitrary 𝑠𝑠★

𝑖
≠ 𝑠𝑠𝑖 . By

doing so, before the invalidity of 𝑠𝑠★
𝑖
is detected,M★

𝑖
has received

the service charge, which compromises mailman fairness.

To resolve this tension, we construct a ZKP 𝜋SD, which proves

that both 𝑐𝑠𝑠𝑖 and 𝑆𝑖 are derived from the same 𝑠𝑠𝑖 . With 𝜋SD,M𝑖

can prove the validity of 𝑆𝑖 . If 𝑆𝑖 is valid, S uploads it to the smart

contract for subsequent verifications.

Challenge-4: resistance against blockchain adversary. When a re-

porterM 𝑗 complains about a premature leakage of a share (say, 𝑠𝑠𝑖),

it uploads 𝑠𝑠𝑖 to TimedPub by sending a transaction𝑇𝑗 containing 𝑠𝑠𝑖 .
If the complaint is valid,M 𝑗 receives a reward. However, as shown

in Fig. 3- 3○, a blockchain adversaryM★
𝑗
may steal the reward by

launching a copy-then-front-running attack: once observing 𝑇𝑗
fromM 𝑗 ,M★

𝑗
conducts a complaint transaction 𝑇★

𝑗
containing 𝑠𝑠𝑖

and inserts𝑇★
𝑗
before𝑇𝑗 by delaying𝑇𝑖 or paying higher transaction

fee on𝑇★
𝑗
. Due to this vulnerability to the front-running attack, the

first reporter would always lose the reward.

A straightforward solution is to use a NIZKP for the knowledge

of 𝑠𝑠𝑖 , which allowsM 𝑗 to prove her/his knowledge to TimedPub
without revealing any information about 𝑠𝑠𝑖 [8]. However, the copy-

then-front-running attack still works since without need of 𝑠𝑠𝑖 ,M★
𝑗

can directly copy the proof in the complaint transaction generated

byM 𝑗 . To resist this attack, we propose a prover-designated ZKP

scheme allowingM 𝑗 to prove the knowledge of 𝑠𝑠𝑖 to TimedPub
without revealing any information about 𝑠𝑠𝑖 , while the proof is

specific to the account address ofM 𝑗 , which will be detailed in

6

Section 6.1. With this mechanism, M★
𝑗
cannot generate a valid

complaint transaction from his account address by observing others’

complaints. This yields DataUber, a complaint-supported timed data

delivery scheme with fairness.

5 DEFINITION
5.1 Syntax and correctness

Definition 1. DataUber is a tuple of seven algorithms: (Setup,
PubMission, Registration, KeyDis,Complaint, PubShare, Refund),
where Registration and KeyDis are interactively executed between a
sender and a mailman.

(𝑠𝑝, {𝑠𝑘𝑖 }𝑛
1
) ← Setup(1ℓ):

The setup algorithm takes a security parameter ℓ as the input,

outputs a set of system parameters 𝑠𝑝 and the secret keys {𝑠𝑘𝑖 }𝑛
1
of

all mailmen. 𝑠𝑝 is an implicit input of the following algorithms.

Phase 1. Encryption.
(𝛼, 𝐼𝐷𝑇) ← PubMission(𝑘, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡, 𝑡𝑠, 𝐴𝑢𝑥):
This algorithm is run by the sender S to publish a mission via

a smart contract. S inputs the encryption key 𝑘 of the data to be

delivered, publishes a mission by transferring some service charge

𝑝𝑎𝑦𝑚𝑒𝑛𝑡 to a smart contract and publishing the time slot 𝑡𝑠 in the

data should be delivered and some auxiliary information 𝐴𝑢𝑥 via

the contract. After the mission is successfully published, S outputs

some commitment(s) 𝛼 (used in the following algorithms) and the

identity 𝐼𝐷𝑇 of the mission.

Phase 2. Distribution.(
∗

𝑖𝑛𝑑𝑖

)
← Registration

〈
S
M𝑖

〉
(𝐼𝐷𝑇 , 𝐴𝑑𝑑S, 𝐴𝑑𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡):

Registration is an interactive algorithm between a mailmanM𝑖

and S, which enablesM𝑖 to apply for a published mission.M𝑖

inputs 𝐼𝐷𝑇 to specify the mission and the account address 𝐴𝑑𝑑S of

S to apply for the mission. After receiving the application, S inputs

the account address 𝐴𝑑𝑑𝑖 ofM𝑖 to employ it. Then,M𝑖 transfers

some coins 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 to the smart contract as a deposit and obtains

her/his index 𝑖𝑛𝑑𝑖 in the mission from the contract.(
𝑆𝑖
𝑠𝑠𝑖

)
← KeyDis

〈
S(𝑘)

M𝑖 (𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑘𝑖 , 𝛼):

It is an interactive algorithm in which S distributes a share 𝑠𝑠𝑖
of the decryption key 𝑘 toM𝑖 . S inputs 𝑘 andM𝑖 inputs a random

𝑢𝑖 . Finally,M𝑖 obtains 𝑠𝑠𝑖 (which depends on 𝑢𝑖) and S obtains a

commitment 𝑆𝑖 on 𝑠𝑠𝑖 .

Phase 3. Complaint.
(𝜋 (𝐴𝑑𝑑𝑖)/⊥) ← Complaint(𝐼𝐷𝑇 , 𝑠𝑠 𝑗 , 𝑆 𝑗 , 𝑖𝑛𝑑 𝑗 , 𝐴𝑑𝑑𝑖):
If a mailman with 𝑖𝑛𝑑 𝑗 in mission 𝐼𝐷𝑇 prematurely leaks 𝑠𝑠 𝑗 ,

any entity with an address 𝐴𝑑𝑑𝑖 can run this algorithm to generate

a proof 𝜋 (𝐴𝑑𝑑𝑖) for the premature leakage using 𝑠𝑠 𝑗 . Output the

proof if the complaint is valid and ⊥ otherwise.

Phase 4. Delivery.
(1/0) ← PubShare(𝐼𝐷𝑇 , 𝐴𝑑𝑑𝑖 , 𝑠𝑠𝑖 , 𝑖𝑛𝑑𝑖):
This algorithm is run by a mailmanM𝑖 to publish 𝑠𝑠𝑖 for the

mission 𝐼𝐷𝑇 . Output 1 if 𝑠𝑠𝑖 is valid and published at the prescribed

time and 0 otherwise.

Refund (𝐼𝐷𝑇):
This algorithm is run to refund the rest of the coins locked in

the smart contract to the corresponding payment accounts.

Definition 2. (Correctness). DataUber is correct if when a sender
and a mailman are honest (i.e. follow the scheme), the mailman will
obtain a valid secret share. Moreover, if more than threshold number
of mailmen are honest, the receiver can reconstruct the decryption
key at the prescribed delivery time.

5.2 Formalizing notions
We formalize the security notions of DataUber as follows, where

the games for the notions are presented in Fig. 4.

Time-locked confidentiality. Timed-locked confidentiality asserts

the property that as long as the number of mailmen compromised

by an adversary is fewer than the threshold 𝑡 , the adversary cannot

obtain any additional information about the decryption key.We cap-

ture time-locked confidentiality using the game TL-CONF, where

the adversary A chooses two decryption keys (denoted by 𝑘0, 𝑘1)

and guesses which one is used. TL-CONF allows A to compromise

up to 𝑡 − 1 mailmen and fully control them. After compromising a

mailman, A can obtain all secret information held by the mailman

and takes her/his place to interact with an honest sender.

The time-locked confidentiality is defined below.

Definition 3. (Time-locked confidentiality). DataUber achieves
time-locked confidentiality if, for any probabilistic polynomial-time
(PPT) adversary A, there is a negligible function negl s.t.

| Pr[TL-CONFA (1ℓ) ⇒ 1] ≤ 1

2

+ negl(1ℓ) .

Mailman fairness.We formalize it by honest mailman fairness,

lazy mailman fairness, and malicious mailman fairness.

Honest mailman fairness requires that as long as a mailman does

not prematurely leak her/his share, the mailman can get the deposit

back. However, as discussed in Section 4, a greedy sender may com-

plain that an honest mailman prematurely leaks the share to earn

the mailman’s deposit. Therefore, it requires that a sender cannot

obtain the share requested by a mailman in the key distribution

phase. We capture it by defining an HM-FAIR game. In HM-FAIR,

an adversary A (who is actually a greedy sender) interacts with

a mailmanM𝑖 to distribute a key. After the distribution, A tries

to complainM𝑖 by proving that he knows the share obtained by

M𝑖 . If the complaint is valid, A wins. Note that if A compromises

M𝑖 , he can trivially win the game. To avoid the trivial winning, in

HM-FAIR,M𝑖 is honest and follows the prescribed scheme.

The honest mailman fairness is defined below.

Definition 4. (Honest mailman fairness). DataUber achieves
honest mailman fairness if, for any PPT adversary A, there is a
negligible function negl s.t.

Pr[HM-FAIRA ⇒ 1] ≤ negl(ℓ).

Definition 5. (Lazy mailman fairness). DataUber achieves lazy
mailman fairness, if any mailman who does not publish her/his share
on time would not receive the service charge.

Malicious mailman fairness requires that if a premature share

leakage is complained about, the corresponding mailman would

be punished. We capture this property by defining the game MM-

FAIR, where an adversary A interacts with a sender S in KeyDis
and obtains a share while S obtains a commitment. A wins iff the

algorithm Complaint outputs ⊥ with the input 𝑠𝑠𝑖 and 𝑆𝑖 .

7

TL-CONFA (1ℓ)

1 : (𝑠𝑝, {𝑠𝑘𝑖 }𝑛
1
) ← Setup(1ℓ)

2 : 𝐼 ← A(𝑠𝑝), where |𝐼 ∩ {1, ..., 𝑛}| < 𝑡

3 : (𝑘0, 𝑘1) ← A({𝑠𝑘𝑖 }𝑖∈𝐼)

4 : 𝑏
$← {0, 1}, {𝛼𝑖 }𝑡−1

0
← PubMission(𝑘𝑏 , ∗)

5 : For each 𝑖 ∈ 𝐼 :

6 :

(
𝑆𝑖
𝑠𝑠𝑖

)
← KeyDis

〈
S(𝑘𝑏)
A(𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑘𝑖 , {𝛼𝑖 }𝑡−1

0
)

7 : For each 𝑖 ′ ∈ {1, ..., 𝑛}/𝐼 :

8 :

(
𝑆𝑖′

𝑠𝑠𝑖′

)
← KeyDis

〈
S(𝑘𝑏)

M𝑖′ (𝑢𝑖′, 𝑠𝑘𝑖′)

〉
(𝑝𝑘𝑖′, {𝛼𝑖 }𝑡−1

0
)

9 : 𝑏★← A({𝑆𝑖′}𝑖′∈{1,...,𝑛}/𝐼)
10 : Return (𝑏 = 𝑏★)

HM-FAIRA (1ℓ)

1 : (𝑠𝑝, {𝑠𝑘𝑖 }𝑛
1
) ← Setup(1ℓ)

2 : 𝑘 ← A(𝑠𝑝), {𝛼𝑖 }𝑡−1
0
← PubMission(𝑘, ∗)

3 : 𝑢𝑖
$← Xa

4 :

(
𝑆𝑖
𝑠𝑠𝑖

)
← KeyDis

〈
A(𝑘)

M𝑖 (𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑘𝑖 , {𝛼𝑖 }𝑡−1

0
)

5 : 𝑠𝑠★
𝑖
← A

6 : If ⊥ ← Complaint(𝑠𝑠★
𝑖
, 𝑆𝑖 , ∗) Return 0

7 : Else Return 1

aX is the space of the randomness input by mailmen and is determined by ℓ

MM-FAIRA (1ℓ)

1 : (𝑠𝑝, {𝑠𝑘𝑖 }𝑛
1
) ← Setup(1ℓ)

2 : {𝛼𝑖 }𝑡−1
0
← PubMission(𝑘, ∗)

3 : (𝑖, 𝑢𝑖) ← A(𝑠𝑝, {𝛼𝑖 }𝑡−1
0
)

4 :

(
𝑆 𝑗
𝑠𝑠 𝑗

)
← KeyDis

〈
S(𝑘)

A(𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑘𝑖 , {𝛼𝑖 }𝑡−1

0
)

5 : If 𝑆𝑖 = ⊥ Return 0

6 : Else If ⊥ ← Complaint(𝑠𝑠𝑖 , 𝑆𝑖 , ∗) Return 1

7 : Else Return 0

R-FAIRA (1ℓ)

1 : 𝑠𝑠
$← Yb

2 : generate the corresponding commitment 𝑆

3 : 𝜋 (𝐴𝑑𝑑) ← Complaint(𝑠𝑠, 𝑆, 𝐴𝑑𝑑, ∗)
4 : 𝜋 (𝐴𝑑𝑑

′)★← A(𝜋 (𝐴𝑑𝑑) , 𝑆, 𝐴𝑑𝑑 ′)
5 : If ∃ 𝜋 (𝐴𝑑𝑑′) ← Complaint(𝑠𝑠, 𝑆, 𝐴𝑑𝑑 ′, ∗) s.t.

𝜋 (𝐴𝑑𝑑
′) = 𝜋 (𝐴𝑑𝑑

′)★ ∧ 𝐴𝑑𝑑 ≠ 𝐴𝑑𝑑 ′

6 : Return 1

7 : Else Return 0

bY is the space of the shares and is determined by ℓ

Figure 4: Games defining time-lock confidentiality (TL-CONF), honest mailman fairness (HM-FAIR), malicious mailman fair-
ness (MM-Fair), and reporter fairness (R-FAIR), where the parameters that are not explicitly needed are presented by ∗

The malicious mailman fairness is defined below.

Definition 6. (Malicious mailman fairness). DataUber achieves
malicious mailman fairness if, for any PPT adversary A, there is a
negligible function negl s.t.

| Pr[MM-FAIRA ⇒ 1] | ≤ negl(ℓ) .

Reporter fairness. Reporter fairness asserts the property that after
a reporter complains the premature leakage of a share, an adver-

sary without the knowledge of the leaked share cannot steal the

rewards. In this work, we consider a blockchain adversary who

keeps monitoring the transactions sent to TimedPub and can re-

order the complaint transactions. In this case, after observing a

complaint transaction containing a proof, the adversary may try

to generate a valid complaint transaction using the proof gener-

ated by the reporter and make his transaction triggers the smart

contract earlier. Therefore, reporter fairness requires that given a

proof specific to an account address 𝐴𝑑𝑑 , without the knowledge

of the share, the adversary A cannot forge a valid proof specific to

another account address𝐴𝑑𝑑A ≠ 𝐴𝑑𝑑 . We capture this property by

defining a R-FAIR game, whereA is given a proof 𝜋 (𝐴𝑑𝑑) associate

with a randomly chosen secret share 𝑠𝑠𝑖 and aims to output a valid

proof 𝜋 (𝐴𝑑𝑑A) . The reporter fairness is defined below.

Definition 7. (Reporter fairness). DataUber achieves reporter
fairness if, for any PPT adversary A with an address 𝐴𝑑𝑑A , there is
a negligible function negl s.t. | Pr[R-FAIRA ⇒ 1] | ≤ negl(1ℓ).

6 CONSTRUCTION OF DATAUBER
6.1 Building blocks
Paillier encryption [48]. An additively homomorphic encryption

scheme consisting of the following three algorithms:

• (𝑠𝑘, 𝑝𝑘) ← Paillier.Gen(1ℓ): on input a security parameter

1
ℓ
, choose random primes 𝑝, 𝑞 with |𝑝 | = |𝑞 |, compute 𝑁 =

𝑝 · 𝑞, 𝜙 (𝑁) = (𝑝 − 1) · (𝑞 − 1), output 𝑠𝑘 = (𝜙 (𝑁), 𝑁) as the
private key and 𝑝𝑘 = 𝑁 as the public key.

• 𝑐 ← Paillier.Enc(𝑝𝑘,𝑚; 𝑟): on input the public key 𝑝𝑘 =

𝑁 , a message 𝑚 ∈ 𝑍𝑁 , and a random 𝑟 ∈ 𝑍 ∗
𝑁
, output the

ciphertext 𝑐 = (1 + 𝑁)𝑚 · 𝑟𝑁 mod 𝑁 2
.

8

𝑇𝑖𝑚𝑒𝑑𝑃𝑢𝑏--Smart contract for DataUber
6: function	𝑃𝑢𝑏𝑆ℎ𝑎𝑟𝑒	 _𝐼𝐷!, _𝑖𝑛𝑑" , _𝑢" , _𝑠𝑠" :

𝐢𝐟		𝑔_$$! = 𝑆ℎ𝑎𝑟𝑒 _𝐼𝐷! _𝑖𝑛𝑑" ∧
ℳ _𝐼𝐷! _𝑖𝑛𝑑% ≠ 0 ∧
the	current	time	is	in	𝑡𝑠 _𝐼𝐷! 	𝐭𝐡𝐞𝐧
transfer	𝑠𝑎𝑙𝑎𝑟𝑦 _𝐼𝐷! 	to	ℳ" ;

end	if

7: function	𝑅𝑒𝑓𝑢𝑛𝑑	 _𝐼𝐷! :
if the current time is after 𝑡𝑠 _𝐼𝐷! 	𝐭𝐡𝐞𝐧
return	the	rest	of	coins	to	payers;

end	if

4: function	𝑆ℎ𝑎𝑟𝑒𝑠	 _𝐼𝐷!, _𝑆% &
'
:

𝐢𝐟	invoker	is	𝒮	𝐭𝐡𝐞𝐧
𝐟𝐨𝐫		𝑗 = 1		to		𝑛		𝐝𝐨				𝑆ℎ𝑎𝑟𝑒 _𝐼𝐷! 𝑗 = _𝑆% ;
end	for

end	if

5: function	𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛	 _𝐼𝐷!, _𝑖𝑛𝑑% , _𝑠𝑠% :
𝐢𝐟	𝑔_$$" = 𝑆ℎ𝑎𝑟𝑒 _𝐼𝐷! _𝑖𝑛𝑑% ∧
the	current	time	is	before	𝑡𝑠 _𝐼𝐷! 	𝐭𝐡𝐞𝐧
transfer	ℳ _𝐼𝐷! _𝑖𝑛𝑑% /2	to	the	invoker;
transfer	ℳ _𝐼𝐷! _𝑖𝑛𝑑% /2	to	𝒮;

end	if

1: 𝑖 = 0, 𝑐𝑜𝑢𝑛𝑡 	 = 0;
2: function	𝑀𝑖𝑠𝑠𝑖𝑜𝑛	 {_𝛼%}	&' , _𝑝𝑎𝑦𝑚𝑒𝑛𝑡, _𝑡𝑠, _𝐴𝑢𝑥 :

𝑠𝑎𝑙𝑎𝑟𝑦 𝑖 = _𝑝𝑎𝑦𝑚𝑒𝑛𝑡/𝑛; 𝑡𝑠 𝑖 = _𝑡𝑠;
𝐟𝐨𝐫		𝑗 = 1		to		𝑛		𝐝𝐨		𝛼 𝑖 𝑗 = _𝛼% ;
end	for
𝑖 + +;
return 𝐼𝐷! = 𝑖 − 1;

3: function	𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟	 _𝐼𝐷!, _𝑑𝑒𝑝𝑜𝑠𝑖𝑡 :
𝐢𝐟	𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! < 𝑛 ∧ the	invoker	did	not	register	𝐭𝐡𝐞𝐧
𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! ++;ℳ 𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! = _𝑑𝑒𝑝𝑜𝑠𝑖𝑡;
return 𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑢𝑛𝑡 _𝐼𝐷! ;

else	return	⊥;
end	if

Figure 5: Pseudocode of TimedPub, where variables whose names start with an underline are parameters input by invokers

• 𝑚 ← Paillier.Dec(𝑠𝑘, 𝑐): on input a ciphertext 𝑐 and the

private key 𝑠𝑘 = (𝜙 (𝑁), 𝑁), output the plaintext

𝑚 =
(𝑐𝜙 (𝑁) mod 𝑁 2) − 1

𝑁
· 𝜙 (𝑁)−1 mod 𝑁 .

Pedersen’s commitment [50]. An additively homomorphic com-

mitment scheme consisting of three algorithms:

• (𝑝, 𝑞,𝐺,𝑔, ℎ) ← Commit.Gen(1ℓ): on input a security pa-

rameter 1
ℓ
, output (𝑝, 𝑞,𝐺,𝑔, ℎ), where 𝑝, 𝑞 are primes such

that 𝑞 |𝑝 −1;𝐺 is a group with the order 𝑞; 𝑔, ℎ are generators

of 𝐺 such that log𝑔 (ℎ) is unknown.
• 𝛼 ← Commit.Com(𝑚; 𝑟): with the message𝑚 ∈ 𝑍𝑞 and a

random 𝑟 ∈ 𝑍𝑞 , the corresponding commitment, 𝛼 = 𝑔𝑚ℎ𝑟 ,

is computed and output.

• 1/0 ← Commit.Open(𝛼,𝑚, 𝑟): on input a commitment 𝛼 ,

a committed message𝑚, and the randomness 𝑟 , verify the

validity of 𝛼 by checking 𝛼
?

= 𝑔𝑚ℎ𝑟 .

Prover-designated ZKP for discrete logarithm 𝜋
(𝐼𝐷)
DL . A prover-

designated ZKP for the prover with the identity 𝐼𝐷 to prove the

knowledge of the solution of a discrete logarithm problem. Formally,

𝑅DL = {(𝐺,𝑔 ∈ 𝐺, 𝑆 ∈ 𝐺); (𝑠) |𝑆 = 𝑔𝑠 }.

The proof 𝜋
(𝐼𝐷)
DL can be generated as follows.

• The prover randomly chooses 𝑟 ∈ 𝑍𝑞 , computes 𝑅 = 𝑔𝑟 , 𝑧 =

𝑟 + 𝑠 ·𝐻 (𝑆, 𝑅, 𝐼𝐷), where 𝐻 : {0, 1}∗ → 𝑍𝑞 is a hash function

modeled as a random oracle, and sends 𝜋
(𝐼𝐷)
DL = {𝑅, 𝑧, 𝐼𝐷} to

the verifier.

• The verifier verifies the validity of 𝜋
(𝐼𝐷)
DL by checking 𝑅 ·

𝑆𝐻 (𝑆,𝑅,𝐼𝐷)
?

= 𝑔𝑧 .

We defer the details of the following ZKP schemes to Appendix B.
ZKP for ordered-exponential computation on the same base 𝜋OEC

[36]. A ZKP for the relation that multiple plaintexts are a sequence

of powers. Formally,

𝑅OEC = {((𝑝𝑘 = 𝑁, {𝑐𝑢 (𝑖) ∈ 𝑍𝑁 2 }𝑡−1𝑖=1 , 𝑢 ∈ 𝑍𝑁) |

𝑐𝑢 (𝑖) = Paillier.Enc(𝑝𝑘,𝑢𝑖 ; 𝑟𝑖) ∀𝑖 ∈ [1, 𝑡 − 1]}.

ZKP for non-zero plaintext 𝜋NZP. A ZKP for the relation that the

value of the underlying plaintext of a ciphertext is not 0. Formally,

𝑅NZP = {(𝑁, 𝑐1 ∈ 𝑍𝑁 2); (𝑚1 ∈ 𝑍𝑁 , 𝑟1 ∈ 𝑍 ∗𝑁) |
𝑐1 = Paillier.Enc(𝑝𝑘,𝑚1; 𝑟1) ∧ 𝑚1 ≠ 0}.

ZKP for non-zero message 𝜋NZM.AZKP for the relation that given

a Pedersen’s commitment, the value of its underlying message is

not 0. Formally,

𝑅NZM = {(𝐺, 𝑝, 𝑞,𝑔 ∈ 𝐺,ℎ ∈ 𝐺, 𝛼1 ∈ 𝐺); (𝑎1 ∈ 𝑍𝑞, 𝑟1 ∈ 𝑍𝑞) |
𝛼1 = Commit.Com(𝑎1; 𝑟1) ∧ 𝑎1 ≠ 0}.

ZKP for same derivation 𝜋SD. A ZKP for the relation that the

exponent of an exponentiation in the group𝐺 is the corresponding

plaintext of a Paillier ciphertext. Formally,

𝑅SD = {(𝑁, 𝑐𝑢 ∈ 𝑍𝑁 2 ,𝐺, 𝑔 ∈ 𝐺,𝑈 ∈ 𝐺); (𝑢, 𝑅) |
𝑐𝑢 = (1 + 𝑁)𝑢 · 𝑅 mod 𝑁 2 ∧𝑈 = 𝑔𝑢 }.

6.2 Smart contract for DataUber: TimedPub
We then present the constructed smart contract TimedPub. As
shown in Fig. 5, TimedPub consists of six functions:Mission, Register,
Shares, Complain, PubShare, and Refund.

• Mission. It can be invoked by a sender to publish a timed

data delivery mission, where some related information, such

as the amount of the service charge and prescribed deliv-

ery time, is published via the blockchain. After a mission is

published, it returns the identity of the mission.

• Register. It can be invoked by a mailman to register for a

published mission, where the mailman transfers some coins

as the deposit to TimedPub.
• Shares. It can be invoked by a sender to publish all com-

mitments on the shares distributed to the mailmen. These

commitments are utilized for subsequent judgments.

• Complain. It can be invoked by any entity to complain about

the premature leakage of a share by uploading the share

as the witness. Then, this function verifies i) whether the

current time is before the delivery time and ii) the validity

of the complaint using the commitment (uploaded in Shares)
of the share.

9

• PubShare. It can be invoked by a mailman to publish her/his

share at a prescribed delivery time by uploading the share.

After a share is published, this function verifies i) whether

the current time is the prescribed delivery time and ii) the

validity of the share using the corresponding commitment.

• Refund. It can be invoked to unlock all coins in the smart

contract after a mission is finished.

6.3 Algorithm details
A sender S with a blockchain account address 𝐴𝑑𝑑S , a recipi-

ent R, and a set of mailmen {M1, ...,M𝑛} with account addresses

{𝐴𝑑𝑑M1
, ..., 𝐴𝑑𝑑M𝑛

} are involved in DataUber.

We assume that there is a secure channel between S and R for

communication. The messages transmitted through these channels

are encrypted and authenticated.

Setup. Let ℓ be a security parameter, system parameters 𝑠𝑝 =

{𝑡, 𝑛, 𝑝𝑝} are published, where 𝑡 is a threshold, 𝑛 is the number of

employedmailmen, and 𝑝𝑝 = (𝐺, 𝑝, 𝑞, 𝑔, ℎ) ← Commit.Gen(1ℓ , 𝑡, 𝑛).
EachmailmanM𝑖 runs (𝑠𝑘𝑖 , 𝑝𝑘𝑖) ← Paillier.Gen(1ℓ) and publishes
the public key 𝑝𝑘𝑖 . The smart contract TimedPub shown in Fig. 5,

is deployed on the blockchain with the address 𝐴𝑑𝑑𝐶 .

Phase 1. Encryption. In this phase, S executes PubMission to

publish a timed transmission mission on the blockchain.

PubMission.

• Randomly choose 𝑘 ∈ 𝑍 ∗𝑞 , encrypt𝑚 using a symmetric-key

encryption algorithm (e.g., CBC[AES]) and key 𝑘 , and send

the ciphertext 𝑐 to R via a secure channel.

• Choose 𝑎1, ..., 𝑎𝑡−1
$← 𝑍 ∗𝑞 and generates a polynomial 𝑓 (𝑥) =

𝑘 + 𝑎1𝑥 + 𝑎2𝑥2 + · · · + 𝑎𝑡−1𝑥𝑡−1.
• Choose 𝑟0, ..., 𝑟𝑡−1 ∈ 𝑍𝑞 and compute the commitments on 𝑘

and𝑎𝑖 as𝛼0 = Commit.Com(𝑘 ; 𝑟0), 𝛼𝑖 = Commit.Com(𝑎𝑖 ; 𝑟𝑖),
∀𝑖 ∈ [1, 𝑡 − 1].
• Generate a proof 𝜋NZM for

𝑅NZM ={(𝐺, 𝑝, 𝑞, 𝑔, ℎ, 𝛼𝑡−1); (𝑎𝑡−1, 𝑟𝑡−1) |
𝛼𝑡−1 = Commit.Com(𝑎𝑡−1; 𝑟𝑡−1) ∧ 𝑎𝑡−1 ≠ 0}.

• Invoke TimedPub.Mission ({𝛼𝑖 }𝑡−1
0

, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡, 𝑡𝑠, 𝐴𝑢𝑥) to pub-
lish a timed-delivery mission, where 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 is the service

charge, 𝑡𝑠 is the time slot in which𝑚 should be delivered,

and 𝐴𝑢𝑥 is the auxiliary information such as the amount of

the deposit and 𝜋NZM.

After publishing the mission, S obtains 𝐼𝐷𝑇 as the identity of

the current mission.

Phase 2. Distribution. In this phase, two algorithms, Registration
and KeyDis, are included. In Registration, any mailman can apply

for the published mission, S selects 𝑛 mailmen (say,M1, ...,M𝑛)

out of all applicants, and these mailmen pay some deposit for the

mission. In KeyDis, S distributes 𝑘 among allM𝑖 in a threshold,

oblivious, and verifiable way.

Registration.

• A mailmanM𝑖 who wants to take the mission first verifies

the validity of 𝜋NZM. If it is valid,M𝑖 generates a transaction

from 𝐴𝑑𝑑𝑖 to 𝐴𝑑𝑑S , where the string “Apply” is integrated.
• S selects 𝑛 mailmen (say,M1,M2, ...,M𝑛) out of all appli-

cants and informs them.

• Each mailmanM𝑖 invokes TimedPub.Register by generating

a transaction and obtains an index 𝑖𝑛𝑑𝑖 .

KeyDis.

• M𝑖 randomly chooses 𝑢𝑖 s.t. (𝑢𝑡𝑖 − 1)/(𝑢𝑖 − 1) ≤ (𝑝𝑘𝑖/𝑞)
4
,

encrypts 𝑢
𝑗
𝑖
as 𝑐𝑢 𝑗 ← Paillier.Enc(𝑝𝑘𝑖 , 𝑢 𝑗

𝑖
) for each 𝑗 ∈

[1, 𝑡 − 1], generates 𝜋NZP for 𝑅NZP = {((𝑝𝑘, 𝑐𝑢1), 𝑢𝑖) |𝑐𝑢1 ←
Paillier.Enc(𝑝𝑘,𝑢𝑖) ∧ 𝑢𝑖 ≠ 0}, and sends (𝑐𝑢1, 𝜋NZP) to S.
• If 𝜋NZP is valid,S accepts that𝑢𝑖 ≠ 0, andM𝑖 sends {𝑐𝑢 𝑗 }𝑡−1

2

toS and generates𝜋OEC for𝑅OEC = {(𝑝𝑘𝑖 , 𝑐𝑢1, ..., 𝑐𝑢𝑡−1); (𝑢) |
𝑐𝑢 𝑗 = Paillier.Enc(𝑝𝑘𝑖 , 𝑢 𝑗

𝑖
),∀𝑗 ∈ [1, 𝑡 − 1]}.

• If the 𝜋OEC is valid, S sends {𝑐𝑣𝑖 , 𝑐𝑠𝑠𝑖 } toM𝑖 , where

𝑐𝑣𝑖 ← Paillier.Enc(𝑝𝑘𝑖 , 𝑟0) ·
𝑡−1∏
𝑗=1

(𝑐𝑢 𝑗)𝑟 𝑗 ,

𝑐𝑠𝑠𝑖 ← Paillier.Enc(𝑝𝑘𝑖 , 𝑘) ·
𝑡−1∏
𝑗=1

(𝑐𝑢 𝑗)𝑎 𝑗 .

• After receiving 𝑐𝑣𝑖 and 𝑐𝑠𝑠𝑖 ,M𝑖 decrypts 𝑐𝑠𝑠𝑖 to obtain a

share 𝑠𝑠𝑖 ← Paillier.Dec(𝑠𝑘𝑖 , 𝑐𝑠𝑠𝑖). Then, M𝑖 verifies the

validity of 𝑠𝑠𝑖 by computing 𝑣𝑖 ← Paillier.Dec(𝑠𝑘𝑖 , 𝑐𝑣𝑖) and
checking 𝑔𝑠𝑠𝑖ℎ𝑣𝑖

?

=
∏𝑡−1

𝑗=0 (𝛼 𝑗)
𝑢
𝑗

𝑖 . If it is not valid,M𝑖 aborts.

• M𝑖 computes 𝑆𝑖 = 𝑔𝑠𝑠𝑖 , 𝑅𝑖 = 𝑐𝑠𝑠𝑖 · (1+𝑝𝑘𝑖)−𝑠𝑠𝑖 , generates 𝜋SD
for 𝑅SD = {(𝑝𝑘𝑖 , 𝑐𝑠𝑠𝑖 ,𝐺, 𝑔, 𝑆𝑖); (𝑠𝑠𝑖 , 𝑅𝑖) |𝑐𝑠𝑠𝑖 = (1 + 𝑝𝑘𝑖)𝑠𝑠𝑖 ·
𝑅𝑖 ∧ 𝑆𝑖 = 𝑔𝑠𝑠𝑖 }, and sends (𝑆𝑖 , 𝜋SD) to S.
• If the above proof is valid, S accepts it. Otherwise, S rejects

and asksM𝑖 for a valid one. After receiving all valid 𝑆𝑖 , S
invokes TimedPub.Shares (𝐼𝐷𝑇 , {𝑆𝑖 }𝑛

1
) by generating a trans-

action to upload them to the smart contract for subsequent

verifications for 𝑠𝑠𝑖 .

Phase 3. Complaint. In this phase, if some share (say,M 𝑗 ’s share

𝑠𝑠 𝑗) is leaked before the prescribed time slot, another mailman (say,

M𝑖) can run Complaint to complain about it.

Complaint.

• Given 𝑠𝑠 𝑗 ,M𝑖 extracts 𝑆 𝑗 from the blockchain and concludes

from 𝑔𝑠𝑠 𝑗 = 𝑆 𝑗 thatM 𝑗 leaks his share (note that 𝑆1, ..., 𝑆𝑛
are recorded on blockchain and everyone can extract them.).

• M𝑖 generates an prover-designated proof𝜋
(𝐴𝑑𝑑M𝑖

)
DL for𝑅DL =

{(𝐺,𝑔, 𝑆 𝑗); (𝑠𝑠𝑖)) |𝑆 𝑗 = 𝑔𝑠𝑠 𝑗 }, and invokes TimedPub.Report

(𝐼𝐷𝑇 , 𝑖𝑛𝑑 𝑗 , 𝜋
(𝐴𝑑𝑑M𝑖

)
DL) by generating a transaction to report

to TimedPub that 𝑠𝑠 𝑗 is leaked.
• TimedPub verifies the validity of the complaint by checking

the validity of 𝜋
(𝐴𝑑𝑑M𝑖

)
DL . If it is valid, a part of the deposit

paid byM 𝑗 is transferred to 𝐴𝑑𝑑𝑖 as a reward, and the rest

is transferred to 𝐴𝑑𝑑S as compensation.

• After receiving the reward,M𝑖 informs S that 𝑠𝑠 𝑗 is leaked

by sending {𝐴𝑑𝑑𝑇𝑟𝑒 , 𝑠𝑠 𝑗 } to S, where 𝐴𝑑𝑑𝑇𝑟𝑒 is the address

of the transaction created by TimedPub for rewardingM𝑖 .

Phase 4. Delivery. Two algorithms, PubShare and Refund, are
included. In PubShare, the mailmen publish their secret shares, and

R recovers the data content. After the mission is finished, anyone

can run Refund to unlock the coins by invoking TimedPub.Refund.

4
To ensure the correctness of the decryption, the range of 𝑢𝑖 should be limited such

that 𝑓 (𝑢𝑖) ≤ 𝑝𝑘𝑖 .

10

PubShare.

• EachM𝑖 invokes TimedPub.PubShare (𝐼𝐷𝑇 , 𝑖𝑛𝑑𝑖 , 𝑢𝑖 , 𝑠𝑠𝑖) by
generating a transaction to publish the share.

• TimedPub verifies the validity of the shares that mailmen

publish by checking 𝑔𝑠𝑠𝑖
?

= 𝑆𝑖 . If 𝑠𝑠𝑖 is valid,M𝑖 gets the

salary of the current mission.

• After 𝑡 valid shares {𝑠𝑠 𝑗1 , ..., 𝑠𝑠 𝑗𝑡 } are published, R recon-

struct 𝑘 using Lagrange interpolation formula and further

decrypts 𝑐 using 𝑘 to obtain𝑚.

Refund.After themission is finished,S and an arbitrarymailman

M𝑖 , 𝑖 ∈ [1, 𝑛] can invoke TimedPub.Refund (𝐼𝐷𝑇) by generating a

transaction to get the rest of the coins locked in the smart contract.

6.4 Limitations
Any complaint-supported system inherently encounters a certain

non-technical limitation: the detection of malicious behavior is not

automated [37, 41]. In DataUber, the enforcement of the punishment

for a premature leakage relies on a valid complaint. If no reporter

complains about the leakage, themisbehavior would not be detected

by the smart contract. We stress that in general, any complaint

system (and similar one such as a tracing system [33]) serves more

as a deterrence rather than providing foolproof security.

Moreover, in this work, we consider a model where the number

of colluding mailmen is less than the threshold 𝑡 . If more than 𝑡

mailmen come together and pool their shares, they could jointly

execute a distributed protocol and get the output of the protocol.

Specifically, the mailmen might run a general MPC protocol that

reconstructs the decryption key [55]. Nevertheless, the assump-

tion limiting the collaboration to up to 𝑡 − 1 mailmen is crucial to

all systems that adopt threshold secret sharing. If a larger collu-

sion is allowed, the security enhancement achieved through the

distribution of trust would be undermined in these systems.

7 SECURITY ANALYSIS
Based on the discussion in Section 5.2, we capture the security of

DataUber (i.e. time-locked confidentiality, mailman fairness, and

reporter fairness) in the following theorems.

Theorem 1. If Pedersen’s commitment [50] is unconditional hid-
ing, then for any probabilistic polynomial-time (PPT) adversary A

| Pr[TL-CONFA (1ℓ) ⇒ 1] | ≤ 1

2

+ negl(1ℓ).

Theorem 2. Let Pr[Solve𝐺] denote the probability of solving a
DL problem in group 𝐺 , then for any PPT adversary A

Pr[HM-FAIRA ⇒ 1] ≤ 2 Pr[Solve𝐺] + negl(1ℓ) .

Theorem 3. If the smart contract used in DataUber always exe-
cutes its code, DataUber achieves lazy mailman fairness and malicious
mailman fairness.

Theorem 4. If the hash function 𝐻 used in 𝜋
(𝐼𝐷)
DL is modeled as a

random oracle 𝐻O, then for any PPT adversary A

Pr[R-FAIRA ⇒ 1] ≤ negl(1ℓ).

We defer the detailed proofs to Appendix C.

8 IMPLEMENTATION AND EVALUATION
We implement a DataUber prototype using Python and Solidity,

and the source code is available at

https://anonymous.4open.science/r/DataUber-1E48.

In our implementation, we choose a security level of 112 bits. For

Pedersen’s commitment, we have employed the 224-bit randomECP

groups as defined in [1]. The Ethereum public test network, Goerli

[4], serves as the underlying blockchain platform. The development

of smart contract is facilitated by the elliptic-curve-solidity library
5
,

enabling computations within the elliptic curve group.

Based on the prototype, we evaluate the performance of DataUber

by conducting experiments on a laptop equipped with an Intel Core

i5 CPU and 16 GB LPDDR4X of RAM. It is important to underline

that the evaluation presented herein does not account for the costs

associated with encrypting the data and transmitting the ciphertext

to the recipient.

8.1 Computation costs
On the sender side, the computation costs primarily arise from

the distribution of the decryption key to the mailmen in a (𝑡, 𝑛)-
threshold manner. These costs escalate with the values of 𝑛 and

the threshold 𝑡 . We evaluate the computation costs incurred by

the sender for varying (𝑡, 𝑛) configurations and present the exper-

iment results in Table 2a. From the results, we observe that the

computation costs on the sender side are greatly influenced by the

value of 𝑛. For instance, when the sender employs 10 mailmen and

sets the threshold to 7, the computation delay on the sender side is

approximately 18.8 s.

𝑛

Delay (s) 𝑡
3 4 5 6 7 8 9 10

5 2.82 4.48 6.08 - - - - -

7 3.90 6.33 8.65 10.83 13.22 - - -

10 5.56 8.90 12.41 15.53 18.79 22.20 25.55 29.10

(a) On the sender side

𝑡 3 4 5 6 7 8 9 10

Delay (s) 0.43 0.49 0.51 0.54 0.58 0.59 0.65 0.70

(b) On the mailman side

Table 2: Computation delay

On the mailman side, the computation costs mainly emerge from

obtaining a share of the decryption key from the sender, which

increase with the value of 𝑡 . If a mailman submits a complaint

to the smart contract regarding a premature leakage, additional

computation costs are incurred for generating a proof of the knowl-

edge of the leaked share. We evaluate the computation costs on

the mailman side with diverse values of 𝑡 . Based on the evaluation

results presented in Table 2b, we observe that for the configuration

(𝑡, 𝑛) = (7, 10), the average computation delay for the mailman

stands at approximately 0.5 s.

5
Implementation of Elliptic Curve arithmetic operations written in Solidity, https:

//github.com/witnet/elliptic-curve-solidity.

11

https://anonymous.4open.science/r/DataUber-1E48
https://github.com/witnet/elliptic-curve-solidity
https://github.com/witnet/elliptic-curve-solidity

Scheme Computation costs
Sender Mailman Recipient

tlock [30] 4H + P + 2E𝐺
(2𝑡𝑛 + 2𝑛 + 𝑡 − 2)E𝐺+

(2𝑡𝑛 − 4𝑛)E𝑍𝑞
+ (2𝑡𝑛 − 2𝑛)M𝑍𝑞

P + 3H + E𝐺

McFly [24]

(2𝑛 + 1)E𝐺+
𝑛M𝐺 + 3𝑛P + 𝑛H

H + E𝐺 𝑡L + 𝑡E𝐺 + 𝑡M𝐺 + P

i-TiRE [9]
6 |𝑤 |H + (|𝑤 | + 2)E𝐺 +M𝐺 + P (|𝑤 | + 1) (HM𝐺) + 3E𝐺 + ZKP.Prove

(|𝑤 | + 1) (H + P) + 𝑡ZKP.Vrfy+
𝑡L + (𝑡 + |𝑤 | + 1)M𝐺 + (𝑡 + 2)E𝐺

NDHC19 [47]

(2𝑛𝑡 − 2𝑛 + 𝑡)E𝐺 + 𝑛Paillier.Enc
+(𝑛𝑡 − 𝑛) (M𝑍

𝑁 2
+ E𝑍

𝑁 2
+ 2M𝐺)

(𝑡 − 1) (M𝐺 + E𝑍𝑞
+M𝑍𝑞

+ Paillier.Enc)
+(3𝑡 − 2)E𝑍𝑞

+ 2Paillier.Dec 𝑡L + 𝑡M𝑍𝑞

DataUber

𝑡 (2E𝐺 +M𝐺) + (𝑛 + 1)ZKP.Prove
+2𝑛Paillier.Enc + 3𝑛ZKP.Vrfy
+(𝑛𝑡 − 𝑛) (2E𝑍

𝑁 2
+M𝑍

𝑁 2
)

2ZKP.Vrfy + (𝑡 − 2)E𝑍𝑞
+

(𝑡 − 1)Paillier.Enc + 3ZKP.Prove
+2Paillier.Dec + (𝑡 + 2)E𝐺 +M𝐺

𝑡L + 𝑡M𝑍𝑞

Table 3: Comparison of computation costs between DataUber and related works.

8.2 Communication costs
On the sender side, the communication costs primarily arise from

employing 𝑛 mailmen from a pool of applicants, publishing a mis-

sion, and distributing secret shares to the employed mailmen. We

conduct experiments to evaluate the costs for different (𝑡, 𝑛) con-
figurations and present the results in Table 4a. In our experiments,

with 20 applicants available, employing 10 mailmen out of the pool

and setting the threshold to 7 takes communication costs of approx-

imately 0.28 MB.

𝑛

Cost

(KB)

𝑡

3 4 5 6 7 8 9 10

5 70.99 88.49 106.00 - - - - -

7 98.24 122.74 147.24 171.74 196.24 - - -

10 139.11 174.11 209.11 244.11 279.11 314.11 349.11 384.11

(a) On the sender side

𝑡 3 4 5 6 7 8 9 10

Costs (KB) 13.96 17.46 20.96 24.46 27.96 31.46 34.96 38.46

(b) On the mailman side

Table 4: Communication costs

On the mailman side, the communication costs stem from activ-

ities including applying for a mission, registering with the smart

contract, interacting with the sender to obtain a share, and releas-

ing the share. These costs are independent of the value of 𝑛. We

evaluate the communication costs for the mailman with different 𝑡

values and present the results in Table 4b. Notably, when 𝑡 = 7, the

communication costs for a mailman are approximately 0.028 MB.

8.3 On-chain costs
We conduct an evaluation of the on-chain costs associated with

various transactions in DataUber. The transactions subjected to

evaluation encompass contract deployment, mission publication,

application submission, registration, leakage complaint, shares’

commitment upload, share publication, and refund process. A con-

solidated overview of the on-chain costs for each transaction is

presented in Table 5.

Algorithm Operation Gas (𝑡, 𝑛)
Setup TimedPub deployment 4021202

PubMission Mission publication

839181 (3, 5)

922242 (5, 7)

1005267 (7, 10)

Registration

application submission 21672

Registration 27088

KeyDis Commitment upload

293798 (3, 5)

376847 (5, 7)

501419 (7, 10)

Complaint Leakage complaint 2673605

PubShare Share publication 1455352

Table 5: On-chain costs

The most financially demanding on-chain operation is the com-

plaint, which incurs a gas cost of 2673605. This is attributed to

the necessity of validating a NIZKP as part of ensuring reporter

fairness. We stress that in order to motivate complaints, the amount

of the reward needs to exceed the cost of the complaint itself. This

balance can be achieved through established strategies, such as

game-theoretic analysis [18, 58], allowing for judiciously adjust-

ment of the deposit and reward amounts, which are orthogonal

with DataUber.

6
In i-TiRE, |𝑤 | depends on the time when the data should be delivered.

12

8.4 Comparison
To further demonstrate the practicality of DataUber, we compare

the computation costs of DataUber with those of related mailmen-

assisted timed-data delivery schemes, as presented in Table 3. In

the comparison, we omit the computation costs incurred by estab-

lishing secure channels between entities. H stands for hashing, P
stands for the bilinear map, E𝑆 (resp.M𝐺) stands for exponentia-

tion (resp. multiplication) in the set 𝑆 , PKE.Enc stands for public-
key encryption, L stands for Lagrange’s interpolation, Paillier.Enc
(resp. Paillier.Dec) stands for Paillier encryption (resp. decryption),

ZKP.Prove (resp. ZKP.Vrfy) stands for proving using ZKP (resp.

verifying the validity of the proof). Specifically, in comparison with

tlock [30], when (𝑡, 𝑛) = (3, 5) and the security level is 112 bits, the

computation delay on the sender side of DataUber is approximately

increased by 2.7 s, while on the mailman side and the recipient side,

the computation delay of DataUber is comparatively reduced. This

comparison demonstrates that while DataUber ensures fairness at

the expenses of higher computation costs compared with certain

related schemes, it does not yield unacceptable costs.

9 CONCLUSION
In this paper, we have proposed DataUber, a blockchain-based

mailmen-assisted timed data delivery schemewith fairness. DataUber

utilizes a smart contract as a judger to check the trustworthiness

of mailmen, where a reporter can complain about the misbehav-

ior of mailmen and would receive rewards. To ensure security

against a greedy sender and curious mailmen, we have proposed

an oblivious and verifiable secret sharing OVTSS and integrated it

into DataUber. We have formally defined the fairness of mailmen-

assisted timed data delivery and proven the security of DataUber

under the definition. We have also implemented a DataUber proto-

type and evaluated the performance to demonstrate its practicality.

In the future work, we will investigate how to reduce the gas costs

of the on-chain activities in DataUber.

REFERENCES
[1] 2008. Additional Diffie-Hellman Groups for Use with IETF Standards.

https://www.rfc-editor.org/rfc/rfc5114.

[2] 2021. Shutter - In-Depth Explanation of How We Prevent Front Run-

ning. https://blog.shutter.network/shutter-in-depth-explanation-of-how-we-

prevent-frontrunning/

[3] 2023. Boomerang. https://www.boomeranggmail.com.

[4] 2023. Goerli. https://goerli.net.

[5] 2023. Now Released (Fall 2010): Autobiography of Mark Twain, Volume 1. https:

//www.marktwainproject.org/about_absample.shtml

[6] 2023. Postfity. https://postfity.com.

[7] Aydin Abadi and Aggelos Kiayias. 2021. Multi-instance publicly verifiable time-

lock puzzle and its applications. In Proc. FC. 541–559.
[8] Ghada Almashaqbeh, Fabrice Benhamouda, Seungwook Han, Daniel Jaroslawicz,

Tal Malkin, Alex Nicita, Tal Rabin, Abhishek Shah, and Eran Tromer. 2021. Gage

MPC: Bypassing residual function leakage for non-interactive MPC. In Proc. PETS,
Vol. 4. 528–548.

[9] Leemon Baird, Pratyay Mukherjee, and Rohit Sinha. 2022. i-TiRE: Incremental

timed-release encryption or how to use timed-release encryption on blockchains?.

In Proc. CCS. 235–248.
[10] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine

Oechsner. 2021. TARDIS: a foundation of time-lock puzzles in UC. In Proc.
EUROCRYPT. 429–459.

[11] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. 1997. A concrete security

treatment of symmetric encryption. In Proc. FOCS. 394–403.
[12] Mihir Bellare and Shafi Goldwasser. 1996. Encapsulated key escrow.

[13] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-

homomorphic encryption and multiparty computation. In Proc. EUROCRYPT.
169–188.

[14] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo

Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a public

blockchain keep a secret?. In Proc. TCC. 260–290.
[15] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.

2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware.

In Proc. CCS. 1521–1538.
[16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-

tanathan, and Brent Waters. 2016. Time-lock puzzles from randomized encodings.

In Proc. ITCS. 345–356.
[17] Thomas Bocek and Burkhard Stiller. 2018. Smart contracts–blockchains in the

wings. In Digital Marketplaces Unleashed. 169–184.
[18] Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. 2003. A game

theoretic framework for incentives in P2P systems. In Proc. P2P. 48–56.
[19] Dario Catalano, Dario Fiore, and Ida Tucker. 2022. Additive-homomorphic func-

tional commitments and applications to homomorphic signatures. In Proc. ASI-
ACRYPT. 159–188.

[20] Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. 2008. Prov-

ably secure timed-release public key encryption. ACMTransactions on Information
and System Security 11, 2 (2008), 1–44.

[21] Henry Corrigan-Gibbs and Dmitry Kogan. 2018. The discrete-logarithm problem

with preprocessing. In Proc. EUROCRYPT. 415–447.
[22] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-

tralized exchanges, miner extractable value, and consensus instability. In Proc.
S&P. 910–927.

[23] Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh. 2022. FAST: Fair

auctions via secret transactions. In Proc. ACNS. 727–747.
[24] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. 2022. McFly:

Verifiable encryption to the future made practical. Cryptology ePrint Archive
(2022).

[25] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. 2015. Proofs of space. In Proc. CRYPTO. 585–605.
[26] Karim Eldefrawy, Sashidhar Jakkamsetti, Ben Terner, and Moti Yung. 2023. Stan-

dard Model Time-Lock Puzzles: Defining Security and Constructing via Compo-

sition. Cryptology ePrint Archive. (2023). https://eprint.iacr.org/2023/439

[27] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2020. SoK: Trans-

parent dishonesty: Front-running attacks on blockchain. In Proc. FC. 170–189.
[28] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems.. In Proc. CRYPTO, Vol. 86. 186–194.
[29] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word search and oblivious pseudorandom functions. In Proc. TCC. 303–324.
[30] Nicolas Gailly, Kelsey Melissaris, and Yolan Romailler. 2023. tlock: Practical

timelock encryption from threshold BLS. Cryptology ePrint Archive (2023).
[31] Hisham S Galal and Amr M Youssef. 2019. Trustee: Full privacy preserving

vickrey auction on top of ethereum. In Proc. FC. 190–207.
[32] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,

Tal Rabin, and Sophia Yakoubov. 2021. YOSO: You only speak once: secure MPC

with stateless ephemeral roles. In Proc. CRYPTO. 64–93.
[33] Vipul Goyal, Yifan Song, and Akshayaram Srinivasan. 2021. Traceable secret

sharing and applications. In Proc. CRYPTO. 718–747.
[34] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A new hash function for zero-knowledge

proof systems. In Proc. USENIX Security. 519–535.
[35] Carmit Hazay and Yehuda Lindell. 2009. Efficient oblivious polynomial evaluation

with simulation-based security. Cryptology ePrint Archive (2009).
[36] Carmit Hazay, Gert LæssøeMikkelsen, Tal Rabin, Tomas Toft, and Angelo Agatino

Nicolosi. 2019. Efficient RSA key generation and threshold paillier in the two-

party setting. Journal of Cryptology 32, 2 (2019), 265–323.

[37] Rawane Issa, Nicolas Alhaddad, andMayank Varia. 2022. Hecate: Abuse reporting

in secure messengers with sealed sender. In Proc. USENIX Security. 2335–2352.
[38] Jonathan Katz, Julian Loss, and Jiayu Xu. 2020. On the security of time-lock

puzzles and timed commitments. In Proc. TCC. 390–413.
[39] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. 2016. Hawk: The blockchain model of cryptography and privacy-preserving

smart contracts. In Proc. S&P. 839–858.
[40] Chao Li and Balaji Palanisamy. 2021. Silentdelivery: Practical timed-delivery

of private information using smart contracts. IEEE Transactions on Services
Computing 15, 6 (2021), 3528–3540.

[41] Linsheng Liu, Daniel S Roche, Austin Theriault, and Arkady Yerukhimovich.

2021. Fighting fake news in encrypted messaging with the fuzzy anonymous

complaint tally system (facts). In Proc. NDSS.
[42] Varun Madathil, Sri AravindaKrishnan Thyagarajan, Dimitrios Vasilopoulos,

Lloyd Fournier, Giulio Malavolta, and Pedro Moreno-Sanchez. 2023. Crypto-

graphic oracle-based conditional payments. In Proc. NDSS.
[43] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. 2019. Homomorphic

time-lock puzzles and applications. In Proc. CRYPTO. 620–649.
[44] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh, Ercan

Oztürk, Kevin Lewi, and Sean Lawlor. 2023. Parakeet: Practical key transparency

13

https://blog.shutter.network/shutter-in-depth-explanation-of-how-we-prevent-frontrunning/
https://blog.shutter.network/shutter-in-depth-explanation-of-how-we-prevent-frontrunning/
https://www.boomeranggmail.com
https://goerli.net
https://www.marktwainproject.org/about_absample.shtml
https://www.marktwainproject.org/about_absample.shtml
https://postfity.com
https://eprint.iacr.org/2023/439

for end-to-end encrypted messaging. In Proc. NDSS.
[45] T. C. May. 1993. Timed-release crypto. Technical Report.
[46] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf

[47] Jianting Ning, Hung Dang, Ruomu Hou, and Ee Chien Chang. 2018. Keeping

time-release secrets through smart contracts. Cryptology ePrint Archive (2018).
[48] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-

uosity classes. In Proc. EUROCRYPT. 223–238.
[49] Kenneth G Paterson and Elizabeth A Quaglia. 2010. Time-specific encryption. In

Proc. SCN. 1–16.
[50] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure

verifiable secret sharing. In Proc. CRYPTO. 129–140.
[51] Josef Pieprzyk and Eiji Okamoto. 1999. Verifiable secret sharing and time capsules.

In Proc. ICISC. 169–183.
[52] Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-lock puzzles and

timed-release crypto. (1996).

[53] Tara Salman, Maede Zolanvari, Aiman Erbad, Raj Jain, and Mohammed Samaka.

2018. Security services using blockchains: A state of the art survey. IEEE Com-
munications Surveys & Tutorials 21, 1 (2018), 858–880.

[54] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[55] Sarisht Wadhwa, Luca Zanolini, Francesco D’Amato, Aditya Asgaonkar, Fan

Zhang, and Kartik Nayak. 2023. Breaking the Chains of Rationality: Understand-

ing the Limitations to and Obtaining Order Policy Enforcement. Cryptology
ePrint Archive (2023). https://eprint.iacr.org/2023/868

[56] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper (2014), 1–32.
[57] Zhe Xia, Bo Yang, Mingwu Zhang, and Yi Mu. 2018. An efficient and provably

secure private polynomial evaluation scheme. In Proc. ISPEC. 595–609.
[58] Sixie Yu, Kai Zhou, Jeffrey Brantingham, and Yevgeniy Vorobeychik. 2020. Com-

puting equilibria in binary networked public goods games. In Proc. AAAI, Vol. 34.
2310–2317.

A OVTSS
A.1 Syntax and correctness
OVTSS enables a sender to distribute a secret to 𝑛 participants such

that any 𝑡 of them can pool their shares to reconstruct the secret,

while the sender learns nothing about each share, each participant

learns nothing about the secret, and the correctness of each share

can be verified by the corresponding participant.

Definition 8. (OVTSS). An OVTSS OVTSS is a tuple of five al-
gorithms (Setup, Prep, Share,Vrfy,Combine) that satisfies the cor-
rectness property below.

• ({𝑠𝑘𝑖 }𝑛
1
, 𝑝𝑝) ← Setup(1ℓ , 𝑡, 𝑛): it generates a secret key 𝑠𝑘𝑖

for each participantM𝑖 and public parameters 𝑝𝑝 (𝑝𝑝 will

be implicitly input to the algorithms below.).

• (𝑎𝑢𝑥, 𝛼) ← Prep(𝑘, 𝑡, 𝑛): it is run by the senderS to generate

some auxiliary information 𝑎𝑢𝑥 to share the secret 𝑘 and

some commitment(s) 𝛼 to support verifications.

•
(

𝑣𝑖
𝑠𝑠𝑖

)
← Share

〈
S(𝑘, 𝑎𝑢𝑥)
M𝑖 (𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑝): it is an interactive

algorithm between S andM𝑖 , whereM𝑖 obtains a share

𝑠𝑠𝑖 using 𝑢𝑖 , and S outputs the corresponding verification

information 𝑣𝑖 .

• 0/1← Vrfy(𝛼, 𝑠𝑠𝑖 , 𝑣𝑖): it is run byM𝑖 to verify the validity

of 𝑠𝑠𝑖 . Output 1 if it is valid, and 0 otherwise.

• 𝑘/⊥ ← Combine({𝑢𝑖 , 𝑠𝑠𝑖 }𝑖∈𝑆 , 𝑡): it combines the shares re-

ceived from participants in the set 𝑆 to reconstruct the secret

𝑘 . If the algorithm fails, it outputs ⊥.
Definition 9. (Correctness). For all ℓ ∈ N, any 𝑡, 𝑛 ∈ N such

that 𝑡 ≤ 𝑛, all ({𝑠𝑘𝑖 }𝑛
1
, 𝑝𝑝) generated by Setup(1ℓ , 𝑡, 𝑛), any (𝑎𝑢𝑥, 𝑐)

generated by Prep, and all
(
𝑠𝑠𝑖
𝑣𝑖

)
← Share

〈
S(𝑎𝑢𝑥, 𝑘)
M𝑖 (𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑝),

if S and {M𝑖 }𝑖∈𝑆 are honest, then 1← Vrfy(𝛼, 𝑠𝑠𝑖 , 𝑣𝑖). Moreover, if
|𝑆 | ≥ 𝑡 , then 𝑘 ← Combine({𝑢𝑖 , 𝑠𝑠𝑖 }𝑖∈𝑆).

A.2 Security properties
We elaborate on the security properties that OVTSS should satisfy

(i.e. verifiability, participant obliviousness, and dealer obliviousness)

one by one and depicted them in Fig. 6.

Verifiability. Verifiability requires that when a participant re-

quests a share 𝑠𝑠𝑖 of a secret 𝑘 from a dealer, the participant can

verify whether the obtained share 𝑠𝑠★
𝑖
corresponds to its input 𝑢𝑖 .

In other words, the dealer cannot forge verification information for

an incorrectly computed share.

Definition 10. (Verifiability). An OVTSSOVTSS = (Setup, Prep,
Share,Vrfy,Combine) is verifiable if for all 𝑡, 𝑛 ∈ N, 𝑡 ≤ 𝑛, and any
probabilistic polynomial-time (PPT) adversaryA, there is a negligible
function negl s.t.

Pr[VerifiabilityOVTSS,A (1ℓ , 𝑡, 𝑛) = 1] ≤ negl(1ℓ).

Obliviousness. We formalize obliviousness by defining participant
obliviousness and dealer obliviousness.

Participant obliviousness requires that as long as the number of

colluding mailmen is less than the threshold, they cannot obtain

any information about the shared secret.

Definition 11. (Participant obliviousness). An OVTSS OVTSS =

(Setup, Prep, Share,Vrfy,Combine) is oblivious for participants if
for all 𝑡, 𝑛 ∈ N, 𝑡 ≤ 𝑛 and any PPT adversary A, there is a negligible
function negl s.t.

Pr[PObliviousnessOVTSS,A (1ℓ , 𝑡, 𝑛) = 1] ≤ 1

2

+ negl(1ℓ).

Dealer obliviousness requires that the sender cannot obtain any

information about the shares requested by the participants.

Definition 12. (Dealer obliviousness). AnOVTSSOVTSS = (Setup,
Prep, Share,Vrfy,Combine) is oblivious for dealers if for all 𝑡, 𝑛 ∈
N, 𝑡 ≤ 𝑛, and any PPT adversaries A, there is a negligible function
negl s.t.

Pr[DObliviousnessOVTSS,A] ≤
1

2

+ negl(1ℓ).

A.3 Construction
Our construction of OVTSS can be easily extracted from the algo-

rithm KeyDis presented in Section 6.3, where the sender and the

mailmen play the role of dealer and participants, respectively, and

𝑘 is the secret to be distributed. We do not repeat the construction

here to avoid redundancy.

B ZKP DETAILS
ZKP for consistent product 𝜋PRO [35]. Given ciphertexts 𝑐1, 𝑐2, 𝑐3 ∈
𝑍𝑁 2 output by Paillier.Enc, it proves that 𝑐3 is generated by encrypt-
ing the product of the underlying plaintexts of 𝑐1 and 𝑐2. Formally,

𝑅PRO = {(𝑝𝑘 = 𝑁, {𝑐𝑖 ∈ 𝑍𝑁 2 }3
1
); ({𝑚𝑖 ∈ 𝑍𝑁 }21, {𝑟𝑖 ∈ 𝑍

∗
𝑁 }

3

1
) |

𝑐1 ← Paillier.Enc(𝑝𝑘,𝑚1; 𝑟1) ∧ 𝑐2 ← Paillier.Enc(𝑝𝑘,𝑚2; 𝑟2)
∧ 𝑐3 ← Paillier.Enc(𝑝𝑘,𝑚1 ·𝑚2; 𝑟3)}.

We present the concrete steps of the 3-round Sigma protocol for

𝑅PRO below, which can be converted to be non-interactive using

Fiat-Shamir transform.

14

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2023/868

VerifiabilityOVTSS,A (1ℓ , 𝑡, 𝑛)

1 : ({𝑠𝑘𝑖 }𝑛
1
, 𝑝𝑝) ← Setup(1ℓ , 𝑡, 𝑛)

2 : (𝑘, 𝑎𝑢𝑥, 𝛼,𝑢𝑖 , 𝑠𝑠★𝑖 , 𝑣
★
𝑖
) ← A(1ℓ , 𝑝𝑝, 𝑡, 𝑛)

3 :

(
𝑣𝑖
𝑠𝑠𝑖

)
← Share

〈
S(𝑘, 𝑎𝑢𝑥)
M𝑖 (𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑝)

4 : 𝑧𝑖 ← Vrfy(𝛼, 𝑠𝑠★
𝑖
, 𝑣★
𝑖
)

5 : If 0← Vrfy(𝛼, 𝑠𝑠𝑖 , 𝑣𝑖) Restart
6 : Return 𝑧𝑖 ∧ (𝑠𝑠𝑖 ≠ 𝑠𝑠★

𝑖
)

PObliviousnessOVTSS,A (1ℓ , 𝑡, 𝑛)

1 : ({𝑠𝑘𝑖 }𝑛
1
, 𝑝𝑝) ← Setup(1ℓ , 𝑡, 𝑛)

2 : 𝐼 ← A1 (1ℓ , 𝑝𝑝, 𝑡, 𝑛)
3 : (𝑘1, 𝑘2) ← A2 (1ℓ , 𝑝𝑝, {𝑠𝑘𝑖 }𝑖∈𝐼)

4 : 𝑏
$← {0, 1}

5 : (𝑎𝑢𝑥, 𝛼) ← Prep(𝑘, 𝑡, 𝑛)
6 : For each 𝑖 ∈ 𝐼 do(

𝑣𝑖
𝑠𝑠𝑖

)
← Share

〈
S(𝑘𝑏 , 𝑎𝑢𝑥)
A(𝑢𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑝)

7 : 𝑏★← A
8 : Return (𝑏★ = 𝑏) ∧ (|𝐼 | < 𝑡)
DObliviousnessOVTSS,A (1ℓ , 𝑡, 𝑛)

1 : ({𝑠𝑘𝑖 }𝑛
1
, 𝑝𝑝) ← Setup(1ℓ , 𝑡, 𝑛)

2 : (𝑘, 𝑎𝑢𝑥, 𝛼,𝑢0,1, ..., 𝑢0,𝑛, 𝑢1,1, ..., 𝑢1,𝑛) ← A(1ℓ , 𝑝𝑝, 𝑡, 𝑛)

3 : 𝑏
$← {0, 1}

4 : For each 𝑖 ∈ [1, 𝑛] do(
𝑣𝑖
𝑠𝑠𝑖

)
← Share

〈
A(𝑘, 𝑎𝑢𝑥)
M𝑖 (𝑢𝑏,𝑖 , 𝑠𝑘𝑖)

〉
(𝑝𝑝)

5 : 𝑏★← A
6 : Return 𝑏 = 𝑏★

Figure 6: Security definitions of OVTSS

• The prover chooses𝑚4

$← 𝑍𝑁 , computes

𝑐4 ← Paillier.Enc(𝑝𝑘,𝑚4; 𝑟4),
𝑐2·4 ← Paillier.Enc(𝑝𝑘,𝑚2 ·𝑚4; 𝑟2·4),

and sends 𝑐4, 𝑐2·4 to the verifier.

• The verifier chooses 𝑎
$← 𝑍𝑁 and sends it to the prover.

• The prover computes 𝑏 = 𝑎 · 𝑚1 + 𝑚4, 𝑧1 = 𝑟𝑎
1
𝑟4, 𝑧2 =

𝑟𝑏
2
(𝑟2·4𝑟𝑎

3
)−1 to open the encryptions

𝑐𝑎
1
𝑐4 ← Paillier.Enc(𝑝𝑘, 𝑎𝑚1 +𝑚4; 𝑟

𝑎
1
𝑟4),

𝑐𝑏
2
(𝑐2·4𝑐𝑎3)

−1 ← Paillier.Enc(𝑝𝑘, 0; 𝑟𝑏
2
(𝑟2·4𝑟𝑎3)

−1) .
• The verifier verifies correctness of the encryption openings

in the above step and accepts iff it is correct.

ZKP for ordered-exponential computation on the same base 𝜋OEC
[36]. A ZKP for the relation that multiple plaintexts are a sequence

of powers. Formally, the relation is

𝑅OEC = {(𝑝𝑘 = 𝑁, {𝑐𝑢 (𝑖) ∈ 𝑍𝑁 2 }𝑡−1𝑖=1); (𝑢 ∈ 𝑍𝑁) |

𝑐𝑢 (𝑖) ← Paillier.Enc(𝑝𝑘,𝑢𝑖 ; 𝑟𝑖) ∀𝑖 ∈ [1, 𝑡 − 1]}.
𝜋OEC can be constructed by using 𝜋PRO as follows [36]: the

prover proves to the verifier that ∀ 𝑖 ∈ [2, 𝑡 − 1], the plaintext

corresponding to 𝑐𝑢𝑖 is the product of the plaintexts corresponding

to 𝑐𝑢1 and 𝑐𝑢𝑖−1, i.e.,

𝑅PRO = {(𝑝𝑘, 𝑐𝑢 (1) , 𝑐𝑢 (𝑖−1) , 𝑐𝑢 (𝑖)); (𝑢1, 𝑢𝑖−1, 𝑢𝑖 , 𝑟1, 𝑟𝑖−1, 𝑟𝑖) |

𝑐𝑢 (1) ← Paillier.Enc(𝑝𝑘,𝑢1; 𝑟1)∧

𝑐𝑢 (𝑖−1) ← Paillier.Enc(𝑝𝑘,𝑢𝑖−1; 𝑟𝑖−1)∧

𝑐𝑢 (𝑖) ← Paillier.Enc(𝑝𝑘,𝑢1 · 𝑢𝑖−1; 𝑟𝑖)}.
ZKP for non-zero plaintext 𝜋NZP. A ZKP for the relation that the

value of the underlying plaintext of a ciphertext is not 0. Formally,

𝑅NZP = {(𝑝𝑘 = 𝑁, 𝑐1 ∈ 𝑍𝑁 2); (𝑚1 ∈ 𝑍𝑁 , 𝑟1 ∈ 𝑍 ∗𝑁) |
𝑐1 ← Paillier.Enc(𝑝𝑘,𝑚1; 𝑟1) ∧ 𝑚1 ≠ 0}.

𝜋NZP can be constructed based on 𝜋PRO as follows: The prover

chooses𝑚2

$← 𝑍𝑁 s.t.𝑚3 = 𝑚1 ·𝑚2 ≠ 0, encrypts𝑚2,𝑚3 as 𝑐2 =

Paillier.Enc(𝑝𝑘,𝑚2; 𝑟2), 𝑐3 = Paillier.Enc(𝑝𝑘,𝑚3; 𝑟3), respectively,
sends 𝑐2, 𝑐3 to the verifier, opens the encryption of𝑚3, and generates

𝜋PRO to prove that the underlying plaintext of 𝑐3 is the product of

𝑚1 and𝑚2. Iff𝑚3 ≠ 0 and 𝜋PRO is valid, S accepts that𝑚1 ≠ 0.

The security analysis of 𝜋PRO and 𝜋OEC can be found in in [35]

and [36], respectively, and 𝜋NZP is constructed based on 𝜋PRO. We

do not repeat their security proofs here.

ZKP for non-zero message 𝜋NZM.AZKP for the relation that given

a Pedersen’s commitment, the value of its underlying message is

not 0. Formally,

𝑅NZM = {(𝐺, 𝑝, 𝑞,𝑔 ∈ 𝐺,ℎ ∈ 𝐺); (𝛼1 ∈ 𝐺, 𝑎1 ∈ 𝑍𝑞, 𝑟1 ∈ 𝑍𝑞) |
𝛼1 ← Commit.Com(𝑎1; 𝑟1) ∧ 𝑎1 ≠ 0}.

An interactive protocol for 𝑅NZM can be constructed as follows,

which can be easily converted to be non-interactive.

• The prover chooses 𝑎2
$← 𝑍 ∗𝑞 , 𝑟2

$← 𝑍𝑞 , computes 𝛼2 =

Commit.Com(𝑎2; 𝑟2), 𝑎3 = 𝑎1 ·𝑎2 and sends 𝑎3 to the verifier.
• Iff 𝑎3 ≠ 0, the verifier continues the following protocol.

• The prover further proves

𝑅1 = {(𝐺, 𝑝, 𝑞, 𝑔, ℎ, 𝛼1, 𝛼2, 𝑎3); (𝑎1, 𝑎2, 𝑟1, 𝑟2) |
𝛼1 ← Commit.Com(𝑎1; 𝑟1)∧

𝛼2 ← Commit.Com(𝑎2; 𝑟2) ∧ 𝑎3 = 𝑎1 · 𝑎2}.
We observe that

𝑅1 ⇔ 𝑅2 = {(𝐺, 𝑝, 𝑞, 𝑔, ℎ, 𝛼1, 𝛼2, 𝑎3); (𝑎1, 𝑟1, 𝑟2) |
𝛼1 ← Commit.Com(𝑎1; 𝑟1)∧

𝛼2 ← Commit.Com(𝑎3 · 𝑎−11 ; 𝑟2)}.
With this observation, we can implement a Sigma protocol

for 𝑅2 as follows.

– The prover chooses 𝑡𝑎, 𝑡𝑟 , 𝑡
′
𝑟

$← 𝑍𝑞 , computes 𝛼𝑡 = 𝑔𝑡𝑎ℎ𝑡𝑟 ,

𝛼 ′𝑡 = 𝑔𝑎1 ·𝑡𝑎ℎ𝑡
′
𝑟 and sends {𝛼𝑡 , 𝛼 ′𝑡 } to the verifier.

15

– The verifier chooses 𝑐
$← 𝑍𝑞 and sends it to the prover.

– The prover computes 𝑧𝑎 = 𝑡𝑎 + 𝑐 · 𝑎1, 𝑧𝑟 = 𝑡𝑟 + 𝑐 · 𝑟1, 𝑧′𝑟 =

𝑟2 · 𝑡𝑎 + 𝑐 · 𝑎1 · 𝑟2 − 𝑡 ′𝑟 and sends {𝑧𝑎, 𝑧𝑟 , 𝑧′𝑟 } to the verifier.

– The verifier verifies Commit.Com(𝑧𝑎 ; 𝑧𝑟)
?

= 𝛼𝑡 · (𝛼1)𝑐 and
(𝛼2)𝑧𝑎

?

= Commit.Com(𝑐𝑎3; 𝑧′𝑟) · 𝛼 ′𝑡 .
The Completeness of the above Sigma protocol for 𝑅2 is clear,

and we prove its Special soundness, and Special honest verifier

zero-knowledge (SHVZK) as follows.

Special soundness. Given two accepting conversations ((𝛼𝑡 , 𝛼 ′𝑡), 𝑐 ,
(𝑧𝑎, 𝑧𝑟 , 𝑧′𝑟)) and ((𝛼𝑡 , 𝛼 ′𝑡), 𝑐★, (𝑧★𝑎 , 𝑧★𝑟 , 𝑧′𝑟

★)) for the statement (𝛼1, 𝛼2),
where 𝑐 ≠ 𝑐★. It is efficient to compute 𝑎1 = (𝑧★𝑎 −𝑧𝑎)/(𝑐★−𝑐), 𝑟1 =
(𝑧★𝑟 − 𝑧𝑟)/(𝑐★ − 𝑐), 𝑟2 = (𝑧★𝑟 − 𝑧𝑟)/(𝑧★𝑎 − 𝑧𝑎).

SHVZK. Given challenge 𝑐
$← 𝑍𝑞 , choose 𝑧𝑎, 𝑧𝑟 , 𝑧

′
𝑟

$← 𝑍𝑞 and

compute 𝛼𝑡 = 𝛼𝑧/(𝛼1)𝑐 , 𝛼 ′𝑡 = (𝛼2)𝑧𝑎/Commit.Com(𝑐𝑎3; 𝑧′𝑟). Clear,
it is an accepting conversation. Moreover, in the real conversation,

𝑐, 𝑧𝑎, 𝑧𝑟 , 𝑧
′
𝑟 are mutually independent and all uniformly distributed

over 𝑍𝑞 . Given (𝑐, 𝑧𝑎, 𝑧𝑟 , 𝑧′𝑟), 𝛼𝑡 and 𝛼 ′𝑡 are uniquely determined.

It should be clear that this is the same as the distribution of the

simulated output.

ZKP for same derivation 𝜋SD. A ZKP for the relation that the

exponent of an exponentiation in the group 𝐺 is the correspond-

ing plaintext of a Paillier ciphertext. Formally, 𝑅SD = {(𝑁, 𝑐𝑢 ∈
𝑍𝑁 2 ,𝐺, 𝑔 ∈ 𝐺,𝑈 ∈ 𝐺); (𝑢, 𝑅) |𝑐𝑢 = (1 + 𝑁)𝑢 · 𝑅 mod 𝑁 2 ∧𝑈 = 𝑔𝑢 }.

• The prover chooses 𝑠
$← 𝑍𝑞, 𝑟𝑠

$← 𝑍 ∗
𝑁
, computes 𝑆 = 𝑔𝑠 , 𝑐𝑠 =

(1 + 𝑁)𝑠 · 𝑟𝑁𝑠 mod 𝑁 2
and sends {𝑆, 𝑐𝑠} to the verifier.

• The verifier chooses 𝑐
$← 𝑍𝑞 and sends it to the prover.

• The prover computes 𝑧 = 𝑠 + 𝑐 ·𝑢, 𝑅𝑧 = 𝑅𝑐 · 𝑟𝑁𝑠 mod 𝑍 2

𝑁
and

sends (𝑆, 𝑐𝑠, 𝑧, 𝑅𝑧) to the verifier.

• The verifier verifies the proof by checking 𝑔𝑧
?

= 𝑆 ·𝑈 𝑐
and

(𝑐𝑢)𝑐 · 𝑐𝑠 ?

= (1 + 𝑁)𝑧 · 𝑅𝑧 mod 𝑁 2
.

The Completeness of the above Sigma protocol for 𝜋SD is clear,

and we prove its Special soundness, and Special honest verifier

zero-knowledge (SHVZK) as follows.

Special soundness.Given two accepting conversations (𝑆, 𝑐𝑠, 𝑐, 𝑧, 𝑅𝑧)
and (𝑆, 𝑐𝑠, 𝑐 ′, 𝑧′, 𝑅′𝑧), it is efficient to compute 𝑢 = (𝑧′ − 𝑧)/(𝑐 ′ − 𝑐)
and 𝑅 = (𝑅′𝑧/𝑅𝑧) (𝑐

′−𝑐)−1
.

SHVZK. Given challenge 𝑐
$← 𝑍𝑞 , choose 𝑧

$← 𝑍𝑞 and 𝑅𝑧
$← 𝑍 2

𝑁
.

Then, compute 𝑆 = 𝑔𝑧/𝑈 and 𝑐𝑠 = ((1+𝑁)𝑧 ·𝑅𝑧/𝑐𝑠)𝑐
−1
. This always

yields an accepting conversation. With the randomness of 𝑐, 𝑧 ∈ 𝑍𝑞
and 𝑅𝑧 ∈ 𝑍 2

𝑁
, it is clear that the distribution of the simulated output

is the same as the one in real conversation.

C SECURITY ANALYSIS OF DATAUBER
We analyze the security of DataUber regarding time-locked con-

fidentiality, mailman fairness, and reporter fairness. As we have

analyzed the security of the ZKP schemes used in DataUber before,

we model them as “ideal functionalities” shown in Fig. 7.

C.1 Time-locked confidentiality
Theorem 5. If Pedersen’s commitment [50] is unconditional hid-

ing, 𝜋OEC and 𝜋NZP are modeled as the ideal functionalities FOEC
and FNZP presented in Fig. 7, respectively, then for any probabilistic

polynomial-time (PPT) adversary A

| Pr[TL-CONFA (1ℓ) ⇒ 1] | ≤ 1

2

+ negl(1ℓ).

Proof. To prove Theorem 5, we introduce a series of games

presented in Fig. 8 and elaborate on them below.

𝐺TLC

0
is identical with TL-CONFA except that ZKP schemes are

replaced with ideal functionalities in 𝐺TLC

0
,

| Pr[𝐺TLC

0
⇒ 1] − Pr[TL-CONFA ⇒ 1] | ≤ negl(1ℓ).

𝐺TLC

1
is identical with𝐺TLC

0
, except that the secret shares 𝑠𝑠𝑖 (𝑖 ∈

𝐼) are computed directly using 𝑢𝑖 . Due to the correctness of Paillier

encryption, FNZP, and FOEC, 𝑠𝑠𝑖 in𝐺TLC

1
is same as the one in𝐺TLC

0

for each 𝑖 ∈ 𝐼 . Then, Pr[𝐺TLC

1
⇒ 1] = Pr[𝐺TLC

0
⇒ 1].

𝐺TLC

2
is identical with 𝐺TLC

1
, except that 𝑠𝑠𝑖 (𝑖 ∈ 𝐼) is replaced

with random strings in𝐺TLC

2
. Since 𝑎1, ..., 𝑎𝑡−1 are random and inde-

pendent with 𝑘𝑏 , 𝑠𝑠𝑖 leaks nothing about 𝑘𝑏 . We have Pr[𝐺TLC

2
⇒

1] = Pr[𝐺TLC

1
⇒ 1].

Now we prove that

| Pr[𝐺TLC

2
⇒ 1] − Pr[HidingA′,Commit ⇒ 1] | ≤ negl(1ℓ),

where HidingA′,Commit is the hiding game and A ′ is a PPT ad-

versary. A ′ is given given input (𝐺, 𝑝, 𝑞, 𝑔, ℎ) and oracle access to

some function O, and its goal is to determine whether the returned

commitment is computed using 𝑘0 or 𝑘1. In detail:

(1) A chooses (𝑘0, 𝑘1) and sends them to A ′.
(2) A ′ queries O on (𝑘0, 𝑘1). O chooses 𝑏

$← {0, 1}, 𝑟 $← 𝑍 ∗𝑞 ,

computes 𝛼𝑏 ← 𝑔𝑘𝑏ℎ𝑟 and sends 𝛼𝑏 to A ′.
(3) A ′ chooses𝑎𝑖 , 𝑟𝑖

$← 𝑍 ∗𝑞 , computes𝛼𝑖 = 𝑔𝑎𝑖 ·ℎ𝑟𝑖 ,∀𝑖 ∈ [1, 𝑡−1]
and sends {𝛼, 𝛼1, ..., 𝛼𝑡−1} to A.

F (𝑝𝑘,{𝑐𝑢
(𝑖) }𝑡−1

1
)

OEC
On receiving (𝑢, {𝑟𝑖 }𝑡−1

1
) from P, if

𝑐𝑢 (𝑖) ← Paillier.Enc(𝑝𝑘,𝑢𝑖 ; 𝑟𝑖)∀𝑖 ∈ [1, 𝑡 − 1],
return 1, otherwise, return 0.

F (𝑝𝑘,𝑐)NZP
On receiving (𝑚, 𝑟) from P, if

𝑐 ← Paillier.Enc(𝑝𝑘,𝑚; 𝑟) ∧𝑚 ≠ 0,

return 1, otherwise, return 0.

F (𝐺,𝑝,𝑞,𝑔,ℎ)
NZM

On receiving (𝛼𝑡−1, 𝑎𝑡−1, 𝑟𝑡−1) from P, if
𝛼1 = 𝑔𝑎𝑡−1ℎ𝑟𝑡−1 ∧ 𝑎𝑡−1 ≠ 0,

return 1, otherwise, return 0.

F (𝑝𝑘,𝑐𝑢,𝐺,𝑔,𝑈)
SD

On receiving (𝑢, 𝑟𝑁) from P, if
𝑐𝑢 ← Paillier.Enc(𝑝𝑘,𝑢; 𝑟) ∧𝑈 = 𝑔𝑢 ,

return 1, otherwise, return 0.

Figure 7: Ideal functionalities of ZKP schemes

16

𝐺TLC

0
(𝐺, 𝑝, 𝑞, ℎ, 𝑔)

1 : 𝑠𝑘𝑖
$← 𝑍𝑞, 𝑝𝑘𝑖 = 𝑔𝑠𝑘𝑖

2 : 𝐼 ← A1 ({𝑝𝑘𝑖 }𝑛
1
,𝐺, 𝑝, 𝑞, ℎ, 𝑔) s.t. |𝐼 ∩ [1, 𝑛] | < 𝑡

3 : (𝑘0, 𝑘1) ← A2 ({𝑠𝑘𝑖 }𝑖∈𝐼)

4 : 𝑏
$← {0, 1}, 𝑎1, ..., 𝑎𝑡−1, 𝑟0, ..., 𝑟𝑡−1

$← 𝑍 ∗𝑞
5 : 𝛼0 ← Commit.Com(𝑘𝑏 ; 𝑟0)

𝛼𝑖 ← Commit.Com(𝑎𝑖 ; 𝑟𝑖) ∀𝑖 ∈ [1, 𝑛]
6 : For each 𝑖 ∈ 𝐼 : (𝑢𝑖 , {𝑐𝑢 (𝑗)𝑖

}𝑡−1
𝑗=1
) ← A(𝛼0, ..., 𝛼𝑡−1)

s.t. FNZP (𝑝𝑘𝑖 , 𝑐𝑢 (1)𝑖
, 𝑢𝑖) = 1 ∧ FOEC (𝑝𝑘𝑖 , {𝑐𝑢 (𝑗)𝑖

}𝑡−1
𝑗=1
) = 1

7 : 𝑐𝑠𝑠𝑖 ← Paillier.Enc(𝑝𝑘𝑖 , 𝑘𝑏) ·
∏𝑡−1

𝑗=1 (𝑐𝑢
(𝑗)
𝑖
)𝑎 𝑗

8 : 𝑠𝑠𝑖 ← Paillier.Dec(𝑠𝑘𝑖 , 𝑐𝑠𝑠𝑖)
9 : 𝑏★← A({𝑠𝑠𝑖 }𝑖∈𝐼 , {𝛼𝑖 }𝑡−1

0
)

𝐺TLC

1
(𝐺, 𝑝, 𝑞, 𝑔, ℎ) 𝐺TLC

2
(𝐺, 𝑝, 𝑞, 𝑔, ℎ)

1 : 𝑠𝑘𝑖
$← 𝑍𝑞, 𝑝𝑘𝑖 = 𝑔𝑠𝑘𝑖

2 : 𝐼 ← A({𝑝𝑘𝑖 }𝑛
1
,𝐺, 𝑝, 𝑞, ℎ, 𝑔) s.t. |𝐼 ∩ [1, 𝑛] | < 𝑡

3 : (𝑘0, 𝑘1) ← A({𝑠𝑘𝑖 }𝑖∈𝐼)

4 : 𝑏
$← {0, 1}, 𝑎1, ..., 𝑎𝑡−1, 𝑟0, ..., 𝑟𝑡−1

$← 𝑍 ∗𝑞
5 : 𝛼0 ← Commit.Com(𝑘𝑏 ; 𝑟0)

𝛼𝑖 ← Commit.Com(𝑎𝑖 ; 𝑟𝑖) ∀𝑖 ∈ [1, 𝑛]
6 : For each 𝑖 ∈ 𝐼 :
7 : 𝑢𝑖 ≠ 0← A(𝛼0, ..., 𝛼𝑡−1) ∀𝑖 ∈ 𝐼

8 : 𝑠𝑠𝑖 = 𝑘𝑏 +
∑𝑡−1

𝑗=1 𝑎 𝑗 · 𝑢𝑖 mod 𝑍𝑞 𝑠𝑠𝑖
$← 𝑍𝑞

9 : 𝑏★← A({𝑠𝑠𝑖 }𝑖∈𝐼 , {𝛼𝑖 }𝑡−1
0
)

HidingA′,Commit (1ℓ)
1 : (𝐺, 𝑝, 𝑞, 𝑔, ℎ) ← Commit.Gen(1ℓ)
2 : (𝑘0, 𝑘1) ← A ′(𝐺, 𝑝, 𝑞, 𝑔, ℎ)

3 : 𝑏
$← {0, 1}

4 : 𝑟
$← 𝑍 ∗𝑞 , 𝛼𝑏 ← 𝑔𝑘𝑏ℎ𝑟

5 : 𝑏★← A ′(𝛼𝑏)
6 : Return (𝑏 = 𝑏★)

Figure 8: Game used in the proof of Theorem 5

(4) After A outputs 𝑏★, A′ sends 𝑏★ to O.
The view of A when run as a subroutine by A ′ in the above

procedure is identical with the view of A in 𝐺TLC

2
. Therefore,

| Pr[𝐺TLC

2
⇒ 1] − Pr[HidingA′,Commit ⇒ 1] | ≤ negl(1ℓ) .

Since Pedersen’s commitment is unconditional hiding,

Pr[HidingA′,Commit ⇒ 1] = 1

2
.

This concludes the proof. □

C.2 Mailman fairness
Theorem 6. Let Pr[Solve𝐺] denote the probability of solving a

DL problem in𝐺 , if 𝜋NZM is modeled as the ideal functionality FNZM

shown in Fig. 7, then for any PPT adversary A
Pr[HM-FAIRA ⇒ 1] ≤ 2 Pr[Solve𝐺] + negl(1ℓ) .

Proof. To prove Theorem 6, we introduce a series of games

presented in Fig. 9 and elaborate on them below.

𝐺HMF

0
(𝐺, 𝑝, 𝑞, 𝑔, ℎ, 𝑁)

1 : 𝑠𝑘
$← 𝑍 ∗𝑞 , 𝑝𝑘 = 𝑔𝑠𝑘

2 : (𝑘, {𝛼𝑖 }𝑡−1
0

, 𝑟0, {𝑟𝑖 , 𝑎𝑖 }𝑡−1
1
) ← A(𝐺, 𝑝, 𝑞, 𝑔, ℎ, 𝑝𝑘)

s.t. F (𝐺,𝑝,𝑞,𝑔,ℎ)
NZM (𝛼𝑡−1, 𝑎𝑡−1, 𝑟𝑡−1) = 1

3 : randomly choose 𝑢 ≠ 0 s.t. (𝑢𝑡 − 1)/(𝑢 − 1) ≤ (𝑝𝑘/𝑞)
4 : 𝑐𝑢 (𝑖) ← Paillier.Enc(𝑝𝑘,𝑢𝑖) ∀𝑖 ∈ [1, 𝑡 − 1]
5 : (𝑐𝑠𝑠, 𝑐𝑣) ← A({𝑐𝑢 (𝑖) }𝑡−1

1
)

6 : 𝑠𝑠 ← Paillier.Dec(𝑠𝑘, 𝑐𝑠𝑠), 𝑣 = Paillier.Dec(𝑠𝑘, 𝑐𝑣)
7 : 𝛼0 = 𝑔𝑘ℎ𝑟0 , 𝛼𝑖 = 𝑔𝑎𝑖ℎ𝑟𝑖 ∀𝑖 ∈ [1, 𝑡 − 1]
8 : If 𝑔𝑠𝑠ℎ𝑣 ≠ ·∏𝑡−1

𝑖=0 (𝛼𝑖)𝑢
𝑖 ∨∏𝑡−1

𝑖=0 𝛼𝑖/𝑔𝑠𝑠 = ℎ𝑣 abort
9 : 𝑆 = 𝑔𝑠𝑠

10 : 𝑠𝑠★← A({𝑐𝑢 (𝑖) }𝑡−1
1

, 𝑆)
11 : Return (𝑠𝑠 = 𝑠𝑠★)
𝐺HMF

1
(𝐺, 𝑝, 𝑞, 𝑔, ℎ, 𝑁)

1 : 𝑠𝑘
$← 𝑍 ∗𝑞 , 𝑝𝑘 = 𝑔𝑠𝑘

2 : (𝑘, 𝑟0, {𝑟𝑖 , 𝑎𝑖 }𝑡−1
1
) ← A(𝐺, 𝑝, 𝑞, 𝑔, ℎ, 𝑝𝑘)

3 : If 𝑎1 = · · · = 𝑎𝑡−1 = 0 abort
4 : randomly choose 𝑢 ≠ 0 s.t. (𝑢𝑡 − 1)/(𝑢 − 1) ≤ (𝑝𝑘/𝑞)

5 : 𝑐𝑢 (𝑖)
$← 𝑍𝑁 2 ∀𝑖 ∈ [1, 𝑡 − 1]

6 : 𝑠𝑠 = 𝑘 +∑𝑡−1
𝑖=0 𝑎𝑖 · 𝑢𝑖 , 𝑣 =

∑𝑡−1
0

𝑟𝑖 · 𝑢𝑖 , 𝑆 = 𝑔𝑠𝑠

7 : (𝑠𝑠★, 𝑣★) ← A({𝑐𝑢 (𝑖) }𝑡−1
0

, 𝑆)

8 : Return (𝑔𝑠𝑠ℎ𝑣 = 𝑔𝑠𝑠
★
ℎ𝑣

★)

Figure 9: Game used in the proof of Theorem 6

First, as𝐺HMF

0
is identical with HM-FAIR, Pr[HM-FAIR⇒ 1] =

Pr[𝐺 (HMF)
0

⇒ 1]. In 𝐺HMF

0
, the 7-th step ensures the correctness

of 𝑠𝑠𝑖 and that not 𝑎1, ..., 𝑎𝑡−1 are all 0. Therefore,𝐺HMF

1
is identical

with 𝐺HMF

0
, except that 𝑐𝑢 (𝑖) is replaced with a random element in

the ciphertext space. With the security of Paillier encryption,

| Pr[𝐺 (HMF)
1

⇒ 1] − Pr[𝐺 (HMF)
0

⇒ 1] | ≤ negl(1ℓ) .

Now we prove that Pr[𝐺 (HMF)
1

⇒ 1] ≤ 2 Pr[Solve𝐺].
We use A to construct A ′ for the DL problem. A ′ is given two

generators 𝑔, ℎ of a group 𝐺 , and its goal is to output the discrete

logarithm of ℎ to the base 𝑔, i.e. 𝑑 = log𝑔 ℎ.

In detail: A ′ is given (𝐺, 𝑝, 𝑞, 𝑔, ℎ), where 𝑝 and 𝑞 are primes

and 𝑞 |𝑝 − 1, 𝐺 is a group with the order 𝑞, 𝑔 and ℎ are two random

generators of 𝐺 .

(1) Run A. A ′ gives (𝐺, 𝑝, 𝑞, 𝑔, ℎ) to A.

17

𝐺𝑅𝐹 (𝐺, 𝑝, 𝑞, 𝑔)
1 : 𝑄𝐻 := ∅, 𝑄𝑊𝑖𝑡 := ∅

2 : 𝑠𝑠
$← 𝑍𝑞, 𝑆 = 𝑔𝑠𝑠

3 : (𝑧′, 𝑅′, 𝐴𝑑𝑑 ′) ← A𝐻O,𝑊 𝑖𝑡O (𝑆, 𝑔, 𝑝, 𝑞, 𝑔)
4 : If (𝑅′ · 𝑆𝐻O(𝑆,𝑅′,𝐴𝑑𝑑′) = 𝑔𝑧

′) ∧ (𝑄𝑊𝑖𝑡 [𝐴𝑑𝑑 ′] ≠ 1)
5 : Return 1

6 : Return 0

𝑊𝑖𝑡O(𝐴𝑑𝑑)

1 : 𝑟
$← 𝑍𝑞, 𝑅 = 𝑔𝑟

2 : 𝑧 = 𝑟 + 𝑠𝑠 · 𝐻O(𝑆, 𝑅,𝐴𝑑𝑑)
3 : 𝑄𝑊𝑖𝑡 [𝐴𝑑𝑑] = 1

4 : Return (𝑅, 𝑧)

𝐻O(𝑆, 𝑅,𝐴𝑑𝑑)

1 : If (𝑆, 𝑅,𝐴𝑑𝑑) ∉ 𝑄 𝑦
$← 𝑍𝑞, 𝑄 [𝑆, 𝑅,𝐴𝑑𝑑] = 𝑦

2 : Else 𝑦 = 𝑄𝐻 [𝑆, 𝑅,𝐴𝑑𝑑]
3 : Return 𝑦

Figure 10: Game used in the proof of Theorem 8

(2) When A chooses {𝑘, 𝑟0, {𝑟𝑖 , 𝑎𝑖 }𝑡−1
1
}, A ′ ensures that not

𝑎1, ..., 𝑎𝑡−1 are all 0. Otherwise, A ′ aborts.
(3) A ′ chooses 𝑢 $← 𝑍𝑁 , 𝑐𝑢

(𝑖) $← 𝑍𝑁 2 ∀𝑖 ∈ [1, 𝑡 − 1] and sends

{𝑐𝑢 (𝑖) }𝑡−1
1

, 𝑆 = 𝑔𝑠𝑠 to A.

(4) WheneverA outputs (𝑠𝑠★, 𝑣★),A verifies whether 𝑠𝑠★ = 𝑠𝑠 .

If it is, A outputs a random 𝑑 ′ ∈ 𝑍𝑝 . Otherwise, A outputs

𝑑 ′ = (𝑠𝑠 − 𝑠𝑠★)/(𝑣★ − 𝑣).
In the above steps, ifA outputs a 𝑣★ for 𝑠𝑠★ ≠ 𝑠𝑠 , then 𝑠𝑠★−𝑠𝑠 ≠

0, 𝑣★ − 𝑣 ≠ 0, and 𝑔𝑠𝑠
★
ℎ𝑣

★
= 𝑔𝑠𝑠ℎ𝑣 .

Thus, we have 𝑔𝑠𝑠
★
ℎ𝑣

★
= 𝑔𝑠𝑠 ·𝑔𝑠𝑠★−𝑠𝑠ℎ𝑣 ·ℎ𝑣★−𝑣 , where 𝑠𝑠★−𝑠𝑠 +

(log𝑔 ℎ) · (𝑣★ − 𝑣) = 0. With this equation,

𝑑 ′ =
𝑠𝑠 − 𝑠𝑠★
𝑣★ − 𝑣 =

(log𝑔 ℎ) · (𝑣★ − 𝑣)
𝑣★ − 𝑣 = log𝑔 ℎ.

The view ofA when run as a subroutine byA ′ is identical to the
view of A in 𝐺

(HMF)
1

. Therefore, Pr[𝐺 (HMF)
1

⇒ 1] = Pr[log𝑔 ℎ =

𝑑 ′ ← A ′ (𝐺,𝑝,𝑞,𝑔,ℎ)] + Pr[𝑠𝑠 ← A(𝑆 = 𝑔𝑠𝑠)] ≤ 2 Pr[Solve𝐺] .
This concludes the proof. □

Theorem 7. If the smart contract used in DataUber always ex-
ecutes its code and 𝜋SD is modeled as the ideal functionality FSD
presented in Fig. 7, DataUber achieves lazy mailman fairness and
malicious mailman fairness.

Proof. According to the logic behind the code of TimedPub,
only after a mailman invokes the function 𝑃𝑢𝑏𝑆ℎ𝑎𝑟𝑒 to publish

her/his share in the prescribed time slot, will the service charge

be transferred to the mailman. If a mailman receives the service

charge from TimedPub without invoking the 𝑃𝑢𝑏𝑆ℎ𝑎𝑟𝑒 , the execu-

tion of TimedPub does not follow its code. This conflicts with our

security assumption that the smart contract always executes its

code. Analogously, malicious mailman fairness is also guaranteed

by the smart contract. In DataUber, the verification of complaints

and punishments both rely on TimedPub. In the logic behind the

code of the function 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑡 , if a valid proof of a premature

leakage is submitted, TimedPub will reassign the deposit of the

malicious mailman to the sender and the reporter. Moreover, the

ideal functionality FSD ensures that a mailman can only upload a

commitment that is indeed corresponding to its share. In this case,

the mailman cannot leak its true share while getting away with it

due to the invalid commitment recorded in the contract. □

C.3 Reporter fairness
Theorem 8. If the hash function 𝐻 used in 𝜋

(𝐼𝐷)
DL is modeled as a

random oracle 𝐻O, then Pr[R-FAIRA ⇒ 1] ≤ negl(1ℓ) .

Proof. R-FAIR is identical with𝐺𝑅𝐹
, then Pr[R-FAIRA ⇒ 1] =

Pr[𝐺𝑅𝐹 (𝐺, 𝑝, 𝑞, 𝑔) ⇒ 1]. Now we prove that Pr[𝐺𝑅𝐹 (𝐺, 𝑝, 𝑞, 𝑔) ⇒
1] ≤ negl(1ℓ).

We use A to construct a PPT adversary A ′ to forge a proof for

the statement 𝑆 = 𝑔𝑠𝑠 without knowing 𝑠𝑠 . A ′ is given access to

some oracle O, whenA ′ queries O on some challenge 𝑐 , O returns

(𝑧, 𝑅, 𝑐) such that 𝑔𝑧 = 𝑅 · 𝑆𝑐 . Finally, if A ′ outputs (𝑧′, 𝑅′, 𝑐 ′) s.t.
𝑔𝑧
′
= 𝑅′ · 𝑆𝑐′ , A ′ wins. In detail:

(1) Initialize empty lists 𝐿𝐻 , 𝐿𝑊𝑖𝑡 .

(2) Run A. Whenever A queries𝑊𝑖𝑡O on 𝐴𝑑𝑑 , A ′ stores 𝐴𝑑𝑑
in 𝐿𝑊𝑖𝑡 , chooses 𝑐

$← 𝑍𝑞 and queries O on 𝑐 .

(3) O chooses 𝑟
$← 𝑍𝑞 , computes 𝑧 = 𝑟 + 𝑐 · 𝑠𝑠, 𝑅 = 𝑔𝑟 , and

returns (𝑧, 𝑅) to A ′.
(4) After receiving the response (𝑧, 𝑅) fromO,A ′ stores (𝑅,𝐴𝑑𝑑, 𝑐)

in 𝐿𝐻 and gives (𝑧, 𝑅,𝐴𝑑𝑑) to A.

(5) Whenever A queries 𝐻O on (𝑅★, 𝐴𝑑𝑑★), if there is a item
(𝑅★, 𝐴𝑑𝑑★, 𝑐★) in 𝐿𝐻 , A returns 𝑐★. Otherwise, A chooses

𝑐★
$← 𝑍𝑞 , stores (𝑅★, 𝐴𝑑𝑑★, 𝑐★) in 𝐿𝐻 , and returns 𝑐★ to A.

(6) Finally, when A ′ outputs (𝑧′, 𝑅′, 𝐴𝑑𝑑 ′), A looks up 𝐿𝐻 to

find the item (𝑅′, 𝐴𝑑𝑑 ′, 𝑐 ′) and outputs (𝑧′, 𝑅′, 𝑐 ′).
In the above procedure, A’s view when run as a subroutine

by A ′ is identical to that in 𝐺𝑅𝐹
. If A can output a valid proof

(𝑧′, 𝑅′, 𝐴𝑑𝑑 ′) s.t. 𝑐 ′ = 𝐻O(𝑆, 𝑅′, 𝐴𝑑𝑑 ′) and 𝑔𝑧
′
= 𝑅′ · 𝑆𝑐′ , where

𝐴𝑑𝑑 ′ has not been queried on𝑊𝑖𝑡O, A ′ can output a valid proof

(𝑧′, 𝑅′, 𝑐 ′) s.t. 𝑐 ′ = 𝐿𝐻 [𝑅′], 𝑔𝑧
′
= 𝑅′ ·𝑆𝑐′ . Let Forge denote the event

that A ′ outputs a valid proof, Pr[𝐺𝑅𝐹 ⇒ 1] ≤ Pr[Forge]. In the

above game, the goal of A ′ is essentially to forge a proof for a

statement in a NIZKP protocol converted from a sigma protocol

using Fiat-Shamir transform [28]. Therefore, we have Pr[Forge] ≤
negl(1ℓ).

This concludes the proof. □

18

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Notation and basic theories
	3.2 System model
	3.3 Threat model and goals

	4 Technical Overview of DataUber
	5 Definition
	5.1 Syntax and correctness
	5.2 Formalizing notions

	6 Construction of DataUber
	6.1 Building blocks
	6.2 Smart contract for DataUber: TimedPub
	6.3 Algorithm details
	6.4 Limitations

	7 Security Analysis
	8 Implementation and Evaluation
	8.1 Computation costs
	8.2 Communication costs
	8.3 On-chain costs
	8.4 Comparison

	9 Conclusion
	References
	A OVTSS
	A.1 Syntax and correctness
	A.2 Security properties
	A.3 Construction

	B ZKP Details
	C Security Analysis of DataUber
	C.1 Time-locked confidentiality
	C.2 Mailman fairness
	C.3 Reporter fairness

