
Pairing-Free Blind Signatures from CDH Assumptions

Rutchathon Chairattana-Apirom , Stefano Tessaro , and Chenzhi Zhu

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, US

{rchairat,tessaro,zhucz20}@cs.washington.edu

Abstract. This paper presents new blind signatures for which concurrent security, in the random
oracle model, can be proved from variants of the computational Diffie-Hellman (CDH) assumption in
pairing-free groups without relying on the algebraic group model (AGM). With the exception of careful
instantiations of generic non-black box techniques following Fischlin’s paradigm (CRYPTO ’06), prior
works without the AGM in the pairing-free regime have only managed to prove security for a-priori
bounded concurrency.
Our most efficient constructions rely on the chosen-target CDH assumption, which has been used to
prove security of Blind BLS by Boldyreva (PKC ’03), and can be seen as blind versions of signatures
by Goh and Jarecki (EUROCRYPT ’03) and Chevallier-Mames (CRYPTO ’05). We also give a less
efficient scheme with security based on (plain) CDH which builds on top of a natural pairing-free variant
of Rai-Choo (Hanzlik, Loss, and Wagner, EUROCRYPT ’23). Our schemes have signing protocols that
consist of four (in order to achieve regular unforgeability) or five moves (for strong unforgeability).
The blindness of our schemes is either computational (assuming the hardness of the discrete logarithm
problem), or statistical in the random oracle model.

1 Introduction

Blind signatures [Cha82] allow a user to obtain a signature on a message by interacting with the signer
in a way that does not reveal anything about the message-signature pair to the signer. They are a fun-
damental building block to achieve anonymity in e-cash [Cha82, CFN90, OO92], e-voting [FOO93], and
credentials [Bra94, BL13]. They have also come to use in a number of recent industry applications, such as
privacy-preserving ad-click measurement [PCM], Apple’s iCloud Private Relay [App], Google One’s VPN
Service [Goo], and various forms of anonymous tokens [HIP`21, Tru].

It is natural to want to design blind signatures in pairing-free groups. On the one hand, widely adopted
signatures, such as Schnorr signatures [Sch90], EdDSA [BDL`12], and ECDSA [Ame05] rely on such curves.
On the other hand, many of the aforementioned applications are implemented in environments such as
Internet browsers where pairing-friendly curves are usually not part of the available cryptographic libraries
(such as NSS and BoringSSL).

The question of designing blind signatures in pairing-free groups has turned out to be extremely challeng-
ing. The main difficulty is finding schemes secure in the sense of one-more unforgeability [JLO97], even when
a malicious user can run several concurrent signing interactions with the signer. Pointcheval and Stern [PS00]
were the first to prove security of blind Okamoto-Schnorr signatures [Oka94] under bounded concurrency,
in the random oracle model (ROM) [BR93], assuming the hardness of the discrete logarithm (DL) problem.
Their approach was later abstracted in [HKL19]. Blind Schnorr signatures [CP93] have also only been proved
secure under bounded concurrency [FPS20, KLX22], in this case additionally assuming the Algebraic Group
Model (AGM) [FKL18], along with the stronger one-more discrete logarithm (OMDL) assumption [BNPS03].
These results are also in some sense best possible, as recent ROS attacks [BLL`21] yield polynomial-time
forgery attacks against these schemes using log p concurrent signing sessions, where p is the group order.

One can rely on boosting techniques [Poi98, KLR21, CAHL`22] to increase the number of concurrent
sessions a scheme such as Okamoto-Schnorr remains secure to. The current state of the art [CAHL`22]
requires a signer whose complexity grows linearly in the number of signing sessions, which still has to be
fixed a priori.

https://orcid.org/0009-0006-1990-1329
https://orcid.org/0000-0002-3751-8546
https://orcid.org/0000-0002-4276-2797


A concurrently secure scheme, i.e., one supporting arbitrary concurrent adversarial signing sessions, was
given by Abe [Abe01], but its proof (in the ROM, assuming the hardness of DL) later turned out to be
incorrect, and was only recently re-stablished in the AGM only [KLX22]. Similarly, all other provably secure
solutions [FPS20, TZ22, CKM`23] fundamentally rely on the AGM.

This paper addresses the fundamental question of coming up with such schemes that can be proved secure
without the AGM in the random-oracle model.

Non-black box baseline. One exception to the above is a folklore instantiation of Fischlin’s trans-
form [Fis06] using generic NIZKs with online extractability in the random oracle model, such as those from
the MPC in the head paradigm [IKOS07]. In the pairing-free setting, the signer uses a hash-based signature
scheme (which exists under the hardness of the DL problem) [NY89] to sign a Pedersen commitment to the
message, and the actual signature for a message is a proof of knowledge of a signature on a commitment
to this message. While round optimal, this approach relies on heavy non-black box techniques and is much
less efficient than existing AGM schemes. Also worth noting here is the recent work by Fuchsbauer and
Wolf [FW22], which relies on generic NIZKs as well, and assumes Schnorr signatures to be secure for a given
fixed (non random oracle) hash function.

Our contribution. We give the first natural blind signature schemes in pairing-free settings proved to be
concurrently secure without relying on the AGM. Our schemes treat the underlying group in a black-box
way, additionally using one or more hash functions to be modeled as random oracles, and their security is
based on variants of the Computational Diffie-Hellman assumption.

A summary of our constructions can be found in Table 1, and we give a technical overview below.
Our most efficient constructions are based on the chosen target CDH (CT-CDH) assumption introduced by
Boldyreva [Bol03] to prove security (in the pairing setting) of Blind BLS [BLS01], which is a one-more version
of CDH. The signing protocols take four and five moves, respectively, the difference being that the latter
protocol achieves strong unforgeability. The starting points of these schemes are the Goh-Jarecki [GJ03] and
the Chevallier-Mames [Che05, KLP17] signature schemes, respectively, with a number of modifications based
on witness indistinguishable OR-proofs [CDS94] to be able to prove concurrent security.

Our third, more complex, scheme dispenses entirely with interactive assumptions, and solely relies on
(plain) CDH. It applies techniques in principle similar to those we used for our two better performing schemes
to the recent work by Hanzlik, Loss, and Wagner [HLW23] meant to be used in the pairing setting.

Let us mention two differences with prior works. Our schemes, in comparison with recent AGM-based
schemes [TZ22, CKM`23], do not offer perfect blindness. Instead, we give two types of blindness proof. For
all of the schemes, we prove statistical blindness assuming bounded queries to a random oracle. We also give
a slightly more efficient version of the first two schemes which is computationally blind under the discrete
logarithm assumption. For the first two schemes, the advantage of our random oracle proofs is that it only
requires the Fiat-Shamir heuristic [FS87] to be sound for proofs (hence, there is no rewinding). While we do
not prove this formally, we expect blindness of our first two schemes to also hold against quantum adversaries
in the QROM [BDF`11], following e.g. [Unr17].

We also only prove a slightly weaker notion of one-more unforgeability than the more standard one
from [JLO97], in that we only guarantee that a malicious user cannot come up with more signatures than
the number of sessions it engages in, regardless of whether these terminate or not. This weaker notion has
been used before (cf. e.g. [HKKL07]), and appears to suffice for most envisioned applications. For example,
when used to build anonymous tokens [HIP`21, Tru], the weaker notion means that the server needs to regard
a token as issued as long as the server sent out the first-round message to the user. The only advantage of
the stronger security is that it guarantees that if the signing protocol aborts, the user will not come up with
a valid token. However, we do not find this to be a true concern. (In principle, the server can decide whether
to potentially issue a blind signature before engaging in a signing session.) We also point out that there are
some applications where the stronger notion is necessary, although these seem to rely on settings where fair
two-party functionalities are possible (one example we are aware of is the recent work by [HLTW22]). In this
sense, it is a good open question to close this gap. We also see no reason why our scheme would not achieve
the stronger, more standard, notion, but our proof techniques fail to establish that.

2



Scheme Security Mvs. Sig. size Comm.
Blind
Asmp.

OMUF
Asmp.

BS1

(Sec. 3)

comp./stat.
blindness
& OMUF

4 1 G + 4 Zp 5 G + 5(or 7) Zp
DL(comp.)/
ROM(stat.)

CT-CDH

BS2

(Sec. 4)

comp./stat.
blindness

& OMSUF
5 1 G + 4 Zp 5 G + 5(or 7) Zp

DL(comp.)/
ROM(stat.)

CT-CDH

BS3

(Sec. 5)
stat. blind
& OMUF

4
pλ` 1q G +
pλ` 3q Zp +

λ2 bits

p3λ` 2q G +
p2λ` 5q Zp +
pλ` 3λ2

q bits
ROM CDH

Table 1. Overview of our results. The three schemes proposed in this paper with the achieved provable security
notions, number of moves, signature size and communication cost (note: p “ |G|), and the assumptions required to
achieve the mentioned security notions. All of the schemes are OMUF secure assuming the ROM. For the first two
schemes BS1,BS2, we give two versions of the protocol, one with computational blindness and one with statistical
blindness in the ROM. The latter is less efficient. We also note that the scheme BS3 depends on two parameters N
and K, and the efficiencies mentioned in this table is achieved by setting N “ 2,K “ λ.

On DLOG based schemes.An elusive open problem is to give similar schemes with security proofs based
solely on the hardness of the DL problem (or the stronger OMDL assumption). Indeed, techniques from recent
works [KLX22, TZ22, CKM`23] are not robust to rewinding in several subtle ways. One may of course argue
that the qualitative improvement is not significant (for several curves, indeed, DL and CDH are somewhat
equivalent [Mau94, MS23]). However, the evidence is that even in the non-blind setting, signatures with
security based on DL tend to be actually more efficient, so this is certainly an avenue for further research.

We note that recent work by Barreto and Zanon [BZ23] (expanded in [BRJZ23]) claims pairing-free blind
signatures with a proof of concurrent security under the OMDL assumption, which hinges upon a reduction
of concurrent security under impersonation attacks (IMP-CA) to the (concurrent) one-more unforgeability
of the associated signature scheme. The proof appears to have some gaps, and furthermore, we note that
in general IMP-CA security does not yield concurrently secure blind signatures. For instance, Bellare and
Palacio [BP02] prove the Schnorr identification scheme achieves the former notion, whereas it does not yield
secure blind signatures.

Paper outline. Section 2 introduces the basic preliminaries. We then discuss the two schemes based on
the CT-CDH assumption, BS1 (achieving one-more unforgeability) and BS2 (achieving one-more strong
unforgeability), in Sections 3 and 4 respectively. Lastly, we discuss the scheme BS3 based on the CDH
assumption in Section 5.

1.1 Technical Overview

The starting point of our first and simplest scheme BS1 is the signature by Goh and Jarecki [GJ03], which
can also be thought of as a “pairing-free” variant of BLS signatures [BLS04]. Given a cyclic group G with
prime order p and generator g, a secret key sk is a random scalar in Zp, and the corresponding public
key is pk Ð gsk. The signature of a message m is Z Ð Hpmqsk, where H is a hash function, along with a
non-interactive proof π of discrete logarithm equality (DLEQ), showing that logg pk “ logHpmq Z.

The generation of such a signature can be seen as an interactive protocol. The user first sends hÐ Hpmq
to the signer. The signer then sends Z Ð hsk back and initiates an interactive version of the standard
DLEQ proof [Sch91]. In particular, along with Z, the signer sends two nonces Rg Ð gr and Rh Ð hr to
the user, where rÐ$ Zp; upon receiving Rg, Rh, the user picks a challenge c Ð H1pm,h,Z,Rg, Rhq to send
to the signer, and the signer replies with z Ð r ` c ¨ sk. The user accepts if and only if Rg “ gzpk´c and
Rh Ð hzZ´c, and the signature is σ Ð pZ, π “ pc, zqq. To verify the signature, with h Ð Hpmq, we recover
Rg Ð gzpk´c and Rh Ð hzZ´c and check whether c “ H1pm,h,Z,Rg, Rhq.

3



Achieving one-more unforgeability. Our first goal is to make this scheme one-more unforgeable (OMUF),
i.e., the adversary cannot produce signatures for `` 1 distinct messages after engaging in at most ` signing
sessions. The idea is to show that OMUF of the scheme is implied by the hardness of chosen-target com-
putational Diffie-Hellman (CT-CDH) problem [Bol03], where, given gx for a uniformly random x P Zp and
`-time access to a DH oracle that takes any group element Y as input and outputs Y x, the adversary’s goal
is to compute Y xi for at least `` 1 randomly sampled challenges tYi P Gu. (Here, we assume an oracle which
supplies as many challenges as needed, but the attacker just needs to solve `` 1 of these.)

The reduction idea appears simple: Given an adversary A that breaks OMUF of the scheme, we construct
an adversary B playing the CT-CDH game that runs A with pk Ð gx. Random oracle queries Hpmiq for
a message mi are answered with a challenge Yi. When A starts a signing session with h as the first-round
message, B computes Z Ð hx by querying the DH oracle and simulates the rest of the signing session by
itself. (Note that a DH query here is necessary, because h can be any group element.) For a valid signature
pZi, πiq for a message mi, by the soundness properties of πi, Zi “ Hpmiq

x is a solution to the challenge
Yi “ Hpmiq with overwhelming probability. Therefore, if the adversary A forges valid signatures for ` ` 1
distinct messages, B solves the CT-CDH problem.1

The challenge here is that the DLEQ proof is merely honest-verifier zero-knowledge, and the adversary
A sends an arbitrary challenge c in the interaction, for which B needs to simulate a response. This cannot
be done efficiently without knowing the secret key. To address this, we transform the DLEQ proof into a
witness indistinguishable (WI) OR proof [CDS94] that proves the existence of a witness sk for the DLEQ
proof or knowledge of a witness w “ loggW for a public parameter W P G. (This parameter would be
generated transparently in actual implementation.) Now the proof can be generated, indistinguishably, both
with knowledge of sk (this is what the protocol does) or with knowledge of w. The former is what the actual
protocol does, but the latter is what the reduction B would do. (The reduction clearly chooses W with a
known discrete logarithm w.) The challenge of this proof will be chosen as before as a hash, and the resulting
non-interactive proof π will be included in the signature σ “ pZ, πq.

However, this brings a new issue. Witness indistinguishability only holds when Z “ hsk, which is always
the case when the honest signer generates it. However, it is possible, in principle, to use the witness w
to generate a signature pZ, πq for m where Z ‰ Hpmqsk. Our key observation here is that any adversary
succeeding in producing such a signature can be used to compute w, and thus, to break the discrete logarithm
assumption. This argument is rather involved as it requires a careful use of the Forking Lemma. In essence, π
gives us two valid proof transcripts pRg, Rh, d, zq and pA, e, tq, where the former verifies as a valid DLEQ proof
for Z “ Hpmqsk, and the latter attests knowledge of w. Further, we have that d` e “ H1pm,h,Z,Rg, Rh, Aq.
If we fork on this hash query, we can obtain two extra transcripts pRg, Rh, d

1, z1q and pA, e1, t1q such that
d1 ` e1 ‰ d ` e. Still, we succeed in extracting w only if e ‰ e1, but this is not necessarily guaranteed if we
also have d ‰ d1.

Here, we crucially rely on a property of the DLEQ proof, namely that by fixing pRg, Rhq and since
Z ‰ Hpmqsk, there exists at most one bad d that can generate an accepting pRg, Rh, d, zq. Therefore, d “ d1

must hold, and hence e ‰ e1.

Achieving blindness. To make the signing protocol of BS1 blind, the user additionally samples a random
scalar β and computes h Ð Hpmqgβ . After receiving Z “ hsk, the user computes Z 1 Ð Zpk´β . It is easy
to verify that Z 1 “ Hpmqsk. Then, the user blinds the OR proof in a way similar to Abe-Okamoto blind
signatures [AO00], such that after the interaction, the user generates a proof π1, the distribution of which is
independent of the transcript of the proof.

However, a malicious signer can send an incorrect Z (i.e., Z ‰ hsk) in one of the signing sessions, and
later identify the blinded signature pZ 1, π1q by checking whether Z 1 ‰ Hpmqsk. Fortunately, for the attack to
work, the signer also needs to let the user accept the OR proof during the session where Z ‰ hsk. Using a
similar argument as the above, by the soundness of the OR proof, the probability that this occurs is bounded
by the advantage of computing loggW .

1 We remark that to reduce to the CT-CDH assumption, we need the adversary to output more forgery than the
number of started sessions; hence, the weaker notion of OMUF security.

4



If we do not want blindness to rely on the discrete logarithm assumption, another way to tackle this
is to let the signer sends a non-interactive proof that Z “ hsk in the second move. For example, if we use
the non-interactive version of the DLEQ proof, we can show blindness of BS1 in the random oracle model.
Crucially, this proof does not need to be blind (it only needs to be verified at that stage by the user).

Remaining constructions. We will now briefly discuss our two remaining protocols BS2 and BS3.

Strong unforgeability. Unfortunately, BS1 is not one-more strongly unforgeable (OMSUF), i.e., we
cannot guarantee that the adversary cannot produce p` ` 1q distinct valid message-signature pairs after `
signing sessions. Indeed, suppose all signing sessions start with the same first-round message h “ Hpmq for
some m. Then, BS1 shares the structure of Abe-Okamoto blind signatures [AO00], and a variant of the recent
ROS attacks [BLL`21] yields an adversary that starts log p signing sessions and outputs log p ` 1 distinct
signatures for the message m. To transform BS1 into a OMSUF one, referred to as BS2, the idea is to let H
also take pRg, Aq as input, i.e., the group elements independent of h. In particular, we let the signer send
Rg, A to the user before h is sent, adding an extra move to the signing protocol. The user then computes
hÐ Hpm,Rg, Aq and the rest of the protocol remains as in BS1. The resulting signature is the same as the
Chevallier-Mames signature scheme [Che05, KLP17] except that we replace the DLEQ proof with the OR
proof.

CDH-based construction. To construct a scheme relying on only the non-interactive CDH assumption,
instead of the stronger CT-CDH, we apply the above framework to Rai-Choo [HLW23], which is a pairing-
based scheme relying only on the CDH assumption. Abstractly one can think of the CT-CDH assumption as
giving access to an interactive version of the BLS scheme without efficient verification (the DH oracle gives
signatures, the challenge oracle implements the random oracle). Similarly, we define a natural pairing-free
version of Rai-Choo with inefficient verification (see Section 5 for details), where the key generation is the
same as BS1 and a signature is of the form pppki P G, ϕi P t0, 1uλqiPrKs, S P Gq for some value K. The

signature is valid for a message m if and only if pk “
śK
i“1 pki and S “

śK
i“1 Hpm,ϕiq

ski for some hash
function H, where ski “ logg pki. Similar to BS1, to translate this scheme into a blind signature scheme with
efficient verification, referred to as BS3, we let the signer, after the signing protocol of Rai-Choo finished,
engage in a WI OR proof protocol with the user that shows the knowledge of either the witness loggW or

the witness tskiuiPrKs such that pki “ gski and S “
śK
i“1 Hpm,ϕiq

ski . To show OMUF of BS3, using a similar
idea as BS1, we show that if there exists an adversary that breaks OMUF of BS3, then we can either break
the OMUF of Rai-Choo or extract loggW . We refer to Section 5.4 for the full proof.

2 Preliminaries

Notation. For a positive integer n, we write rns for t1, . . . , nu. We use λ to denote the security parameter.
The probabilistic polynomial time algorithm GGen takes an input 1λ and outputs a cyclic group G of λ-bit
prime order p and a generator g of the group. We tacitly assume standard group operations in G can be
performed in time polynomial in λ and adopt multiplicative notation. We will often compute over the finite
field Zp (for a prime p) – we usually do not write modular reduction explicitly when it is clear from the
context. We write Z˚p “ Zpzt0u. Also, we write a “ logg A P Zp for a group element A P G such that A “ ga.

Cryptographic assumptions.The constructions in this paper are based on a subset of the following three
hardness assumptions: the hardness of the discrete logarithm (DL) problem, the hardness of computational
Diffie-Hellman (CDH) problem, and the hardness of chosen-target computational Diffie-Hellman (CT-CDH)
problem (introduced by Boldyreva [Bol03]). For any adversary A, we define the advantage of A playing the
games tDLOG,CDH,CT-CDHu (each of these games is defined in Figure 1) as

Adv
dlog{cdh{ct´cdh
GGen pA, λq :“ PrrpDLOG{CDH{CT-CDHqAGGenpλq “ 1s .

Additionally, the hardness of the CT-CDH problem implies the hardness of the CDH problem which implies
the hardness of the DL problem.

5



Game DLOGA
GGenpλq :

pG, p, gq Ð$ GGenp1λq ; X Ð$ G
xÐ ApG, p, g,Xq
If gx “ X then return 1
Return 0

Game CDHA
GGenpλq :

pG, p, gq Ð$ GGenp1λq ; x, yÐ$ Zp
Z Ð ApG, p, g, gx, gyq
If gxy “ Z then return 1
Return 0

Game CT-CDHA
GGenpλq :

pG, p, gq Ð$ GGenp1λq ; xÐ$ Zp ; X Ð gx

cid Ð 0 ; `Ð 0
pji, ẐiqiPr``1s Ð AChal,Dh

pG, p, g,Xq
If @ i P r`` 1s : Ẑi “ Y xji

then

Return 1
Return 0

Oracle Chal :
cid Ð cid` 1
Ycid Ð$ G
Return Ycid

Oracle DhpY q :

`Ð `` 1
Return Y x

Fig. 1. The DLOG,CDH and CT-CDH games.

Blind signatures. This paper focuses on four-move and five-move blind signature schemes. Formally,
a four-move (and five-move respectively) blind signature scheme BS is a tuple of efficient (randomized)
algorithms

BS “ pBS.Setup,BS.KG,BS.S1,BS.S2,BS.U1,BS.U2,BS.U3,BS.Verq;

BS “ pBS.Setup,BS.KG,BS.S1,BS.S2,BS.S3,BS.U1,BS.U2,BS.U3,BS.Verq;

with the following behavior:

‚ The parameter generation algorithm BS.Setupp1λq outputs a string of parameters par, whereas the key
generation algorithm BS.KGpparq outputs a key-pair psk, pkq, where sk is the secret (or signing) key and
pk is the public (or verification) key. All other algorithms of BS implicitly take par as input.

‚ The interaction between the user and the signer to sign a message m P t0, 1u˚ with key-pair ppk, skq is
defined by the following experiments (1) for four-move and (2) for five-move blind signatures:

pstu1 , umsg1q Ð BS.U1ppk,mq, pst
s, smsg1q Ð BS.S1psk, umsg1q,

pstu2 , umsg2q Ð BS.U2pst
u
1 , smsg1q, smsg2 Ð BS.S2pst

s, umsg2q,

σ Ð BS.U3pst
u
2 , smsg2q .

,

/

.

/

-

(1)

psts1, smsg1q Ð BS.S1pskq, pst
u
1 , umsg1q Ð BS.U1ppk,m, smsg1q,

psts2, smsg2q Ð BS.S2pst
s
1, umsg1q, pst

u
2 , umsg2q Ð BS.U2pst

u
1 , smsg2q,

smsg3 Ð BS.S3pst
s
2, umsg2q, σ Ð BS.U3pst

u
2 , smsg3q .

,

/

.

/

-

(2)

Here, σ is either the resulting signature or an error message K.
‚ The (deterministic) verification algorithm outputs a bit BS.Verppk,m, σq.

We say that BS is (perfectly) correct if for every message m P t0, 1u˚, with probability one over the sampling
of parameters and the key pair ppk, skq, the experiment in (1, 2) returns σ such that BS.Verppk,m, σq “ 1.
All of our schemes are going to be perfectly correct.

As an intermediate object in our proof we will also need a two-move blind signature scheme, which is
easily obtained from the above formalization of a four-move scheme.

One-more unforgeability. We consider variants of one-more (strong) unforgeability (OMUF, OMSUF),
which ensure that no adversary playing the role of a user and starting ` signing interactions with the signer,
in an arbitrarily concurrent fashion, can issue `` 1 signatures (or more) for distinct messages, in the case of
OMUF, or ``1 distinct message-signature pairs, in the case of OMSUF. The OMUFA

BS and OMSUFA
BS games

for a blind signature scheme BS are defined in Figure 2, which we define for a general r-round protocol. The

corresponding advantage of A is defined as Adv
omuf{omsuf
BS pA, λq :“ PrrpOMUF{OMSUFqABSpλq “ 1s. All of

our analyses will further assume one or more random oracles, which are modeled as an additional oracle to
which the adversary A is given access.

6



Game OMUFA
BSpλq , OMSUFA

BSpλq :

par Ð BS.Setupp1λq
psk, pkq Ð BS.KGpparq
`Ð 0 ; I1, . . . , Ir Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,...,Sr ppar, pkq

If D k1 ‰ k2, m˚k1
“ m˚k2

then

If D k1 ‰ k2, pm
˚
k1
, σ˚k1

q “ pm˚k2
, σ˚k2

q then

return 0
If D k P r`` 1s such that

BS.Verppk,m˚k , σ
˚
k q “ 0

then return 0
Return 1

Oracle Sjpsid, umsgq : // j “ 1, . . . , r

// If BS is 5-move and j “ 1,
// the input umsg is set as an empty string

If sid R I1, . . . , Ij´1 or
sid P Ij then return K

Ij Ð Ij Y tsidu
If j “ 1 then
`Ð `` 1
pstssid, smsgq Ð BS.S1psk, umsgq

If j ą 1 then
pstssid, smsgq Ð BS.Sjpst

s
sid, umsgq

// for j “ r, stssid “ K
Return smsg

Fig. 2. The OMUF and OMSUF security games for a 4-move or 5-move blind signature scheme BS, where r “ 2 if BS
is 4-move and r “ 3 if BS is 5-move. Also, the input umsg of S1 is set as an empty string if BS is 5-move. The OMUF
game contains everything but the solid boxes, and the OMSUF game contains everything but the dashed boxes.

Game BLINDA
BSpλq :

par Ð BS.Setupp1λq
bÐ$ t0, 1u
b0 Ð b ; b1 Ð 1´ b
b1Ð$ AInit,U1,...,Ur pparq
If b1 “ b then return 1
Return 0

Oracle Initpp̃k, m̃0, m̃1q :
sess0 Ð 1 ; sess1 Ð 1
pkÐ p̃k
m0 Ð m̃0 ; m1 Ð m̃1

Oracle Ujpi, smsgpiqq : // j “ 1, . . . , 3

// If BS is 4-move and j “ 1,

// the input smsgpiq is set as an empty string
If i R t0, 1u or sessi ‰ j then return K
sessi Ð sessi ` 1
If j “ 1 then

pstui , umsgpiqq Ð BS.U1ppk, smsgpiqq

Return umsgpiq

If j “ 2 then

pstui , umsgpiqq Ð BS.U2pst
u
i , smsgpiqq

Return umsgpiq

σbi Ð BS.U3pst
u
i , smsgpiqq // j “ 3

If sess0 “ sess1 “ 4 and σ0 ‰ K and σ1 ‰ K then
Return pσ0, σ1q

Else return pK,Kq

Fig. 3. The BLIND security game for a 4-move or 5-move blind signature scheme BS. The only difference between
the game defined for 4-move schemes and the game defined for 5-move schemes is that if BS is a 4-move scheme, the
input umsg of U1 is set as an empty string.

Blindness.We also consider the standard notion of blindness against a malicious server that can, in partic-
ular, attempt to publish a malformed public key. The corresponding game BLINDA

BS is defined in Figure 3,
and for any adversary A, we define its advantage as Advblind

BS pA, λq :“
ˇ

ˇPrrBLINDA
BSpλq “ 1s ´ 1

2

ˇ

ˇ .

Game-playing proofs. Several of our proofs adopt a lightweight variant of the standard “Game-Playing
Framework” by Bellare and Rogaway [BR06].

Forking lemma. In our proof, we utilize the general forking lemma in the version introduced by Bellare
and Neven [BN06] stated below:

Lemma 2.1 (General Forking Lemma [BN06]). Fix an integer q ě 1 and a set H of size h ě 2. Let
A be a randomized algorithm that on input x, h1, . . . , hq returns a pair pI, auxq, the first element of which is
an integer in the range 1, . . . , q or K and the second element of which we refer to as a side output. Let IG
be a randomized algorithm that we call the input generator. The accepting probability of A, denoted acc, is
defined as the probability that I ‰ K in the experiment

xÐ$ IG; h1, . . . , hqÐ$H; pI, auxq Ð$ Apx, h1, . . . , hqq

The forking algorithm FApxq associated to A is a randomized algorithm on input x defined as follows:

‚ Pick random coins ρ for A and sample h1, . . . , hqÐ$H.

7



‚ Run pI, auxq Ð Apx, h1, . . . , hq; ρq

‚ If I “ K, return 0

‚ Sample h1I , . . . , h
1
qÐ$H, run pI 1, aux1q Ð Apx, h1, . . . , hI´1, h

1
I , . . . , h

1
q; ρq

‚ If I “ I 1 and hI ‰ h1I , return 1. Otherwise, return 0.

Let frk “ Prrb “ 1 : xÐ$ IG; bÐ$ FApxqs. Then,

frk ě acc

ˆ

acc

q
´

1

h

˙

, or alternatively, acc ď
q

h
`
a

q ¨ frk .

3 Four-Move Blind Signatures from CT-CDH

We present a four-move blind signature scheme BS1, described in Figure 4. The scheme can be viewed as a
blind version of the scheme by Goh and Jarecki [GJ03], where a signature consists of an element Z “ Hpmqsk

with a discrete-log equality (DLEQ) proof proving that the discrete logarithms of pZ, pkq are equal to the
base pHpmq, gq. However, we replace this proof with a witness-indistinguishable OR proof, which additionally
accepts the discrete logarithm of a public random parameter W as a witness. Needless to say, this parameter
is meant to be generated transparently, e.g., by hashing a constant, and nobody is meant to know this
second witness. It is easy to show that the scheme satisfies correctness, but for completeness, we prove this
in Section 3.1.

Blindness. The following theorem, proved in Section 3.2, shows that BS1 is statistically blind when H2 is a
random oracle. This property relies on the NIZK proof highlighted in Figure 4 to show equality of discrete
logarithms to the base pg, hq of pX,Zq. In Section 3.3, we also show that if we omit this NIZK proof, we still
achieve computationally blind under the discrete logarithm assumption, without random oracles.

Theorem 3.1 (Blindness of BS1). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS1 “ BS1rGGens. For any adversary A playing the game BLIND making at most QH2 “

QH2pλq queries to H2, modeled as a random oracle, we have

Advblind
BS1

pA, λq ď 2QH2

p
.

One-more unforgeability. The next theorem establishes one-more unforgeability of BS1 in the random
oracle model under the CT-CDH assumption. We refer to Section 1.1 for a proof sketch, whereas the full
proof is in Section 3.4.

Theorem 3.2 (OMUF of BS1). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS1 “ BS1rGGens. For any adversary A for game OMUF with running time tA “ tApλq,
making at most ` “ `pλq queries to S1, QH‹ “ QH‹pλq queries to H‹ P tH,H

1,H2u, modeled as random
oracles, there exist adversaries B and B1 for games DLOG and CT-CDH, respectively, such that

Advomuf
BS1

pA, λq ď `p``QH2q

p
` p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

` Advct´cdh
GGen pB1, λq .

Furthermore, B runs in time tB « 2tA and B1 runs in time tB1 « tA, makes QH challenge queries to Chal
and ` queries to Dh.

3.1 Correctness of BS1

Theorem 3.3. BS1 satisfies correctness.

8



Algorithm BS1.Setupp1
λ
q :

pG, p, gq Ð$ GGenp1λq ; W Ð$ G
Select H : t0, 1u˚ Ñ G
Select H1,H2 : t0, 1u˚ Ñ Zp
Return par “ pG, p, g,W,H,H1,H2q
Algorithm BS1.KGpparq :

pG, p, g,W,H,H1,H2q Ð par
xÐ$ Zp ; X Ð gx ; skÐ x ; pkÐ X
Return psk, pkq

Algorithm BS1.U1ppar, pk,mq :

X Ð pk ; pG, p, g,W,H,H1,H2q Ð par
h1 Ð Hpmq

βÐ$ Zp ; hÐ h1gβ

stu1 Ð pm,β,X, h1, h,W q ; umsg1 Ð h
Return pstu1 , umsg1q

Algorithm BS1.U2pst
u
1 , smsg1q :

pm,β,X, h1, h,W q Ð stu1
pZ, π , Rg, Rh, Aq Ð smsg1 ; pδ, s1q Ð π

If δ ‰ H2ph,X,Z, gs
1
X´δ, hs

1
Z´δq then

return K
α0, α1, γ0, γ1 Ð$ Zp
Z1 Ð ZX´β ; R1g Ð RgX

´γ0gα0

R1h Ð RhR
´β
g Z1´γ0h1α0

A1 Ð AW´γ1gα1

c1 Ð H1pm,h1, Z1, R1g, R
1
h, A

1
q

cÐ c1 ´ γ0 ´ γ1
stu2 Ð pc, α0, α1, γ0, γ1, Z,A,Rg, Rh, st

u
1 q

umsg2 Ð c
Return pstu2 , cq

Algorithm BS1.U3pst
u
2 , smsg2q :

pc, α0, α1, γ0, γ1, Z,A,Rg, Rh, st
u
1 q Ð stu2

pm,β,X, h1, h,W q Ð stu1
pd, e, z0, z1q Ð smsg2
If c ‰ e` d or
pRgX

d, RhZ
d
q ‰ pgz0 , hz0 q or

AW e
‰ gz1 then return K

d1 Ð d` γ0 ; e1 Ð e` γ1
z10 Ð z0 ` α0 ; z11 Ð z1 ` α1

Return σ Ð pZ1, d1, e1, z10, z
1
1q

Algorithm BS1.S1ppar, sk, umsg1q :

xÐ sk ; X Ð gx ; hÐ umsg1
pG, p, g,W,H,H1,H2q Ð par ; Z Ð hx

z1, e, r0, s Ð$ Zp
Rg Ð gr0 ; Rh Ð hr0 ; AÐ gz1W´e

δ Ð H2ph,X,Z, gs, hsq

π Ð pδ, δ ¨ x` sq

sts Ð px, z1, e, r0q ; smsg1 Ð pZ, π , Rg, Rh, Aq
Return psts, smsg1q

Algorithm BS1.S2pst
s, umsg2q :

px, z1, e, r0q Ð sts

dÐ c´ e ; z0 Ð r0 ` d ¨ x
Return smsg2 Ð pd, e, z0, z1q

Algorithm BS1.Verppar, pk,m, σq :

pZ, d, e, z0, z1q Ð σ ; X Ð pk
pG, p, g,W,H,H1q Ð par

hÐ Hpmq ; AÐ gz1W´e

Rg Ð gz0X´d, Rh Ð hz0Z´d

If e` d ‰ H1pm,h, Z,Rg, Rh, Aq then
return 0

Return 1

Fig. 4. The blind signature scheme BS1 “ BS1rGGens. The highlighted boxes denote the NIZK proof to show the
equality of discrete log to the bases pg, hq of pX,Zq. We also give a protocol-style description of BS1 in Figure 16.

Proof. Consider an honestly generated signature σ “ pZ 1, d1, e1, z10, z
1
1q for a message m. We use variables as

defined in the signing protocol.

First, we argue that the checks in BS1.U2 and BS1.U3 verifies. For the check in BS1.U2, since s1 “
δx ` s and X “ gx, Z “ hx, we have gs

1

X´δ “ gs and hs
1

Z´δ “ hs. Thus, H2ph,X,Z, gs
1

X´δ, hs
1

Z´δq “
H2ph,X,Z, gs, hsq “ δ.

For the check in BS1.U3, c “ e` d by how the signer computes e, A ¨W´e “ gz1 by how A is generated,
and lastly pRg ¨ X

d, Rh ¨ Z
dq “ pgr0`dx, hr0`dxq “ pgz0 , hz0q, where the first equality follows from Rg “

gr0 , Rh “ hr0 , X “ gx, Z “ hx and the second equality follows from z0 “ dx` r0.

Now, to argue the validity of the signature, let h1 “ Hpmq. Then, we have to argue the following to say
that the signature is valid:

1. c1 “ e1 ` d1. This follows from c “ e` d as c1 “ c` γ0 ` γ1 “ e` d` γ0 ` γ1 “ e1 ` d1.

2. gz
1
1 ¨W´e1 “ A1. This follows from z11 “ z1`α1 and e1 “ e`γ1, as gz

1
1 ¨W´e1 “ pgz1W´eq ¨ pW´γ1gα1q “

A ¨ pW´γ1gα1q “ A1.

3. gz
1
0 ¨X´d

1

“ R1g. This follows from z10 “ z0 ` α0 and d1 “ d` γ0, as

gz
1
0 ¨X´d

1

“ pgz0X´dq ¨ pX´γ0gα0q “ Rg ¨ pX
´γ0gα0q “ R1g ,

where the second equality follows from the check Rg ¨X
d “ gz0 in BS1.U3.

9



4. h1z
1
0 ¨ Z 1´e

1

“ R1h. This follows from z10 “ z0 ` α0, d
1 “ d` γ0, h

1 “ h ¨ g´β , and Z 1 “ Z ¨X´β as

h1z
1
0 ¨ Z 1´d

1

“ h1z0Z 1´d ¨ ph1α0Z 1´γ0q

“ hz0Z´d ¨ pgz0X´dq´β ¨ ph1α0Z 1´γ0q

“ Rh ¨R
´β
g ¨ ph1α0Z 1´γ0q “ R1h ,

where the second to last equality follows from the check Rh ¨ Z
d “ gz0 and Rg ¨X

d “ gz0 in BS1.U3.

By (2, 3, 4), we have

H1pm,h1, Z 1, gz
1
0X´d

1

, h1z
1
0Z 1´d

1

, gz
1
1W´e1q “ H1pm,h1, Z 1, R1g, R

1
h, A

1q

“ c1 “ e1 ` d1 ,

proving the scheme’s correctness. [\

3.2 Proof of Theorem 3.1 (Blindness of BS1)

To prove blindness, we consider the following sequence of games.
Game GA

0 : This game is the BLIND game of BS1 where A has QH2 queries access to the random oracle
H2. We also assume w.l.o.g. that A has already made any query to H2 which the user oracle has to make. In
particular, the query to H2 to verify π is done by A before A sends π.
Game GA

1 : This game made the following changes:

‚ In the oracle Initpp̃k, m̃0, m̃1q, the oracle additionally parses X Ð pk and sets sk Ð x “ loggX found
by exhaustive search.

‚ When the oracle U2pi, smsg
piq
1 q receives smsg

piq
1 from A, it parses pZi, πi “ pδi, siq, Rg,i, Rh,i, Aiq Ð

smsg
piq
1 . Then, it computes Sg,i “ gsiX´δi , Sh,i “ hsii Z

´δi
i , and checks if δi ‰ H2phi, X, Zi, Sg,i, Sh,iq. If

this check passes, the game now aborts if Zi ‰ phiq
sk where hi is the message replied by the first query

to U1pi, ¨q.

The winning probability of A only changes when the new abort occurs in either signing sessions, which
corresponds to the following event:

Zi ‰ phiq
sk ^ δi “ H2phi, X, Zi, Sg,i, Sh,iq .

The soundness of the NIZK proof implies that the event occurs with negligible probability. More precisely,
with how Sg,i, Sh,i is defined and that Z ‰ hski “ X logg h, we have pSg,iq

´ logg hi Sh,i “ h´sii hδiski hsii Z
´δi
i “

`

h´sk
i Zi

˘´δi
. Since h´sk

i Zi ‰ 1G, there is only one value of δi P Zp to satisfy such equation. Since δi is
uniformly at random after fixing the query and A makes at most QH2 queries to H2, with the union bound
over the two signing sessions

ˇ

ˇPrrGA
0 “ 1s ´ PrrGA

1 “ 1s
ˇ

ˇ ď
2QH2

p
.

For the last step, we show that the transcript and returned signatures are distributed identically for both
cases of b “ 0, 1, which implies PrrGA

1 “ 1s “ 1
2 concluding the proof.

To show this, first, assume w.l.o.g. that the randomness of A is fixed and A only outputs messages in the
transcript where neither the game nor the user oracles abort; thus, A receives valid signatures pσ0, σ1q. (If a
user oracle aborts, for each signing session, the adversary will only see hi and ci which are both blinded to
be uniformly random over G and Zp respectively.)

Let ViewA denote the set of all possible views of A in the game GA
1 . A view ∆ P ViewA is of the

form ∆ “ pW,X,m0,m1, T0, T1, σ0, σ1q where for i P t0, 1u, Ti “ phi, Zi, Rg,i, Rh,i, Ai, ci, di, ei, z0,i, z1,iq

denotes the transcript of the interaction between A and the user oracle in signing session i (omitted πi as
it is distributed independently of pm0,m1q given phi, Ziq), and σi “ pZ 1i, d

1
i, e

1
i, z

1
0,i, z

1
1,iq denotes the valid

10



signature for message mi. We need to show that the actual adversarial view, denoted as vA, is distributed
identically between b “ 0, 1. Since A’s randomness is fixed, vA only depends on the user randomness η “
pβi, α0,i, α1,i, γ0,i, γ1,iqiPt0,1u. We write vApηq to make this explicit.

Since we assume A does not make the game abort, for the signatures σbi “ pZ
1
bi
, d1bi , e

1
bi
, z10,bi , z

1
1,bi
q in any

transcript ∆ P ViewA, we have that Z 1bi “ h1bi
sk

where h1bi “ Hpmbiq. This is because of the abort introduced

in GA
1 that induces Zi “ hxi leading to Z 1bi “ ZiX

´βi “ phig
´βiqsk “ h1bi

sk
.

To show that the distribution of vA is identical between b “ 0 and b “ 1, consider a view ∆ P ViewA.
We now show that there exists a unique η such that vApηq “ ∆, regardless of whether b “ 0 or b “ 1. More
specifically, we claim that for both b “ 0 and b “ 1, vApηq “ ∆ if and only if for i P t0, 1u, η satisfies

βi “ logg hi ´ logg h
1
bi
,

α0,i “ z10,bi ´ z0,i, α1,i “ z11,bi ´ z1,i ,

γ0,i “ d1bi ´ di, γ1,i “ e1bi ´ ei .
(3)

For the “only if” direction, i.e., if vApηq “ ∆, then η satisfies Equation (3), this is true by how the user
algorithm of BS1 is defined.

To show the “if” direction, suppose η satisfies Equation (3), we show that vApηq “ ∆. Particularly, we
have to show that the user messages and signatures from oracles U1,U2 and U3 are ph0, h1q, pc0, c1q, and
pσ0, σ1q respectively.

Again, since we only consider a non-aborting transcript ∆, we have the following guarantees for i P t0, 1u:

Zi “ hski , Z
1
bi “ h1bi

sk
, (4)

ci “ di ` ei, Rg,iX
di “ gz0,i , Rh,iZ

di
i “ h

z1,i
i , AiW

ei “ gz1,i , (5)

d1bi ` e
1
bi “ H1pmbi , h

1
bi , Z

1
bi , X

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q , (6)

where Equation (4) follows from the discussion above, Equation (5) follows from the check in BS1.U3, and
Equation (6) follows from the validity of the signatures.

First, we argue that hi is the user message from U1pi, ¨q for i P t0, 1u: recall that the user oracle outputs
Hpmbiq ¨ g

βi and by the value of βi from Equation (3), Hpmbiq ¨ g
βi “ h1bi ¨ g

βi “ hi, so the first user message
is consistent with ∆. Thus, the next message from A will be Zi, Rg,i, Rh,i, Ai from the transcript ∆.

Next, we argue that the second user message from U2pi, ¨q is ci. To do this, we consider the blinded values
of Zi, Rg,i, Rh,i, Ai.

ZiX
´βi “ hski g

´βisk “ phig
´βiqsk “ h1bi

sk
“ Z 1bi , the last equality by equation (4)

R1g,i “ Rg,iX
´γ0,igα0,i “ pX´digz0,iqX´γ0,igα0,i ; By equation (5)

“ X´di´γ0,igz0,i`α0,i “ X´d
1
bi gz

1
0,bi , By equation (3)

R1h,i “ Rh,iR
´βi
g,i Z

1
bi

´γ0,ih1i
α0,i

“
`

Z´dih
z0,i
i

˘ `

X´digz0,i
˘´βi

Z 1bi
´γ0,ih1bi

α0,i ; By equation (5)

“
`

ZX´βi
˘´di `

hig
´βi

˘z0,i
Z 1bi

´γ0,ih1bi
α0,i

“ Z 1bi
´di´γ0,ih1bi

z0,i`α0,i
“ Z 1bi

´d1bih1bi
z10,bi , By equation (3)

A1i “ AW´γ1,igα1,i “ pW´eigz1,iqW´γ1,igα1,i ; By equation (5)

“W´ei´γ1,igz1,i`α1,i “W´e1bi gz
1
1,bi , By equation (3) .

Therefore, the message returned from U2pi, ¨q is

H1pmbi , h
1
bi , ZiX

´βi , R1g,i, R
1
h,i, A

1
iq ´ γ0,i ´ γ1,i

“ H1pmbi , h
1
bi , Z

1
bi , X

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q ´ γ0,i ´ γ1,i

“ d1bi ` e
1
bi ´ γ0,i ´ γ1,i “ di ` ei “ ci ,

11



which is consistent with ∆. Thus, the next message from A will be di, ei, z0,i, z1,i from the transcript ∆.
Lastly, the signatures from the oracle U3 are

pZiX
´βi , di ` γ0,i, ei ` γ1,i, z0,i ` α0,i, z1,i ` α1,iq “ pZ

1
bi , d

1
bi , e

1
bi , z

1
0,bi , z

1
1,biq “ σbi ,

which are exactly the signatures in ∆. [\

3.3 Computational Blindness of BS1 without NIZK

As mentioned before, we can remove the NIZK proof from our scheme BS1 (resulting in a scheme which we
will call BS11) and still achieve computational blindness according to the following theorem. We stress that
here we make no assumptions on the hash functions used by BS11.

Theorem 3.4 (Computational Blindness of BS11). Assume that GGen outputs the description of a group
of prime order p “ ppλq, and let BS11 “ BS11rGGens. For any adversary A for game BLIND running in time
tA “ tApλq, there exists an adversary B for game DLOG running in time tB « 2tA such that

Advblind
BS11

pA, λq ď 2

b

AdvdlogGGenpB, λq `
2

p
.

Proof. The proof for this theorem mainly follows the proof of Theorem 3.1 with the only difference being
the game GA

1 and its transition from GA
0 . We define the game GA

1 as follows:
Game GA

1 : This game made the following changes:

‚ In the oracle Initpp̃k, m̃0, m̃1q, the oracle additionally parses X Ð pk and sets sk Ð x “ loggX found
by exhaustive search.

‚ For both i P t0, 1u, in the oracle U3pi, smsg
piq
2 q after it receives smsg

piq
1 , smsg

piq
2 from A and parses

pZi, Rg,i, Rh,i, Aiq Ð smsg
piq
1 and pdi, ei, z0,i, z1,iq Ð smsg

piq
2 . Then, if the user algorithm BS11.U3 does

not abort but Zi ‰ hski where hi is the first message U1pi, ¨q replied to A, the game aborts.

Fix a signing session i P t0, 1u and let Badi be the event where the abort described occurs in signing session
i, i.e., Zi ‰ hski but the user algorithm does not abort. This gives

|PrrGA
1 “ 1s ´ PrrGA

0 “ 1s| ď PrrBad0 _ Bad1s .

Note that the event Badi only depends on the two user messages in the signing protocol, i.e., phi, ciq (since
the event occurs before the signatures are returned).

To argue the probability of event Badi occurring, we will give a reduction B rewinding the adversary A
and argue that if Badi occurs in both runs, B can extract loggW .

Before giving B, we make the following observation that hi and ci are uniformly random in G and Zp
respectively. To see this, first consider that hi “ h1ig

βi and ci “ H1pmbi , h
1
i, Z

1
i, R

1
g,i, R

1
h,i, A

1
iq´γ0,i´γ1,i where

h1i “ Hpmbiq and Z 1i, R
1
g,i, R

1
h,i, A

1
i are the blinded values of Zi, Rg,i, Rh,i, Ai respectively. We specifically note

that A1i “ Aig
α1,iW´γ1,i is uniform over G and is independent of γ1,i. This is because conditioning on a

value for γ1,i, A
1
i takes on any element in G with probability 1{p due to α1,i being uniform over Zp and

independent of γ1,i. Then, the distribution of phi, ciq can now be seen as dependent only on the signer
messages Rg,i, Ai, Rh,i, Zi, the blinding randomness βi, α0,i, γ0,i, γ1,i and A1i. Conditioning on every values
other than βi and γ1,i, we can see that hi is uniform over G as βi is uniform over Zp and ci is uniform over
Zp as γ1,i is uniform over Zp. This means that the probability of Badi stays the same even if hi and ci are
uniformly randomly sampled instead of generated by following the protocol.

Then, using the above observation, consider the following reduction B playing the DLOG game and
running A.

1. The reduction B takes as input pG, p, g,W q and runs A on input par Ð pG, p, g,W q. It also fixes the
randomness to be used in the signing session 1´ i and the first round message hi of signing session i in
advance.

12



2. The oracle Init, U1p1 ´ i, ¨q,U2p1 ´ i, ¨q, and U3p1 ´ i, ¨q are answered as in the game GA
0 . The oracle

U1pi, ¨q instead of computing the values as usual answers with hi instead. While for U2pi, ¨q, B answers
with a freshly sampled ciÐ$ Zp.

3. For the call to U3pi, smsg
piq
3 q, if the user algorithm does not abort B rewinds the adversary A to when it

queries U2pi, smsg
piq
2 q and replies with a fresh c1iÐ$ Zp. The oracles for the signing session 1´ i still use

the same randomness from the previous run.

4. After the rewinding, for the call to U3pi, smsg13
piq
q, if the user algorithm does not abort, we have

pdi, ei, z0,i, z1,iq Ð smsg
piq
3 and pd1i, e

1
i, z

1
0,i, z

1
1,iq Ð smsg13

piq
. If ei ‰ e1i, return pz1,i ´ z11,iqpei ´ e1iq

´1.
Otherwise, abort.

It is clear that the running time of B is about that of A. Then, we argue the success probability of the reduction
B by considering the event Badi. We note that the event Badi cannot be detected efficiently; however, here
we show that if such event occurs in both runs (even without B detecting Badi), the reduction B will find
loggW . More specifically, we consider the following event frk such that the event Badi occurs in both the first
and the rewound run of A in the reduction B and that the outputs of U2pi, ¨q over the two runs are different
(i.e., c1i ‰ ci). If this event occurs, then A has sent pZi, Rg,i, Rh,i, Aiq and pdi, ei, z0,i, z1,iq, pd

1
i, e

1
i, z

1
0,i, z

1
1,iq

such that

(i) Zi ‰ hxi .
(ii) di ` ei “ ci ‰ c1i “ d1i ` e

1
i.

(iii) pRg,i, Rh,iq “ pg
z0,iX´di , h

z0,i
i Z´dii q “ pgz

1
0,iX´d

1
i , h

z10,i
i Z

´d1i
i q.

(iv) Ai “ gz1,iW´ei “ gz
1
1,iW´e1i .

By considering (iii),

Z
di´d

1
i

i “ h
z0,i´z

1
0,i

i “ gpz0,i´z
1
0,iq logg hi “ Xpdi´d

1
iq logg hi “ h

skpdi´d
1
iq

i .

Then, di “ d1i follows from Zi ‰ hski . Thus, ei ‰ e1i and pz1,i ´ z
1
1,iqpei ´ e

1
iq
´1 “ loggW by (iv). This shows

that if frk occurs B wins the DLOG game, i.e., Prrfrks ď AdvdlogGGenpB, λq.
Now, we bound Prrfrks using the forking lemma (Lemma 2.1). To this end, we define a wrapper Ai over

A where Ai takes as input the instance pG, p, g,W q, the challenge ci, and a randomness ρ which is used to
derive the random tape for A, hi, and the randomness used in signing session 1 ´ i. The wrapper Ai then
simulates the user oracles as B does and returns I “ 1 when Badi occurs. Otherwise Ai returns K. This
means that the probability that I “ 1 ‰ K is PrrBadis. Also, we can see that the event frk corresponds to
the event where Ai is run twice with the same inputs except the two different ci ‰ c1i, and both runs return
I and I 1 such that I “ I 1 ‰ K. Thus by the forking lemma, we have

PrrBadis ď
a

Prrfrks `
1

p
ď

b

AdvdlogGGenpB, λq `
1

p
.

Applying the union bound over i P t0, 1u concludes the proof. [\

3.4 Proof of Theorem 3.2 (OMUF of BS1)

To prove one-more unforgeability for BS1, we consider the following sequence of games. Here, we describe
the sequence of games in text, while the pseudocode version of the games can be found in Figure 5.

Game GA
0 : The game first generates the public parameters parÐ$ BS1.Setupp1

λq and the public and secret
keys ppk, skq Ð$ BS1.KGpparq. Then, the game interacts with an adversary Appar, pkq with access to the
signing oracles S1,S2 and the random oracles H,H1,H2 which are simulated by lazy sampling. The adversary
A (w.l.o.g.) queries the signing oracle S1 for ` times and the random oracles H,H1,H2 for QH, QH1 , QH2 times
respectively. At the end of the game, A outputs `` 1 message-signature pairs pm˚k , σ

˚
k q for k P r`` 1s. The

13



Game GA
0 , GA

1 , GA
2 , GA

3 , GA
4 :

pG, p, gq Ð$ GGenp1λq

W Ð$ G // GA
0 ´GA

1

wÐ$ Zp ; W Ð gw // GA
2 ´GA

4

par Ð pG, p, g,W q
xÐ$ Zp ; X Ð gx

skÐ x ; pkÐ X
`Ð 0 ; I1, I2 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2 ppar, pkq

If D k1 ‰ k2 such that m˚k1
“ m˚k2

then return 0
If D k P r`` 1s such that

BS1.Verppar, pk,m
˚
k , σ

˚
k q “ 0

or (pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k

and Z˚k ‰ Hpm˚k q
sk) // GA

1 ´GA
5

then return 0
Return 1

Oracle Hpmq:

If Hpmq ‰ K then
return Hpmq

Hpmq Ð$ G Return Hpmq

Oracle H‹pstrq for H‹ P tH
1,H2u:

If H‹pstrq ‰ K then
return H‹pstrq

H‹pstrq Ð$ Zp
Return H‹pstrq

Oracle S1psid, hsidq:

If sid P I1 then return K
`Ð `` 1 ; I1 Ð I1 Y tsidu
Zsid Ð hxsid
z1,sid, esid, r0,sid Ð$ Zp
Rg,sid Ð gr0,sid ; Rh,sid Ð hr0,sid

Asid Ð gz1,sidW´esid // GA
0 ´GA

3

z0,sid, dsid, r1,sid Ð$ Zp
Rg,sid Ð gz0,sidX´d

Rh,sid Ð hz0,sidZ´d

Asid Ð gr1,sid // GA
4

sÐ$ Zp ; δ Ð H2ph,X,Z, gs, hsq

π Ð pδ, δ ¨ x` sq // GA
0 ´GA

2

δ, s1Ð$ Zp, π Ð pδ, s1q // GA
3 ´GA

4

If H2phsid, X, Zsid, g
s1X´δ, hssidZ

´δ
sid q ‰ K

then abort game

H2phsid, X, Zsid, g
s1X´δ, hssidZ

´δ
sid q Ð δ

Return pZsid, π, Rg,sid, Rh,sid, Asidq

Oracle S2psid, csidq :

If sid R I1 or
sid P I2 then return K

I2 Ð I2 Y tsidu

dsid Ð csid ´ esid
z0,sid Ð r0,sid ` dsid ¨ x // GA

0 ´GA
3

esid Ð csid ´ dsid
z1,sid Ð r1,sid ` esid ¨ w // GA

4

Return pdsid, esid, z0,sid, z1,sidq

Fig. 5. The OMUF “ GA
0 security game for BS1 and the subsequent games GA

1 ´GA
4 . We assume that the adversary

A makes ` queries to the signing oracle S1. We remark that H,H1,H2 are modeled as random oracles and A has access
to them. Each box type containing the game name indicates the changes made in that game and to make things
clearer, for each box, we indicate which game contains the box by a comment by the side of it. Also, we omitted the
signer state and instead use variable names with subscript sid to indicate the corresponding values in the signer state.

adversary A succeeds if for all k1 ‰ k2,m
˚
k1
‰ m˚k2 and BS1.Verppar, pk,m

˚
k , σ

˚
k q “ 1 for all k P r` ` 1s. We

additionally assume w.l.o.g. that A does not make the same random oracle query twice and it already makes
the queries to H and H1 that would be called in BS1.Ver when the game checks the forgeries. The probability
of A winning in game GA

0 is exactly its advantage in the game OMUF, i.e.,

Advomuf
BS1

pA, λq “ PrrGA
0 “ 1s .

Game GA
1 : This game is identical to GA

0 except that the game adds another winning condition for A where
for all forgeries pm˚k , σ

˚
k q for k P r` ` 1s, after parsing σ˚k “ pZ˚k , d

˚
k , e

˚
k , z

˚
k,0, z

˚
k,1q, the game requires that

Z˚k “ Hpm˚kq
sk.

To argue the advantage change, we refer to Lemma 3.5, stating that there exists an adversary B playing
DLOG game running in time tB « 2tA such that

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

.

Game GA
2 : This game is identical to GA

1 except that when generating the component W in par, the game
generates wÐ$ Zp and sets W Ð gw. Since W still has the same distribution, the success probability of A
is exactly as in GA

1 .
PrrGA

2 “ 1s “ PrrGA
1 “ 1s .

14



Game GA
3 : This game is identical to GA

2 except that the signing oracle S1 generates the proof π as
follows: it samples s1, δÐ$ Zp and programs H2ph,X,Z, gs

1

X´δ, hs
1

Z´δq as δ. If H2 is already defined at

ph,X,Z, gs
1

X´δ, hs
1

Z´δq, the game aborts.

The view of A is identical to GA
2 if the game does not abort. Moreover, the game only aborts if

ph,X,Z, gs
1

X´δ, hs
1

Z´δq has been queried or programmed beforehand, but gs
1

X´δ and hs
1

Z´δ are uniformly
random and independent of the view of A and previous programming attempts of H2 as s1 is uniformly ran-
dom and independent at the time that the oracle tries to program H2. Thus, by applying the union bound
over all pairs of queries to oracle S1 and queries to both H2 and S1 (accounting for attempts to program H2),

PrrGA
3 “ 1s ě PrrGA

2 “ 1s ´
`p``QH2q

p
.

Game GA
4 : This game is identical to GA

3 except that the signing oracles are modified to use w instead of x
to generate the signature. More specifically, A,Rg, Rh, d, e, z0, z1 are now generated as follows:

1. r1, d, z0 Ð$ Zp.
2. AÐ gr1 , pRg, Rhq Ð pgz0X´d, hz0Z´dq.

3. After receiving c, set eÐ c´ d and z1 Ð e ¨ w ` r1.

Since the joint distributions of pA,Rg, Rh, d, e, z0, z1q in the games GA
3 and GA

4 are identical, the view of A
remains the same. Thus,

PrrGA
4 “ 1s “ PrrGA

3 “ 1s .

Lastly, we give a reduction B1 playing the CT-CDH game using the adversary A as a subroutine. The
reduction B1 is defined as follows:

1. The reduction B1 takes as input a CT-CDH instance pG, p, g,Xq. It samples wÐ$ Zp and sets W Ð gw.
Lastly, it sends par “ pG, p, g,W q, pk “ X to A.

2. The simulation of H1,H2 are done as in GA
4 . However, for queries to H (labeling each with 1 ď j ď QH),

the reduction B1 queries the challenge oracle Chal and receives a random group element Yj which it
returns as the random oracle output. (This means that B1 makes QH queries to Chal.)

3. The signing oracles are also simulated as in GA
4 except for the computation of Z “ hx in S1 which is

done by querying its Dh oracle, i.e., Z Ð Dhphq.

4. After receiving the forgery pm˚k , σ
˚
k qkPr``1s from A, B1 checks if all the messages are distinct and all the

pairs are valid. If not, it aborts. Next, B1 identifies jk for k P r` ` 1s where jk is the index of the hash
query Hpm˚kq made by A. Since m˚k are distinct, there are exactly ` ` 1 distinct jk. Lastly, B1 returns
pjk, Z

˚
k qkPr``1s where Z˚k is the corresponding value in σ˚k .

It is clear that the running time of B1 is about that of A. For the success probability of the reduction,
we can see that B1 simulates the oracles identically to the game GA

4 . Then, if A wins in game GA
4 , then

A returns Z˚k “ Hpm˚kq
sk “ Y xjk for all k P r` ` 1s where x “ loggX. Thus, B1 wins the game CT-CDH,

i.e., returning ` ` 1 correct CT-CDH solutions while only querying the oracle Dh for ` times. Therefore,
PrrGA

4 “ 1s ď Advct´cdh
GGen pB1, λq. Then, by combining all the advantage changes,

Advomuf
BS1

pA, λq ď `p``QH2q

p
` p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

` Advct´cdh
GGen pB1, λq .[\

Lemma 3.5. There exists an adversary B playing DLOG game such that its running time is tB « 2tA and

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `QH1{p

˙

.

15



Proof. Let Bad be the event where GA
0 outputs 1 but GA

1 outputs 0. That is the following event: A outputs
` ` 1 message-signature pairs pm˚k , σ

˚
k q for k P r` ` 1s such that (1) for all k1 ‰ k2,m

˚
k1
‰ m˚k2 , (2) for all

k P r``1s, BS1.Verppar, pk,m
˚
k , σ

˚
k q “ 1, and (3) there exists some k P r``1s where parsing the signature σ˚k “

pZ˚k , d
˚
k , e

˚
k , z

˚
k,0, z

˚
k,1q we have that Z˚k ‰ Hpm˚kq

sk. Then, we can write PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´PrrBads.
Also, define the event Badk for k P r` ` 1s which is event Bad with the condition (3) specified only for

the k-th pair pm˚k , σ
˚
k q. This gives Bad “

Ť``1
k“1 Badk.

Now, define a deterministic wrapper Ak over the adversary A where Ak receives the following inputs:
instance pG, p, g,W q, outputs pc1, . . . , cQH1

q of H1, and a random tape ρ.

1. Extract px, psi, r0,i, ei, z1,iqiPr`s, phiqiPrQHs, pδiqiPQH2
, ρ1q from the random tape ρ where x, si, r0,i, ei, z1,i, δi P

Zp and hi P G.
2. Set parÐ pG, p, g,W q, pkÐ gx, skÐ x.
3. Run pm˚k , σ

˚
k qkPr``1s Ð AS1,S2,H,H

1,H2ppar, pk; ρ1q where each oracle is answered as follows:
‚ For the i-th query (i P r`s) to S1 use x, psi, r0,i, ei, z1,iq to answer the query as in BS1.S1. For the

query to S2 of the same session id, also use x, psi, r0,i, ei, z1,iq as in BS1.S2.
‚ For the i-th query (i P rQHs) to H, answer with hi.
‚ For the i-th query (i P rQH1s) to H1, answer with ci.
‚ For the i-th query (i P rQH2s) to H2, answer with δi. (In these queries, we w.l.o.g. accounted for the

queries that the wrapper made to generate π. Moreover, when the same queries are queried more
than once, the oracle will answer with the first value initialized.)

4. If event Badk does not occur, return pK,Kq. Otherwise, return pI, pm˚k , σ
˚
k qq where I is the index of

the query to H1 from A that corresponds to the verification of pm˚k , σ
˚
k q. More specifically, after parsing

σ˚k “ pZ
˚, d˚, e˚, z˚0 , z

˚
1 q, I is the index corresponding to the query pm,h,Z,Rg, Rh, Aq where m “ m˚k ,

h “ Hpm˚kq, Z “ Z˚, Rg “ gz
˚
0 X´d

˚

, Rh “ hz
˚
0 Z´d

˚

, A “ gz
˚
1 W´e˚ . Note that I is well-defined as we

assume that all random oracle queries in forgery verification are made by A beforehand. Also, it is easy
to see that the running time of Ak is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game defined as follows:

1. On the input pG, p, g,W q, B samples c1, . . . , cQH1
Ð$ Zp along with random coins ρ for Ak.

2. Run pI, pm,σqq Ð$ AkppG, p, g,W q, pc1, . . . , cQH1
q; ρq.

3. If I “ K, abort. If not, sample c1I , . . . , c
1
Q1H
Ð$ Zp and

run pI 1, pm1, σ1qq Ð$ AkppG, p, g,W q, pc1, . . . , cI´1, c
1
I , . . . , c

1
QH1
q; ρq.

4. If I “ I 1 and c1I ‰ cI , parse σ “ pZ, d, e, z0, z1q, σ
1 “ pZ 1, d1, e1, z10, z

1
1q, and return pz1 ´ z11qpe ´ e1q´1.

Otherwise, abort.

Since B runs Ak twice and the running time of Ak is about that of A, tB « 2tA. Then, we argue the success
probability of the reduction. More precisely, we show that if B does not abort (i.e., I “ I 1 ‰ K and cI ‰ c1I),
then it returns a discrete logarithm of W . Since I “ I 1 ‰ K, the signatures σ, σ1 are: (a) valid signatures
corresponding to the I-th query from A to H1 and (b) satisfying Z ‰ Hpmqsk “ hx and Z 1 ‰ Hpm1qsk “ h1

x
.

By (a), we know the following

(i) m “ m1,Hpmq “ h “ h1 “ Hpm1q, Z “ Z 1.
(ii) cI “ d` e, c1I “ d1 ` e1.

(iii) gz0X´d “ gz
1
0X´d

1

, hz0Z´d “ hz
1
0Z´d

1

.
(iv) A “ gz1W´e “ gz

1
1W´e1 .

We will argue that d “ d1. The equations in (iii) give the following equation

Zd´d
1

“ hz0´z
1
0 “ gpz0´z

1
0q logg h “ Xpd´d

1
q logg h “ hxpd´d

1
q .

Since Z ‰ hx, only d “ d1 satisfies the equation. Since d` e “ cI ‰ c1I “ d1 ` e1, we have e ‰ e1. Thus, the
returned value pz1 ´ z

1
1qpe´ e

1q´1 “ loggW by (iv). Hence,

AdvdlogGGenpB, λq “ PrrB does not aborts “ PrrI “ I 1 ^ I ‰ K^ cI ‰ c1I s .

16



Lastly, by the fact that B rewinds Ak which only outputs I ‰ K when Badk occurs, we can apply the forking
lemma (Lemma 2.1),

PrrBadks ď

b

QH1Adv
dlog
GGenpB, λq `

QH1

p
.

The lemma statement follows from the union bound over Badk for k P r`` 1s. [\

4 Strong Unforgeability from CT-CDH

It turns out that the scheme BS1 from the prior section is not one-more strongly unforgeable. We omit a
formal proof, but the basic idea is to consider an adversary attempting to produce ` ` 1 signatures on the
same message m by starting ` signing sessions with h “ Hpmq, fixing h and Z “ hsk in all of them. After
this, the structure of the signing protocol becomes essentially equivalent to that of the Abe-Okamoto blind
signature [AO00], which is subject to a variant of ROS attacks [BLL`21].

To obtain a strongly unforgeable scheme, we modify BS1 by adding a first move where the signer sends
the nonces Rg and A (note that these do not depend on h in BS1), and the user then sets hÐ Hpm,Rg, Aq
instead of Hpmq as in BS1. The resulting five-move scheme BS2 is described in Figure 6, and we will show
it indeed satisfies OMSUF under the CT-CDH assumption. This scheme can be seen as a blind version of
Chevallier-Mames signatures [Che05, KLP17]. It is easy to show that the scheme satisfies correctness (see
Section 4.1 for a proof).

Blindness.As with BS1, the scheme can be shown computationally blind under the DL assumption, without
any further assumption on the hash functions used by the scheme, or statistically blind by modeling H2 as a
random oracle, once again using the highlighted NIZK proof. We only state a theorem for the latter property,
and give both proofs for statistical and computational blindness in Sections 4.2 and 4.3, respectively.

Theorem 4.1 (Blindness of BS2). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS2 “ BS2rGGens. For any adversary A for game BLIND making at most QH2 “ QH2pλq
queries to H2, modeled as a random oracle, we have

Advblind
BS2

pA, λq ď 2QH2

p
.

One-more unforgeability. The next theorem establishes one-more unforgeability of BS2 in the random
oracle model under the CT-CDH assumption. We give a proof sketch below, whereas the full proof can be
found in Section 4.4.

Theorem 4.2 (OMUF of BS2). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS2 “ BS2rGGens. For any adversary A for game OMSUF with running time tA “ tApλq,
making at most ` “ `pλq queries to S1, QH‹ “ QH‹pλq queries to H‹ P tH,H

1,H2u, modeled as random
oracles, there exist adversaries B,B2 for game DLOG, and B1,B3 for game CT-CDH, such that

Advomsuf
BS2

pA, λq ď `p``QH2q

p
` p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

` AdvdlogGGenpB2, λq ` Advct´cdh
GGen pB3, λq ` Advct´cdh

GGen pB1, λq .

Furthermore, B and B2 run in time tB « 2tA and tB2 « tA respectively, whereas B1 runs in time tB1 « tA,
makes QH queries to Chal, and ` queries to Dh, and, lastly, B3 runs in time tB3

« tA, makes and ` ` 1
queries to Chal, and ` queries to Dh.

The proof below builds on top of the approach for proving OMUF of BS1. Specifically, we show that after
starting ` signing sessions, no adversary can forge ``1 valid message-signature pairs tpmi, pZi, di, ei, z0,i, z1,iqqu

with distinct pmi, Rg,i, Aiq, where Rg,i “ gz0,ipk´di and Ai “ gz1,iW´ei . To see this implies that BS2 is OM-
SUF, we only need to show that no adversary can output two distinct pairs pmi, pZi, di, ei, z0,i, z1,iqq and

17



Algorithm BS2.Setupp1
λ
q :

pG, p, gq Ð$ GGenp1λq ; W Ð$ G
Select H : t0, 1u˚ Ñ G
Select H1,H2 : t0, 1u˚ Ñ Zp
Return par “ pG, p, g,W,H,H1,H2q
Algorithm BS2.KGpparq :

pG, p, g,W,H,H1,H2q Ð par
xÐ$ Zp ; X Ð gx ; skÐ x ; pkÐ X
Return psk, pkq

Algorithm BS2.S1ppar, skq :

xÐ sk ; pG, p, g,W,H,H1,H2q Ð par
z1, e, r0 Ð$ Zp
Rg Ð gr0 ; AÐ gz1W´e

sts1 Ð px,X, z1, e, r0q ; smsg1 Ð pRg, Aq
Return psts1, smsg1q

Algorithm BS2.S2pst
s
1, umsg1q :

px, z1, e, r0q Ð sts1 ; hÐ umsg1
Z Ð hx ; Rh Ð hr0

sÐ$ Zp ; δ Ð H2ph, gx, Z, gs, hsq

π Ð pδ, δ ¨ x` sq

sts2 Ð px, z1, e, r0q ; smsg2 Ð pZ, π , Rhq
Return psts2, smsg1q

Algorithm BS2.S3pst
s
2, umsg2q :

px, z1, e, r0q Ð sts2
dÐ c´ e ; z0 Ð r0 ` d ¨ x
Return smsg2 Ð pd, e, z0, z1q

Algorithm BS2.Verppar, pk,m, σq :

pG, p, g,W q Ð par ; pZ, d, e, z0, z1q Ð σ

X Ð pk ; AÐ gz1W´e ; Rg Ð gz0X´d

hÐ Hpm,Rg, Aq ; Rh Ð hz0Z´d

If e` d ‰ H1pm,h, Z,Rg, Rh, Aq then
return 0

Return 1

Algorithm BS2.U1ppar, pk,m, smsg1q :

X Ð pk ; pG, p, g,W,H,H1,H2q Ð par
pRg, Aq Ð smsg1
α0, α1, γ0, γ1 Ð$ Zp
R1g Ð RgX

´γ0gα0 ; A1 Ð AW´γ1gα1

h1 Ð Hpm,R1g, A
1
q

βÐ$ Zp ; hÐ h1gβ

stu1 Ð pm,β, α0, α1, γ0, γ1, X, h
1, h,W,Rg, R

1
g, A,A

1
q

umsg1 Ð h
Return pstu1 , umsg1q

Algorithm BS2.U2pst
u
1 , smsg2q :

pm,β, α0, α1, γ0, γ1, X, h
1, h,W,Rg, R

1
g, A,A

1
q Ð stu1

pZ, π , Rhq Ð smsg2; pδ, s1q Ð π

If δ ‰ H2ph,X,Z, gs
1
X´δ, hs

1
Z´δq then

return K

Z1 Ð ZX´β

R1h Ð RhR
´β
g Z1´γ0h1α0

c1 Ð H1pm,h1, Z1, R1g, R
1
h, A

1
q

cÐ c1 ´ γ0 ´ γ1
stu2 Ð pc, Z, Z1, Rh, st

u
1 q ; umsg2 Ð c

Return pstu2 , umsg2q

Algorithm BS2.U3pst
u
2 , smsg2q :

pc, Z, Z1, Rh, st
u
1 q Ð stu2

stu1 Ð pm,β, α0, α1, γ0, γ1, X, h
1, h,W,Rg, R

1
g, A,A

1
q

pd, e, z0, z1q Ð smsg2
If c ‰ e` d or
pRgX

d, RhZ
d
q ‰ pgz0 , hz0 q or

AW e
‰ gz1 then return K

d1 Ð d` γ0 ; e1 Ð e` γ1
z10 Ð z0 ` α0 ; z11 Ð z1 ` α1

Return σ Ð pZ1, d1, e1, z10, z
1
1q

Fig. 6. The blind signature scheme BS2 “ BS2rGGens. The highlighted boxes denote the NIZK proof to show the
equality of discrete log to the bases pg, hq of pX,Zq. We also give a protocol-style description of BS2 in Figure 17.

pmj , pZj , dj , ej , z0,j , z1,jqq with pmi, Rg,i, Aiq “ pmj , Rg,j , Ajq. Suppose such an adversary exists. Then, there
are three cases: (1) Zi ‰ Zj , (2) pdi, z0,iq ‰ pdj , z0,jq, and (3) pei, z1,iq ‰ pej , z1,jq. If Zi ‰ Zj , one of Zi
and Zj is not equal to Hpmi, Rg,i, Aiq

sk and thus, we can follow the same argument as BS1 to extract the

discrete logarithm of W . If pdi, ziq ‰ pdj , zjq, since gzipk´di “ Rg,i “ Rg,j “ gzjpk´dj , we can extract sk. If
pei, tiq ‰ pej , tjq, since gtiW´ei “ Ai “ Aj “ gtjW´ej , we can extract loggW . Therefore, such an adversary
contradicts the discrete logarithm assumption.

Although we do not show this, we note that our scheme BS2 satisfies a slightly stronger notion of one-
more unforgeability where the adversary cannot output ``1 forgeries with only ` queries access to the oracle
S2 no matter how many S1 queries it made (instead of ` queries access to S1 as we have stated above). This
is immediate from the reduction to the CT-CDH assumption as the reduction only has to query its own Dh
oracle when the adversary queries S2.

4.1 Correctness of BS2

Theorem 4.3. BS2 satisfies correctness.

Proof. Consider an honestly generated signature σ “ pZ 1, d1, e1, z10, z
1
1q for a message m and the variables as

defined in the signing protocol.
First, we argue that the checks in BS2.U2 and BS2.U3 verifies. For the check in BS2.U2, since s1 “

δx ` s and X “ gx, Z “ hx, we have gs
1

X´δ “ gs and hs
1

Z´δ “ hs. Thus, H2ph,X,Z, gs
1

X´δ, hs
1

Z´δq “
H2ph,X,Z, gs, hsq “ δ.

18



For the check in BS2.U3, c “ e` d by how the signer computes e, A ¨W´e “ gz1 by how A is generated,
and lastly pRg ¨ X

d, Rh ¨ Z
dq “ pgr0`dx, hr0`dxq “ pgz0 , hz0q, where the first equality follows from Rg “

gr0 , Rh “ hr0 , X “ gx, Z “ hx and the second equality follows from z0 “ dx` r0.
Now, to argue the validity of the signature, let h1 “ Hpm,R1g, A

1q where R1g “ RgX
´γ0gα0 , A1 “

AW´γ1gα1 . Then, we have to argue the following to say that the signature is valid:

1. c1 “ e1 ` d1. This follows from c “ e` d as c1 “ c` γ0 ` γ1 “ e` d` γ0 ` γ1 “ e1 ` d1.
2. gz

1
1 ¨W´e1 “ A1. This follows from z11 “ z1`α1 and e1 “ e`γ1, as gz

1
1 ¨W´e1 “ pgz1W´eq ¨ pW´γ1gα1q “

A ¨ pW´γ1gα1q “ A1.
3. gz

1
0 ¨X´d

1

“ R1g. This follows from z10 “ z0 ` α0 and d1 “ d` γ0, as

gz
1
0 ¨X´d

1

“ pgz0X´dq ¨ pX´γ0gα0q “ Rg ¨ pX
´γ0gα0q “ R1g ,

where the second equality follows from the check Rg ¨X
d “ gz0 in BS2.U3.

4. h1z
1
0 ¨ Z 1´e

1

“ R1h. This follows from z10 “ z0 ` α0, d
1 “ d` γ0, h

1 “ h ¨ g´β , and Z 1 “ Z ¨X´β

h1z
1
0 ¨ Z 1´d

1

“ h1z0Z 1´d ¨ ph1α0Z 1´γ0q

“ hz0Z´d ¨ pgz0X´dq´β ¨ ph1α0Z 1´γ0q

“ Rh ¨R
´β
g ¨ ph1α0Z 1´γ0q “ R1h ,

where the second to last equality follows from the check Rh ¨ Z
d “ gz0 and Rg ¨X

d “ gz0 in BS2.U3.

By the points above, we have Hpm, gz
1
0X´d

1

, gz
1
1W´e1q “ Hpm,R1g, A

1q “ h1

H1pm,h1, Z 1, gz
1
0X´d

1

, h1z
1
0Z 1´d

1

, gz
1
1W´e1q “ H1pm,h1, Z 1, R1g, R

1
h, A

1q

“ c1 “ e1 ` d1 ,

proving the scheme’s correctness. [\

4.2 Proof of Theorem 4.1

To prove blindness, we consider the following sequence of games.
Game GA

0 : This game is the BLIND game of BS2 where A has QH2 queries access to the random oracle H2.
We also assume w.l.o.g. that any query to H2 which the user oracle has to make has already been made by
A. In particular, the query to H2 to verify π is done by A before A sends π.
Game GA

1 : This game made the following changes:

‚ In the oracle Initpp̃k, m̃0, m̃1q, the oracle additionally parses X Ð pk and sets sk Ð x “ loggX found
by exhaustive search.

‚ When the oracle U2pi, smsg
piq
2 q receives smsg

piq
2 from A, it parses pZi, πi “ pδi, siq, Rh,iq Ð smsg

piq
2 . Then,

it computes Sg,i “ gsiX´δi , Sh,i “ hsii Z
´δi
i , and checks if δi ‰ H2phi, X, Zi, Sg,i, Sh,iq. If this check

passes, the game now aborts if Zi ‰ phiq
sk where hi is the message replied by the first query to U1pi, ¨q.

The winning probability of A only changes when the new abort occurs in either signing sessions which
corresponds to the following event:

Zi ‰ phiq
sk ^ δi “ H2phi, X, Zi, Sg,i, Sh,iq.

The soundness of the NIZK proof implies that the event occurs with negligible probability. More precisely,
with how Sg,i, Sh,i is defined and that Zi ‰ hski “ X logg hi , we have pSg,iq

´ logg hi Sh,i “ h´sii hδiski hsii Z
´δi
i “

`

h´sk
i Zi

˘´δi
. Since h´sk

i Zi ‰ 1G, there is only one value of δi P Zp to satisfy such equation. Since δi is

19



uniformly at random after fixing the query and A makes at most QH2 queries to H2, with the union bound
over the two signing sessions

ˇ

ˇPrrGA
0 “ 1s ´ PrrGA

1 “ 1s
ˇ

ˇ ď
2QH2

p
.

Lastly, we show that the transcript and returned signatures are distributed identically for both cases of
b “ 0, 1, which implies PrrGA

1 “ 1s “ 1
2 .

To show this, first, assume without loss of generality that we fix the randomness of A and that A
only outputs messages in the transcript where neither the game nor the user oracles abort which means
A receives valid signatures pσ0, σ1q. (Note that if the user oracle aborts at some point, for each signing
session, the adversary will only see hi and ci which are both blinded and uniformly random over G and Zp
respectively.)

Let ViewA denote the set of all possible views of A that can occur in the game GA
1 . A view ∆ P

ViewA is of the form ∆ “ pW,X,m0,m1, T0, T1, σ0, σ1q where for i P t0, 1u, Ti denotes the transcript of
the interaction between A and the user oracle in signing session i, and σi denotes the valid signature for
message mi. In particular, Ti “ phi, Zi, Rg,i, Rh,i, Ai, ci, di, ei, z0,i, z1,iq (note that we omitted πi as it is
distributed independently of pm0,m1q given phi, Ziq), and σi “ pZ

1
i, d

1
i, e

1
i, z

1
0,i, z

1
1,iq. We need to show that

the distribution of the actual adversarial view, which we denote as vA, is the same between b “ 0 and b “ 1.
Since we fix the randomness of A, vA only depends on the randomness of the user algorithm which we denote
η “ pβi, α0,i, α1,i, γ0,i, γ1,iqiPt0,1u and write vApηq to make this explicit.

Since we assume A does not make the game abort, for the signatures σbi “ pZ
1
bi
, d1bi , e

1
bi
, z10,bi , z

1
1,bi
q in

any transcript ∆ P ViewA, we have Z 1bi “ h1bi
sk

where h1bi “ Hpmbi , X
´d1bi gz

1
0,bi ,W´e1bi gz

1
1,bi q. This is because

of the abort introduced in GA
1 that induces Zi “ hxi leading to Z 1bi “ ZiX

´βi “ phig
´βiqsk “ h1bi

sk
.

To show that the distribution of vA is identical between b “ 0 and b “ 1, consider a view ∆ P ViewA.
We now show that there exists a unique η such that vApηq “ ∆, regardless of whether b “ 0 or b “ 1. More
specifically, we claim that for both b “ 0 and b “ 1, vApηq “ ∆ if and only if for i P t0, 1u, η satisfies

βi “ logg hi ´ logg h
1
bi

α0,i “ z10,bi ´ z0,i, α1,i “ z11,bi ´ z1,i

γ0,i “ d1bi ´ di, γ1,i “ e1bi ´ ei .
(7)

For the “only if” direction, i.e., if vApηq “ ∆, then η satisfies Equation (7), this is true by how the user
algorithm of BS2 is defined.

To show the “if” direction, suppose η satisfies Equation (7), we need to show that vApηq “ ∆. Partic-
ularly, we have to show that the user messages from oracles U1,U2 and the signatures from oracle U3 are
ph0, h1q, pc0, c1q, and pσ0, σ1q respectively.

Again, since we only consider non-aborting transcript ∆, we have the following guarantees for i P t0, 1u:

Zi “ hski , Z
1
bi “ h1bi

sk
, (8)

ci “ di ` ei, Rg,iX
di “ gz0,i , Rh,iZ

di
i “ h

z1,i
i , AiW

ei “ gz1,i (9)

d1bi ` e
1
bi “ H1pmbi , h

1
bi , Z

1
bi , X

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q , (10)

where Equation (8) follows from the discussion above, Equation (9) follows from the check in BS2.U3, and
Equation (10) follows from the validity of the signatures.

20



First, we argue that hi is the user message from U1pi, ¨q for i P t0, 1u. Since we assume the randomness
of A is fixed, A’s first message will be consistent with Rg,i, Ai. Consider the blinded values of Rg,i, Ai

R1g,i “ Rg,iX
´γ0,igα0,i

“ pX´digz0,iqX´γ0,igα0,i ; By equation (9)

“ X´di´γ0,igz0,i`α0,i “ X´d
1
bi gz

1
0,bi , By equation (7)

A1i “ AW´γ1,igα1,i

“ pW´eigz1,iqW´γ1,igα1,i ; By equation (9)

“W´ei´γ1,igz1,i`α1,i “W´e1bi gz
1
1,bi , By equation (7)

Then, by the value of βi from Equation (7), the first user message is

Hpmbi , R
1
g,i, A

1
iq ¨ g

βi “ Hpmbi , X
´d1bi gz

1
0,bi ,W´e1bi gz

1
1,bi q ¨ gβi

“ h1bi ¨ g
βi “ hi ,

which is consistent with ∆. Thus, the next message from A will be Zi, Rh,i from the transcript ∆.
Next, we argue that the second user message from U2pi, ¨q will be ci. To do this, we consider the blinded

values of Zi, Rh,i (the blinded values of Rg,i and Ai is already argued above).

ZiX
´βi “ hski g

´βisk “ phig
´βiqsk “ h1bi

sk
“ Z 1bi , Last equality by equation (8)

R1h,i “ Rh,iR
´βi
g,i Z

1
bi

´γ0,ih1i
α0,i

“
`

Z´dih
z0,i
i

˘ `

X´digz0,i
˘´βi

Z 1bi
´γ0,ih1bi

α0,i ; By equation (9)

“
`

ZX´βi
˘´di `

hig
´βi

˘z0,i
Z 1bi

´γ0,ih1bi
α0,i

“ Z 1bi
´di´γ0,ih1bi

z0,i`α0,i
“ Z 1bi

´d1bih1bi
z10,bi , By equation (7)

Therefore, the message returned from U2pi, ¨q is

H1pmbi , h
1
bi , ZiX

´βi , R1g,i, R
1
h,i, A

1
iq ´ γ0,i ´ γ1,i

“ H1pmbi , h
1
bi , Z

1
bi , X

´d1bi gz
1
0,bi , Z 1bi

´d1bih1bi
z10,bi ,W´e1bi gz

1
1,bi q ´ γ0,i ´ γ1,i

“ d1bi ` e
1
bi ´ γ0,i ´ γ1,i “ di ` ei “ ci ,

so the second user message is consistent with ∆. Thus, the next message from A will be di, ei, z0,i, z1,i from
the transcript ∆. Lastly, the final signatures output by the oracle U3 are

pZiX
´βi , di ` γ0,i, ei ` γ1,i, z0,i ` α0,i, z1,i ` α1,iq “ pZ

1
bi , d

1
bi , e

1
bi , z

1
0,bi , z

1
1,biq “ σbi ,

which are exactly the signatures in ∆. [\

4.3 Computational Blindness of BS2 without NIZK

As mentioned before, we can remove the NIZK proof from our scheme BS2 (resulting in a scheme which we
will call BS12) and still achieve computational blindness according to the following theorem. We stress that
here we make no assumptions on the hash functions used by BS12.

Theorem 4.4 (Computational Blindness of BS12). Assume that GGen outputs the description of a
group of prime order p “ ppλq, and let BS12 “ BS12rGGens. For any adversary A for BLIND running in time
tA “ tApλq, there exists an adversary B for DLOG with tB « 2tA such that

Advblind
BS12

pA, λq ď 2

b

AdvdlogGGenpB, λq `
2

p
.

21



Proof. The proof for this theorem mainly follows the proof for Theorem 4.1 with the only difference being
the game GA

1 and its transition from GA
0 . We define the game GA

1 as follows:
Game GA

1 : This game made the following changes:

‚ In the oracle Initpp̃k, m̃0, m̃1q, the oracle additionally parses X Ð pk and sets sk Ð x “ loggX found
by exhaustive search.

‚ For both i P t0, 1u, in the oracle U3pi, smsg
piq
3 q after it receives smsg

piq
1 , smsg

piq
2 , smsg

piq
3 from A and parses

pRg,i, Aiq Ð smsg
piq
1 , pZi, Rh,iq Ð smsg

piq
2 and pdi, ei, z0,i, z1,iq Ð smsg

piq
3 . Then, if the user algorithm

BS12.U3 does not abort but Zi ‰ hski where hi is the message U1pi, ¨q replied to A, the game aborts.

Fix a signing session i P t0, 1u and let Badi be the event where the abort described occurs in signing session
i, i.e., Zi ‰ hski but the user algorithm does not abort. This gives

|PrrGA
1 “ 1s ´ PrrGA

0 “ 1s| ď PrrBad0 _ Bad1s .

Note that the event Badi only depends on the two user messages in the signing protocol, i.e., phi, ciq (since
the event occurs before the signatures are returned).

To argue the probability of event Badi occurring, we will give a reduction B rewinding the adversary A
and argue that if Badi occurs in both runs, B can extract loggW .

Before giving B, we make the following observation that hi and ci are uniformly random in G and Zp
respectively. To see this, first consider that hi “ h1ig

βi and ci “ H1pmbi , h
1
i, Z

1
i, R

1
g,i, R

1
h,i, A

1
iq ´ γ0,i ´ γ1,i

where h1i “ Hpmbi , R
1
g,i, A

1
iq and Z 1i, R

1
g,i, R

1
h,i, A

1
i are the blinded values of Zi, Rg,i, Rh,i, Ai respectively. We

specifically note that A1i “ Aig
α1,iW´γ1,i is uniform over G and is independent of γ1,i. This is because

conditioning on a value for γ1,i, A
1
i takes on any element in G with probability 1{p due to α1,i being uniform

over Zp and independent of γ1,i. Then, the distribution of phi, ciq can now be seen as dependent only on the
signer messages Rg,i, Ai, Rh,i, Zi, the blinding randomness βi, α0,i, γ0,i, γ1,i and A1i. Conditioning on every
values other than βi and γ1,i, we can see that hi is uniform over G as βi is uniform over Zp and ci is uniform
over Zp as γ1,i is uniform over Zp. This means that the probability of Badi stays the same even if hi and ci
are uniformly randomly sampled instead of generated by following the protocol.

Then, using the above observation, consider the following reduction B playing the DLOG game and
running A.

1. The reduction B takes as input pG, p, g,W q and runs A on input par Ð pG, p, g,W q. It also fixes the
randomness to be used in the signing session 1´ i and the first round message hi of signing session i in
advance.

2. The oracle Init, U1p1 ´ i, ¨q,U2p1 ´ i, ¨q, and U3p1 ´ i, ¨q are answered as in the game GA
0 . The oracle

U1pi, ¨q instead of computing the values as usual answers with hi instead. While for U2pi, ¨q, B answers
with a freshly sampled ciÐ$ Zp.

3. For the call to U3pi, smsg
piq
3 q, if the user algorithm does not abort B rewinds the adversary A to when it

queries U2pi, smsg
piq
2 q and replies with a fresh c1iÐ$ Zp. The oracles for the signing session 1´ i still use

the same randomness from the previous run.

4. For the call (after the rewinding) to U3pi, smsg13
piq
q, if the user algorithm does not abort, we have

pdi, ei, z0,i, z1,iq Ð smsg
piq
3 and pd1i, e

1
i, z

1
0,i, z

1
1,iq Ð smsg13

piq
. If ei ‰ e1i, return pz1,i ´ z11,iqpei ´ e1iq

´1.
Otherwise, abort.

It is clear that the running time of B is about that of A. Then, we argue the success probability of the reduction
B by considering the event Badi. We note that the event Badi cannot be detected efficiently; however, here
we show that if such event occurs in both runs (even without B detecting Badi), the reduction B will find
loggW . More specifically, we consider the following event frk such that the event Badi occurs in both the first
and the rewound run of A in the reduction B and that the outputs of U2pi, ¨q over the two runs are different
(i.e., c1i ‰ ci). If this event occurs, then A has sent pZi, Rg,i, Rh,i, Aiq and pdi, ei, z0,i, z1,iq, pd

1
i, e

1
i, z

1
0,i, z

1
1,iq

such that

22



(i) Zi ‰ hxi .
(ii) di ` ei “ ci ‰ c1i “ d1i ` e

1
i.

(iii) pRg,i, Rh,iq “ pg
z0,iX´di , h

z0,i
i Z´dii q “ pgz

1
0,iX´d

1
i , h

z10,i
i Z

´d1i
i q

(iv) Ai “ gz1,iW´ei “ gz
1
1,iW´e1i

By considering (iii),

Z
di´d

1
i

i “ h
z0,i´z

1
0,i

i “ gpz0,i´z
1
0,iq logg hi “ Xpdi´d

1
iq logg hi “ h

skpdi´d
1
iq

i

Then, di “ d1i follows from Zi ‰ hxi . Thus, ei ‰ e1i and pz1,i ´ z11,iqpei ´ e1iq
´1 “ loggW by (iv). This shows

that if frk occurs, B wins the DLOG game, i.e., Prrfrks ď AdvdlogGGenpB, λq.
Now, we bound Prrfrks using the forking lemma (Lemma 2.1). To this end, we define a wrapper Ai over

A where Ai takes as input the instance pG, p, g,W q, the challenge ci, and a randomness ρ which is used to
derive the random tape for A, hi, and the randomness used in signing session 1 ´ i. The wrapper Ai then
simulates the signing oracles as B does and returns I “ 1 when Badi occurs. Otherwise Ai returns K. This
means that the probability that I “ 1 ‰ K is PrrBadis. Also, we can see that the event frk corresponds to
the event where Ai is run twice with the same inputs except the two different ci ‰ c1i, and both runs return
I and I 1 such that I “ I 1 ‰ K. Thus by the forking lemma, we have

PrrBadis ď
a

Prrfrks `
1

p
ď

b

AdvdlogGGenpB, λq `
1

p
.

Applying the union bound over i P t0, 1u concludes the proof. [\

4.4 Proof of Theorem 4.2

To prove one-more strong unforgeability for BS2, we consider the following sequence of games (pseudocode
description of the games can be found in Figure 7).
Game GA

0 : The game first generates the public parameters parÐ$ BS2.Setupp1
λq and the public and secret

keys ppk, skq Ð$ BS2.KGpparq. Then, the game interacts with an adversary Appar, pkq with access to the signing
oracles S1,S2,S3 and the random oracles H,H1,H2 which are simulated by lazy sampling. The adversary A
(w.l.o.g.) queries the signing oracle S1 for ` times and the random oracle H,H1,H2 for QH, QH1 , QH2 times
respectively. At the end of the game, A outputs `` 1 message-signature pairs pm˚k , σ

˚
k q for k P r`` 1s. The

adversary A succeeds if for all k1 ‰ k2, pm
˚
k1
, σ˚k1q ‰ pm˚k2 , σ

˚
k2
q and BS2.Verppar, pk,m

˚
k , σ

˚
k q “ 1 for all

k P r`` 1s. We additionally assume w.l.o.g. that A does not make the same random oracle query twice and
already makes the queries to H and H1 that would otherwise be called in BS2.Ver when the game checks the
forgeries. The probability of A winning in game GA

0 is exactly its advantage in game OMSUF, i.e.,

Advomsuf
BS2

pA, λq “ PrrGA
0 “ 1s .

Game GA
1 : This game is identical to GA

0 except that it adds a new winning condition for A where for all

k P r`` 1s, parsing the signature σ˚k “ pZ
˚
k , d

˚
k , e

˚
k , z

˚
k,0, z

˚
k,1q and letting R˚g,k “ gz

˚
k,0X´d

˚
k , A˚k “ gz

˚
1,kW´e˚k ,

the game requires that Z˚k “ Hpm˚k , R
˚
g,k, A

˚
kq

sk.
By Lemma 4.5, there exists an adversary B playing the game DLOG running in time tB « 2tA such that

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

.

Game GA
2 : This game is identical to GA

1 except that the signing oracle S2 generates the proof π by
programming the random oracle H2, i.e., it samples s1, δÐ$ Zp and programs H2 at ph,X,Z, gs

1

X´δ, hs
1

Z´δq

as δ. H2 is already defined at ph,X,Z, gs
1

X´δ, hs
1

Z´δq, the game aborts.
The view of A is identical to GA

1 if the game does not abort. Moreover, the game only aborts if
ph,X,Z, gs

1

X´δ, hs
1

Z´δq has been queried beforehand, but gs
1

X´δ and hs
1

Z´δ are uniformly random and

23



Game GA
0 ,GA

1 ,GA
2 ,GA

3 ,GA
4 ,GA

5 :

pG, p, gq Ð$ GGenp1λq

W Ð$ G // GA
0 ´GA

3

wÐ$ Zp ; W Ð gw // GA
4 ´GA

5

par Ð pG, p, g,W q
xÐ$ Zp ; X Ð gx

skÐ x ; pkÐ X
`Ð 0 ; I1, I2, I3 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2,S3 ppar, pkq

For k P r`` 1s: // parsing

pZ˚k , d
˚
k , e

˚
k , z

˚
0,k, z

˚
1,kq Ð σ˚k

R˚g,k Ð g
z˚
0,kX´d

˚
k

A˚ Ð g
z˚
1,kW´e˚

k // GA
1 ´GA

5

If D k1 ‰ k2, pm˚k1
, σ˚k1

q “ pm˚k2
, σ˚k2

q

or pm˚k1
, R˚g,k1

, A˚k1
q “ pm˚k2

, R˚g,k2
, A˚k2

q

// GA
3 ´GA

5
then return 0

If D k P r`` 1s such that

BS2.Verppar, pk,m
˚
k , σ

˚
k q “ 0

or Z˚k ‰ Hpm˚k , R
˚
g,k, A

˚
k q

sk // GA
1 ´GA

5

then return 0
Return 1

Oracle Hpm,Rg, Aq:

If Hpm,Rg, Aq ‰ K then
return Hpm,Rg, Aq

Hpm,Rg, Aq Ð$ G
Return Hpm,Rg, Aq

Oracle H‹pstrq for H‹ P tH
1,H2u:

If H‹pstrq ‰ K then return H‹pstrq
H‹pstrq Ð$ Zp
Return H‹pstrq

Oracle S1psidq:

If sid P I1 then return K
`Ð `` 1 ; I1 Ð I1 Y tsidu

z1,sid, esid, r0,sid Ð$ Zp
Rg,sid Ð gr0,sid

Asid Ð gz1,sidW´esid // GA
0 ´GA

4

z0,sid, dsid, r1,sid Ð$ Zp
Rg,sid Ð gz0,sidX´dsid

Asid Ð gr1,sid // GA
5

Return pRg,sid, Asidq

Oracle S2psid, hsidq :

If sid R I1 or sid P I2 then return K
I2 Ð I2 Y tsidu; Zsid Ð hxsid

Rh,sid Ð h
r0,sid
sid // GA

0 ´GA
4

Rh,sid Ð h
z0,sid
sid Z

´dsid
sid // GA

5

sÐ$ Zp ; δ Ð H2phsid, X, Zsid, g
s, hssidq

π Ð pδ, δ ¨ x` sq // GA
0 ´GA

1

δ, s1Ð$ Zp, π Ð pδ, s1q // GA
2 ´GA

5

If H2phsid, X, Zsid, g
s1X´δ, hssidZ

´δ
sid q ‰ K

then abort game

H2phsid, X, Zsid, g
s1X´δ, hssidZ

´δ
sid q Ð δ

Return pZsid, π, Rh,sidq

Oracle S3psid, csidq :

If sid R I1, I2 or sid P I3 then return K
I3 Ð I3 Y tsidu

dsid Ð csid ´ esid
z0,sid Ð r0,sid ` dsid ¨ x // GA

0 ´GA
4

esid Ð csid ´ dsid
z1,sid Ð r1,sid ` esid ¨ w // GA

5

Return pdsid, esid, z0,sid, z1,sidq

Fig. 7. The OMSUF “ GA
0 security game for BS2 and the subsequent games GA

1 ´GA
5 . We assume that the adversary

A makes ` queries to the signing oracle S1. We remark that H,H1,H2 are modeled as random oracles and A has access
to them. Each box type containing the game name indicates the changes made in that game and to make things
clearer, for each box, we indicate which game contains the box by a comment by the side of it. Also, we omitted the
signer state and instead use variable names with subscript sid to indicate the corresponding values in the signer state.

independent of the view of A and previous programming attempts of H2 as s1 is uniformly random and in-
dependent at the time that the oracle tries to program H2. Thus, by applying the union bound over possible
collision events, i.e., all pairs of queries to oracle S2 and queries to both H2 and S2 (accounting for attempts
to program H2).

PrrGA
2 “ 1s ě PrrGA

1 “ 1s ´
`p``QH2q

p
.

Game GA
3 : This game is identical to GA

2 except that for A to succeed, the game additionally requires that
each random oracle call to H corresponding to the verification of pm˚k , σ

˚
k q for k P r``1s are all distinct. More

specifically, this means that after parsing σ˚k “ pZ
˚
k , d

˚
k , e

˚
k , z

˚
k,0, z

˚
k,1q and setting R˚g,k “ gz

˚
k,0X´d

˚
k , A˚k “

gz
˚
1,kW´e˚k for all k P r`` 1s, for any k1 ‰ k2,

pm˚k1 , R
˚
g,k1

, A˚k1q ‰ pm
˚
k2
, R˚g,k2 , A

˚
k2
q .

24



The change in success probability of A corresponds to the event where A outputs ``1 distinct valid message-
signature pairs, but there exists k1 ‰ k2 such that pm˚k1 , R

˚
g,k1

, A˚k1q “ pm˚k2 , R
˚
g,k2

, A˚k2q. Consider all the
cases where this occurs:

1. Case E1: pd˚k1 , e
˚
k1
q “ pd˚k2 , e

˚
k2
q. Consider that R˚g,k1 “ R˚g,k2 and A˚k1 “ A˚k2 . By how R˚g,k and A˚k are

defined and that pd˚k1 , e
˚
k1
q “ pd˚k2 , e

˚
k2
q, we can infer that z˚0,k1 “ z˚0,k2 and z˚1,k1 “ z˚1,k2 . Moreover, since

pm˚k1 , σ
˚
k1
q ‰ pm˚k2 , σ

˚
k2
q and m˚k1 “ m˚k2 , we have Z˚k1 ‰ Z˚k2 . However, by the change in GA

1 ,

Z˚k1 “ Hpm˚k1 , R
˚
g,k1

, A˚k1q
sk “ Hpm˚k2 , R

˚
g,k2

, A˚k2q
sk “ Z˚k2 .

Thus, this event cannot occur.

2. Case E2: e˚k1 ‰ e˚k2 . As a result of A˚k1 “ A˚k2 , we can extract the discrete logarithm of W as pz˚1,k2 ´

z˚1,k1qpe
˚
k2
´ e˚k1q

´1. Then, we can bound the probability of event E2, by a direct reduction B2 receiving

inputs pG, p, g,W q, simulating the game GA
2 against A and returning pz˚1,k2 ´ z˚1,k1qpe

˚
k2
´ e˚k1q

´1 when

E2 occurs. Thus, the probability of E2 occurring is bounded by AdvdlogGGenpB2, λq. We can also see that the
running time of B2 is about that of A.

3. Case E3: d˚k1 ‰ d˚k2 . With the same argument and R˚g,k1 “ R˚g,k2 , this allows us to extract the discrete
logarithm of X. However, the reduction here would need to answer hx to the adversary without knowing
x. To achieve this, we give the following reduction B3 to CT-CDH assumption instead.

‚ At the beginning, B3 receives the CT-CDH instance pG, p, g,Xq. It then generates W Ð gw where
wÐ$ Zp. Moreover, B3 queries Chal for ` ` 1 challenges Y1, . . . , Y``1. The random oracles are
simulated with lazy sampling as in GA

3 .

‚ For each S1 query, B3 samples z0, d, r1 Ð$ Zp and returns Rg Ð gz0X´d, AÐ gr1 to A.

‚ For each S2 query, B3 forwards its query h to its own Dh oracle instead of using the secret key to
receive Z “ hx, and simulates the protocol on by setting Rh Ð hz0Z´d. It then returns Z,Rh.

‚ For each S3 query, B3 returns d, eÐ c´ d, z0, z1 Ð e ¨ w ` r1. (Note here that the simulation of the
oracle S1,S2,S3 does not require the reduction to know x)

‚ At the end when E3 occurs, B3 extracts the dlog of X as x “ pz˚0,k2 ´ z
˚
0,k1
qpd˚k2 ´d

˚
k1
q´1 and returns

the CT-CDH solutions as Y x1 , . . . , Y
x
``1.

Since the distribution of pA,Rg, Rh, d, e, z0, z1q in this reduction is still identical to signing with sk, the
probability of E3 occurring in the game simulated by B3 is exactly the same as in GA

3 . With X “ gx, B3

wins the CT-CDH game if E3 occurs. Thus, the probability of event E3 is bounded by Advct´cdh
GGen pB3, λq.

We can also see that the running time of B3 is about that of A.

Hence combining the probability of each case,

PrrGA
3 “ 1s ě PrrGA

2 “ 1s ´ AdvdlogGGenpB2, λq ´ Advct´cdh
GGen pB3, λq .

Game GA
4 : This game is identical to GA

3 except that when generating the component W in par, the game
generates the discrete logarithm wÐ$ Zp and set W Ð gw.

Since the game runs the oracles in the same way and W still has the same distribution, A’s success
probability is exactly the same as in GA

1 .

PrrGA
4 “ 1s “ PrrGA

3 “ 1s .

Game GA
5 : This game is identical to GA

4 except that the signing oracles are modified to use w instead of x
in the signing protocol. More specifically, A,Rg, Rh, d, e, z0, z1 are now generated as follows:

1. r1, d, z0 Ð$ Zp.
2. AÐ gr1 , pRg, Rhq Ð pgz0X´d, hz0Z´dq.

3. After receiving c, set eÐ c´ d and z1 Ð ew ` r1.

25



Since the joint distributions of pA,Rg, Rh, d, e, z0, z1q in game GA
4 and game GA

5 are identical, the view of
A remains the same. Thus,

PrrGA
5 “ 1s “ PrrGA

4 “ 1s .

Lastly, we give a reduction B1 playing the CT-CDH game using the adversary A as a subroutine. B1 is
defined as follows:

1. The reduction B1 takes as input a CT-CDH instance pG, p, g,Xq. It samples wÐ$ Zp and sets W Ð gw.
Lastly, it sends par “ pG, p, g,W q, pk “ X to A.

2. The simulations of random oracles H1,H2 are done as in GA
5 . However, for queries to H (labeling each

with 1 ď j ď QH), the reduction B1 queries the challenge oracle Chal and receives a random group
element Yj which it returns as the random oracle output. (This means that B1 makes QH queries to
Chal.)

3. The signing oracles are also simulated as in GA
5 except for the computation of Z “ hx in S1 as the

reduction does not know x, Z is computed by B querying its Dh oracle, i.e., Z Ð Dhphq.
4. At last after receiving the forgery pm˚k , σ

˚
k qkPr``1s from A, B1 parses σ˚k “ pZ˚k , e

˚
k , d

˚
k , z

˚
k,0, z

˚
k,1q, sets

R˚g,k “ gz
˚
k,0X´d

˚
k , A˚k “ gz

˚
1,kW´e˚k , and checks if pm˚k , σ

˚
k q and pm˚k , R

˚
g,k, A

˚
kq are distinct for all k P

r`` 1s and that all the message-signature pairs are valid. If not, it aborts.
Next, B1 identifies jk for k P r` ` 1s such that jk is the index of the hash query Hpm˚k , R

˚
g,k, A

˚
kq made

by A. Since pm˚k , R
˚
g,k, A

˚
kq are distinct for all k, jk are all distinct, meaning there is exactly `` 1 such

indices. Lastly, B1 returns the CT-CDH solutions pjk, Z
˚
k qkPr``1s.

It is clear that the running time of B1 is about that of A. For the success probability of the reduction, we
can see that B1 simulates the oracles identical to the game GA

5 . Let x be the discrete log of X base g. If A
wins in game GA

5 , then A returns Z˚k “ Hpm˚k , R
˚
g,k, A

˚
kq

sk “ Y xjk for all k P r` ` 1s. Thus, B1 returns ` ` 1

correct CT-CDH solutions while only querying the oracle Dh for ` times. Hence, if A wins in game GA
5 , B1

wins in game CT-CDH. Thus,
PrrGA

5 “ 1s ď Advct´cdh
GGen pB1, λq .

By combining all the advantage changes,

Advomsuf
BS2

pA, λq ď `p``QH2q

p
` p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

` AdvdlogGGenpB2, λq ` Advct´cdh
GGen pB3, λq ` Advct´cdh

GGen pB1, λq .

[\

Lemma 4.5. There exists an adversary B playing DLOG game such that its running time is tB « 2tA and

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

.

Proof. Let event Bad be the event where GA
0 outputs 1 but GA

1 outputs 0 which corresponds to the fol-
lowing event: A outputs ` ` 1 message-signature pairs pm˚k , σ

˚
k q for k P r` ` 1s which we parse σ˚k “

pZ˚k , d
˚
k , e

˚
k , z

˚
k,0, z

˚
k,1q and set R˚g,k “ gz

˚
k,0X´d

˚
k , A˚k “ gz

˚
1,kW´e˚k ; then, (1) for all k1 ‰ k2, pm

˚
k1
, σ˚k1q ‰

pm˚k2 , σ
˚
k2
q, (2) for all k P r` ` 1s, BS2.Verppar, pk,m

˚
k , σ

˚
k q “ 1, and (3) there exists some k P r` ` 1s where

Z˚k ‰ Hpm˚k , R
˚
g,k, A

˚
kq

sk. Then, we can write

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´ PrrBads .

Also, define the event Badk for k P r`` 1s which is event Bad with the condition (3) modified to be for only

the k-th pair pm˚k , σ
˚
k q where we have Z˚k ‰ Hpm˚k , R

˚
g,k, A

˚
kq

sk. This gives Bad “
Ť``1
k“1 Badk.

Now, define a deterministic wrapper Ak over the adversary A where Ak receives the following inputs:
instance pG, p, g,W q, outputs pc1, . . . , cQH1

q of H1, and a random tape ρ. Ak is defined as follows:

26



1. Extract px, pr0,i, ei, z1,i, siqiPr`s, phiqiPrQHs, pδiqiPQH2
, ρ1q from the random tape ρ where x, r0,i, ei, z1,i, si, δi P

Zp and hi P G.
2. Set parÐ pG, p, g,W q, pkÐ gx, skÐ x.
3. Run pm˚k , σ

˚
k qkPr``1s Ð AS1,S2,H,H

1,H2ppar, pk; ρ1q where each oracle is answered as follows:
‚ For the i-th query (i P r`s) to S1 use x, pr0,i, ei, z1,i, siq to answer the query as in BS2.S1. For the query

to S2 and S3 of the same session id, also use x, pr0,i, ei, z1,i, siq as in BS2.S2 and BS2.S3 respectively.
‚ For the i-th query (i P rQHs) to H, answer with hi.
‚ For the i-th query (i P rQH1s) to H1, answer with ci.
‚ For the i-th query (i P rQH2s) to H2, answer with δi. (In these queries, we w.l.o.g. accounted for the

queries that the wrapper made to generate π. Moreover, when the same queries are queried more
than once, the oracle will answer with the first value initialized.)

4. If event Badk does not occur, return pK,Kq. Otherwise, return pI, pm˚k , σ
˚
k qq where I is the index of

the query to H1 from A that corresponds to the verification of pm˚k , σ
˚
k q. More specifically, after parsing

pZ˚, d˚, e˚, z˚0 , z
˚
1 q from σ˚k , I is the index that corresponds to the query pm,h,Z,Rg, Rh, Aq where

m “ m˚k , Rg “ gz
˚
0 X´d

˚

, A “ gz
˚
1 W´e˚ ,

h “ Hpm˚k , Rg, Aq, Z “ Z˚, Rh “ hz
˚
0 Z´d

˚

.

Note that I is well-defined as we assume that all random oracle queries in forgery verification are made
by A beforehand. Also, it is easy to see that the running time of Ak is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game defined as follows:

1. On the input pG, p, g,W q, B samples c1, . . . , cQH1
Ð$ Zp along with random coins ρ for Ak.

2. Run pI, pm,σqq Ð$ AkppG, p, g,W q, pc1, . . . , cQH1
q; ρq.

3. If I “ K, abort. If not, sample c1I , . . . , c
1
Q1H
Ð$ Zp and

run pI 1, pm1, σ1qq Ð$ AkppG, p, g,W q, pc1, . . . , c1I , . . . , c1QH1
q; ρq.

4. If I “ I 1 and c1I ‰ cI , parse σ “ pZ, d, e, z0, z1q, σ
1 “ pZ 1, d1, e1, z10, z

1
1q, and return pz1 ´ z11qpe ´ e1q´1.

Otherwise, abort.

Since B runs Ak twice and the running time of Ak is about that of A, tB « 2tA. Then, we argue the
correctness of the reduction, i.e., we show that if B does not abort (i.e., I “ I 1 ‰ K and cI ‰ c1I), then it
returns a discrete logarithm of W . Since I “ I 1 ‰ K, the signatures σ, σ1 are: (a) valid signatures which
correspond to the I-th query from A to H1 and (b) satisfying Z ‰ Hpm,Rg, Aq

sk and Z 1 ‰ Hpm1, R1g, A
1qsk

with Rg “ gz0X´d, A “ gz1W´e and R1g “ gz
1
0X´d

1

, A1 “ gz
1
1W´e1 . By (a), we know the following

(i) m “ m1,Hpm,Rg, Aq “ h “ h1 “ Hpm1, R1g, A
1q, Z “ Z 1.

(ii) cI “ d` e, c1I “ d1 ` e1.
(iii) gz0X´d “ gz

1
0X´d

1

, hz0Z´d “ hz
1
0Z´d

1

.
(iv) A “ gz1W´e “ gz

1
1W´e1 .

We will argue that d “ d1. The equations in (iii) gives the following equations

gz0´z
1
0 “ Xd´d1 and hz0´z

1
0 “ Zd´d

1

Zd´d
1

“ Xpd´d
1
q loggphq “ hxpd´d

1
q .

Since Z ‰ Hpm,Rg, Aq
sk “ hx, only d “ d1 satisfies the equation. Since d ` e “ cI ‰ c1I “ d1 ` e1, we have

e ‰ e1. Thus, the returned value pz1 ´ z11qpe ´ e1q´1 is well defined and from (iv), this value is the discrete
log of W . Hence,

AdvdlogGGenpB, λq “ PrrB does not aborts “ PrrI “ I 1 ^ I ‰ K^ cI ‰ c1I s .

Lastly, by the fact that B rewinds Ak which only outputs I ‰ K when Badk occurs, we can apply the forking
lemma (Lemma 2.1),

PrrBadks ď

b

QH1Adv
dlog
GGenpB, λq `

QH1

p
.

The lemma statement follows from the union bound over Badk for k P r`` 1s. [\

27



Π.ProveHΠ ppg, phi, pkiqiPrKs, S̄q, pskiqiPrKsq :

r1, . . . , rK Ð$ Zp
For i P rKs: Ri Ð gri

R̄Ð
śK
i“1 h

ri
i

cÐ HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q
For i P rKs : si Ð ri ` c ¨ ski
Return π Ð pc, psiqiPrKsq

Π.VerHΠ ppg, phi, pkiqiPrKs, S̄q, πq :

pc, psiqiPrKsq Ð π

For i P rKs: Ri Ð gsipk´ci
R̄Ð S̄´c

śK
i“1 h

si
i

If c ‰ HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q
then return 0

Return 1

Fig. 8. Description of the proof system Π

5 Four-Move Blind Signatures from CDH

We present a four-move blind signature scheme BS3, described across Figures 9 and 10. Our starting point is
Rai-Choo [HLW23], a two-move blind signature scheme which is OMUF secure based on the CDH assumption
in a pairing group. To better abstract our ideas, we consider a pairing-free analogue of their scheme, which we
call BSR (formally described in Figure 13), producing signatures of the form pppki, ϕiqiPrKs, S̄q with inefficient

verification checking pk “
śK
i“1 pki and S̄ “

śK
i“1 HpHµpm,ϕiqq

logg pki . Then, to make the scheme efficiently
verifiable, we add a witness-indistinguishable OR proof showing that the signature is a valid BSR signature,
or that we know the discrete logarithm of a public parameter W . It is easy to show that the scheme satisfies
correctness, but for completeness, we prove this in Section 5.2.

We remark that the complexity of scheme depends on two parameters N,K of which N´K needs to
be negligible for the OMUF proof; for simplicity, we can set N “ 2 and K “ λ to achieve the mentioned
signature size and communication in Table 1. Also, any trade-offs in the choice of N and K (e.g. as discussed
in [HLW23]) also apply to our scheme.

Blindness.To preserve blindness, we have to ensure that the signer cannot reply to the user’s first message

p ~J, ppri,jqj‰ ~Ji , comi, ~Ji
, hi, ~JiqiPrKsq with pppkiqiPrKs, S̄q such that S̄ ‰

śK
i“1 h

logg pki

i, ~Ji
. Otherwise, a malicious

signer can link the signatures back to the signing sessions by checking whether one of the signatures contains
the values pppk1i, ϕiqiPrKs, S̄

1q with S̄1 ‰
śK
i“1 HpHµpm,ϕiqq

logg pk1i . To avoid this, we include a proof π in the
first signer response attesting that pppkiqiPrKs, S̄q is honestly generated. For this, we use the NIZK proof

system Π “ pΠ.ProveHΠ , Π.VerHΠ q, described in Figure 8, with access to hash function HΠ : t0, 1u˚ Ñ
Zp which we model as a random oracle in the security proofs. We require that Π satisfies completeness,
soundness, and zero-knowledge in the random oracle model. The formal definitions and proofs are given
to Section 5.1.

Similar to BS1 and BS2, one could also not include Π in the protocol, and show computational blindness
under the DL assumption. However, this proof would still depend on the random oracle model since the
original blindness proof of Rai-Choo also required random oracles. Thus, we only consider the variant with
Π included, and prove the following theorem in Section 5.3.

Theorem 5.1 (Blindness of BS3). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS3 “ BS3rGGens and K “ Kpλq, N “ Npλq be positive integer inputs to BS3.Setup. For
any adversary A playing the game BLIND making at most QH‹ “ QH‹pλq queries to H‹ P tHΠ ,Hµ,Hβ ,Hcomu,
modeled as random oracles, we have

Advblind
BS3

pA, λq ď 2QHΠ

p
`

2KNQHµ

2λ
`

2KQHβ

2λ
`

2KQHcom

2λ
.

One-more unforgeability. The following theorem shows one-more unforgeability of BS3. The proof is
given below in Section 5.4.

Theorem 5.2 (OMUF of BS3). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BS3 “ BS3rGGens and K “ Kpλq, N “ Npλq be positive integer inputs to BS3.Setup. For
any adversary A for game OMUF with running time tA “ tApλq, making at most ` “ `pλq queries to S1, and

28



Algorithm BS3.U1ppar, pk,mq :

pG, p, g,W,K,N,Hµ,Hβ ,Hcom,H,H
1,Hcc,HΠq Ð par

For pi, jq P rKs ˆ rNs:

ϕi,j Ð$ t0, 1uλ ; µi,j Ð Hµpm,ϕi,jq

εi,j Ð$ t0, 1uλ ; βi,j Ð Hβpεi,jq
ri,j Ð pµi,j , εi,jq ; comi,j Ð Hcompri,jq

h1i,j Ð Hpµi,jq ; hi,j Ð h1i,jg
βi,j

comÐ pcomi,jqiPrKs,jPrNs
hÐ phi,jqiPrKs,jPrNs
~J Ð Hccpcom, hq

umsg1 Ð p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq

stu1 Ð pm, pk,W,
phi, ~Ji

, h1
i, ~Ji

, βi, ~Ji
, ϕi, ~Ji

qiPrKsq

Return pstu1 , umsg1q

Algorithm BS3.U2pst
u
1 , smsg1q :

pm, pk,W, phi, ~Ji
, h1
i, ~Ji

, βi, ~Ji
, ϕi, ~Ji

qiPrKsq Ð stu1

pppkiqiPrK´1s, S̄, ~R, R̄, A, πq Ð smsg1
pkK Ð pk

ś

iPrKs pk
´1
i

If Π.VerHΠ ppg, phi, ~Ji
, pkiqiPrKs, S̄q, πq “ 0

then return K

pppk1iqiPrKs, S̄
1, ~τq Ð$

ReRapppki, h
1

i, ~Ji
qiPrKs, S̄

śK
i“1 pk

´β
i, ~Ji

i q

α1, γ0, γ1 Ð$ Zp, ~α0 Ð$ ZKp
Let ~R1 P GK
For i P rKs : ~R1i Ð

~Ripk
1
i
´γ0g~α0,i

R̄1 Ð R̄S̄1´γ0
śK
i“1

~R
´β
i, ~Ji

i h1
i, ~Ji

~α0,i

A1 Ð AW´γ1gα1

c1 Ð H1pm, ph1
i, ~Ji

, pk1iqiPrKs, S̄
1, ~R1, R̄1, A1q

cÐ c1 ´ γ0 ´ γ1
stu2 Ð pc, ~α0, α1, γ0, γ1, ~τ

ppki, pk
1
iqiPrKs, S̄, S̄

1, ~R, R̄, A, stu1 q
umsg2 Ð c
Return pstu2 , umsg2q

Algorithm BS3.U3pst
u
2 , smsg2q :

pc, ~α0, α1, γ0, γ1, ~τ, ppki, pk
1
iqiPrKs,

S̄, S̄1, ~R, R̄, A, stu1 q Ð stu2
pm, pk,W, phi, ~Ji

, h1
i, ~Ji

, βi, ~Ji
, ϕi, ~Ji

qiPrKsq Ð stu1

pd, e, ~z0, z1q Ð smsg2
If c ‰ e` d or
Di P rKs, ~Ripk

d
i ‰ g~z0,i or

R̄S̄d ‰
śK
i“1 h

~z0,i

i, ~Ji
or

AW e
‰ gz1 then return K

d1 Ð d` γ0 ; e1 Ð e` γ1
~z10 Ð ~z0 ` ~α0 ` d ¨ ~τ ; z11 Ð z1 ` α1

σ Ð pppk1i, ϕi, ~Ji
qiPrKs, S̄1, d

1, e1, ~z10, z
1
1q

Return σ

Algorithm BS3.S1ppar, sk, umsg1q :

pG, p, g,W,K,N,Hµ,Hβ ,Hcom,H,H
1,Hcc,HΠq Ð par

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð umsg1

If Checkpumsg1q “ 0 then return K
For i P rK ´ 1s : skiÐ$ Zp
skK Ð sk´

řK´1
i“1 ski

For i P rKs : pki Ð gski

S̄ Ð
śK
i“1 h

ski
i, ~Ji

z1, eÐ$ Zp, ~r0 Ð$ ZKp
AÐ gz1W´e ; ~RÐ pg~r0,1 , . . . , g~r0,K q

R̄Ð
śK
i“1 h

~r0,i

i, ~Ji

πÐ$Π.ProveHΠ ppg, phi, ~Ji
, pkiqiPrKs, S̄q, pskiqiPrKsq

smsg1 Ð pppkiqiPrK´1s, S̄, ~R, R̄, A, πq
sts Ð ppskiqiPrKs, ~r0, e, z1q
Return psts, smsg1q

Algorithm BS3.S2pst
s, umsg2q :

ppskiqiPrKs, ~r0, e, z1q Ð sts

cÐ umsg1 ; d “ c´ e
For i P rKs: ~z0,i “ d ¨ ski ` ~r0,i
Return smsg2 Ð pd, e, ~z0, z1q

Fig. 9. The signing protocol of the blind signature scheme BS3 “ BS3rGGens with the algorithms
BS3.Setup,BS3.KG,BS3.Ver,Check and ReRa defined in Figure 10 and the proof system Π (in highlighted boxes)
defined in Figure 8. Also, we give a protocol-style description of BS3 in Figure 18.

QH‹ “ QH‹pλq queries to H‹ P tH,H
1,HΠ ,Hµ,Hcom,Hccu, modeled as random oracles, there exist adversaries

B and B1 for games DLOG and CDH, respectively, such that

Advomuf
BS3

pA, λq ď p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

`
`p``QHΠ q

p

`
`

NK
`
Q2

Hcom
`Q2

Hµ
`QHcomQHcc `QHQHµ

2λ
` 4` ¨ Advcdh

GGenpB1, λq .

Furthermore, B runs in time tB « 2tA and B1 runs in time tB1 « tA.

The best way to visualize our proof below is that it follows a similar blueprint to the earlier OMUF
proofs, but where in lieu of reducing to CT-CDH, we reduce to the OMUF of the pairing-free Rai-Choo
scheme BSR with inefficient verification. To do so, we look at the produced ``1 signatures, and see whether
the ppki, ϕiqiPrKs and S̄ portion satisfies S̄ “

śK
i“1 HpHµpm,ϕiqq

logg pki in all of them. If this does not occur,
we can rewind A to extract loggW . If this does occur, then we reduce a one-more forgery for BS3 to one for
BSR.

29



Algorithm BS3.Setupp1
λ, K,Nq :

pG, p, gq Ð$ GGenp1λq ; W Ð$ G
Select Hµ,Hcom : t0, 1u˚ Ñ t0, 1uλ

Select H : t0, 1u˚ Ñ G
Select Hβ ,H

1,HΠ : t0, 1u˚ Ñ Zp
Select Hcc : t0, 1u˚ Ñ rNsK

par Ð pG, p, g,W,K,N,
Hµ,Hβ ,Hcom,H,H

1,Hcc,HΠq
Return par

Algorithm Checkpopenq:

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð open

For i P rKs and j P rKszt ~Jiu:
comi,j Ð Hcompri,jq
pµi,j , εi,jq Ð ri,j ; βi,j Ð Hβpεi,jq

hi,j Ð Hpµi,jqg
βi,j

comÐ pcomi,jqpi,jqPrKsˆrNs
hÐ phi,jqpi,jqPrKsˆrNs

If ~J ‰ Hccpcom, hq then return 0.
Return 1

Algorithm BS3.KGpparq :

pG, p, g,W,K,N,Hµ,Hβ ,Hcom,H,H
1,Hcc,HΠq Ð par

xÐ$ Zp ; X Ð gx ; skÐ x ; pkÐ X
Return psk, pkq

Algorithm BS3.Verppar, pk,m, σq :

pG, p, g,W,K,N,Hµ,Hβ ,Hcom,H,H
1,Hcc,HΠq Ð par

pppki, ϕiqiPrKs, S̄, d, e, ~z0, z1q Ð σ
For i P rKs :

hi Ð HpHµpm,ϕiqq ; ~Ri Ð g~z0,ipk´di

R̄Ð S̄´d
śK
i“1 h

~z0,i
i ; AÐ W´egz1

If pk ‰
ś

iPrKs pki or

d` e ‰ H1pm, phi, pkiqiPrKs, S̄,
~R, R̄, Aq

then return 0
Return 1

Algorithm ReRapppki, hiqiPrKs, Sq:

τ1, . . . , τK´1 Ð$ Zp; τK Ð ´
řK´1
i“1 τK

For i P rKs: pk1i Ð pkig
τi

S1 Ð S
śK
i“1 h

τi
i

Return pppkiqiPrKs, S
1, pτiqiPrKsq

Fig. 10. Description for algorithms BS3.Setup,BS3.KG,BS3.Ver,Check and ReRa

5.1 Security Properties of Proof System Π

The lemma below establishes the security properties for the proof system Π (defined in Figure 8) with the
hash function HΠ : t0, 1u˚ Ñ Zp modeled as a random oracle.

Lemma 5.3. Let G be a group of prime order p “ ppλq with generator g and K “ Kpλq be a positive integer.
Denote LG,K as the following language:

LG,K :“

#

pg, phi, pkiqiPrKs, S̄q : S̄ “
K
ź

i“1

h
logg pki
i

+

.

The proof system Π (defined in Figure 8) satisfies the following properties with regard to LG,K where the
corresponding security games are defined in Figure 11:

‚ Completeness: For any st “ pg, phi, pkiqiPrKs, S̄q P LG,K and ski “ logg pki for i P rKs,

PrrΠ.VerHΠ pst, πq “ 1|πÐ$Π.ProveHΠ pst, pskiqiPrKsqs “ 1 .

‚ Soundness: For any adversary A playing the game Sound and making QHΠ “ QHΠ pλq queries to HΠ ,

PrrSoundA
Πpλq “ 1s ď

QHΠ

p
.

‚ Zero-Knowledge: There exists a simulator Sim, which can program the random oracle HΠ , such that
for any statement st P LG,K and any adversary A playing the game ZK and making QHΠ “ QHΠ pλq
query to the random oracle HΠ and QChal “ QChalpλq to Chal, we have

|PrrZKA
Π,0pλq “ 1s ´ PrrZKA

Π,1pλq “ 1s| ď
QChalpQChal `QHΠ q

p
.

Proof (of Lemma 5.3). We consider each of the listed properties.

‚ Completeness. Completeness follows by inspection.

30



Game SoundA
Πpλq

pG, p, gq Ð$ GGenp1λq

pg, phi, pkiqiPrKs, S̄, πq Ð$ AHΠ pG, p, gq
If Π.Verppg, phi, pkiqiPrKs, S̄q, πq “ 1

and pg, phi, pkiqiPrKs, S̄q R LG,K
then return 1

Return 0

Oracle HΠpstrq :

If HΠpstrq ‰ K then return HΠpstrq
HΠpstrq Ð$ Zp
Return HΠpstrq

Game ZKA
Π,bpλq

pG, p, gq Ð$ GGenp1λq

b1Ð$ AChal,HΠ pG, p, gq
Return b1

Oracle Chalpg, phi, pkiqiPrKs, S̄, pskiqiPrKsq :

If Di P rKs, pki ‰ gski or S̄ ‰
śK
i“1 h

ski
i

then return K
π0 Ð$Π.ProveHΠ ppg, phi, pkiqiPrKs, S̄q, pskiqiPrKsq

π1 Ð$ Simpg, phi, pkiqiPrKs, S̄q
Return πb

Algorithm Simpg, phi, pkiqiPrKs, S̄q :

c, s1, . . . , sK Ð$ Zp
For i P rKs: Ri Ð gsipk´ci
R̄Ð S̄´c

śK
i“1 h

si
i

If HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q ‰ K
then return K

Program HΠpg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q Ð c
Return π Ð pc, psiqiPrKsq

Fig. 11. The security games SoundA
Π and ZKA

Π,b for the proof system Π.

‚ Soundness. Let A be an adversary playing the soundness game which outputs a statement pg, phi, pkiqiPrKs, S̄q R
LG,K and a proof π “ pc, psiqiPrKsq where si P Zp for i P rKs. Since the statement is not in the language,

S̄ ‰
śK
i“1 h

logg pki
i . Also, because π is a valid proof for pg, phi, pkiqiPrKs, S̄q,

c “ HΠ

˜

g, phi, pkiqiPrKs, S̄, pg
sipk´ci qiPrKs, S̄

´c
K
ź

i“1

hsii

¸

.

Here, w.l.o.g., assume that A already made this query as it is done when checking the validity of π

anyways. Then, consider any query pg, phi, pkiqiPrKs, S̄, pRiqiPrKs, R̄q to HΠ where S̄ ‰
śK
i“1 h

logg pki
i . We

will show that there is exactly one c P Zp which allows the existence of ps1, . . . , sKq P ZKp such that

pkciRi “ gsi for i P rKs, and S̄cR̄ “
K
ź

i“1

hsii .

We consider such c, which gives us the above equations. Then, by raising pkciRi “ gsi to logg hi, we have

h
c logg pki
i R

logg hi
i “ hsii for all i P rKs. Thus, we have that

śK
i“1 h

c logg pki
i R

logg hi
i “

śK
i“1 h

si
i “ S̄cR̄,

implying R̄
śK
i“1R

´ logg hi
i “

´

śK
i“1 h

logg pki
i S̄´1

¯c

. Since
śK
i“1 h

logg pki
i S̄´1 ‰ 1G, there exists only one

c satisfying this property. Then, for any query to HΠ involving a statement not in the language, the
probability of getting c which allows the adversary to give a valid proof is at most 1{p. Hence, since A
makes QHΠ queries to HΠ ,

PrrSoundA
Πpλq “ 1s ď

QHΠ

p
.

‚ Zero-knowledge. Consider the simulator Sim as described in Figure 11 which programs the random
oracle HΠ . First, we can see that if the simulator Sim does not abort, then the adversary’s view is exactly
the same as when the proofs are generated honestly. Then, to see the abort probability, the simulator
aborts if it tries to program the oracle at a point which was queried or programmed before. Since the
simulator programs at tuple which includes R1 “ gs1pk´c1 for s1 Ð$ Zp which is uniformly random over
G, the probability that a tuple including R1 has been initialized on HΠ before is at most pQHΠ`QChalq{p
(counting the random oracle queries and the programming attempts). Thus, bounding this over QChal

31



queries to Chal,

|PrrZKA
Π,0pλq “ 1s ´ PrrZKA

Π,1pλq “ 1s| ď
QChalpQChal `QHΠ q

p
.

[\

5.2 Correctness of BS3

Theorem 5.4. BS3 satisfies correctness.

Proof. To show correctness, we show that the signing protocol does not abort and that the final signature
is valid via the verification algorithm BS3.Ver. Hence, we consider each step in the signing protocol and the
signature verification as follows:

‚ The first user algorithm BS3.U1: For i P rKs, j P rN s, we have the following values defined

´ µi,j “ Hµpm,ϕi,jq

´ βi,j “ Hβpεi,jq

´ ri,j “ pµi,j , εi,jq and comi,j “ Hcompri,jq

´ h1i,j “ Hpµi,jq, hi,j “ h1i,jg
βi,j

Also, ~J “ Hccpcom, hq where com “ pcomi,jqi,j , h “ phi,jqi,j .

‚ The first signer algorithm BS3.S1: The algorithm runs Check, retracing the same computation in BS3.U1

for i P rKs and j P rKszt ~Jiu, and getting the same com and h which pass the check ~J “ Hccpcom, hq.

Then, the signer first message consists of pppkiqiPrK´1s, S̄, ~R, R̄, A, πq each defined as follows:

´ pki “ gski for i P rKs and skK “ sk´
řK´1
i“1 ski.

´ S̄ “
śK
i“1 h

ski
i, ~Ji

´ ~R “ pg~r0,1 , . . . , g~r0,K q, R̄ “
śK
i“1 h

~r0,i

i, ~Ji

´ A “ gz1W´e

´ πÐ$Π.ProveHΠ ppg, phi, ~Ji , pkiqiPrKs, S̄q, pskiqiPrKsq

‚ The second user algorithm BS3.U2: The algorithm checks that the Π.VerHΠ on π returns 1 which is
always true by the completeness of Π. Then, the blinded values of pki, S̄, Ri, R̄, A are as follows:

´ By the definition of ReRa,

pk1i “ pkig
τi for i P rKs,

K
ź

i“1

pk1i “ pk and S̄1 “ S̄
K
ź

i“1

pk
´βi, ~Ji
i h1

i, ~Ji

τi

´ ~R1i “
~Ripk

1
i
´γ0g~α0,i for i P rKs and R̄1 “ R̄S̄1

´γ0 śK
i“1

~R
´βi, ~Ji
i h1

i, ~Ji

~α0,i

´ A1 “ AW´γ1gα1

‚ The third user algorithm BS3.U3: On the signer message pd, e, ~z0, z1q, the following checks pass:

´ c “ d` e because e is defined as c´ d by the second signer algorithm.

´ For all i P rKs, ~Ripk
d
i “ g~r0,i`d¨ski “ g~z0,i . Also, R̄S̄d “

śK
i“1 h

~r0,i`d¨ski

i, ~Ji
“
śK
i“1 h

~z0,i

i, ~Ji
.

´ AW e “W´egz1W e “ gz1 .

‚ Signature verification: The final signature is σ “ pppk1i, ϕi, ~JiqiPrKs, S̄
1, d1, e1, ~z10, z

1
1q, and following from

the checks in the third user algorithm, we have

´ d1 ` e1 “ d` e` γ0 ` γ1 “ c` γ0 ` γ1 “ c1.

32



´ For i P rKs, g~z
1
0,ipk1i

´d1

“ g~z0,i`~α0,i`d¨~τippkig
τiq´dpk1i

´γ0
“ ~Rig

~α0,ipk1i
´γ0

“ ~R1i. Also,

S̄1
´d1

K
ź

i“1

h1
i, ~Ji

~z10,i “ pS̄
K
ź

i“1

pk
´βi, ~Ji
i h1

i, ~Ji

τi
q´dS̄1

´γ0
K
ź

i“1

h1
i, ~Ji

~z0,i`~α0,i`d¨~τi

“ S̄´d
K
ź

i“1

pk
dβi, ~Ji
i h1

i, ~Ji

~z0,i S̄1
´γ0

K
ź

i“1

h1
i, ~Ji

~α0,i

“ S̄´d
K
ź

i“1

pk
dβi, ~Ji
i phi, ~Jig

´βi, ~Ji q~z0,i S̄1
´γ0

K
ź

i“1

h1
i, ~Ji

~α0,i

“ S̄´d
K
ź

i“1

h
~z0,i

i, ~Ji
ppk´di g~z0,iq

´βi, ~Ji S̄1
´γ0

K
ź

i“1

h1
i, ~Ji

~α0,i

“ R̄S̄1
´γ0

K
ź

i“1

~R
´βi, ~Ji
i h1

i, ~Ji

~α0,i
“ R̄1

´ gz
1
1W´e1 “ gz1`α1W´e´γ1 “ Agα1W´γ1 “ A1

Thus, the verification algorithm returns 1, because
śK
i“1 pk

1
i “ pk and

d1 ` e1 “ c1 “ H1pm, ph1
i, ~Ji

, pk1iqiPrKs, S̄
1, ~R1, R̄1, A1q

“ H1pm, ph1
i, ~Ji

, pk1iqiPrKs, S̄
1, pg~z

1
0,ipk1i

´d1

qiPrKs, S̄1
´d1

K
ź

i“1

h1
i, ~Ji

~z10,i , gz
1
1W´e1q .

[\

5.3 Proof of Theorem 5.1

To show blindness of BS3, we consider the following sequence of games.
Game GA

0 : This game is identical to the game BLIND of BS3 where A makes at most QH‹ queries to the
random oracles H‹ P tHΠ , Hµ, Hβ , Hcomu. For k P t0, 1u, we denote the superscript p¨qpkq as the corresponding
value in the user oracles Ujpk, ¨q, j “ 1, 2, 3. (The superscript notation is chosen for readability of the proof
as the scheme BS3 contains many values with subscripts.)

GameGA
1 : This game adds an abort in the oracle U2pk, ¨q such that on the signer message pppk

pkq
i qiPrK´1s, S̄

pkq,

~Rpkq, R̄pkq, Apkq, πpkqq, the oracle computes pk
pkq
K Ð pk ¨

śK´1
i“1 pk

pkq
i

´1
and the game aborts if the proof

πpkq verifies, but S̄pkq ‰
śK
i“1ph

pkq

i, ~J
pkq
i

qlogg pk
pkq
i . Notice that the view of A only changes when the abort

occurs, i.e., the event where A queries U2pk, ¨q for k P t0, 1u with a valid proof πpkq for a statement

pg, ph
pkq

i, ~J
pkq
i

, pk
pkq
i qiPrKs, S̄

pkqq with S̄pkq ‰
śK
i“1ph

pkq

i, ~J
pkq
i

qlogg pk
pkq
i . This corresponds to breaking the soundness

property of Π. By Lemma 5.3, any adversary with QHΠ -query access to HΠ breaks the soundness of Π only
with probability QHΠ {p. Thus, bounding over both signing sessions k P t0, 1u, we have

|PrrGA
0 “ 1s ´ PrrGA

1 “ 1s| ď
2QHΠ

p
.

Game GA
2 : This game adds another abort such that for all k P t0, 1u, i P rKs, and j P rN szt ~J

pkq
i u, if

Hµp¨, ϕ
pkq
i,j q has been queried by A at any point throughout the game, the game aborts. Since ϕ

pkq
i,j for

j ‰ ~J
pkq
i is uniformly random from t0, 1uλ and hidden from the view of A throughout the game,

|PrrGA
1 “ 1s ´ PrrGA

2 “ 1s| ď
2KNQHµ

2λ
.

33



Game GA
3 : This game adds another abort such that for all k P t0, 1u, i P rKs, if Hβpε

pkq

i, ~J
pkq
i

q or Hcomp¨, ε
pkq

i, ~J
pkq
i

q

has been queried by A at any point throughout the game, the game aborts. Since ε
pkq

i, ~J
pkq
i

is uniformly random

from t0, 1uλ and hidden from the view of A throughout the game,

|PrrGA
2 “ 1s ´ PrrGA

3 “ 1s| ď
2KQHβ

2λ
`

2KQHcom

2λ
.

Game GA
4 : In this game, the game samples ~̂J pkqÐ$ rN sK for both k P t0, 1u at the start of the game and

aborts if ~̂J pkq ‰ ~J pkq later in the game. The view of A does not change unless the game aborts, so conditioning
on the event that the game does not abort, we have

PrrGA
4 “ 1s “

1

N2K
PrrGA

3 “ 1s .

Game GA
5 : This game changes how µ

pkq
i,j is computed for k P t0, 1u, i P rKs, j P rN szt ~̂J

pkq
i u. Previously, it

was defined as Hµpmbk , ϕ
pkq
i,j q, however, now it is only uniformly sampled from t0, 1uλ. By the changes in

games GA
2 and GA

4 , ~̂J
pkq
i “ ~J

pkq
i and Hµp¨, ϕ

pkq
i,j q is never queried by A. Therefore, since µ

pkq
i,j is distributed

identically as before,
PrrGA

5 “ 1s “ PrrGA
4 “ 1s .

Game GA
6 : This game changes how β

pkq

i, ~J
pkq
i

and com
pkq

i, ~J
pkq
i

are computed for k P t0, 1u, i P rKs. Previously, it

was defined as Hβpε
pkq

i, ~J
pkq
i

q and Hcompr
pkq

i, ~J
pkq
i

q; however, now it is only uniformly sampled from Zp and t0, 1uλ

respectively. By the changes in games GA
3 and GA

4 , ~̂J
pkq
i “ ~J

pkq
i and Hβpε

pkq

i, ~J
pkq
i

q nor Hcomp¨, ε
pkq

i, ~J
pkq
i

q has been

queried by A. Since β
pkq

i, ~J
pkq
i

and com
pkq

i, ~J
pkq
i

are distributed identically as before,

PrrGA
6 “ 1s “ PrrGA

5 “ 1s .

Lastly, we claim (in the lemma below) that when GA
6 does not abort, the view of A is identical for both

cases b “ 0 and b “ 1. This results in PrrGA
6 “ 1s “ 1{p2N2Kq (as there is only 1{N2K chance of the game

not aborting from the change in GA
6 ). By combining the advantage changes

|PrrBLINDA
BS3
pλq “ 1s ´

1

2
| ď

2QHΠ

p
`

2KNQHµ

2λ
`

2KQHβ

2λ
`

2KQHcom

2λ
,

concluding the proof.

Lemma 5.5. In GA
6 , if the game does not abort, the view of A is identical between both cases of b “ 0 and

b “ 1.

Proof. To show this, first, assume w.l.o.g. that the randomness of A is fixed and that A only outputs messages
in the transcript where neither the game nor the user oracles abort which makes A receives valid signatures
pσ0, σ1q. Also, let ViewA denote the set of all possible views of A that can occur in the game GA

6 . A view
∆ P ViewA is of the form

∆ “ pW,X,m0,m1, T0, T1, σ0, σ1q ,

where for k P t0, 1u: Tk denotes the transcript of the interaction between A and the user oracle in signing
session k and σk denotes the valid signature for message mk. They are of the form:

Tk “ pph
pkq

i, ~J
pkq
i

, pk
pkq
i qiPrKs, S̄

pkq, ~Rpkq, R̄pkq, Apkq, cpkq, dpkq, epkq, ~z
pkq
0 , z

pkq
1 q,

σk “ pppk
1
i
pkq
, ϕ1i

pkq
qiPrKs, S̄1

pkq
, d1

pkq
, e1
pkq
, ~z1
pkq

0 , z11
pkq
q .

34



Note that we omit πpkq as it is distributed independently of pm0,m1q given pph
pkq

i, ~J
pkq
i

, pk
pkq
i qiPrKs, S̄

pkqq, and

also omit the p ~J pkq, ppr
pkq
i,j qj‰ ~Jpkqi

, com
pkq

i, ~J
pkq
i

qiPrKsq portion of umsg
pkq
1 because they are now independent of the

messages pm0,m1q by the changes introduced to the games GA
1 ´GA

6 . Also, we rename some variables from
the signing protocol as follows,

β
pkq
i “ β

pkq

i, ~J
pkq
i

, ϕ
pkq
i “ ϕ

pkq

i, ~J
pkq
i

, µ
pkq
i “ µ

pkq

i, ~J
pkq
i

“ Hµpmbk , ϕ
pkq
i q,

h
pkq
i “ h

i, ~J
pkq
i

pkq, h1i
pkq
“ h1

i, ~J
pkq
i

pkq
“ Hpµ

pkq
i q .

(11)

We need to show that the distribution of the actual adversarial view, which we denote as vA, is the same
between b “ 0 and b “ 1. Since we fix the randomness of A, vA only depends on the randomness of the user
algorithm which we denote

η “ ppβ
pkq
i , ϕ

pkq
i qiPrKs, ~τ

pkq, ~α
pkq
0 , α

pkq
1 , γ

pkq
0 , γ

pkq
1 qkPt0,1u

and write vApηq to make this explicit.
Before continuing, we note that because of the change in GA

1 any non-aborting transcript should have

S̄pkq “
śK
i“1

´

h
pkq
i

¯sk
pkq
i

which induces

S̄1
pbkq

“ S̄pkq
śK
i“1ppk

pkq
i q´β

pkq
i ph1i

pkq
q~τ
pkq
i

“
śK
i“1ph

pkq
i g´β

pkq
i qsk

pkq
i ph1i

pkq
q~τ
pkq
i

“
śK
i“1ph

1
i
pkq
qsk

pkq
i `~τ

pkq
i .

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(12)

To show that the distribution of vA is identical between b “ 0 and b “ 1, consider a view ∆ P ViewA.
We now show that there exists a unique η such that vApηq “ ∆, regardless of whether b “ 0 or b “ 1. More
specifically, we claim that for both b “ 0 and b “ 1, vApηq “ ∆ if and only if for i P t0, 1u, η satisfies

ϕ
pkq
i “ ϕ1i

pbkq

β
pkq
i “ logg h

pkq
i ´ logg h

1
i
pkq

~τ
pkq
i “ logg pk

1
i
pbkq

´ logg pk
pkq
i

,

/

/

.

/

/

-

for i P rKs,

~α
pkq
0 “ ~z1

pbkq

0 ´ ~z
pkq
0 ´ dpkq ¨ ~τ pkq, α

pkq
1 “ z1

pbkq
1 ´ z

pkq
1 ,

γ
pkq
0 “ d1

pbkq ´ dpkq, γ
pkq
1 “ e1

pbkq ´ epkq .

(13)

For the “only if” direction, i.e., if vApηq “ ∆, then η satisfies Equation (13), this is true by how the user
algorithm of BS3 is defined.

To show the “if” direction, suppose η satisfies Equation (13), we need to show that vApηq “ ∆. Partic-
ularly, we have to show that the user messages from oracles U1,U2 and the signatures from oracle U3 are

pph
p0q
i qiPrKs, ph

p1q
i qiPrKsq, pc

p0q, cp1qq, and pσ0, σ1q respectively.
Again, since we only consider non-aborting transcript ∆, we have the following guarantees for i P t0, 1u:

~R
pkq
i “ ppk

pkq
i q´d

pkq

g~z
pkq
0,i for i P rKs,

R̄pkq “ pS̄pkqq´d
pkq śK

i“1 h
pkq
i

~z
pkq
0,i
,

Apkq “W´epkqgz
pkq
1 , cpkq “ dpkq ` epkq,

,

/

/

/

.

/

/

/

-

(14)

d1
pbkq

` e1
pbkq

“ H1pmbk , ph
1
i
pkq
, pk1i

pbkq
qiPrKs, S̄1

pbkq, pg~z
pbkq

0,i pk1i
pbkq

´d1pbkq

qiPrKs,

pS̄1
pkq
q´d

1pkq
K
ź

i“1

h1i
pkq

~z1
pkq

0,i

,W´e1pbkqgz
1
1
pbkq

q . (15)

35



where Equation (14) follows from the checks in BS3.U3, and Equation (15) follows from the validity of the
signatures.

First, we argue that the first user message h
pkq
i of both signing sessions corresponds to the values in ∆.

This is due to
h
pkq
i “ h1i

pkq
gβ
pkq
i “ Hpµ

pkq
i qgβ

pkq
i “ HpHµpmbk , ϕ

pkq
i qqgβ

pkq
i .

The first equality is from the value of β
pkq
i in Equation (13). The other equalities follow from how we renamed

the values in Equation (11). The right-hand side of the equation is exactly the value in umsg
pkq
1 . Thus, the

next message from A will be pppk
pkq
i qiPrKs, S̄

pkq, ~Rpkq, R̄pkq, Apkqq.

Next, we argue that the second user message from U2pk, ¨q will be cpkq. To do this, we consider the blinded

values of ppk
pkq
i , R

pkq
i qiPrKs, S̄

pkq, R̄pkq, Apkq which will be the input to H1 to compute cpkq.

pk
pkq
i g~τ

pkq
i “ pk1i

pbkq for i P rKs, By ~τ pkq in Equation (13)

S̄1
pbkq

“ S̄pkq
K
ź

i“1

ppk
pkq
i q´β

pkq
i ph1i

pkq
q~τ
pkq
i , By Equation (12)

~R1
pkq

i “ ~R
pkq
i pk1

pbkq
i

´γ
pkq
0

g~α
pkq
0,i

“ ppk
pkq
i q´d

pkq

g~z
pkq
0,i pk1

pbkq
i

´γ
pkq
0

g~α
pkq
0,i By Equation (14)

“ ppk1i
pbkq
q´d

pkq

g~z
pkq
0,i`α

pkq
0,i`d

pkq~τ
pkq
i pk1

pbkq
i

´γ
pkq
0

“ g
~z1
pbkq

0,i pk1i
pbkq

´d1pbkq

, By ~α
pkq
0 in Equation (13)

A1
pkq
“ ApkqW´γ

pkq
1 gα

pkq
1

“ pW´epkqgz
pkq
1 qW´γ

pkq
1 gα

pkq
1 , By Equation (14)

“W´e1pbkqgz
1
1
pbkq

, By α
pkq
1 in Equation (13)

R̄1
pkq
“ R̄pkqpS̄1

pbkq
q´γ

pkq
0

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q~α0,i

“

˜

pS̄pkqq´d
pkq

K
ź

i“1

h
pkq
i

~z
pkq
0,i

¸

pS̄1
pbkq
q´γ

pkq
0

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q
~α
pkq
0,i

“

˜

S̄1
pbkq

K
ź

i“1

ppk
pkq
i qβ

pkq
i ph1i

pkq
q´~τ

pkq
i

¸´dpkq K
ź

i“1

h
pkq
i

~z
pkq
0,i

pS̄1
pbkq
q´γ

pkq
0

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q
~α
pkq
0,i

“ pS̄1
pbkq
q´γ

pkq
0

˜

S̄1
pbkq

K
ź

i“1

ppk
pkq
i qβ

pkq
i ph1i

pkq
q´~τ

pkq
i

¸´dpkq

K
ź

i“1

p~R
pkq
i q´β

pkq
i ph1i

pkq
q
~α
pkq
0,i ph1i

pkq
gβ
pkq
i q

~z
pkq
0,i

“ pS̄1
pbkq
q´d

1pbkq
K
ź

i“1

p~R
pkq
i ppk

pkq
i qd

pkq

g´~z
pkq
0,i q´β

pkq
i ph1i

pkq
q
~z1
pbkq

0,i

“ pS̄1
pkq
q´d

1pbkq
K
ź

i“1

h1i
pkq

~z1
pbkq

0,i

.

36



For the value of R̄1
pkq

: the first equality follows from how the value is defined; the second equality follows from
Equation (14); the third equality follows from Equation (12); the fourth equality follows from rearranging the

terms and h
pkq
i “ h1i

pkq
gβ
pkq
i ; the fifth equality follows from rearranging the terms and the values of γ

pkq
0 , ~α

pkq
0

in Equation (13); and the last equality follows from the value of ~R
pkq
i in Equation (14). With these equalities,

we have

H1pmbk , ph
1
i
bk , pk1i

pbkq
qiPrKs, S̄1

pbkq, ~R1
pkq
, R̄1

pkq
, A1

pkq
q ´ γ

pkq
0 ´ γ

pkq
1

“ d1
pbkq

` e1
pbkq

´ γ
pkq
0 ´ γ

pkq
1

“ dpkq ` epkq “ cpkq,

where the first equality follows from Equation (15), the second to last equality follows from the values of

γ
pkq
0 , γ

pkq
1 in Equation (13), and the last equality follows from Equation (14). Thus, the next message from

A will be dpkq, epkq, ~z
pkq
0 , z

pkq
1 from the transcript ∆. Lastly, the final signatures output by the oracle U3 will

be σ0, σ1 by how the randomness η is defined in Equation (13). [\

5.4 Proof of Theorem 5.2 (OMUF of BS3)

Let A be an adversary playing one-more unforgeability game of BS3. We consider the following sequence of
games described in text, while the pseudocode version of the games can be found in Figure 12.
Game GA

0 : The game first generates the parameters parÐ$ BS3.Setupp1
λ,N,Kq, ppk, skq Ð$ BS3.KGpparq.

Then, the game interacts with an adversary Appar, pkq with access to signing oracles S1,S2 and the random
oracles H,H1,HΠ ,Hµ,Hcom, Hcc each simulated by lazy sampling. The adversary A (w.l.o.g.) queries the
signing oracle S1 for ` times and the random oracles H‹ for QH‹ times for H‹ P tH,H

1,HΠ ,Hµ, Hcom,Hccu.
At the end of the game, A outputs `` 1 message-signature pairs pm˚k , σ

˚
k q for k P r`` 1s. The adversary A

succeeds if for all k1 ‰ k2,m
˚
k1
‰ m˚k2 and for all k P r` ` 1s,BS3.Verppar, pk,m

˚
k , σ

˚
k q “ 1. We also assume

w.l.o.g. that A does not make the same random oracle query twice and already makes the random oracle
queries that would be called in BS3.Ver when the game checks the forgeries. The probability of A winning
in game GA

0 is exactly its advantage in OMUF i.e.

Advomuf
BS3

pA, λq “ PrrGA
0 “ 1s .

Game GA
1 : This game is identical to GA

0 except that queries of the form µ P t0, 1uλ to H is answered by
introducing a map trµs P Zp where the oracle simulation first outputs Hpµq if it is already defined, otherwise
it samples trµs Ð$ Zp and sets Hpµq Ð gtrµs. Since the distribution of Hpµq remains identical, the success
probability of A remains as in GA

0 as its view is identical in both games.

PrrGA
1 “ 1s “ PrrGA

0 “ 1s .

Game GA
2 : This game is identical to GA

1 except that it introduces the following check: namely, when A
outputs forgeries pm˚k , σ

˚
k qkPr``1s, where for each k P r``1s, σ˚k “ pppk

˚
k,i, ϕ

˚
k,iqiPrKs, S̄

˚
k , d

˚
k , e

˚
k , ~z

˚
k,0, z

˚
k,1q, the

game checks that

S̄˚k “
K
ź

i“1

Hpµ˚k,iq
sk˚k,i “

K
ź

i“1

gsk
˚
k,itrµ

˚
k,is “

K
ź

i“1

pk˚k,i
trµ˚k,is ,

with µ˚k,i “ Hµpm
˚
k , ϕ

˚
k,iq, sk

˚
k,i “ logg pk

˚
k,i. If this check does not pass, the game aborts. Note that the check

here can be done efficiently by the change in GA
1 since all the values in the rightmost side of the equation

are known to the game. (This fact will be used in the proof of Lemma 5.7.) By Lemma 5.7, there exists an
adversary B playing the DLOG game with running time tB « 2tA such that

PrrGA
2 “ 1s ě PrrGA

1 “ 1s ´ p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

.

37



Game GA
0 ,GA

1 ,GA
2 ,GA

3 ,GA
4 ,GA

5 :

pG, p, gq Ð$ GGenp1λq

W Ð$ G // GA
0 ´GA

2

wÐ$ Zp ; W Ð gw // GA
3 ´GA

5

par Ð pG, p, g,W q
xÐ$ Zp ; X Ð gx

skÐ x ; pkÐ X
`Ð 0 ; I1, I2 Ð H

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2 ppar, pkq

If D k1 ‰ k2,m
˚
k1
“ m˚k2

then

return 0
If D k P r`` 1s such that

BS3.Verppar, pk,m
˚
k , σ

˚
k q “ 0 then

return 0
For k P r`` 1s:

pppk˚k,i, ϕ
˚
k,iqiPrKs, S̄

˚
k , d

˚
k , e

˚
k , ~z

˚
k,0, z

˚
k,1q Ð σ˚k

For i P rKs : µ˚k,i Ð Hµpm
˚
k , ϕ

˚
k,iq

If S̄˚k ‰
śK
i“1 pk˚k,i

trµ˚
k,i
s

then return 0 // GA
2 ´GA

5

Return 1

Oracle Hpµq:

If Hpµq ‰ K then
return Hpµq

Hpµq Ð$ G // GA
0

trµs Ð$ Zp
Hpµq Ð gtrµs // GA

1 ´GA
5

Return Hpmq

Oracle S2psid, csidq :

If sid R I1 or sid P I2 then return K
I2 Ð I2 Y tsidu

dsid Ð csid ´ esid // GA
0 ´GA

4

For i P rKs : ~z0,sid,i Ð ~r0,sid,i ` dsid ¨ ski,sid

esid Ð csid ´ dsid
z1,sid Ð r1,sid ` esid ¨ w // GA

5

Return pdsid, esid, ~z0,sid, z1,sidq

Oracle S1psid, hsidq:

If sid P I1 then return K
`Ð `` 1 ; I1 Ð I1 Y tsidu

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð umsg1

If Checkpumsg1q “ 0 then return K
For i P rK ´ 1s : ski,sid Ð$ Zp
skK,sid Ð sk´

řK´1
i“1 ski,sid

For i P rKs : pki,sid Ð gski,sid

S̄sid Ð
śK
i“1 h

ski,sid

i, ~Ji

z1,sid, esid Ð$ Zp, ~r0,sid Ð$ ZKp
For i P rKs : ~Ri,sid Ð g~r0,sid,i

R̄sid Ð
śK
i“1 h

~r0,sid,i

i, ~Ji

Asid Ð gz1,sidW´esid // GA
0 ´GA

4

dsid, r1,sid Ð$ Zp, ~z0,sid Ð$ ZKp
For i P rKs : ~Ri,sid Ð pk

´dsid
i,sid g~z0,sid,i

R̄Ð S̄´dsid
śK
i“1 h

~z0,sid,i

i, ~Ji

Asid Ð gr1,sid // GA
5

π Ð Π.ProveHΠ ppg, phi, ~Ji
, pkiqiPrKs, S̄q, pskiqiPrKsq

// GA
0 ´GA

3

π Ð Simppg, phi, ~Ji
, pkiqiPrKs, S̄qq

If π “ K then abort game// GA
4 ´GA

5

Return pppki,sidqiPrK´1s, S̄, ~R, R̄, A, πq

Oracle H‹pstrq:

// H‹ P tH
1,HΠ ,Hµ,Hr,Hccu

If H‹pstrq ‰ K then
return H‹pstrq

H‹pstrq Ð$ Zp // H‹ P tH
1,HΠu

H‹pstrq Ð$ t0, 1uλ // H‹ P tHµ,Hru

H‹pstrq Ð$ rNsK // H‹ “ Hcc
Return H‹pstrq

Fig. 12. The OMUF “ GA
0 security game for BS3 and the subsequent games GA

1 ´GA
5 . We assume that the adversary

A makes ` queries to the signing oracle S1. We remark that H,H1,HΠ ,Hµ,Hr,Hcc are modeled as random oracles
and A has access to them. Each box type indicates the changes made in the game contained in the box and to make
things clearer, for each box, we indicate which game contains the box by a comment by the side of it. The signer state
is omitted and variable names with subscript sid are instead used to denote the corresponding signer state values.

38



Game GA
3 : This game is identical to GA

2 except that when generating the component W in par, the game
generates wÐ$ Zp and sets W Ð gw. Since W still has the same distribution, A’s success probability is
exactly as in GA

2 .
PrrGA

3 “ 1s “ PrrGA
2 “ 1s .

Game GA
4 : This game is identical to GA

3 except that in the signing oracle S1, the NIZK proof π is generated
by using a simulator Sim on the input pg, phi, ~Ji , pkiqiPrKs, S̄q. Following Lemma 5.3, by the zero-knowledge
property of Π, such simulator exists, and since A makes ` and QHΠ queries to S1 and HΠ , we have

PrrGA
4 “ 1s ě PrrGA

3 “ 1s ´
`p``QHΠ q

p
.

GameGA
5 : This game is identical to GA

4 except that the signing oracles S1,S2 now generate ~R, R̄, A, d, e, ~z0, z1

as follows: (hi, ~Ji are the values sent by A in the first user message.)

1. r1, dÐ$ Zp, ~z0 Ð$ ZKp .

2. AÐ gr1 , ~RÐ pg~z0,1 ¨ pk´d1 , . . . , g~z0,K ¨ pk´dK q, R̄Ð S̄´d ¨
ś

h
~z0,i

i, ~Ji
.

3. After receiving c, set eÐ c´ d and z1 Ð e ¨ w ` r1.

Since the joint distributions of p~R, R̄, A, d, e, ~z0, z1q in the games GA
4 and GA

5 are identical, the view of A
remains the same. Thus,

PrrGA
5 “ 1s “ PrrGA

4 “ 1s .

After this point, we show a reduction BR to the OMUF security of BSR (described in Figure 13) which as
stated earlier in this section is a pairing-free version of Rai-Choo scheme [HLW23] with inefficient verification.

More formally, there exists an adversary BR playing the OMUF game of BSR, running in time tBR « tA,
and making ` queries to oracle S and QH‹ to random oracle H‹ for H‹ P tH,Hµ,Hcom,Hccu such that

PrrGA
5 “ 1s ď Advomuf

BSR pBR, λq. Then, the reduction BR is described as follows:

1. The reduction BR receives the inputs par “ pG, p, g,N,Kq and pk, samples wÐ$ Zp, and sets W Ð

gw, par1 Ð pG, p, g,W,N,Kq. It then runs A on the inputs par1, pk.
2. For random oracle queries to H,Hµ,Hcom, and Hcc, it forwards the queries to its own oracle H,Hµ,Hcom,

and Hcc respectively. For the random oracle queries to H1 and HΠ , it answers as in GA
5 .

3. For the queries to signing oracle S1, it first forwards the query umsg1 to its own oracle S which returns
ppkiqiPrKs, S̄. Then, it proceeds to simulate the computation of pRiqiPrKs, R̄, A, π as in GA

5 . For the queries

to signing oracle S2, it also proceeds to compute pd, e, ~z0, z1q as in GA
5 . Note that by the change in GA

4

and GA
5 , BR does not need sk to compute these values.

4. At the end of the simulation, it receives the output pm˚k , σ
˚
k qkPr``1s and returns to its own game

pm˚k , σ̂
˚
k qkPr``1s where σ̂˚k “ pppk˚k,i, ϕ

˚
k,iqiPrKs, S̄

˚
k q with pk˚k,i, ϕ

˚
k,i, S̄

˚
k being the corresponding values

in σ˚k for k P r`` 1s.

It is clear that the running time of BR is about that of A. For the success probability of the reduction, we can
see that the simulation of the oracles gives the same distribution of outputs as in GA

5 . Then, consider when

A wins in game GA
5 , for all k P r` ` 1s, pk “

śK
i“1 pk

˚
k,i and S̄˚k “

śK
i“1 HpHµpm

˚
k , ϕ

˚
k,iqq

skk,i where skk,i “

logg pkk,i. Thus, if A wins in game GA
5 , then BR also wins in game OMUF, so PrrGA

5 “ 1s ď Advomuf
BSR pBR, λq.

Lastly, combining the advantage changes and Lemma 5.6 (stated below), we have that

Advomuf
BS3

pA, λq ď p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

`
`p``QHΠ q

p

`
`

NK
`
Q2

Hcom
`Q2

Hµ
`QHcomQHcc `QHQHµ

2λ
` 4` ¨ Advcdh

GGenpB1, λq ,

where B1 is an adversary playing the game CDH running in time tB1 « tBR « tA. This concludes the proof
for Theorem 5.2. [\

39



Algorithm BSR.Setupp1
λ, K,Nq :

pG, p, gq Ð$ GGenp1λq

Select Hµ,Hcom : t0, 1u˚ Ñ t0, 1uλ

Select H : t0, 1u˚ Ñ G
Select Hβ : t0, 1u˚ Ñ Zp
Select Hcc : t0, 1u˚ Ñ rNsK

par Ð pG, p, g,K,N,Hµ,Hβ ,Hcom,H,Hccq
Return par

Algorithm BSR.Sppar, sk, openq :

pG, p, g,K,N,Hµ,Hβ ,Hcom,H,Hccq Ð par

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð open

If Checkpopenq “ 0 then return K
For i P rK ´ 1s : skiÐ$ Zp
skK Ð sk´

řK´1
i“1 ski

For i P rKs : pki Ð gski

S̄ Ð
śK
i“1 h

ski
i, ~Ji

Return smsg Ð pppkiqiPrK´1s, S̄q

Algorithm Checkpopenq:

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð open

For i P rKs and j P rKszt ~Jiu:
comi,j Ð Hcompri,jq
pµi,j , εi,jq Ð ri,j , βi,j Ð Hβpεi,jq

hi,j Ð Hpµi,jqg
βi,j

comÐ pcomi,jqpi,jqPrKsˆrNs
hÐ phi,jqpi,jqPrKsˆrNs

If ~J ‰ Hccpcom, hq then return 0.
Return 1

Algorithm ReRapppki, hiqiPrKs, Sq:

τ1, . . . , τK´1 Ð$ Zp; τK Ð ´
řK´1
i“1 τK

For i P rKs: pk1i Ð pkig
τi

S1 Ð S
śK
i“1 h

τi
i

Return pppkiqiPrKs, S
1, pτiqiPrKsq

Algorithm BSR.KGpparq :

pG, p, g,K,N,Hµ,Hβ ,Hcom,H,Hccq Ð par
xÐ$ Zp ; X Ð gx ; skÐ x ; pkÐ X
Return psk, pkq

Algorithm BSR.U1ppar, pk,mq :

pG, p, g,K,N,Hµ,Hβ ,Hcom,H,Hccq Ð par
For pi, jq P rKs ˆ rNs:

ϕi,j Ð$ t0, 1uλ ; µi,j Ð Hµpm,ϕi,jq

εi,j Ð$ t0, 1uλ ; βi,j Ð Hβpεi,jq
ri,j Ð pµi,j , εi,jq ; comi,j Ð Hcompri,jq

h1i,j Ð Hpµi,jq ; hi,j Ð h1i,jg
βi,j

comÐ pcomi,jqiPrKs,jPrNs
hÐ phi,jqiPrKs,jPrNs
~J Ð Hccpcom, hq

openÐ p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq

stu Ð pm, pk, phi, ~Ji
, h1
i, ~Ji

, βi, ~Ji
, ϕi, ~Ji

qiPrKsq

Return pstu, openq

Algorithm BSR.U2pst
u, smsgq :

pm, pk, phi, ~Ji
, h1
i, ~Ji

, βi, ~Ji
, ϕi, ~Ji

qiPrKsq Ð stu

pppkiqiPrK´1s, S̄q Ð smsg

pkK Ð pk
ś

iPrKs pk
´1
i

pppk1iqiPrKs, S̄
1, ~τq Ð$

ReRapppki, h
1

i, ~Ji
qiPrKs, S̄

śK
i“1 pk

´β
i, ~Ji

i q

Return σ Ð pppk1i, ϕi, ~Ji
qiPrKs, S̄

1
q

Algorithm BSR.Verppar, pk,m, σq

pG, p, g,K,N,Hµ,Hβ ,Hcom,H,Hccq Ð par
pppki, ϕiqiPrKs, S̄q Ð σ
For i P rKs :

ski Ð logg pki ; hi Ð HpHµpm,ϕiqq

If
śK
i“1 pki ‰ pk or

śK
i“1 h

ski
i ‰ S̄

then return 0
Return 1

Fig. 13. The signing protocol of the blind signature scheme BSR “ BSRrGGens with the inefficient verification
BSR.Ver. (The inefficiency is highlighted in the box)

Lemma 5.6 (OMUF of BSR). Assume that GGen outputs the description of a group of prime order
p “ ppλq, and let BSR “ BSRrGGens and K “ Kpλq, N “ Npλq be positive integer inputs to BSR.Setup. For
any adversary A for game OMUF with running time tA “ tApλq, making at most ` “ `pλq queries to S1,
and QH‹ “ QH‹pλq queries to H‹ P tH, Hµ, Hcom, Hccu, modeled as random oracles, there exist an adversary
B1 for the game CDH running in time tB1 « tA such that

Advomuf
BSR pA, λq ď

Q2
Hcom

`Q2
Hµ
`QHcomQHcc `QHQHµ

2λ
`

`

NK
` 4` ¨ Advcdh

GGenpB1, λq .

We prove the above lemma following similar arguments as in the OMUF proof of Rai-Choo [HLW23], but
for completeness, we present a full proof in Section 5.5.

Lemma 5.7. There exists an adversary B playing the DLOG game with running time tB « 2tA such that

PrrGA
2 “ 1s ě PrrGA

1 “ 1s ´ p`` 1q

ˆ

b

QH1Adv
dlog
GGenpB, λq `

QH1

p

˙

.

Proof (of Lemma 5.7). Let event Bad be the event where GA
1 outputs 1 but GA

2 outputs 0 which corresponds
to the following event: A outputs ` ` 1 message-signature pairs pm˚k , σ

˚
k qkPr``1s such that (1) for all k1 ‰

k2,m
˚
k1
‰ m˚k2 , (2) for all k P r``1s, BS3.Verppar, pk, σ

˚
k ,m

˚
kq “ 1, and (3) there exists some k P r``1s where

40



parsing the signature σ˚k “ pppk
˚
k,i, ϕ

˚
k,iqiPrKs, S̄

˚
k , d

˚
k , e

˚
k , ~z

˚
k,0, z

˚
k,1q, and letting µ˚k,i Ð Hµpm

˚
k , ϕ

˚
k,iq, sk

˚
k,i “

logg pk
˚
k,i,

S̄˚k ‰
K
ź

i“1

Hpµ˚k,iq
sk˚k,i “

K
ź

i“1

pk˚k,i
trµ˚k,is .

Then, we can bound PrrGA
2 “ 1s ě PrrGA

1 “ 1s ´ PrrBads.
Now, we focus on upperbounding PrrBads. Define the event Badk for k P r``1s which is event Bad with the

condition (3) specified only for the k-th message-signature pair pm˚k , σ
˚
k q. We can see that Bad “

Ť``1
k“1 Badk.

To do this, define the following deterministic wrapper Ak over A, which takes inputs: the instance
pG, p, g,W q, the outputs pc1, . . . , cQH1

q of H1, and a random tape ρ.

1. Extract from the random tape ρ, the following

px, ppskj,iqiPrK´1s, ~r0,j , ej , z1,j , ρΠ,jqjPr`s, ptiqiPrQHs,Hµ,Hcom,HΠ ,Hcc, ρ
1q

where x, ti, skj,i, ej , z1,j P Zp, ~r0,j P ZKp , while ρΠ,j denotes the randomness used to generate π in the
j-th signing session and H‹ P tHµ,Hcom,HΠ ,Hccu denotes a list of QH‹ values in the codomain of H‹.
Additionally, we denote H‹ris as the i-th entry in the list.

2. Set parÐ pG, p, g,W q, pkÐ gx, skÐ x.
3. Run pm˚k , σ

˚
k qkPr``1s Ð AS1,S2,H,H

1,HΠ ,Hµ,Hcom,Hccppar, pk; ρ1q where each oracle is answered as follows:
‚ For the j-th query (j P r`s) to S1 use x, ppskj,iqiPrK´1s, ~r0,i, ei, z1,i, ρΠ,jq to answer the query as in
BS3.S1. For the query to S2 of the same session id, also use sk, ppskj,iqiPrK´1s, ~r0,i, ei, z1,iq as in the
game BS3.S2.

‚ For the i-th query to H (i P rQHs), answer with gti and set tr¨s “ ti accordingly.
‚ For the i-th query to H1 (i P rQH1s), answer with ci.
‚ For the i-th query to H‹ P tHµ,Hcom,HΠ ,Hccu (i P rQH‹s), answer with H‹ris. (Among the queries

to HΠ , we w.l.o.g. accounted for the queries that the wrapper made to generate π. Moreover, when
the same queries are queried more than once, the oracle will answer with the first value initialized.)

4. If the event Badk does not occur, return pK,Kq.
Otherwise, return pI, pm˚k , σ

˚
k qq where I is the index of the query to H1 from A corresponding to the

verification of pm˚k , σ
˚
k q. More specifically, after parsing σ˚k “ pppk

˚
i , ϕ

˚
i qiPrKs, S̄

˚, d˚, e˚, ~z˚0 , z
˚
1 q, I is the

index of the query
pm˚k , phi, pkiqiPrKs, S̄

˚, pRiqiPrKs, R̄, Aq ,

where hi “ HpHµpm
˚
k , ϕ

˚
i qq, pki “ pk˚i , Ri “ g~z

˚
0,ipk´d

˚

i for i P rKs, and R̄ “ pS̄˚q´d
˚ śK

i“1 h
~z˚0,i
i , A “

gz
˚
1 W´e˚ . Note that I and all the values above are well-defined as we assume that all RO queries done

in forgery verification are made by A beforehand. Also, the way we program H allows us to check for

event Badk efficiently, i.e., by checking S̄˚k ‰
śK
i“1 pk

˚
k,i
trµ˚k,is, which means that the running time of Ak

is roughly that of A.

Now, consider a reduction B playing the discrete logarithm game defined as follows:

1. On the input pG, p, g,W q, B samples c1, . . . , cQH1
Ð$ Zp along with random coins ρ.

2. Run pI, pm,σqq Ð$ AkppG, p, g,W q, pc1, . . . , cQH1
q; ρq.

3. If I “ 0, abort. If not, sample c1I , . . . , c
1
Q1H
Ð$ Zp and

run pI 1, pm1, σ1qq Ð$ AkppG, p, g,W, pk, skq, pc1, . . . , cI´1, c
1
I , . . . , c

1
QH1
q; ρq.

4. If I “ I 1 and c1I ‰ cI , parse σ “ pppki, ϕiqiPrKs, S̄, d, e, ~z0, z1q and σ1 “ pppk1i, ϕ
1
iqiPrKs, S̄

1, d1, e1, ~z10, z
1
1q,

and return pz1 ´ z
1
1qpe´ e

1q´1. Else, abort.

Since B runs Ak twice and the running time of Ak is about that of A, we have tB « 2tA. Then, we argue
the success probability of the reduction, i.e., we show that if B does not abort then it returns a discrete
log of W . Notice that I “ I 1 ‰ K, so the message-signature pairs pm,σq, pm1, σ1q are: (a) valid signatures
corresponding to the I-th query of A to H1, and (b) for i P rKs, let µi Ð Hµpm,ϕiq, µ

1
i Ð Hµpm

1, ϕ1iq, ski Ð

logg pki, sk
1
i Ð logg pk

1
i, we have S̄ ‰

śK
i“1 Hpµiq

ski and S̄1 ‰
śK
i“1 Hpµ

1
iq

sk1i . By (a), we know the following

41



(i) m “ m1, S̄ “ S̄1.
(ii) For i P rKs, pki “ pk1i, and Hpµiq “ hi “ h1i “ Hpµ1iq.

(iii) cI “ d` e, c1I “ d1 ` e1.

(iv) For i P rKs, pki
´dg~z0,i “ pk1i

´d1

g
~z10,i and S̄´d

śK
i“1 hi

~z0,i “ S̄1
´d1 śK

i“1 h
1
i

~z10,i .

(v) A “ gz1W´e “ gz
1
1W´e1 .

Next, we will argue that d “ d1. As a result from (i, ii, iv), for all i P rKs

pk
pd´d1q log hi
i “ ppkdi pk

1
i
´d1

qlogg hi “ gp~z0,i´~z
1
0,iq logg hi “ h

~z0,i´~z
1
0,i

i , and

S̄d´d
1

“ S̄dS̄1
´d1

“

K
ź

i“1

hi
~z0,ih1i

´~z10,i
“

K
ź

i“1

h
~z0,i´~z

1
0,i

i “

K
ź

i“1

pk
pd´d1q log hi
i .

Since S̄ ‰
śK
i“1 pk

logg hi
i , only d “ d1 satisfies the equation. Since d` e “ cI ‰ c1I “ d1 ` e1, we have e ‰ e1.

Thus, with (v), B returns pz1 ´ z
1
1qpe´ e

1q´1 “ loggW . Hence,

AdvdlogGGenpB, λq “ PrrB does not aborts “ PrrI “ I 1 ^ I ‰ K^ cI ‰ c1I s .

Thus, by the forking lemma (Lemma 2.1) and that B rewinds Ak which only outputs I ‰ K when Badk
occurs,

PrrBadks ď

b

QH1Adv
dlog
GGenpB, λq `

QH1

p
.

The lemma statement follows from the union bound over Badk for k P r`` 1s. [\

5.5 Proof of Lemma 5.6 (OMUF of BSR)

Let A be an adversary playing one-more unforgeability game of BSR. We consider the following sequence of
games (pseudocode game sequence is described in Figures 14 and 15).
Game GA

0 : The game first generates the public parameters parÐ$ BSR.Setupp1
λ, N,Kq and the public and

secret keys ppk, skq Ð$ BSR.KGpparq. Then, the game interacts with an adversary Appar, pkq with access to
signing oracle S and the random oracles H,Hµ,Hcom,Hcc where each of them is simulated by lazy sampling.
The adversary A (w.l.o.g.) queries the signing oracle S for ` times and the random oracles H‹ for QH‹ times
for H‹ P tH,Hµ,Hcom,Hccu. At the end of the game, A outputs ` ` 1 message-signature pairs pm˚k , σ

˚
k q for

k P r`` 1s. The adversary A succeeds if m˚k1 ‰ m˚k2 for all k1 ‰ k2 and BSR.Verppar, pk,m
˚
k , σ

˚
k q “ 1 for all

i P r`` 1s. We additionally assume w.l.o.g. that A already makes the queries to H‹ P tH,Hµ,Hcom,Hccu that
would otherwise be called in BSR.Ver when the game checks the forgeries. The probability of A winning in
game GA

0 is exactly its advantage in OMUF i.e.

Advomuf
BSR pA, λq “ PrrGA

0 “ 1s .

Game GA
1 : This game is identical to GA

0 except that it aborts if there exists two queries x ‰ x1 to H‹p¨q
for H‹ P tHcom,Hµu such that H‹pxq “ H‹px

1q. This change is unnoticed by A except when the abort occurs
which by H‹pxq sampled uniformly from t0, 1uλ,

PrrGA
1 “ 1s ě PrrGA

0 “ 1s ´
Q2

Hcom
`Q2

Hµ

2λ
.

Game GA
2 : This game is identical to GA

1 except that when A queries Hcc on pcom, hq with com “

pcomi,jqpi,jqPrKsˆrNs and h “ phi,jqpi,jqPrKsˆrNs, the game does the following: For each pi, jq P rKs ˆ rN s,
check if there exists a query r1 to Hcom such that Hcompr

1q “ comi,j . If there is one, set r̂i,j Ð r1. If not, set
r̂i,j Ð K and abort if later there is a query r1 to Hcom where Hcompr

1q “ comi,j .

42



Game GA
0 ,GA

1 ,GA
2 ,GA

3 ,GA
4 :

pG, p, gq Ð$ GGenp1λq; par Ð pG, p, gq
xÐ$ Zp; X Ð gx; skÐ x; pkÐ X
`1 Ð 0 ; I Ð H

Map r̂r¨s : t0, 1uλ Ñ t0, 1u2λ // GA
2 ´GA

4

tpm˚k , σ
˚
k qukPr``1sÐ$ AS

ppar, pkq

If D k1 ‰ k2,m
˚
k1
“ m˚k2

then

return 0
If D k P r`` 1s such that

BSR.Verppk,m
˚
k , σ

˚
k q “ 0 then

return 0
Return 1

Oracle Hµpstrq:

If Hµpstrq ‰ K then return Hµpstrq

Hµpstrq Ð$ t0, 1uλ

If Dstr1 ‰ str,Hµpstrq “ Hµpstr
1
q

then abort game. // GA
1 ´GA

4

Return Hµpstrq

Oracle Hcompstrq:

If Hcompstrq ‰ K then
return Hcompstrq

comÐ$ t0, 1uλ

If Dstr1 ‰ str, com “ Hcompstr
1
q

then abort game. // GA
1 ´GA

4

If r̂rcoms “ K and // GA
2 ´GA

4

Dpcom1, h1q, pHccpcom
1, h1q ‰ K

and Dpi, jq, com1i,j “ comq

then abort game.

Return Hcompstrq Ð com

Oracle Spsid, openq:

If sid P I then return K
`1 Ð `1 ` 1 ; I1 Ð I1 Y tsidu

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð open

If Checkpopenq “ 0 then return K

i˚Ð$ DetectCheatpopenq // GA
3 ´GA

4

If i˚ “ K then abort game

For i P rK ´ 1s : ski,sid Ð$ Zp
skK,sid Ð sk´

řK´1
i“1 ski,sid // GA

0 ´GA
3

For i P rKszti˚u : ski,sid Ð$ Zp
ski˚,sid Ð sk´

ř

i‰i˚ ski,sid // GA
4

For i P rKs : pki Ð gski,sid

S̄ Ð
śK
i“1 h

ski,sid

i, ~Ji

Return pppkiqiPrKs, S̄q

Algorithm DetectCheatpopenq:

p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq Ð open

For i P rKs:

If r̂rcomi, ~Ji
s “ pµ, εq ‰ K and

hi, ~Ji
“ HpµqgHβpεq

then return i

Return K // GA
3 ´GA

4

Oracle Hccpcom, hq:

If Hccpcom, hq ‰ K then return Hccpcom, hq

For pi, jq P rKs ˆ rNs:

If Dr1 “ pµ, εq,Hrpr
1
q “ comi,j then

r̂rcomi,js “ r1

Else, r̂rcomi,js “ K // GA
2 ´GA

4

Hccpcom, hq Ð$ rNsK

Return Hccpcom, hq

Fig. 14. The OMUF “ GA
0 security game and the subsequent games GA

1 ´GA
4 . We assume that the adversary A

makes ` queries to the signing oracle S. We remark that H,Hµ,Hr,Hcc are modeled as random oracles and A has
access to them. We omitted the description of the oracle H which is implemented by lazy sampling over G. Each
box type indicates the changes made in the game contained in the box and to make things clearer, for each box, we
indicate which game contains the box by a comment by the side of it. Note: the subroutine DetectCheat is introduced
to S in game GA

3 .

The view of A is identical except when the abort occurs. Since queries to Hcom is answered with uniformly
random value from t0, 1uλ, the probability that the abort occurs is at most QHcomQHcc{2

λ by the union bound
over all pairs of Hcc and Hr queries. Thus,

PrrGA
2 “ 1s ě PrrGA

1 “ 1s ´
QHcomQHcc

2λ
.

Before proceeding to the next game, we consider an event when A makes a call to S with the input open
where

open “

ˆ

~J,
´

pri,jqj‰ ~Ji , comi, ~Ji
, hi, ~Ji

¯

iPrKs

˙

.

We consider the case where Checkpopenq “ 1 which would define the values com “ pcomi,jqpi,jqPrKsˆrNs

and h “ phi,jqpi,jqPrKsˆrNs such that Hccpcom, hq “ ~J . Also, consider the values r̂i,j related to the query

Hccpcom, hq defined in GA
2 . For each instance i P rKs, we have the following observations:

43



Game GA
4 ,GA

5 ,GA
6 ,GA

7 ,GA
8 ,GA

9 :

pG, p, gq Ð$ GGenp1λq; par Ð pG, p, gq
xÐ$ Zp; X Ð gx; skÐ x; pkÐ X
`1 Ð 0 ; I Ð H

Map r̂r¨s : t0, 1uλ Ñ t0, 1u2λ

Map b̂r¨s : t0, 1u˚ Ñ t0, 1u,

br¨s : t0, 1uλ Ñ t0, 1u,

tr¨s : t0, 1uλ Ñ Zp// GA
6 ´GA

9

LÐ H // GA
7 ´GA

9

Y Ð$ G // GA
8 ´GA

9

tpm˚k , σ
˚
k qukPr``1sÐ$ AS

ppar, pkq

If D k1 ‰ k2,m
˚
k1
“ m˚k2

then

return 0
If D k P r`` 1s such that

BSR.Verppk,m
˚
k , σ

˚
k q “ 0 then

return 0

m‹ Ð m˚
arg mintkPr``1s:p¨,m˚

k
qRLu

If b̂rm‹s “ 0 or Dpµ,mq P L, brµs “ 1

then return 0 // GA
7 ´GA

9

Return 1

Oracle Hpµq:

If Hpµq ‰ K then return Hpµq

If Dpm, ¨q,Hpm, ¨q “ µ

then brµs Ð b̂rms

Else, brµs Ð 0 // GA
6 ´GA

9

Hpµq Ð$ G // GA
4 ´GA

7

trµs Ð$ Zp
Hpµq Ð Y brµsgtrµs // GA

8 ´GA
9

Return Hpmq

Oracle Spsid, openq:

If sid P I then return K
`1 Ð `1 ` 1 ; I Ð I Y tsidu
p ~J, ppri,jqj‰~Ji

, comi, ~Ji
, hi, ~Ji

qiPrKsq Ð open

If Checkpopenq “ 0 then return K
i˚Ð$ DetectCheatpopenq
If i˚ “ K then abort game

pµ, εq Ð r̂rcomi˚, ~J
i˚
s

If brµs “ 1 then abort game

If Dpm, ¨q,Hpm, ¨q “ µ

then LÐ LY tpµ,mqu // GA
7 ´GA

9

For i P rKszti˚u : ski,sid Ð$ Zp
ski˚,sid Ð sk´

ř

i‰i˚ ski,sid

For i P rKs : pki Ð gski,sid

S̄ Ð
śK
i“1 h

ski,sid

i, ~Ji
// GA

4 ´GA
8

For i P rKszti˚u:

ski,sid Ð$ Zp; pki,sid Ð gski,sid

pki˚,sid Ð pk
ś

i‰i˚ pk´1
i,sid

S̄ Ð pk
trµs

i˚,sid

ś

i‰i˚ h
ski,sid

i, ~Ji
// GA

9

Return pppkiqiPrKs, S̄q

Oracle Hµpstrq:

If Hµpstrq ‰ K then return Hµpstrq

If str “ pm,ϕq and // GA
6 ´GA

9

Epm, ¨q,Hµpm, ¨q ‰ K

then b̂rms Ð

#

1 w.p. 1{p`` 1q

0 otherwise

Hµpstrq Ð$ t0, 1uλ

If Dstr1 ‰ str,Hµpstrq “ Hµpstr
1
q

or HpHµpstrqq ‰ K // GA
5 ´GA

9

then abort game.
Return Hµpstrq

Fig. 15. The games GA
4 ´GA

9 for the proof of Lemma 5.6 continued from Figure 14. We omitted the description of
the oracles Hcom,Hcc and the algorithm DetectCheat as they are identical to their description in GA

4 throughout this
sequence of games. Each box type indicates the changes made in the game contained in the box and to make things
clearer, for each box, we indicate which game contains the box by a comment by the side of it.

1. If for some j P rN s, r̂i,j “ K, then j “ ~Ji. For other j1 ‰ ~Ji, since ri,j1 is revealed in open and
Checkpopenq “ 1, comi,j1 “ Hrpri,j1q, by the change in GA

2 , r̂i,j1 ‰ K.

2. If for some j P rN s, r̂i,j “ pµ, εq ‰ K, but hi,j ‰ Hpµq¨gβ where β Ð Hβpεi,jq, then j “ ~Ji. This is because

of the no collision condition in Hcom we introduced in GA
1 , so for j1 ‰ ~Ji, r̂i,j1 “ ri,j1 “ pµi,j1 , εi,j1q. Also,

with Checkpopenq “ 1, hi,j “ Hpµi,j1q ¨ g
Hβpεi,j1 q.

We say the adversary A successfully cheats in instance i P rKs if one of the two cases above occurs (as

a reminder Checkpopenq “ 1). Since the values r̂i,j are fixed when ~J :“ Hccpcom, hq is queried and ~J is

uniformly random, the probability which A successfully cheats in instance i P rKs is at most 1{N . By ~Ji
sampled independently, the probability in which A successfully cheats in all instance is at most 1{NK .
Game GA

3 : This game is identical to GA
2 except that the game aborts if A successfully cheats in all instance

i P rKs in some signing interaction. By the previous discussion, and applying the union bound over all signing
sessions

PrrGA
3 “ 1s ě PrrGA

2 “ 1s ´
`

NK
.

44



Game GA
4 : This game is identical to GA

3 except that in the signing oracle S, we change how ski’s are
generated. Recall that in GA

3 , the game aborts if in any signing session, A successfully cheats in all instances.
Hence, there exists an instance i˚ P rKs such that A did not successfully cheat. Fixing i˚ as the first such
instance, the game generates ski’s as follows:

skiÐ$ Zp, for i P rKszti˚u, ski˚ Ð sk´
ÿ

iPrKszi˚

ski .

Here, pki’s are defined in the same manner as before. Since ski’s are still random additive share of sk, the
view of A remains the same. Thus,

PrrGA
4 “ 1s “ PrrGA

3 “ 1s .

Game GA
5 : This game is identical to GA

4 except that there is an introduced abort regarding H and Hµ.
More specifically, if A queries Hpµq and later there is a query Hµpxq “ µ, the game will abort. When µ is
queried and there is no x such that Hµpxq “ µ, then as Hµp¨q outputs a uniformly random string in t0, 1uλ,
the probability that the abort occurs is at most QHQHµ{2

λ by applying the union bound over all pairs of H
and Hµ queries. Thus,

PrrGA
5 “ 1s ě PrrGA

4 “ 1s ´
QHQHµ

2λ
.

Game GA
6 : This game is identical to GA

5 except that the game introduces two maps b̂r¨s, br¨s such that when

A queries Hµpm,ϕq and no query in the form of pm, ˚q has occurred before, b̂rms is set to 1 with probability
1{p` ` 1q and 0 otherwise. Moreover, when there is a query Hpµq of which the value is not yet defined, the

game searches for a previous query pm,ϕq such that Hµpm,ϕq “ µ and sets brµs “ b̂rms. If such query does
not exist, set brµs “ 0. Note that with the no collision condition introduced in GA

6 , there is at most one
pm,ϕq for each µ such that Hµpm,ϕq “ µ.

Since b̂r¨s, br¨s does not affect the view of A, we have

PrrGA
6 “ 1s “ PrrGA

5 “ 1s .

Game GA
7 : This game changes from GA

6 as follows:

‚ Introduce a list LÐH.

‚ In a call to the signing oracle S where there exists an instance i˚ P rKs such that the adversary did not
successfully cheat, fix i˚ as the first of such instance and let r̄i˚, ~Ji˚

“ pµ, εq be the extracted value such

that Hcomp̄ri˚, ~Ji˚
q “ comi˚, ~Ji˚

. The game then tries to extract m from µ through Hµ. If it succeeds,

pµ,mq is added to L. Also, if brµs “ 1, the game aborts.

‚ At the end of the game where A successfully outputs forgeries pm˚k , σ
˚
k qkPr``1s, pick the first m‹ P

tm˚1 , . . . ,m
˚
``1u such that no p¨,m‹q P L. If b̂rm‹s “ 0, abort. We know |L| ď ` ă ` ` 1 as there is at

most ` calls to S which is the only place L increases in size. Hence, by pigeonhole principle, there exists
m‹ as described.

In the case that the game does not abort, the view of A remains the same as in GA
6 . Also, the game only

aborts during the simulation of oracle S when pµ,mq is added to L. If pµ,mq is not added to L, it means the
game could not extract µ, so, by the change in GA

6 , brµs “ 0. Thus,

PrrGA
7 “ 1s “ PrrA succeeds|GA

7 does not abortsPrrGA
7 does not aborts

“ PrrGA
6 “ 1sPrrb̂rm‹s “ 1^ p@pµ,mq P L, brµs “ 0qs .

45



If Hµpm, ¨q “ µ, then brµs “ b̂rms as brµs is defined when Hpµq is called and by the change in GA
5 , the query

Hµpm, ¨q “ µ cannot come later than Hpµq. Thus, we can lower bound the following

Prrb̂rm‹s “ 1^ p@pµ,mq P L, brµs “ 0qs “ Prrb̂rm‹s “ 1^ @pµ,mq P L, brms “ 0s

“ Prrb̂rm‹s “ 1sPrr@pµ,mq P L, brms “ 0s

ě
1

`` 1
¨

ˆ

1´
1

`` 1

˙`

“
1

`
¨

ˆ

1´
1

`` 1

˙``1

ě
1

4`
.

The equality in the second line is because b̂rm‹s is defined independently from b̂rms for pµ,mq P L. The

inequality in the third line follows from Prrb̂rms “ 1s “ 1{p` ` 1q for any m and the number distinct
messages m in L is at most |L| ď `. The last inequality comes from p1´ 1{xqx ě 1{4 for all x ě 2. Hence,

PrrGA
7 “ 1s ě

1

4`
PrrGA

6 “ 1s .

Game GA
8 : In this game, we change how the random oracle query Hpµq is answered. First, at the beginning

of the game, the game samples Y Ð$ G. Then, for each new query Hpµq, define brµs as in GA
6 , and set

Hpµq Ð Y brµsgtrµs for trµs Ð$ Zp. Since the view of A does not change as the distribution of Hpµq is still
uniformly random over G and the winning event stays the same,

PrrGA
8 “ 1s “ PrrGA

7 “ 1s .

Game GA
9 : This game changes how ppkiqiPrKs and S̄ is computed in the signing oracle S. The game now

generates ppkiqiPrKs, S̄ as follows:

‚ Recall from the change in GA
3 that if the game does not abort, then there exists an instance i˚ which is

the smallest instance out of rKs where A does not successfully cheat in. The game then generates

skiÐ$ Zp, pki Ð gski for i ‰ i˚, pki˚ Ð pk
ź

i‰i˚

pk´1
i .

‚ Also, since i˚-th instance is a not a successful cheat instance, the game can extract ri˚, ~Ji˚
“ pµ, εq ‰ K

and brµs “ 0. Otherwise, the game will abort because of the change in GA
7 . Let β “ Hβpεq, so that

hi˚, ~Ji˚
“ Hpµqgβ “ Y brµsgtrµsgβ “ gβ`trµs .

‚ Lastly, set

S̄ “ pk
β`trµs
i˚ ¨

ź

i‰i˚

hski
i, ~Ji

.

Since the pki’s have the same distribution and pk
β`trµs
i˚ “

`

gβ`trµs
˘ski˚

“ h
ski˚

i, ~Ji
, the view of A remains the

same. Hence,
PrrGA

9 “ 1s “ PrrGA
8 “ 1s .

Lastly, by Lemma 5.8 below stating that there exists an adversary B1 playing CDH game with running
time tB1 « tA such that PrrGA

9 “ 1s ď Advcdh
GGenpB1, λq, we have

Advomuf
BSR pA, λq ď

Q2
Hcom

`Q2
Hµ
`QHcomQHcc `QHQHµ

2λ
`

`

NK
` 4` ¨ Advcdh

GGenpB1, λq .

Lemma 5.8. There exists an adversary B1 playing the CDH game with running time tB1 « tA such that
PrrGA

9 “ 1s ď Advcdh
GGenpB1, λq .

46



Proof. To show the claim, we give a reduction B1 playing the CDH game using the adversary A as a
subroutine. B1 is defined as follows:

1. The reduction B1 takes as input a CDH instance pG, p, g,X, Y q and runs A with par “ pG, p, gq, pk “ X.
2. The simulations of H,Hµ,Hcc,Hcom are as in GA

9 including the aborts defined in the game. Specifically
for the random oracle H, B uses the element Y from the CDH instance to program the oracle queries.

3. The signing oracle S is also simulated as in GA
9 including the aborts defined in the game. We note that

this simulation can be done efficiently as the signing oracle in GA
9 does not require the secret key sk.

4. At last after receiving the forgery pmk, σkqkPr``1s from A, B1 checks if all the messages are distinct. If

not, it aborts. Also, it finds m‹ and abort as in GA
7 if b̂rm‹s “ 0.

5. Lastly, let pm‹, σ‹q be the message-signature pair corresponding to m‹ defined above. Parse σ‹ “
pppk‹i , ϕ

‹
i qiPrKs, S̄

‹q, and let µ‹i “ Hµpm
‹, ϕ‹i q for i P rKs. Then, since Hpµ‹i q is called in the verifica-

tion algorithm, trµ‹i s is defined and is known to B1. B1 returns

Z “ S̄‹ ¨
K
ź

i“1

pk‹i
´trµ‹i s .

It is clear that the running time of B1 is about that of A. Next, we analyze the success probability of B1.
Let sk “ x “ loggX and y “ logg Y . Consider when A wins GA

9 , i.e., the game does not abort and for all

k P r`` 1s, the component S̄˚k in pm˚k , σ
˚
k q satisfies

S̄˚k “
K
ź

i“1

Hpµ˚k,iq
skk,i “

K
ź

i“1

pk˚k,i
y¨brµ˚k,is`trµ

˚
k,is

where skk,i “ logg pkk,i.

Since b̂rm‹s “ 1 or else B1 aborts, brµ‹i s “ 1 for all i P rKs as Hµpm
‹, ϕ‹i q “ µ‹i is always queried before

Hpµ‹i q by the change in GA
5 . Thus, if A wins in game GA

9

S̄‹ “
K
ź

i“1

pk‹i
y¨brµ‹i s`trµ

‹
i s “

˜

K
ź

i“1

pk‹i

¸y K
ź

i“1

pk‹i
trµ‹i s “ pky

K
ź

i“1

pk‹i
trµ‹i s .

Hence, Z “ S̄‹ ¨
śK
i“1 pk

‹
i
´trµ‹i s “ pky “ Xy, which is the CDH solution to the instance pX,Y q. Therefore,

we conclude that
PrrGA

9 “ 1s ď Advcdh
GGenpB1, λq . [\

Acknowledgments

The authors wish to thank Renas Bacho, Julian Loss, and Benedikt Wagner for discussions regarding our
weaker security notion. This research was partially supported by NSF grants CNS-2026774, CNS-2154174,
a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

References

Abe01. Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 136–151. Springer, Heidelberg, May
2001.

Ame05. American National Standards Institute, Inc. ANSI X9.62 public key cryptography for the financial
services industry: the elliptic curve digital signature algorithm (ECDSA), November 16, 2005.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg, August 2000.

47



App. icloud private relay overview. https://www.apple.com/privacy/docs/iCloud_Private_Relay_

Overview_Dec2021.PDF.
BDF`11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.

Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.

BDL`12. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. Journal of Cryptographic Engineering, 2(2):77–89, September 2012.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM Press, November 2013.

BLL`21. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October 2021.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, December 2001.

BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of Cryp-
tology, 17(4):297–319, September 2004.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
2006, pages 390–399. ACM Press, October / November 2006.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–
215, June 2003.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46.
Springer, Heidelberg, January 2003.

BP02. Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In Moti Yung, editor, CRYPTO 2002, volume 2442
of LNCS, pages 162–177. Springer, Heidelberg, August 2002.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
409–426. Springer, Heidelberg, May / June 2006.

Bra94. Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, Heidelberg, August 1994.

BRJZ23. Paulo L. Barreto, Devin D. Reich, Marcos A. Simplicio Jr., and Gustavo H. M. Zanon. Blind signatures
from zero knowledge in the kummer variety. Cryptology ePrint Archive, Paper 2023/1484, 2023. https:
//eprint.iacr.org/2023/1484.

BZ23. Paulo L. Barreto and Gustavo H. M. Zanon. Blind signatures from zero-knowledge arguments. Cryptology
ePrint Archive, Report 2023/067, 2023. https://eprint.iacr.org/2023/067.

CAHL`22. Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya, and Benedikt Wagner.
PI-cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose and more. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages
3–31. Springer, Heidelberg, August 2022.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages
174–187. Springer, Heidelberg, August 1994.

CFN90. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, Heidelberg, August 1990.

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

Che05. Benôıt Chevallier-Mames. An efficient CDH-based signature scheme with a tight security reduction.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 511–526. Springer, Heidelberg,
August 2005.

CKM`23. Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu. Snowblind: A
threshold blind signature in pairing-free groups. In Helena Handschuh and Anna Lysyanskaya, editors,

48

https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://eprint.iacr.org/2023/1484
https://eprint.iacr.org/2023/1484
https://eprint.iacr.org/2023/067


Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, volume 14081 of Lecture Notes
in Computer Science, pages 710–742. Springer, 2023.

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

Fis06. Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, Heidelberg, August
2006.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 33–62. Springer, Heidelberg, August 2018.

FOO93. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large scale
elections. In Jennifer Seberry and Yuliang Zheng, editors, AUSCRYPT’92, volume 718 of LNCS, pages
244–251. Springer, Heidelberg, December 1993.

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed ElGamal
encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May 2020.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

FW22. Georg Fuchsbauer and Mathias Wolf. (Concurrently secure) blind schnorr from schnorr. Cryptology
ePrint Archive, Report 2022/1676, 2022. https://eprint.iacr.org/2022/1676.

GJ03. Eu-Jin Goh and Stanislaw Jarecki. A signature scheme as secure as the Diffie-Hellman problem. In Eli
Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 401–415. Springer, Heidelberg, May
2003.

Goo. Vpn by google one, explained. https://one.google.com/about/vpn/howitworks.

HIP`21. Scott Hendrickson, Jana Iyengar, Tommy Pauly, Steven Valdez, and Christopher A. Wood. Private
Access Tokens. Internet-Draft draft-private-access-tokens-01, Internet Engineering Task Force, October
2021. Work in Progress.

HKKL07. Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-secure blind signatures
without random oracles or setup assumptions. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 323–341. Springer, Heidelberg, February 2007.

HKL19. Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from identification
schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 345–375. Springer, Heidelberg, May 2019.

HLTW22. Lucjan Hanzlik, Julian Loss, Sri AravindaKrishnan Thyagarajan, and Benedikt Wagner. Sweep-UC:
Swapping coins privately. Cryptology ePrint Archive, Report 2022/1605, 2022. https://eprint.iacr.

org/2022/1605.

HLW23. Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Rai-choo! Evolving blind signatures to the next level.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages
753–783. Springer, Heidelberg, April 2023.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007.

JLO97. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended abstract). In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164. Springer, Heidelberg,
August 1997.

KLP17. Eike Kiltz, Julian Loss, and Jiaxin Pan. Tightly-secure signatures from five-move identification protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS,
pages 68–94. Springer, Heidelberg, December 2017.

KLR21. Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signature schemes.
In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS,
pages 468–492. Springer, Heidelberg, December 2021.

KLX22. Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the algebraic group
model. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part II, volume
13178 of LNCS, pages 468–497. Springer, Heidelberg, March 2022.

49

https://eprint.iacr.org/2022/1676
https://one.google.com/about/vpn/howitworks
https://eprint.iacr.org/2022/1605
https://eprint.iacr.org/2022/1605


Mau94. Ueli M. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and computing dis-
crete algorithms. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 271–281. Springer,
Heidelberg, August 1994.

MS23. Alexander May and Carl Richard Theodor Schneider. Dlog is practically as hard (or easy) as DH - solving
dlogs via DH oracles on EC standards. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):146–166,
2023.

NY89. Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications. In
21st ACM STOC, pages 33–43. ACM Press, May 1989.

Oka94. Tatsuaki Okamoto. Designated confirmer signatures and public-key encryption are equivalent. In Yvo
Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 61–74. Springer, Heidelberg, August 1994.

OO92. Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 324–337. Springer, Heidelberg, August 1992.

PCM. PCM: Click fraud prevention and attribution sent to advertiser. https://webkit.org/blog/11940/

pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/. Accessed: 2021-09-30.
Poi98. David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg, editor, EUROCRYPT’98,

volume 1403 of LNCS, pages 391–405. Springer, Heidelberg, May / June 1998.
PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.

Journal of Cryptology, 13(3):361–396, June 2000.
Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,

CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.
Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,

January 1991.
Tru. Trust tokens. https://developer.chrome.com/docs/privacy-sandbox/trust-tokens/.
TZ22. Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential security. In Orr

Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
782–811. Springer, Heidelberg, May / June 2022.

Unr17. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 65–95. Springer, Heidelberg, December
2017.

A Deferred Protocol-Style Figures

50

https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/
https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/
https://developer.chrome.com/docs/privacy-sandbox/trust-tokens/


BS1.Sppar, sk “ xq BS1.Uppar “ pG, p, g,W q, pk “ X,mq

X Ð g
x

h
1
Ð Hpmq

Z Ð h
x h βÐ$ Zp;hÐ h

1
¨ g
β

z1, e, r0, sÐ$ Zp
Rg Ð g

r0 ;Rh Ð h
r0

AÐ g
z1W

´e

δ Ð H2ph,X,Z, gs, hsq

π Ð pδ, s
1
“ δ ¨ x` sq pZ, π,Rg, Rh, Aq if δ ‰ H2ph,X,Z, gs

1
X
´δ
, h
s1
Z
´δ
q :

return K

α0, α1, γ0, γ1 Ð$ Zp

Z
1
Ð Z ¨X

´β
;R
1
g Ð RgX

´γ0g
α0

R
1
h Ð RhR

´β
g Z

1´γ0h
1α0

A
1
Ð AW

´γ1g
α1

c
1
Ð H1pm,h1, Z1, R1g, R

1
h, A

1
q

dÐ c´ e c cÐ c
1
´ γ0 ´ γ1

z0 Ð r0 ` d ¨ x pd, e, z0, z1q if c ‰ e` d or

pRg ¨X
d
, Rh ¨ Z

d
q ‰ pg

z0 , h
z0 q or

A ¨W
e
‰ g

z1 : return K

d
1
Ð d` γ0; e

1
Ð e` γ1

z
1
0 Ð z0 ` α0; z

1
1 Ð z1 ` α1

return σ Ð pZ
1
, d
1
, e
1
, z
1
0, z

1
1q

Fig. 16. Protocol style figure for the signing protocol of BS1

51



BS2.Sppar, sk “ xq BS2.Uppar “ pG, p, g,W q, pk “ X,mq

X Ð g
x

z1, e, r0, sÐ$ Zp

Rg Ð g
r0 ;AÐ g

z1W
´e

α0, α1, γ0, γ1 Ð$ Zp

pRg, Aq R
1
g Ð RgX

´γ0g
α0 ;A

1
Ð AW

´γ1g
α1

h
1
Ð Hpm,R1g, A

1
q

Z Ð h
x
;Rh Ð h

r0 h βÐ$ Zp;hÐ h
1
¨ g
β

δ Ð H2ph,X,Z, gs, hsq

π Ð pδ, s
1
“ δ ¨ x` sq pZ, π,Rhq if δ ‰ H2ph,X,Z, gs

1
X
´δ
, h
s1
Z
´δ
q :

return K

Z
1
Ð Z ¨X

´β
;

R
1
h Ð RhR

´β
g Z

1´γ0h
1α0

c
1
Ð H1pm,h1, Z1, R1g, R

1
h, A

1
q

dÐ c´ e c cÐ c
1
´ γ0 ´ γ1

z0 Ð r0 ` d ¨ x pd, e, z0, z1q if c ‰ d` e or

pRg ¨X
d
, Rh ¨ Z

d
q ‰ pg

z0 , h
z0 q or

A ¨W
e
‰ g

z1 : return K

d
1
Ð d` γ0; e

1
Ð e` γ1

z
1
0 Ð z0 ` α0; z

1
1 Ð z1 ` α1

return σ Ð pZ
1
, d
1
, e
1
, z
1
0, z

1
1q

Fig. 17. Protocol style figure for the signing protocol of BS2

52



BS3.Sppar “ pG, p, g,W,N,Kq, sk “ xq BS3.Uppar, pk “ X,mq

for i P rK ´ 1s : skiÐ$ Zp for pi, jq P rKs ˆ rNs :

skK Ð sk´
řK´1
i“1 ski ϕi,j Ð$ t0, 1u

λ
, µi,j Ð Hµpm,ϕi,jq

for i P rKs : pki Ð g
ski εi,j Ð$ t0, 1u

λ
, βi,j Ð Hβpεi,jq

z1, eÐ$ Zp;~r0 Ð$ ZKp ri,j Ð pµi,j , εi,jq, comi,j Ð Hcompri,jq

AÐ g
z1W

´e
h
1
i,j Ð Hpµi,jq, hi,j Ð h

1
i,j ¨ g

βi,j

comÐ pcomi,jqpi,jqPrKsˆrNs

hÐ phi,jqpi,jqPrKsˆrNs; ~J Ð Hccpcom, hq

if Checkpopenq “ 0 : abort openÐ p ~J, ppri,jqj‰~Ji
, comi, ~Ji

, hi, ~Ji
qiPrKsq

S̄ Ð
śK
i“1 h

ski
i, ~Ji

open

π Ð Π.Proveppg, phi, ~Ji
, pkiqiPrKs, S̄q, pskiqiPrKsq pkK Ð pk ¨

ź

pk´1
i

~RÐ pg~r0,1 , . . . , g~r0,K q if Π.Verifyppg, phi, ~Ji
, pkiqiPrKs, S̄q, πq “ 0 :

R̄Ð
śK
i“1 h

~r0,i

i, ~Ji

ppkiqiPrK´1s, S̄, π, ~R, R̄, A abort

pppk1iqiPrKs, S̄
1
, ~τq Ð$

ReRapppki, h
1

i, ~Ji
qiPrKs, S̄ ¨

śK
i“1 pk

´β
i, ~Ji

i q

α1, γ0, γ1 Ð$ Zp, ~α0 Ð$ ZKp

for i P rKs : ~R
1
i Ð

~Ripk
1
i
´γ0g

~α0,i

R̄1 Ð R̄S̄1´γ0
śK
i“1

~R
´β
i, ~Ji

i h1
i, ~Ji

~α0,i

A
1
Ð AW

´γ1g
α1

c
1
Ð H1pm, ph1

i, ~Ji
, pk1iqiPrKs, S̄

1, ~R1, R̄
1
, A
1
q

cÐ c
1
´ γ0 ´ γ1

dÐ c´ e c

for i P rKs : d, e, ~z0, z1

~z0,iÐ$ d ¨ ski ` ~r0,i if d` e ‰ c
1

or

Di P rKs, ~Ripk
d
i ‰ g~z0,i or

R̄S̄
d
‰

K
ź

i“1

h
~z0,i

i, ~Ji
or

g
z1 ‰ W

e
¨ A : abort

d
1
Ð d` γ0; e

1
Ð e` γ1

~z
1
0 Ð ~z0 ` ~α0 ` d ¨ ~τ ; z

1
1 Ð z1 ` α1

σ Ð pppk1i, ϕi, ~Ji
qiPrKs, S̄

1
, d
1
, e
1
, ~z
1
0, z

1
1q

return σ

Fig. 18. Protocol style figure of BS3. The proof system Π and the algorithms Check and ReRa are defined in Figures 8
and 10.

53


	Pairing-Free Blind Signatures from CDH Assumptions

