
There Is Always a Way Out! Destruction-Resistant Key Management: Formal
Definition and Practical Instantiation

Yuan Zhang
University of Electronic Science

and Technology of China

Yaqing Song
University of Electronic Science

and Technology of China

Shiyu Li
University of Electronic Science

and Technology of China

Weijia Li
University of Electronic Science

and Technology of China

Zeqi Lai
Tsinghua University

Qiang Tang
The University of Sydney

Abstract
A central advantage of deploying cryptosystems is that the

security of large high-sensitive data sets can be reduced to the
security of a very small key. The most popular way to man-
age keys is to use a (t,n)−threshold secret sharing scheme: a
user splits her/his key into n shares, distributes them among
n key servers, and can recover the key with the aid of any t
of them. However, it is vulnerable to device destruction: if
all key servers and user’s devices break down, the key will
be permanently lost. We propose a Destruction-Resistant Key
Management scheme, dubbed DRKM, which ensures the key
availability even if destruction occurs. In DRKM, a user uti-
lizes her/his n∗ personal identification factors (PIFs) to derive
a cryptographic key but can retrieve the key using any t∗

of the n∗ PIFs. As most PIFs can be retrieved by the user
per se without requiring stateful devices, destruction resis-
tance is achieved. With the integration of a (t,n)−threshold
secret sharing scheme, DRKM also provides portable key
access for the user (with the aid of any t of n key servers)
before destruction occurs. DRKM can be utilized to construct
a destruction-resistant cryptosystem (DRC) in tandem with
any backup system. We formally prove the security of DRKM,
implement a DRKM prototype, and conduct a comprehensive
performance evaluation to demonstrate its high efficiency. We
further utilize Cramer’s Rule to reduce the required buffer to
retrieve a key from 25 MB to 40 KB (for 256-bit security).

1 Introduction

Secure and efficient key management schemes are corner-
stones of any cryptosystem, which should satisfy the desired
requirements of availability (users can always correctly re-
cover their keys) and portability (users can access their keys
from multiple devices). To this end, a user always stores
her/his cryptographic keys in a repository [1–5]. Generally,
the repository can be either instantiated by deploying a lo-
cal device [3, 4] or subscribing to key access services from
a dedicated service provider [5]. Such a repository always

refers to a key server in literature [6, 7]. This paradigm has
been widely utilized in commercial systems, e.g., Microsoft
Azure [1] and Google Cloud Platform [2].

Despite the advantage of deploying a key server, a critical
issue—vulnerability of the system against device destruction—
arises naturally: as uncontrollable and unpredictable threats
towards the key server always exist in reality, the user has
to bear the risk that her/his keys would be permanently lost
if the key server is destroyed. We stress that device destruc-
tion is not just a theoretical concern, and recent incidents have
shown that it would happen with various manifestations which
typically consist of hardware destruction and software unavail-
ability [8–10]. Notably, a private key stored in a hard drive
was permanently unavailable to its owner due to a hard drive
breakdown, which directly caused that 7500 bitcoins (which
are worth more than $280 million today) could never be used
by the owner [8]. In addition, after the key server storing
users’ cryptographic keys is hacked by ransomware attacks,
all cryptographic services have been paralysed [9, 10]. As
such, remaining availability in case of device destruction has
become a primary requirement for key management schemes.

The most popular method to manage cryptographic keys
is the threshold secret sharing scheme [11] (as well as its
variants [12], where n key servers are deployed, and each of
them maintains a share of the key such that the key can be
recovered with any t shares. Such a key management scheme
provides a strong guarantee in terms of security and reliability:
even if an adversary compromises t−1 key servers, he cannot
get any information about the key; the destruction of any n− t
key servers cannot hamper the key recovery. Due to the theo-
retically desirable properties and practical natures, threshold
secret sharing schemes still serve as a key component for lots
of high-sensitive systems (e.g., vault systems [13]) in the cur-
rent age, even though the pioneering work was proposed by
Shamir [11] more than 40 years ago. However, the fundamen-
tal issue of remaining at least t key servers available under any
circumstance still exists. In reality, misfortunes causing si-
multaneous destruction of all key servers could still happen in
any system, no matter what high degree of reliable measures

1



would be taken. For instance, Amazon Web Services (AWS)
suffered a major outage [14] due to misoperations, where all
servers in the Amazon Simple Storage Service (S3) subsys-
tems broke down, and many popular websites, e.g., Netflix
and Slack, were affected [15]. Severe natural disasters also
would directly destroy local servers and make them perma-
nently unavailable to their users. A notable example is that the
eruption of the Tonga volcano [16] in 2022 destroyed critical
information infrastructure almost all over the country.

A natural way to mitigate this problem is to employ addi-
tional servers providing backup services: if some key servers
break down, backup servers can continue to handle users’
requests1. Nevertheless, this remedy cannot be applied for
key management, since multiple backups of keys increase the
danger of security breaches. This motivates us to consider the
following question:

Motivation question 1
Can we have a key management scheme that ensures key
availability even if all repositories (including users’ de-
vices and key servers) are destroyed?

The key observation behind our work is that destruction-
resistant key availability can only be achieved by a key gen-
eration mechanism that enables the user to recover the key
as needed without requiring any stateful2 device. With the
observation, we introduce two new concepts: reconstructable
secret and un-reconstructable secret, depending on whether
a stateful device is necessary for recovering the secret. We
then propose a practical key derivation mechanism to gen-
erate reconstructable secrets, where the key idea is to gen-
erate the reconstructable secret using users’ personal iden-
tification factors (PIFs)3. Specifically, we categorize PIFs
into three types: device-dependent ones, device-independent
ones, and storage-independent ones, where processing device-
dependent/device-independent PIFs (for cryptography pur-
poses), such as biometric characteristics [19–22], requires a
stateful/stateless device, and processing storage-independent
PIFs, e.g., passwords, does not even require some additional
storage. A systematic analysis is provided in Section 2. We
also notice that reconstructable secrets can be directly derived
from device/storage-independent PIFs. With reconstructable
secrets, it seems that a destruction-resistant key management
scheme can be trivially constructed: a user constructs a master
key from multiple reconstructable secrets and further utilizes

1To resist the destruction caused by natural disasters, the backup servers
can be deployed around the world. However, this approach may violate data
protection regulations in several countries [17, 18] and would be expensive
to deploy in practice.

2Stateful means that the device stores some secret information related to
the user.

3We utilize the terminology of “PIFs” here to distinguish from authen-
tication factors (AFs). In digital systems, a PIF is the factor that uniquely
identifies a user while an AF is considered as a special PIF that can be utilized
to construct secure and usable authentication schemes. In other words, some
PIFs cannot serve as AFs, e.g., DNA is a PIF but cannot be used to construct
usable authentication schemes (due to its inconvenience and high costs).

it to derive other cryptographic keys. However, the above
scheme is also confronted with the following issues.

Regarding functionality, the key recovery depends on a
strong assumption that the user needs to keep all device-
independent PIFs available under any circumstance. As a
counterexample, if the user has utilized a fingerprint to gener-
ate the master key, when large-scale disasters occur, the user’s
finger may be injured, and consequently the user cannot re-
cover the master key until the finger heals.

Regarding convenience, the portability is also lost, since
“device-independent” is not equivalent to “portable” (even
if a PIF is device-independent, the user may not retrieve it
anytime and anywhere). For instance, if a user has a camera
capable of collecting irises, she/he can derive a secret from the
iris. Subsequently, the user can only recover the secret when
she/he equips such a specific-purpose device (that may not be
the same as the previous one but has the same functionalities).
Such a secret fails to achieve portability, and migrating it may
cause new issues in terms of security and efficiency.

The above limitations further motivate us to consider the
following question:

Motivation question 2
Can we have a destruction-resistant key management
scheme that enables key recovery from a subset of orig-
inal PIFs while achieving portability before destruction
occurs?

We stress that the conventional threshold secret sharing [11]
and its distributed variants [12] fail to achieve the key recov-
ery from a subset of original PIFs, since they essentially share
the same paradigm: first determine the secret and then split
it into multiple shares; any threshold number of shares can
reconstruct the secret. However, in destruction-resistant key
management introduced before, the “shares” (i.e., the recon-
structable secrets) are pre-determined by PIFs, and the master
key is derived from them. To achieve the key recovery from
a subset of original PIFs, a threshold key derivation mech-
anism should be designed, such that the master key can be
“derived” from all pre-determined “shares” but can be recov-
ered with only the threshold number of them. (By comparison,
the “shares” are determined by PIFs rather than the master
key as in conventional threshold secret sharing.)

To achieve portability, the user can derive n different recon-
structable secrets from different PIFs, employ n key servers,
and let each key server maintain one secret. By doing so, the
user can access the master key with the aid of key servers in a
portable way4 before the destruction occurs. Whereas, such an
approach is vulnerable to trawling attacks [23]. Specifically,
a PIF is not only used for generating the master key in one
system but also used in other systems for other cryptographic
purposes, e.g., secure authentication. In the above approach,
the key servers can compromise enough information about the
user’s PIFs from the reconstructable secrets, which enables

4The user can authenticate herself/himself with portable PIFs.

2



adversarial key servers to impersonate the user to access other
services where the same PIFs are used for authentication.

To the best of our knowledge, we still lack a destruction-
resistant key management scheme that enables key recovery
from a subset of original PIFs after destruction occurs while
achieving portability before destruction occurs.

1.1 Our contributions

In this paper, we propose a Destruction-Resistant Key
Management scheme, dubbed DRKM, which goes one step
beyond existing schemes [11, 12]. Specifically, our contribu-
tions are summarized as follows.
Concepts of storage/device-independent PIFs. We first

propose three new concepts about personal identifica-
tion factors (PIFs)—storage-independent PIFs, device-
independent PIFs, and device-dependent PIFs—based on
whether a PIF can be retrieved by the user per se without
requiring any storage or a stateful device.

Concepts of (un-)reconstructable secrets. We introduce
two concepts about secrets—reconstructable secrets and
un-reconstructable secrets—with formal definitions. We
point out that reconstructable secrets can be directly de-
rived from storage/device-independent PIFs. We also
present a series of methods to derive reconstructable
secrets from device-dependent PIFs in tandem with
storage/device-independent PIFs under certain conditions.

Construction for destruction-resistant key management.
We propose DRKM, a destruction-resistant and portable
key management scheme. To achieve destruction resis-
tance, DRKM utilizes a threshold key derivation mech-
anism to enable a user to derive a master key from n∗

PIFs (which include storage/device-independent ones and
might include device-dependent ones) during the setup
phase and to recover the master key using any t∗ of the
n∗ PIFs after destruction occurs. To achieve portability,
DRKM adopts a multi-server-aided paradigm and utilizes
a conventional (t,n)-threshold secret sharing scheme (t
and n are independent of t∗ and n∗) to distribute the mas-
ter key among n key servers. As long as any t of n key
servers are available, the user can access the master key
in a portable way (i.e., she/he does not maintain any se-
cret in local devices.). DRKM is compatible with exist-
ing backup systems and can be directly extended to a
destruction-resistant cryptosystem (DRC) in tandem with
any commercial cloud storage service, such as Google
Drive [24], Dropbox [25].

Formal security proofs and prototype implementation. We
provide formal security definitions of DRKM and prove
its security. Particularly, we prove that an adversary, who
compromises t−1 key servers and t∗−1 reconstructable
secrets, cannot get any information about the master key.
We implement a DRKM prototype and conduct a com-
prehensive performance evaluation which shows that it

would take about 120 ms to derive a master key from 10
popular PIFs and take less than 5 ms to recover the mas-
ter key from any t∗ secrets with t∗ = 12 and n∗ = 20. In
addition, we utilize Cramer’s Rule [26] to significantly
reduce the required buffer to retrieve a key from 25 MB
to 40 KB (for 256-bit security).

We demonstrate the viability of DRKM for two existing
applications that can benefit from the desirable property of de-
struction resistance. One of two applications extends to DRCs.
We show how DRKM supports these applications without
changing the current system architecture. Since destruction
resistance is a fundamental requirement of any cryptosystem,
we believe that DRKM has further useful applications.

1.2 Technical overview

The core of achieving destruction resistance is to be free
from the reliance on stateful devices. In Section 2, we divide
PIFs into three categories: storage-independent PIFs, device-
independent PIFs, and device-dependent PIFs. A user can
directly derive reconstructable secrets from storage/device-
independent PIFs, and these secrets are independent of any
stateful devices. We also present a series of methods to de-
rive reconstructable secrets from device-dependent PIFs in
conjunction with storage/device-independent PIFs.

With the above methods, a user first derives n∗ recon-
structable secrets from PIFs and then aggregates these secrets
to obtain a master key. The challenge in designing DRKM is
to achieve threshold retrieval for the aggregated master key,
i.e., a master key is aggregated from n∗ pre-determined se-
crets and can be retrieved from any t∗ of them. To address the
challenge, we utilize a threshold key derivation mechanism.
Specifically, the user first constructs a n∗-degree polynomial
p(x) using the n∗ secrets as its roots. In this polynomial, the
constant term serves as the master secret, and the coefficients
of p(x) of degree n∗−1 down to t∗ are published as the aux-
iliary information aux. With t∗ secrets and aux, the degree of
the polynomial p(x) can be reduced from n∗ to t∗− 1. The
user can compute the coefficients of p(x) from degree t∗−1
down to 0 so as to obtain the master key.

We also integrate an aggregation-then-split mechanism
into DRKM to achieve portable key access in normal times
against trawling attacks. The master key derived from the
n∗ reconstructable secrets is further split into n shares using
a conventional (t,n)-threshold secret sharing scheme, and
each key server maintains a share. Adversarial key servers
cannot compromise any information about the reconstructable
secrets from the secret shares. This yields the final DRKM:
before the destruction occurs, the user can recover the master
key with the aid of key servers in a portable way; once the
destruction occurs (i.e., the key servers and the user’s devices
are destroyed), the user can first retrieve any t∗ reconstructable
secrets using all available PIFs at that time and recover the
master key from them. In the extreme case where all devices,

3



key servers, and even aux are unavailable, the user can also
recover the master key from n∗ original PIFs. A destruction-
resistant cryptosystem (DRC) can be developed by directly
integrating DRKM and a full-fledged backup system.

1.3 Comparison with concurrent work

A very recent work concurrent to DRKM (i.e., threshold multi-
factor key derivation function, short for TMFKDF) proposed
by Nair et al. [27] could be a partial solution to construct
a destruction-resistant key management scheme: a user first
randomly chooses a master key, splits it into multiple shares
using a conventional threshold secret sharing scheme and
encrypts each share under a PIF (using some key derivation
functions).

Essentially, TMFKDF inherits the threshold property of the
conventional threshold secret sharing scheme, where the mas-
ter key is randomly chosen by the user rather than determined
by PIFs. Therefore, some metadata, e.g., the encrypted shares,
is inherently needed for key recovery, and dedicated storage
for metadata is always required. By comparison, DRKM is
completely orthogonal to the conventional sample-share-and-
reconstruct idea as in TMFKDF. With DRKM, the user can
also recover the master key from n∗ reconstructable secrets
even if any storage is unavailable.

In DRKM, it seems that some metadata is also required in
some cases. For instance, if the user derives reconstructable
secrets from biometric characteristics [19–22], some meta-
data, e.g., error correcting code [28, 29], is required to ensure
the consistency of secrets in different derivations. However,
we stress that such metadata in DRKM is totally different
from ciphertext in TMFKDF due to the following reasons.

The metadata in DRKM can be shared among different
systems in which PIFs are utilized for other purposes, e.g.,
user authentication. As such, dedicated storage is not required,
and the user can retrieve the metadata from other systems on
demand. However, for TMFKDF, dedicated storage for cipher-
text cannot be shared among other systems. Furthermore, it is
promising to free from metadata in DRKM by utilzing new
PIFs where deriving secrets from them does not require any
storage. A detailed comparison is provided in Section 5.4.

Roadmap. The remainder of this paper is organized as
follows. We introduce the concepts of storage/device inde-
pendent PIFs in Section 2. We propose DRKM in Section 3
and give the formal security proof in Section 4. In Section 5,
we detail the implementation and evaluate the performance
of DRKM. Finally, we draw the conclusion and outlook for
the future research directions in Section 6.

2 PIFs and reconstructable secrets

2.1 Definitions of PIFs

We analyze popular PIFs and give a brief introduction to
them in Appendix C, referring to “something the user knows”,
“someone the user is”, and “something the user has” [30]. In-
tuitively, a PIF can uniquely identify a user, and thereby each
PIF indicates a sole secret utilized to distinguish different
PIFs. We observe that the utilization of some PIFs has to
depend on stateful hardware devices that maintain the nec-
essary state information, e.g., hardware tokens. Additionally,
a succinct description of PIF is required, which includes the
directions for use and necessary auxiliary information. The
secret is private, and the description is public. We formally
define a general PIF as follows.

Definition 1. A PIF is a triple of arguments (sta,µ,desp),
where sta is state information, µ is a unique secret, and desp
is a description of the PIF, including the directions for use
and necessary auxiliary information.

We take a SIM card [31] as an example: sta represents
the SIM card itself, µ is the secret key fused in it, and desp
includes necessary auxiliary information (e.g., public parame-
ters and authentication protocols used in the SIM card).

With the previous analyses, we can heuristically divide the
above PIFs into three categories—storage-independent ones,
device-independent ones, and device-dependent ones. In real-
ity, passwords and PIN codes can be reconstructed from users’
memory and are inherently independent of any personal or
public storage. Biometric characteristics can be reconstructed
by specific-purpose devices (e.g., cameras used to collect
irises) instead of stateful devices. For device-dependent PIFs
(e.g., SIM cards, hardware tokens, and Intel SGX), once a
stateful device is destroyed, the corresponding PIF cannot be
recovered by the user per se.

Obliviously, storage-independent PIFs are also device-
independent but device-independent ones need public infor-
mation for reconstruction and are dependent on public storage.
We capture the storage independence, device independence,
and device dependence of PIFs by the following definitions,
respectively.

Definition 2. (Storage-independent PIF). A storage-
independent PIF is stateless and can be represented by a
triple of arguments (⊥,µ,desp), where ⊥ represents that the
generation and maintenance of µ do not rely on any public or
personal storage.

Definition 3. (Device-independent PIF). A device-
independent PIF is stateless and can be represented by a
triple of arguments (info,µ,desp), where the generation and
maintenance of µ is independent of devices and only rely on
some public storage info.

4



Definition 4. (Device-dependent PIF). A device-dependent
PIF is stateful and can be represented by a triple of arguments
(sta,µ,desp), where the generation and maintenance of µ
depend on a hardware device specified by sta.

We observe that all biometric characteristics are device-
independent, as they are determined by a user per se. However,
they may not totally independent of storage, since some public
information, e.g., error correcting code [28, 29], is needed
when utilizing them. In cryptographic applications, how to
make biometric characteristics free from dedicated storage is
a fascinating open problem.

2.2 Reconstructable secrets
We further consider “reconstructable” secrets. Informally, a
reconstructable secret (equivalent to a reconstructable crypto-
graphic key in the context of our paper) is available without
a specified stateful device and can be accessed anytime and
anywhere. Reconstructable secrets generalize the notion of
storage/device-independent PIFs, which is captured by Defini-
tion 5. For completeness, we also define an un-reconstructable
secret in Definition 6.

Definition 5. A bit-string s is a reconstructable secret iff
it satisfies that s can be represented by s = Fsta(X) where
sta is device-independently retrievable state information, X
is a random distribution, and F is a key derivation function
(KDF).

Definition 6. A bit-string s is an un-reconstructable secret
iff it satisfies that s can be represented by s = Fsta(X) where
sta is device-dependently retrievable state information, X is
a random distribution, and F is a KDF.

For reconstructable secrets, sta is independent of de-
vices and (generally) public, while sta corresponding to un-
reconstructable secrets depends on devices that are only main-
tained by the user per se. In order to emphasize this difference,
we write sta as superscript of F in Definition 5, while sta is
subscript in Definition 6.

In reality, reconstructable secrets can be trivially derived
from device-independent PIFs using any KDF [32–34]. For
instance, fuzzy extractor algorithms [28,29] can be utilized to
extract a secret from a feature template of biometric charac-
teristics. The secret is reconstructable, since fuzzy extraction
algorithms ensure that the same secret can be extracted from
similar but not identical feature templates. Directly (only)
using passwords and PINs as reconstructable secrets cannot
achieve a reasonable security guarantee due to their inher-
ently low entropy. To mitigate this problem, we can integrate
multiple PIFs to derive a high min-entropy reconstructable
secret. With the above analysis, we draw Theorem 1.

Theorem 1. A secret s = Fsta({PIF1,PIF2, . . . ,PIFm}) is
reconstructable if PIF1,PIF2, . . . ,PIFm are independent of

storage or devices, , where sta specifies public information
info for device-independent PIFs, and F is a KDF. If all
PIF1,PIF2, . . . ,PIFm are storage-independent, s can be rep-
resented by s = F⊥({PIF1,PIF2, . . . ,PIFm}), where ⊥ repre-
sents that the derivation of s does not rely on any public or
personal storage.

It seems impractical to derive a reconstructable secret from
a device-dependent PIF, since a secret derived from a device-
dependent PIF cannot be recovered by the user if the device
is destroyed. However, we observe that a conditional recon-
structable secret can be generated by a “hybrid model”, i.e.,
we can derive a reconstructable secret from a special class of
device-dependent PIFs in tandem with some storage/device-
independent PIF(s) under a specific assumption.

For the device-dependent PIFs introduced in Appendix C,
i.e., SIM cards, hardware tokens, and SGX, they essentially
share the same paradigm, where a secret generated by the
manufacturer is fused in the device. The user can only utilize
the secret to compute authentication credentials but cannot
extract it. We observe that if the underlying authentication
scheme is based on the symmetric-key cryptographic prim-
itives (e.g., MAC), the server will store the same secret that
is fused in the device after registration. In this case, once the
device is destroyed, the server (or the device’s manufacturer)
still stores the secret. As such, the secret can be recovered
with the aid of the server or the manufacturer even if device
destruction occurs. These enable us to conclude:

Theorem 2. Assume a secret s = Fsta({PIF1,PIF2}), where
PIF1 = (⊥ /info,µ,desp) is storage/device-independent,
PIF2 = (sta

′
,µ,desp) is device-dependent. s is condi-

tionally reconstructable if sta is conditionally device-
independent, sta and sta

′
are independent, and s =

Fsta({PIF1,(sta
′
,µ,desp)}) = Fsta({PIF1,(⊥,µ,desp)}) is

satisfied.

In the following, we discuss how to derive a conditionally
reconstructable secret from each of the device-dependent PIFs
introduced in Appendix C.

SIM card. As shown in Figure 1, a user can utilize a SIM
card to compute a MAC on a storage/device-independent
PIF and set the MAC as the conditionally reconstructable
secret derived from the SIM card. Since MAC is existentially
unforgeable, and the PIF is secretly maintained by the user,
the MAC-based secret is only known to the user. In addition,
as the secret fused in the SIM card is also maintained by the
cellular communication service provider, the user can recover
the MAC-based secret with the aid of the provider.

Hardware token. For HMAC-based hardware tokens (as
shown in Figure 2), the user can derive a conditionally re-
constructable secret in the same way as that from the SIM
card. However, ECDSA-based hardware tokens (as shown in
Figure 3) cannot be utilized to derive a reconstructable secret,
since the manufacturer does not maintain the secret stored

5



User

ID,	RAND,	AUTH

Server

SIM card
𝐾

𝐼𝐷 𝑀𝐴𝐶 = 𝑓1	(𝐾, 𝑆𝑄𝑁||𝑅𝐴𝑁𝐷)
𝐴𝐾 = 𝑓5(𝐾, 𝑅𝐴𝑁𝐷)
𝐴𝑈𝑇𝐻 = 𝑆𝑄𝑁 ⊕𝐴𝐾	||	𝑀𝐴𝐶

𝐴𝐾 = 𝑓5(𝐾, 𝑅𝐴𝑁𝐷)
𝑋𝑀𝐴𝐶 = 𝑓1	(𝐾, 𝑆𝑄𝑁||𝑅𝐴𝑁𝐷)

𝑋𝐴𝑈𝑇𝐻 = 𝑆𝑄𝑁⊕ 𝐴𝐾	||	𝑀𝐴𝐶
𝑋𝑀𝐴𝐶	?= 𝑀𝐴𝐶

𝑋𝑅𝐸𝑆 = 𝑓2(𝐾, 𝑅𝐴𝑁𝐷)

𝑅𝐸𝑆 = 𝑓2(𝐾, 𝑅𝐴𝑁𝐷)

𝑋𝑅𝐸𝑆
𝑋𝑅𝐸𝑆	?= 𝑅𝐸𝑆

Success/Fail

𝐾

Figure 1: User authentication based on
SIM cards.

Hardware token

User Server

𝑆𝑒𝑒𝑑 𝑆𝑒𝑒𝑑

𝑇𝑖𝑚𝑒 𝑇𝑖𝑚𝑒

Request

𝑂𝑇𝑃 = 𝐻𝑀𝐴𝐶(𝑠𝑒𝑒𝑑, 𝑇𝑖𝑚𝑒)𝑂𝑇𝑃′ = 𝐻𝑀𝐴𝐶(𝑠𝑒𝑒𝑑, 𝑇𝑖𝑚𝑒)
𝑂𝑇𝑃′

𝑂𝑇𝑃3?= 𝑂𝑇𝑃Success/Fail

c

Figure 2: User authentication based on
RSA SecurIDs.

U2F token

User Server

𝑠𝑘 𝑝𝑘

Request

Generate 𝑁𝑜𝑛𝑐𝑒

𝜎 = 𝑆𝑖𝑔𝑛./(𝑁𝑜𝑛𝑐𝑒)
𝑁𝑜𝑛𝑐𝑒

Success/Fail
0/1 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘, 𝜎)

𝜎

Figure 3: User authentication based on
U2F tokens.

in the user’s hardware token. However, we notice that for
some existing hardware tokens, this can be achieved by uti-
lizing a well-known attack, i.e., the backdoor attack released
by Snowden [35], where this approach actually does not need
the assistance from the manufacturer [36].

Intel SGX. The Root Provisioning Key (PRK) fused in
Intel SGX is shared by a user and Intel. Intel SGX archi-
tecture provides the EGETKEY instruction to derive a key
from the RPK [37–39]. The user initializes an enclave for a
storage/device-independent PIF and invokes EGETKEY for
the enclave. The key output by the EGETKEY is the recon-
structable secret derived from the Intel SGX. When recon-
structing the secret, the user only needs to establish an enclave
for the previous storage/device-independent PIF and gets the
secret by calling the EGETKEY instruction.

Limitations of hybrid model. Regarding security, the user
has to fully trust the servers or the manufacturers. Malicious
servers and manufacturers may abuse the user’s secret. Re-
garding reliability, the reconstructable secrets derived by the
hybrid method are conditionally reconstructable. The servers
or manufacturers have another mechanism to authenticate the
user when the user’s devices are destroyed, e.g., real-name
systems. The reconstructability depends on the reliability
of the servers or the manufacturers. Once the servers and
manufacturers are destroyed, the user cannot recover the re-
constructable secrets.

It is worth stressing that the above limitations are not con-
tradictory to our primary motivation of resistance against
device destruction due to the following reasons. First, the man-
ufacturers and cellular communication service providers play
an important role in constructing critical infrastructures, and
thereby they would take lots of measures to ensure the reliabil-
ity and security of their devices. Second, if the manufacturers
and cellular communication service providers misbehave, it
would cause a huge loss. As such, both the manufacturers and
cellular communication service providers bear rigorous ac-
countability from governments in reality. By comparison, the
measures taken by application service providers and users to
improve the reliability and security of key servers and devices
are always weak, and the accountability is somewhat trivial.

3 The proposed DRKM

3.1 Notation

We utilize ℓ to denote the security parameter, and |a| denotes
the absolute value of a. A⃗ denotes a set {A1, . . . ,An}. [1,n]
denotes the set {1,2, . . . ,n}. a $←A denotes that a is uniformly
chosen from A.

3.2 Definition of DRKM

DRKM consists of three entities: a user U, a set of key servers
K⃗ S = {K S 1,K S 2, . . . ,K S n}, and a backup system. We in-
stantiate the backup system using a cloud server CS . There
are four algorithms in DRKM, Setup, Managing, Access,
and Recovery.
• PP← Setup(ℓ).
On input the security parameter ℓ, this algorithm returns

public parameters PP, where two thresholds, i.e., (t,n) and
(t∗,n∗), are included. (t,n) is independent of (t∗,n∗). The
larger t and t∗ are, the stronger the security guarantee is but
the higher U’s costs to access and recover the keys are.
• {S,s1, . . . ,sn,aux}←Managing(PIF1, . . . ,PIFn∗ ,sta).
On input n∗ PIFs {PIF1, . . . ,PIFn∗} and (optional) public

state information sta, this algorithm returns the master key
S, n shares {s1, . . . ,sn} of S, and auxiliary information aux.
U generates the master key S using {PIF1, . . . ,PIFn∗}, sends
the secret share si to K S i, encrypts other keys with S and
outsources the ciphertexts and aux to CS .
• S← Access(si1 , . . . ,sit ).
On input t shares {si1 , . . . ,sit}, this algorithm returns S.

U gets {si1 , . . . ,sit} from the key servers and computes S,
decrypts the ciphertexts downloaded from CS and access
other keys.
• S← Recovery(PIFi1 , . . . ,PIFit∗ ,aux,sta).
On input t∗ PIFs {PIFi1 , . . . ,PIFit∗}, aux, and (optional)

sta, this algorithm returns the master key S. If the number of
available key servers is less than t, U utilizes available PIFs
{PIF1, . . . ,PIFt∗} to recover S.

6



Security: IND-KeyA1
(ℓ)

1: {S,s1, . . . ,sn,aux}←Managing(PIF1, . . . ,PIFn∗ ,sta)

2: S⋆ $←{0,1}|S|; b $←{0,1}
3: If b = 1, Key = S; else, Key = S⋆

4: b′← A1(Key,si1 , . . . ,sit−1 ,PIFi1 , . . . ,PIFit∗−1 ,aux,sta)

5: If b′ = b, return 1
6: Else, return 0.

Destruction resistance: IND-DRA2(ℓ)

1: A2 chooses a cryptographic operation cop and a chal-
lenge chal

2: {i1, . . . , it∗}
$← [1, t∗]

3: Fideal : result0 = cop(S,chal);
Freal : S⋆← Recovery(PIFi1 , . . . ,PIFit∗ ,aux,sta),
result1 = cop(S⋆,chal)

4: b $←{0,1} and return resultb
5: b′← A2(resultb)
6: If b′ = b, return 1
7: Else, return 0.

Figure 4: The security of DRKM. The text in gray is the
optional input. If n∗ PIFs are storage-independent, sta is not
needed as input referring to Theorem 1.

3.3 Security of DRKM

The security goals of DRKM are that (1) regardless of any
information an adversary already has, he cannot extract any
information about a user’s master key S and PIFs used for key
derivation from the interaction messages between the user
and other entities; (2) a user can recover her/his master key
even if all her/his devices and key servers break down.

We formally define the security of DRKM in the following,
where the security experiments are provided in Figure 4. In
Definition 7, we consider the adversary who can (1) corrupt
t∗− 1 PIFs used to derive the master key; (2) compromise
t−1 key servers and the cloud server, but still learn nothing
about the master key. In reality, destruction can be caused
by multiple incidents, e.g., misoperations performed by users
or service providers, large-scale disasters, and subtle attacks
launched by adversaries. The property of destruction resis-
tance is captured by Definition 8, where we consider that
the adversary can specify which t∗ PIFs are used to recover
the master key (which simulates that other n∗− t∗ PIFs are
destroyed), but cannot hamper the key recovery.

Definition 7. (Security). DRKM is secure against any prob-
abilistic polynomial-time (PPT) adversary A1 who compro-
mises t−1 key servers and t∗−1 PIFs iff there is a negligible

function negl such that

Pr[IND-KeyA1
(ℓ) = 1]≤ 1

2
+negl(ℓ).

Definition 8. (Availability under destruction). DRKM is
destruction-resistant against any PPT adversary A2 who de-
stroys all key servers and a user’s devices iff

Pr[IND-DRA2(ℓ) = 1] =
1
2
.

3.4 Construction of DRKM
A user U, a set of key servers K⃗ S = {K S 1,K S 2, . . . ,K S n},
and a cloud server CS are involved in DRKM. K⃗ represents
a set of keys to be well maintained by U. We assume that U
has n∗ reconstructable secrets which are derived from

−−→
PIF =

{PIF1,PIF2, . . . ,PIFn∗}.5.
Setup. With the security parameter ℓ, public parameters

PP = {p, t∗, t,n∗,n,Enc/Dec(·),H,F} are determined, where
p is a prime, t∗ and t are two thresholds, n∗ is the number
of PIFs of U, n is the number of the key servers, Enc/Dec(·)
is a secure symmetric encryption/decryption algorithm, H :
{0,1}∗→ {0,1}l and F are KDFs that can be initialized by
secure hash functions.

Managing. U utilizes her/his PIFs to manage K⃗ as follows.

• For PIFi ∈
−−→
PIF and i = 1,2, . . . ,n∗, U computes s∗i as

follows.

- If PIFi is storage/device-independent, compute s∗i =
Fsta(PIFi) by Theorem 16.

- If PIFi is device-dependent, compute s∗i =
Fsta({PIFj,PIFi}) by Theorem 2, where i ̸= j
and PIFj ∈

−−→
PIF is storage/device-independent.

• U generates a polynomial

p(x) =
n∗

∏
i=1

(x− s∗i ),

such that p(s∗i ) = 0 for i = 1,2, . . . ,n∗.

• U outputs the coefficients of p(x) of degree n∗−1 down
to t∗ as the auxiliary information aux, i.e.,

aux = {−
n∗

∑
i=1

s∗i , ∑
A⊆[1,n∗]
|A|=2

(∏
i∈A

s∗i ),− ∑
A⊆[1,n∗]
|A|=3

(∏
i∈A

s∗i ),

. . . ,(−1)n∗−t∗ · ∑
A⊆[1,n∗]
|A|=n∗−t∗

(∏
i∈A

s∗i )}.

5In reality, the number of PIFs can be different from that of reconstructable
secrets. For the sake of simplicity, we assume that they are equal.

6DRKM supports to derive a secret from multiple PIFs. In the construc-
tion, we only describe how to derive a secret from a single storage/device-
independent PIF for clarity.

7



• U computes Seed = ∏
n∗
i=1 s∗i , S = H(Seed) and utilizes

S to encrypt K⃗ as C⃗ = Enc(S, K⃗).

• U uniformly chooses a1, . . . ,at−1
$← Zp and generates a

polynomial f (x) = S+a1x+ · · ·+at−1xt−1 over Zp with
degree at most t−1.

• U computes si = f (i) for i = 1,2, . . . ,n.

• U establishes a secure channel with K S i and sends si to
K S i. U outsources {aux,C⃗} to CS .

• K S i securely stores si.

Access. U accesses K⃗ with the aid of K⃗ S as follows.

• U establishes a secure channel with K S i, and K S i sends
si to U via the secure channel. This can be achieved by
utilizing an authentication scheme based on

−−→
PIF .

• Upon receiving t secret shares (denoted by {si1 , . . . ,sit}
for the sake of brevity), U computes wil = ∏1≤ j≤t

j ̸=l

i j
i j−il

for l = 1, . . . , t and then computes S = ∑
t
l=1 wil sil .

• U downloads C⃗ from CS and computes K⃗ = Dec(S,C⃗).

Recovery. When the number of available key servers is
less than t, U recovers K⃗ with available PIFs as follows.

• U derives t∗ secrets from available PIFs ⊆−−→PIF . For the
sake of brevity, we denote the secrets by {s∗1, . . . ,s∗t∗}.

• U downloads {aux,C⃗} from CS .

• U generates a new polynomial

p1(x) = xn∗ +
n∗−t∗

∑
i=1

auxi · xn∗−i,

where auxi denotes the i-th element in aux.

• U solves Equation (1) to obtain bt∗−1, · · · ,b0.
p1(s∗1) = b0 +b1s∗1 + · · ·+bt∗−1s∗1

t∗−1

· · ·

p1(s∗t∗) = b0 +b1s∗t∗ + · · ·+bt∗−1s∗t∗
t∗−1

(1)

• U computes Seed = |b0|, S = H(Seed) and computes
K⃗ = Dec(S,C⃗).

Note that Equation (1) can be represented by 1 s∗1 · · · s∗1
t∗−1

· · · · · · · · · · · ·
1 s∗t∗ · · · s∗t∗

t∗−1

 ·
 b0
· · ·

bt∗−1

=

 p1(s∗1)
· · ·

p1(s∗t∗)

 .

To get b0, U only needs to compute b0
· · ·

bt∗−1

=

 1 s∗1 · · · s∗1
t∗−1

· · · · · · · · · · · ·
1 s∗t∗ · · · s∗t∗

t∗−1

−1

·

 p1(s∗1)
· · ·

p1(s∗t∗)

 .

3.5 Remark
In practice, directly solving Equation (1) may result in buffer
overflows, which further causes key recovery failure, since s∗i
is too long (at least 256 bits). Essentially, we need to solve
the following system of non-homogeneous linear equations:

 1 s∗1 · · · s∗1
t∗−1

· · · · · · · · · · · ·
1 s∗t∗ · · · s∗t∗

t∗−1

 ·
 b0
· · ·

bt∗−1

=

 p1(s∗1)
· · ·

p1(s∗t∗)

 ,

where b0, . . . ,bt∗−1 are unknown. We present an efficient al-
gorithm to solve the equation as follows.

We set

A =

 1 s∗1 · · · s∗1
t∗−1

· · · · · · · · · · · ·
1 s∗t∗ · · · s∗t∗

t∗−1

 ,

and notice that A is a t∗× t∗ Vandermonde matrix.
Consider the determinant of A as

det(A) = ∏
1≤ j≤i≤t∗

(s∗i − s∗j).

When s∗1, . . . ,s
∗
t∗ are different, det(A) ̸= 0. According to

Cramer’s Rule [26], iff det(A) ̸= 0, the above system of non-
homogeneous linear equations has a unique solution:(

det(A1)

det(A)
, · · · , det(At∗)

det(A)

)T

, (2)

where

A j =

 1 s∗1 · · · s∗1
j−1 p1(s∗1) s∗1

j+1 · · · s∗1
t∗−1

· · · · · · · · · · · · · · · · · · · · ·
1 s∗t∗ · · · s∗t

j−1 p1(s∗t ) s∗1
j+1 · · · s∗t∗

t∗−1


for j = 1, . . . , t∗.

Assume the algebraic complements of A are {Ai j}, where
1≤ i, j ≤ t∗. Then we have

det(A j) =
t∗

∑
i=1

p1(s∗i )det(Ai j).

In the implementation, directly computing A−1 would take
≈ 25 MB buffer when we set ℓ= 256 bits and t∗ = 5, which
always causes buffer overflow. By using Equation (2), we
can efficiently solve Equation (1) without errors, where the
required buffer is reduced to ≈ 40 KB.

3.6 Initializing encryption
In DRKM, Enc/Dec(·) is initialized by a symmetric encryp-
tion/decryption algorithm. In reality, Enc/Dec(·) can also be

8



Security: eIND-KeyA1
(ℓ)

1: {s∗1, . . . ,s∗n∗} are determined

2: Compute Seed = ∏
n∗
i=1 s∗i

3: Compute S = H(Seed) and aux
4: a1, . . . ,at−1← Zp

5: f (x) = S+a1x+ · · ·+at−1xt−1

6: si = f (i), i = 1,2, . . . ,n

7: S⋆ $←{0,1}|S|; b $←{0,1}
8: If b = 1, Key = S; else, Key = S⋆

9: b′← A1(Key,si1 , . . . ,s
∗
it−1

,s∗1, . . . ,s
∗
t∗−1,aux)

10: If b′ = b, return 1; else, return 0

Figure 5: The eIND-KeyA1
(ℓ) game.

initialized by public-key encryption algorithms. We discuss
their pros and cons in the following.

Private-key encryption. The computation costs of private-
key encryption are much less than that of public-key one. In
addition, U can decrypt K⃗ on demand when utilizing the CTR
mode. However, when a user generates a new key, U has to
recover the master key S and then encrypt the new key, which
introduces extra costs.

Public-key encryption. Some public-key encryption al-
gorithms, e.g., ElGamal encryption, support to update the
ciphertexts without decryption when the public/private keys
are updated (i.e., support for proxy re-encryption). Specifi-
cally, when U updates S, U does not need to first decrypt
C⃗ with the previous private key and then encrypt K⃗ with the
newly-generated public key. U can directly utilize the proxy
re-encryption to update the ciphertexts of K⃗. What is more,
When U has a newly-generated key, U can directly utilize
the public key to encrypt the key without recovering S.

Deploying DRKM in two cases. DRKM is compatible with
existing cryptosystems. In reality, U has two methods to
deploy DRKM. For registered cryptosystems, U can utilize
S to encrypt existing keys and outsource the ciphertexts to
a backup system; for a new cryptosystem, a more efficient
method is to directly derive various new keys from S with
mature key derivation functions [40, 41]. In this case, the user
does not need to perform encryption or decryption operations.

Key rotation. Although an adversary who compromises less
than t∗ PIFs cannot get any information about the master key,
the PIF leakage would reduce the security level of DRKM.
Therefore, the master key should be updated after some PIFs
are leaked. U can re-execute the algorithms in DRKM to
rotate the master key using undisclosed PIFs. In this way,
an adversary who compromises some previously used PIFs
cannot get any information about the updated master key.

4 Security analysis

4.1 eIND-KeyA1(ℓ)

The security of DRKM relies on the entropy of the master
key derived from the PIFs. Assume that {PIF1, · · · ,PIFn∗}
are utilized to compute the master key, where the min-entropy
of s∗i derived from PIFi is xi and x1 ≤ x2 ≤ ·· · ≤ xn∗ . We
assume that an adversary A1 has corrupted t−1 key servers
and obtained t∗− 1 secrets {s∗1, . . . ,s∗t∗−1}. A1 cannot break
the security of DRKM, i.e., DRKM satisfies Definition 7,
which is captured by Theorem 3.

Theorem 3. Assuming H is a secure KDF, DRKM is secure
against any PPT adversary A1 who compromises up to t−1
key servers and t∗−1 secrets {s∗1, . . . ,s∗t∗−1}, i.e., A1 cannot
get any information about S from t − 1 shares and t∗ − 1
secrets.

Proof. To prove Theorem 3, we define the eIND-KeyA1
(ℓ)

game as shown in Fig. 5. eIND-KeyA1
(ℓ) outputs 1 iff b = b′,

i.e., A1 can distinguish S from a random string. We prove the
theorem as a series of games.

Game 1: this game is the same as the eIND-KeyA1
(ℓ) game

with the exception of one difference: A1 is given t−1 random
numbers chosen from Zp rather than t−1 shares. If there is
a difference in A1 success probability between Game 1 and
eIND-KeyA1

(ℓ), it indicates that A1 can get extra information
about the S from t−1 shares.

In DRKM, we utilize Shamir’s threshold secret sharing
scheme to share the master key S among the key servers. If
the master key S is l-bit, the probability of A1 successfully
guessing S is 2−l without any auxiliary information.

In DRKM, we have S = f (0) = ∑
t
i=1 wisi. Furthermore,

we have wist = S−∑
t−1
i=1 wisi. We notice that any value of S

corresponds to a unique value of st . If A1 correctly guesses
st , he can get the correct S. Next, we prove that {s1, . . . ,st−1}
does not imply any information about st . These points
(1,s1), . . . ,(t,st) correspond to a unique function f (x) =
S+a1x+ · · ·+at−1xt−1. For the fixed points (1,s1), . . . ,(t−
1,st−1), any value of st may correspond to a unique function
with degree t−1. Hence, A2 cannot get any information about
st from {s1, . . . ,st−1}.

Without {s1, . . . ,st−1}, the probability of A1 successfully
guessing st is 2−l . Hence, we have

|Pr[eIND-KeyA1
(ℓ) = 1]−Pr[Game 1A1(ℓ) = 1]| ≤ 2−l .

Game 2: Game 2 is the same with Game 1, with one dif-
ference. A1 in Game 2 is given t∗−1 random secrets which
have the same distribution with si1 , . . . ,s

∗
it−1

,s∗1.
We suppose that the lower entropy of a PIF, the higher the

risk of leakage. In Game 1, A1 has obtained t∗− 1 secrets
{s∗1, . . . ,s∗t∗−1}. With the auxiliary information aux, A1 can

9



construct a polynomial

p1(x) = xn∗ +
n∗−t∗

∑
i=1

auxi · xn∗−i,

where auxi denotes the i-th element in aux.
With t∗− 1 sub-secrets {s∗1, . . . ,s∗t∗−1}, A1 can construct

the following equation system
p1(s∗1) = bt∗−1s∗1

t∗−1 + · · ·+b1s∗1 +b0

· · ·

p1(s∗t∗−1) = bt∗−1s∗t∗−1
t∗−1 + · · ·+b1s∗t∗−1 +b0

,

where bt∗−1, · · · ,b0 are the unknown to be solved. There ex-
ists countless valid {bt∗−1, · · · ,b0}, and A1 cannot determine
which is the correct b0. The straightforward way for A1 to
determine b0 is to construct another equation with s∗t∗ as

p1(s∗t∗) = bt∗−1s∗t∗
t∗−1 + · · ·+b1s∗t∗ +b0.

The maximum probability that the adversary can obtain a
new secret is 2−xt∗ (where A1 directly guesses s∗t∗ ). Therefore,
given t∗−1 secrets {s∗1, . . . ,s∗t∗−1} and the auxiliary informa-
tion aux, the probability of A1 getting the master key S is no
more than 2−xt∗ . Hence, we have

|Pr[Game 1A1(ℓ) = 1−Pr[Game 2A1(ℓ) = 1]| ≤ 2−xt∗ .

Next, we analyze the probability of A1 winning Game 2. In
our proof, we follow the security definition of KDF proposed
in [32], as shown in Definition 9.

Definition 9. A key derivation function (KDF) is secure with
respect to an m-entropy source of key material Σ if no adver-
sary A can distinguish the key generated from Σ and a random
string of the same length with probability better 1/2+2−m.

The security of Game 2 can be directly reduced to that of a
secure KDF. Hence, we have

Pr[Game 2A1(ℓ) = 1]≤ 1
2
+2−∑

t∗
i=1 xi ,

which also implies that l ≥ ∑
t∗
i=1 xi.

Therefore, the probability of A1 winning eIND-KeyA1
(ℓ) is

no more than 1
2 +2−∑

t∗
i=1 xi−1 +2−xt∗ .

Remark. Theorem 3 implies that the master key S is a uni-
form l-bit cryptographic key, where l ≥∑

t∗
i=1 xi. Theoretically,

the min-entropy of the secrets derived from the biometric
characteristic is determined by the user per se. However, in
practice, the biometrics extraction algorithms would influence
the entropy of the extracted secrets. The entropy of the se-
crets derived from the device-dependent PIFs is determined
by the security parameter of the corresponding authentication
schemes. In reality, Theorem 3 also indicates that DRKM
protects U’s PIFs used to derive S against adversaries who
compromise t−1 key servers, i.e, the shares would not leak
any information about the PIFs, which can be proven with the
reduction from eIND-KeyA1

(ℓ) to Game 1.

Destruction resistance: eIND-DRA2(ℓ)

1: Choose {PIF1, . . . ,PIFn∗} and compute S, aux
2: Publish pk corresponding to S
3: Fideal : σ0 = Sig(S,chal)
Freal : S⋆← Recovery(PIFi1 , . . . ,PIFit∗ ,sta),
σ1 = Sig(S⋆,chal),
where Sig is a secure signature scheme.

4: A2 generates chal and {i1, . . . , it∗}
$← [1, t∗]

5: b $←{0,1} and return σb

6: b′← A2(Veri f y(σb,chal, pk))
7: If b′ = b, return 1; else, return 0.

Figure 6: The eIND-DRA2(ℓ) game.

4.2 eIND-DRA2(ℓ)

We prove that DRKM satisfies Definition 8, which is captured
by Theorem 4.

Theorem 4. DRKM enables users to recover the master keys
even if all key servers and their devices are destroyed.

Lemma 1. An m×m homogeneous system of linear equations
has a unique solution (the trivial solution) if and only if its
determinant is non-zero.

Proof. To prove Theorem 4, we define the game
eIND-DRA2(ℓ), as shown in Figure 6.

If PIFi1 , . . . ,PIFit∗ are storage/device-independent, the se-
cret s∗i j

= Fsta(PIFi j) is reconstructable according to Theorem
1. When there exists device-dependent PIFs, the secret derived
from them is reconstrucable iff either sta or sta

′
is retrievable,

referring to Theorem 2.
If Freal recovers the correct master key, σ output by it would

pass the verification. We assume that Freal fails to recover S⋆

with probability p, and the probability that it can forge a valid
signature without S⋆ is q.

From the perspective of A2, if σ fails to pass the verification,
it can determine that b = 1 and win the game. If σ is valid,
A2 can win the game with probability 1

2−p+pq . Therefore, A2
can win this game with probability

Pr[eIND-DRA2(ℓ) = 1] =
1

2− p+ pq
+Pr[σ is invalid]

=
1

2− p+ pq
+

1
2

p(1−q).

Next, we discuss the value of p. Under our assumption,
Freal would compute S⋆ (where S⋆ ̸= S) or S⋆ =⊥ with prob-
ability p. In DRKM, S is determined by Equation (1) which
only has one solution (we analyze it in Section 3.5). There-
fore, S⋆ computed by Freal is absolutely equal to S. Hence,

10



we have p = 0. Therefore,

Pr[eIND-DRA2(ℓ) = 1] =
1
2
.

In the above proof, we take a secure signature scheme
as an example. For other cryptographic operations, e.g.,
public/private-key encryption and message authentication
codes, the proof is similar. This concludes the proof.

5 Implementation and evaluation

We implement a DRKM prototype and conduct a comprehen-
sive performance evaluation. All experiments are conducted
on a laptop with an Intel Core i5 processor running at 2 GHz
using four cores and 16 GB DDR3 of RAM. Our source code
is available on https://github.com/DRKM-code/DRKM.git.

We evaluate the performance from the following aspects.

5.1 Deriving secrets from PIFs
We present the computation delay to derive reconstructable
secrets from different PIFs, as shown in Table 1.

Someone the user is. We investigate existing biometric
feature recognition and extraction methods. A minutiae-based
fingerprint individuality model [42] is utilized to extract fea-
tures from users’ fingerprints. We leverage the scheme [43]
for face recognition to extract the face features. We utilize the
algorithm in [44] for iris recognition to extract the features
of irises. The extracted iris features can be formatted with
the biometric standards. We utilize the hand geometry recog-
nition scheme [45], the palmprint recognition scheme [46],
and the hand gesture recognition scheme [47] to extract the
hand characteristics, respectively. We utilize Deep-ECG [48],
a CNN-based biometric approach for ECG signals, to extract
the features of ECG.

Something the user has. We simulate the authentication
algorithms of a SIM card, hardware token, and Intel SGX on
a laptop, and evaluate the performance. The hardware PIFs
are dependent on stateful devices. Recalling Section 2, we
can derive a reconstructable secret from a device-dependent
PIF with the aid of another reconstructable secret.

5.2 Key derivation and management
We investigate existing authentication schemes and choose the
applicable methods to derive secrets from PIFs. The computa-
tion delay for deriving reconstructable secrets from different
PIFs is shown in Appendix 5.1.

U first gets n∗ secrets {s∗1, . . . ,s∗n∗} and then computes the
master key as S = ∏

n∗
i=1 s∗i . We assume that U utilizes the

PIFs shown in Table 1 to derive n∗ secrets, and the average
computational delay of deriving one secret is 11.19 ms. Figure
7(a) shows the computation delay on U of deriving S from

PIF Computation delay (ms)

Fingerprint [42] ≈1.60

Face [43] ≈1.50

Iris [44] ≈3.00

Hand geometry [45] ≈7.6

Palmprint [46] ≈6

ECG [48] ≈0.32

Hand gesture [47] ≈90 − 110

SIM card ≈0.003

Hardware token ≈1.36

Intel SGX ≈0.56

Table 1: Computation delay of deriving secrets from PIFs.

PIFs, where we set different n∗. The computation delay is an
average of deriving 10 master keys.

U computes the auxiliary information aux which assists U
in recovering the master key from the PIFs. Figure 7(b) shows
the computation delay on U of aux with different n∗ and t∗.
The delay of computing aux decreases with t∗. U shares S
among the key servers in a threshold way. Specifically, U first
computes n secret shares {s1, · · · ,sn}. Figure 7(c) shows the
delay in computing the secret shares.

U can use private-key encryption or public-key encryption
to encrypt K⃗. Figure 7(d) and 7(e) show the computational
delay for encrypting different size K with different encryption
algorithms including RSA-OAEP [49], ElGamal [50], and
[CTR]AES. The computation delay for private-key encryption
is much less than that for public-key encryption.

In DRKM, U needs to send the secret shares to the key
servers and outsource the auxiliary information and the ci-
phertexts to CS . In Figure 8(a), we show the communication
costs on U and K S i. As shown in Figure 8(b), the commu-
nication costs on CS are approximate to the size of K when
using private-key encryption. For the same size K, the com-
munication costs on CS increase with n∗− t∗, because the
larger n∗− t∗ is, the larger size of aux is when recovering
S. Figure 8(c) shows the communication costs of CS . The
communication costs when using public-key encryption are
significantly larger than those when using [CTR]AES.

5.3 Key access and recovery
When U needs to access the master key, U interacts with the
key server via the secure channels to get t secret shares. In
Figure 8(d), we show the communication costs on U and each
key server with different n and t. U also needs to download
the ciphertexts from CS . U can download the ciphertexts
on demand when using private-key encryption. Figure 8(e)

11



10 12 14 16 18 20
The number of PIFs n*

120

140

160

180

200

220

240

C
om

p.
 d

el
ay

 (m
s)

 o
f c

om
pu

tin
g 

S

Average computation 
 delay of 

(a) Generating S.

10 12 14 16 18 20
The number of PIFs n*

30

35

40

45

50

55

60

C
om

p.
 d

el
ay

 (m
s)

 fo
r 

au
x

t* = 8
t* = 10
t* = 12

(b) Computing aux.

10 12 14 16 18 20
The number of key server n

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C
om

p.
 d

el
ay

 (m
s)

 o
f c

om
pu

tin
g 

s i

t = 8
t = 10
t = 12

(c) Computing si.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
om

p.
 d

el
ay

 (m
s)

 o
f e

nc
ry

pt
in

g 
K

[CTR]AES-128
[CTR]AES-256

(d) Private-key encryption.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0

10

20

30

40

50

60

C
om

p.
 d

el
ay

 (s
) o

f e
nc

ry
pt

in
g 

K

RSA-OAEP ( =128)
ElGamal ( =128)

(e) Public-key encryption.

Figure 7: The computation delay of U in the Managing phase.

10 12 14 16 18 20
The number of key servers n

0.1

0.2

0.3

0.4

0.5

0.6

C
om

m
. c

os
ts

 (K
B

) i
n 

M
an

ag
in

g

Comm. costs of 
Comm. costs of i

(a) Sending/receiving si.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
om

m
. c

os
ts

 (K
B

) o
f n* t*=2

n* t*=6
n* t*=8

(b) [CTR]AES-128/256.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
om

m
. c

os
ts

 (K
B

) o
f 

RSA-OAEP
ElGamal
[CTR]AES-256

(c) RSA-OAEP/ElGamal.

10 12 14 16 18 20
The number of key server n

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

C
om

m
. c

os
ts

 (K
B

) o
f t = 8

t = 10
t = 12

(d) Getting si from K S i.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
om

m
. c

os
ts

 (K
B

) o
f 

/ RSA-OAEP ( =128)
ElGamal ( =128)
[CTR]AES-128

(e) Downloading C.

Figure 8: The communication costs of U, K S i, and CS .

10 12 14 16 18 20
The number of key servers n

0.010

0.012

0.014

0.016

0.018

0.020

C
om

p.
 d

el
ay

 (m
s)

 o
f 

t = 8
t = 10
t = 12

(a) Accessing S.

10 12 14 16 18 20
The number of PIFs n*

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
om

p.
 d

el
ay

 (m
s)

 o
f r

ec
ov

er
in

g 
S

t* = 8
t* = 10
t* = 12

(b) Recovering S.

Figure 9: The computation delay of U.

shows the communication costs of CS and U, where U only
accesses one key. Figure 9(a) shows the delay on U to com-
pute S from t secret shares.

If the number of available key servers is less than t, U has
to recover the master by utilizing available PIFs. U needs to
get at least t∗ secrets from available PIFs. We assume that U
has derived t∗ secrets. Figure 9(b) shows the delay on U to
recover S from t∗ secrets and aux. The results show that the
delay of recovering S from secrets is less than 5 ms.

5.4 Comparison with KDF

The core of DRKM is to convert a user’s PIFs to a recon-
structable master key which is utilized to encrypt the user’s
keys used in various cryptosystems. A natural method to trans-
form a PIF into a key is key derivation functions (KDF). In
this subsection, we compare DRKM with different KDFs and
further elaborate on the desirable advantages of DRKM.

We start with password-based key derivation functions
(PBKDFs) [33, 34, 51–53] that derive keys from users’ pass-
words. The proliferation of PBKDFs provides protection for
users without introducing key management problems. Typi-
cally, PBKDF1 and PBKDF2 [33] are widely used in network
applications, e.g., WPA [54] and WPA2 [55] protocols in wire-
less communication systems. However, the schemes based on
PBKDFs are generally confronted with dictionary guessing
attacks, since passwords are inherently low-entropy. Many
recent security incidents [56, 57] have shown that utilizing
passwords as the sole defense line is indeed insufficient.

Recently, Nair et al. [27] proposed a threshold multi-factor
key derivation function (TMFKDF), which allows a user to
derive a key from n∗ PIFs, and recover the key from any
t∗ of them. We compare DRKM with the TMFKDF in the
following aspects.

Regarding costs, Table 2 shows the comparison between
DRKM and TMFKDF in terms of computation delay of ac-
cessing the master key with t = t∗ = 8 and n = n∗ = 10. The
results show that in normal times, the delay using DRKM is
5∼6 orders of magnitude less than that of using TMFKDF.

Regarding functionality, the key recovery provided by TM-
FKDF depends on the availability of metadata, i.e., encrypted
shares. Users cannot recover their keys without metadata even
if they utilize n∗ storage-independent PIFs. In DRKM, users
can directly retrieve their keys from n∗ PIFs without any stor-
age, if all n∗ PIFs are independent of storage.

Regarding security, DRKM provides stronger protection
than t∗-of-n∗ TMFKDF. In DRKM, a master key is derived
from n∗ PIFs and then split into n shares, where the shares
are independent of the secrets derived from PIFs. However,

12



Method Computation delay (ms)

DRKM (Before destruction) 0.012

DRKM (After destruction) 90.72

Threshold MFKDF 89.82

Table 2: Comparison with the threshold MFKDF [27]. We set
t = t∗ = 8 and n = n∗ = 10.

in [27], once an adversary compromises a PIF, then he can
get the corresponding share. Furthermore, in reality, an adver-
sary who compromises t∗ PIFs may not recover the master
key. Specifically, we assume that a user has n∗ PIFs, where
n∗1 PIF are storage/device-independent, n∗2 PIFs are device-
dependent, and n∗ = n∗1 + n∗2. Then the user can derive at
least n∗1 +n∗1 ·n∗2 (conditional) reconstructable secrets. Hence,
the user can generate Cn∗

n∗1+n∗1∗n
∗
2

different master keys. By in-
troducing device-dependent PIFs, recovering some of these
master keys needs more than t∗ PIFs, since deriving a re-
constructable secret from a device-dependent PIF requires
another new reconstructable secret.

Regarding practicability, DRKM enables users to balance
security and efficiency but the TMFKDF fails to achieve
it. Specifically, there are two independent thresholds (t,n),
(t∗,n∗) in DRKM. The threshold in TMFKDF is correspond-
ing to (t∗,n∗) in DRKM. Once an adversary compromises
t∗ shares (i.e., PIFs) of TMFKDF, he can recover the key. In
DRKM, such an adversary cannot get any information about
the master key, since the user can set t ≥ t∗ without changing
(t∗,n∗) to enhance the security guarantee. However, the larger
t is, the more costs the user bears to access the master key
in normal times. The user can achieve a trade-off between
security and efficiency by adjusting (t,n) while remaining
(t∗,n∗).

5.5 Applications and compatibility

With storage/device-independent PIFs, we can easily con-
struct a destruction-resistant threshold multiple-factor au-
thentication scheme, where a user only needs to register
with a service provider by more than a threshold number of
storage/device-independent PIFs. After the destruction occurs,
the user can still log in to the service provider via available
PIFs. We further emphasize the practical nature of DRKM
as well as DRKM-based DRC (i.e., DRKM + commercial
backup system) in the following.

One potential application is to manage a secret—say, a
key to a bank’s vault—that is shared among a board of direc-
tors, where the vault is protected by cryptosystems. Anytime
when the vault needs to be opened, it should be confirmed and
agreed by a majority of members. With DRKM, each member
can contribute the secret using her/his PIFs with the (t∗,n∗)-

secret aggregation with threshold retrieval mechanism, and
then the secret is shared among multiple key servers with the
(t∗,n∗)-secret sharing scheme. Each key server is available
for a specific member. Before device destruction occurs, the
members can recover the secret by interacting with their key
servers in a portable way. Once the number of the available
key servers is less than t∗, they can cooperatively recover the
secret using their PIFs. We stress that regarding device de-
struction and security, neither Shamir’s secret sharing scheme
nor the threshold password-hardening protocols [11, 58–65]
can achieve it.

Another promising application of DRKM and DRKM-
based DRC is to resist ransomware attacks. We notice that the
success of ransomware attacks is to make devices unavailable
to their users. As such, if the maintenance of the most sensi-
tive information (e.g., the master key) does not rely on any
device, a ransomware attack will be doomed to failure (we
impliedly require a backup system to store the non-sensitive
information, such as ciphertexts, signatures). With DRKM, a
user can derive a master key from her/his PIFs and maintain
the master key locally or using a set of key servers. Once the
master key is hacked by ransomware attacks, the user can
recover the master key from the PIFs that are used to derive
it. Therefore, DRKM-based DRC can be directly deployed to
thwart ransomware attacks.

Recently, many novel PIFs have been proposed, e.g., PCR-
Auth [66] and Capacitive Plethysmogram [67]. We stress that
DRKM has forward-compatibility with future PIFs. As long
as a PIF satisfies Definition 2 and can be represented by a
unique binary string, it then can be utilized in DRKM to derive
a master key, which potentially applies to newly-discovered
PIFs in the future.

6 Conclusion

In this paper, we have investigated popular personal identifica-
tion factors (PIFs) and proposed three concepts (i.e., storage-
independent PIFs, device-independent PIFs, and device-
dependent PIFs), and given the categorization criteria. We
have proposed a series of methods to derive reconstructable se-
crets from a special class of device-dependent PIFs in tandem
with storage/device-independent ones. We have constructed
DRKM, a destruction-resistant key management scheme with
portability. We have formally proven the security of DRKM.
We have implemented a DRKM prototype and conducted
a comprehensive performance evaluation to demonstrate its
high efficiency.

For the future work, we will explore new storage-
independent PIFs with high min-entropy. Furthermore, with
such PIFs, it may be possible to construct a key management
scheme that simultaneously achieves destruction resistance
and portability after the destruction occurs.

13



References

[1] M. Azure, “Key Management in Azure,”
https://learn.microsoft.com/en-us/azure/security/
fundamentals/key-management, 2023.

[2] G. Developer, “Cloud Key Management,” https://cloud.
google.com/security-key-management/#section-3,
2023.

[3] Yubikey, https://www.yubico.com/products/
yubikey-5-overview/, 2023.

[4] Ledger, https://www.ledger.com, 2023.

[5] A. Developer, “Keychain Services,” https:
//developer.apple.com/documentation/security/
keychain_services, 2023.

[6] M. Christodorescu, S. Gaddam, P. Mukherjee, and
R. Sinha, “Amortized Threshold Symmetric-Key En-
cryption,” in Proceedings of ACM Conference on Com-
puter and Communications Security (CCS), 2021, pp.
2758–2779.

[7] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Dup-
LESS: Server-Aided Encryption for Deduplicated Stor-
age,” in Proceedings of Usenix Security Symposium
(USENIX Security), 2013, pp. 179–194.

[8] G. Poonia, “The Reason not to Throw
Away Old Hard Drives Might Be Surpris-
ing—There Could be Bitcoin on There,”
https://www.deseret.com/2021/12/10/22827963/
james-howells-threw-away-hard-drives-with-\
bitcoin-password, 2021.

[9] C. Osborne, “Colonial Pipeline Ran-
somware Attack: Everything You Need
to Know,” https://www.zdnet.com/article/
colonial-pipeline-ransomware-attack-everything-you\
-need-to-know/, 2021.

[10] J. Reed, “Costa Rica State of Emergency Declared Af-
ter Ransomware Attacks,” https://securityintelligence.
com/news/costa-rica-state-emergency-ransomware/,
2022.

[11] A. Shamir, “How to Share a Secret,” Communications
of the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[12] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang,
A. Juels, and D. Song, “CHURP: Dynamic-Committee
Proactive Secret Sharing,” in Proceedings of ACM Con-
ference on Computer and Communications Security
(CCS), 2019, pp. 2369–2386.

[13] Vault, https://developer.hashicorp.com/vault, 2023,
HashiCorp Developer.

[14] https://aws.amazon.com/cn/message/41926/, 2017.

[15] N. Agrawal, “Amazon Cloud Service Out-
age Breaks Parts of the Internet,” https:
//www.latimes.com/business/technology/
la-fi-tn-amazon-service-outage-20170228-story.
html, 2017.

[16] Wikipedia, “2021–22 Hunga Tonga–Hunga Haapai
Eruption and Tsunami,” https://en.wikipedia.org/
wiki/2021âĂŞ22_Hunga_TongaâĂŞHunga_Ha’apai_
eruption_and_tsunami, 2021.

[17] C. Legislature, “California Consumer Privacy Act of
2018 (as amended by the California Privacy Rights Act
of 2020),” 2020.

[18] E. Parliament and Council, “General Data Protection
Regulation, Regulation (EU) 2016/679 (as amended).”
2016.

[19] A. Takahashi, Y. Koda, K. Ito, and T. Aoki, “Fingerprint
Feature Extraction by Combining Texture, Minutiae,
and Frequency Spectrum Using Multi-Task CNN,” in
Proceedings of IEEE International Joint Conference
on Biometrics (IJCB), 2020, pp. 1–8.

[20] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and
F. Koushanfar, “Deepmarks: A Secure Fingerprinting
Framework for Digital Rights Management of Deep
Learning Models,” in Proceedings of ACM Interna-
tional Conference on Multimedia Retrieval (ICMR),
2019, pp. 105–113.

[21] D. Aggarwal, J. Zhou, and A. K. Jain, “Fedface: Col-
laborative Learning of Face Recognition Model,” in
Proceedings of IEEE International Joint Conference
on Biometrics (IJCB), 2021, pp. 1–8.

[22] https://www.cbsnews.com/essentials/the-best-smart\
watches-for-heart-health-monitoring-2023-08-23,
2023.

[23] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang,
“Targeted Online Password Guessing: An Underesti-
mated Threat,” in Proceedings of ACM Conference on
Computer and Communications Security (CCS), 2016,
pp. 1242–1254.

[24] GoogleDrive, https://www.google.com/intl/en-GB/
drive/, 2023.

[25] Dropbox, https://www.dropboxforum.com, 2023.

[26] A. Ben-Israel, “A Cramer Rule for Least-Norm Solu-
tions of Consistent Linear Equations,” Linear Algebra
and Its Applications, vol. 43, pp. 223–226, 1982.

14

https://learn.microsoft.com/en-us/azure/security/fundamentals/key-management
https://learn.microsoft.com/en-us/azure/security/fundamentals/key-management
https://cloud.google.com/security-key-management/#section-3
https://cloud.google.com/security-key-management/#section-3
https://www.yubico.com/products/yubikey-5-overview/
https://www.yubico.com/products/yubikey-5-overview/
https://www.ledger.com
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/keychain_services
https://www.deseret.com/2021/12/10/22827963/james-howells-threw-away-hard-drives-with-\bitcoin-password
https://www.deseret.com/2021/12/10/22827963/james-howells-threw-away-hard-drives-with-\bitcoin-password
https://www.deseret.com/2021/12/10/22827963/james-howells-threw-away-hard-drives-with-\bitcoin-password
https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you\-need-to-know/
https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you\-need-to-know/
https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you\-need-to-know/
https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://developer.hashicorp.com/vault
https://aws.amazon.com/cn/message/41926/
https://www.latimes.com/business/technology/la-fi-tn-amazon-service-outage-20170228-story.html
https://www.latimes.com/business/technology/la-fi-tn-amazon-service-outage-20170228-story.html
https://www.latimes.com/business/technology/la-fi-tn-amazon-service-outage-20170228-story.html
https://www.latimes.com/business/technology/la-fi-tn-amazon-service-outage-20170228-story.html
https://en.wikipedia.org/wiki/2021–22_Hunga_Tonga–Hunga_Ha'apai_eruption_and_tsunami
https://en.wikipedia.org/wiki/2021–22_Hunga_Tonga–Hunga_Ha'apai_eruption_and_tsunami
https://en.wikipedia.org/wiki/2021–22_Hunga_Tonga–Hunga_Ha'apai_eruption_and_tsunami
https://www.cbsnews.com/essentials/the-best-smart\watches-for-heart-health-monitoring-2023-08-23
https://www.cbsnews.com/essentials/the-best-smart\watches-for-heart-health-monitoring-2023-08-23
https://www.google.com/intl/en-GB/drive/
https://www.google.com/intl/en-GB/drive/
https://www.dropboxforum.com


[27] V. Nair and D. Song, “Multi-Factor Key Derivation
Function (MFKDF) for Fast, Flexible, Secure, & Prac-
tical Key Management,” in Proceedings of USENIX
Security Symposium (USENIX Security), 2023.

[28] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and
Other Noisy Data,” in Proceedings of European Cryp-
tology Conference (EUROCRYPT), 2004, pp. 523–540.

[29] A. Juels and M. Sudan, “A Fuzzy Vault Scheme,” De-
signs, Codes and Cryptography, vol. 38, no. 2, pp. 237–
257, 2006.

[30] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and
M. Yung, “Fourth-Factor Authentication: Somebody
You Know,” in Proceedings of ACM Conference on
Computer and Communications Security (CCS), 2006,
pp. 168–178.

[31] K. Lee, B. Kaiser, J. Mayer, and A. Narayanan, “An
Empirical Study of Wireless Carrier Authentication for
SIM Swaps,” in Proceedings of Symposium on Usable
Privacy and Security (SOUPS), 2020, pp. 61–79.

[32] H. Krawczyk, “Cryptographic Extraction and Key
Derivation: The HKDF Scheme,” in Proceedings of
International Cryptology Conference (CRYPTO), vol.
6223, 2010, pp. 631–648.

[33] B. Kaliski, “PKCS# 5: Password-Based Cryptography
Specification Version 2.0,” Tech. Rep., 2000.

[34] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2:
New Generation of Memory-Hard Functions for Pass-
word Hashing and Other Applications,” in IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
2016, pp. 292–302.

[35] “Edward Snowden: Timeline,” https://www.bbc.com/
news/world-us-canada-23768248, 2013.

[36] E. Dauterman, H. Corrigan-Gibbs, D. Mazières,
D. Boneh, and D. Rizzo, “True2F: Backdoor-Resistant
Authentication Tokens,” in Proceedings of IEEE Sym-
posium on Security and Privacy (S&P), 2019, pp. 398–
416.

[37] V. Costan and S. Devadas, “Intel SGX Explained,”
Cryptology ePrint Archive, 2016.

[38] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sava-
gaonkar, “Innovative Instructions and Software Model
for Isolated Execution,” in Proceedings of Interna-
tional Workshop on Hardware and Architectural Sup-
port for Security and Privacy (HASP), vol. 10, no. 1,
2013.

[39] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “In-
novative Technology for CPU Based Attestation and
Sealing,” in Proceedings of International Workshop on
Hardware and Architectural Support for Security and
Privacy (HASP), vol. 13, no. 7, 2013.

[40] Q. Dang, “Recommendation for Existing Application-
Specific Key Derivation Functions,” NIST SP 800-135,
Revision 1, 2011.

[41] L. Chen, “Recommendation for Key Derivation Using
Pseudorandom Functions,” NIST SP 800-108r1, 2022.

[42] J. Chen and Y.-S. Moon, “A Minutiae-Based Finger-
print Individuality Model,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2007, pp. 1–7.

[43] FingerTec, “FingerTec Face Recognition Technology
White Paper,” https://www.fingertec.com/download/
tips/whitepaper-02.pdf, 2009.

[44] J. Daugman, “How Iris Recognition Works,” in The
Essential Guide to Image Processing, 2009, pp. 715–
739.

[45] S. Angadi and S. Hatture, “Hand Geometry Based User
Identification Using Minimal Edge Connected Hand
Image Graph,” IET Computer Vision, vol. 12, no. 5, pp.
744–752, 2018.

[46] M. Ahmadi and H. Soleimani, “Palmprint Image Reg-
istration Using Convolutional Neural Networks and
Hough Transform,” arXiv preprint arXiv:1904.00579,
2019.

[47] Y. Fang, K. Wang, J. Cheng, and H. Lu, “A Real-Time
Hand Gesture Recognition Method,” in Proceedings
of IEEE International Conference on Multimedia and
Expo (ICME), 2007, pp. 995–998.

[48] D. Labati Ruggero, E. Munoz, V. Piuri, R. Sassi, and
F. Scotti, “Deep-ECG Convolutional Neural Networks
for ECG Biometric Recognition,” Pattern Recognition
Letters, vol. 126, pp. 78–85, 2019.

[49] M. Bellare and P. Rogaway, “Optimal Asymmetric En-
cryption,” in Proceedings of Workshop on the Theory
and Application of of Cryptographic Techniques (EU-
ROCRYPT), 1994, pp. 92–111.

[50] T. ElGamal, “A Public Key Cryptosystem and A Sig-
nature Scheme based on Discrete Logarithms,” IEEE
Transactions on Information Theory, vol. 31, no. 4, pp.
469–472, 1985.

[51] F. F. Yao and Y. L. Yin, “Design and Analysis of
Password-Based Key Derivation Functions,” in The

15

https://www.bbc.com/news/world-us-canada-23768248
https://www.bbc.com/news/world-us-canada-23768248
https://www.fingertec.com/download/tips/whitepaper-02.pdf
https://www.fingertec.com/download/tips/whitepaper-02.pdf


Cryptographers’ Track at the RSA Conference, 2005,
pp. 245–261.

[52] C. Percival and S. Josefsson, “The Scrypt Password-
Based Key Derivation Function,” Tech. Rep., 2016.

[53] M. S. Turan, E. Barker, W. Burr, and L. Chen, “Recom-
mendation for Password-Based Key Derivation,” NIST
Special Publication, vol. 800, p. 132, 2010.

[54] I. C. S. L. M. S. Committee et al., “Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” IEEE Std. 802.11-1997, 1997.

[55] IEEE, “IEEE Standard for Information Technology:
Telecommunications and Information Exchange be-
tween Systems, Local and Metropolitan Area Net-
works, Specific Requirements. Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 6: Medium Access
Control (MAC) Security Enhancements,” IEEE Std.
802.11i-2004, 2004.

[56] S. Ikeda, “Half a Million Zoom Accounts
Compromised by Credential Stuffing, Sold on
Dark Web,” https://www.cpomagazine.com/
cyber-security/half-a-million-zoom-accounts\
-compromised-by-credential-stuffing-sold-on-dark-web/,
2020.

[57] M. Kapko, “PayPal Warns 35,000 Customers
of Exposure Following Credential Stuffing At-
tack,” https://www.cybersecuritydive.com/news/
paypal-credential-stuffing-attack/640804/, 2023.

[58] C. Baum, T. Frederiksen, J. Hesse, A. Lehmann, and
A. Yanai, “PESTO: Proactively Secure Distributed Sin-
gle Sign-on, or How to Trust a Hacked Server,” in Pro-
ceedings of IEEE European Symposium on Security
and Privacy (EuroS&P), 2020, pp. 587–606.

[59] Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng, and
X. Shen, “PROTECT: Efficient Password-Based
Threshold Single-Sign-on Authentication for Mobile
Users against Perpetual Leakage,” IEEE Transactions
on Mobile Computing, vol. 20, no. 6, pp. 2297–2312,
2020.

[60] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu,
“TOPPSS: Cost-Minimal Password-Protected Secret
Sharing Based on Threshold OPRF,” in Proceedings
of International Conference on Applied Cryptography
and Network Security (ACNS), 2017, pp. 39–58.

[61] S. Agrawal, P. Miao, P. Mohassel, and P. Mukher-
jee, “PASTA: Password-Based Threshold Authentica-
tion,” in Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2018, pp. 2042–
2059.

[62] Y. Zhang, C. Xu, N. Cheng, and X. S. Shen, “Secure
Password-Protected Encryption Key for Deduplicated
Cloud Storage Systems,” IEEE Transactions on De-
pendable and Secure Computing, 2021.

[63] R. W. Lai, C. Egger, M. Reinert, S. S. Chow, M. Maf-
fei, and D. Schröder, “Simple Password-Hardened En-
cryption Services,” in Proceedings of Usenix Security
Symposium (USENIX Security), 2018, pp. 1405–1421.

[64] C. Jia, S. Wu, and D. Wang, “Reliable Password Hard-
ening Service with Opt-Out,” in Proceedings of Inter-
national Symposium on Reliable Distributed Systems
(SRDS), 2022.

[65] L. Chen, Y.-N. Li, Q. Tang, and M. Yung, “End-to-
Same-End Encryption: Modularly Augmenting an
App with an Efficient, Portable, and Blind Cloud Stor-
age,” in Proceedings of USENIX Security Symposium
(USENIX Security), 2022, pp. 2353–2370.

[66] L. Huang and C. Wang, “PCR-Auth: Solving Authenti-
cation Puzzle Challenge with Encoded Palm Contact
Response,” in IEEE Symposium on Security and Pri-
vacy (S&P), 2022, pp. 1034–1048.

[67] J. Wu, X. Ji, Y. Lyu, X. Luo, Y. Meng, E. Morales,
D. Wang, and X. Luo, “Touchscreens Can Reveal User
Identity: Capacitive Plethysmogram-Based Biomet-
rics,” IEEE Transactions on Mobile Computing, 2022.

[68] Keywhiz, https://square.github.io/keywhiz/, 2015.

[69] A. Rényi et al., “On Measures of Entropy and Informa-
tion,” in Proceedings of Berkeley Symposium on Math-
ematical Statistics and Probability, vol. 1, no. 547-561,
1961.

[70] C. E. Shannon, “A Mathematical Theory of Commu-
nication,” The Bell System Technical Journal, vol. 27,
no. 3, pp. 379–423, 1948.

[71] A. Narayanan and V. Shmatikov, “Fast Dictionary At-
tacks on Passwords Using Time-Space Tradeoff,” in
Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2005, pp. 364–372.

[72] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, Name
and Bifacial-Security: Understanding Passwords of
Chinese Web users,” in Proceedings of USENIX Secu-
rity Symposium (USENIX Security), 2019, pp. 1537–
1555.

[73] D. Wang, Q. Gu, X. Huang, and P. Wang, “Understand-
ing Human-Chosen PINs: Characteristics, Distribution
and Security,” in Proceedings of ACM on Asia Con-
ference on Computer and Communications Security
(ASIA CCS), 2017, pp. 372–385.

16

https://www.cpomagazine.com/cyber-security/half-a-million-zoom-accounts\-compromised-by-credential-stuffing-sold-on-dark-web/
https://www.cpomagazine.com/cyber-security/half-a-million-zoom-accounts\-compromised-by-credential-stuffing-sold-on-dark-web/
https://www.cpomagazine.com/cyber-security/half-a-million-zoom-accounts\-compromised-by-credential-stuffing-sold-on-dark-web/
https://www.cybersecuritydive.com/news/paypal-credential-stuffing-attack/640804/
https://www.cybersecuritydive.com/news/paypal-credential-stuffing-attack/640804/
https://square.github.io/keywhiz/


[74] C.-P. Schnorr, “Efficient Identification and Signatures
for Smart Cards,” in Proceedings of Conference on the
Theory and Application of Cryptology (ASIACRYPT),
1989, pp. 239–252.

[75] A. Figueroa, “Fingerprint Recognition: the Most
Popular Biometric,” https://www.rootstrap.com/blog/
fingerprint-recognition-the-most-popular-biometric/,
2022.

[76] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar,
Handbook of Fingerprint Recognition, 2009.

[77] Y. Tang, F. Gao, J. Feng, and Y. Liu, “FingerNet: An
Unified Deep Network for Fingerprint Minutiae Ex-
traction,” in Proceedings of IEEE International Joint
Conference on Biometrics (IJCB), 2017, pp. 108–116.

[78] C. Wu, K. He, J. Chen, Z. Zhao, and R. Du, “Live-
ness Is not Enough: Enhancing Fingerprint Authenti-
cation with Behavioral Biometrics to Defeat Puppet
Attacks,” in Proceedings of Usenix Security Sympo-
sium (USENIX Security), 2020, pp. 2219–2236.

[79] M. Wang and W. Deng, “Mitigating Bias in Face
Recognition Using Skewness-Aware Reinforcement
Learning,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2020, pp. 9322–9331.

[80] P. Yao, J. Li, X. Ye, Z. Zhuang, and B. Li, “Iris Recog-
nition Algorithm Using Modified Log-Gabor Filters,”
in Proceedings of International Conference on Pattern
Recognition (ICPR), vol. 4, 2006, pp. 461–464.

[81] R. P. Wildes, “Iris Recognition: An Emerging Bio-
metric Technology,” Proceedings of the IEEE, vol. 85,
no. 9, pp. 1348–1363, 1997.

[82] H. Proença and J. C. Neves, “IRINA: Iris Recogni-
tion (even) in Inaccurately Segmented Data,” in Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 538–547.

[83] A. Boukhayma, R. d. Bem, and P. H. Torr, “3D Hand
Shape and Pose from Images in the Wild,” in Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 10 843–10 852.

[84] Y. Song, Z. Cai, and Z.-L. Zhang, “Multi-Touch Au-
thentication Using Hand Geometry and Behavioral In-
formation,” in Proceedings of IEEE Symposium on
Security and Privacy (S&P), 2017, pp. 357–372.

[85] Y. Han, T. Tan, Z. Sun, and Y. Hao, “Embedded Palm-
print Recognition System on Mobile Devices,” in Pro-
ceedings of International Conference on Biometrics
(ICB), 2007, pp. 1184–1193.

[86] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand
Keypoint Detection in Single Images Using Multiview
Bootstrapping,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 1145–1153.

[87] I. Odinaka, P.-H. Lai, A. D. Kaplan, J. A. O’Sullivan,
E. J. Sirevaag, and J. W. Rohrbaugh, “ECG Biometric
Recognition: A Comparative Analysis,” IEEE Trans-
actions on Information Forensics and Security, vol. 7,
no. 6, pp. 1812–1824, 2012.

[88] M. Li and S. Narayanan, “Robust ECG Biometrics
by Fusing Temporal and Cepstral Information,” in Pro-
ceedings of International Conference on Pattern Recog-
nition (ICPR), 2010, pp. 1326–1329.

[89] J. Arkko and H. Haverinen, “Extensible Authentication
Protocol Method for 3rd Generation Authentication
and Key Agreement (EAP-AKA),” Tech. Rep., 2006.

[90] J. Arkko, V. Lehtovirta, and P. Eronen, “Improved
Extensible Authentication Protocol Method for 3rd
Generation Authentication and Key Agreement (EAP-
AKA’),” Tech. Rep., 2009.

[91] ETSI, “Universal Mobile Telecommunications System
(UMTS); LTE; 3G Security; Specification of the MILE-
NAGE algorithm set: An Example Algorithm Set for
the 3GPP Authentication and Key Generation Func-
tions f1, f1*, f2, f3, f4, f5 and f5*;,” 3GPP TS 35.205
version 10.0.0 Release 10, 2011.

[92] RSA, “RSA SecurID Hardware Authenticators,” https:
//www.tokenguard.com/RSA-SecurID-Hardware.
asp/, 2023.

[93] M. Bellare, R. Canetti, and H. Krawczyk, “Keying
Hash Functions for Message Authentication,” in Pro-
ceedings of Annual International Cryptology Confer-
ence (CRYPTO), 1996, pp. 1–15.

[94] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Totp:
Time-Based One-Time Password Algorithm,” Tech.
Rep., 2011.

[95] D. Balfanz, J. Ehrensvard, and J. Lang, “FIDO U2F
Raw Message Formats,” FIDO Alliance, 2017.

[96] D. Johnson, A. Menezes, and S. Vanstone, “The El-
liptic Curve Digital Signature Algorithm (ECDSA),”
International Journal of Information Security, vol. 1,
no. 1, pp. 36–63, 2001.

[97] S. Pinto and N. Santos, “Demystifying Arm TrustZone:
A Comprehensive Survey,” ACM Computing Surveys,
vol. 51, no. 6, pp. 1–36, 2019.

17

https://www.rootstrap.com/blog/fingerprint-recognition-the-most-popular-biometric/
https://www.rootstrap.com/blog/fingerprint-recognition-the-most-popular-biometric/
https://www.tokenguard.com/RSA-SecurID-Hardware.asp/
https://www.tokenguard.com/RSA-SecurID-Hardware.asp/
https://www.tokenguard.com/RSA-SecurID-Hardware.asp/


[98] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein,
and C. Fetzer, “Varys: Protecting SGX Enclaves from
Practical Side-Channel Attacks,” in Proceedings of
USENIX Annul Technical Conference (USENIX ATC),
2018, pp. 227–240.

[99] J. S. Dwoskin and R. B. Lee, “Hardware-Rooted Trust
for Secure Key Management and Transient trust,” in
Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2007, pp. 389–400.

[100] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A
Secure Database Using SGX,” in Proceedings of IEEE
Symposium on Security and Privacy (S&P), 2018, pp.
264–278.

[101] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai, “SGXPECTRE: Stealing Intel Secrets from SGX
Enclaves via Speculative Execution,” in Proceedings
of IEEE Symposium on Security and Privacy (S&P),
2019, pp. 142–157.

[102] R. Maes, V. v. d. Leest, E. v. d. Sluis, and F. Willems,
“Secure Key Generation from Biased PUFs,” in Pro-
ceedings of International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2015, pp.
517–534.

[103] J.-H. Kim, H.-J. Jo, K.-K. Jo, S.-H. Cho, J.-Y. Chung,
and J.-S. Yang, “Reliable and Lightweight PUF-Based
Key Generation Using Various Index Voting Architec-
ture,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2020, pp. 352–357.

[104] S. Willassen, “Forensics and the GSM Mobile Tele-
phone System,” International Journal of Digital Evi-
dence, vol. 2, no. 1, pp. 1–17, 2003.

[105] S. Srinivas, D. Balfanz, E. Tiffany, and A. Czeskis,
“Universal 2nd Factor (U2F) Overview,” FIDO Al-
liance, 2017.

[106] A. W. Services, “AWS Key Management Service:
Developer Guide,” https://docs.aws.amazon.com/pdfs/
kms/latest/developerguide/kms-dg.pdf, 2023.

[107] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal,
“DiSE: Distributed Symmetric-Key Encryption,” in
Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2018, pp. 1993–
2010.

[108] G. R. Blakley, “Safeguarding Cryptographic Keys,”
in Managing Requirements Knowledge, International
Workshop on. IEEE Computer Society, 1979, pp. 313–
313.

[109] S. Jarecki, H. Krawczyk, and J. Resch, “Updatable
Oblivious Key Management for Storage Systems,” in
Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2019, pp. 379–393.

[110] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive Secret Sharing or: How to Cope with Perpet-
ual Leakage,” in Proceedings of International Cryptol-
ogy Conference (CRYPTO), 1995, pp. 339–352.

[111] D. A. Schultz, B. Liskov, and M. Liskov, “Mobile
Proactive Secret Sharing,” in Proceedings of ACM
Symposium on Principles of Distributed Computing
(PODC), 2008, pp. 458–458.

[112] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani,
“COBRA: Dynamic Proactive Secret Sharing for Confi-
dential BFT Services,” in Proceedings of IEEE Sympo-
sium on Security and Privacy (S&P), 2022, pp. 1528–
1528.

[113] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl,
“Asynchronous Verifiable Secret Sharing and Proactive
Cryptosystems,” in Proceedings of ACM Conference
on Computer and Communications Security (CCS),
2002, pp. 88–97.

[114] S. Basu, A. Tomescu, I. Abraham, D. Malkhi, M. K. Re-
iter, and E. G. Sirer, “Efficient Verifiable Secret Sharing
with Share Recovery in BFT Protocols,” in Proceed-
ings of ACM Conference on Computer and Communi-
cations Security (CCS), 2019, pp. 2387–2402.

Appendix A Comparison between DRKM and
alternative schemes

Currently, some products and solutions for secure and reli-
able key management have been proposed, and they might
be trivially extended to achieve destruction resistance. We
will discuss them in detail, analyze their inherent problems,
and compare them with DRKM in the following. Our aim in
presenting this section is twofold. The first one is to show
the advantages of DRKM in terms of security, functional-
ity, and efficiency. The second one is to demonstrate that
designing usable and destruction-resistant key management
schemes is very challenging. Generally, existing key manage-
ment schemes can be categorized into two types: fully local
management ones and fully outsourcing management ones.

Fully local management schemes. A user keeps her/his
keys in well-guarded devices and keeps them in safe places.
Notable examples include YubiKey [3] and Ledger [4]. To
achieve destruction resistance, the user can simultaneously
utilize YubiKey and Ledger to store the same key (one for
general use and the other one for backup) and keep them in
different secure locations.

18

https://docs.aws.amazon.com/pdfs/kms/latest/developerguide/kms-dg.pdf
https://docs.aws.amazon.com/pdfs/kms/latest/developerguide/kms-dg.pdf


However, the disadvantage of the above scheme is oblivi-
ous. The user needs to ensure the security and reliability of
the backup key, which requires the user to continuously mon-
itor its condition to minimize the possibility of undetected
leakage. Actually, this would cause prohibitive costs for the
user. As an empirical observation, individuals do not always
have a secure secondary location to store the backup key.

Fully outsourcing management scheme. A user requests
key management services from service providers. Typical
examples include Keywhiz [68], where the user’s key is split
into n shares in a threshold way and let each key server store
one of them. The user can recover her/his key by interacting
with any t of n key servers. Compared with a fully local man-
agement scheme, this scheme achieves portability: it enables
the user to recover the key as needed without maintaining any
secret on local devices. It achieves destruction resistance to
some extent: as long as t key servers are available, the key
can be recovered.

Obliviously, the destruction resistance provided by this
scheme relies on a strong assumption that at least t key servers
would not be destroyed. This problem cannot be trivially
addressed by requiring the key server to back up the share, as
it increases the danger of security breaches significantly [11].

DRKM: a hybrid “local + outsourcing” key manage-
ment scheme. In DRKM, a user derives a master key from
her/his PIFs and shares it among the key servers in a threshold
way. DRKM inherits the advantages of the above schemes:
in normal times, the user can access the master key by in-
teracting with the key servers; and once all key servers and
the user’s devices are destroyed, the master key can be recov-
ered from a part of PIFs used for key derivation. DRKM also
overcomes their drawbacks: compared with the fully local
management scheme, DRKM only requires a stateless device
and a small number of PIFs to recover the master key after
the destruction occurs; compared with the fully outsourcing
management one, users in DRKM can retrieve their keys per
se, even if all key servers are unavailable.

Appendix B Basic theory

Min-entropy [69]. For adversaries, an attack strategy is guess-
ing random values used in cryptosystems (e.g., the secret
keys). The probability of an adversary guessing out the key is
determined by the entropy of the key. In information theory,
the entropy of a random variable is the level of uncertainty
inherent in the random variable’s possible outcomes.

Shannon [70] first introduces the concept of information en-
tropy. A = {a1,a2, . . . ,an} is a discrete and finite set. Assume
that X is a random variable where the value domain is A and
the probability of choosing ai from A is pi, i.e., Pr[X = ai] =
pi. The information entropy of X is H(X) =−∑

n
i=1 pilogpi.

The predictability of the random variable X is
max{pi}i∈[1,n], which corresponds to the min-entropy
of X is H∞(X) =−log(max{pi}i∈[1,n]).

Appendix C Introduction to popular PIFs

Generally, users’ personal identification factors (PIFs) can
be divided into three categories: something the user knows,
someone the user is, and something the user has [30].

C.1 Something the user knows
This type of PIFs binds a user’s identity with a secret only
known to the user. As long as the user outputs the correct
secrets, she/he can identify herself/himself.
• Password. A password is a character string chosen by a

user and can be utilized to construct a portable authentication
scheme, where the user takes her/his password as the sole
input for authentication [61]. Password is memorable and
thereby is destruction-resistant. Generally, a cryptographic
hash function is used to “obfuscate” the password, and the
hashed password serves as the authentication credential. How-
ever, the password is inherently low-entropy and is vulnerable
to dictionary guessing attacks (DGA) [23, 71, 72].
• PIN code. A personal identification number (PIN) code

is a set of numbers (which generally consists of four or six
digits) generated by the user. PIN codes’ entropy is much
lower than passwords. Therefore, PIN codes should not be
utilized to serve as the sole PIF in the system [73].
• Private key. In public-key cryptosystems, a private key is

a string uniformly chosen from some set (where the number
of elements in the set should be large enough) and is used to
generate a corresponding public key. With the pair of keys,
an identification scheme can be constructed (e.g., the Schnorr
identification scheme [74]). In reality, a private key is always
stored in a stateful device or hardware security module (as
it is high-entropy), and thereby cannot be recovered if the
device (or hardware module) is destroyed.

C.2 Someone the user is
This type of PIFs is essentially the characteristics that can
uniquely identify the user. The most widely used PIFs are
users’ biometric characteristics. Such a PIF is not necessarily
maintained in some device. As a consequence, most of these
PIFs (discussed in this paper) are destruction-resistant.

A general procedure of biometric characteristic recognition
is described as follows. A user collects biometric character-
istics with the aid of stateful devices (e.g., obtaining a face
image by using a camera), and then some features can be
extracted from the characteristics. With the features, some
templates can be derived to serve as authentication creden-
tials. We investigate popular biometric PIFs and feature ex-
traction methods. Subsequently, a “fresh” template can be
extracted from the user’s biometric characteristics to be com-
pared with the pre-generated templates for user authentication.
The widely-used biometric characteristics, e.g., fingerprints
and faces, can be easily collected using smartphones. With the

19



proliferation of wearable devices, it is also convenient to col-
lect other biometric characteristics, e.g., ECGs [22]. Typical
biometric characteristics are introduced in the following.
• Fingerprint. Fingerprints are the most widely utilized

biometric characteristic for user authentication [75]. A finger-
print can be transformed into a unique image with ridges and
valleys, where a ridge is a single curved segment, and a valley
is a region between two adjacent ridges, and minutiae-based
feature extraction is the most commonly-used method in fin-
gerprint recognition [19, 20, 42, 76, 77]. For users, it is con-
venient to utilize fingerprints to authenticate herself/himself,
since most devices have fingerprint recognition functions. Fin-
gerprints serving as PIF achieve compromise resilience, since
the user can use different fingerprints in different systems.
However, it is not so hard to collect targeted users’ finger-
prints for adversaries in the physical world [78].
• Face. Facial recognition is also widely-used for user au-

thentication. As facial recognition only requires a camera to
collect the face image, most smartphones utilize the face as
the PIF. In practice, extraction methods based on either geo-
metrical features or statistical features [21, 79] can be utilized
to extract features from users’ faces. Compared with finger-
prints, users’ faces fail to achieve compromise resilience.
• Iris. An iris camera captures a user’s pupil and extracts

the iris image from the pupil by using Gabor filters [80].
Compared with fingerprint-based and face-based authentica-
tion, iris-based authentication is more accurate for identifying
users [81, 82]. Although irises also fail to achieve compro-
mise resilience, collecting users’ irises is much harder than
collecting fingerprints and faces for adversaries. However, iris
recognition requires a specific-purpose device to scan the iris,
which causes high costs to deploy the iris-based authentica-
tion.
• Hand. In reality, the physical characteristics of a hand

(e.g., hand geometry [83, 84], palmprints [85], and hand ges-
tures [86]) can also serve as PIFs for user authentication,
where hand geometry and hand gestures can be utilized to
achieve non-contact recognition. The accuracy rate is signif-
icantly affected by the environment, e.g., lighting, and the
devices collecting palmprints are generally larger, compared
with those collecting fingerprints and faces.
• Electrocardiographic (ECG). An ECG records the elec-

trical activity of the heart and mainly consists of P wave,
QRS complex, and T wave. ECG is highly personalized and
can serve as PIF [87, 88]. ECG-based authentication requires
specific types of equipment, e.g., ECG monitors.

C.3 Something the user has
This type of PIFs binds a user’s identity with a stateful device
or hardware unit. Anyone who possesses the device (or the
unit) can pass authentication.
• Subscriber identity module (SIM) card. A SIM card is

an integrated circuit card, that has been utilized in cellular

networks, e.g. 3G and 4G [31]. The authentication proto-
col is based on message authentication code (MAC) [89, 90].
Specifically, a SIM card stores a universal international mobile
subscriber identity (IMSI) number and a 128-bit key which
is shared with a server (deployed by the communication ser-
vice provider). The user and the server initialize the same
sequence number SQN. A typical SIM-based authentication
procedure is shown in Figure 1, which follows a challenge-
response paradigm. When subscribing to cellular networks,
the user sends her/his IMSI number as ID to the server. The
server first generates a challenge message, including a ran-
dom number RAND and a MAC for RAND and SQN, and
sends it to the user. The user then verifies the received MAC
and generates a response message by computing a MAC for
RAND. The server finally verifies the MAC and allows the
user to subscribe if it is valid. In Figure 1, the MAC is based
on pseudorandom functions f 1(·), f 2(·), and f 5(·), and are
instantiated by AES in practice [91].

With the proliferation of mobile devices, e.g., smartphones,
SIM cards are widely used for authentication in daily life,
which is convenient for users. This also implies that the uti-
lization of SIM cards has to rely on devices with the cellular
communication module.
• Hardware token. Hardware tokens can be divided into

two categories from the point of the underlying cryptosystem:
symmetric-key-based ones and public-key-based ones.

For symmetric-key-based hardware tokens, typical exam-
ples include RSA SecurID [92], which is constructed on a
hash-based MAC (HMAC) [93]. A simplified authentication
procedure is shown in Figure 2. The hardware token stores
a seed that is shared with a server. During the sign-on phase,
the hardware token and the server invoke a one-time pass-
word algorithm (which is based on an HMAC) using the seed
and current time as input [94]. The user sends the password
generated by the hardware token to the server. The server ver-
ifies whether the received password is the same as the locally
generated one. If so, the user passes the authentication.

For public-key-based hardware tokens, typical examples
include U2F token [36, 95], which is based on ECDSA [96].
Figure 3 shows the authentication procedure. The hardware
token stores a private key, and the corresponding public key
is stored on the server. In the sign-on phase, the server sends
a nonce Nonce as a challenge to the hardware token, and the
hardware token signs Nonce and returns the signature to the
server. The server verifies the signature with the correspond-
ing public key. If it is valid, the user passes the authentication.

It is difficult to forge a valid hardware token. However,
once an adversary can physically access the hardware token,
he can easily impersonate the user to pass the authentication.
• Trusted execution environment (TEE). TEEs are isolated

private enclaves inside CPU, which are used to protect data.
Intel Software Guard Extensions (Intel SGX) is the most
widely-used TEE architecture [37]. It can also be utilized
to authenticate users by using its two root keys: the root

20



provisioning key (RPK) and the root seal key (RSK), where
RPK and RSK are fused in CPU by the manufacturer. Due
to the space limitation, please refer to Ref. [37–39] for more
details. In addition, except Intel SGX, other TEEs, e.g., ARM
TrustZone [97], are also widely used for authentication.

Such hardware units rely on specific manufacturers and
are not easily forged, but they may suffer from side-channel
attacks [98]. Users and servers have to equip the same TEEs.

Appendix D Related work

D.1 Key management schemes
Many key management schemes have been proposed in the
past few years. We discuss them in the following.

Hardware-based key management schemes. Users can
locally manage their keys by utilizing secure hardware de-
vices [99]. For example, Intel Software Guard Extensions
(SGX), aiming to protect the confidentiality and integrity of
computations on sensitive data performed on a computer, can
also be utilized for key management. Priebe et al. proposed a
secure database using SGX [100], which can be utilized for
key management. However, such a scheme requires the user
to possess a device equipped with Intel central processing
units (CPUs) that support Intel SGX. In addition, Intel SGX
is vulnerable to side-channel attacks [98, 101].

Another approach to key management is to generate keys
based on the physical characteristics of a hardware device
rather than storing them within it. For example, although the
manufacturing process is the same among different ICs, each
IC is actually different from others, which is called manufac-
turing variability and can be utilized for key generation. Maes
et al. proposed physical unclonable functions (PUFs) to derive
keys by leveraging the variability [102]. Kim et al. proposed
a lightweight PUF-based key generation using various index
voting architecture [103].

Hardware-based key management schemes essentially shift
the problem of managing multiple keys from protecting each
individual key to protecting another key that can unlock them.
Once an adversary physically accesses the hardware devices,
he may recover the user’s keys. To resist such an adversary, a
widely-used remedy is to introduce an additional authentica-
tion mechanism: only the user who passes the authentication
can utilize the hardware devices. For example, before using a
SIM card, the user needs to input a PIN code to unlock it [104].
The user needs to input the correct password before utilizing
the hardware token for authentication [105]. MacOS provides
a secure container, called Keychain, which assists users in
managing their keys and passwords [5]. MacOS authenticates
the users by using passwords, fingerprints, or faces, and only
authenticated users can access the Keychain.

Whereas, the functionality and security of hardware-based
key management schemes depend on the reliability of the
hardware devices. Once the hardware devices are destroyed

(e.g., due to wrong formatting), the user would never recover
her/his keys. Especially, the hardware devices are individually
maintained by the users and are vulnerable to being lost or
stolen. In addition, hardware-based key management schemes
fail to achieve portable key access.

Software (or extended services) based key management
schemes. To free the costs and issues introduced by local
key management, users prefer to employ a service provider to
achieve key management. For instance, Amazon provides key
management services for users [106], where a master key is
generated by each user and utilized to encrypt other keys. The
master key and the ciphertexts of other keys are well main-
tained by Amazon. Microsoft Azure [1] and Google cloud
platform (GCP) [2] provide the same key management ser-
vices for users. With the assistance of the service providers,
the users are able to manage and access their keys on any
device. Nevertheless, for these key management services, ser-
vice providers rely on hardware security modules (HSM) to
manage users’ master keys, e.g., Amazon utilizes a distributed
fleet of FIPS 140-2 validated HSMs to securely manage the
users’ master keys [106]. Once the HSMs are destroyed for
some reason (e.g., servers are destroyed due to geological dis-
asters), the users’ master keys would no longer be recovered.

To eliminate the reliance on security hardware devices,
server-aided key management schemes have been proposed
in the past few years. A user utilizes a master key to encrypt
other keys, and the master key is split among the key servers in
a threshold way [107,108]. As long as the number of available
key servers is greater than the threshold, the user can correctly
recover the key. An adversary who compromises less than a
threshold number of key servers cannot obtain anything about
the master key. One example of such a system is Keywhiz, an
open-source distributed key management software [68].

To achieve portability, password-hardening protocols [58–
65] can also be utilized for key management, where a user
hardens her/his password with the aid of the key servers in a
threshold and oblivious way. After being hardened, the pass-
word is secure against dictionary guessing attacks (DGA),
which enhances the security significantly. The hardened pass-
word is utilized to compute authentication credentials and gen-
erate the master key. Such a password-hardening-based key
management scheme is destruction-resistant, since the pass-
word is memorable, and any destruction of the user’s devices
would not cause unavailability of the password. Whereas,
it is still unsatisfactory in real-world deployment, since the
password serves as the sole secret. Once the password is com-
promised, no security is guaranteed. In reality, compromising
users’ passwords is not so hard for a sophisticated adversary,
even if they are hardened by the key servers [23, 71, 72].

In addition to directly sharing the master key among mul-
tiple key servers, distributed encryption schemes have been
proposed as a variant of distributed key management schemes.
Agrawal et al. proposed the first formal threshold symmetric-
key encryption based on distributed pseudorandom functions

21



in DiSE [107], where the user employs a group of key servers
to generate an encryption key for each message. Specifically,
the user generates a commitment to a message and sends
the commitment to each server, and each server computes a
response utilizing its key share for the user. The user aggre-
gates a threshold number of responses and gets the message-
specific key to encrypt the message. However, DiSE may
introduce heavy computation and communication costs to the
user when encrypting a large set of messages. Christodorescu
et al. proposed an amortized threshold symmetric-key encryp-
tion scheme [6], which enables the user to encrypt a large set
of messages using a single interaction. In addition, Jarecki et
al. constructed an oblivious key management system based
on oblivious pseudorandom functions [109]. This scheme has
an updatable encryption capability. When the encryption key
is updated, the update procedure of the ciphertexts does not
require the user to interact with the key servers.

Whereas, in the above schemes, sophisticated adversaries
may corrupt enough key servers given enough time and get
the users’ master key. To resist such adversaries, multiple
proactivization mechanisms for secret sharing have been pro-
posed [12, 110–114]. In these schemes, time is divided into
fixed intervals called epochs, and the secret shares are updated
with the new ones without changing the master key in differ-
ent epochs. To further enhance security, the key servers can
be replaced by the newly employed ones in different epochs
while maintaining the master key.

These server-aided key management schemes are free from
reliance on secure hardware devices. However, these schemes
cannot resist the destruction of key servers. The functionality
and reliability totally rely on that the key servers can provide
services for users. Once the key servers are destroyed, the
user would never recover their keys.

D.2 Portable authentication
Biometric characteristics provide a convenient and portable
way for users to authenticate themselves with servers. Despite
the benefits of using biometric characteristics, there exist secu-
rity issues. Specifically, storing a user’s biometric characteris-
tic template on the server side as an authentication credential
makes the user’s biometric characteristic vulnerable if the
credential database is leaked. Furthermore, an attacker may
perform trawling attacks to obtain authentication credentials
based on different biometric characteristics from different au-
thentication systems. This can enable the attacker to retrieve
the user’s master key if the user utilizes the same characteris-
tics when deploying DRKM.

A method to mitigate the above attacks is to require the
server to store the encrypted templates. The adversary cannot
get anything about users’ biometric characteristics from the
compromised credential database. However, this method can-

not resist the internal adversary e.g., the malicious insiders
working at the server, who can still get the users’ templates.

Recently, the authentication protocol, FIDO U2F [105],
has been proposed, which enables users’ biometric templates
to be stored on the users’ devices instead of the server side.
Specifically, the user installs an FIDO authenticator on her/his
device. During the registration phase, the user unlocks the
FIDO authenticator using fingerprint or other biometric char-
acteristics and generates a new public/private key pair. The
public key is sent to the server, and the private key and the
biometric characteristic templates are stored on the device.
During the sign-on phase, the server sends a challenge mes-
sage, e.g., a nonce, to the user. The user unlocks the FIDO
authenticator using the same biometric characteristics as that
utilized in the registration phase and signs the challenge mes-
sage using the private key. The user sends the signature back
to the server, and the server verifies it with the stored pub-
lic key. If it is valid, the user passes the authentication. As
such, deploying FIDO authenticators can avoid the leakages
of biometric information.

Appendix E Artifact

Abstract. Our artifact consists of a DRKM prototype. DRKM
is a portable and destruction-resistant key management sys-
tem. It can support that a user derives a master key from
multiple PIFs and utilizes the master key to manage other
cryptographic keys. DRKM also supports the user to retrieve
the master key from a part of PIFs utilized for key derivation.
Scope. Our artifact can be used to prove the correctness and
feasibility of DRKM and evaluate its performance. Specifi-
cally, it demonstrates that DRKM can be deployed in practice
and function well. It can be used to evaluate the computation
delay and communication costs. It can also be used to validate
the evaluation results presented in Section 5.
Content. The artifact comprises the following sub-directories:

-__pycache__, which contains the packaged interfaces used
in DRKM

-key_manager.py, which contains the sourcecode of Man-
aging.

-key_recover.py, which contains the sourcecode of Recov-
ery.

-key_visit.py, which contains the sourcecode of Access.
Hosting. Our artifact is available on the GitHub repository
https://github.com/DRKM-code/DRKM.git.
Requirements. We developed and evaluated our artifact on
a laptop with an Intel Core i5 CPU and 16 GB LPDDR4X
of RAM. The prototype is implemented in Python with the
Crypto library. Moreover, to run the prototype correctly, some
basic packages including mpmath, pip, pkg_resources, and
sympy are required.

22


	Introduction
	Our contributions
	Technical overview
	Comparison with concurrent work

	PIFs and reconstructable secrets
	Definitions of PIFs
	Reconstructable secrets

	The proposed DRKM
	Notation
	Definition of DRKM
	Security of DRKM
	Construction of DRKM
	Remark
	Initializing encryption

	Security analysis
	eIND-KeyA1()
	eIND-DRA2()

	Implementation and evaluation
	Deriving secrets from PIFs
	Key derivation and management
	Key access and recovery
	Comparison with KDF
	Applications and compatibility

	Conclusion
	Comparison between DRKM and alternative schemes
	Basic theory
	Introduction to popular PIFs
	Something the user knows
	Someone the user is
	Something the user has

	Related work
	Key management schemes
	Portable authentication

	Artifact

