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Abstract. We introduce a new cryptographic primitive, called Completely Anonymous Signed En-
cryption (CASE). CASE is a public-key authenticated encryption primitive, that o�ers anonymity for
senders as well as receivers. A �case-packet� should appear, without a (decryption) key for opening it,
to be a blackbox that reveals no information at all about its contents. To decase a case-packet fully �
so that the message is retrieved and authenticated � a veri�cation key is also required.
De�ning security for this primitive is subtle. We present a relatively simple Chosen Objects Attack

(COA) security de�nition. Validating this de�nition, we show that it implies a comprehensive indistinguishability-
preservation de�nition in the real-ideal paradigm. To obtain the latter de�nition, we extend the Cryp-
tographic Agents framework of [2, 3] to allow maliciously created objects.
We also provide a novel and practical construction for COA-secure CASE under standard assumptions
in public-key cryptography, and in the standard model.
We believe CASE can be a staple in future cryptographic libraries, thanks to its robust security guar-
antees and e�cient instantiations based on standard assumptions.

1 Introduction

In this work, we introduce a new cryptographic primitive, called Completely Anonymous Signed Encryption
(CASE). CASE is a public-key authenticated encryption primitive, that o�ers anonymity for senders as well
as receivers. CASE captures the intuition that once a message is �encased� � resulting in a case-packet � it
should appear, to someone without a (decryption) key for opening the case-packet, to be a blackbox that
reveals no information at all about its contents.4 To decase a case-packet fully � so that the message is
retrieved and authenticated � a veri�cation key is also required.

The signi�cance of such a primitive stems from its fundamental nature as well as its potential as a practical
tool. For instance, in blockchain-like systems where data packets can be publicly posted, for privacy, not only
the contents of the packet should be hidden, but also the originator and the intended recipient of the data
should remain anonymous. Further, we may require that even the recipient of a packet should not learn
about its sender unless they have acquired a veri�cation key that allows them to authenticate packets from
the sender (this is what we call complete anonymity).

CASE, while fundamental in nature, is still a fairly complex primitive, and formally de�ning security for
it is a non-trivial task. It involves two pairs of keys (public and secret keys, for encryption and signature),
used in di�erent combinations (e.g., a decryption key is enough to open the case-packet for reading a message,
but a veri�cation key is also needed for authentication), and multiple security requirements based on which
keys are available to the adversary and which are not.

Public-key authenticated encryption has been well-explored in the literature (see Section 1.1) and has
also been making its way into standards (e.g., [4, 11]). However, these notions do not incorporate anonymity
as we do here. Further, we seek and achieve signi�cantly more comprehensive security guarantees and strong
key-hiding properties. In particular, we seek security against active adversaries who can access oracles that

4 For simplicity, we consider a �nite message space. If messages of arbitrary length are to be allowed, we will let a
case-packet reveal the length of the message (possibly after padding). All our de�nitions and results can be readily
generalized to this setting.



combine honest objects with adversarial objects, where �objects� refer to both keys as well as case-packets.
For instance, the adversary can query a decasing oracle with its own decryption key and case-packet, but
requesting to use one of two veri�cation keys picked by the experiment. We term such attacks Chosen
Objects Attack (COA), as a generalization of Chosen Ciphertext Attack. We present a relatively simple
de�nition of COA-secure CASE consisting of three elegant experiments (Total-Hiding, Sender-Anonymity,
Unforgeability),5 correctness conditions, an unpredictability condition, and a set of natural � but new �
existential consistency requirements.

Is COA Security Comprehensive? (Yes!) At �rst glance, our COA security de�nition for CASE may
appear as an incomplete list of desirable properties. Indeed, given the subtleties of de�ning security for a
complex primitive, it is not possible to appeal to intuition to argue that all vulnerabilities have been covered
by this de�nition. Instead, one should use a comprehensive de�nition in the real-ideal paradigm, where the
ideal model is intuitively convincing. This approach has formed the foundation for general frameworks like
Universally Composable security [15] and Constructive Cryptography [31]. However, using a simulation based
security de�nition for modeling objects that can be passed around (rather than functionalities implemented
using protocols wherein parties never transfer their secret keys) quickly leads to impossibility results in the
standard model without random oracles (see Section 6.4). To avoid such outright impossibility results, we
consider a de�nition in the real-ideal paradigm that uses indistinguishability-preservation [2, 3] as the
security notion, rather than simulation. In the process, we extend the Cryptographic Agents framework of
[2, 3] to allow maliciously created objects, which is an important additional contribution of this work.

Once the de�nitions are in place, our main results are a novel construction of a COA-secure CASE
from standard assumptions in public-key cryptography, and also showing that COA-secure CASE meets the
real-ideal security de�nition for CASE.

Our Contributions. We summarize our contributions here.

� We introduce CASE as a practical and powerful cryptographic primitive.

� We present a strong security de�nition for CASE, called COA security (Section 4).

� We give a construction for COA-secure CASE under standard assumptions in the standard model (Sec-
tion 5). We also show how to leverage the e�ciency of any symmetric-key encryption scheme to get a
correspondingly e�cient COA-secure CASE (Section 5.4).

� We present the Active Agents Framework as an extension of the Cryptographic Agents model, to cap-
ture comprehensive security guarantees for complex primitives like CASE under the real-ideal paradigm
(Section 6).

� We show that COA secure CASE yields a secure implementation of CASE in the active agents framework
(Section 7).

While we present the COA security de�nition upfront, it is important to point out that this de�nition
was arrived at starting from the security de�nition in the active agents framework, and working through the
demands of satisfying that de�nition.

1.1 Related Work

Public-key authenticated encryption has been extensively studied since signcryption was introduced by Zheng
[43]. Despite being a fundamental primitive studied for over two decades, it has proved challenging to �nd
the right de�nitions of security for this notion. Indeed, the original scheme by Zheng was proven secure
several years after its introduction [8]. A sequence of works [5, 6, 8, 36, 42] formalized security in the so
called �outsider security model� and �insider security model� where the former is used to model network
attacks while the latter is used to model (a priori) legitimate users whose keys have been compromised. Even
as these basic security de�nitions remained ad hoc, a signi�cant number of works have constructed concrete
schemes based on di�erent assumptions [27, 28, 40, 43, 44], and gone on to realize advanced properties [9,
13, 14, 18, 19, 20, 23, 27, 29, 30, 38, 39, 41].

5 These distinct experiments can be combined to give an equivalent uni�ed experiment in which the adversary is
allowed to adaptively attack any of the above security properties over a collection of keys and case-packets. Such
a de�nition is presented as an intermediate step to showing the comprehensiveness of this de�nition (see below).
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An early attempt by Gjøsteen and Kråkmo [24] modelled unforgeability and con�dentiality in the outsider
security model by using an ideal functionality. More recently, [7] provided a constructive cryptography
perspective of the basic security notions of signcryption. This work modelled the goal of authenticated
public-key encryption as a secure communication network, with static corruption of nodes. As it used a
simulation-based de�nition for the communication functionality, it does not account (and could not have
accounted) for secret key transfers, or more generally, the use of the scheme's objects in non-standard ways
outside of the prescribed communication protocols (e.g., posting ciphertexts on a bulletin board or forwarding
them, using signatures to prove the possession of a signing key, etc.).

Recently, Bellare and Stepanovs studied signcryption from a quantitative perspective due to its use in
various practical systems and standards [11]. More recently, Alwen et al. [4] conducted a thorough study
of the �authenticated mode� of the Hybrid Public Key Encryption (HPKE) standard, which combines a
Key Encapsulation Mechanism and an Authenticated Encryption. They abstract this notion using a new
primitive which they call Authenticated Public Key Encryption. However, their study is tailored to the
HPKE standard, and primarily studies weaker variants of security. Another recent work by Maurer et al.
[32] studied the related notion of �Multi-Designated Receiver Signed Public Key Encryption� which allows a
sender to select a set of designated receivers and both encrypt and sign a message that only these receivers
will be able to read and authenticate.

While the aforementioned works make important progress towards the goal of �nding the right formaliza-
tion for public-key authenticated encryption, none of them consider anonymity of the sender and intended
receiver. They also work with relatively weak or ad hoc security de�nitions and do not comprehensively
model an adversary that can combine honest and adversarial objects via oracles.

2 Technical Overview

We proceed to provide a technical overview of our de�nitions, constructions and proofs of security.

2.1 De�ning COA-Secure CASE

CASE is a fairly complex primitive. For instance, in contrast to symmetric-key authenticated encryption,
encasing and decasing a message involves four keys. Further, in comparison to signcryption, which itself
has been the subject of an extensive body of work, CASE requires strong key-hiding properties. We also
require that even if one of the two keys used to create a case-packet, or used to decase a possibly malicious
case-packet, is maliciously crafted, the residual hiding assurances for the honestly created key should hold.

We start o� by presenting a fairly intuitive set of security games and correctness properties. We term our
de�nition security against Chosen Objects Attack, or COA-security (Section 4), since the adversary needs
to be provided with oracles which take not only malicious �ciphertexts� (or case-packets), but also malicious
keys; both encasing and decasing oracles need to be provided to the adversary. There are standard correctness
requirements and three security games � total hiding and sender anonymity games with a �avor of
CCA security, and an unforgeability game paralleling a standard signature unforgeability requirement. In
addition, there is an unpredictability requirement and a set of existential consistency requirements,
which are crucial for security against malicious keys. The former requires that encasing a message with any
encryption key and signing key results in a case-packet with high min-entropy (or results in an error); while
this is implied by the above security experiments for honestly generated keys, the additional requirement is
that it holds for all keys in the key-space. The existential consistency conditions require that a case-packet
should have at most one set of keys and message that can be associated with it, and similarly a veri�cation
key should have at most one signing key, and an encryption key should have at most one decryption key. Like
the unpredictability requirement, the consistency requirements are also remarkably unremarkable in nature
� indeed, one may feel that they are to be expected in any reasonable scheme � but, they are non-trivial to
enforce.

2.2 Constructing a COA-Secure CASE

We start with a sign-then-encrypt strategy. Indeed, in the setting of (non-anonymous) signcryption, sign-
then-encrypt is a generic composition that is known to yield a secure signcryption [6], but only with the
weakened form of �replayable CCA� security (introduced in [6] as generalized CCA or gCCA). The main
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drawback of this construction is replayability: suppose Eve receives a case-packet CP signed by Alice and
encrypted using Eve's encryption key; then, Eve can decrypt it and reencrypt using any encryption key of
its choice (without needing to modify the underlying signature of Alice). This is clearly problematic because,
if Bob receives a case-packet that he can decase and authenticate to be from Alice, he still cannot be sure
if Alice had actually sent it to him, or to someone like Eve (who then carried out the above attack). An
immediate solution to this is to include in the signed message the encryption key to be used as well; this
would prevent Eve from passing o� the signed message with her encryption key in it as a message intended
for Bob. However, this still leaves some non-ideal behavior: On receiving one case-packet from Alice, Eve
can construct many distinct case-packets by decrypting and reencrypting it with its encryption key many
times. Each of these case-packets would verify as coming from Alice by someone with Eve's decryption key.
Whether this translates to concrete harm or not is application dependent � but this a behavior that is not
possible in the ideal setting.

We thus want to authenticate the entire case-packet (rather than just the message and the encryption key)
in the signature. However, this leads to a circularity as the case-packet is determined only after the signature
is computed. It turns out that one can circumvent this circularity by exposing a little more structure from the
underlying PKE scheme. The idea is as follows, instead of signing the case-packet itself, it is enough to sign
everything that goes into the case-packet other than the signature itself � i.e., the message, the encryption key,
and the randomness that will be used to create the encryption. This idea should be implemented with some
care, so that the security of the encryption scheme (which is not designed to support message-dependent-
randomness) remains un-a�ected.

We call an encryption scheme quasi-deterministic if any ciphertext generated by it includes a part τ
that is independent of the message, but is a perfectly binding encoding of all the randomness r used in the
encryption. As a simple example, El Gamal encryption is quasi-deterministic, since EncElGamal((g, h),m; r) =
(gr,m ·hr) where (g, h) is the public-key, m the message and r the randomness, and gr is a binding encoding
of r. The same is true for Cramer-Shoup encryption [17].

This gives us the structure of our �nal scheme: we need a signature scheme (with su�ciently short
signatures) and a quasi-deterministic PKE scheme (with su�ciently long messages). To encasem, we �rst pick
the randomness r for the PKE scheme and compute the �rst component τ of the ciphertext (without needing
the message). Then, we set the case-packet to be pkeEnc(EK,m||σ; r) where σ = sigSign(SK,m||EK||τ).
Note that, the ciphertext produced by pkeEnc using randomness r will contain τ as a part, and during
decasing, the signature σ can be veri�ed.

To make this construction work, we need the right kind of PKE and signature schemes, with their own
anonymity and existential consistency in addition to the standard security guarantees (CCA and strong un-
forgeability, resp.). We capture these security requirements as COA-secure Quasi-Deterministic PKE (COA-
QD-PKE) and Existentially Consistent Anonymous Signatures (ECAS).

COA Secure Quasi-Deterministic PKE The de�nition of COA security of PKE consists of a single
indistinguishability requirement � Anonymous-CCA-QD security (adapted from Anonymous-CCA security
[1, 12]) � plus a set of existential consistency requirements.

To be able to exploit the quasi-determinism (described above), we need to modify the CCA security
game slightly into a CCA-QD game as follows. The adversary receives the �rst part τ of the challenge
ciphertext (which does not depend on the message) upfront along with the public-key; it receives the rest of
the ciphertext after it submits a pair of challenge messages.

To construct a COA-QD-PKE scheme, we start from an Anonymous-CCA-QD secure scheme. As it turns
out, we already have a construction in the literature that is Anonymous-CCA-QD secure: [1] showed that
with a slight modi�cation, the Cramer-Shoup encryption scheme [17] becomes Anonymous-CCA secure; we
reanalyze this scheme to show that it is Anonymous-CCA-QD secure as well.6

6 We note that, CCA-QD security is not implied by CCA security and the QD structure alone. E.g., one can modify
a CCA-QD secure PKE scheme such that, if the encoding of the randomness (the pre-computed component of
the ciphertext) happens to equal the message, it simply sets the second component to ⊥, thereby revealing the
message; while this remains CCA secure, an adversary in the CCA-QD game can set one of the challenge messages
to be equal to the encoding of the randomness and break CCA-QD security.
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We also require existential consistency s.t. if a ciphertext decrypts successfully, it can only decrypt to
at most a single message with at most a single decryption key. We now show how a given Anonymous-
CCA-QD-PKE with perfect correctness (such as the modi�ed Cramer-Shoup scheme [1]) can be modi�ed to
be existentially consistent while retaining its original security. Note that, perfect correctness only refers to
honestly generated keys and ciphertexts, and does not entail existential consistency.

A helpful �rst step in preventing invalid secret-keys is to rede�ne it to be the randomness used to
generate the original secret-key. Further towards enforcing existential consistency, we augment the public-
key to include a perfectly binding commitment to the secret-key, and the ciphertext is augmented to include
one to the public-key. That is, the ciphertext has the form (α, β), where α is a commitment to the public-key
and β is a ciphertext in the original scheme. To preserve anonymous-CCA security, we need to tie α and β
together: it turns out to be enough to let β be the encryption of m||d where d is the canonical decommitment
information for α (from which α also can be computed).

Here we point out one subtlety in the above construction. Note that the public-key is required to include
a binding commitment of the secret-key. But we in fact require that the public-key can be deterministically
computed from the secret-key (since this property will be required of our CASE scheme). Hence the ran-
domness needed to compute this commitment must already be part of the secret-key, leading to a circularity.
This circularity can be avoided by using a commitment scheme that is �fully binding� � i.e., the output of the
commitment is perfectly binding not only for the message, but also for the randomness used. An example
of such a scheme, under the DDH assumption, is obtained from the El Gamal encryption scheme mentioned
above: Com(m; g, h, r) = (g, h, gr,mhr).

Existentially Consistent Anonymous Signature . We require ECAS to be a (strongly unforgeable)
signature scheme with an anonymity guarantee: without knowing a veri�cation key, one cannot tell if two
signatures are signed using the same key or not. We shall also require existential consistency guarantees of
ECAS.

To construct an ECAS scheme, we start with a plain (strongly unforgeable) signature scheme, which
w.l.o.g., has uniformly random signing keys from which veri�cation keys are deterministically derived (by
considering the randomness of the key-generation process as the signing key). We �rst augment this scheme
to support anonymity by adding a layer of encryption, and include the decryption key in the signing and
veri�cation keys of the ECAS scheme. To obtain existential consistency, we make the following modi�cations:

� The signing key SK includes the underlying scheme's signing key, the decryption key for the encryption
layer, and additional randomness for making the commitment below.

� The veri�cation key V K includes the underlying veri�cation key, the decryption key for the encryption
layer and a commitment to the underlying signing key (using a fully binding commitment scheme as
above).

� The signature includes a commitment to V K (but to the encryption key in it) using fresh randomness
r̂, and a quasi-deterministic encryption of (r̂||σ) where σ is a signature on m||r̂||τ using the underlying
signature scheme, where τ is the �rst component of the quasi-deterministic ciphertext.

� Veri�cation corresponds to decrypting the ciphertext, verifying the signature according to the underlying
signature scheme and then verifying the consistency of the commitment.

For existential consistency, as well as (strong) unforgeability, we will rely on the encryption scheme to be
a COA-QD-PKE. Note that we have rely on the quasi-deterministic nature of the encryption scheme to
prevent forgeries which simply refresh the encryption layer (decrypt and re-encrypt).

We point out one subtlety in the above construction. We have de�ned the signature above to include a
commitment to (SK∗, c, EK∗) rather than the actual veri�cation key V K = (SK∗, c,DK∗). This is to avoid
the following circularity: the commitment would have the decryption key in it while the encryption would
have the randomness used for this commitment. This would prevent us from arguing the properties of ECAS.

Please refer to Appendix B.2 for the full details. Note that this construction shares several similarities
with our CASE construction. If one unrolls our CASE construction, there are two layers of COA-QD-PKE,
but using two di�erent keys.
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Improving the E�ciency. As described in Section 5.4, CASE admits an analogue of �hybrid encryption,�
whereby long messages can be encased at the cost of applying symmetric-key encryption (SKE) and collision-
resistant hashing to the original message, plus the cost of encasing a �xed size message (consisting of the
keys for SKE and hashing, and the hash of the message). This makes our CASE construction quite practical.

2.3 A Real-Ideal De�nition

A major concern with game-based security de�nitions is that they may leave out several subtler aspects
of security. For instance, even for the simpler (and heavily studied) setting of public-key encryption, the
security de�nition has been strengthened incrementally through a sequence of notions that emerged over the
decades: Semantic security or IND-CPA [26], IND-CCA (1 and 2) [21, 34, 37], anonymity [12] and robustness
[1, 22, 33]. With CASE, this is clearly an even more pressing concern, given its complexity. In particular, our
de�nition of COA-secure CASE has several games and conditions as part of it, and one may suspect that
more such components could be added in the future.

To address this concern, we seek a de�nition following the real-ideal paradigm, where by inspecting the
ideal world, one can be easily convinced about the meaningfulness of the de�nition. However, a simulation-
based de�nition quickly leads us to impossibility results. Even for PKE with adaptive security (when de-
cryption keys may be revealed adaptively � a situation we do intend to cover), as observed by Nielsen [35],
a simulation based de�nition is impossible to achieve in the standard model.

In this work, we develop a new de�nition in the real-ideal paradigm that avoids simulation, but is
nevertheless powerful enough to subsume game-based de�nitions like IND-CCA security. Our de�nition is
based on the indistinguishability-preserving security notion of the Cryptographic Agents framework [2, 3].
The original framework of [2, 3] did not allow an adversary to send (possibly maliciously created) objects to
an honest party, and as such was not powerful to capture even IND-CCA security. We remove this restriction
from the framework and extend it with other useful features. Then, we model CASE in this framework using
a natural idealized version, and seek an indistinguishability-preserving implementation for it.

Our main result in this model, informally, is that a COA-secure CASE scheme is in fact, an indistinguishability-
preserving implementation of ideal CASE. This validates our COA security de�nition for CASE.

Active Agents Framework. We brie�y discuss the active agents framework (with more technical details
in Section 6). The framework is minimalistic and conceptually simple, and consists of the following:

� Two arbitrary entities. Test models the honest party, and User models the adversary.

� The ideal model has a trusted party B which hands out handles to Test and User for manipulating data
stored with it via an idealized interface called �schema�(akin to a functionality in the UC security model).

� The real model has Test and User interact with each other using cryptographic objects, in place of ideal
handles.

⋆ Indistinguishability Preservation: The security requirement in this model is as follows. For any predicate
on Test's inputs that is hidden from User in the ideal world, it should be hidden in the real world as well.

An ideal world schema will have an interface corresponding to each algorithm of an application (such as
key generation, encasing and decasing for CASE) and an agent corresponding to each cryptographic object
(such as keys and ciphertexts). Both Test and User only get handle numbers to agents. Constructing objects
via algorithms is modelled as invoking the corresponding schema command and getting a handle for a new
agent. Sending cryptographic objects is modelled via a special command called Transfer. Test (respectively
User) can transfer its agents (via handles) to User (respectively Test), which gets a new handle number to
the transferred agent.

∆-s-IND-PRE Security. To obtain our full de�nition, we need to further qualify indistinguishability-
preservation by specifying the class of Tests and Users in the ideal model. We denote s-IND-PRE as the class
of all PPT Test that are hiding against even unbounded Users in the ideal world (as in [3]). 7

7 So that, it is statistical indistinguishability in the ideal model that is required to be preserved as computational
indistinguishability in the real model.
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The strongest possible s-IND-PRE de�nition one can ask for in the active agents framework is for the
test-family of all PPT programs, which results in a de�nition that is impossible to realize (even for symmetric
key encryption and even in the original framework of [2] � see Section 6.4). However, a more restricted test-
family called ∆ su�ces to subsume all possible IND-style (a.k.a. �real-or-random�) de�nitions. Informally,
a Test ∈ ∆ reveals everything about the handles for agents it uses in its interaction with User except for a
test-bit b corresponding to some arbitrary predicate. When transferring an agent to User, Test chooses two
handles h0, h1 and communicates these to the user but transfers only agent for hb. Thus, User knows that
Test has transferred one of two known agents to her, but does not know which. User may proceed to perform
any idealized operation with this newly transferred agent.

In intuitive terms, ∆-s-IND-PRE formalizes the following guarantee: as long as Test does not reveal a
secret in the ideal world, the real world will also keep it hidden. It subsumes essentially all meaningful IND
security de�nitions for a given interface of the primitive: for any such IND security game, there is Test ∈ ∆
which carries out this game, such that it statistically hides the test-bit when an ideal encryption scheme is
used (e.g., in the case of IND-CCA security this formulation corresponds to a game that never decrypts a
ciphertext that is identical to the ciphertext that was earlier given as the challenge, called IND-CCA-SE in
[10]), and ∆-s-IND-PRE security applied to this Test translates to the security guarantee in the IND security
game.

In particular, ∆-s-IND-PRE security directly addresses the chosen object attacks of interest, as they can
all be captured using speci�c tests.

Beyond CASE. We point out that the active agents framework developed here is quite general and can
be used to model security for other schemas in the presence of adversarially created objects. The original
frameworks of [2, 3] modeled security notions for more advanced primitives like indistinguishability obfus-
cation, di�ering-inputs obfuscation and VGB obfuscation by using di�erent test families. Transferring these
de�nitions to our new model would yield stronger notions with additional non-malleability guarantees; the
resulting primitives remain to be explored. Indeed, as the basic security de�nitions for obfuscation and func-
tional encryption are increasingly considered to be realizable, the achievability of stronger de�nitions emerges
as an important question.

Limits of ∆-s-IND-PRE. Even though ∆-s-IND-PRE security is based on an ideal world model, and
subsumes all possible IND de�nitions, we advise caution against interpreting ∆-s-IND-PRE security on par
with a simulation-based security de�nition (which is indeed unrealizable). For instance, ∆-s-IND-PRE does
not require preserving non-negligible advantages: e.g., a distinguishing advantage of 0.1 in the ideal world
could translate to an advantage of 0.2 in the real world. Note that this is usually not a concern, since it
corresponds to an ideal world that is already �insecure�.

Another issue is that, while an ideal encryption scheme could be used as a non-malleable commitment
scheme,∆-s-IND-PRE security makes no such assurances. This is because, in the ideal world, if a commitment
is to be opened such that indistinguishability ceases, then IND-PRE security makes no more guarantees. We
leave it as an intriguing question whether ∆-s-IND-PRE secure encryption could be leveraged in an indirect
way to obtain a non-malleable commitment scheme.

∆-s-IND-PRE de�nition also does not cover side-channel attacks. One can extend the de�nition to allow
the interface of an implementation to have more commands (corresponding to leakage) than in the ideal
interface of the schema. We defer this to future work.

Finally, the idealized model in the Agents framework excludes certain kinds of usages that a simulation-
based idealization would permit. Speci�cally, since the ideal interface provides honest users only with handles
(serial numbers) for the cryptographic objects they create or receive, they cannot use a cryptographic object
as input to another algorithm, or even to an algorithm in the same scheme (e.g., a key cannot be used as a
message that is encased). We remark that this restriction is, in fact, a desirable feature in a programming
interface for a cryptographic library; violating this interface should not be up to the programmer, but should
be carefully designed, analyzed and exposed as a new schema by the creators of the cryptographic library.
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2.4 Proving COA Security ⇒ ∆-s-IND-PRE Secure CASE

Implementing the schema Σcase is a challenging task because it is highly idealized and implies numerous
security guarantees that may not be immediately apparent. (For instance, in the ideal world, to produce
a case-packet, not only is the signing key needed, but so is the encryption key; hence an adversary with
the signing key who gets oracle access to encasing and decasing, should not be able to create a new valid
case-packet.) These guarantees are not explicit in the de�nition of COA security. Nevertheless, we show the
following:

Theorem 1. A ∆-s-IND-PRE secure implementation of Σcase exists if a COA secure CASE scheme exists.

The construction itself is direct, syntactically translating the elements of a CASE scheme into those of
an implementation of Σcase. However, the proof of security is quite non-trivial. This should not be surprising
given the simplicity of the COA security de�nition vis-à-vis the generality of ∆-s-IND-PRE security. We use
a careful sequence of hybrids to argue indistinguishability preservation, where some of the hybrids involve
the use of an �extended schema� (which is partly ideal and partly real). To switch between these hybrids,
we use both PPT simulators (which rely on the indistinguishability and unforgeability guarantees in the
COA security) and computationally unbounded simulators (which rely on existential consistency). As we
shall see, the simulators heavily rely on the fact that Test ∈ ∆, and hence the only uncertainty regarding
agents transferred by Test is the choice between one of two known agents, determined by the test-bit b given
as input to Test. The essential ingredients of these simulators are summarized below.8

� First, we move from the real execution to a hybrid execution in which objects originating from Test
are replaced with ideal agents, while the objects originating from the adversary are replaced � by an e�cient
simulator S†b (which knows the test bit b) � with ideal agents only when their structure can be deduced

e�ciently based on the objects already in the transcript; otherwise S†b prepares non-ideal agents which
internally contain cryptographic objects and transfers them.
In this hybrid, an �extended� schema which allows both ideal and non-ideal agents is used. The extended
schema is carefully designed to allow sessions to run correctly, even when non-ideal agents (prepared by S†b )
and ideal agents interact with each other.
A detailed analysis, using a graph G†b which encodes the combined view of Test and A, is used to argue
that the modi�cations in this hybrid will cause the execution to deviate only if certain �bad events� occur
(see Figure 21). The bad events mainly correspond to the violation of conditions explicitly included in the
COA security de�nition (like correctness, unforgeability and unpredictability) or other consequences of the
de�nition (like encasing resistance, in Section 4.1). Since these bad events can all shown to have negligible
probability, making this modi�cation keeps the experiment's outcome indistinguishable.9

� The next step is to show that there is a simulator S‡ which does not need to know the bit b to carry
out the above simulation. This is perhaps the most delicate part of the proof. The high-level idea is to argue
that the executions for b = 0 and b = 1 should proceed identically from the point of view of the adversary (as
Test hides the bit b in the ideal world), and hence a joint simulation should be possible. S‡ will abort when
it cannot assign a single simulated object for the two possible choices of a transferred agent, corresponding
to b = 0 and b = 1. Intuitively, this event corresponds to revealing the test-bit b in the ideal execution. This
argument crucially relies on the hiding properties that are part of COA security. These hiding properties
are used to �rst show indistinguishability in an augmented security game (Section 4.2) which resembles the
over all system conditioned on Test keeping the bit b hidden statistically in the ideeal execution. Then it is
argued that if Test hides the test bit in this execution, then the simulation is good, unless the augmented
security guarantee can be broken.
The execution of S‡ involves assigning �tentative� objects to handles when they are needed to compute objects
that are being transferred to the adversary, but they are �nalized only they themselves are transferred. The
conditions corresponding to the simulator S‡ failing are carefully restricted to only those cases which reveal

8 To facilitate keeping track of the arguments being made, we describe the corresponding hybrids from Section 7.
The goal is to show H0 ≈ H7, for hybrids corresponding to real executions with b = 0 and b = 1 respectively.

9 This corresponds to H0 ≈ H1 (with b = 0) and H6 ≈ H7 (with b = 1).
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the test-bit. For example, suppose Test transfers a case-packet agent such that it has di�erent messages in
the two executions corresponding to b = 0 and b = 1. Then there is no consistent assignment of that agent
to an object that works for both b = 0 and b = 1. Nevertheless this may still keep b hidden, as long as
the corresponding decryption keys are not transferred. So S‡ can assign a random case-packet to this agent,
provided that a decryption key which can decase the case-packet will be never transferred.
Here, b not being hidden does not yield a contradiction yet.10

� The next simulator S∗ is computationally unbounded, and helps us move from the ideal world with
the extended schema to the ideal world involving only the schema Σcase. The key to this step is existential
consistency: S∗ will use unbounded computational power to break open objects sent by the adversary and
map them to ideal agents. It replaces the non-ideal agents from before with ideal agents. S∗ can be thought
of as simulating the interface of the extended schema to S‡, while itself interacting with the ideal schema.
Existential consistency guarantees help ensure that the view of Test and A remains the same.11

� To prove ∆-s-IND-PRE security we need only consider Test ∈ ∆ such that the bit b remains hidden
against a computationally unbounded adversary. For such a Test, the above two hybrids are indistinguishable
from each other.12

Together these steps establish that if b is statistically hidden in the ideal execution, then that it is
(computationally) hidden in the real execution. Section 7 and Appendix C together present the complete
argument.

3 Preliminaries and De�nitions

3.1 Formalism of Agents

For the sake of completeness, we include a formalism for modeling agents and sessions, borrowed from [2]
(with minor changes).

De�nition 1 (Agents). An agent is an interactive Turing Machine, with the following modi�cations:

� There is an a priori restriction on the size of all the tapes other than the randomness tape (including
input, communication and work tapes), as a function of the security parameter.

� There is a special blocking state such that if the machine enters such a state, it remains there if the input
tape is empty. Similarly, there are blocking states which let the machine block if any combination of the
communication tape and the input tape is empty.

◁

We can allow non-uniform agents by allowing an additional advice tape. Our framework and basic results
work in the uniform and non-uniform model equally well.

Note that an agent who enters a blocking state can move out of it if its con�guration is changed by
adding a message to its input tape and/or communication tape. However, if the agent enters a halting state,
it will not move out of that state. An agent who never enters a blocking state is called a non-reactive agent.
An agent who never reads or writes from a communication tape is called a non-interactive agent.

De�nition 2 (Session). A session maps a �nite ordered set of agents, their con�gurations and inputs,
to outputs and (updated) con�gurations of the same agents, as follows. The agents are initialized with the
given inputs on their input tapes, and then executed together until they are deadlocked.13 The result of
applying the session is de�ned as the collection of outputs and con�gurations of the agents when the session
terminates (if it terminates; if not, the result is left unde�ned). ◁

10 This corresponds to showing that if H2 ≈ H5, then H1 ≈ H2 and H5 ≈ H6.
11 This shows H2 ≈ H3 and H4 ≈ H5.
12 That is, H3 ≈ H4.
13 More precisely, the �rst agent is executed till it enters a blocking or halting state, and then the second and so

forth, in a round-robin fashion, until all the agents remain in blocking or halting states for a full round. After each
execution of an agent, the contents of its outgoing communication tape are interpreted as an ordered sequence
of messages to each of the other agents in the session (some or all of them possibly being empty messages), and
copied over to the respective agents' incoming communication tapes.
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We shall be restricting ourselves to collections of agents such that sessions involving them are guaranteed
to terminate. Note that we have de�ned a session to have only an initial set of inputs, so that the outcome
of a session is well-de�ned (without the need to specify how further inputs would be chosen).

3.2 Hash Schemes

De�nition 3 (Collision-Resistant Hash Function). A CRHF scheme hash, parametrized by a key-
length K and digest-length n (polynomial in the security parameter κ) is a deterministic polynomial time
algorithm which takes an index k ∈ {0, 1}K and a message m ∈ {0, 1}∗ and outputs an n-bit hash digest
such that the following property holds: For any PPT adversary A, there exists a negligible function negl in
κ s.t.

Pr
k←K

[
A(k) = (m0,m1) ∧ m0 ̸= m1 ∧ hash(k,m0) = hash(hk,m1)

]
≤ negl(κ)

◁

3.3 Encryption Schemes

De�nition 4 (SKE). A Symmetric-Key Encryption scheme with e�ciently recognizable key-spaces (K,
CP) and message spaceM consists of the following algorithms.

� skeGen: takes security parameter κ and outputs a key k ∈ K.
� skeEnc: takes a key k, message m ∈M and outputs a ciphertext CP ∈ CP.
� skeDec: takes a key k, ciphertext CP and outputs a message m or ⊥.

Of these, skeEnc and skeDec are deterministic algorithms. These algorithms should satisfy the following
properties.

1. Perfect Correctness of encrypt: ∀κ,∀x ∈M, it holds that:

Pr
k←skeGen(1κ)

[
skeDec

(
k, skeEnc(k, x)

)
= x

]
= 1

2. IND-CCA security: For any PPT adversary A = (A0, A1), there exists a negligible function negl(.)
such that for skeCCAExp as in Figure 1:

Pr
[
skeCCAExp(A) = 1

]
≤ 1

2
+ negl(κ)

Experiment skeCCAExp

Parameter: Let κ be the security parameter.

� k ← skeGen(1κ)

▷ let E be s.t. E(m) = skeEnc(k,m)

▷ let D be s.t. D(CP ) = skeDec(k, CP )

� (st0,m0,m1)← AE,D
0 (1κ)

� b∗ ← {0, 1}, CP ∗ ← skeEnc(k,mb)

▷ let D′ be s.t. D′(CP ) = skeDec(k, CP ) if CP ̸= CP ∗, else ⊥
� b′ ← AE,D′

1 (st0, CP ∗)

� If b∗ = b′ output 1, else output 0.

Fig. 1: IND-CCA security experiment for SKE.
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◁

De�nition 5 (PKE). A Public-Key Encryption scheme with e�ciently recognizable key-spaces (PK, SK,
CP) and message spaceM consists of the following algorithms.

� pkeSKGen: takes security parameter κ and outputs a secret key DK ∈ SK.
� pkePKGen: takes DK ∈ SK and outputs a public key EK ∈ PK.
We de�ne pkeGen as: pkeGen(1κ) :=

(
DK ← pkeSKGen(1κ), EK ← pkePKGen(DK)

)
� pkeEnc: takes EK ∈ PK, message m ∈M and outputs a ciphertext CP ∈ CP.
� pkeDec: takes DK ∈ SK, CP ∈ CP and outputs a message m ∈M.

Of these, pkePKGen and pkeDec are deterministic algorithms. These algorithms should satisfy the following
properties.

1. Perfect Correctness of encrypt: ∀κ,∀x ∈M, it holds that:

Pr
(DK,EK)←pkeGen(1κ)

[
pkeDec

(
DK, pkeEnc(EK,x)

)
= x

]
= 1

2. IND-CCA security: For any PPT adversary A = (A0, A1), there exists a negligible function negl(.)
such that for pkeCCAExp as in Figure 2:

Pr
[
pkeCCAExp(A) = 1

]
≤ 1

2
+ negl(κ)

Experiment pkeCCAExp

Parameter: Let κ be the security parameter.

� (DK,EK)← pkeGen(1κ)

▷ let D be s.t. D(CP ) = pkeDec(DK,CP )

� (st0,m0,m1)← AD
0 (EK)

� b∗ ← {0, 1}, CP ∗ ← pkeEnc(EK,mb)

▷ let D′ be s.t. D′(CP ) = pkeDec(DK,CP ) if CP ̸= CP ∗, else ⊥
� b′ ← AD′

1 (st0, CP ∗)

� If b∗ = b′ output 1, else output 0.

Fig. 2: IND-CCA security experiment for PKE.

◁

3.4 Signature Schemes

De�nition 6 (Signature). A Signature scheme with e�ciently recognizable key-spaces (VK, SK, Σ) and
message spaceM consists of the following algorithms.

� sigSKGen: takes security parameter κ and outputs a signing key SK ∈ SK.
� sigVKGen: takes SK ∈ SK and outputs a veri�cation key vk ∈ VK.
We de�ne sigGen as: sigGen(1κ) :=

(
SK ← sigSKGen(1κ), V K ← sigVKGen(SK)

)
11



� sigSign: takes SK ∈ SK, message m ∈M and outputs a signature σ ∈ Σ.

� sigVerify: takes V K ∈ VK, message m ∈M, signature σ ∈ Σ and outputs a bit b ∈ {0, 1}.
Of these, sigVKGen and sigVerify are deterministic algorithms. These algorithms should satisfy the following
properties.

1. Perfect Correctness of veri�cation: ∀κ, x, it holds that:

Pr
(SK,V K)←sigGen(1κ)

[
sigVerify

(
V K, x, sigSign(SK, x)

)
= 1

]
= 1

2. Strong-Unforgeability: For any PPT adversary A, there exists a negligible function negl(.) such that
for SigForgeExp in Figure 3:

Pr
[
SigForgeExp(A) = 1

]
≤ negl(κ)

Experiment SigForgeExp

Parameter: Let κ be the security parameter.

� (SK, V K)← sigGen(1κ).

▷ let S be s.t. S(m) = sigSign(SK,m)

� (m,h)← AS(V K), where σ was not response of S to any query by A

� Output sigVerify(V K,m, σ).

Fig. 3: Strong-Unforgeability Experiment for Signature.

◁

3.5 Commitment Schemes

De�nition 7 (Commitment). A (non-interactive) commitment scheme for a message spaceM = {Mκ}κ∈N
consists of two polynomial time algorithms de�ned below:

� com.Commit: takes as input a message m ∈ Mκ and outputs a commitment c and decommitment infor-
mation d .

� com.Open: takes as input c, d and outputs a message m ∈Mκ or ⊥.
Where, com.Open is a deterministic algorithm. The algorithms satisfy the following properties:

1. Correctness. For every m ∈Mκ, we require that

Pr
[
com.Open(com.Commit(m)) = m

]
= 1

2. Perfectly Binding. A commitment scheme is perfectly binding if for any string c⋆ ∈ {0, 1}⋆, there do not
exist m0,m1 ∈Mκ and d0, d1 such that m0 ̸= m1, com.Open(c⋆, d0) = m0 and com.Open(c⋆, d1) = m1.

3. Computational Hiding. A commitment scheme is computationally hiding if for all m0,m1 ∈ Mκ and
all PPT adversaries A,∣∣∣Pr [A(com.Commit(m0)) = 1

]
− Pr

[
A(com.Commit(m1)) = 1

]∣∣∣ ≤ negl(κ)

12



◁

Commitment from any One-Way Permutation. For one-bit messages, commitment schemes can be
constructed based on any injective one-way function (Construction 4.4.2 in [25]). The scheme relies on
the Goldriech-Levin theorem to modify any one-way function into a hardcore-predicate (while retaining its
injective property).
Let f be a one-way permutation with hardcore-predicate h.

com.Commit(b): sample a random input x and output c =
(
h, f(x), b+ h(x)

)
, d = x.

com.Open(c, d): parse c as
(
h, y, b′

)
, parse d as x. If f(x) = y, output b′ + h(x); else, output ⊥.

We now informally prove that the above is a valid commitment scheme. Perfect binding holds from the
injective property of f : for any y, there exists a single pre-image x s.t. y = f(x). Computational hiding
holds from the hardcore-predicate property of h. An adversary that recovers the bit b with advantage α, also
recovers h(x) with same advantage.
In order to commit to a string, one can commit to each bit individually (using hard-core functions could give
better e�ciency).

4 COA Security for CASE

A CASE scheme involves four keys: a signing key (denoted as SK, typically), a veri�cation key (V K), a
decryption key (DK) and an encryption key (EK). Two key generation processes sample the signing and
decryption keys, and each of them can be deterministically transformed into corresponding veri�cation and
encryption keys. Analogous to encryption and decryption, the two operations in CASE are termed encasing

and decasing. We refer to the output of encasing as a case-packet (denoted as CP ). Below we present the
syntax and the COA security de�nition of a CASE scheme.

De�nition 8 (COA-secure CASE). A COA-secure CASE scheme with e�ciently recognizable key-spaces
(SK,VK,DK, EK) and message spaceM consists of the following e�cient (polynomial in κ) algorithms.

� skGen: takes security parameter as input, outputs a signing key SK ∈ SK.
� dkGen: takes security parameter as input, outputs a decryption key DK ∈ DK.
� vkGen: converts SK ∈ SK to a veri�cation key V K ∈ VK ∪ {⊥}.
� ekGen: converts DK ∈ DK to an encryption key EK ∈ EK ∪ {⊥}.
� encase: takes (SK,EK,m) ∈ SK ×DK ×M, outputs CP ∈ CP ∪ {⊥}.
� decase: takes (V K,DK,CP ) ∈ VK ×DK × CP and outputs (m, b) where m ∈M∪ {⊥} and b ∈ {0, 1}.
� acc: takes any string obj ∈ {0, 1}poly(κ) as input and outputs a token t ∈ {sk,vk,dk,ek,cp,⊥}.

Of these, vkGen, ekGen, decase and acc are deterministic algorithms. Below we refer to algorithms decase-msg
and decase-verify derived from decase as follows:

� decase-msg(DK,CP ) = m where (m, b) = decase(⊥, DK,CP )

� decase-verify(V K,DK,CP ) = m if decase(V K,DK,CP ) = (m, 1), and ⊥ otherwise.

We require the algorithms of a CASE scheme to satisfy the following:

1. Correctness (of Accept and Accepted Objects): ∀SK ∈ SK, ∀DK ∈ DK, acc(SK) = sk ⇒
acc

(
vkGen(SK)

)
= vk and acc(DK) = dk ⇒ acc

(
ekGen(DK)

)
= ek. Further, there exists a negligible

function negl s.t. ∀κ, ∀SK ∈ SK, DK ∈ DK, EK ∈ EK, m ∈ M, the following probabilities are at most
negl(κ):

Pr
[
acc

(
skGen(1κ)

)
̸= sk

]
Pr

[
acc

(
dkGen(1κ)

)
̸= dk

]
Pr

[
acc(SK) = sk ∧ acc(EK) = ek ∧ acc

(
encase

(
SK,EK,m

))
̸= cp

]
13



Pr
[
acc(SK) = sk ∧ acc(DK) = dk

∧ decase-msg
(
DK, encase

(
SK, ekGen(DK),m

))
̸= m

]
Pr

[
acc(SK) = sk ∧ acc(DK) = dk

∧ decase-verify
(
vkGen(SK), DK, encase

(
SK, ekGen(DK),m

))
̸= m

]
2. Total Hiding: For any PPT adversary A = (A0, A1), there exists a negligible function negl such that,

for distinguish-sans-DK as in Figure 4, Pr
[
distinguish-sans-DK(A, κ) = 1

]
≤ 1

2
+ negl(κ).

3. Sender Anonymity: For any PPT adversary A = (A0, A1), there exists a negligible function negl such
that, for distinguish-sans-VK as in Figure 4:

Pr
[
distinguish-sans-VK(A, κ) = 1

]
≤ 1

2
+ negl(κ).

4. Strong-Unforgeability: For any PPT adversary A, there exists a negligible function negl such that, for

forge as in Figure 4, Pr
[
forge(A, κ) = 1

]
≤ negl(κ).

5. Unpredictability: For all SK ∈ SK, EK ∈ EK, CP ∈ CP (CP ̸= ⊥) and m ∈ M, there exists a

negligible function negl such that Pr
[
encase

(
SK,EK,m

)
= CP

]
≤ negl(κ).

6. Existential Consistency: There exist functions (not required to be computationally e�cient) skId :
VK → SK ∪ {⊥}, vkId : CP → VK ∪ {⊥}, dkId : EK → DK ∪ {⊥}, ekId : CP → EK ∪ {⊥}, msgId : CP →
M∪ {⊥} such that,

vkGen(SK) = V K ⇒ skId(V K) = SK ∀V K, SK

ekGen(DK) = EK ⇒ dkId(EK) = DK ∀EK,DK

decase-msg(DK,CP ) = m ̸= ⊥ ⇒ dkId(CP ) = DK,

msgId(CP ) = m ∀DK,CP

decase-verify(V K,DK,CP ) = m ̸= ⊥ ⇒ vkId(CP ) = V K,

dkId(ekId(CP )) = DK,

msgId(CP ) = m ∀V K,DK,CP

◁

Remark 1. Minor variations of the above de�nition are also acceptable. For example, one may allow decase
and acc to be randomized and all our results can be extended to this de�nition too. However, for the sake of
convenience, and since our construction allows it, we have required them to be deterministic. Also, one may
include an additional perfect correctness condition, which our construction meets; but since our results do
not rely on this, we leave this out of the de�nition.

4.1 Encasing Resistance

We point out an implication of COA security � called �encasing resistance� � that will be useful later.
Encasing resistance requires that any PPT adversary who is given access to an honestly generated encryp-
tion/decryption key-pair only via oracles for encasing (w.r.t. any signing key) and decasing using those keys,
has negligible probability of generating a �new� valid case-packet for these keys (i.e., a case-packet that is
di�erent from the ones returned by the encasing oracle queries, and which on feeding to the decasing oracle
returns a non-⊥ output).
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Total Hiding Experiment distinguish-sans-DK(A, κ) where A = (A0, A1) is a 2-stage adversary

� For each b ∈ {0, 1}, sample DKb ← dkGen(1κ) and let EKb ← ekGen(DKb)

▷ Let D be s.t. D(b, V K,CP ) = decase(V K,DKb, CP ).

� (stA0 , SK0, SK1,m0,m1)← AD0 (EK0, EK1)

� b∗ ← {0, 1}, CP ∗ ← encase(SKb∗ , EKb∗ ,mb∗)

▷ Let D′ be s.t. D′(b, V K,CP ) = ⊥ if CP = CP ∗, and D(b, V K,CP ) otherwise.

� b′ ← AD
′

1 (stA0
, CP ∗)

� Output 1 i� b∗ = b′

Sender Anonymity Experiment distinguish-sans-VK(A, κ) where A = (A0, A1) is a 2-stage adversary

� For each b ∈ {0, 1}, sample SKb ← skGen(1κ) and let V Kb ← vkGen(SKb)

▷ Let E be s.t. E(b, EK,m) returns encase(SKb, EK,m)

▷ Let D be s.t. D(b,DK,CP ) = decase(V Kb, DK,CP )

� (stA0
, EK,m)← AE,D0 (stA0

)

� b∗ ← {0, 1}, CP ∗ ← encase(SKb∗ , EK,m)

▷ Let D′ be s.t. D′(b,DK,CP ) = ⊥ if CP = CP ∗, and D(b,DK,CP ) otherwise.

� b′ ← AE,D
′

1 (stA1 , CP ∗)

� Output 1 i� b∗ = b′

Strong-Unforgeability Experiment forge(A, κ)

� Sample SK ← skGen(1κ), V K ← vkGen(SK)

▷ Let E be such that E(m,EK) returns encase(SK,EK,m)

� (DK,CP )← AE(V K)

� Output 1 i� decase-verify(V K,DK,CP ) ̸= ⊥ and CP was not response of any query to E .

Fig. 4: Experiments for de�ning COA security of CASE

Experiment encase-sans-EK(A, κ)

� DK ← dkGen(1κ), EK ← ekGen(DK)

▷ Let E ,D be oracles, where E(SK,m) returns encase(SK,EK,m) and D(V K,CP ) returns decase(V K,DK,CP )

� CP ← AE,D

� Output 1 i� decase-msg(DK,CP ) ̸= ⊥ and CP was not previously returned by E

Fig. 5: Encasing-Resistance Experiment for CASE

De�nition 9 (Encasing-Resistance). A CASE scheme satis�es encasing-resistance if, for all PPT adver-
saries A, there exists a negligible function negl s.t. for encase-sans-EK as in Figure 5:

Pr
[
encase-sans-EK(A, κ) = 1

]
≤ negl(κ) ◁

Lemma 1. Any COA-secure CASE scheme satis�es encasing-resistance.
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Proof sketch: The idea behind the proof is that in the encasing-resistance experiment, the adversary has
access to the pair (DK,EK) only through an oracle, and thanks to the total hiding property, it cannot
distinguish if the keys used in the oracle are replaced with an independent pair (but the experiment's output
is still de�ned w.r.t. original key pair). Now, in this modi�ed experiment, the adversary's goal is to produce
a case-packet that can be decased with a freshly sampled decryption key. This in turn is not feasible, because
by existential consistency, a case-packet can be decased by at most one decryption key, and the probability
that a freshly sampled decryption key equals the one associated with the the case-packet is negligible. The
formal argument is given in the full version. □

We point out that the proof crucially relies on existential consistency as well as the hiding guarantees.
Indeed, a CASE scheme modi�ed to include a �dummy� case-packet for which decase-msg yields a non-⊥
message for every decryption key continues to satisfy all the other properties; and this dummy case-packet
can be used to violate encasing resistance of the modi�ed scheme.

4.2 Augmented Security

It would be convenient for us to capture the consequences of the total hiding and sender anonymity conditions
in COA security in an �augmented� hiding experiment. This experiment allows an adversary A to adaptively
choose the kind of hiding property it wants to attack. The experiment maintains n decryption/encryption
key pairs and n signing/veri�cation key pairs (where n is speci�ed by A), and also allows A to send more
objects to the experiment. Throughout the experiment, the adversary can retrieve the keys, or access the
encase or decase oracles using any combination of these objects. In the challenge phase, it can specify two
such sets of inputs to an oracle, and one of the two will be randomly used by the experiment. The adversary's
goal is to guess which set of inputs was chosen in the challenge phase. The experiment aborts if at any point
responding to the adversary will trivially reveal this choice. (E.g., if the two sets of inputs were to encase
two di�erent messages, and later on the decryption key for one of the two is requested.)

De�nition 10 (Augmented Security). A CASE scheme satis�es augmented security if, for all PPT
adversaries A, there exists a negligible function negl s.t. for aug as in Figure 14:

Pr
[
aug(A, κ) = 1

]
≤ 1

2
+ negl(κ) ◁

We prove the following in Appendix A.3.

Lemma 2. Any COA-secure CASE scheme satis�es augmented security.

5 Constructing a COA-secure CASE scheme

In this section, we instantiate a COA-secure CASE scheme. We �rst describe the building blocks that will
be needed.

5.1 Building Block: COA-secure QD-PKE

De�nition 11 (COA-secure Quasi-Deterministic PKE). A PKE scheme (pkeSKGen, pkePKGen, pkeEnc,
pkeDec) is quasi-deterministic and COA-secure if it has the following additional algorithm

� pkeAcc: takes any string obj ∈ {0, 1}poly(κ) and outputs a token t ∈ {ek,dk,ct,⊥}.

Where, pkeAcc is a deterministic algorithm. We require the algorithms to satisfy the following:

1. Correctness: ∀m ∈M, ∀SK ∈ SK, ∀EK ∈ PK, the following probabilities are negligible in κ

Pr
[
pkeAcc

(
pkeSKGen(1κ)

)
̸= dk

]
Pr

[
pkeAcc(EK) = ek ∧ pkeAcc(pkeEnc(EK,m)) ̸= ct

]
Pr

[
pkeAcc(DK) = dk ∧ pkeAcc(pkePKGen(DK)) ̸= ek

]
Pr

[
pkeAcc(DK) = dk ∧ pkeDec

(
DK, pkeEnc

(
pkePKGen(DK),m

))
̸= m

]
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2. Quasi-Deterministic: There exists an e�cient randomized algorithm pkeEnc1 and an ine�cient deter-
ministic algorithm pkeEnc2 such that ∀κ, ∀x ∈M ∀EK ∈ PK, ∀r ∈ {0, 1}poly(κ), it holds that:

pkeEnc(EK,x; r) =
(
pkeEnc1(EK; r), pkeEnc2

(
EK, pkeEnc1(EK; r), x

))
3. Quasi-Deterministic Anonymous IND-CCA security: For any PPT adversary A = (A0, A1, A2),

there exists a negligible function negl(.) such that for pkeQDAnonCCAExp as in Figure 6:

Pr
[
pkeQDAnonCCAExp(A) = 1

]
≤ 1

2
+ negl(κ)

QD Anon-CCA Experiment pkeQDAnonCCAExp

Parameters: A = (A0, A1) is a 2-stage adversary and κ is the security parameter.

� for each b ∈ {0, 1}, sample (DKb, EKb)← pkeGen(1κ).

� b∗ ← {0, 1}, r ← {0, 1}κ, τ ← pkeEnc1(EKb∗ ; r) using randomness r.

▷ Let D be s.t. D(b, CP ) = pkeDec(DKb, CP )

� (st0,m0,m1)← AD
0 (EK0, EK1, τ)

� CP ∗ ← pkeEnc(EKb∗ ,mb∗ ; r) using randomness r.

▷ Let D′ be s.t. D′(b, CP ) = ⊥ if CP = CP ∗ else pkeDec(DKb, CP )

� b′ ← AD′
1 (st0, CP ∗)

� Output 1 if b∗ = b′, else output 0.

Fig. 6: Experiment for COA-secure QD-PKE.

4. Existential Consistency: There exist computationally ine�cient deterministic extractor algorithms
pkeSKId : PK → SK ∪ {⊥}, pkePKId : CP → PK ∪ {⊥}, pkeMsgId : CP →M∪ {⊥} such that, ∀m ∈M,
∀EK ∈ PK, ∀CP ∈ CP, ∀DK ∈ SK:

pkePKGen(DK) = EK ⇒ pkeSKId(EK) = DK

pkeEnc(EK,m) = CP ⇒ pkePKId(CP ) = EK

pkeDec(DK,CP ) = m ̸= ⊥ ⇒ pkeSKId(pkePKId(CP )) = DK

pkeDec(DK,CP ) = m ̸= ⊥ ⇒ pkeMsgId(CP ) = m ◁

Following the description in Section 2.2, we obtain the following construction of a COA-secure QD-PKE
(proven in the full version).

Lemma 3. Assuming the Decisional Di�e-Hellman assumption (DDH), there exists a COA-secure Quasi-
Deterministic PKE scheme.

5.2 Building Block: Existentially Consistent Anonymous Signature

De�nition 12 (Existentially Consistent Anonymous Signature ). A signature scheme (sigSKGen,
sigVKGen, sigSign, sigVerify) is Existentially Consistent Anonymous Signature if it has the following addi-
tional algorithm

� sigAcc: takes any string obj ∈ {0, 1}poly(κ) and outputs a token t ∈ {sk,vk, sig,⊥}.
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Where, sigAcc is a deterministic algorithm. We require the algorithms to satisfy the following:

1. Correctness: ∀κ, there exists a negligible function negl(.) such that, ∀SK ∈ SK, ∀m ∈M, the following
probabilities are negligible in κ

Pr
[
sigAcc

(
sigSKGen(1κ)

)
̸= sk

]
Pr

[
sigAcc(SK) = sk ∧ sigAcc

(
sigVKGen(SK)

)
̸= vk

]
Pr

[
sigAcc(SK) = sk ∧ sigAcc

(
sigSign(SK,m)

)
̸= sig

]
Pr

[
sigAcc(SK) = sk ∧ sigVerify

(
sigVKGen(SK),m, sigSign(SK,m)

)
̸= 1

]
2. Strong-Unforgeability: For any PPT adversary A, there exists a negligible function negl(.) such that

for SigForgeExp in Figure 3:

Pr
[
SigForgeExp(A) = 1

]
≤ negl(κ)

3. (Signer) Anonymity: For any PPT adversary A = (A0, A1), there exists a negligible function negl(.)
such that tfor SigAnonExp as in Figure 7:

Pr
[
SigAnonExp(A) = 1

]
≤ 1

2
+ negl(κ)

Experiment SigAnonExp

Parameter: A = (A0, A1) is a 2-stage adversary and κ is the security parameter.

� for each b ∈ {0, 1}, sample (SKb, V Kb)← sigGen(1κ).

▷ Let S be s.t. S(b′,m′) = sigSign(SKb′ ,m
′)

� (stA0 ,m)← AS
0 (1

κ)

� b∗ ← {0, 1}, σ ← sigSign(SKb∗ ,m),

� b∗ ← AS
1 (stA0 , σ)

� Output 1 i� b = b∗.

Fig. 7: Experiment for Existentially Consistent Anonymous Signature .

4. Existential Consistency: There exist computationally ine�cient deterministic extractor algorithms
sigVKId : Σ → VK ∪ {⊥}, sigSKId : VK → SK ∪ {⊥} s.t. ∀SK ∈ SK, ∀V K ∈ VK, ∀σ ∈ Σ, the following
probabilities are negligible in κ:

sigVKGen(SK) = V K ⇒ sigSKId(V K) = SK

sigSign(SK, x) = σ ⇒ sigSKId(sigVKId(σ) = SK

sigVerify(V K, x, σ) = 1 ⇒ sigVKId(σ)) = V K ◁

Following the description in Section 2.2, we obtain the following result (proven in the full version).

Lemma 4. If there exists a signature scheme, a COA-secure QD-PKE scheme and a perfectly binding
commitment scheme; then there exists a Existentially Consistent Anonymous Signature scheme.
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Compactness. Without loss of generality, we assume that our signature schemes have �xed length signa-
tures independent of the size of the message (beyond the security parameter). To achieve compactness, we
can start with any plain signature scheme and de�ne a new scheme where the signature is actually on a hash
of the message computed using a full-domain collision-resistant hash function.

5.3 Main Construction: COA-secure CASE

We now describe the main construction.

Parameter: Let κ be the security parameter.

Let S = (sigGen, sigSign, sigVerify, sigAcc, sigSKId, sigVKId) be a Existentially Consistent Anonymous Signature
scheme.

Let E = (pkeGen, pkeEnc1, pkeEnc, pkeDec, pkeAcc, pkeSKId, pkePKId, pkeMsgId) be a COA-secure QD-PKE scheme.

COA-secure CASE Scheme SE:

� skGen(1κ):

output SK ← sigSKGen(1κ)

� dkGen(1κ):

output DK ← pkeSKGen(1κ)

� vkGen(SK):

output V K ← sigVKGen(SK)

� ekGen(DK):

output EK ← pkePKGen(DK)

� encase(SK,EK,m):

τ ← pkeEnc1(EK; r)

σ ← sigSign(SK,m||EK||τ)
CP ← pkeEnc(EK,m||σ; r)
output CP

� acc(obj):

if obj ∈ SK ∪ VK, output sigAcc(obj)
else if obj ∈ DK∪EK∪CP, output pkeAcc(obj)
else output ⊥

� decase-msg(DK,CP ):

if pkeDec(DK,CP ) = ⊥, output ⊥
m||σ ← pkeDec(DK,CP )

output m

� decase(V K,DK,CP ):

if pkeDec(DK,CP ) = ⊥, output ⊥
m||σ ← pkeDec(DK,CP )

EK ← pkePKGen(DK)

parse CP as (τ, c)

output
(
m, sigVerify(V K, σ,m||EK||τ)

)
Existential Consistency:

� msgId(CP ):

m||σ ← pkeMsgId(CP )

output m

� skId(V K):

output sigSKId(V K)

� dkId(EK):

output pkeSKId(EK)

� vkId(CP ):

m||σ ← pkeMsgId(CP )

output sigVKId(σ)

� ekId(CP ):

output pkePKId(CP )

Fig. 8: COA secure CASE

Lemma 5. If there exists a COA-secure QD-PKE scheme and an Existentially Consistent Anonymous
Signature scheme, then there exists a COA-secure CASE scheme.

Proof: Let E be a COA-secure QD-PKE scheme (De�nition 11) and S be a ECAS scheme (De�nition 12).
We prove that the scheme in Figure 8 is a COA-secure CASE scheme (De�nition 8).
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� Total Hiding: we prove this via a reduction to the quasi-deterministic anon IND-CCA security of the
underlying PKE scheme. Let A be an adversary with advantage α in the distinguish-sans-DK experiment.
We build an adversary A∗ for the pkeQDAnonCCAExp experiment as follows. It accepts (EK0, EK1, τ) from
the experiment and forwards (EK0, EK1) to A. For any polynomial oracle query of the form (V K ′, b′, CP ′)
from A, it queries the experiment on (b′, CP ′), receives the decryption m′||σ′, checks if the signature is valid
w.r.t. V K ′ and returns m′ to A. It receives the challenge messages (SK0, SK1,m0,m1) from A, constructs
each m∗b as m

∗
b = mb||σb, where σb = sigSign(SKb,m||PKb||τ). It sends (m∗0,m∗1) to the experiment, receives

the challenge ciphertext and forwards it to A. Finally, it outputs A's output. Thus, A∗ has advantage α,
which from our assumption that E is a secure quasi-deterministic anon-PKE scheme, must be negligible.

� Sender Anonymity: we prove this via a reduction to the anonymity of the underlying signature
scheme. LetA be an adversary with advantage α in the distinguish-sans-VK experiment. We build an adversary
A∗ for the SigAnonExp experiment as follows. For any polynomial oracle query of the form (b′, EK ′,m′) that
it receives from A, it samples randomness r′, constructs τ ′ ← pkeEnc1(EK ′; r′), queries the oracle on
(b′,m′||EK ′||τ ′), gets back σ′ and sends CP ′ =pkeEnc(EK ′,m′||σ′; r′) to A. When A outputs the challenge
(EK,m), it samples randomness r, constructs τ ← pkeEnc1(EK; r), sends m||EK||τ as the challenge
message to the experiment, receives σ as the challenge signature, sends CP = pkeEnc(EK,m||σ; r) as the
challenge ciphertext to A and outputs A's output. Thus, A∗ has advantage α, which from our assumption
that S is a COA-secure signature scheme, must be negligible.

� Strong-Unforgeability: we prove this via a reduction to the unforgeability of the underlying sig-
nature scheme. Let A be an adversary with advantage α in the forge experiment. We build an adver-
sary A∗ for the SigForgeExp experiment as follows. It receives V K from the experiment and forwards it
to A. For any polynomial oracle query of the form (m′, EK ′) that it receives from A, it samples ran-
domness r′, constructs τ ′ ← pkeEnc1(EK ′; r′), queries the oracle on m′||EK ′||τ ′, gets back σ′ and sends
CP ′ = pkeEnc(EK ′,m′||σ′; r′) to A. When A outputs the forgery (DK,CP ), it gets EK ← ekGen(DK),
parses CP as (τ, c), decrypts CP to get m||σ ← decase-verify(V K,DK,CP ) and outputs (m||EK||τ, σ) as
its forgery. Thus, A∗ has advantage α, which from our assumption that S is a COA-secure signature scheme,
must be negligible.

� Unpredictability: this follows trivially from the Quasi-Deterministic property of the PKE scheme.
The PKE ciphertext is of the form (τ, CP ′), but τ must have enough entropy so that IND-CCA holds.

� Correctness and Existential Consistency: ∀SK ∈ SK, DK ∈ DK,m ∈M , let V K ← vkGen(SK),
EK ← ekGen(DK), CP ← encase(SK,EK,m).

• From the correctness of the underlying primitives, it holds that the objects are accepted with
probability 1 − negl(κ). Further, pkeDec(DK,CP ) outputs m||σ and sigVerify(V K, σ,m||EK||τ)
outputs 1 with probability 1− negl(κ).

• From the existential consistency of the underlying primitives, it holds that skId(V K) = SK,
dkId(EK) = DK. Further, for any CP ∈ CP s.t. acc(CP ) = 1, it holds that if decase-msg(DK,CP ) ̸=
⊥, then ekId(CP ) = EK. Similarly, if decase-verify(V K,DK,CP ) ̸= ⊥, it holds that vkId(CP ) =
V K.

□

5.4 Improving the E�ciency of COA-secure CASE

We now show how to improve the e�ciency of a COA-secure CASE scheme like the one above, by leveraging
the e�ciency of a CPA-secure SKE and a collision-resistant hash scheme, analogous to hybrid encryption.

Lemma 6. The scheme case⋆ in Figure 9 is a COA-secure CASE scheme (De�nition 8), if S is a CPA-
secure SKE scheme, H is a CRHF scheme and case is a COA-secure CASE scheme.

Please refer to Appendix B.3.1 for the proof.

6 Active Agents Framework

In this section, we present the active agents framework that we develop and use. In particular, it allows the
adversary's cryptographic objects to also be modelled as transferable agents. Please refer to Section 6.3 for
a summary of the substantial di�erences between our model and the original model of [2].
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Parameter: Let κ be the security parameter.

Let S = (skeGen, skeEnc, skeDec) be a CPA-secure symmetric-key encryption scheme.

Let H be a collision-resistant hash function family.

Let case = (skGen, vkGen, dkGen, ekGen, encase, decase) be a COA-secure CASE scheme.

COA-secure CASE Scheme case⋆:

� case⋆.skGen(1κ):

output SK ← case.skGen(1κ)

� case⋆.dkGen(1κ):

output DK ← case.dkGen(1κ)

� case⋆.vkGen(SK):

output V K ← case.vkGen(SK)

� case⋆.ekGen(DK):

output EK ← case.ekGen(DK)

� case⋆.encase(SK,EK,m):

sample k1 ← skeGen(1κ), k2 ← {0, 1}κ

c1 ← skeEnc(k1,m)

c0 ← case.encase(SK,EK, k1||k2||H(k2, c1))

output (c0, c1)

� case⋆.acc(obj):

output case.acc(obj)

� case⋆.decase(V K,DK,CP ):

parse CP as (c0, c1)

(m′, b)← case.decase(V K,DK, c0)

parse m′ as k1||k2||h
m← skeDec(k1, c1)

if H(k2, c1) = h, output (m, b); else output ⊥

Existential Consistency:

� case⋆.dkId(EK):

output case.dkId(EK)

� case⋆.skId(V K):

output case.skId(V K)

� case⋆.vkId(CP ):

parse CP as (c0, c1)

output case.vkId(c0)

� case⋆.msgId(CP ):

parse CP as (c0, c1)

k1||k2||h← case.msgId(c0), m← skeDec(k1, c1)

output m

� case⋆.ekId(CP ):

parse CP as (c0, c1)

output case.ekId(c0)

Fig. 9: E�cient COA secure CASE via hybrid encryption

6.1 The Model

Agents are interactive Turing machines with tapes for input, output, incoming communication, outgoing
communication, randomness and work-space and behave di�erently depending on the contents of their work-
tape (De�nition 1). Multiple agents can interact with one another in a session (De�nition 2).

Ideal World Model (parameterized by a schema Σ) Formally, a schema Σ is described by an agent.
The ideal system for a schema Σ consists of two parties Test and User and a �xed third party B[Σ] (for
�black-box�). All three parties are probabilistic polynomial time (PPT) interactive turing-machines with a
built in security parameter κ. Test and User may be non-uniform. Test receives a test-bit b as input and User
produces an output bit b′.

B[Σ] maintains two lists of handles RTest and RUser, which contain the set of handles belonging to Test
and User respectively. Each handle in these lists is mapped to an agent. At the beginning of an execution,
both the lists are empty. While Test and User can arbitrarily talk to each other, their interaction with B[Σ]
can be summarized as follows:

- Creating agents. Test and User can, at any point, request B[Σ] to create a new agent. We describe
the process when Test requests creating an agent; the process for User is symmetric.

Test can send a command (init, string) to B[Σ]. B[Σ] then instantiates the agent (with an empty work-tape)
and runs it with string and security parameter as inputs. It assigns a handle number h to the agent (for
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example, the next available number in the list), gets the agent's con�guration config at the end of the
execution and stores (h, config) in RTest. It �nally returns h to Test.

- Request for Session Execution. Test or User can, at any point, request an execution of a session.
We describe the process when Test requests a session execution; the process for User is symmetric.

Test can send a command (run, (h1, x1) . . . , (ht, xt)), where hi are handles obtained in the list RTest, and
xi are input strings for the corresponding agents.14 B[Σ] executes a session with the agents with starting
con�gurations in RTest, corresponding to the speci�ed handles, with their respective inputs, till it terminates.
It obtains a collection of outputs (y1, . . . , yt) and updated con�gurations of agents. It generates new handles
h ′1, . . . , h

′
t corresponding to the updated con�gurations, adds them to RTest, and returns (h ′1, . . . , h

′
t, y1, . . . , yt)

to Test. If an agent halts in a session, no new handle h ′i is given out for that agent. After a session, the old
handles for the agents are not invalidated; so a party can access a con�guration of an agent any number of
times, by using the same handle.

- Transferring agents. Test can send a command (transfer, h) to B[Σ] upon which it looks up the entry
(h, config) from RTest (if such an entry exists) and adds an entry (h ′, config) to RUser, where h ′ is a new
handle, and sends the handle h ′ to User. Symmetrically, User can transfer an agent to Test using the transfer
command.

We de�ne the random variable ideal⟨Test(b) | Σ | User⟩ to be the output of User in an execution of the
above system, when Test gets b as the test-bit. We write ideal⟨Test | Σ | User⟩ to denote the output when
the test-bit is a uniformly random bit. We also de�ne Time⟨Test | Σ | User⟩ as the maximum number of
steps taken by Test (with a random input), B[Σ] and User in total.

In this work, we use the notion of statistical hiding in the ideal world as introduced in [3], rather than the
original notion used in [2]. (This still results in a security de�nition that subsumes the traditional de�nitions,
as they involve tests that are statistically hiding.)

De�nition 13 ((Statistical) Ideal world hiding). A Test is s-hiding w.r.t. a schema Σ if, for all un-
bounded users User who make at most a polynomial number of queries,

ideal⟨Test(0) | Σ | User⟩ ≈ ideal⟨Test(1) | Σ | User⟩. ◁

Real World Model (parameterized by a scheme Π) The real world for a schema Σ consists of two
parties Test and User that interact with each other arbitrarily, as in the ideal world. However, the third
party B[Σ] in the ideal world is replaced by two other parties I[Π,RepoTest] and I[Π,RepoUser] (when User
is honest), which run the algorithms speci�ed by a cryptographic scheme Π. A cryptographic scheme (or
simply scheme) Π is a collection of stateless (possibly randomized) algorithms Π.init, Π.run and Π.receive,
which use a repository Repo to store a mapping from handles to objects. More precisely, the repository is a
table with entries of the form (h, obj ), where h is a unique handle (say, a non-negative integer) and obj is
a cryptographic object (represented, for instance, as a binary string). At the start of an execution, Repo is
empty.

If a scheme implementation (I[Π,RepoTest] or I[Π,RepoUser]) receives input (init, string), then it runs
Π.init(string) to obtain an object obj which is added to Repo and a handle is returned. If it receives the
command (run, (h1, x1), · · · , (ht, xt)), then objects (obj 1, . . . , obj t) corresponding to (h1, . . . , ht) are retrieved
from Repo and Π.run((obj 1, x1), . . . , (obj t, xt)) is evaluated to obtain ((obj ′1, y1), . . . , (obj

′
t, yt)) where obj ′i

are new objects and yi are output strings; the objects are added to Repo, with a new handle for each, and
the new handles, along with the outputs, are returned. (If an obj ′i is empty, then no new handle is added;
this corresponds to an agent having halted.)

I[Π,RepoTest] and I[Π,RepoUser] do not interact with each other, except when one of them receives a
transfer command. If Test sends a command (transfer, h) to I[Π,RepoTest], it looks for an entry (h, obj )
in RepoTest and sends obj to I[Π,RepoUser]; on receiving obj from I[Π,RepoTest], I[Π,RepoUser] will run
Π.receive(obj ) which outputs (a possibly modi�ed) object obj ′ and if obj ′ ̸= ⊥, I[Π,RepoUser] will add

14 If a handle appears more than once among h1, . . . , ht, it is interpreted as separate agents with the same con�guration
(but possibly di�erent inputs). In our use-case of CASE, this scenario is not relevant.
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(h ′, obj ′) to RepoUser, where h ′ is a new handle, and outputs h ′ to User. The process of User transferring an
object to Test is symmetric.

When an object is transferred to I[Π,RepoUser], the receive algorithm can be used to accept or reject the
object. This check is performed only once, rather than each time the object is used: aside from the ine�ciency
of repeating this operation, note that the check may be probabilistic and an object may pass sometimes and
fail at other times. Since this is not captured in the ideal world, an object is tested and received once and
for all.

Note that we do not allow Test direct access to the cryptographic objects stored in its repository. In
particular, it cannot look up the object associated with a handle in RepoTest. Also observe that if User is
corrupt, which we denote by A, it may not run the scheme it is supposed to. It can run any arbitrary
algorithm and send any object of its choice directly to I[Π,RepoTest].

We de�ne the random variable real⟨Test(b) | Π | A⟩ to be the output of A in an execution of the above
system involving Test with test-bit b, I[Π,RepoUser] and A; as before, we omit b from the notation to indicate
a random bit. Also, as before, Time⟨Test | Π | A⟩ is the maximum number of steps taken by Test (with a
random input), I[Π,RepoUser] and A in total.

De�nition 14 (Real world hiding). Test is said to be hiding w.r.t. Π if ∀ PPT party A,

real⟨Test(0) | Π | A⟩ ≈ real⟨Test(1) | Π | A⟩. ◁

6.2 Security De�nition

We are ready to present the security de�nition of a cryptographic agent scheme Π implementing a schema
Σ. Below, the honest real-world user, corresponding to an ideal-world user User, is de�ned as the composite
program I[Π,RepoUser] ◦ User as shown in Figure 10.

B

Test
Ideal

User

I[Π,RepoTest] I[Π,RepoUser]

Test
Ideal

User

Honest Real User

Fig. 10: ideal world (left) and real world with an honest user.

Test Families. We write Γppt to denote the family of all PPT Test. We also de�ne a test-family ∆ as
follows: Test ∈ ∆ i� it behaves as follows: every init and run command it sends to B[Σ] is also reported to
User. For transfer commands, it picks two handles h0, h1 and sends a message (transfer, h0, h1) to User and
sends transfer[hb] to B[Σ], where b is the test-bit.

Now we de�ne our security notion, ∆-s-IND-PRE. Note that below the correctness and e�ciency require-
ments are w.r.t. all PPT Test, but indistinguishability-preservation is only for Test ∈ ∆.

De�nition 15. A cryptographic agent scheme Π is said to be a ∆-s-IND-PRE-secure scheme for a schema
Σ if the following conditions hold.

� Correctness. ∀ PPT User, ∀ Test ∈ Γppt,

ideal⟨Test | Σ | User⟩ ≈ real⟨Test | Π | I[Π,RepoUser] ◦ User⟩.

� E�ciency. There exists a polynomial poly s.t. ∀ PPT User, ∀ Test ∈ Γppt,
Time⟨Test | Π | I[Π,RepoUser] ◦ User⟩ ≤ poly(Time⟨Test | Σ | User⟩, κ).

� (Statistical) Indistinguishability Preservation. ∀ Test ∈ ∆,

Test is s-hiding w.r.t. Σ ⇒ Test is hiding w.r.t. Π. ◁
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6.3 A Comparison with the Original Framework

We make several technical extensions to the Cryptographic Agents framework of [2]. For readers familiar
with the model of [2], we summarize the important changes below.

� Firstly, we use an execution model that treats Test and User symmetrically, allowing both parties to
create and transfer agents in the ideal world (or objects in the real world). This automatically allows for the
possibility that the objects in the real world � including secret-keys as well as public-keys and ciphertexts �
could be created maliciously (by an actively corrupt User).

� Secondly, we allow the two parties to locally act on the agents in their possession, and only selectively
transfer agents to each other. In contrast, in [2], all agents created by Test were automatically transferred
to User. This models, in particular, various operations that can be executed by honest parties on objects
received from the adversary.

� In [2] encryption-like primitives were modeled so that only a single key-agent existed in the system.
In our formulation, we model the agents in an encryption scheme as evolving from a secret-key agent,
which is initialized using a randomized initialization step. Such an initialization, which was not part of the
original framework, allows us to model multiple keys in the system in a sound manner (by including random
tags generated during initialization, which are not controlled by Test or User). This would correspond to
randomized key objects in the real world.

� In our new model, we introduce a mechanism to �vet� an object before accepting it. This opens up new
avenues in constructing schemes that securely implement various schemas.

� Following [3], we slightly relax the security de�nitions in [2] so that computational indistinguishability
is required to hold in the real world only if statistical indistinguishability holds in the ideal world (against
a computationally unbounded adversary). This relaxation will be crucial later in exploiting existential con-
sistency of COA security to argue that COA security implies a ∆-s-IND-PRE secure implementation of the
CASE schema.

6.4 Impossibility of Γppt-IND-PRE Security

In De�nition 15, security was de�ned w.r.t. a restricted class of tests ∆ that report (transfer, h0, h1) to User
and transfers hb to User via B[Σ] s.t. the test bit b must remain hidden from User. One can consider a
more general general class Γppt of all PPT Tests. In [2] it was pointed out that obfuscation does not have a
Γppt-IND-PRE secure implementation. Here we point out that, even in the original model of [2] (i.e., without
our extension), public-key encryption � and even symmetric-key encryption � cannot have a Γppt-IND-PRE
secure implementation.

We point out that impossibility of Γppt-IND-PRE security implies impossibility of simulation-based se-
curity too (as the latter implies Γppt-IND-PRE security).

Schema ΣSKE for SKE

ΣSKE consists of an agent which behaves as follows.

� Initialization. When run with an empty work-tape and input κ, it samples sk -tag ← {0, 1}κ and records (sk, sk -tag)
on its work-tape.

� Encrypting a message.When a key agent with work-tape contents (sk, sk -tag) is run with input (enc, m), it samples
ct-tag ← {0, 1}κ and updates its work-tape as (ct, m, sk -tag , ct-tag).

� Decrypting a message. When two agents are run in a session with input dec:

• the key agent with work-tape contents (sk, sk -tag) accepts (ct, m, sk -tag ', ct-tag) from the other agent. It outputs
m if sk -tag = sk -tag ′, else it outputs ⊥.

• the ciphertext agent with work-tape contents (ct, m, sk -tag , ct-tag) sends its work-tape contents to the �rst agent.
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� Type of agent: When run with input type, it behaves as follows:

• if the work-tape has (sk, sk -tag), output dk.

• if the work-tape has (ct,m, sk -tag , ct-tag), output ct.

� Comparing agents: When two agents are run in a session with input compare, the second agent sends the contents
of it's work tape to the �rst agent. The �rst agent waits for a message from the other agent in the session and if the
message is identical to its own tape's contents, it outputs true, otherwise it outputs false.

Fig. 11: Schema for Symmetric-Key Encryption.

Lemma 7. There does not exist a Γppt-IND-PRE secure scheme for a schema corresponding to SKE.

Proof: Consider a simple schema for SKE be as in Figure 11. Suppose we are given a candidate scheme
ΠSKE that purportedly is a Γppt-IND-PRE secure implementation of ΣSKE. Let ℓ(κ) be an upper bound on
the key-length in this scheme.

Then, consider Test ∈ Γppt that behaves as follows. It initializes a key agent and gets a handle hSK .
It uniformly picks m ← {0, 1}ℓ(κ)+κ, creates a ciphertext agent using the key agent and message m, gets
handle hCP and automatically transfers it to User. Then, it expects User to send back a (polynomially long)
program σ. After receiving σ, Test transfers the key agent hSK . Next, it expects user to send back an ℓ(κ)
bit input x for σ. If x is such that σ(x) = m, Test sends the test-bit b to the User and otherwise it halts.

In the ideal world, User cannot access m until after it sends σ, and hence information-theoretically it is
unlikely that σ(x) = m, since |m| ≫ |x|. However, in the real execution with ΠSKE, an adversary can set
σ to be a program which will take as input a decryption key, and use it to decrypt the ciphertexts that
the adversary received in the �rst step (which are hardwired into σ). Further, on receiving the decryption
key, the adversary sends it to Test as x, so that, by the requisite correctness properties of ΠSKE, with high
probability, σ(x) = m and learns b exactly. This violates indistinguishability preservation. □

Extensions. In the above attack, Test is hiding even against a computationally unbounded adversary in
the ideal world. As such, the impossibility extends to the weaker de�nition of Γppt-s-IND-PRE as well.

Also note that simulation-based security implies Γppt-IND-PRE security (and the weaker security of
unbounded simulation implies Γppt-s-IND-PRE security). Hence the above attack rules out (unbounded)
simulation-based security for SKE if the decryption key can be transferred.

We note that simulation-based security against key exposure is possible for one-time encryption [16].
While this su�ces in the context of secure computation protocols, this is unsatisfactory for PKE wherein
the same secret-key should allow decrypting an a priori unbounded number of ciphertexts (possibly sent by
di�erent parties).

7 CASE in the Active Agents Framework

Figure 12 gives a simple and intuitive schema Σcase for CASE in the active agents framework. At a high
level, we want to capture the following properties:

� Public Keys: the veri�cation key agent hV K should be �xed and computable given the signing key agent
hSK . Similarly, hEK should be �xed and computable given the decryption key agent hDK .

� Encasing: to encase a message m, a signing key agent hSK , an encryption key agent hEK are required,
and give a case-packet agent hCP .

� Decasing: to get the message, a case-packet agent hCP , corresponding veri�cation key agent hV K and
decryption key agent hDK are required. We allow partial decryption (speci�cally, extraction) of the message
given only the decryption key agent hDK .

� Randomized Agents: we want agents hSK , hDK and hCP to be randomized. In particular, this ensures
that encasing the same message again results in a fresh agent hCP ′ that does not compare with hCP . To
enable this, we use random tags.

Recall that, the black-box B
[
Σcase

]
automatically creates new agents and gives out handles for them at the

end of any session.
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Schema Σcase:

Σcase consists of an agent which behaves as follows.

� Initialization. When run with an empty work-tape and input (key-type, κ):

• if key-type = sk, it samples sk -tag ← {0, 1}κ and records (sk, sk -tag) on its work-tape

• if key-type = dk, it samples dk -tag ← {0, 1}κ and records (dk, dk -tag) on its work-tape

� Deriving a veri�cation-key. When run with (sk, sk -tag) on its work-tape and input vkGen, it updates its work-tape
as (vk, sk -tag)

� Deriving an encryption-key.When run with (dk, dk -tag) on its work-tape and input ekGen, it updates its work-tape
as (ek, dk -tag)

� Encasing a message. When two agents are run in a session with input (encase, m):

• if work-tape of agent has (sk, sk -tag), it receives (ek, dk -tag) from the other agent, samples cp-tag ← {0, 1}κ and
updates its work-tape as (cp, m, sk -tag , dk -tag , cp-tag)

• if work-tape of agent has (ek, dk -tag), it sends it's work-tape contents to the �rst agent

� Decasing a message. When three agents are run in a session with input decase-verify:

• if work-tape of agent has (dk, dk -tag), it accepts (vk, sk -tag∗) and (cp, m, sk -tag , dk -tag∗, cp-tag) from the other
agents. It outputs ⊥ if dk -tag ̸= dk -tag∗, outputs (m, 1) if sk -tag = sk -tag∗ and (m, 0) else.

• if work-tape of agent has (vk, sk -tag), it sends it to �rst agent

• if work-tape of agent has (cp, m, sk -tag , dk -tag , cp-tag), it sends it to �rst agent.

� Extracting the message. When two agents are run in a session with input decase-msg:

• if work-tape of agent has (dk, dk -tag), it accepts (cp, m, sk -tag , dk -tag∗, cp-tag) from the other agent. It outputs ⊥
if dk -tag ̸= dk -tag∗, else outputs m.

• if work-tape of agent has (cp, m, sk -tag , dk -tag , cp-tag), it sends it to �rst agent.

� Type of agent: When run with input type, it behaves as follows:

• if the work-tape has (sk, sk -tag), output sk.

• if the work-tape has (vk, sk -tag), output vk.

• if the work-tape has (dk, dk -tag), output dk.

• if the work-tape has (ek, dk -tag), output ek.

• if the work-tape has (cp,m, sk -tag , dk -tag , cp-tag), output cp.

� Comparing agents: When two agents are run in a session with input compare, the second agent sends the contents
of it's work tape to the �rst agent. The �rst agent waits for a message from the other agent in the session and if the
message is identical to its own tape's contents, it outputs true, otherwise it outputs false.

Fig. 12: Schema Σcase for CASE.

In Figure 13, we build a ∆-s-IND-PRE secure scheme Πcase for CASE from any COA-secure scheme for
CASE.

Scheme Πcase:

Let case = (skGen, vkGen, dkGen, ekGen, encase, decase, acc) be a COA-secure CASE scheme.

� Initialization. Πcase.init (key-type, κ)

• if key-type = sk: sample SK ← case.skGen(1κ) and output SK

• if key-type = dk: sample DK ← case.dkGen(1κ) and output DK

� Deriving a veri�cation key. Πcase.run (obj ,vkGen) outputs (case.vkGen(obj ),⊥).
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� Deriving an encryption key. Πcase.run (obj ,ekGen) outputs (case.ekGen(obj ),⊥).

� Encasing a message. Πcase.run ((obj sk,(encase,m)),(obj pk,(encase,m))) outputs
((case.encase(obj sk, obj pk,m),⊥), (⊥,⊥)).

� Decasing a message. Πcase.run ((obj dk,decase-verify),(obj vk,decase-verify), (obj ,decase-verify)) outputs
((⊥, case.decase(obj dk, obj vk, obj )), (⊥,⊥), (⊥,⊥)).

� Extracting a message. Πcase.run ((obj dk,decase-msg), (obj ,decase-msg)) outputs
((⊥, case.decase-msg(obj dk, obj )), (⊥,⊥), (⊥,⊥)).

� Type of agent. Πcase.run (obj , type) outputs (⊥, case.acc(obj )).

� Comparing agents: Πcase.run ((obj 1,compare),(obj 2,compare)) outputs ((⊥, true), (⊥,⊥)) if obj 1 = obj 2 and
((⊥, false), (⊥,⊥)) otherwise.

� Receiving agents: Πcase.receive (obj ) outputs obj if case.acc(obj ) ̸= ⊥ else outputs ⊥.

Fig. 13: Schema Πcase for CASE.

We now prove Theorem 1, i.e., that a COA secure CASE scheme implies a ∆-s-IND-PRE secure imple-
mentation of Σcase.

Theorem 1 (Restated). A ∆-s-IND-PRE secure implementation of Σcase exists if a COA secure CASE
scheme exists.

Proof sketch: We show that the Πcase in Figure 13 is a ∆-s-IND-PRE secure implementation of Σcase. Given
any Test ∈ ∆ that is hiding w.r.t. Σcase, we need to argue that for all PPT adversary A,

real⟨Test(0) | Π | A⟩ ≈ real⟨Test(1) | Π | A⟩.

The proof uses guarantees such as unforgeability, total hiding and encasing resistance from the underlying
COA-Secure CASE scheme case, along with the statistical guarantees of existential consistency, given in
terms of computationally unbounded algorithms like case.skId, case.ekId and case.msgId. The argument uses
a sequence of hybrid random variables to prove ∆-s-IND-PRE security, Hi for i = 0 to 7:

H0: real⟨Test(0) | Πcase | A⟩ H7: real⟨Test(1) | Πcase | A⟩
H1: ideal⟨Test(0) | Σ‡Πcase

| S†0 ◦ A⟩ H6: ideal⟨Test(1) | Σ‡Πcase
| S†1 ◦ A⟩

H2: ideal⟨Test(0) | Σ‡Πcase
| S‡ ◦ A⟩ H5: ideal⟨Test(1) | Σ‡Πcase

| S‡ ◦ A⟩
H3: ideal⟨Test(0) | Σcase | S∗ ◦ S‡ ◦ A⟩ H4: ideal⟨Test(1) | Σcase | S∗ ◦ S‡ ◦ A⟩

Hybrids H0 and H7 correspond to the output of A in the real world with test bits b = 0 and b =
1 respectively. The simulators S†b (for b ∈ {0, 1}), S‡ are computationally bounded while S∗ ◦ S‡ is a
computationally unbounded simulator due to S∗.

When Test ∈ ∆ is s-hiding w.r.t. Σcase, we show:

1. Firstly, H3 ≈ H4, even though they involve a computationally unbounded simulator S∗ (by de�nition of
s-hiding of Test).

2. We rely on the existential consistency of the underlying signature scheme to show that H2 ≈ H3 and
(symmetrically) H4 ≈ H5.

3. We use the augmented security guarantees of the underlying CASE scheme to establish that H1 ≈ H2 and
(symmetrically) H5 ≈ H6.

4. Finally, we argue that H0 ≈ H1 and H6 ≈ H7. This follows from the construction of S†0 and S
†
1 , conditioned

on some �bad events� not occurring. We prove that these bad events occur with negligible probability
using the guarantees - strong-unforgeability, total hiding, sender anonymity, unpredictability and encasing
resistance from the underlying COA-Secure CASE scheme case (see Lemma 11) and statistical guarantees

of sampling from a uniform distribution (sampling of tags in Σcase and Σ‡Πcase
).
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Together, these steps show that any Test ∈ ∆ that is s-hiding w.r.t. Σcase is also hiding w.r.t. Σcase. Please
refer to Appendix C for the full proof.

□
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Appendix
A Details omitted from Section 4

A.1 Implications of Total Hiding property

The total hiding property in De�nition 8 can be reduced to:

� Message Hiding (IND-CCA): corresponds to distinguish-sans-DK with DK0 = DK1. To prove this, consider
an adversary A with advantage α in the IND-CCA experiment. That is, if output of A is o, then:

2 ∗ α =
∣∣∣Pr [o = 0|b = 0

]
− Pr

[
o = 0|b = 1

]∣∣∣
We build adversaries A∗0 and A∗1 for distinguish-sans-DK as follows.
• A∗0: it internally runs A in a straightline black-box way and interacts with the experiment as fol-
lows. It receives EK0, EK1 from the experiment and sends EK0 to A. It responds to all decryption
queries of A using the decryption oracle to DK0 from the experiment. When A outputs the challenge
(SK0, SK1,m0,m1), it sends them to the experiment as its challenge, gets back challenge ciphertext
CP and sends it to A. Finally, it outputs A's output.
• A∗1: it internally runs A in a straightline black-box way and interacts with the experiment as follows. It
receives EK0, EK1 from the experiment and sends EK0 to A. It responds to all decryption queries of
A using the decryption oracle to DK0 from the experiment. When A outputs the challenge messages
(SK0, SK1,m0,m1), it sends (SK1, SK1,m1,m1) as the challenge to the experiment, gets back challenge
ciphertext CP and sends it to A. Finally, it outputs A's output.

We de�ne the following quantities:

x := Pr
[
o = 0 given encase(SK0, EK0,m0)

]
y := Pr

[
o = 0 given encase(SK1, EK0,m1)

]
z := Pr

[
o = 0 given encase(SK1, EK1,m1)

]
Then, advantage of A in the IND-CCA experiment is |x−y|2 , advantage of A∗0 in distinguish-sans-DK is
|x−z|

2 and advantage of A∗1 in distinguish-sans-DK is |y−z|2 . But, trivially, |x − y| ≤ |x − z| + |y − z|, thus
the advantage α of A in the IND-CCA experiment must be negligible.

� Receiver Anonymity: de�ned using distinguish-sans-DK with m0 = m1. The experiment distinguish-sans-DK
must hold for any adversary that outputs arbitrary m0, m1. In particular, it must hold for m0 = m1.

A.2 Encasing Resistance

Lemma 1 (Restated). Any COA-secure CASE scheme satis�es encasing-resistance.

Proof: We �rst prove that the following are negligible in κ.

max
DK∗∈DK

Pr
DK←dkGen(1κ)

[
DK = DK∗

]
(1)

max
CP∗∈CP

Pr
DK←dkGen(1κ)

[
decase-msg

(
DK,CP ∗

)
̸= ⊥

]
(2)

It is easy to see that (1) must be negligible from the total hiding of the CASE scheme. Indeed, otherwise
an adversary in experiment distinguish-sans-DK will �nd that, with non-negligible probability, at least one of
the two keys EK0, EK1 (in fact, even both) corresponds to a �xed decryption key DK∗ that maximizes the
probability in (1). In that case, the bit b∗ can be learnt exactly, by choosing m0 ̸= m1

15 for the challenge,

15 This assumes |M| > 1. Alternately, SK0 ̸= SK1 can be used, and decase-verify can be used instead of decase-msg
with a similar e�ect.
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and decase-msg(DK∗, CP ∗) has di�erent outcomes depending on the bit b∗ in the experiment: If both
EK0 = EK1 = ekGen(DK∗), then the outcome will be mb∗ ; if only EKb = ekGen(DK∗), the outcome will
be mb when b = b∗ and ⊥ otherwise.

To upper bound (2), recall that from existential consistency of the CASE scheme, we have

decase-msg(DK,CP ∗) ̸= ⊥ ⇒ DK = dkId(ekId(CP ∗)).

So, ∀CP ∗ ∈ CP, we have

Pr
DK←dkGen(1κ)

[decase-msg(DK,CP ∗) ̸= ⊥] ≤ Pr
DK←dkGen(1κ)

[DK = dkId(ekId(CP ∗))].

But the latter probability is negligible from (1).
Finally, to prove our lemma, consider a hybrid experiment derived from encase-sans-EK, in which the

adversary is given oracle access using encryption keys (DK ′, EK ′) generated independently. From the total
hiding requirement on CASE, the two hybrids are indistinguishable. Secondly, in this hybrid since DK used
to determine the outcome of the experiment is independent of the rest of the experiment, we can use the
bound of (2) to conclude that the experiment outputs 1 with negligible probability. Thus, it holds in the
original experiment as well. □

A.3 Augmented Security

We de�ne an augmented security experiment where an adversary adaptively attacks either the sender
anonymity or the receiver anonymity of the CASE scheme. The experiment maintains the following types of
lists to ensure that it never sends any object to the adversary that would reveal the challenge bit:

� Tt lists: these contain objects of token type t in the experiment

� R list: this contains pairs (t, i) s.t. Tt[i] was transferred to/from A

Experiment aug

� Receive n from A. Initialise the following lists:

Tsk :=
{
(i, SKi) | i ∈ [n], SKi ← skGen(1κ)

}
Tvk :=

{
(i, V Ki) | i ∈ [n], V Ki ← vkGen(SKi)

}
Tdk :=

{
(i,DKi) | i ∈ [n], DKi ← dkGen(1κ)

}
Tek :=

{
(i, EKi) | i ∈ [n], EKi ← ekGen(DKi)

}
and Tcp = {}, R = {}

� Query phase - receive (polynomial number of) either of the following queries:

• Adversarial objects: for each (i, obj ) received from A, let t = acc(obj ); if t ∈ {sk,vk,dk, ek,cp} and i > n,
add (i, obj ) to Tt and add (t, i) to R.

• Key Queries: for each (t, i) received from A, if t ∈ {sk,vk,dk, ek} and i < n, then send Tt[i] to A and add
(t, i) to R.

• Encryption Query: for each (k, l,m) received from A, send encase
(
Tsk[k], Tek[l], m

)
to A.

• Decryption Query: for each (k, l, c) received from A; if k = 0, send decase
(
⊥, Tdk[l], Tcp[c]

)
; else, send

decase
(
Tvk[k], Tdk[l], Tcp[c]

)
to A.
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� Challenge phase - sample a bit b← {0, 1}, receive either of the following challenges:

• key-challenge: receive (t, i0, i1) from A; abort if any of the following hold:

* if t ∈ {sk,vk}, i0 ̸= i1, ∃b′ s.t. (sk, ib′) ∈ R or (vk, ib′) ∈ R

* if t ∈ {dk, ek}, i0 ̸= i1, ∃b′ s.t. (dk, ib′) ∈ R or (ek, ib′) ∈ R

else, send Tt[ib] to A

• case-packet-challenge: receive (k0, k1, l0, l1,m0,m1) from A. ∀b′ ∈ {0, 1}, let SKb′ = Tsk[kb′ ] and EKb′ =
Tek[lb′ ]; abort if any of the following hold:

* if l0 ̸= l1 and ∃b′ s.t. (lb′ > n or (dk, lb′) ∈ R)

* if l0 = l1 = l and (dk, l) ∈ R and m0 ̸= m1

* if l0 = l1 = l and (dk, l) ∈ R and k0 ̸= k1 and ∃b′ s.t. (sk, kb′) ∈ R or (vk, kb′) ∈ R

else, send CP = encase(SKb, EKb,mb) to A.

� Query phase - receive (polynomial number of) either of the following queries:

• Adversarial objects: for each (i, obj ) received from A, let t = acc(obj ); if t ∈ {sk,vk,dk, ek,cp} and i > n,
add (i, obj ) to Tt and add (t, i) to R.

• Key Queries: for each (t, i) received from A, abort if t > n

▷ abort if A sent a key-challenge (t∗, i∗0, i
∗
1) in the previous phase and

* if t ∈ {sk,vk}, i ∈ {i∗0, i∗1} and t∗ ∈ {sk,vk}
* if t ∈ {dk, ek}, i ∈ {i∗0, i∗1} and t∗ ∈ {dk, ek}

▷ abort if A sent a case-packet-challenge (k∗
0 , k

∗
1 , l

∗
0 , l

∗
1 ,m

∗
0,m

∗
1) in the previous phase, got case-packet-response

CP ∗ and

* if t = dk, i ∈ {l∗0 , l∗1} and l∗0 ̸= l∗1 or m∗
0 ̸= m∗

1 or
(
k∗
0 ̸= k∗

1 and ∃b′ ∈ {0, 1}, s.t. (sk, k∗
b′) ∈ R or

(vk, k∗
b′) ∈ R

)
* if t ∈ {sk,vk}, i ∈ {k∗

0 , k
∗
1}, l∗0 = l∗1 = l and (dk, l) ∈ R and k∗

0 ̸= k∗
1

else, send Tt[i] to A and add (t, i) to R.

• Encryption Query: for each (k, l,m) received from A,
▷ abort if A sent a key-challenge (t∗, i∗0, i

∗
1) in the previous phase and

* if t∗ ∈ {sk,vk}, i∗0 ̸= i∗1, k ∈ {i∗0, i∗1) and (dk, l) ∈ R

* if t∗ = dk, i∗0 ̸= i∗1
else, send encase

(
Tsk[k], Tek[l], m

)
to A.

• Decryption Query: for each (k, l, c) received from A; if Tcp[c] = CP ∗, abort; else if k = 0, send
decase

(
⊥, Tdk[l], Tcp[c]

)
; else, send decase

(
Tvk[k], Tdk[l], Tcp[c]

)
to A.

� Final phase - A outputs a bit b∗. Output 1 if b = b∗, else 0.

Fig. 14: Augmented Security Experiment for COA-secure CASE.

Lemma 2 (Restated). Any COA-secure CASE scheme satis�es augmented security.

Proof: We prove this via a reduction to the COA-security. Without loss of generality, let the following be
adversaries that behave as follows. We argue that the advantage in each case must be negligible.

� A0 only sends key-challenge (t, i0, i1) s.t. i0 = i1:

the advantage in this case is trivially 0, since the challenge response is independent of the bit b

� A1 only sends key-challenge (t, i0, i1) s.t. i0 ̸= i1:

• if t ∈ {sk,vk,ek}: this can be reduced to a corresponding adversary A∗ for the total hiding experiment
distinguish-sans-DK with the same advantage. Thus, advantage of A1 in this case must be negligible.
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• if t = dk: the advantage in this case is trivially 0, since neither the encryption keys nor any ciphertexts
using these keys were queried by adversary.

� A2 only sends case-packet-challenge (k0, k1, l0, l1,m0,m1) s.t. l0 ̸= l1:

this can be reduced to a corresponding adversary A∗ for the total hiding experiment distinguish-sans-DK
with the same advantage. Thus, advantage of A2 in this case must be negligible.

� A3 only sends case-packet-challenge (k0, k1, l0, l1,m0,m1) s.t. l0 = l1, m0 ̸= m1

this can be reduced to a corresponding adversary A∗ for the IND-CCA experiment (distinguish-sans-DK
with DK0 = DK1, please refer Appendix A.1) with the same advantage. Thus, advantage of A1 in this
case must be negligible.

� A4 only sends case-packet-challenge (k0, k1, l0, l1,m0,m1) s.t. l0 = l1, m0 = m1 and k0 ̸= k1 and (dk, l0) ∈
R

this can be reduced to a corresponding adversary A∗ for the sender hiding experiment distinguish-sans-VK
with the same advantage. Thus, advantage of A4 in this case must be negligible.

� A5 only sends case-packet-challenge (k0, k1, l0, l1,m0,m1) s.t. l0 = l1, m0 = m1 and k0 ̸= k1 and (dk, l0) ̸∈
R

this can be reduced to a corresponding adversary A∗ for the IND-CCA experiment (distinguish-sans-DK
with DK0 = DK1, please refer Appendix A.1) with the same advantage. Thus, advantage of A5 in this
case must be negligible.

� A6 only sends case-packet-challenge (k0, k1, l0, l1,m0,m1) s.t. l0 = l1, m0 = m1 and k0 = k1
the advantage in this case must be 0, since the challenge response is independent of the bit b

Now, for any A with non-negligible advantage, there exists an adversary in one of the above types which
also has non-negligible advantage. Thus, advantage of A must be negligible. □

B Details omitted from Section 5

B.1 COA-secure Quasi-Deterministic PKE

De�nition 16 (Quasi-Deterministic Anon-CCA PKE). A PKE scheme is QD anon-CCA PKE if it
satis�es the following properties.

1. Quasi-Deterministic: There exists an e�cient randomized algorithm pkeEnc1 and an in-e�cient deter-
ministic algorithm pkeEnc2 such that ∀κ, ∀x ∈M, ∀EK ∈ PK, ∀r ∈ {0, 1}poly(κ):

pkeEnc(EK,x; r) =
(
pkeEnc1(EK; r), pkeEnc2

(
EK, pkeEnc1(EK; r), x

))
2. Quasi-Deterministic Anonymous IND-CCA security: For any PPT adversary A = (A0, A1), there

exists a negligible function negl(.) such that for pkeQDAnonCCAExp as in Figure 6:

Pr
[
pkeQDAnonCCAExp(A) = 1

]
≤ 1

2
+ negl(κ)

◁

Implementing Quasi-Deterministic Anon-CCA PKE : We now show that the Cramer-Shoup PKE
scheme based on the DDH assumption, with the modi�cation of [1] is already quasi-deterministic anon-CCA
PKE.

Parameter: Let κ be the security parameter.

Let H be a collision-resistant hash function (CRHF)

PKE Primitive P :
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� pkeSKGen(1κ):

• pick a cyclic group G of order q with distinct
random generators g1, g2

• sample y1, y2, w1, w2, z1, z2 from [0, q − 1]

• output DK := (G, q, g1, g2, y1, y2, w1, w2, z1,
z2)

� pkePKGen(DK):

• parse SK as (G, q, g1, g2, y1, y2, w1, w2, z1, z2)

• Y = gy11 gy22 , W = gw1
1 gw2

2 , Z = gz11 gz22
• output EK := (G, q, g1, g2, Y,W,Z)

� pkeEnc(EK,m):

• parse EK as (G, q, g1, g2, Y , W , Z)

• sample x← [q − 1]

• c = (gx1 , g
x
2 ,mY x) and v = W xZxH(c)

• output CP := (c, v)

� pkeDec(DK,CP ):

• parse DK as (G, q, g1, g2, y1, y2, w1, w2, z1, z2)

• parse CP as (c, v), parse c as (X1, X2, C)

• If Xw1
1 Xw2

2 (Xz1
1 Xz2

2 )H(c) ̸= v, output ⊥
else output m = C(Xy1

1 Xy2
2 )−1

Quasi-Deterministic property:

� pkeEnc1(PK; r):

• parse EK as (G, q, g1, g2, Y , W , Z)

• output τ := (gx1 , g
x
2 ), where x = r

� pkeEnc2(EK, τ,m):

• ine�ciently extract r from τ

• output CP := pkeEnc(EK,m; r)

Fig. 15: Cramer-Shoup construction for Quasi-Deterministic Anon-CCA PKE.

Lemma 8. Assuming the Decisional Di�e-Hellman assumption (DDH), there exists a Quasi-Deterministic
Anon-CCA PKE scheme.

Proof: We show that the scheme P (with the quasi-deterministic algorithms pkeEnc1, pkeEnc2) in Figure 15
satis�es De�nition 16 via a sequence of hybrids.

� Let H0
b be the real experiment for challenge bit b. Let the bth challenge message be mb and the bth PKE

keys be DKb = (G, q, g1, g2, y1, y2, w1, w2, z1, z2), EKb = (G, q, g1, g2, Y,W,Z).

� H1
b : in this hybrid, the challenge ciphertext (c, v) is modi�ed to (c′, v), where c′ is constructed using x2

independent of x as c′ =
(
gx1 , g

x2
2 , mb(g

x
1 )

y1(gx2
2 )y2

)
.

Indistinguishability with hybrid H0
b follows via a reduction to the DDH assumption. Let A be an adversary

that distinguishes between H0 and H1 with advantage α. Then, we de�ne adversary A∗ for the DDH
experiment, that on input (g1, g

x
1 , g2, g

d
2)

16 setsX1 = gx1 ,Xd = gd2 , runs A internally in a straightline black-
box way, samples a PKE key pair (DK,EK) conditioned on (g1, g2), constructs c =

(
X1, Xd,mbX

y1

1 Xy2

d

)
,

sends (EK, c) to A, responds to oracle queries of the form CP from A with pkeDec(DK,CP ). It accepts
the challenge messages (m0,m1) from A, constructs v = Xw1

1 Xw2

d (Xz1
1 Xz2

d )H(c) and sends CPb = (c, v)
to A. It �nally outputs A's output. Thus, A∗ also has advantage α; but from the DDH assumption, this
must be negligible.

� H2
b : in this hybrid, the challenge ciphertext (c′, v) is further modi�ed to (c′′, v), where c′′ is constructed

using x1, x2 independent of x as c′′ =
(
gx1
1 , gx2

2 , mb(g
x1
1 )y1(gx2

2 )y2
)
.

Indistinguishability with hybrid H1
b follows via a similar reduction to the DDH assumption.

� We now note that H2
b corresponds to the IND-CCA experiment (and an extra communication of τ = c′′

that is independent of the experiment), thus H2
0 ≈ H2

1.

□

Implementing COA-secure QD-PKE: We now show that a COA-secure QD-PKE scheme can be
constructed from any QD anon-CCA PKE scheme (De�nition 16) and perfectly binding commitment scheme.

16 where, if challenge bit is 0, then d = x, else d = x2
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Parameter: Let κ be the security parameter.

Let P ∗ = (pkeGen∗, pkeEnc∗, pkeDec∗) be a QD anon-CCA PKE scheme.

Let C = (comGen, comCommit, comOpen) be a perfectly binding commitment scheme.

COA-secure QD-PKE scheme P :

� pkeSKGen(1κ):

• sample r0 ← {0, 1}poly(κ)

• sample r1 ← {0, 1}poly(κ)

• output DK := (r0, r1)

� pkePKGen(DK):

• if pkeAcc(DK) ̸= dk, output ⊥
• parse DK as (r0, r1)

• (DK∗, EK∗)← pkeGen∗(1κ; r0) using randomness r0

• c← comCommit(r0; r1) using randomness r1

• output EK := (EK∗, c)

� pkeEnc(PK,m):

• if pkeAcc(EK) ̸= ek, output ⊥
• parse EK as (EK∗, c)

• sample r̂ ← {0, 1}poly(κ)

• ĉ← comCommit∗(EK; r̂) using randomness r̂

• CP ∗ ← pkeEnc∗(EK∗,m||r̂)
• output CP := (ĉ, CP ∗)

� pkeDec(DK,CP ):

• if pkeAcc(DK) ̸= dk or pkeAcc(CP ) ̸= ct, output ⊥
• parse DK as (r0, r1)

• parse CP as (ĉ, CP ∗)

• (DK∗, EK∗)← pkeGen∗(1κ; r0) using randomness r0

• m||r̂ ← pkeDec∗(DK∗, CP ∗)

• if ĉ ̸= comCommit(EK; r̂), output ⊥
else output m

� pkeAcc(obj): if obj ∈ SK/ PK/ CP, output dk/ ek/ ct respectively.

Existential Consistency: � pkeMsgId(CP ):

• EK ← pkePKId(CP )

• DK ← pkeSKId(EK)

• m← pkeDec(DK,m)

• output m

� pkePKId(CP ):

• parse CP as (ĉ, CP ∗)

• ine�ciently extract EK from ĉ

• output EK

� pkeSKId(PK):

• parse EK as (EK∗, c)

• ine�ciently extract (r0, r1) from c

• output DK = (r0, r1)

Fig. 16: COA-secure QD-PKE scheme.

Lemma 9. If there exists a quasi-deterministic anon-CCA PKE scheme and a perfectly binding commitment
scheme; then there exists a COA-secure QD-PKE scheme.

Proof: We prove that the scheme in Figure 16 is a COA-secure QD-PKE primitive (De�nition 11).

� Correctness holds directly from the correctness of the underlying primitives.

� Quasi-Deterministic: we de�ne the algorithms as follows from the quasi-deterministic property of the
underlying PKE scheme
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pkeEnc1(EK) :

* if pkeAcc(EK) ̸= ek, output ⊥
* parse EK as (PK∗, c)

* sample r̂ ← {0, 1}poly(κ)

* ĉ← comCommit∗(EK; r̂)

* output τ := (ĉ, pkeEnc∗1(EK∗))

pkeEnc2(EK, τ,m) :

* parse τ as (ĉ, τ∗)

* output pkeEnc∗2(EK∗, τ∗,m)

� IND-CCA security: this holds from a reduction to the IND-CCA security of the underlying PKE scheme
and the computational hiding of the commitment scheme. Let A be an adversary that has advantage α in
the experiment pkeCCAExp for P . We de�ne a sequence of hybrids as follows:

• H1: in this hybrid, the experiment uses a modi�ed public key, where the commitment is to 0. That is,
PK ′ = (PK∗, comCommit(0)). Indistinguishability holds from the computational hiding of the commit-
ment primitive.

• H2: in this hybrid, the experiment is replaced by the experiment pkeCCAExp for P ∗ with an adversary A∗
that runs A in a straightline black-box way and behaves as follows. It gets EK∗ from the experiment and
sends EK ′ =

(
EK∗, comCommit(0)

)
to A. For each polynomial query CPj that A makes, it parses CPj

as (ĉj , CP ∗j ), queries the experiment on CP ∗j , receives mj ||r̂j , veri�es that ĉj = comCommit(EK ′; r̂j)
and sends mj to A. When A outputs the challenge messages (m0,m1), it constructs m∗0 = m0||r̂ and
m∗1 = m1||r̂ for a uniformly sampled r̂ and sends (m∗0,m

∗
1) as the challenge to the experiment. It receives

CP ∗ as the challenge ciphertext, sends CP =
(
comCommit(EK ′; r̂), CP ∗

)
to A and outputs A's output.

Indistinguishability holds trivially since the view of A in H1 is identical to its view in H2.

But, hybrid H2 corresponds to the IND-CCA experiment for P ∗ , thus the advantage of A must be
negligible.

� QD anon-CCA: We de�ne a sequence of hybrids similar to the previous case:

• H1: in this hybrid, the experiment uses modi�ed public keys, where the commitment is to 0. That is,
for b ∈ {0, 1}, EK ′b = (PK∗b , comCommit(0)). Indistinguishability holds from the computational hiding
of the commitment primitive.

• H2: in this hybrid, the experiment is replaced by the experiment pkeQDAnonCCAExp for P ∗ with an
adversary A∗b that runs A in a straightline black-box way and behaves as follows. It gets (EK∗0 , PK∗1 , τ)
from the experiment and sends {EK ′b =

(
PK∗b , comCommit(0)

)
}b∈{0,1} to A. For each polynomial oracle

query (bj , CPj) that A makes, it parses CPj as (ĉj , CP ∗j ), queries the oracle on (bj , CP ∗j ), receives
mj ||r̂j , veri�es that ĉj = comCommit(EK ′b; r̂j) and sends mj to A. When A outputs the challenge
message m, it constructs m∗ = m||r̂ for a uniformly sampled r̂ and sends m∗ as the challenge to
the experiment. It receives CP ∗ as the challenge ciphertext and the challenge bit b, sends CP =(
comCommit(EK ′b; r̂), CP ∗

)
to A and outputs A's output.

The view of A in H1 is identical to its view in H2.

• H3: in this hybrid, we replace A∗b (that gets the challenge bit b) with an adversary A∗ that behaves
exactly as A∗b , except that it does not get b and instead constructs the challenge ciphertext as follows.
It sends CP =

(
comCommit(0; r̂), CP ∗

)
to A and outputs A's output.

We now argue indistinguishability between hybrids H2 and H3 via intermediate hybrids. We �rst replace
the ciphertext CP ∗ with a dummy ciphertext CP ∗ = pkeEnc(DK∗b , 0), indistinguishability holds from
the IND-CCA of P ∗. Then, we replace comCommit(EK ′b) with comCommit(0), indistinguishability holds
from the computational binding of the commitment primitive. Finally, we replace the dummy ciphertext
with the real ciphertext.

But, hybrid H3 corresponds to the anonymity experiment for P ∗, thus the advantage of A must be
negligible.

� Existential Consistency: the extractor algorithms pkeSKId, pkePKId and pkeMsgId are as in Figure 16. We
now prove that the constraints are satis�ed.
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1. for any DK ∈ SK, an honest execution of pkePKGen(DK) will output a correct commitment to DK
and from the perfect binding property, pkeSKId extracts DK with probability 1.

2. for any EK ∈ PK, an honest execution of pkeEnc(EK,m) will output a correct commitment to EK,
and from the perfect binding property, pkePKId extracts this EK with probability 1.

3. this is true by construction. The decrypt algorithm outputs a messagem ̸= ⊥ if and only if pkePKId(CP ) =
EK (where EK = pkePKGen(DK)). And from the previous constraints, DK can uniquely be extracted
as pkeSKId(EK).

4. from the previous constraints, pkeMsgId correctly extracts EK using pkePKId, from which it correctly
extracts DK using pkeSKId. For a PK generated honestly from any DK ∈ SK, perfect correctness of
the underlying anon-PKE primitive P ∗ guarantees that pkeDec∗(DK∗, CP ) = m.

□

B.2 Existentially Consistent Anonymous Signature

Instantiating Existentially Consistent Anonymous Signature scheme. We now show that a Exis-
tentially Consistent Anonymous Signature scheme can be constructed from any signature scheme (De�ni-
tion 6), COA-secure QD-PKE scheme (De�nition 11) and perfectly binding commitment scheme.

Parameter: Let κ be the security parameter.

Let S∗ = (sigGen∗, sigSign∗, sigVerify∗) be a signature scheme.

Let E = (pkeGen, pkeEnc, pkeDec, pkeAcc, pkeSKId, pkePKId, pkeMsgId) be a COA-secure QD-PKE scheme.

Let C = (comGen, comCommit, comOpen) be a perfectly binding commitment scheme.

Existentially Consistent Anonymous Signature scheme S:

� sigSKGen(1κ):

• sample r0 ← {0, 1}poly(κ)

• sample r1 ← {0, 1}poly(κ)

• sample DK∗ ← pkeSKGen(1κ)

• output SK := (r0, r1, DK∗)

� sigVKGen(SK):

• if sigAcc(SK) ̸= sk, output ⊥
• parse SK as (r0, r1, DK∗)

• (SK∗, V K∗)← sigGen∗(1κ; r0)

• c← comCommit(r0; r1)

• output V K := (V K∗, c,DK∗)

� sigSign(SK,m):

• if sigAcc(SK) ̸= sk, output ⊥
• parse SK as (r0, r1, DK∗) and V K as

(V K∗, c,DK∗)

• sample r̂, r3 ← {0, 1}poly(κ)

• ĉ← comCommit(V K∗||c||EK∗; r̂)

• (SK∗, V K∗)← sigGen∗(1κ; r0)

• EK∗ ← pkePKGen(DK∗)

• τ ← pkeEnc1(EK∗; r3)

• σ∗ ← sigSign∗(SK∗,m||τ)
• CP ← pkeEnc(EK∗, σ∗||r̂; r3)
• output (ĉ, CP )

� sigVerify(V K,m, σ):

• if sigAcc(V K) ̸= vk or sigAcc(σ) ̸= sig, output ⊥
• parse V K as (V K∗, c,DK∗)

• parse σ as (ĉ, CP ) and CP as (τ, CP ′)

• EK∗ ← pkePKGen(DK∗)

• σ∗||r̂ ← pkeDec(DK∗, CP )

• if ĉ ̸= comCommit(V K∗||c||EK∗; r̂), output ⊥
else output sigVerify∗(V K∗,m||τ, σ∗)
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� sigAcc(obj):

• if obj ∈ SK, parse obj as (r0, r1, DK∗). If pkeAcc(DK∗) = dk, output sk; else ⊥.
• if obj ∈ VK, parse obj as (V K∗, c,DK∗). If pkeAcc(DK∗) = dk, output vk; else ⊥.
• if obj ∈ Σ, parse obj as (CP, ĉ). If pkeAcc(CP ) = ct, output sig; else ⊥.

Existential Consistency:

� sigSKId(V K):

• parse V K as (V K∗, c,DK∗)

• ine�ciently extract (r0, r1) from c

• output SK = r0||r1||DK∗

� sigVKId(σ):

• parse σ as (CP, ĉ)

• ine�ciently extract (V K∗||c||EK∗, r̂) from ĉ

• ine�ciently extract DK∗ ← pkeSKId(EK∗)

• output V K := (V K∗, c,DK∗)

Fig. 17: Existentially Consistent Anonymous Signature scheme.

Lemma 4 (Restated). If there exists a signature scheme, a COA-secure QD-PKE scheme and a perfectly
binding commitment scheme; then there exists a Existentially Consistent Anonymous Signature scheme.

Proof: We prove that the scheme S in Figure 17 is a Existentially Consistent Anonymous Signature scheme.

� Correctness of Veri�cation: this holds trivially from the perfect correctness of the underlying schemes.

� Correctness of Accept: the accept algorithm is as described in Figure 17

1. the output of sigSKGen(1κ) will be in SK. Then, from the correctness of the underlying PKE, pkeAcc(DK∗)
outputs dk and thus sigAcc outputs sk.

2. for any SK ∈ SK, the output of sigVKGen(SK) will be in VK.
3. for any SK ∈ SK, the output of sigSign(SK,m) will be in Σ. Then, from the correctness of the under-

lying PKE, if pkeAcc(DK∗) = dk, then pkeAcc(pkeEnc(EK∗,m)) outputs ct with all but negligible
probability (where ÊK = pkePKGen(D̂K)) and thus sigAcc outputs sig.

4. this follows trivially from the perfect correctness of the underlying PKE, signature and commitment
schemes.

� Strong-Unforgeability: this holds from a reduction to the strong-unforgeability of the underlying signature
scheme and the computational hiding of the commitment scheme. LetA be an adversary that has advantage
α in the experiment SigForgeExp for S. We de�ne a sequence of hybrids as follows:

• H1: in this hybrid, we modify the veri�cation key, so that the commitment is to 0. That is, V K ′ =
(V K∗, comCommit(0), DK∗). Indistinguishability holds from the computational hiding of the commit-
ment scheme.

• H2: in this hybrid, the experiment is replaced by the experiment SigForgeExp for S∗ with an adversary
A∗ that runs A in a straightline black-box way and behaves as follows. It gets V K∗ from the experiment,
samples a PKE key DK∗ ← pkeSKGen(1κ), sets c = comCommit(0) and sends V K ′ = (V K∗, c,DK∗)
to A. For each polynomial query mj that A makes, it samples r3,j , constructs τj ← pkeEnc1(EK∗; r3,j),
queries the experiment on mj ||τj , receives σ∗j , samples r̂j , constructs CPj = pkeEnc(EK∗, σj ||r̂; r3,j),
ĉj = comCommit(V K∗||c||EK∗) and sends (CPj , ĉj) to A. When A outputs (m,σ) as the forgery, it
parses σ as (ĉ, CP ), parses CP as (τ, CP ′), decrypts CP to get σ∗||r̂ and outputs (m||τ, σ∗) as its
forgery. Indistinguishability holds trivially since the view of A in H1 is identical to its view in H2.

But, hybrid H2 corresponds to the unforgeability experiment for S∗ , thus the advantage of A must be
negligible. Note that, from the quasi-deterministic property of the PKE scheme, if CP is di�erent from
any response from oracle, it holds that either τ or the message must be di�erent. But, the underlying
signature is to m||τ . Thus, it is a valid forgery on the underlying signature.
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� (Signer) Anonymity: this holds from a reduction to the anonymous security of the underlying PKE scheme
and the computational hiding of the commitment scheme. Let A be an adversary that has advantage α in
the experiment SigAnonExp for S. We de�ne a sequence of hybrids similar to the previous case:

• H1: in this hybrid, we modify the public keys, so that the commitments are to 0. That is, for b ∈ {0, 1},
V K ′b = (V K∗b , comCommit(0), DK∗b). Indistinguishability holds from the computational hiding of the
commitment scheme.

• H2: in this hybrid, we modify each signature in the experiment (oracle queries as well as challenge
signature) as follows. Suppose the real signature of any m be σ = (CP, ĉ), then the modi�ed signature
is σ′ = (pkeEnc(ÊK, 0), ĉ). Indistinguishability holds from the QD anon-CCA security of the PKE
scheme.

• H3: in this hybrid, we modify each signature in the experiment as follows. Suppose the signature of any
m be σ′ = (pkeEnc(EK∗, 0), ĉ), then the modi�ed signature is σ′′ = (pkeEnc(EK∗, 0), comCommit(0)).
Indistinguishability holds from the computational hiding of the commitment scheme.

• H4: in this hybrid, the experiment is replaced by the experiment pkeQDAnonCCAExp for P ∗ with an
adversary A∗ that runs A in a straightline black-box way and behaves as follows. For each b ∈ {0, 1},
it gets (EK∗0 , EK∗1 , τ) from the experiment. For each polynomial query (bj ,mj) that A makes, it sends
σ′′j = (pkeEnc(EK∗bj , 0), comCommit(0)) to A. When A outputs the challenge message m, it sends

(m,m) as the challenge messages to the experiment, receives CP as the challenge ciphertext, sends
σ′′ = (CP, comCommit(0)) to A and outputs A's output. Indistinguishability holds trivially since the
view of A in H3 is identical to its view in H4.

But, hybrid H4 corresponds to the anonymity experiment for P ∗, thus the advantage of A must be
negligible.

� Existential Consistency: the extractor algorithms sigVKId and sigSKId are as in Figure 17. We now prove
that the constraints are satis�ed:

1. let SK ∈ SK, V K ← sigVKGen(SK); then from the perfect binding of the commitment scheme,
sigSKId(V K) outputs SK with probability 1

2. let SK ∈ SK, m ∈ M, σ ← sigSign(SK,m);then from the perfect binding of the commitment scheme
and the COA existential consistency of the PKE scheme, sigSKId(sigVKId(σ)) outputs SK with prob-
ability 1

3. this holds trivially by construction, sigVerify outputs 1 if and only if the commitment to V K in the
signature σ matches.

□

B.3 Main Construction

B.3.1 E�cient COA-secure CASE

Lemma 6 (Restated). The scheme case⋆ in Figure 9 is a COA-secure CASE scheme (De�nition 8), if S
is a CPA-secure SKE scheme, H is a CRHF scheme and case is a COA-secure CASE scheme.

Proof: We verify the properties in De�nition 8. The arguments below refer to the experiments in Figure 4.

� Total Hiding: Let CPb∗ be the challenge ciphertext in the experiment distinguish-sans-DK with chal-
lenge bit b∗ ∈ {0, 1}. We prove that CP0 ≈ CP1 via a sequence of hybrids as follows. Let the adversary,
given (EK0, EK1) output (m0,m1, SK0, SK1), and the challenge ciphertext be CPb∗ = (c0, c1).

• In �rst hybrid, b∗ = 0, but we replace c0 with a case-packet encase(SK0, EK0, 0) (where 0 denotes
a dummy message). Indistinguishability with R0 follows from the total hiding of the CASE scheme
case.

• In the next hybrid, we replace the message in c1 from m0 to m1. That is, c1 = skeEnc(k1,m0) is
replaced with c′1 = skeEnc(k1,m1). Indistinguishability with the previous hybrid follows from the
semantic-security of the SKE scheme S.
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• We �nally replace c0 (encase to 0) with c′0 = encase(SK1, EK1, k1||k2||H(k2,m1)) (that is, the
case-packet for challenge bit 1). Indistinguishability with H2 follows from the total hiding of the
CASE scheme case. But, this hybrid is exactly the experiment R1. Hence, proved.

� Sender Anonymity: This follows from a reduction to the underlying CASE scheme case. The re-
duction involves implementing the oracles E , D, and D′ for the sender anonymity experiment for case⋆,
given access to the same oracles for case. While this is straightforward for E and D, for D′ we need to rely
on the collision-resistance of H. If the adversary received a challenge ciphertext CP ∗ = (c∗0, c

∗
1) and later

queried D′ with (b, V K,CP ) where CP = (c∗0, c1) for c1 ̸= c∗1, the reduction cannot get CP decased using
the version of the oracle D′ that it has access to. However, it is guaranteed that case⋆.decase-verify will
reject CP unless the hash of c1 equals that of c∗1, which happens only with negligible probability thanks to
the collision resistance of H. So in this case, the reduction's implementation of D′ simply returns ⊥.

� Strong Unforgeability: holds via a reduction to the underlying CASE scheme case and CRHF
scheme H. Let A be an adversary with advantage α in the experiment forge for case⋆. We build adversary
A∗1 for the experiment forge for case that internally runs A in a black-box straightline way and interacts as
follows.

• For any query (EK,m) of A to E , A∗1 samples k1, k2, constructs c1 = skeEnc(k1,m), h = H(k2, c1),
queries the oracle E it has access to with (EK, k1||k2||h), receives c0 back, and sends CP = (c0, c1)
to A.
• Finally, A outputs (DK,CP ). It parses CP as (c0, c1) and outputs (DK, c0).

If c0 matches a response that A∗1 got from a query to its oracle E , but (c0, c1) does not match it
aborts. Else, it outputs (DK, c0) as its output.

Note that A succeeds in its forgery experiment while A∗1 fails i� (c0, c1) passes decasing for case
⋆ (and hence

so does c0 for case), and further (c0, c1) was not obtained by A as reponse for a query to its E , but c0 was
obtained by A∗1 from E that it accesses. Let k1∥k2∥h be the message that A∗1 queried E with to get c0, where
h = H(k2, c

′
1) for some c′1 ̸= c1. Since (c0, c1) passes decasing, it must be the case that H(c1) = h thereby

yielding a hash collision. We capture this as an adversary A∗2 for the CRHF primitive H, as follows:
• A∗2 internally runs the challenger and A and has it interact as per the experiment forge for case⋆.

• Finally, A outputs (DK,CP ). It parses CP as (c0, c1). If c0 matches some query to oracle E , let
the query be (EK,m) and response be (c0, c

′
1). It outputs (c1, c

′
1) as the collision. If no such query

matches, it aborts.
Now, if advantage α of A is non-negligible, then one of A∗1 and A∗2 will not abort and must have non-negligible
advantage.

� Unpredictability: This holds directly from the unpredictability of the underlying CASE scheme case.
� Correctness and Existential Consistency: ∀SK ∈ SK, DK ∈ DK,m ∈M , let V K ← case⋆.vkGen(SK),

EK ← case⋆.ekGen(DK), CP ← case⋆.encase(SK,EK,m).
• Correctness: From the correctness of the underlying CASE scheme case, it holds that the objects
are accepted with probability 1 − negl(κ). Further, it holds that c0 decrypts to k1||k2||h with
probability 1− negl(κ) and from the perfect correctness of the SKE scheme, c1 decrypts to m with
probability 1.

• Existential Consistency: From the existential consistency of the underlying primitives, it holds that
case⋆.skId(V K) = SK, case⋆.dkId(EK) = DK. Further, for any CP ∈ CP s.t. case⋆.acc(CP ) =
1, it holds that if case⋆.decase-msg(DK,CP ) ̸= ⊥, then case⋆.ekId(CP ) = EK. Similarly, if
case⋆.decase-verify (V K,DK,CP ) ̸= ⊥, it holds that case⋆.vkId(CP ) = V K and msgId(c0) =
k1||k2||h. Finally, from the correctness of the SKE scheme, c1 decrypts to m using key k1 with
probability 1 and from the correctness of CRHF scheme, veri�es with probability 1.

□

C Details omitted from Section 7

Theorem 1 (Restated). A ∆-s-IND-PRE secure implementation of Σcase exists if a COA secure CASE
scheme exists.

In the rest of the section, we prove that Πcase in Figure 13 is a ∆-s-IND�secure implementation of Σcase.

41



C.1 Extended Schema Σ‡
Πcase

We will be using a schema Σ‡Πcase
, which combines the schema Σcase with the scheme Πcase as follows: The

agent in Σ‡Πcase
behaves like the agent in Σcase, but in addition provides additional operations for the User

(exploited by our simulators S†b ,S
‡
b and S‡). These additional operations allow incorporating objects into

the handles (referred to as �patching�), so that some of the sessions among handles are carried out using the
algorithms in Πcase and such objects. Figure 18 describes this extended schema.

Σ‡Πcase
has an agent which behaves as follows, when invoked in a session.

� Patching a signing-key. If the input is the (patch, obj ) and the work-tape has (sk, sk -tag), then the
agent changes the work-tape entry to (sk, sk -tag , obj ).

� Patching a veri�cation-key. If the input is the (patch, obj ) and the work-tape has (vk, sk -tag), then
the agent changes the work-tape entry to (vk, sk -tag , obj ).

� Patching a decryption-key While patching a decryption-key, multiple agents are run as follows in a
session with the �rst agent being a decryption-key agent and the other agents being signing-key agents.

• If the work-tape entry of the agent is (sk, sk -tag) and the command received is (dkPatch, {CP i}), it
sends (sk -tag , {CP i}) to the �rst agent in the session.

• If the work-tape entry of the agent is (dk, dk -tag) and the command received is (dkPatch, obj ), then it
waits for messages from the other agents in the session. After receiving all messages, the �rst agent in
the session, collects all messages of the form (sk -tag , {CP i}) received into a list L (possibly empty). It
then changes the work-tape entry to (dk, dk -tag , obj , L).

� Patching an encryption-key. If the input is the (patch, obj ) and the work-tape has (ek, dk -tag), then
the agent runs in a session without any changes.17

� Creating a case-packet agent with an associated decryption-key If the input is the (CPgen,
(CP , DK )) and the work-tape has (ek, dk -tag), then the agent changes the work-tape entry to
(cp,CP ,DK , dk -tag).

� Creating an extended case-packet agentWhen run with an empty work-tape (when the init command
is sent to B[Σcase]) and with the tuple (CPgen, obj ) as the input, the agent is initialized as an extended
case-packet agent: i.e., the agent records the tuple (cp, obj ) on its work-tape.

17 Note that this operation is functionally redundant but the command itself is required by the simulator S∗ to
associate ideal handles to objects.
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� Decasing and verifying a message While decrypting and verifying, three agents are run in a session,
all having the keyword decase-verify as input. For each of the three agents, the following is done.

• If its work-tape contents are (cp,m, sk -tag , dk -tag , cp-tag) or (cp, obj ) or (cp,CP ,DK , dk -tag), it sends
the contents to the �rst agent in the session.

• If its work-tape contents are (vk, sk -tag) or (vk, sk -tag , obj ), it sends the contents to the �rst agent in
the session.

• If its work-tape contents are (dk, dk -tag , obj , L), it waits for messages from the second and third agent
in the session.

* If it receives messages of the form (cp,m, sk -tag⋆, dk -tag⋆, cp-tag) and ((vk, sk -tag) or
(vk, sk -tag ,VK )) such that sk -tag = sk -tag⋆ and dk -tag = dk -tag⋆, then it writes m on the out-
put tape.

* If it receives messages of the form (cp,CP) and (vk, sk -tag) such that (sk -tag ,CP) ∈ L, write output
of case.decase-msg(obj ,CP) to the output tape.

* If it receives messages of the form (cp,CP) and (vk, sk -tag ,VK ), write output of
case.decase-verify(obj ,VK ,CP) to the output tape.

• If its work-tape contents are (dk, dk -tag), it waits for messages from the second and third agent in the
session.

* If it receives messages of the form (cp,m, sk -tag⋆, dk -tag⋆, cp-tag) and ((vk, sk -tag) or
(vk, sk -tag ,VK )) such that sk -tag = sk -tag⋆ and dk -tag = dk -tag⋆, then it writes m on the out-
put tape.

* If it receives messages of the form (cp,CP ,DK , dk -tag⋆) and (vk, sk -tag ,VK ) such that dk -tag =
dk -tag⋆, write output of case.decase-verify(DK ,VK ,CP) to the output tape.

� Extracting the message: To extract the message, two agents are run in a session all having the input
keyword as decase-msg.

• If the work-tape entry of the agent is (dk, dk -tag) or (dk, dk -tag , obj , L), the agent sends the contents
of its work-tape to the second agent in the session.

• If the work-tape entry of the agent is (cp,m, sk -tag , dk -tag , cp-tag), the agent waits for a message from
the other agent. If it receives a message of the form (dk, dk -tag⋆) or (dk, dk -tag⋆, obj , L) such that
dk -tag = dk -tag⋆, it writes m to its output tape.

• If the work-tape entry of the agent is (cp,CP ,DK , dk -tag), the agent waits for a message from the
other agent. If it receives a message of the form (dk, dk -tag⋆) such that dk -tag = dk -tag⋆, it writes
case.decase-msg(DK ,CP) to its output tape.

• If the work-tape entry of the agent is (cp,CP), the agent waits for a message from the other agent. If
it receives a message of the form (dk, dk -tag⋆, obj , L), it writes case.decase-msg(obj ,CP) to its output
tape.

� Di�erentiating type of agent: If an agent is invoked with the keyword type as input, it behaves as
follows, depending on the contents of its work-tape:

• if the work-tape has (sk, sk -tag , obj ) or (sk, sk -tag), output sk.

• if the work-tape has (vk, sk -tag , obj ) or (vk, sk -tag), output vk.

• if the work-tape has (dk, dk -tag , obj , L) where L is a list or (dk, dk -tag), output dk.

• if the work-tape has (ek, dk -tag), output ek.

• if the work-tape has (cp, obj ) or (cp, obj ,DK , dk -tag) or (cp,m, sk -tag , dk -tag , cp-tag), output (cp, ℓ),
where ℓ = len(m).

Fig. 18: Extended schema Σ‡Πcase
.

C.2 Handle derivation graph

We introduce some notation that will be used throughout the proof.
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Basic Handle Notations.

� We denote the handle-space for Test as Ĥ. Handles in Ĥ are denoted as ĥ (generic handle), speci�c handles

such as d̂k denote a decryption-key type handle, etc.

� We denote the handle-space for User as H. Handles in H are denoted as h (generic handle), speci�c handles
such as dk denote a decryption-key type handle, etc.

� Variables like h denote generic handles that can either be in Ĥ or H.
� We write ◦ init→ h to denote that on input a command (init, key-type, κ) to B

[
Σ
]
, it output the handle h.

We write h0
inp−−→ h1 to denote that on input a command (run, {h0}, {inp}) to B

[
Σ
]
, it output the handle

h1.

We write h0 −→ h1 to denote that on input a command (run, {h0}, {transfer}) to B
[
Σ
]
, it output the handle

h1 to the other side.

� We write h0 ⇝ h1 to denote that h1 was derived from h0 via a sequence of commands and transfers.

� We write h0 ≡ h1 to denote that compare(h0, h1) = 1.

Handle Derivation Graph. Throughout the proof, the simulator in each hybrid is de�ned in terms of a
handle derivation graph G. While the nodes in the graphs in the various hybrids have di�erent (more) state
information, we describe the basic structure and notation that is common across them. A graph G is de�ned
as a pair (V,E), where V = VTest ∪ VUser denotes the set of vertices and E denotes the set of edges.

� We denote G.V as the vertext set V and G.E as the edge set E of graph G.

� Each vertex v ∈ VTest is of the form (obj , L̂, . . .), where obj is an object, L̂ is a list of Test handles s.t.

∀ĥ0, ĥ1 ∈ L̂, it holds that compare(ĥ0, ĥ1) = 1. Vertices in VTest correspond to handles that Test has access

to. We use the notation v.obj to represent the object obj and v.L to represent the list L̂.

� Each vertex v ∈ VUser is of the form (obj , L̊, . . .), where obj is an object and L̊ is a list of round numbers
(corresponding to the communication transcript of User). These nodes correspond to objects transferred
to/from A. Again, we use the notation v.obj to represent the object obj and v.L̊ to represent the list L̊.

� We use nodeG(ĥ) to denote the unique vertex v ∈ VTest s.t. ĥ ∈ v.L.

� In the various hybrids, we also use nodeG(.) as a function that takes some state information and returns
the vertex in G with that state information.

� There are 7 kinds of edges in the graph. The di�erent types of edges are identi�ed by a string stored in
the edges. The di�erent types of such strings are -
1. ekGen

2. vkGen

3. (dk-ct, encase, m) where m ∈M
4. (sk-ct,encase, m) where m ∈M
5. (pk-ct, encase, m) where m ∈M
6. (vk-ct, encase, m) where m ∈M
7. transfer

� v199Kv2 denotes that either v1 = v2 or v1
transfer−−−−−→ v2 exists

� root (v) is the unique node v⋆ such that there is a path with zero or more edges from v⋆ to v and
∄v′ s.t. v′ −→ v⋆.

� dk-root (v) is the unique node v⋆ such that there is a path of the form v⋆99Kv1
(dk−ct,encase,m)−−−−−−−−−−−→ v299Kv

or v⋆99Kv1
ekGen−−−−→ v299Kv3

(pk−ct,encase,m)−−−−−−−−−−−→ v599Kv and ∄v′ s.t. v′ −→ v⋆. Returns ⊥ if no such v⋆ exists.

� sk-root (v) - The unique node v⋆ such that there is a path of the form v⋆99Kv1
(sk−ct,encase,m)−−−−−−−−−−−→ v299Kv

or v⋆99Kv1
vkGen−−−−→ v299Kv3

(vk−ct,encase,m)−−−−−−−−−−−→ v599Kv and ∄v′ s.t. v′ −→ v⋆. Returns ⊥ if no such v⋆ exists.

� vk-root (v) - The unique node v⋆ such that there is a path of the form v⋆99Kv3
(vk−ct,encase,m)−−−−−−−−−−−→ v599Kv

and ∄v′ s.t. v′ −→ v⋆. Returns ⊥ if no such v⋆ exists.
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C.3 Proof of Security: Indistinguishability of Hybrids

C.3.1 Hybrids H0 and H0|1 H0 corresponds to the real execution real⟨Test(0) | Πcase | A⟩ with test bit
b = 0. It uses I[Π,RepoTest] to execute the commands and transfers from Test and A. The joint view of Test
and A can be captured by an implicit handle derivation graph G0 and get view function (Figure 19). We
prove this by showing indistinguishability with an intermediate hybrid H0|1 in which the handle derivation
graph is made explicit. That is, we replace I[Π,RepoTest] by I ′[Π,G0] which simulates I[Π,RepoTest] and
stores relations between handles in I[Π,RepoTest] using a graph G0. On obtaining a command which produces
a new handle, I ′[Π,G0] runs updateTest(G0) and runs updateA(G0) on transfers from A (see Figure 20).
It uses the functions getViewTest to return outputs for commands decase-verify, decase-msg, compare,
type and getViewA for transferring objects to A (see Figure 19). Please refer to Lemma 10 for the proof of
indistinguishability.

The function getViewTest takes a handle derivation graph and a command as an input and generates the
output of the command using structural properties of the graph.

getViewTest(G, command)

� command = (run, (d̂k , decase-verify), (v̂k , decase-verify), (ĉp, decase-verify))

• Let v1 = nodeG(ĉp), v2 = nodeG(d̂k) and v3 = nodeG(v̂k).

• If case.acc(v1.obj) ̸= cp or case.acc(v2.obj) ̸= dk or case.acc(v3.obj) ̸= vk, return ⊥.
• Set v4 = dk-root (v1) and v5 = sk-root (v1). If sk-root (v1) = ⊥, v5 = vk-root (v1)

• If v4 ̸= ⊥, v5 ̸= ⊥ and v4 = root(v2) and v5 = root(v3), return m.

• Else, return ⊥

� command = (run, (ĥ1, compare), (ĥ2, compare))

• Let v1 = nodeG(ĥ1) and v2 = nodeG(ĥ2)

• If v1 = v2, return true. Else, return false.

� command = (run, (d̂k , decase-msg), (ĉp, decase-msg))

• Let v1 = nodeG(ĉp) and v2 = nodeG(d̂k)

• If case.acc(v1.obj) ̸= cp or case.acc(v2.obj) ̸= dk, return ⊥.
• Set v3 = dk-root (v1).

• If v3 ̸= ⊥ and v3 = root(v2), return m.

• Else, return ⊥.

� command = (run, (ĥ, type))

• Find v1 = nodeG(ĥ)

• Return the output of case.acc(v1.obj)

� Else, return ⊥

The function getViewA take a handle derivation graph and a "round" number as input and outputs the
object received/transferred by the adversary in that round.
getViewA(G, r̊)

Find v ∈ VA such that r̊ ∈ v.L̊. Return v.obj.

Fig. 19: Description of getViewTest and getViewA
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In H0|1 and H6|7, I ′[Π,Gb] maintains a handle derivation graph Gb which stores the relationships between
the handles and the underlying objects. The graph is updated with commands sent by Test or objects sent
by A. The construction of the graph is given below. Here, r̊ refers to the current round. Refer to Section C.2
for description of nodes and edges.

updateTest(Gb, str, ĥ)

Let ĥ be the handle to be generated by the command str. We consider di�erent cases based on the command
sent.
� str = (init, (key-type, κ))
• If key-type = sk, generate SK ⋆ ← case.skGen and set obj = SK ⋆ as the initialized object.

Else, if key-type = dk, generate DK ⋆ ← case.dkGen and set obj = DK ⋆ as the initialized object.

• If ∃v ∈ VTest s.t. v.obj = obj , abort execution.

Else, add node v⋆ = (obj , {ĥ}) to VTest.

� str = (run, (dk , ekGen))
Let v′ ∈ VTest s.t. dk ∈ v′.L. Let v′.obj = DK . Generate EK = case.ekGen(DK ).

• If ∃v ∈ VTest s.t. v.obj = EK , update v.L← v.L ∪ ĥ.

Else, add node v⋆ = (EK , {ĥ}) to VTest. Add the edge v′
ekGen−−−−→ v⋆

� str = (run, (sk , vkGen))
Let v′ ∈ VTest s.t. sk ∈ v′.L. Let v′.obj = SK . Generate VK = case.vkGen(SK ).

• If ∃v ∈ VTest s.t. v.obj = VK , update v.L← v.L ∪ ĥ.

Else, add node v⋆ = (VK , {ĥ}) to VTest. Add the edge v′
vkGen−−−−→ v⋆

� str = (run, ((sk , (encase,m)), (ek , (encase,m))))

Let v1 ∈ VTest s.t. sk ∈ v′.L and v2 ∈ VTest s.t. dk ∈ v′.L. Let v1.obj = SK and v2.obj = EK .

• Generate obj = case.encase(SK ,EK ,m).

• If ∃v ∈ VTest s.t. v.obj = obj , abort execution.

Else, add node v⋆ = (obj , {ĥ}) to VTest. Add the edge v2
(pk−ct,encase,m)−−−−−−−−−−−→ v⋆. Add the edge

v1
(sk−ct,encase,m)−−−−−−−−−−−→ v⋆.

� str = (transfer, ĥ0, ĥ1)

Let v′ ∈ VTest s.t. ĥb ∈ v′.L.

• If ∃v ∈ VA s.t. v′.obj = v.obj, update v.L̊← v.L̊ ∪ {̊r}.
Else, add node v⋆ = (v′.obj, {̊r}) to VA and add edge v′

transfer−−−−−→ v⋆

updateA(Gb, obj )

Let t = acc(obj ). Let ĥ be the next handle to be received by Test. We consider di�erent cases based on value
of t.

� If t ̸= ⊥ and ∃v s.t. v.obj = obj

Update v.L̊← v.L̊∪ {̊r} in the matched node v. If ∃v′ ∈ VTest s.t. v
′.obj = obj , update v′.L← v′.L∪{ĥ}.
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� Else, if t ̸= ⊥
Add node v⋆ = (obj , {̊r}) to VA.
If t = ek∨ t = vk and ∃v ∈ VTest s.t. v.obj = obj , update v.L← v.L∪{ĥ}. Else, add node v′ = (obj , {ĥ})
to VTest. Add the edge v⋆

transfer−−−−−→ v′ to G0.

Now do the following based on the value of t.

• t = dk

* If ∃v1, v2 ∈ VTest s.t. v1.obj = obj ∧ v2.obj = obj , abort execution.

* ∀v ∈ VA s.t. decase-msg(obj , v.obj) = m ̸= ⊥, add edge v⋆
(dk−ct,encase,m)−−−−−−−−−−−→ v.

* ∀v ∈ VA s.t.ekGen(obj ) = v.obj, add edge v⋆
ekGen−−−−→ v.

* ∀v1, v2 ∈ VA s.t. decase-verify(obj , vkGen(v1.obj), v2.obj) = m ̸= ⊥, add edge v1
(sk−ct,encase,m)−−−−−−−−−−−→ v2.

* ∀v1, v2 ∈ VA s.t. decase-verify(obj , v1.obj, v2.obj) = m ̸= ⊥, add edge v1
(vk−ct,encase,m)−−−−−−−−−−−→ v2.

• t = ek

* If (∃v1 ∈ VTest s.t. ekGen(v1.obj) = obj ) ∧ (∄v2 ∈ VA s.t. ekGen(v2.obj) = obj ), abort execution.

* ∀v ∈ VA s.t. ekGen(v.obj) = obj , add edge v
ekGen−−−−→ v⋆.

• t = sk

* If ∃v1, v2 ∈ VTest s.t. v1.obj = obj ∧ v2.obj = obj , abort execution.

* ∀v ∈ VA s.t. vkGen(obj ) = v.obj, add edge v⋆
vkGen−−−−→ v.

* ∀v1, v2 ∈ VA s.t. decase-verify(v1.obj, vkGen(obj ), v2.obj) = m ̸= ⊥, add edge v⋆
(sk−ct,encase,m)−−−−−−−−−−−→

v2. Else if no such edge can be added, ∀v1, v2 ∈ VA, v3 ∈ VTest s.t. v3
ekGen−−−−→ vs

transfer−−−−−→ v1 ∧
decase-verify(v3.obj, vkGen(obj ), v2.obj) = m ̸= ⊥, add edge v⋆

(sk−ct,encase,m)−−−−−−−−−−−→ v2.

• t = vk

* If (∃v1 ∈ VTest s.t. vkGen(v1.obj) = obj ) ∧ (∄v2 ∈ VA s.t. vkGen(v2.obj) = obj ), abort execution.

* ∀v ∈ VA s.t.vkGen(v.obj) = obj , add edge v
vkGen−−−−→ v⋆.

* ∀v1, v2 ∈ VA s.t. decase-verify(v1.obj, obj , v2.obj) = m ̸= ⊥, add edge v⋆
(vk−ct,encase,m)−−−−−−−−−−−→ v2.

Else if no such edge can be added, ∀v1, v2 ∈ VA, v3 ∈ VTest s.t. v3
ekGen−−−−→ vs

transfer−−−−−→ v1 ∧
decase-verify(v3.obj, obj , v2.obj) = m ̸= ⊥, add edge v⋆

(vk−ct,encase,m)−−−−−−−−−−−→ v2.

• t = cp

* If ∃v1, v2 ∈ VTest s.t. v1.obj = obj ∧ v2.obj = obj , abort execution.

* If ∃v1 ∈ VTest s.t. decase-msg(v1.obj, obj ) = m ̸= ⊥ ∧ (∄v2 ∈ VA s.t. v2.obj = v1.obj ∨ v2.obj =
ekGen(v1.obj)), abort execution.

* If ∃v1, v2 ∈ VTest s.t. decase-verify(v1.obj, vkGen(v2.obj), obj ) = m ̸= ⊥ ∧ (∄v3 ∈ VA s.t. v3.obj =
v2.obj), abort execution.

* ∀v ∈ VA s.t. decase-msg(v.obj, obj ) = m ̸= ⊥, add edge v
(dk−ct,encase,m)−−−−−−−−−−−→ v⋆ and set DK ⋆ = v.obj.

Else if no such edge can be added, ∀v1 ∈ VTest s.t. decase-msg(v1.obj, obj ) = m ̸= ⊥ ∧ (∃v2 ∈
VA s.t. v1

ekGen−−−−→ vs
transfer−−−−→ v2), add edge v0

(pk−ct,encase,m)−−−−−−−−−−−→ v⋆ and set DK ⋆ = v1.obj. Else, set
DK ⋆ = ⊥.

* If DK ⋆ ̸= ⊥, ∀v ∈ VA s.t.decase-verify(DK ⋆, vkGen(v.obj), obj ) = m ̸= ⊥, add edge v
(sk−ct,encase,m)−−−−−−−−−−−→

v⋆.

* If DK ⋆ ̸= ⊥, ∀v ∈ VA s.t.decase-verify(DK ⋆, v.obj, obj ) = m ̸= ⊥, add edge v
(vk−ct,encase,m)−−−−−−−−−−−→ v⋆.

Fig. 20: Description of G0

We also note some properties of the graph G0 that hold at every round conditioned on G0 not aborting.
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1. If v1, v2 ∈ VTest and v1 ̸= v2, then obj 1 ̸= obj 2.

2. If acc(obj 1) = ek (resp. vk), acc(obj 2) = ek (resp. vk) and obj 1 = obj 2, then root (v1) = root (v2).

3. If acc(obj 1) = dk (resp. sk), acc(obj 2) = ek (resp. vk) and obj 2 = ekGen(obj 1) (resp. obj 2 = vkGen(obj 1)),
then root (v1) = root (v2)

4. If acc(obj 1) = dk, acc(obj 2) = cp and decase-msg(obj 1, obj 2) ̸= ⊥, then root (v1) = dk-root (v2)

5. If acc(obj 1) = dk, acc(obj 2) = vk (resp. sk), acc(obj 3) = cp and decase-verify(obj 1, obj 2, obj 3) ̸= ⊥
(resp. decase-verify(obj 1, vkGen(obj 2), obj 3)), then root (v2) = sk-root (v2)

where v1, v2, v3 denote arbitrary nodes chosen from G0 and obj 1, obj 2, obj 3 represent the objects present
inside them.

C.3.2 Hybrids H0|1 and H1 Hybrid H1 corresponds to ideal⟨Test(0) | Σ‡Πcase
| S†0 ◦ A⟩, where the

implementation I ′[Π,G0] from previous hybrid H0|1 is replaced by the ideal extended schema Σ‡Πcase
(as in

Figure 18) and a simulator S†0 (as in Figure 23).

Bad events We now specify the �bad events� in H0 which can cause H0|1 to abort in Figure 21. Note that,
all abort conditions in updateTest and updateA correspond to one the the events above. Thus, conditioned
on bad events not occurring, H0|1 does not abort.

We also specify the a �bad event� for H1 in Figure 22 which can cause executions of H0|1 and H1 to diverge
due to "tag collisions". The probability of this event occuring is negligible as a polynomial number of tags
are sampled uniformly from {0, 1}κ.

1. In H0, Test generates a signing-key SK (resp. decryption-key DK ) which is equal to another obj which
exists in I[Π,RepoTest] or is such that SK = skId (obj ) or SK = skId (vkId (obj )) (resp. DK = dkId (obj )
or DK = dkId (ekId (obj ))) for an obj which exists in I[Π,RepoTest].

2. In H0, Test generates a CP which is equal to another obj which exists in I[Π,RepoTest].

3. In H0, a signing-key SK (resp. decryption-key DK or CP) transferred by the user is equal to an object
obj which exists in I[Π,RepoTest] but was not transferred by or to Test.

4. In H0, a veri�cation-key VK (resp. public-key EK ) transferred by the user is such that there exists a

signing-key SK (resp. decryption-key DK ) inside the work-tape contents of a handle ĥ that was created
through the init command in I[Π,RepoTest] such that VK = vkGen(SK ) (resp. EK = ekGen (DK )) and

ĥ or a veri�cation-key (resp. encryption-key) handle derived from ĥ was never transferred to A.
5. In H0, A transfers CP such that there is a decryption-key DK generated by I[Π,RepoTest] which satis�es

decase-msg(DK ,CP) ̸= ⊥ and DK or EK = ekGen (DK ) has not been transferred to A.
6. In H0, A transfers CP such that there is a decryption-key DK in I[Π,RepoTest] and a signing-key SK

generated by I[Π,RepoTest] which satis�es decase-verify(DK , vkGen(SK ),CP) ̸= ⊥ and SK has not been
transferred to A.

Fig. 21: Bad events in H0

1. In H1, creation or evolution of a B[Σ‡Πcase
] agent results in the same sk -tag , dk -tag or cp-tag as in a

previous command.

Fig. 22: Bad events in H1
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S†b : Processing objects and commands

Processing objects transferred by A When A attempts to transfer object obj to Test, it calls a subroutine
update†A(G†

b, obj ) which returns a handle h. Send the command (transfer, h) to B[Σ‡
Πcase

].

update
†
A(G

†
b, obj )

� Run updateA(G
†
b, obj )

� Let v′ be the node of the form (obj , L̂) added to VTest by update. Let v⋆ be the node of the form (obj ,
L̊) added to VA by update. If any of these nodes are not added, v⋆ = ⊥ and/or v′ = ⊥. Let t = acc(obj )
during the execution of update.

� If v⋆ = ⊥, �nd a node v ∈ VA such that v.obj = obj and return any h ∈ v.h.

� Else, if t = sk, proceed as follows

• Find a node v1 ∈ VA such that the edge v⋆
vkGen−−−−→ v1 exists.

• If v1 does not exist, send a command (init, (sk, κ)) to B[Σ‡Πcase
] and obtain handle h ′. Add node v2 =

(⊥,⊥, h ′) to VA. Now send the command (run, (h ′, (patch, obj ))) to B[Σ‡Πcase
] to obtain h. Update node

v⋆ to (obj , {̊r}, {h}). Add edge v2
patch−−−→ v⋆.

• Else, �nd node v2 = (⊥,⊥, h ′) ∈ VA such that the path v2
vkGen−−−−→ vs

patch−−−→ v1 exists. Send the command

(run, (h ′, (patch, obj ))) to obtain h. Update node v⋆ to (obj , {̊r}, {h}). Add edge v2
patch−−−→ v⋆.

� Else, if t = dk, proceed as follows

• Construct a list of node-pairs {(vi1, vi2)} such that vi1
(sk−ct,encase,m)−−−−−−−−−−−→ vi2 and v⋆

(dk−ct,encase,m)−−−−−−−−−−−→ vi2
where vi1, vi2 ∈ VA.
• Now, construct the list S = {(hi,CP i)} where hi ∈ vi1.h and CP i = vi2.obj.

• If ∃v1 ∈ VA s.t. v⋆
ekGen−−−−→ v1, �nd v2 = (⊥,⊥, h ′) such that the path v2

ekGen−−−−→ vs
patch−−−→ v1 ex-

ists. Send (run, (h ′, (dkPatch, obj )), {(hi, (dkPatch,CP i))}(hi,CPi)∈S) to obtain h. Update node v⋆ to

(obj , {̊r}, {h}). Add edge v2
patch−−−→ v⋆.

• Else, send a command (init, (dk, κ)) to B[Σ‡Πcase
] and obtain handle h ′. Add node v2 = (⊥,⊥, h ′) to VA.

Now send the command (run, (h ′, (patch, obj )), {(hi, (dkPatch,CP i))}(hi,CPi)∈S) to B[Σ
‡
Πcase

] to obtain

h. Update node v⋆ to (obj , {̊r}, {h}). Add edge v2
patch−−−→ v⋆.

� Else if t = ek, proceed as follows,

• If ∃v1 ∈ VA s.t. v1
ekGen−−−−→ v⋆, send the command (run, (h1, ekGen)) to obtain h where h1 ∈ v1.h. Update

node v⋆ to (obj , {̊r}, {h}).
• Else, send a command (init, (dk, κ)) to B[Σ‡Πcase

] and obtain handle h ′. Add node v1 = (⊥,⊥, h ′) to VA.
The, send the command (run, (h ′, ekGen)) to B[Σ‡Πcase

] and obtain handle h ′′.Add node v2 = (⊥,⊥, h ′′)
to VA. Send the command (run, (h ′′, (patch, obj ))) to B[Σ‡Πcase

] and obtain handle h ′′. Update node v⋆

to (obj , {̊r}, {h}). Add edges v1
ekGen−−−−→ v2 and v2

patch−−−→ v⋆.
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� Else if t = vk, proceed as follows,

• If ∃v1 ∈ VA s.t. v1
vkGen−−−−→ v⋆, send the command (run, (h1, vkGen)) to obtain h where h1 ∈ v1.h. Update

node v⋆ to (obj , {̊r}, {h}).
• Else, send a command (init, (sk, κ)) to B[Σ‡Πcase

] and obtain handle h ′. Add node v1 = (⊥,⊥, h ′) to

VA. The, send the command (run, (h ′, ekGen)) to B[Σ‡Πcase
] and obtain handle h ′′. Add node v2 =

(⊥,⊥, h ′′) to VA. Send the command (run, (h ′′, (patch, obj ))) to B[Σ‡Πcase
] to obtain h. Update node v⋆

to (obj , {̊r}, {h}). Add edges v1
vkGen−−−−→ v2 and v2

patch−−−→ v⋆.

� Else if t = cp, proceed as follows,

• Execute the following steps to �nd a "matching" encryption-key handle ek⋆ and a decryption-key object
DK ⋆

1. If ∃v1 ∈ Vadv s.t. v1
(dk−ct,encase,m)−−−−−−−−−−−→ v⋆, send the command (run, (h1, ekGen)) to obtain ek⋆ where

h1 ∈ v1.h and set DK ⋆ = v1.obj.

2. Else if, ∃v1 ∈ VA s.t. v1
(pk−ct,encase,m)−−−−−−−−−−−→ v′, �nd the node v2 ∈ VTest such that the path v2

ekGen−−−−→
vs

transfer−−−−−→ v1 exists. Set ek⋆ = h1 where h1 ∈ v1.h and DK ⋆ = v2.obj.

3. Else, ek⋆ = ⊥ and DK ⋆ = ⊥.

• Execute the following steps to �nd a matching signing-key handle handle sk⋆ and message m⋆

1. If ∃v1 ∈ VA s.t. v1
(sk−ct,encase,m)−−−−−−−−−−−→ v⋆, set sk⋆ = h1 where h1 ∈ v1.h and m⋆ = m.

2. Else, set sk⋆ = ⊥ and m⋆ = ⊥.

• Execute the following steps to obtain the a handle h.

1. If sk⋆ ̸= ⊥∧ ek⋆ ̸= ⊥, send the command (run, (sk⋆, (encase,m)), (ek⋆,⊥)) to B[Σ‡Πcase
] to obtain h.

2. Else if ek⋆ ̸= ⊥, send the command (run, (ek⋆, (CPgen, obj ,DK ⋆))) to B[Σ‡Πcase
] to obtain h.

3. Else, send the command (init, (CPgen, obj )) to B[Σ‡Πcase
] to obtain h.

• Finally, update node v⋆ to (obj , {̊r}, {h}).

� In all of the above cases with v⋆ ̸= ⊥, return h.

Processing reports of commands by Test (except transfer) On obtaining the report of a command c

which output a handle ĥ, S†b updates G†b by executing updateTest(G
†
b, c, ĥ).

Processing transfers by Test Let h be the handle obtained by S†b from B[Σ‡Πcase
] as a result of a transfer

command (transfer, h0, h1) by Test. S†b updates G†b by executing updateTest(G
†
b, c, ĥ). Let v

⋆ ∈ VA such that
v⋆.obj = obj . Update v⋆.h ← v⋆.h ∪ {h} (or v⋆.h = {h} if v⋆.h did not exist)

Fig. 23: S†b : Processing objects transferred by A

We couple the executions of H0, H0|1, H1 by considering a single experiment which runs all three executions
using a common random-tape. The randomness used by I[Π,RepoTest] for operations of Πcase in H0 are
identi�ed with the randomness used by I ′[Π,G0] for operations of Πcase in H0|1 and the randomness used

by S†0 in H1. The randomness used in H1 by B[Σ‡Πcase
] to sample the tags (sk -tag , dk -tag , or cp-tag) are not

used in H0 or H0|1. The random-tapes of the adversary and Test are the same in all three parts of the coupled
execution.

A coupled execution does not diverge if the view of the adversary and Test is identical in H0, H0|1 and
H1. Conditioned on the bad events not occurring, we claim that a coupled execution does not diverge which
is formally stated in the lemma below.

Lemma 10. Conditioned on bad events in Figure 21 and in Figure 22 not occurring in a coupled execution
of H0, H0|1 and H1, the joint view of (Test,A) is the same in H0, H0|1 and H1.
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Proof:
This is veri�ed inductively, over each message from the adversary or Test. Indeed, as long as there have

been no divergence previously, the objects sent to the adversary � created by I[Π,RepoTest] or I ′[Π,G0] or

S†0 � and the outputs received by Test are identical in H0, H0|1 and H1.

First we note that, by construction of G†0, the induced subgraph G†0p over all nodes NOT of the form

(⊥,⊥, h) in G†0 in H1 is structurally equivalent to G0 in H0|1.
Now, we prove that conditioned on the bad events not occurring, some invariants hold at every round.

Note that the proof of each invariant for the current round follows an inductive argument and assumes that
all invariants hold till the current round.

Claim 1. The objects received by A corresponding to a transfer command c by Test is same in both H0, H0|1
and H1.

Proof: As G†0p is equivalent to G0, thus nodeG†
0p
(ĥ).obj = nodeG0

(ĥ).obj. Moreover, by the coupling of

randomness of H0|1 and H0 and by construction of H0|1, the object inside the work-tape of a handle ĥ in H0

is equal to nodeG0
(ĥ).obj. Thus, the object transferred to adversary on invocation of a transfer command is

same in all three hybrids. □

Claim 2. For every command c sent by Test, the output of getViewTest(G0, c) is equal to the output received
by Test in Ht for t ∈ {0, 1}

Proof: We will prove this invariant for each value of c.

� c = (run, (h, type))
For H0, the invariant is easy to verify. I[Π,RepoTest] in H0 runs the algorithm case.acc on the underlying
object corresponding to h. getViewTest(G0, c) also runs case.acc on the object stored in the graph which
is equal to the underlying object corresponding to h.

In H1, the construction of the G†0 ensures that the type of the handle inserted in a node corresponds to the

value of case.acc(obj ) where obj is the object inserted in the node. Thus, as G†0p is structurally equivalent

to G0, getViewTest(G0, c) returns the same value as B[Σ‡Πcase
] in H1.

� c = (run, (h1, compare), (h2, compare))
For H0, the invariant is easy to verify. By the graph invariant 1, each node in VTest has a di�erent object
present inside it which is, by construction, the object associated with every handle belonging to the node.
Thus, the command c returns true in H0 i� the h1 and h2 belong to the same node i.e. getViewTest(G0, c)
returns true.
In H1, we prove the invariant in two parts.

First, we prove that if getViewTest(G′0, c) returns true, then c returns true in H1. To this end, we consider

all cases when a new handle h⋆ is added to a list v⋆.L for a node v⋆ ∈ G†0 and prove that h⋆ returns true
on running compare with other handles in v⋆.L. By construction of the simulator, h⋆ can be added to
v⋆.L only if it is a transfer by A or it is obtained by a command (run, (h ′, ekGen)) or (run, (h ′, vkGen)).

If h⋆ is added by a transfer of handle h which existed before receiving the command c, then ∃v1 ∈
VA s.t. (v1

transfer−−−−−→ v⋆ ∨ v⋆
transfer−−−−−→ v1) ∧ h ∈ v1.h and h has the same work-tape contents as with other

handles in v⋆.L by semantics of transfer and induction on Claim 2. Thus, h⋆ returns true on running
compare with all handles in v⋆.L.

Now we consider the case when h⋆ is added by a transfer of handle h which did not exist before receiving
the command c. If h⋆ is added to a new node v⋆, the h⋆ is the only handle in v⋆.L and we are done.
Otherwise, let v⋆ be the existing node to which h⋆ is added. Then, by the graph invariants 1 and 2, the
object transferred by A can only be a encryption-key or a veri�cation key whose corresponding decryption-

key or signing-key has been transferred before. Thus, there exists a path v⋆
ekGen←−−−−vr

transfer−−−−−→vs
ekGen−−−−→v1 or
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v⋆
ekGen←−−−−vs

transfer←−−−−−vr
ekGen−−−−→v1 such that h ∈ v1.h. Thus, h compares with all handles in v⋆.L by the se-

mantics of transfer and ekGen and induction on Claim 2. Thus, h⋆ compares with all handles in v⋆.L.

If h⋆ is obtained through a command (run, (h ′, ekGen)) or (run, (h ′, vkGen)), let v2 such that h ′ ∈ v2.L.

If v2
ekGen−−−−→ v⋆ exists, then it is easy to see that h⋆ will compare with all handles in v2.L using seman-

tics of ekGen. Else, the graph invariant 3 implies there must exist a path v2
transfer−−−−−→ ekGen−−−−→ transfer−−−−−→v⋆ or

v2
transfer←−−−−−vr

ekGen−−−−→ transfer−−−−−→v. Thus, using the semantics of ekGen and transfer, h⋆ will compare with all
handles in v⋆.L.

A similar argument holds for vkGen.

This proves that if two handles h1 and h2 belong to the same node then c returns true in H1.

Now, we prove that if two handles h1 and h2 do not belong to the same node then c returns false in H1.
To this end, using the equivalence property of compare, we only need consider cases when a new handle
h⋆ is added to a list v⋆.L in a new node v⋆ and prove that h⋆ returns false on running compare with all
other handles. By construction of the simulator, a new node is added during skGen, vkGen, encase and
may be added during vkGen, ekGen or transfers be A.

During a run of skGen, vkGen, encase by Test, a new sk -tag , dk -tag or cp-tag is generated by I[Π,RepoTest].
Thus, conditioned on non-occurrence of bad event 1, h⋆ returns false on running compare with all other
handles.

Next, let's consider the case new node is created during vkGen. Let the command leading to creation of
h⋆ be (run, (h ′, ekGen)). Suppose there exists a node v3 such that ∃ĥ1 ∈ v3.L where ĥ1 returns true on
compare with h⋆.

Now, v⋆.obj ̸= v3.obj, as a result of the graph invariant 1. Let v4 = root (v⋆) and v5 = root (v3). As
v⋆.obj ̸= v3.obj, thus v4.obj ̸= v4.obj but dk -tag in handles of v4 and v5 is the same by semantics of ekGen
and transfer. The graph invariant 1 also implies v4 ̸= v5. But, conditioned on non-occurrence of 1, this is a
contradiction because creation of v4 and v5 involved independent sampling of dk -tag . A similar argument
holds for vkGen.

A new node may be created when A transfers objects that have never been transferred previously. In a
transfer of new object obj ′ by A, let h be the handle transferred by S†b . If either the new object is present
inside the work-tape (in case of CP) or a new sk -tag , dk -tag , cp-tag is sampled, then conditioned on non-
occurrence of 1 as a result of the graph invariant 1, h⋆ returns false on running compare with any other
handle in I[Π,RepoTest]. Else, an analysis similar to that for the command vkGen yields a contradiction
conditioned on non-occurrence of 1.

This proves that if two handles h1 and h2 DO NOT belong to the same node then c returns ⊥ in H1.

Thus, the invariant is proved.

� c = (run, (hdk, decase-verify), (hvk, decase-verify), (h, decase-verify))
By the construction of G0, the following properties hold. The relations between the objects are easy to
verify. The relations between the handles are also easy to verify by the construction of G†0 and speci�cation

of Σ‡Πcase
. Thus as, G†0p in H1 is structurally equivalent to G0 in H0|1, the properties hold for G0.

1. If two nodes vi = (obj i, L̂i) ( resp. ( obj i, L̊i, hi) ) for i ∈ {1, 2} and v1
ekGen−−−−→ v2, then case.ekGen(obj 1)

= obj 2 and dk -tag1 = dk -tag2 where dk -tag i is the decryption-key tag on the work tape of handles in
vi

2. If two nodes vi = (obj i, L̂i) ( resp. ( obj i, L̊i, hi) ) for i ∈ {1, 2} and v1
vkGen−−−−→ v2, then case.vkGen(obj 1)

= obj 2 and sk -tag1 = sk -tag2 where sk -tag i is the signing-key tag on the work tape of handles in vi

3. If two nodes vi = (obj i, L̂i) ( resp. ( obj i, L̊i, hi) ) for i ∈ {1, 2} and v1
transfer−−−−−→ v2, then obj 1 = obj 2

and work-tape contents of all handles in v1 and v2 are equal
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4. If two nodes vi = (obj i, L̂i) ( resp. ( obj i, L̊i, hi) ) for i ∈ {1, 2}and v1
(dk−ct,encase,m)−−−−−−−−−−−→ v2, then

case.decase-msg(obj 1,obj 2) = m = output of (run, (h1, decase-msg), (h2, decase-msg)).

5. If two nodes vi = (obj i, L̂i) ( resp. ( obj i, L̊i, hi) ) for i ∈ {1, 2} and v1
(pk−ct,encase,m)−−−−−−−−−−−→ v2, then

case.ekId(obj 2) = obj 1 and dk -tag1 = dk -tag2 where dk -tag i is the decryption-key tag on the work tape
of handles in vi and m is the message on the work-tape of handles in v2

6. If two nodes vi = (obj i, L̂i) ( resp. ( obj i, L̊i, hi) ) for i ∈ {1, 2} and v1
(sk−ct,encase,m)−−−−−−−−−−−→ v2, then

case.skId(obj 2) = obj 1 and there exists vr = dk-root (obj 2) = (obj r,L̂r) ( resp. (obj r,L̊r, hr) ) such
that either sk -tag1 = sk -tag2 where sk -tag i is the signing-key tag on the work tape of handles in vi or
obj i are present on the work-tape contents of vi or the pair (obj 2, sk -tag1) is present on work-tape of
the handles of vr.

7. If two nodes vi = (obj i, L̂i) ( resp. ( obj i, L̊i, hi) ) for i ∈ {1, 2} and v1
(vk−ct,encase,m)−−−−−−−−−−−→ v2, then

case.vkId(obj 2) = obj 1 and there exists vr = dk-root (obj 2) = (obj r,L̂r) ( resp. (obj r,L̊r,hr) ) such
that either sk -tag1 = sk -tag2 where sk -tag i is the signing-key tag on the work tape of handles in vi or
obj i are present on the work-tape contents of vi or the pair (obj 2, sk -tag1) is present on work-tape of
the handles of vr.

If getViewTest(G0, c) ̸= ⊥, then using the above lemmas and composition of existential consistency guar-
antees, the output received by Test in H0 will be the same.

Similarly for H1, if getViewTest(G′1, c) ̸= ⊥, the above lemmas and the speci�cation of Σ‡Πcase
imply that

the output received by Test in H1 will be the same.

We now consider all cases when getViewTest(G0, c) = ⊥ for H0. We refer to variables from the body of
getViewTest during the proof. If the conditions involving acc fail, then by de�nition of decase-verify, c
returns ⊥ in H0. If dk-root(v1) = ⊥, then, as a result of the graph invariant 4, either i) obj is derived by
Test from a public-key EK transferred by A whose corresponding decryption-key has not been transferred
or ii) obj is transferred by A such that there is no transferred DK or there is no DK created by Test whose
encryption-key ekGen (DK ) has been transferred which satis�es decase-msg(DK , obj ) ̸= ⊥. Thus, c re-
turns ⊥ in H0. Otherwise, v4 = dk-root(v1) and DK ⋆ be the object associated with it. If sk-root(v1) = ⊥
and vk-root(v1) = ⊥, then obj is an object transferred by A such that there are no transferred VK
or SK satisfying decase-verify(DK ⋆,VK , obj ) ̸= ⊥ or decase-verify(DK ⋆, vkGen(SK ), obj ) ̸= ⊥. Then, as
a result of the graph invariant 5, the output of c in H0 is ⊥. Let the object inside v4 = obj 4 and the
object within root (v2) = obj dk. If v4 ̸= root(v2), then by the graph invariant 1, obj 4 ̸= obj dk. Using
the semantics of edges in G0, we know that obj 4 = dkId(obj ) and thus, decase-msg(obj dk, obj ) = ⊥ and
output of c is ⊥ in H0. Similarly if v5 ̸= root(v3), by the graph invariants 2, 1 and 3, output of c is ⊥ in H0.

We now consider all cases when getViewTest(G′0, c) = ⊥ for H1. If the conditions involving acc fail, then by
speci�cation either the type token in hdk ̸= dk or token in hvk ̸= vk or token in h ̸= cp and thus, c returns
⊥ in H1. If dk-root(v1) = ⊥, then either i) obj is derived by Test from a public-key EK transferred by
A whose corresponding decryption-key has not been transferred or ii) obj is transferred by A such that
there is no transferred DK which satis�es decase-msg(DK , obj ) ̸= ⊥. In case i), the work-contents of h
contain an dk -tag that does not exist in any decryption-key handle. In case ii), the work-tape contents
of h are (cp, obj ) and no transferred DK which satis�es decase-msg(DK , obj ) ̸= ⊥. Thus, c returns ⊥ as
output. h cannot return non-⊥ output with handles created by Test because of the form of its work-tape
contents. Otherwise, v4 = dk-root(v1) and DK ⋆ be the object associated with it. If sk-root(v1) = ⊥
and vk-root(v1) = ⊥, then obj is an object transferred by A such that there are no transferred VK or
SK satisfying decase-verify(DK ⋆,VK , obj ) ̸= ⊥ or decase-verify(DK ⋆, vkGen(SK ), obj ) ̸= ⊥. In this case,
the work-tape contents of h are (cp, obj ) or (cp,CP ,DK ⋆, dk -tag). As there is no matching VK or SK ,
thus c returns ⊥ as output in H1 as well. In this, h cannot return non-⊥ output with veri�cation-key
handles created by Test because of the form of its work-tape contents. If v4 ̸= root(v2), then handles in
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v4 and root (v2) contained di�erent objects (by the proof for H0) and di�erent tags (conditioned on 1
not occurring). From the semantic properties of edges (4, 5, 1, 3), we can conclude that object or tag in
the content of handles in v4 matches that in the content of h, which cannot be the case for handles in v2.
Thus, c return ⊥ in H1. Similarly, conditioned on 1 not occurring and using semantic properties of edges
(6, 7,2, 3), we can prove that c return ⊥ in H1 if v5 ̸= root(v3)

� c = (run, (hdk, decase-msg), (h, decase-msg))
The proof for this command is similar to the proof when c= (run, (hdk,decase-verify), (hvk,decase-verify),
(h,decase-verify)).

□

Claim 3. Views of the A and Test are same in H0, H0|1 and H1.

Proof:

Claim 4. In every round, the same command is sent by Test or the same object is transferred by A in H0,
H0|1 and H1. Moreover, Test obtains a handle in H0 i� Test obtains a handle in H0|1 i� Test obtains a handle
in H1. These two handles are referred to as "corresponding handles" hereafter because they will share the
same handle identi�er.

Proof: The view of the Test and A consists of outputs of commands to I[Π,RepoTest] in H0, I ′[Π,G0] in H0|1

and B[Σ‡Πcase
] in H1, objects received by adversary and the common communication channel. Using Claim 3

itself by induction and coupling the randomness used in all hybrids, we ensure that the same command is
sent by Test or the same object is transferred by A. Thus, Test obtains a handle in H0 i� Test obtains a
handle in H0|1 i� Test obtains a handle in H1. □

Using Claim 4 and Claim 1 and Claim 2 coupled with the equivalence of G†0p and G0, we can prove that the
views of the A and Test are same in H0, H0|1 and H1. □

□

Lemma 11. The probability of occurrence of bad events in H0 (listed in Figure 21) is negligible.

Proof:

1. In H0, Test generates a signing-key SK (resp. decryption-key DK ) which is equal to another obj which
exists in I[Π,RepoTest] or is such that SK = skId (obj ) or SK = skId (vkId (obj )) (resp. DK = dkId (obj )
or DK = dkId (ekId (obj ))) for an obj which exists in I[Π,RepoTest].

Proof: We prove that the following are negligible in κ.

max
DK∗∈DK

Pr
DK←dkGen(1κ)

[
DK = DK∗

]
(3)

max
SK∗∈SK

Pr
SK←skGen(1κ)

[
SK = SK∗

]
(4)

max
PK∗∈EK

Pr
PK←ekGen(dkGen(1κ))

[
PK = PK∗

]
(5)

max
V K∗∈VK

Pr
V K←vkGen(skGen(1κ))

[
V K = V K∗

]
(6)

(3) is negligible from the total hiding of the CASE primitive as shown in the proof for Lemma 1.

The value in (4) is negligible from the sender anonymity of the CASE primitive. Otherwise, we can create
an adversary A⋆ for the distinguish-sans-VK with a non-negligible probability of success. The adversary
A1 in the experiment uses the SK∗ which maximizes (4) to create a CP using SK∗ and EK and then,
adversary outputs b ∈ {0, 1} such that D(b,DK ,CP) ̸= ⊥.
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(4) is negligible directly from the unpredictability property of the CASE primitive.

(3) and (4) imply that (5) and (6) are negligible due to existential consistency guarantees of the CASE
primitive. □

2. In H0, Test generates a CP which is equal to another obj which exists in I[Π,RepoTest].

Proof: We prove that the following is negligible in κ.

max
CP∗∈CP

Pr
CP←encase(SK,PK,m)

[
CP = CP ∗

]
∀ SK ∈ SK, PK ∈ EK,m ∈M (7)

(7) is negligible directly using the unpredictability of the CASE primitive.

□

3. In H0, a signing-key SK (resp. decryption-key DK or CP) transferred by the user is equal to an object
obj which exists in I[Π,RepoTest] but was not transferred by or to Test.

Proof: The probability of such an SK being transferred is negligible from the unforgeability of the CASE
primitive. Otherwise, we can construct an adversary A′ for the forge with a non-negligible probability of
success.

Let System⟨Test⋆ | Πcase | A⋆⟩ such that the bad-event occurs in the system with non-negligible
probability. Then, we construct A′ such that it runs System⟨Test⋆ | Π ′′case | A⋆⟩ internally where
Π ′′case behaves as follows -

During the execution of System⟨Test⋆ | Π ′′case | A⋆⟩, it chooses a command of the form (init, (sk, κ))

sent by Test⋆ uniformly at random. Let ŝk be the next handle expected by Test⋆. Π ′′case does NOT

run the init command and sends ŝk to Test⋆. If a command of the form (run, (ĥ, vkGen)) is received

such that ŝk ⇝ ĥ ∧ type(ĥ) = sk, then it generates ĥ1 using the VK given by the experiment

where ĥ1 is the next handle expected by Test⋆. Similarly, an encase command is simulated using
the oracle E . All other operations are handled as in Πcase. Note that System⟨Test⋆ | Πcase | A⋆⟩
is indistinguishable from System⟨Test⋆ | Π ′′case | A⋆⟩ in the view of Test⋆ and A⋆. After the execu-
tion of System⟨Test⋆ | Π ′′case | A⋆⟩, A′ chooses an SK g transferred by A at random. It generates
DK ← dkGen(1κ) and chooses m ∈ M. It then sends (DK , encase(SK g, ekGen(DK ),m)) as the
challenge to the experiment.

As the probability that the bad event occurs in System⟨Test⋆ | Πcase | A⋆⟩ is non-negligible and
the probability that ŝk and SK g correspond to "guessed" signing-keys is non-negligible (number
of operations in the system is polynomially bounded), thus, the probability of success in the
experiment is non-negligible.

All adversaries in the following proofs can be constructed similarly for their respective experiments. We
do not give details of the construction for further proofs but specify the property of the CASE primitive
that is violated.

The probability of such an DK being transferred is negligible from the total hiding property of the CASE
primitive. Otherwise, we can construct an adversary A⋆ for the distinguish-sans-DK with a non-negligible
probability of success.

The probability of such an CP being transferred is negligible due to the unpredictability property of the
CASE primitive. □

4. In H0, a veri�cation-key VK (resp. public-key EK ) transferred by the user is such that there exists a

signing-key SK (resp. decryption-key DK ) inside the work-tape contents of a handle ĥ that was created
through the init command in I[Π,RepoTest] such that VK = vkGen(SK ) (resp. EK = ekGen (DK )) and

ĥ or a veri�cation-key (resp. encryption-key) handle derived from ĥ was never transferred to A.
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Proof: The probability of such an VK being transferred is negligible from the sender anonymity of
the CASE primitive. Otherwise, we can construct an adversary A⋆ for the distinguish-sans-VK with a
non-negligible probability of success.

The probability of such an EK being transferred is negligible from the encasing resistance of the CASE
primitive. Otherwise, we can construct an adversary A⋆ for the encase-sans-EK with a non-negligible
probability of success.

□

5. In H0, A transfers CP such that there is a decryption-key DK generated by I[Π,RepoTest] which satis�es
decase-msg(DK ,CP) ̸= ⊥ and DK or EK = ekGen (DK ) has not been transferred to A.

Proof: The probability of such an CP being transferred is negligible from the encasing resistance of the
CASE primitive. Otherwise, we can construct an adversary A⋆ for the encase-sans-EK with a non-negligible
probability of success.

□

6. In H0, A transfers CP such that there is a decryption-key DK in I[Π,RepoTest] and a signing-key SK
generated by I[Π,RepoTest] which satis�es decase-verify (DK , vkGen (SK ), CP) ̸= ⊥ and SK has not
been transferred to A.

Proof: The probability of such an CP being transferred is negligible from the unforgeability of the CASE
primitive. Otherwise, we can construct an adversary A⋆ for the forge with a non-negligible probability of
success. □

□

Thus, using Lemma 11 and Lemma 10, we can see that H0|1 ≈ H0 and H0|1 ≈ H1. This implies H0 ≈ H1.

C.3.3 Hybrid H1|2 and H5|6 In this hybrid, we run the experiment ideal⟨Test(b) | Σ‡Πcase
| S‡b ◦A⟩ with

test bit b = 0 for H1|2 and b = 1 for H5|6, where S‡b is as described in Figure 24. We list the main di�erences

between S†b (in H1 and H6) and S‡0 :

1. Handle Derivation Graph: S‡b maintains a graph G‡b that it uses to simulate the view of A. This graph
is similar to G†b, except that each node contain an extra state st 18. In addition, S‡b also maintains a graph

G‡1−b corresponding to the bit 1− b.

2. Lazy Assignment: S‡b only assigns an object to a test handle if it is needed to construct and send an
object to A (please refer to Figure 25). A node in VTest has st = ⊥ if it is unassigned, st = T if tentatively

assigned and st = R if it is assigned and transferred to A. Further, S‡b uses the same randomness to update

both graphs G‡0 and G‡1. This is a key idea that will be useful later to simulate without using the bit b.

3. Delta Test Check: S‡b aborts if a transfers from Test would result in revealing the bit b to A (please refer
to Figure 27). As we show later, the function checkDeltaHiding‡ returns false with negligible probability
if Test is a hiding-test.

Simulator S‡
b :

It maintains graphs G‡
0, G

‡
1.

18 that is, ∀v ∈ G‡
b.VTest, v = (obj , L̂, st)
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� Processing objects transferred by A:
Let the object from A be obj and the handle to be received by Test be ĥ

• sample r ← {0, 1}κ

• ∀b′ ∈ {0, 1}, hb′ ← update
†
A(G‡

b′ , obj ; r) using randomness r

• set nodeG‡
0
(ĥ).st = R, nodeG‡

1
(ĥ).st = R

• send hb to B
[
Σ‡

Πcase

]
� Processing commands by Test:

Let the report from Test be report and handle received from B
[
Σ
]
be h

• sample r ← {0, 1}poly(κ)

• ∀b′ ∈ {0, 1}, run update
‡
Test(G

‡
b′ , b

′, report, h; r) using randomness r

• if report = (transfer, ĥ0, ĥ1):

* if checkDeltaHiding‡12(G‡
0,G

‡
1, ĥ0, ĥ1, h) = false, abort

* set nodeG‡
0
(ĥ0).st = R, nodeG‡

1
(ĥ1).st = R

* send nodeG‡
b
(h).obj to A.

Fig. 24: Simulator S‡b in hybrid H1|2.

Function update
‡
Test (G

‡, b′, report, h) :

Let the handle to be generated for command report be ĥ 19. Proceed as follows depending on report.

� str = (init, (key-type, κ))

add node
(
⊥, { ĥ },⊥

)
to G‡.VTest

� str = (run, (ĝ, vkGen))

• if ∃v ∈ G‡.VTest s.t. Type(v) = vk and nodeG‡(ĝ)⇝ v, then update v.L̂ = v.L̂ ∪ ĥ

• else, add node
(
⊥, { ĥ },⊥

)
to G‡.VTest and add edge nodeG‡(ĝ)

vkGen−−−−→ nodeG‡(ĥ) to G‡

� str = (run, (ĝ, ekGen))

• if ∃v ∈ G‡.VTest s.t. Type(v) = ek and nodeG‡(ĝ)⇝ v, then update v.L̂ = v.L̂ ∪ ĥ

• else, add node
(
⊥, { ĥ },⊥

)
to G‡.VTest and add edge nodeG‡(ĝ)

ekGen−−−−→ nodeG‡(ĥ) to G‡

� str = (run, ((ĝ0, (encase,m)), (ĝ1, (encase,m))))

• add node
(
⊥, { ĥ },⊥

)
to G‡.VTest

add edge nodeG‡(ĝ0)
(sk−ct,encase,m)−−−−−−−−−−−→ nodeG‡(ĥ) to G‡

add edge nodeG‡(ĝ1)
(pk−ct,encase,m)−−−−−−−−−−−→ nodeG‡(ĥ) to G‡

19 recall that, ĥ is simply a number that is implicitly �xed from the execution so far
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� str = (transfer, ĥ0, ĥ1)

If nodeG‡(ĥb′).obj = ⊥, sample r ← {0, 1}poly(κ) and run lazyAssign‡(G‡, ĥb′ ; r) using randomness r.

Let the handle received from B
[
Σ
]
be h and the round number be r̊ .

• if ∃v ∈ G‡.VA s.t. nodeG‡(ĥb′) −→ v, then update v.L = v.L ∪ {h}, v.L̊ = v.L̊ ∪ r̊

• Else, add node
(
nodeG‡(ĥb′).obj , { h }, { r̊ }

)
to G‡.VA and add edge nodeG‡(ĥb′) −→ nodeG‡(h)

Fig. 25: Function update
‡
Test used by simulator S‡b in hybrid H1|2.

Function lazyAssign‡ (G‡, ĥ) :

If nodeG‡(ĥ).obj ̸= ⊥, return nodeG‡(ĥ).obj . Else, proceed as follows:

� if Type(ĥ) = sk:

sample SK ← skGen(1κ) and set nodeG‡(ĥ).obj = SK, nodeG‡(ĥ).st = T

� if Type(ĥ) = dk:

sample DK ← dkGen(1κ) and set nodeG‡(ĥ).obj = DK, nodeG‡(ĥ).st = T

� if Type(ĥ) = vk:

run lazyAssign‡
(
sk-root(nodeG‡(ĥ))

)
, V K ← vkGen

(
sk-root(nodeG‡(ĥ)).obj

)
and set nodeG‡(ĥ).obj = V K,

nodeG‡(ĥ).st = T

� if Type(ĥ) = ek:

run lazyAssign‡
(
dk-root(nodeG‡(ĥ))

)
, EK ← ekGen

(
dk-root(nodeG‡(ĥ)).obj

)
and set nodeG‡(ĥ).obj = EK,

nodeG‡(ĥ).st = T

� if Type(ĥ) = cp:

let v, w ∈ G‡.VTest s.t. Type(v) = sk, Type(w) = ek, v ⇝
m

nodeG‡(ĥ) and w ⇝
m

nodeG‡(ĥ)

SK = lazyAssign‡ (v), EK = lazyAssign‡ (w)

sample CP ← encase(SK,EK,m) and set nodeG‡(ĥ).obj = CP , nodeG‡(ĥ).st = T

Return nodeG‡(ĥ).obj

Fig. 26: Function lazyAssign‡ used by simulator S‡b in hybrid H1|2.

Function checkDeltaHiding‡ (G‡
0,G

‡
1, ĥ0, ĥ1, h) :

∀b ∈ {0, 1}, let vb = nodeG‡
b
(ĥb)
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� Return false if one of the following conditions hold:

• Type(v0) ̸= Type(v1)

• ∃b s.t. vb.st = R and v1−b.st ̸= R

• v0.st = R, v1.st = R and nodeG‡
0
(h).L̊ ̸= nodeG‡

1
(h).L̊

� Else, if v0.st = R, v1.st = R and nodeG‡
0
(h).L̊ = nodeG‡

1
(h).L̊, return true

� Else, proceed as follows depending on Type(ĥ0) = Type(ĥ1) (note that, in all these cases: v0.st = T, v1.st = T)

Case Type(ĥ0) = Type(ĥ1) = sk.

• if ∃g, ∃b ∈ {0, 1} s.t. Type(g) = vk, vb ⇝ nodeG‡
b
(g) but v1−b ⇝̸ nodeG‡

1−b
(g), return false

• else, if ∃f, g, ∃b ∈ {0, 1} s.t. Type(f) = cp, Type(g) = dk, dk-root(nodeG‡
0
(f)) ⇝ nodeG‡

0
(g),

dk-root(nodeG‡
1
(f)) ⇝ nodeG‡

1
(g), sk-root(nodeG‡

b
(f)) ⇝ vb but sk-root(nodeG‡

1−b
(f)) ⇝̸ v1−b, return

false

• else, return true

Case Type(ĥ0) = Type(ĥ1) = vk.

• if ∃g, ∃b ∈ {0, 1} s.t. Type(g) = sk, root(nodeG‡
b
(g))⇝ vb but root(nodeG‡

1−b
(g)) ⇝̸ v1−b, return false

• else, if ∃f, g, ∃b ∈ {0, 1} s.t. Type(f) = cp, Type(g) = dk, dk-root(nodeG‡
0
(f)) ⇝ nodeG‡

0
(g),

dk-root(nodeG‡
1
(f)) ⇝ nodeG‡

1
(g), sk-root(nodeG‡

b
(f)) ⇝ vb but sk-root(nodeG‡

1−b
(f)) ⇝̸ v1−b, return

false

• else, return true

Case Type(ĥ0) = Type(ĥ1) = dk.

• if ∃g, ∃b ∈ {0, 1} s.t. Type(g) ∈ {ek,cp}, vb ⇝ nodeG‡
b
(b) but v1−b ⇝̸ nodeG‡

1−b
(g), return false

• else, if ∃g, s.t. Type(g) = cp, ∀b ∈ {0, 1}, vb ⇝
mb

nodeG‡
b
(g) but m0 ̸= m1, return false

• else, if ∃f, g, ∃b ∈ {0, 1} s.t. Type(f) = cp, Type(g) ∈ {sk,vk}, v0 ⇝ nodeG‡
0
(f), v1 ⇝ nodeG‡

1
(f),

sk-root(nodeG‡
b
(f))⇝ nodeG‡

b
(g) but sk-root(nodeG‡

1−b
(f)) ⇝̸ nodeG‡

1−b
(g), return false

• else, return true

Case Type(ĥ0) = Type(ĥ1) = ek.

• if ∃g, ∃b ∈ {0, 1} s.t. Type(g) = dk, root(nodeG‡
b
(g))⇝ vb but root(nodeG‡

1−b
(g)) ⇝̸ v1−b, return false

• else, return true

Case Type(ĥ0) = Type(ĥ1) = cp.

• if ∃g, ∃b ∈ {0, 1} s.t. Type(g) = dk, dk-root(vb) ⇝ nodeG‡
b
(g) but dk-root(v1−b) ⇝̸ nodeG‡

1−b
(g), return

false

• else, if ∃g,m0,m1 s.t. Type(g) = dk, dk-root(v0)⇝ nodeG‡
0
(g), dk-root(v1)⇝ nodeG‡

1
(g)

* if dk-root(v0) ⇝
m0

v0 and dk-root(v1) ⇝
m1

v1, s.t. m0 ̸= m1, return false

* else, if ∃f , ∃b ∈ {0, 1} s.t. Type(f) ∈ {sk,vk}, sk-root(vb) ⇝ nodeG‡
b
(f) but sk-root(v1−b) ⇝̸

nodeG‡
1−b

(f)

• else, return true

Fig. 27: Function checkDeltaHiding‡ used by simulator S‡b in hybrid H1|2.
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Indistinguishability between H1 and H1|2 (and similarly between H6 and H5|6). Conditioned on the

function checkDeltaHiding‡ not returning false in H1|2, the two hybrids are trivially indistinguishable. Later,

we show that checkDeltaHiding‡ returns false with negligible probability if Test is hiding (Lemma 15).

Lemma 12. Conditioned on checkDeltaHiding‡ not returning false in H1|2, the two hybrids H1 and H1|2
are indistinguishable.

Proof: Note that the bad-events corresponding to object collisions are already negligible probability events.
The only di�erence in the behaviour of the simulators in the two hybrids is that S‡0 samples objects in a
lazy manner for handles transferred by Test, but it is easy to see that this does not a�ect the transcript of
interaction of S‡0 with B

[
Σ‡Πcase

]
and A. Inductively, at the end of each transfer of the form (transfer, ĥ0, ĥ1)

from Test to A, it holds that the distribution from which the object for h is sampled are the same, and thus
the view of A are the same. □

C.3.4 Hybrid H2 and H5 In this hybrid, we run the experiment ideal⟨Test(b) | Σ‡Πcase
| S‡ ◦ A⟩ with

test bit b = 0 for H2 and b = 1 for H5, where S‡ is as described in Figure 28. We list the main di�erences
between S‡b (in H1|2 and H5|6) and S‡:

1. Challenge bit b: Both simulators maintain graphs G‡0, G
‡
1; but S

‡
b (that gets the challenge bit b) only

uses G‡b to send object to A. That is, it sends nodeG‡
b
(h).obj to A corresponding to some user handle h

transferred by B
[
Σ‡Πcase

]
from Test. S‡ on the other hand does not get the challenge bit b and instead

uses both graphs. Recall that, updates to G‡0 and G‡1 are made using the same randomness. S‡ sends an
object to A only if both graphs can be made consistent with this object. Please refer to Figure 29 for the
full description.

2. Resolve Object: S‡ uses a resolve object function (please refer Figure 29) if the object in G‡0 and G‡1 are
not consistent for some transfer from Test. At a high level, S‡ simply samples a fresh object (consistent
with all previous transfers) and sends it to A. We show below that if checkDeltaHiding‡ returns true,
then this is a valid simulation (via a reduction to the augmented security experiment aug of the COA-
secure scheme). We show later that checkDeltaHiding‡ returns false with negligible probability if Test is
hiding (Lemma 15).

Simulator S‡:

It maintains graphs G‡
0, G

‡
1.

� Processing objects transferred by A:
Let the object from A be obj and the handle to be received by Test be ĥ

• sample r ← {0, 1}κ

• ∀b′ ∈ {0, 1}, hb′ ← update
†
A(G‡

b′ , obj ; r) using randomness r

• set nodeG‡
0
(ĥ).st = R, nodeG‡

1
(ĥ).st = R

• send hb to B
[
Σ‡

Πcase

]
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� Processing commands by Test:

Let the report from Test be report and handle received from B
[
Σ
]
be h

• sample r ← {0, 1}κ

• ∀b′ ∈ {0, 1}, run update
‡
Test(G

‡
b′ , b

′, report, h; r) using randomness r

• if report = (transfer, ĥ0, ĥ1):

* if checkDeltaHiding‡12(G‡
0,G

‡
1, ĥ0, ĥ1, h) = ⊥, abort

* set nodeG‡
0
(ĥ0).st = R, nodeG‡

1
(ĥ1).st = R

* if nodeG‡
0
(h).obj = nodeG‡

1
(h).obj = obj , return obj to A

* else,

· obj = resolveObject‡ (G‡
0,G

‡
1, h)

· set nodeG‡
0
(h).obj = obj , nodeG‡

1
(h).obj = obj

· return obj to A

Fig. 28: Simulator S‡ in hybrid H2.

Function resolveObject‡ (G‡
0,G

‡
1, h) :

� if Type(h) = sk: sample SK ← skGen(1κ) and return SK

� if Type(h) = vk: sample SK ← skGen(1κ), V K ← vkGen(DK) and return V K

� if Type(h) = ek: sample DK ← dkGen(1κ), EK ← ekGen(DK) and return EK

� if Type(h) = cp:

• if sk-root(nodeG‡
0
(h)).obj = sk-root(nodeG‡

1
(h)).obj , set SK = sk-root(nodeG‡

0
(h)).obj

else, SK ← skGen(1κ)

• ∀b ∈ {0, 1}, let wb ∈ G‡
b.VTest s.t. ∃mb, ∃xb ∈ G‡

b.VTest and wb
(pk−ct,encase,mb)−−−−−−−−−−−→ xb−→ nodeG‡

b
(h)

* if w0.obj = w1.obj , set EK = w0.obj

else, DK ← dkGen(1κ), EK ← ekGen(DK)

* if m0 = m1, set m = m0

else, m = 0

return encase(SK,EK,m)

Fig. 29: Function resolveObject‡ used by simulator S‡ in hybrid H2.

Indistinguishability between H1|2 and H2 (and similarly between H5|6 and H5). We prove this via
a reduction to the augmented security experiment aug (please refer to Section 4.2) of the CASE primitive.

Lemma 13. The hybrids H1|2 and H2 are indistinguishable.

Proof: We �rst note that, if checkDeltaHiding‡ returns false, both hybrids abort. We now argue for the
case that checkDeltaHiding‡ does not return false. Let Test and A be s.t. they have advantage α, that is:∣∣∣Pr[ideal⟨Test(0) | Σ‡

Πcase
| S‡

b ◦ A⟩ = b]− Pr[ideal⟨Test(0) | Σ‡
Πcase

| S‡ ◦ A⟩ = b]
∣∣∣ ≥ 1

2
+ α

We de�ne a sequence of intermediate hybrids Hj
∗ corresponding to the experiment aug, where in each hybrid,

the adversary A∗j internally runs Test, A, B
[
Σ‡Πcase

]
, feeds them inputs appropriately similar to S‡ and uses

the jth transfer command from Test to construct the case-packet-challenge to be sent to the experiment.
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Similar to the simulators, A∗j also maintains the graphs G‡0, G
‡
1, except that instead of sampling objects,

it instead indexes them to objects in the experiment. That is, for any node v ∈ G‡.VTest, it parses v.obj

as an index to TType(v)[v.obj ]. Correspondingly, it uses modi�ed functions lazyAssign
‡
A∗ (Figure 31) and

resolveObject
‡
A∗ (Figure 32) that simply assign an index.

Note that, if the experiment aborts, then A∗ also aborts (since, checkDeltaHiding‡ returns false). Thus,
the advantage of A∗ in the experiment aug is also α. But, from the COA-security of the primitive, it must
be negligible. Thus, ∀j, it holds that Hj

∗ ≈ Hj+1
∗ and in particular, H1|2 ≈ H2. □

Adversary A∗
j :

� it sends n = |Test+A| (bound on the runtime of Test and A) to the experiment

� it internally runs Test, A and B
[
Σ‡

Πcase

]
in a straightline black-box way and maintains graphs G‡

0, G
‡
1

Processing objects transferred by A:
Let the object from A be obj and the handle to be received by Test be ĥ

• sample r ← {0, 1}κ

• ∀b′ ∈ {0, 1}, hb′ ← update
†
A(G‡

b′ , obj ; r) using randomness r

• let i = min
(
nodeG‡

0
(h).L

)
, send (n+ i, obj ) to experiment

• set nodeG‡
0
(h).obj = n+ i, nodeG‡

1
(h).obj = n+ i

• set nodeG‡
0
(ĥ).st = R, nodeG‡

1
(ĥ).st = R

• send hb to B
[
Σ‡

Πcase

]
and ĥ to Test

Processing commands by Test:

Let the ith report from Test be report and handle received from B
[
Σ
]
be h

• sample r ← {0, 1}κ

• ∀b′ ∈ {0, 1}, run update
‡
Test(G

‡
b′ , b

′, report, h; r) using randomness r and modi�ed function lazyAssign
‡
A∗

• if report = (transfer, ĥ0, ĥ1):

* if checkDeltaHiding‡12(G‡
0,G

‡
1, ĥ0, ĥ1, h) = ⊥, abort

* set nodeG‡
0
(ĥ0).st = R, nodeG‡

1
(ĥ1).st = R

* if nodeG‡
0
(h).obj = nodeG‡

1
(h).obj or i < j, send key-query

(
Type(h), nodeG‡

0
(h).obj

)
to experiment and

forward its response to A

* else, if i = j:

if Type(h) ∈ {sk,vk,dk, ek}, send key-challenge
(
Type(ĥ0), nodeG‡

0
(ĥ0).obj , nodeG‡

1
(ĥ1).obj

)
to experi-

ment and forward its response to A
else, if Type(h) = cp,

· let v, w ∈ G‡
0.VTest s.t. Type(v) = sk, Type(w) = ek, v ⇝

m0

nodeG‡
0
(ĥ0) and w ⇝

m0

nodeG‡
0
(ĥ0)

· (k, l,m) = resolveObject
‡
A∗ (G‡

0,G
‡
1, h, n)

· send case-packet-challenge (v.obj , w.obj ,m0, k, l,m) to experiment, get response CP , send (h, CP ) to
the experiment (add object to index h)

· set nodeG‡
0
(h).obj = h, nodeG‡

1
(h).obj = h
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* else, i > j:

if Type(h) = cp,

· (k, l,m) = resolveObject
‡
A∗ (G‡

0,G
‡
1, h, n)

· send encryption-query (k, l,m) to experiment, get response CP , send (2n + h, CP ) to the experiment
(add object to index h)

set nodeG‡
0
(h).obj = 2n+ h, nodeG‡

1
(h).obj = 2n+ h

send key-query
(
Type(h), 2n+ h

)
to experiment and forward its response to A

Fig. 30: Adversary A∗j in hybrid Hj
∗ interacting with experiment aug.

Function lazyAssign
‡
A∗ (G‡, ĥ) :

If nodeG‡(ĥ).obj ̸= ⊥, return nodeG‡(ĥ).obj . Else, proceed as follows:

� if Type(ĥ) ∈ {sk,vk,dk, ek}:
set nodeG‡(ĥ).obj = min

(
nodeG‡(ĥ).L̂

)
and nodeG‡(ĥ).st = T

� if Type(ĥ) = cp:

• let v, w ∈ G‡.VTest s.t. Type(v) = sk, Type(w) = ek, v ⇝
m

nodeG‡(ĥ) and w ⇝
m

nodeG‡(ĥ)

• k = lazyAssign
‡
A∗ (v), l = lazyAssign

‡
A∗ (w)

• send encryption-query (k, l,m) to the experiment and get response CP , send (ĥ, CP ) to the experiment

(add object to index ĥ)

• set nodeG‡(ĥ).obj = ĥ and nodeG‡(ĥ).st = T

Return nodeG‡(ĥ).obj

Fig. 31: Function lazyAssign
‡
A∗ used by A∗j in hybrid Hj

∗.

Function resolveObject
‡
A∗ (G‡

0,G
‡
1, h, n) :

� if Type(h) = cp:

• if sk-root(nodeG‡
0
(h)).obj = sk-root(nodeG‡

1
(h)).obj , set k = sk-root(nodeG‡

0
(h)).obj ; else, k = 2n+ h

• ∀b ∈ {0, 1}, let wb ∈ G‡
b.VTest s.t. Type(wb) = ek, wb ⇝

mb

nodeG‡
b
(h)

* if w0.obj = w1.obj , set l = w0.obj ; else, l = 2n+ h

* if m0 = m1, set m = m0; else, m = 0

return (k, l,m)

Fig. 32: Function resolveObject
‡
A∗ used by A∗j in hybrid Hj

∗.

C.3.5 H2 and H3 H3 uses a computationally unbounded simulator S∗ to remove the need for Σ‡Πcase
. It

replaces non-ideal handles generated by S‡ by forcing open objects using the (ine�cient) algorithms - skId,
dkId, vkId, ekId, msgId- guaranteed by existential consistency. Existential consistency and the construction
of S‡ ensures that The system B[Σcase] ◦ S∗ and B[Σ‡Πcase

] behave identically for all A. It assigns objects
corresponding to non-ideal handles with ideal handles and the algorithms mentioned above are used to ensure
that the relations betweens handles are maintained.
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S∗ (as a wrapper over a B[Σ‡Πcase
]-adversary S‡)

S∗ interacts with B[Σcase], while simulating to S‡ the interface to B[Σ‡
Πcase

], using super-polynomial computational

power. It maintains two tables, Z1 to map handles received from B[Σcase] (denoted as h̃ etc.) to objects and Z2 to map
them to handles that it sends to S‡ (denoted as h etc.). Some subroutines are used by S∗ to interact with B[Σcase],
and to read and update Z1 which are also de�ned below.

Commands from S‡ to B[Σ‡Πcase
]: S∗ processes commands according to the following cases.

� When S‡ sends a command (init, (CPgen, obj )) (i.e., an init command for a case-packet agent in Σ‡Πcase
)

to B[Σ‡Πcase
], let h̃ ← makeCT(obj ). Add (h̃, h) to Z2 where h denotes the next handle to be returned by

B[Σ‡Πcase
] (being simulated). Send h to S‡.

� When S‡ sends a command (run, (ek , (CPgen, (obj ,DK )))) to B[Σ‡Πcase
], let m = decase-msg(DK , obj ).

If m ̸= ⊥ ∧ tryAssign(ek , ekGen(DK )), let h̃ ← makeCT(obj ). Add (h̃, h) to Z2 where h denotes the next

handle to be returned by B[Σ‡Πcase
] (being simulated). Send h to S‡.

Else, abort execution.

� When S‡ sends a command (init, (key-type, κ)), send h to S‡ where h denotes the next handle to be

returned by the simulated B[Σ‡Πcase
].

• If key-type = dk in the init command and the next command sent by S‡
is (run, (h, (dkPatch, obj )), {(sk i, (dkPatch,CP i))}i), let t = checkAssigned(obj ) ∨
checkAssigned(ekGen(obj )). Let a = ∧{tryAssign(skId(ekId(CP i)), sk i)}i. If t = true ∨ a = false,

abort execution. Else, let h̃ ← makeDK(obj ). Let h1 be the next handle to be returned by the simulated

B[Σ‡Πcase
]. Add (h̃, h) and (h̃, h1) to Z2 and send h1 to S‡.

• Else, if key-type = sk in the init command and the next command sent by S‡ is (run, (h, (patch, obj ))),
let t = checkAssigned(obj ) ∨ checkAssigned(vkGen(obj )). If t = true, abort execution. Else, let h̃ ←
makeSK(obj ). Let h1 be the next handle to be returned by B[Σ‡Πcase

]. Add (h̃, h) and (h̃, h1) to Z2 and

send h1 to S‡.
• Else if, key-type = dk in the init command and the next command sent by S‡ is (run, (h, ekGen)), send
the next handle h1 to S‡.
* If the next command is (run, (h1, (patch, obj ))), let t = checkAssigned(obj )∨checkAssigned(dkId(obj )).
If t = true, abort execution. Else, let d̃k ← makeDK(dkId(obj )), ẽk ← makeEK(obj ). Let h2 be the

next handle to be returned by B[Σ‡Πcase
]. Add (d̃k , h), (ẽk , h1) and (ẽk , h2) to Z2 and send h2 to S‡.

* Else, abort.

• Else if, key-type = sk in the init command and the next command sent by S‡ is (run, (h, vkGen)), send
the next handle h1 to S‡.
* If the next command is (run, (h1, (patch, obj ))), let t = checkAssigned(obj )∨checkAssigned(skId(obj )).
If t = true, abort execution. Else, let s̃k ← makeSK(skId(obj )), ṽk ← makeVK(obj ). Let h2 be the next

handle to be returned by B[Σ‡Πcase
]. Add (s̃k , h), (ṽk , h1) and (ṽk , h2) to Z2 and send h2 to S‡.

* Else, abort.

• Else, abort execution.
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� When S‡ sends a command (run, (dk , (dkPatch, obj )), {(sk i, (dkPatch,CP i))}i) (resp.
(run, (sk , (patch, obj )))) such that dk (resp. sk) is not the handle transferred to S‡ in the previous

command, check if ◦ init→ dk (resp. ◦ init→ sk) and if ∃h̃ s.t. (h̃, dk) (resp. sk) ∈ Z2∧(h̃, obj ) ∈ Z1. When com-
mand is (run, (dk , (dkPatch, obj )), {(sk i, (dkPatch,CP i))}i), we also check if decase-msg(obj ,CP i) ̸= ⊥
and tryAssign(skId(vkId(CP i)), sk i) holds ∀ i.

If all checks return true, obtain h̃ ← makeDK(obj ) (resp. makeSK(obj )). Let h be the next handle to be

returned by B[Σ‡Πcase
]. Add (h̃, h) to Z2 and send h to S‡.

Else, abort execution.

� When S‡ sends any other run or transfer command to B[Σ‡Πcase
], S∗ simply relays the command to B[Σcase],

but substitutes each handle h in the command with h̃ using the Z2 map. The response from B[Σcase] is

relayed back to S‡, but after replacing each new handle h̃ in the response with a new handle h (i.e., the

next handle to be returned by B[Σ‡Πcase
]), and adding an entry (h̃, h) to Z2. (If a handle in the response is

⊥, indicating that the agent halted, it isn't replaced with a new handle, but is kept as ⊥.)

Transfers from Test: When B[Σ‡Πcase
] delivers a handle h̃ corresponding to a transfer from Test, S∗ will

deliver send a new handle h to give to S‡ and makes an entry (h̃, h) in Z2.

Subroutine makeSK(obj )

Precondition: acc(obj ) = sk, or obj = ⊥
If ∃s̃k s.t. (s̃k , obj ) ∈ Z1, then return s̃k ; else, send (init, (sk, κ)) to B[Σcase]. Let s̃k1 be the handle received

in return. If obj ̸= ⊥, add (s̃k1, obj ) to Z1. Return s̃k1.

Subroutine makeVK(obj )

Precondition: acc(obj ) = vk or obj = ⊥
If ∃ṽk s.t. (ṽk , obj ) ∈ Z1, then return ṽk . Else, let SK := skId(obj ) and s̃k := makeSK(SK ), and send

(run, (s̃k , vkGen)) to B[Σcase]. Let ṽk be the handle received in return. If obj ̸= ⊥, add (ṽk , obj ) to Z1.

Return ṽk .

Subroutine makeDK(obj )

Precondition: acc(obj ) = dk, or obj = ⊥
If ∃d̃k s.t. (d̃k , obj ) ∈ Z1, then return d̃k ; else, send (init, (dk, κ)) to B[Σcase]. Let d̃k1 be the handle received

in return. If obj ̸= ⊥, add (d̃k1, obj ) to Z1. Return d̃k1.

Subroutine makeEK(obj )

Precondition: acc(obj ) = ek or obj = ⊥
If ∃ẽk s.t. (ẽk , obj ) ∈ Z1, then return ẽk . Else, let DK := ekId(obj ) and d̃k := makeDK(DK ), and send

(run, (d̃k , ekGen)) to B[Σcase]. Let ẽk be the handle received in return. If obj ̸= ⊥, add (ẽk , obj ) to Z1.

Return ẽk .

Subroutine makeCT(obj )

Precondition: acc(obj ) = cp

If ∃c̃p s.t. (c̃p, obj ) ∈ Z1, then return c̃p. Else, let m = msgId(obj ), EK := ekId(obj )

and SK := skId(vkId(obj )) . Get ẽk := makeEK(EK ) and s̃k := makeSK(SK ), and send

(run, (s̃k , (encase,m)), (ẽk , (encase,m))) to B[Σcase]. Let c̃p be the handle received in return. Add (c̃p, obj )
to Z1. Return c̃p.

Subroutine doCompare(h̃1, h̃2)

Send (run, (h̃1, compare), (h̃2, compare)) to B[Σcase] and return the boolean output received.
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Subroutine checkAssigned(obj )

Return true if ∃h, h̃ s.t. (h̃, h) ∈ Z2 ∧ (h̃, obj ) ∈ Z1. Else, return false.

Subroutine tryAssign(obj , h)

Let h̃ be the handle such that (h̃, h) ∈ Z2.

� If Type (h) = dk and acc (obj ) = dk

• If ∃d̃k s.t. (d̃k , obj ) ∈ Z1, then return true if doCompare(d̃k , h̃), else return false.

• Else if ∃ẽk s.t. (ẽk , ekGen(obj )) ∈ Z1, return true if doCompare(h̃ ′′, ẽk) where h̃ ′′ ← (run, (h̃, ekGen)),
else return false.

• Else if ∄d̃k , obj ′ s.t. (d̃k , obj ′) ∈ Z1 ∧ doCompare(d̃k , h̃) and ∄ẽk , obj ′ s.t. (ẽk , obj ′) ∈ Z1 ∧
doCompare(ẽk , h̃ ′′) where h̃ ′′ ← (run, (h̃, ekGen)), add (h̃, obj ) to Z1 and return true.

• Else, return false.

� If Type (h) = ek and acc (obj ) = ek

• If ∃ẽk s.t. (ẽk , obj ) ∈ Z1, then return true if doCompare(ẽk , h̃), else return false.

• Else if ∃d̃k s.t. (d̃k , dkId(obj )) ∈ Z1, return true if doCompare(h̃ ′′, h̃) where h̃ ′′ ← (run, (d̃k , ekGen)), else
return false.

• Else if ∄ẽk , obj ′ s.t. (ẽk , obj ′) ∈ Z1 ∧ doCompare(ẽk , h̃) and ∄d̃k , obj ′ s.t. (d̃k , obj ′) ∈ Z1 ∧
doCompare(h̃, h̃ ′′) where h̃ ′′ ← (run, (d̃k , ekGen)), add (h̃, obj ) to Z1 and return true.

• Else, return false.

� If Type (h) = sk and acc (obj ) = sk

• If ∃s̃k s.t. (s̃k , obj ) ∈ Z1, then return true if doCompare(s̃k , h̃), else return false.

• Else if ∃ṽk s.t. (ṽk , vkGen(obj )) ∈ Z1, return true if doCompare(h̃ ′′, ṽk) where h̃ ′′ ← (run, (h̃, vkGen)),
else return false.

• Else if ∄s̃k , obj ′ s.t. (s̃k , obj ′) ∈ Z1 ∧ doCompare(s̃k , h̃) and ∄ṽk , obj ′ s.t. (ṽk , obj ′) ∈ Z1 ∧
doCompare(ṽk , h̃ ′′) where h̃ ′′ ← (run, (h̃, vkGen)), add (h̃, obj ) to Z1 and return true.

• Else, return false.

� If Type (h) = vk and acc (obj ) = vk

• If ∃ṽk s.t. (ṽk , obj ) ∈ Z1, then return true if doCompare(ṽk , h̃), else return false.

• Else if ∃s̃k s.t. (s̃k , dkId(obj )) ∈ Z1, return true if doCompare(h̃ ′′, h̃) where h̃ ′′ ← (run, (s̃k , vkGen)), else
return false.

• Else if ∄ṽk , obj ′ s.t. (ṽk , obj ′) ∈ Z1 ∧ doCompare(ṽk , h̃) and ∄s̃k , obj ′ s.t. (s̃k , obj ′) ∈ Z1 ∧
doCompare(h̃, h̃ ′′) where h̃ ′′ ← (run, (s̃k , vkGen)), add (h̃, obj ) to Z1 and return true.

• Else, return false.

Fig. 33: Simulator S∗

Indistinguishability between H2 and H3 (and similarly between H5 and H4).

Lemma 14. The hybrids H2 and H3 are indistinguishable.

Proof: We show that the view of Test + S‡ remains the same in H2 and H3 conditioned on collisions of
tags not occurring in B[Σ‡Πcase

] and in B[Σcase] and S∗ not aborting. This would ensure that H2 and H3 are
indistinguishable.

We construct two graphs, G‡ and G∗, which represent the view of Test + S‡ in H2 and H3 respectively
and we show that the graphs are equivalent after removing �extra� nodes and edges which do not participate
in the view.
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Graph G‡ The graph G‡ is constructed using commands from Test and commands from S‡. Again, the
graph is split into two sets of nodes VTest and VA. Commands from Test add new nodes to VTest or update a
node v as v.L← v.L∪{ĥ} where ĥ is the handle to be B[Σ‡Πcase

]. Equivalent handles are grouped together in

the same node. For instance, a command (run, d̂k , ekGen)), either adds a node v to VTest such that v.L = {ĥ}
or updates a node v such that v.L = {ĥ} ∪ v.L if a path nodeG‡(d̂k) 99K vr

ekGen−−−−→ vs 99K v exists.

Commands from S‡ (except patch, dkPatch and CPgen commands) are processed similarly. For remaining
commands, we add a node v in VA such that v.L = {h} where h is the next handle expected by S‡. We also up-
date v.obj = obj , where obj is the object inside the patch command. We also add edges based on the command
sent. For instance, assume the command is (run, (h, (dkPatch, obj )), {(sk i, (dkPatch,CP i))}i) and the new

node added is v⋆. Now �rst we add an edge, nodeG‡(h)
patch−−−→ v⋆. Then, ∀v′ s.t. decase-msg(v⋆.obj, v′.obj) =

m ̸= ⊥, we add edges v⋆
(dk−ct,encase,m)−−−−−−−−−−−→ v′ . We also add edges nodeG‡(sk i)

(sk−ct,encase,m)−−−−−−−−−−−→ vi where
vi.obj = CP i.

We also add edges such that if v1
ekGen−−−−→ v2 exists, then v1

(dk−ct,encase,m)−−−−−−−−−−−→ v3 ⇔ v2
(pk−ct,encase,m)−−−−−−−−−−−→ v3.

Similarly, edges are added for signing-keys as well.

View of Test + S‡ in H2

We de�ne a procedure prune‡(G‡) which returns a graph G‡p such that G‡p is constructed as follows from

G‡ :

1. Remove all nodes v such that v.h = {h} and ◦ init→ h or ∃v′ s.t.v′ ekGen−−−−→ v ∨ v′
vkGen−−−−→ v where v′.h = {h}

and ◦ init→ h.

2. For all nodes v, set v.obj = ⊥.

Note that, conditioned on a tag collision not occurring, G‡p contains the view of Test + S‡ in H2 as the

nodes removed from G‡p correspond to "handles" that are never transferred to Test.

Graph G∗ The graph G∗ is constructed using reports from Test, commands from S∗ and the list Z2

maintained by S∗. Again, the graph is split into two sets of nodes VTest and VA. Updates to G∗ by commands
from Test are exactly the updates to G‡.

The commands sent by S∗ are handled similarly and result in updates to VA. In addition, for every pair
(h̃, h) added to Z2, nodeG∗(h̃).h ← nodeG∗(h̃).h ∪ {h}.
View of Test + S‡ in H3

We de�ne a procedure prune⋆(G∗) which returns a graph G∗p such that G∗p constructed as follows from
G∗ :

1. Remove all nodes v such that ∄(h̃, h) ∈ Z2 s.t. h ∈ v.h

2. Remove all edges v1
(sk−ct,encase,m)−−−−−−−−−−−→ v2 and v3

(vk−ct,encase,m)−−−−−−−−−−−→ v2 where v1, v2, v3 ∈ VA if ∄v′ ∈
VA s.t. (v′

(pk−ct,encase,m)−−−−−−−−−−−→ v2 ∧ ∃v′′ s.t. v′′
ekGen−−−−→ vs

transfer−−−−−→ v′) ∨ (v′
(dk−ct,encase,m)−−−−−−−−−−−→ v2).

Note that, conditioned on a tag collision not occurring, G∗p contains the view of Test + S‡ in H3 as

the nodes removed in G∗p correspond to "handles" that are not visible to S‡ yet and the edges removed
correspond to relations that cannot be determined with the computational unboundedness of S∗.
Equivalence of G‡p and G∗p Note that, by the de�nition of prune‡ and prune⋆ and the construction of S‡

and S∗, G‡p and G∗p are equal. It is easy to see that they both consist of the same nodes. Edges added by
commands except dkPatch, patch, CPgen are also the same as S∗ directly relays those commands to B[Σcase].
The construction of S‡ ensures that the checks involving the tryAssign and checkAssigned subroutines do not
abort the execution of S∗ and thus, edges added by dkPatch, patch and CPgen are also the same by existential
consistency guarantees of case.

Thus, we can say the the views of Test + S‡ in H2 and H3 are equal. □
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C.3.6 Completing the Proof. We now show that function checkDeltaHiding‡ returns false with neg-
ligible probability in H3.

Lemma 15. For any Test ∈ ∆ and adversary A, let the simulator S‡ be as in Figure 28. If Test is s-hiding
w.r.t. Σ, then the function checkDeltaHiding‡ returns false in the execution of ideal⟨Test(0) | Σ‡Πcase

| S‡ ◦
A⟩ only with negligible probability.

Proof: Note that there exists an extractor E s.t. if checkDeltaHiding‡ returns false, it instead extracts and
outputs the test bit. We demonstrate this for the case-packet case, the other cases can be similarly handled.
Let Type(ĥ0) = Type(ĥ1) = cp and the handle received from B

[
Σ‡Πcase

]
be h,

� if ∃g, ∃b ∈ {0, 1} s.t. Type(g) = dk, dk-root(vb) ⇝ nodeG‡
b
(g) but dk-root(v1−b) ⇝̸ nodeG‡

1−b
(g); then

E sends command
(
run, (g, {decase-msg}), (h, {decase-msg})

)
to B

[
Σ‡Πcase

]
, if it receives output m ̸= ⊥,

then it outputs b as the test bit, else it outputs 1− b.

Similarly, every case in checkDeltaHiding‡ can be converted to a corresponding query that breaks the
s−hiding. □

Proving Indistinguishability of all Hybrids. We now prove indistinguishability of all previous hybrids.
The proof holds similarly for the hybrids for test bit b = 1. Finally, since Test ∈ ∆ and is s−hiding, it holds
that H3 ≈ H4 (by de�nition). Thus, we get the overall proof that H0 ≈ H7.

Lemma 16. The hybrids H0, H1, H1|2, H2 and H3 are all indistinguishable.

Proof:

� H3 ≈ H2 from Lemma 14. From Lemma 15, this implies that checkDeltaHiding‡ returns false with
negligible probability in H2.

� H2 ≈ H1|2 from Lemma 13. From above, this implies that checkDeltaHiding‡ returns false with negligible
probability in H1|2.

� H1|2 ≈ H1 from Lemma 12 (conditioned on checkDeltaHiding‡ not returning false) and above: checkDeltaHiding‡

returns false with negligible probability.

� H1 ≈ H0|1 ≈ H0 from Lemma 10 and Lemma 11

□
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