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Abstract

In this work, we propose two post-quantum verifiable random functions (VRFs) constructions based
on group actions and isogenies, one of which is based on the standard DDH assumption. VRF is a
cryptographic tool that enables a user to generate a pseudorandom output along with a publicly verifiable
proof. The residual pseudorandomness of VRF ensures the pseudorandomness of unrevealed inputs, even
if an arbitrary number of outputs and proofs are revealed. Furthermore, it is infeasible to generate proofs
to validate distinct values as outputs for the same input.

In practical applications, VRFs have a wide range of uses, including in DNSSEC protocols, blockchain
and cryptocurrency. Currently, most VRF constructions rely on elliptic curve cryptography (ECC),
pairing, or Decisional Diffie-Hellman (DDH) type assumptions. These assumptions, however, cannot
thwart the threats from quantum adversaries. In light of this, there is a growing need for post-quantum
VRFs, which are currently less widely developed in the literature.

We contribute to the study by presenting two VRF proposals from group actions and isogenies. Our
constructions are fairly simple and derived from number-theoretic pseudorandom functions. We present
a proof system that allows us to prove the factorization of group actions and set elements, providing a
proof for our VRFs. The first one is based on the standard DDH problem. For the proof we introduce
a new problem, the master decisional Diffie-Hellman problem over group actions, which we prove to
be equivalent to the standard DDH problem. Furthermore, we present a new use of quadratic twists
to reduce costs by expanding the input size and relaxing the assumption to the square DDH problem.
Additionally, we employ advanced techniques in the isogeny literature to optimize the proof size to 39KB
and 34 KB using CSIDH512 without compromising VRF notions. To the best of our knowledge, they
are the first two provably secure VRF constructions based on isogenies.

1 Introduction

Verifiable random functions (VRFs) are a cryptographic primitive that were first introduced by Micali,
Rabin, and Vadhan [MRV99]. They are a more advanced form of pseudorandom functions (PRFs) that
not only generate pseudorandom outputs, but also provide a non-interactive and publicly verifiable proof to
validate the output. The security of VRFs is maintained even when numerous copies of the input, output,
and proof are made public. In particular, the notion of residual pseudorandomness for VRFs ensures that the
pseudorandomness remains for inputs that have not been evaluated and the unique provability guarantees
that it is computationally infeasible for an attacker to generate distinct outputs for the same input with
valid proofs.

The versatility of VRFs has been demonstrated through their applications in DNSSEC protocols [GNP+15]
and, especially, blockchain technology [GHM+17, HMW18, EKS+21]. The growth of cryptocurrencies such
as Bitcoin and Algorand has spurred significant interest in blockchain technology, which is being fueled
by its potential. Early blockchain systems, such as Bitcoin, utilized the Proof-of-Work (PoW) consensus
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mechanism, where miners compete to solve a cryptographic puzzle and the winner is rewarded. In contrast,
the Proof-of-Stake (PoS) consensus protocol provides a more environmentally sustainable solution by allow-
ing validators to stake their tokens and conducting an online lottery. Due to the cryptographic properties,
VRFs play a critical role in PoS blockchain applications for their applications in cryptographic sortition and
Byzantine consensus [GHM+17, DGKR18, HMW18].

In practice, most existing VRFs are based on elliptic curve cryptography (ECC), pairing-based BLS-type
signatures or other Diffie-Hellman-type assumptions [BGLS03, BMR10, ACF14, Jag15, PWH+17]. However,
these VRFs are vulnerable to quantum computing attacks, as they rely on underlying assumptions that can be
broken by a quantum adversary in polynomial time [Sho99]. Despite their versatility and significance, post-
quantum VRFs are underdeveloped, with only three proposals to date [EKS+21, BDE+22, ESLR22]. The
preliminary result of the lattice-based LB-VRF [EKS+21] provides limited residual pseudorandomness and
requires updating the public key after, at most, five evaluations. Though it is sufficient in some scenarios,
it cannot serve for long-term applications or on a large scale. On the other hand, the hash-based SL-
VRF [BDE+22] and the lattice-based LaV [ESLR22] offer full VRF capabilities, but the latter relies on
a non-standard and ad-hoc lattice assumption. Regardless of the existence of Naor–Reingold-type PRFs
(pseudorandom synthesizers [NR99]) [BPR12, Mon18] in lattices, the most versatile post-quantum branch,
it seems challenging to push them forward to VRFs in a practical manner. Therefore, post-quantum VRFs
have limited development, with only one full VRF relying on a well-known assumption from hash-based
cryptography. Further research is necessary to address this challenge and further advance the capabilities of
VRFs.

Isogeny-based cryptography is a relatively new area of research, compared to other post-quantum branches,
first introduced with the CGL hash function [CLG09]. The core assumption of isogeny-based cryptography
is that it is hard to recover an isogeny between two isogenous elliptic curves. One of the most well-known
isogeny-based cryptosystems is SIDH [JF11], which is a key exchange cryptosystem that relaxes the original
isogeny assumption. Recently, Castryck, Decru, and Robert [CD22, Rob22] made exciting and significant
advances that falsified the hardness of the SIDH problem, leading to the breaking of some relevant cryptosys-
tems [YAJ+17, DdF+21]. Despite this fact, the original isogeny problem is still considered to be hard and
several cryptosystems continue to be based on the original assumption [DKL+20, CLL23]. There is also a
group action version of isogeny-based cryptography, called CSIDH, proposed by [CLM+18]. While it offers
limited operations as the evaluation of the action is restricted to generating sets with small cardinality, it
still results in the first secure and practical post-quantum non-interactive key exchange. With optimization
advancements [BKV19, FFK+23], the CSIDH group action is becoming more flexible.

Despite a known subexponential vulnerability [Reg04, Kup05, Kup11, Pei20, BS20], recent research con-
tinues to demonstrate the competitiveness of isogeny cryptography as a post-quantum branch, including
signature schemes [BKV19, EKP20, DG19], UC-secure oblivious transfers [LGd21, BMM+22], theshold sig-
natures [DM20], (linkable/accountable) ring and group signatures [BKP20, BDK+22], and PAKE [AEK+22].
In the area of isogeny-based proposals, there was a verifiable random function scheme [Ler21] that was with-
drawn due to insecurity1. Due to the less rich algebraic structure offered by the isogenies, translating classical
constructions has shown to be a non-trivial task in general [BKP20, MOT20, LGd21, BDK+22] from the
perspective of viable and practical tools and the reliable and versatile assumptions, both of which very lim-
ited. For instance, the most practical classical counterpart ECVRF [PWH+17], based on a signature scheme
with the unique signature property, requires hashing a string to an elliptic curve point, which is known to be
a notorious bottleneck in isogeny-based cryptography [BBD+22, MMP22]. Additionally, the use of pairings,
[BGLS03, BLS01], could lead to a ”partially post-quantum” only result [DMPS19].

Regardless of the prior failure and the difficulties, it is still natural to ask:

Can we have a post-quantum verifiable random functions from isogenies with a competitive performance
and without compromising security notions?

1From private communication.
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1.1 Related Works

To the best of our knowledge, there are only three proposals to date [EKS+21, BDE+22, ESLR22]. Of these,
the lattice-based VRFs proposed in [EKS+21, ESLR22] have limited capabilities. The LB-VRF [EKS+21]
provides only residual pseudorandomness, requiring the public key to be updated after a limited number of
evaluations, making it unsuitable for long-term applications or large-scale use. Though [ESLR22] provides a
full VRF from lattices but is relying on a non-standard assumption (as detailed in Assumption 1 of [ESLR22]),
requiring further investigation to establish its security. The hash-based SL-VRF [BDE+22], which is based
on LowMC, is the only post-quantum VRF proposal that provides full VRF and is based on a well-known
assumption. The proof size of each evaluation of SL-VRF is approximately 40KB.

In the field of isogeny cryptography, various protocols have been proposed that relate to random functions.
For instance, Naor-Reingold type pseudorandom functions (PRF) have been proposed in [ADMP20, MOT20].
Additionally, there have been proposals for oblivious random functions using oblivious transfers with a
Naor–Reingold-type PRF or one-more type assumptions [BKW20], however, which has been shown to be
insecure [BKM+21]. To date, the only verifiable random function proposed in the isogeny literature is by
Antonin Leroux [Ler21], which aimed for a one-time verifiable random function, but was later withdrawn
due to security concerns. Currently, a provably secure isogeny-based VRF has yet to be introduced in the
literature.

1.2 Contributions

In this study, we present two VRFs, CAPYBARA and TSUBAKI2, which provide an affirmative solution to
the above question through the following three contributions.

1. Inspired and based on the Naor–Reingold pseudorandom function as in [ADMP20, BKW20, MOT20],
we construct a proof system where the prover can demonstrate the knowledge of the action factorization
of a set element based on a distinguished base point (see Rfac defined below). We use the technique from
[BDK+22] to make the proof system online-extractable, providing tightly-secure unique provability.
Additionally, we utilize the approach in [BKP20] to reduce the proof size. As a result, our VRFs
have an exponentially large input space ({0, 1}λ) and expected proof sizes of 39KB and 34KB using
CSIDH512, which is comparable to the hash-based VRF [BDE+22].

2. We introduce a new decisional assumption, known as the master decisional Diffie-Hellman problem,
which implies a variety of decisional problems. We show that it is as hard as the original DDH problem.

3. We show a new use of the quadratic twists (see Footnote 3) to expand the input space to be ternary
({−1, 0, 1}κ). By using a similar method, we prove that this variant is as secure as the decisional square
Diffie-Hellman problem, whose computational version is as hard as the group action inverse problem.

As a result, we introduce the first group action and isogeny-based VRFs in literature with a competitive
performance. Additionally, our CAPYBARA construction is based on the standard DDH assumption. Our
method of construction and the techniques utilized are versatile and can be applied to other number-theoretic
pseudorandom functions, demonstrating the promising potential of incorporating group actions and isogeny
cryptography in the field of VRF research.

1.3 Technical Overview

The ideas beneath this work are fairly simple. First, given a transitive and free (effective) group action
(G, E , ⋆, h0) for some distinguished element h0 ∈ E , we start from a Naor–Reingold-type pseudorandom
function on input x = (x1 · · ·xκ) ∈ {0, 1}κ:

f(sk, x) = (c0c1g
x1
1 · · · gxκ

κ ) ⋆ h0

2Compact Action factorization Proofs Yielded By A RAndom function and Twist-SqaUre-BAsed tweaK from Isogenies.
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where the secret key sk = (c0, c1, g1, · · · , gκ) with the public key vk = (c0 ⋆ h0, c1 ⋆ h0, g1 ⋆ h0, · · · , gκ ⋆ h0)
as the evaluation of our verifiable random function. Remark that without c1, it is a secure pseudorandom
random function but not a secure verifiable random function since the adversary is given vk so that the
evaluation at 0 is known.

Second, the factorization over the group g = Πgi (not necessarily unique) gives the factorization of g ⋆ h0

over the set with respect to h0. We construct an action factorization proof system to prove the correctness
of the evaluation of f(sk, x). Formally, let h ← f(sk, x) on input x ∈ {0, 1}κ. We consider the action
factorization relation

Rfac =

((h0, X0, X1, {hi}i∈I , h), (c0, c1, {gi}i∈I))

∣∣∣∣∣∣∣
Xj = cj ⋆ h0 ∀j ∈ {0, 1}

gi ⋆ h0 = hi ∀i ∈ I

(c0c1Πi∈Igi) ⋆ h0 = h

 ,

where I = {i ∈ [κ]|xi = 1}. Notice that without h in the statement and the constraint, the proof system is
trivial using a standard graph-isomorphism-type proof of knowledge in parallel. We show that one with the
corresponding witness can prove a set element h ∈ E can be “factorized” through {hi}i∈I and h0 when the
action is over an abelian group.

The three-move public-coin proof system starts from the prover who generates random r, r0, ri ← G for
i ∈ I, computes (r ⋆ X0, r0 ⋆ X1, {ri ⋆ hi}i∈I , (rr0Πi∈Iri) ⋆ h) = (X ′

0, X
′
1, {h′

i}i∈I , h
′), and sends it to the

verifier. The verifier returns a random challenge b ∈ {0, 1} to the prover. Depending on b, the prover reveals
(rcb0, r0c

b
1, {gbi ri}i∈I) to the verifier. Upon receiving (r′, r′0, {r′i}i∈I), if b = 0, the verifier checks whether

(r′ ⋆ X0, r
′
0 ⋆ X1, {r′i ⋆ hi}i∈I , (r

′r′0Πi∈Ir
′
i) ⋆ h) = (X ′

0, X
′
1, {h′

i}i∈I , h
′). If b = 1, the verifier checks whether

(r′ ⋆ h0, r
′
0 ⋆ h0, {r′i ⋆ h0}i∈I , (r

′r′0Πi∈Ir
′
i) ⋆ h0) = (X ′

0, X
′
1, {h′

i}i∈I , h
′). The verifier accepts if it is the case

or rejects otherwise. By λ times repetitions and applying the Fiat-Shamir transform, one can obtain NIZK
for the relation Rfac. For the sake of clarity, we present the construction by assuming the group structure is
known. We show in Rem. 4.1 that the construction is also feasible in the unknown group structure setting.

Third, instead of resorting to an ad-hoc assumption, we prove the residual pseudorandomness of our
VRF is as hard as the decisional Diffie-Hellman problem. We first introduce a generalized decisional prob-
lem – the master decisional Diffie-Hellman problem. The problem starts with the challenger giving the
adversary an instance (g1 ⋆ h0, · · · , gN ⋆ h0). The adversary can make queries for an arbitrary combination
of (gs1 · · · gsk) ⋆ h0 for any {s1, · · · , sk} ⊆ [N ], and also sends a challenge query, which has not been queried
before. The challenger returns as instructed or a random set element from E , and the adversary’s task is
to determine which is the case. The problem covers a variety of variants of group-action-based decisional
problems. Then, we prove the problem is as hard as the original DDH problem.

Fourth, we make the proof compact and achieve online extractability. The latter notion gives a tight
reduction for the full uniqueness where the adversary cannot forge two valid proofs on the same input for two
distinct evaluations for any malicious generated keys without using a rewinding argument. To achieve online
extractability, one can consider using Unruh’s transform [Unr15] (or Pass’ transform [Pas03] by hashing both
responses and appending them to the commitment. This, however, will result in costly overhead. Instead,
while running the proof above, the prover uses a seed and a pseudorandom number generator (PRNG) to
generate the group elements r, r0, {ri}i∈I . By employing the proof technique developed in [BDK+22], the
modification leads to an online-extractable proof system with much more compact proofs.

Fifth, as an independent interest in the CSIDH setting, we develop a new use of the quadratic twists
and reduce the sizes of the public and secret keys and the computational cost for the user by relaxing the
assumptions. In this way, the public key can be naturally expanded twice (c0 ⋆ h0, c1 ⋆ h0, g1 ⋆ h0, · · · , gκ ⋆
h0, (g1 ⋆ h0)

t, · · · , (gκ ⋆ h0)
t).3 The modification reduces 37% of the key size, the computational cost, and

the maximal proof size. We prove that the underlying assumption for the residual pseudorandomness is as

3 Remark the reduction of the key size comes in different flavors in contrast to [BKV19, EKP20] where the twist reduces the
public key size by decreasing the soundness error of the sigma protocol. Here, the twist decreases the key size by expanding
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hard as the decisional square Diffie-Hellman problem in the appendix, of which the computational version
is as hard as the group action inverse problem (i.e. Dlog).

Finally, we optimize the proof size again using the unbalanced challenge space and the seed trees intro-
duced in [BKP20], which reduces the proof sizes of both constructions by a factor of 3. The proof sizes of
our final VRFs are expected to be 39KB and 34KB when using CSIDH-512.

Roadmap. We begin in Sec. 2 with some preliminary backgrounds on sigma protocols and proof systems
(Secs. 2.1 and 2.2), VRFs (Sec. 2.3), and group actions and hardness assumptions (Secs. 2.4 to 2.6). We
then introduce our action factorization proof system in Sec. 4. We present our VRF constructions, CAPY-
BARA, in Sec. 5 and its variant, TSUBAKI, in Sec. 6. We show the underlying assumption of CAPYBARA
(resp. TSUBAKI) is as hard as the DDH problem in Sec. 3 (resp. the decisional square DDH problem in
App. A). Finally, we give the final optimization for both constructions and the performance comparison in
Sec. 7.

2 Preliminaries

Notations. We denote {1, · · · , N} ⊂ N by [N ]. Say G acts on E by ⋆. For v = (a1, · · · , aN ) ∈ GN and
e = (E1, · · · , EN ) ∈ EN , we extend the action to an arbitrary dimension by writing v⋆e = (a1 ⋆E1, · · · , aN ⋆
EN ) ∈ EN . We also abuse the notation v ⋆ E = (a1 ⋆ E, · · · , aN ⋆ E) ∈ EN when the context is clear. Also,
ei represents the i-th elementary vector where the i-th entry is 1 and the others are zeros. For an array
v = (v1, · · · , vN ), we may denote the the i-th entry vi as vi. For a subset I ⊆ [N ], we let vI denote the
sub-array (vi)i∈I .

Two probability ensemblesXλ, Yλ are said to be computationally indistinguishable, denoted byXλ ≈c Yλ,
if for any PPT adversary A there exist a negligible function negl(λ) such |Pr[A(Xλ) = 1]−Pr[A(Yλ) = 1]| ≤
negl(λ). Also, Xλ, Yλ, defined over the same set, are said to be statistically indistinguishable, denoted by
Xλ ≈s Yλ, if there exists a negligible function negl(λ) such

∑
a |Pr[Xλ = a]− Pr[Yλ = a]| ≤ negl(λ).

2.1 Sigma Protocol

Definition 2.1 (Sigma Protocol). A sigma protocol ΠΣ is a three-move proof system for a relation R consists
of oracle-calling PPT algorithms (P = (P1, P2), V = (V1, V2)), where V2 is deterministic. We assume P1 and
P2 share states and so does V1 and V2. Let ChSet denote the challenge space. Then, ΠΣ proceeds as follows.

• The prover, on input (st,wt) ∈ R, runs com← PO
1 (X,W) and sends a commitment com to the verifier.

• The verifier runs ch← V O
1 (1λ), drawing a random challenge from ChSet, and sends it to the prover.

• The prover, given ch, runs resp← PO
2 (X,W, ch) and returns a response resp to the verifier.

• The verifier runs V O
2 (X, com, ch, resp) and outputs ⊤ (accept) or ⊥ (reject).

Here, O is modeled as a random oracle. For simplicity, we often drop O from the superscript when it is clear
from the context. We assume the statement st is always given as input to both the prover and the verifier.
The protocol transcript (com, ch, resp) is said to be valid in case V2(com, ch, resp) outputs ⊤.

We require the sigma protocol to be correct conditioned on the prover not aborting the protocol. Below,
if δ = 0, then it corresponds to the case when the prover never aborts.

Definition 2.2 (Correctness). A sigma protocol ΠΣ is said to be correct if for all λ ∈ N, (st,wt) ∈ R and
the prover and the verifier both follow the protocol specification, the verifier always outputs ⊤.
a binary input to a ternary input instead of benefiting the proof system. The proof system is still BINARY challenge in this
construction.
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Definition 2.3 (High Min-Entropy). We say a sigma protocol ΠΣ has α(λ) min-entropy if for any λ ∈ N,
(st,wt) ∈ R, and a possibly computationally-unbounded adversary A, we have

Pr
[
com = com′∣∣com← PO

1 (st,wt), com′ ← AO(st,wt)
]
≤ 2−α,

where the probability is taken over the randomness used by P1 and by the random oracle. We say ΠΣ has
high min-entropy if 2−α is negligible in λ.

Definition 2.4 (Honest Verifier Zero-Knowledge). We say ΠΣ is honest-verifier-zero-knowledge for relation
R if there exists a PPT simulator SimO with access to a random oracle O such that any statement-witness
pair (st,wt) ∈ R, ch ∈ ChSet, λ ∈ N and any computationally-unbounded adversary A that makes at most a
polynomial number of queries to O, we have

AdvHVZKΠΣ
(A) :=

∣∣∣Pr[AO(PO(st,wt, ch)) = 1]− Pr[AO(SimO(st, ch)) = 1]
∣∣∣ = negl(λ),

where P = (P1, P2) is a prover running on (st,wt) with a challenge fixed to ch and the probability is taken
over the randomness used by (P, V ) and by the random oracle.

Definition 2.5 (Special Soundness). We say a sigma protocol ΠΣ has special soundness if there exists a
polynomial-time extraction algorithm Extract such that, given a statement st and any two valid transcripts
(com, ch, resp) and (com, ch′, resp′) relative to st and such that ch ̸= ch′, outputs a witness wt satisfying
(st,wt) ∈ R.

2.2 Proof System Under the Random Oracle Model

Definition 2.6 (Completeness). Let O be a random oracle and ΠNIZK = (Prove,Verify) a NIZK proof system
for a relation R. We say ΠNIZK for a relation R is complete if for all λ ∈ N, (st,wt) ∈ R and the prover and
the verifier both follow the protocol specification, the verifier always accepts.

Definition 2.7 (Zero-Knowledge). Let O be a random oracle, ΠNIZK = (Prove,Verify) a NIZK proof system
for a relation R, and Sim a zero-knowledge simulator with access to O for ΠNIZK. For (st,wt) ∈ R, the
advantage of an zero-knowledge adversary A against Sim is

AdvZKΠNIZK
(A) =

∣∣∣Pr [AO(PO(st,wt)) = 1
]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ,
We say ΠNIZK is zero-knowledge if there exists a PPT simulator Sim such that for any (st,wt) ∈ R, (possibly
computationally-unbounded) adversary A making at most polynomially many queries to the random oracle,
we have a negligible function negl(λ) such that AdvZKΠNIZK

(A) ≤ negl(λ).

Definition 2.8 (Online Extractability). Let ΠNIZK be a NIZK proof system for a relation R. We said
ΠNIZK has online-extractability if for any (possibly computationally-unbounded) adversary A, there exists a
PPT extractor Ext with only extractability access to O such that A wins the following game with a negligible
advantage:

(i) A can make polynomial number queries of the random oracle.

(ii) A outputs st and π.

We say A wins if VerifyO(st, π) = ⊤ and (st,wt) /∈ R where wt← Ext(st, π). The advantage of A is defined
as AdvOE

ΠNIZK
(A) = Pr[A wins] where the probability is taken over the randomness used by the random oracle.
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2.3 Verifiable Random Functions

In this subsection, we give a brief introduction to the verifiable random functions, and its notions [MRV99].

Definition 2.9. (Verifiable Random Function) A verifiable random function (VRF) consists of four prob-
abilistic polynomial-time algorithms ΠVRF = {ParGen,KeyGen,VRFEval,Ver} where:

• ParGen(1λ): On input a security parameter 1λ, this probabilistic algorithm outputs some global, public
parameter pp.

• KeyGen(pp): On input public parameter pp, this probabilistic algorithm outputs two binary strings, a
secret key sk and a public key vk.

• VRFEval(sk, x): On input a secret key sk and an input x ∈ {0, 1}ℓ(λ), this algorithm outputs (v, π) for
the VRF value v ∈ {0, 1}m(λ) and the corresponding proof π proving the correctness of v.

• Ver(vk, v, x, π): On input (vk, v, x, π), this probabilistic algorithm outputs either 1 or 0.

The residual pseudorandomness guarantees the pseudorandomness of the function even if the user has
revealed many evaluations together with the proofs. In some applications, it is sufficient to have a few-times
relaxed notion where the pseudorandomness is ensured for only limited copies of evaluations are revealed
[EKS+21]. In this work, we consider the original version of the notion.

Definition 2.10. ((Residual) Pseudorandomness) Let A = (A1,A2) be a PPT adversary. The pseudoran-
domness experiment ExpVRFPR

A,ΠVRF
(λ) of a VRF scheme ΠVRF proceeds as follows.

1. Q← ∅

2. pp← ParGen(1λ)

3. (vk, sk)← KeyGen(pp)

4. (x̃, st)← AOVRFEval(·)
1 (vk)

5. (v0, π0)← VRFEval(sk, x̃)

6. v1 ← {0, 1}m(λ)

7. b← {0, 1}

8. b′ ← AOVRFEval(·)
2 (vb, st)

9. The output of the experiment is defined to be 1
if b′ = b and x̃ /∈ Q, and 0 otherwise.

OVRFEval(x) :

1. Q← Q ∪ {x}

2. Return VRFEval(sk, x)

We say A wins if ExpVRFPR
A,ΠVRF

(λ) = 1. The advantage of A is defined to be

AdvPRΠVRF
(A) := |Pr [A wins]− 1/2| ,

where the probability is taken over the randomness used by A and the randomness used in the experiment. A
VRF protocol ΠVRF is said to be to have pseudorandom if for any PPT adversary A there exists a negligible
function negl such that

AdvA,ΠVRF
≤ negl(λ).

Definition 2.11. (Complete Provability) Let ΠVRF = {ParGen,KeyGen,VRFEval,Ver} be a VRF scheme.
ΠVRF is said to have provability if for any pp← ParGen(1λ) and (vk, sk)← KeyGen(pp), the output (v, π)←
VRFEval(sk, x) satisfies

Ver(vk, v, x, π) = 1.
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The following notion, unique provability, implies that for any adversary (possibly computationally un-
bounded with at most polynomial public coin queries) it is difficult to generate a malicious public key such
that the adversary can produce two valid proofs for two distinct evaluations of the same input.

Definition 2.12. (Unique Provability) Let ΠVRF = {ParGen,KeyGen,VRFEval,Ver} be a VRF scheme and
A = (A1,A2) be an adversary. A uniqueness provability experiment proceeds as follows.

1. pp← ParGen(1λ)

2. (vk, sk)← A1(pp)

3. (vk, x, v1, v2, π1, π2)← A2(vk)

We say an adversary A wins if v1 ̸= v2 and Ver(vk, v1, x, π1) = Ver(vk, v2, x, π2) = 1. The advantage of A is
defined to be AdvUPΠVRF

(A) := Pr[A wins] where the probability is taken over the randomness used by A and in
the experiment.

2.4 Group Actions

Throughout this work we consider only free, transitive and effective group action. In this section, we give a
brief introduction to the main component in our protocols – the group actions.

Definition 2.13 (Group Action). A group G is said to act on a set E if there is a map ⋆ : G× E → E that
satisfies the

1. Identity: if 1 is the identity element of G, then for any E ∈ E, we have 1 ⋆ E = E.

2. Compatibility: for any g, h ∈ G and any E ∈ E, we have (gh) ⋆ E = g ⋆ (h ⋆ E).

For the cryptographic purpose, we need the following propositions.

Definition 2.14. A group action (G, E , ⋆) is said to be

1. transitive if for any x1, x2 ∈ E there exists g ∈ G such that x2 = g ⋆ x1, or

2. free if for any g ∈ G, g is the identity element if and only if there exists some x ∈ E such that x = g ⋆x.

For constructing a feasible construction from a group action, we require some efficient (PTT) algorithms.
We adopt the effective group action framework introduced in [ADMP20].

Definition 2.15 (Effective Group Action). A group action (G, E , E0, ⋆) is effective if the following properties
are satisfied:

1. The group G is finite and there exist PPT algorithms for (i.) the membership testing, (ii.) equality
testing, (iii.) group operations, (iv.) element inversions, and (v.)a sampling method over G. The
sampling method is required to be statistically indistinguishable from the uniform distribution over G.

2. The set E is finite, and there exist PPT algorithms for the membership testing and generating a unique
bit-string representation for every element in E.

3. There exists a distinguished element E0 ∈ E and the bit-string representation is publicly known.

4. There exists a PPT algorithm that given any (g, x) ∈ G× E outputs g ⋆ x.

Remark 2.16 (Additional Requirements.). We have two additional requirements for our group actions.
Firstly, for security parameter λ, we require the group size |G| to be larger than 2λ. The requirement natur-

ally holds due to the known quantum subexponential attacks 2O(
√

|G|) [Reg04, Kup05, Kup11, Pei20, BS20].
This is necessary to ensure that we have adequate min-entropy for our proof system in Sec. 4. The second
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requirement is that every G has a unique representation, which can be efficiently computed. The requirement
is directly implied by the known-order effective group (KEGA) model [ADMP20]. We do not adopt the model
since we use neither the group’s structure nor the group’s order (KEGA). With this assumption, we can
ensure that revealing g + g′ will not leak the information of g where g′ is sampled uniformly from G for our
proof system in Sec. 4. It is worth noting that this requirement is for simplicity of presentation and is not
strictly necessary (see next remark).

Remark 2.17. For the sake of clarity, we present the work using the EGA model. A weaker version
(restricted effective group action) restricted the feasible evaluation of the action to a generating set of small
cardinality (e.g. the original CSIDH setting [CLM+18, DG19]). Our construction can also be realized with
a few modifications for the proof system, requiring Fiat-Shamir with aborts [Lyu09, DG19]. We give a brief
discussion in Rem. 4.1.

Throughout this work, we assume the action is always free, transitive and effective and denote it by a
tuple (G, E , E0, ⋆) where E0 is the distinguished element. Also, we assume the sampling method over G is
uniform.

In our second construction, we require a special operation–the quadratic twist. In the CSIDH group
action (G, E) [CLM+18], when the prime equals 3 modulo 4, there exists a special operation, the quadratic
twist t, such that for any E ∈ E , we have Et ∈ E , and has the proposition (g ⋆ E)t = g−1 ⋆ Et. Also,
there exists a special element E0, usually used as the distinguished element in the literature, of j-invariant
1728, satisfies (E0)

t = E0. The quadratic twist has been shown to be a useful tool in some cryptosystems
[BKV19, EKP20, LGd21, AEK+22].

We will only need the twist operation in Secs. 2.6 and 6, and we will declare this at the beginning of the
sections.

2.5 Hardness Assumptions of Group Actions for CAPYBARA

In this subsection, we introduce a few standard assumptions in group actions. We start from two computa-
tional assumptions, which we will not use in our construction, but it is helpful to understand the hierarchy
of the decisional versions.

Definition 2.18 (Group Action Inverse Problem (GAIP)). Let (G, E , ⋆, E0) be a group action. Given E
sampled from the uniform distribution over E, the GAIP problem consists in finding an element g ∈ G such
that g ⋆ E0 = E.

Definition 2.19 (Computational Diffie-Hellman (CDH) Problem). Let (G, E , ⋆, E0) be a group action. Given
a tuple (g1⋆E0, g2⋆E0) where g1, g2 are sampled uniformly from G, the computational Diffie-Hellman problem
is to compute (g1g2) ⋆ E0.

The following is the core hardness assumption for our first VRF in Sec. 5.

Definition 2.20 (Decisional Diffie-Hellman (DDH) Problem). Let (G, E , ⋆, E0) be a group action. The
decisional Diffie-Hellman problem is that the adversary A is given one instance of Tb = (g1⋆E0, g2⋆E0, hb⋆E0)
where h0 = g1g2, h1 = g3 and g1, g2, g3, b← G3 × {0, 1} and output b′ ∈ {0, 1}.

We denote the advantage of the decisional problem adversary A by

AdvDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in
the experiment. We say the DDH problem is hard, if for any PPT adversary A, there exists a negligible
function negl such that Adv(A)DDH ≤ negl(λ).

9



Note that when using CSIDH as an instance, we require p = 3 (mod 4) to avoid the attacks presented
in [CSV20, CHVW22] exploiting distinct pairings. Both attacks rely on the nontrivial characters derived
from the nontrivial 2-torsion subgroup in the ideal class group, which is not the case when p = 3 (mod 4).
Therefore, when CSIDH instantiated in this setting, DDH is believed to be hard.

Definition 2.21 (Multi-Challenge Decisional Diffie-Hellman (mcDDH) Problem). Let (G, E , ⋆, E0) be a group
action and b ∈ {0, 1}. The multi-challenge decisional Diffie-Hellman experiment ExpmcDDH(b) on input b
proceeds as follows. The adversary A is given (g1 ⋆ E0) where g1 ← G together with access to the oracle
OmcDDH

b defined as follows:

1. OmcDDH
0 : (g2 ⋆ E0, (g1g2) ⋆ E0) where g2 are sampled uniformly from G,

2. OmcDDH
1 : (g2 ⋆ E0, g3 ⋆ E0) where g2, g3 are sampled uniformly from G,

and outputs b′ ∈ {0, 1}.

We denote the advantage of a multi-challenge decisional Diffie-Hellman problem adversary A problem by

AdvmcDDH(A) =
∣∣∣Pr[A(ExpmcDDH(b = 0))→ 1]− Pr[A(ExpmcDDH(b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in
the experiment. We say the mcDDH problem is hard, if for any PPT adversary A, there exists a negligible
function negl such that Adv(A)mcDDH ≤ negl(λ). One can use a standard hybrid argument and give a
reduction from the DDH problem to the mcDDH problem.

A standard hybrid argument can lead to a reduction looseness that is proportional to the number of
queries made. The equivalence is tight in the classical setting (i.e. the group setting) due to the randomizer
introduced [NP01] which can keep regenerating a DH instance or a random instance depending on the input
instance. Achieving a tight equivalence in the group action setting remains an open problem.

We introduce a generalized version of the decisional problem – the master decisional problem, analogue
to the generalized DDH assumption [BLMW07] and similar to the Uber-family assumptions [Boy08]. In the
master decisional problem, the starting instance consists of several random set elements, and the adversary
can query any combination of them with respect to the group elements. We will show that the generalized
version is as hard as the DDH problem using a hybrid argument.

Definition 2.22 (Master Decisional Diffie-Hellman (MDDH) Problem). Let (G, E , ⋆, E0) be a group action,
n ∈ N, and b ∈ {0, 1}. The decisional master Diffie-Hellman problem experiment ExpMDDH(n, b) on input
(n, b) proceeds as follows.

1. The challenger C generates a tuple (g1 ⋆E0, · · · , gn ⋆E0) where g1, · · · , gn ← G, and sends the tuple to
the adversary A.

2. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0, 1}n returning
∏n

i g
xi
i ⋆E0.

3. A sends a string v = (v1, · · · , vn) ∈ {0, 1}n to
∏n

i g
vi
i ⋆ E0 to the challenge oracle C.

4. C ignores if v has been queried before or is of the Hamming weight less than 2. Otherwise, C, depending
on the input b, computes X0 =

∏n
i g

vi
i ⋆ E0 or X1 = r ⋆ E0 for some r ← G, and send Xb to A. This

process will only output for one time.

5. A outputs b′ ∈ {0, 1}.

We denote the advantage of a decisional master Diffie-Hellman problem adversary A by

AdvMDDH(A) =
∣∣∣Pr[A(ExpMDDH(n, b = 0))→ 1]− Pr[A(ExpMDDH(n, b = 1))→ 1]

∣∣∣ ,
10



where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in
the experiment. We say the MDDH problem is hard, if for any PPT adversary A, there exists a negligible
function negl such that Adv(A)MDDH ≤ negl(λ).

The assumption implies a variety of forms of decisional problems. For instance, given (a ⋆ x, b ⋆ x, c ⋆
x, ab ⋆ x, bc ⋆ x, cd ⋆ x) to distinguish between abc ⋆ x or a random element in E is an instance of the
problem. The interactivity of the assumption appears to be strange at a glance. It is, however, very
reasonable. Otherwise, when n is linear in λ, giving all combinations implies revealing almost the entire set E .
Looking ahead, we will use this problem to show our verifiable random function is residual pseudorandomness.
Unlike pseudorandomness, where the adversary has access to either the pseudorandom function or a random
function, the MDDH experiment allows the adversary to learn the evaluations of any combination of the
instances adaptively. We show in Sec. 3 the equivalence of the master DDH and the original DDH.

2.6 Relaxed Decisional Assumptions for CSIDH-based Actions for TSUBAKI

This section introduces a few relaxed decisional assumptions that allow us to construct a more efficient
verifiable random function variant. We use the quadratic twists in this section, and for a group action
(G, E , ⋆, E0) we let E0 ∈ E denote the element has the property that Et

0 = E0. Also, for any (g,E) ∈ G×E ,
we have (g ⋆ E)t = g−1 ⋆ Et.

Firstly, we relax the DDH problem by introducing the standard square variant problem. The problem
has been used to construct some cryptographic protocols [DM20, AEK+22].

Definition 2.23 (Decisional Square CSIDH (sDDH) Problem). Let (G, E , ⋆, E0) be a group action. The
decisional square CSIDH problem is that the adversary A is given Tb = (g1⋆E0, hb⋆E0) where h0 = g21 , h1 = g2
and (g1, g2, b)← G2 × {0, 1} and return b′ ∈ {0, 1}.

We denote the advantage of an sDDH adversary A by

AdvsDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in
the experiment. We say the sDDH problem is hard, if for any PPT adversary A, there exists a negligible
function negl such that Adv(A)sDDH ≤ negl(λ).

The computational version of the problem is quantum equivalent to the computational problem [LGd21],
and quantum equivalent to the GAIP problem [GPSV18]. A full quantum equivalence is given in [MZ22].
One can reduce the sDDH problem to the DDH problem by mapping the instance (g1 ⋆ E0, hb⋆0) to (g1 ⋆
E0, (gg1) ⋆ E0, (ghb) ⋆ E0) where g ← G. Though the reverse reduction is not known, sDDH is still believed
to be a hard problem.

We introduce the decisional assumptions for our VRF variant where the input is ternary from {−1, 0, 1},
naturally corresponding to the following queries.

Definition 2.24 (Twisted Master Decisional CSIDH (tMDDH) Problem). Let (G, E , ⋆, E0) be a group action,
n ∈ N, and b ∈ {0, 1}. The twisted master DDH problem experiment ExptMDDH(n, b) on input (n, b) proceeds
as follows.

1. The challenger C computes E = g ⋆ E0 where g ← G.

2. C generates a tuple (g1 ⋆E, · · · , gn ⋆E) where g1, · · · , gn ← G, and sends the tuple to the adversary A.

3. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0,±1}n returning
∏n

i g
xi
i ⋆

E.
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4. A sends a string v = (v1, · · · , vn) ∈ {0,±1}n to
∏n

i g
vi
i ⋆ E to the challenge oracle C.

5. C ignores if v has been queried before or is of the Hamming weight less than 2. Otherwise, C, depending
on b, computes X0 =

∏n
i g

vi
i ⋆ E or X1 = r ⋆ E for some r ← G, and send Xb to A. This process will

only output for one time.

6. A outputs b′ ∈ {0, 1}.

We denote the advantage of the decisional problem adversary A by

AdvtMDDH(A) =
∣∣∣Pr[A(ExptMDDH(n, b = 0))→ 1]− Pr[A(ExptMDDH(n, b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in
the experiment. We say the tMDDH problem is hard, if for any PPT adversary A, there exists a negligible
function negl such that Adv(A)tMDDH ≤ negl(λ).

We show in App. A that the twisted decisional master CSIDH problem is not easier than the decisional
square CSIDH problem. To see this, we are introducing a non-standard intermediate assumption, which will
make the proof easier to follow. The assumption coincides with a decisional version of a problem proposed
in [LGd21].

Definition 2.25 (Decisional Reciprocal CSIDH (rDDH) Problem). Let (G, E , ⋆, E0) be a group action. The
decisional reciprocal CSIDH problem is that the adversary A is given Tb = (g1 ⋆ E0, g2 ⋆ E0, hb ⋆ E0, h

′
b ⋆ E0)

where h0 = g1g2, h1 = g3, h
′
0 = g1g

−1
2 , h′

1 = g4 and (g1, g2, g3, g4, b)← G4 × {0, 1}, and return b′ ∈ {0, 1}.

We denote the advantage of an rDDH adversary A by

AdvrDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in
the experiment. We say the rDDH problem is hard, if for any PPT adversary A, there exists a negligible
function negl such that Adv(A)rDDH ≤ negl(λ).

The computational version proposed in [LGd21] has been proven to be equivalent to the computation
square CDH problem, which is equivalent to the GAIP problem. The following proposition shows that the
decisional reciprocal problem is not easier than the decisional square problem. In the appendix App. A, we
will use the multi-challenge version of the decisional reciprocal problem to show the hardness of the twisted
decisional master problem.

Proposition 2.26. Let (G, E , ⋆, E0) be a group action. Given an adversary A against the rDDH problem,
there exist an sDDH adversary B1 and a decisional CSIDH problem B2 such that

AdvrDDH(A) ≤ AdvsDDH(B1) + AdvDDH(B2).

Proof. We prove this by introducing a sereis of hybrid games Game1,Game2,Game3 by gradually changing
the experiment, where Game1 corresponds to the case of b = 0 in the experiment (Def. 2.25) and Game3
corresponds to the case b = 1.

Game2 : the same as Game1 except that the pair (g1 ⋆ E0, g2 ⋆ E0, g1g2 ⋆ E0, g1g
−1
3 ⋆ E0) given to A is

modified as (g1 ⋆ E0, g2 ⋆ E0, g1g2 ⋆ E0, g4 ⋆ E0) where g4 ← G. Claim Game1 ≈c Game2 thanks to the sDDH
problem. Concretely, we build an sDDH adversary B1 using A. Upon receiving a square CSIDH challenge
(s ⋆ E0, X), the reduction B1 proceeds as follows
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1. Generate a← G.

2. Forward (a ⋆ (s ⋆ E0), (s ⋆ E0)
t, a ⋆ E0, a ⋆ X) to A.

3. Output whatever A returns.

Note that (s⋆E0)
t = s−1⋆E0 and a = (as)s−1. Therefore, when the challenge is the second case in the sDDH

experiment (i.e. a random curve), B1 generates Game2. On the other had, if the challenge is the first case
in the experiment (i.e. X = s2 ⋆ E0), then B1 generates Game1 since a ⋆ X = as2 ⋆ E0 and as2 = as(s−1)−1.
Therefore, AdvsDDH(B1) = |Pr[A(Game1)→ 1]− Pr[A(Game2)→ 1]|.

Game3 : the same as Game2 except that the pair (g1 ⋆E0, g2 ⋆E0, g1g2 ⋆E0, g4 ⋆E0) given to A is modified
as (g1 ⋆ E0, g2 ⋆ E0, g3 ⋆ E0, g4 ⋆ E0) where g3 ← G. This is exactly the second case in the rDDH problem.
Claim Game2 ≈c Game3 thanks to the DDH problem. Concretely, we build an DDH adversary B2 using A.
Upon receiving a square CSIDH challenge (g1 ⋆ E0, g2 ⋆ E0, X), the reduction B2 proceeds as follows

1. Generate g4 ← G.

2. Forward (g1 ⋆ E0, g2 ⋆ E0, X, g4 ⋆ E0) to A.

3. Output whatever A returns.

Note that when the challenge is the second case in the DDH experiment (i.e. a random curve), B2 generates
Game3. On the other hand, if the challenge is the first case in the experiment (i.e. X = g1g2 ⋆ E0), then B1
generates Game2. Hence, AdvDDH(B2) = |Pr[A(Game2)→ 1]− Pr[A(Game3)→ 1]|.

Therefore, we have
AdvrDDH(A) ≤ AdvsDDH(B1) + AdvDDH(B2).

3 Hardness of Master Decisional Diffie-Hellman Problem

The following theorem shows that theMDDH problem is as hard as the DDH problem. It is worth highlighting
the reduction is inspired by the pseudorandomness treatment in the literature [BMR10, ADMP20, BKW20,
MOT20].

Theorem 3.1. The MDDH problem is not easier than the mcDDH problem. Concretely, let (G, E , ⋆, E0) be
a group action, A be a MDDH problem adversary with parameter n ∈ N. If at most qDH = poly(λ) queries
are made in the experiment by MDDH A then there exists mcDDH problem adversaries B2, · · · Bn such that

AdvMDDH(A) ≤
n∑

i=2

AdvmcDDH(Bi).

Proof. We prove the theorem via a hybrid argument by introducing a series of games Game1, · · · ,Gamen by
modifying the responses of the DH oracle and the challenge oracle in theMDDH experiment gradually. Among
the games, Game1 is the original MDDH experiment, We will modify the response of the challenge oracle and
the DH oracle together, which will be explained later. For i ∈ [n] where b ∈ {0, 1}, let A(Gamei(b)) represent
A running the Gamei, the modified MDDH experiment with the random coin b used in the experiment, and
A will return 0 or 1. Therefore, by definition,

AdvMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|. (1)

Looking ahead, Gamen be the modified MDDH experiment where both the DH oracle and the challenger
reply with random elements in E . Therefore, since b is information theoretically hidden from A,

|Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamen(b = 0))→ 1]| = 0. (2)

13



Game1 : the original MDDH experiment starting with a tuple (g1 ⋆E0, · · · , gn ⋆E0) where g1, · · · , gn ← G
and the oracle responds as specified.

Game2 to Gamen: for j ∈ {2, · · · , n}, Gamej is the same as Gamej−1 except that the response of the DH
oracle and the challenge oracle is modified as follows. The modification starts with a list L which is initially

{(0, E0), (e1, g1 ⋆ E0), · · · , (ej , gj ⋆ E0)} ⊆ {0, 1}j × E .

On the query x = (x1, · · · , xn) ∈ {0, 1}n, if ((x1, · · · , xj), X) ∈ L for some X ∈ E , the oracle returns
(
∏n

i=j+1 g
xi
i ) ⋆ X; otherwise, it draws g′ ← G, computes X = g′ ⋆ E0, adds ((x1, · · · , xj), X) to the list L,

and returns (
∏n

i=j+1 g
xi
i ) ⋆ X to A. The reply for the challenge query is modified in the same way if the

random coin b = 0.

Claim that Gamej−1 ≈c Gamej for A for any 2 ≤ j ≤ n. Concretely, a reduction Bj to the mcDDH
problem proceeds as follows

1. Obtain (g′ ⋆ E0, {(Xi, X
′
i)}i∈[qDH+j−1]) from the mcDDH oracle.

2. Then, Bj initializes with a list

L =

{
(e1, X1), · · · , (ej−1, Xj−1), (0, E),

(e1 + ej , X
′
1), · · · , (ej−1 + ej , X

′
j−1), (ej , g

′ ⋆ E0)

}
⊂ {0, 1}j × E ,

where ei is the i-th elementary vector in {0, 1}j , and set a counter ct = j to record the number of the
pairs (Xi, X

′
i) taken into the list L.

3. Invoke A on input (E,X1, · · · , Xj−1, g
′ ⋆ E0, gj+1 ⋆ E0, · · · , gn ⋆ E0) where gj+1, · · · , gn ← G.

4. Upon receiving the oracle query (x1, · · · , xn) ∈ {0, 1}n, check whether ((x1, · · · , xj), X) ∈ L for some
X ∈ E . If so, return

∏n
i=j+1 g

xi
i ⋆ X. Otherwise, update

L← {((x1, · · · , xj−1, 0), Xct), ((x1, · · · , xj−1, 1), X
′
ct)} ∪ L,

and set ct← ct+ 1, and rerun this step again.

5. Output whatever A returns.

Note that in Step 1. if Bj is in the experiment ExpmcDDH(0) in the mcDDH problem (Def. 2.21 Item 1)

then Bj generates Gamej−1. In contrast, if it is in the experiment ExpmcDDH(1) in the mcDDH problem
(Def. 2.21 Item 2), then Bj generates Gamej . It follows that for b ∈ {0, 1},

AdvmcDDH(Bj) =|Pr[Bj(ExpmcDDH(0))→ 1]− Pr[Bj(ExpmcDDH(1))→ 1]|
=|Pr[A(Gamej−1(b))→ 1]− Pr[A(Gamej(b))→ 1]| (3)

Therefore, we have

AdvMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]| (By Eq. (1))

≤
n∑

j=2

(|Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Gamej(b = 0))→ 1]|

+ |Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|)
+ |Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamej−1(b = 1))→ 1]| (Union bounds.)

=

n−1∑
j=2

AdvmcDDH(Bj). (By Eqs. (2) and (3))

The result follows.
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4 Proof Systems

4.1 The Action Factorization Relation and Its Sigma-Protocol

We consider the following action factorization relation Rfac for our verifiable random functions.

Rfac =

{
st = (E0, {Ei}i∈[N ], E),wt = {si}i∈[N ]

∣∣∣∣∣Ei = si ⋆ E0 ∀ i ∈ [N ]

E = (ΠN
i=1si) ⋆ E0

}
.

Sigma Protocol for Rfac. We give a basic sigma protocol for Rfac as described in Fig. 1. Let N ∈ N and
a statement (st = E0, {Ei}i∈[N ], E). Say the prover has the witness (wt = {si}i∈[N ]) such that Ei = si ⋆ E0

for any i ∈ [N ] and E = (ΠN
i=1si) ⋆ E0.

To prove the knowledge, the prover firstly generates r1, · · · , rN , computes E′
i = ri ⋆ Ei for all i ∈ [N ]

and E′ = (ΠN
i=1ri) ⋆ E, and sends those N + 1 set elements to the verifier. The verifier returns a random

challenge c from {0, 1} and sends it to the prover. If the challenge is 0, the prover reveals ri for all i ∈ [N ]
to the verifier. Otherwise, the prover reveals siri for every i ∈ [N ]. When c = 0, with received {r′i}i∈[N ]

the verifier checks whether r′i ⋆ Ei = E′
i for all i ∈ [N ] and whether E′ = (ΠN

i=1ri) ⋆ E. When c = 1, with
received {r′i}i∈[N ] the verifier checks whether r′i ⋆ E0 = E′

i for all i ∈ [N ] and also (ΠN
i=1r

′
i) ⋆ E0 = E′.

In each case, if all equalities hold, the verifier returns 1 to represent the acceptance. Otherwise, the
verifier returns 0 to represent the rejection.

Remark 4.1. Constructing the same proof system in a restricted EGA model or the original CSIDH setting
[CLM+18] with an unknown structure group is feasible. In these settings, the group elements are represented
as a linear combination of a given generating set where the coefficients are chosen from a small interval
[−t, t]. In this case, revealing the addition s + r if both s, r ∈ [−t, t] will leak the information of the secret
s. Therefore, using Fiat-Shamir with aborts [Lyu09, DG19] can circumvent this by sampling r from a larger
[−(T + 1)t, (T + 1)t] for some T ∈ N and, then, aborting the session while required to reveal r + s and
r + s /∈ [−Tt, T t]. With a straightforward application to our case of siri and Π(siri) for i ∈ [N ] and
T = 2λ2, the abort rate will be larger than 1/3 (see [DG19, Lemma 2.]). The rejection sampling method can
also be improved using [DPV19].

To reduce the size of the overall response, the prover uses a pseudorandom number generator to generate
r1, · · · , rN ∈ G with a seed, seed0, picked uniformly at random from {0, 1}λ. Also, the prover uses the
Merkle tree to reduce the communication cost of the first message by producing a root of {{E′

i}i∈[N ], E
′}

over {0, 1}2λ.

Theorem 4.2. The sigma protocol Πbase
Σ described in Fig. 1 has correctness.

Proof. When the challenge is c = 0, the prover sends the seed, seed0, to the verifier. The computation of
the verifier will result in the same Merkle root in this case.

When c = 1, the prover sends r′i = siri for every i ∈ [N ] to the verifier. Recall that for any i ∈ [N ], we
have Ei = si ⋆ E0, E

′
i = ri ⋆ Ei, E = (ΠN

i=1si) ⋆ E0, and E′ = (ΠN
i=1ri) ⋆ E. Also, E′

i = ri ⋆ Ei. Hence, due
to commutative G, we have

(E′
1, · · · , E′

N , E′) = (r1s1 ⋆ E0, · · · , rNsN ⋆ E0, (Π
N
i=1risi) ⋆ E0)

= (r′1 ⋆ E0, r
′
N ⋆ EN , (ΠN

i=1r
′
i) ⋆ E0).

The Merkle tree will result in the same root and correctness follows.

Theorem 4.3. Let |G| ≥ 2λ (see Rem. 2.16). The sigma protocol Πbase
Σ described in Fig. 1 has 2-special

soundness for the relation Rfac if the Merkle tree hash function O(MT ∥ ·) is collision-resistant. Concretely,
for a fixed statement st, there exists an extractor Ext on input two valid transcripts returning either a valid
witness wt or a pair (wt1,wt2) such that (st,wt) ∈ Rfac or O(MT ∥ wt1) = O(MT ∥ wt2), respectively.
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round 1: P ′O
1 (st = (E0, {Ei}i∈[N ], E),wt = {si}i∈[N ])

1: seed0
$← {0, 1}λ

2: (r1, · · · , rN )← O(PRNG ∥ seed0) ▷ Generate ri ∈ G
3: E′ ← E
4: for i from 1 to N do
5: E′

i ← ri ⋆ Ei

6: E′ ← ri ⋆ E
′

7: root← O(MT ∥ E′
1, · · · , E′

N , E′) ▷ Produce root ∈ {0, 1}2λ
8: Prover sends com← root to Verifier.

round 2: V ′
1(com)

1: c
$← {0, 1}

2: Verifier sends ch← c to Prover.

round 3: P ′
2(st, com, ch)

1: c← ch
2: if c = 1 then
3: for i from 1 to N do
4: r′i ← siri

5: resp← {r′i}i∈[N ]

6: else
7: resp← seed0
8: Prover sends resp to Verifier

Verification: V ′O
2 (com, ch, resp)

1: (root, c)← (com, ch)
2: if c = 1 then
3: ({r′i}i∈[N ])← resp

4: Ẽ′ ← E0

5: for i from 1 to N do
6: Ẽ′

i ← r′i ⋆ E0

7: Ẽ′ ← r′i ⋆ Ẽ
′

8: r̃oot← O(MT ∥ Ẽ′
1, · · · , Ẽ′

N , Ẽ′)
9: return ⊤ if r̃oot = root; otherwise, return ⊥.

10: else
11: Repeat round 1 with seed0 ← resp.
12: return ⊤ if results in root; otherwise, return ⊥.

Figure 1: Construction of the base sigma protocol Πbase
Σ = (P ′ = (P ′

1, P
′
2), V

′ = (V ′
1 , V

′
2)) for the relation R

where O(PRNG∥·) and O(Com∥·) are a PRNG and a commitment scheme instantiated by the random oracle,
respectively.

Proof. Let {root, 0, resp0} and {root, 1, resp1} be the two valid transcripts for the same first-message root.
Write r1, · · · , rN ← O(PRNG ∥ resp0) and {r′1, · · · , r′N} = resp1, the extractor Ext proceeds as follows.

1. Compute wt1 = (r1 ⋆ E1, · · · , rN ⋆ EN , (ΠN
i=1ri) ⋆ E).

2. Compute wt2 = (r′1 ⋆ E0, · · · , r′N ⋆ E0, (Π
N
i=1r

′
i) ⋆ E0).

3. If wt1 ̸= wt2, then return (wt1,wt2).

4. Else, return (r−1
1 r′1, · · · , r−1

N r′N ).

Since V ′O
2 ({root, b, respb})→ 1 for i ∈ {0, 1}, we know have

root = O(MT ∥ r1 ⋆ E1, · · · , rN ⋆ EN , (ΠN
i=1ri) ⋆ E),

root = O(MT ∥ r′1 ⋆ E0, · · · , r′N ⋆ E0, (Π
N
i=1r

′
i) ⋆ E0)

where r1, · · · , rN ← O(PRNG ∥ resp0) and {r′1, · · · , r′N} = resp1. If wt1 ̸= wt2, then they form a collision for
the Merkle tree hash function.

If wt1 = wt2, we have ri ⋆ E1 = r′i ⋆ E0 for any i ∈ [N ] and (ΠN
i=1ri) ⋆ E = (ΠN

i=1r
′
i) ⋆ E0. If follows that

Ei = (r−1
i r′i)⋆E0 for all i ∈ [N ]. Moreover, since the group is commutative and (ΠN

i=1ri)
−1(ΠN

i=1r
′
i)⋆E0 = E,

we have (ΠN
i=1(r

−1
i r′i)) ⋆ E0.
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Theorem 4.4. The sigma protocol Πbase
Σ described in Fig. 1 has statistically HVZK where the pseudorandom

number generator and the Merkle tree hash function are modeled as random oracles O(PRNG∥·) and O(MT∥·),
resp. Concretely, for any (st,wt) ∈ Rfac and an computationally-unbounded adversary A with at most qH
queries of O(PRNG ∥ ·), there exists a simulator Sim such that∣∣∣Pr[AO(PO(st,wt, c)) = 1]− Pr[AO(SimO(st, c)) = 1]

∣∣∣ ≤ qH/2λ.

Proof. Let (st = (E0, {Ei}i∈[N ], E),wt = {si}i∈[N ]) ∈ Rfac. Given a st and c ∈ {0, 1}, the simulator

SimO(st,wt, c) proceeds as follows.

1. If c = 0, then execute P ′
1 and generate (root, 0, seed0) where the witness is not required in this process.

2. If c = 1, then

(1.) Generate r′1, · · · , r′N ← G and let resp← {r′1, · · · , r′N}.
(2.) Compute E′

i = r′i ⋆ E0 for every i ∈ [N ].

(3.) Compute E′ = (ΠN
i=1r

′
i) ⋆ E0.

(4.) Compute root← O(MT ∥ E′
1, · · · , E′

N , E′).

(5.) Return (root, c, resp).

The simulated transcripts are identical to ones produced by the prover with the witness executing the
protocol Πbase

Σ . For the case c = 0, the procedure is the same since the witness is not involved.
For the case c = 1, one can observe that the simulator returns a valid transcript and each element in the

response follows the uniform distribution over G. The distribution is the same as the uniform distribution
over the coset (si)

−1G for any i ∈ [N ] used by the prover, since O(PRNG ∥ ·) is modeled as a random oracle,
except for those queries has been made before. Concretely, the difference of two distribution is

1/2
∑∣∣∣Pr[(com, ch, resp)← P̃O(st,wt, c))]− Pr[(com, ch, resp)← SimO(st, c)]

∣∣∣
=1/2

∑∣∣∣Pr[(com, 1, resp)← P̃O(st,wt, c))]− Pr[(com, 1, resp)← SimO(st, c)]
∣∣∣

=
qH
2
(1/2λ − 1/|G|N )

≤qH
2λ

,

so is the advantage of the adversary A.

Theorem 4.5. Let |G| ≥ 2λ (see Rem. 2.16). The sigma protocol Πbase
Σ in Fig. 1 has λ min-entropy where

O(PRNG ∥ ·) and O(MT ∥ ·) are model by a random oracle.

Proof. When the challenge ch = 0, the seed is drawn uniformly at random from {0, 1}λ, and then ri are
drawn uniformly at random from G for any i ∈ [N ]. Note that |G| ≥ 2λ. Since the action is free and
transitive, ri ⋆ Ei follows the uniform distribution over E for every i. Then, com ∈ {0, 1}2λ is produced by
O(MT ∥ ·). Throughout the procedure, every random element is drawn from a set larger than 2λ. Therefore,
we have Pr

[
com = com′

∣∣com← PO
1 (st,wt), com′ ← AO(st,wt)

]
≤ 2−λ.

4.2 Online-extractable NIZK

By λ times repetitions and using the Fiat-Shamir transform, we turn the sigma protocol Fig. 1 into a proof
system for the relation Rfac. The description is displayed in Fig. 2.

Theorem 4.6 (Completeness). The proof system ΠNIZK for the relation Rfac in Fig. 2 is complete.
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ProveO(st = (E0, {Ei}i∈[N ], E),wt = {si}i∈[N ])

1: for i ∈ [λ] do
2: comi ← P ′O

1 (st,wt)

3: com← (com1, · · · , comλ)
4: ch = (c1, · · · , cλ)← O(FS ∥ st ∥ com)
5: for i ∈ [λ] do
6: respi ← P ′O

2 (st, comi, ci)

7: resp← (resp1, · · · , respλ)
8: return π ← (com, ch, resp)

VerifyO(st = (E0, {Ei}i∈[N ], E), π)

1: (com = (com1, · · · , comλ), ch = (c1, · · · , cλ),
resp = (resp1, · · · , respλ))← π

2: output = 1
3: for i ∈ [λ] do
4: r ← V ′

2(comi, ci, respi)
5: output← output · r
6: output← output · (ch == O(FS ∥ st ∥ com))
7: return output

Figure 2: NIZK for the relation Rfac by applying the Fiat-Shamir transform to Πbase
Σ = (P ′ = (P ′

1, P
′
2), V

′ =
(V ′

1 , V
′
2)) with λ repetitions.

Proof. In each iteration of i ∈ [λ] in Fig. 2, the prover and the verifier execute P ′ and V ′ in Πbase
Σ = (P ′, V ′)

respectively. By Def. 2.2, each execution of Πbase
Σ = (P ′, V ′) has correctness, and the completeness of ΠNIZK

follows.

Theorem 4.7 (Zero-knowledge). Let |G| ≥ 2λ (see Rem. 2.16). The proof system ΠNIZK for the relation
Rfac in Fig. 2 is zero-knowledge in the random oracle model. Concretely, for any (st,wt) ∈ Rfac and an
computationally-unbounded adversary A with at most qPRNG queries of O(PRNG ∥ ·) and qFS queries of
O(FS ∥ ·), there exists a simulator Sim such that∣∣∣Pr [AO(PO(st,wt)) = 1

]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ≤ qPRNG
2λ

+
qFS
2λN

,

Proof. Let Sim′ be the simulator in Thm. 4.4. The simulator Sim firstly simulates the oracle of O(FS ∥ ·),
O(FS ∥MT) and O(PRNG ∥ ·) by keeping lists LFS, LMT, and LPRNG respectively using the straight-line and
on-the-fly method. Sim also keeps a list L to simulate the oracle queries. Take O(FS ∥ ·) for instance, upon
receiving an oracle query as O(FS ∥ x), the Sim simulates the oracle as follows.

1. Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.

2. Otherwise draw y ← {0, 1}λ uniformly at random. Add y to the list (x, y) and return y.

Given a statement st in the language of Rfac, the simulator Sim simulates the transcripts as follows.

1. Generate ch = (c1, · · · , cλ)← {0, 1}λ uniformly at random.

2. For each i ∈ [λ], run (comi, ci, respi)← Sim′(st, ci).

3. Concatenate com← (com1, · · · , comλ), resp← (resp1, · · · , respλ).

4. Add (com, ch) to the list LFS. If com has been queried before, abort and return ⊥.

5. Output the transcript (com, ch, resp).

By Thm. 4.5, we know each generation comi has λ min-entropy. Therefore, the abort in Item 4 occurs
with a negligible probability qFS/2

λN .

Given such a distinguisher A, one can construct an HVZK adversary B against the sigma-protocol Πbase
Σ

using A. Recall that when the challenge is 0, the simulation of Sim′(·, 0) is perfect. The reduction B using
A proceeds as follows. Upon receiving the statement st and the transcript ensemble X = {comi, 1, respi}i
for the challenge 1, B simulates as what Sim does except that the transcripts from Sim′(st, 1) is replace by
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those taken from the ensemble X. B invokes A with st and the simulated transcripts. When the ensemble
is generated by a real prover, then B generates the transcripts as a real prover in ΠNIZK except for the
occurrence of aborts. When the ensemble is generated by a simulator, then B generates the transcripts as
Sim in ΠNIZK. Hence, AdvZKΠNIZK

(A) ≤ AdvHVZKΠbase
Σ

(B) + qFS/2
λN .

Therefore, we have∣∣∣Pr [AO(PO(st,wt)) = 1
]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ≤ qPRNG
2λ

+
qFS
2λN

.

Theorem 4.8 (Online-extractable). Assume O(·) is collision resistant, |G| ≥ 2λ (see Rem. 2.16), and
N ∈ N. The proof system ΠNIZK in Fig. 2 is online-extractable. Concretely, for any adversary A with qFS
queries to O(FS ∥ ·) and qPRNG queries to O(PRNG ∥ ·),

AdvOE
ΠVRF

(A) ≤ qFS + 1

2λ
+

qFSqPRNG
2Nλ

.

Proof. With the extractability access to the oracle, the extractor Ext observes the queries to O of the form
(PRNG ∥ ·), and record (x, y) to the list LPRNG where x is the input and y is the oracle output. Also, Ext
does the same for the queries of the form (FS ∥ ·), and keeps a list LFS. We say x is in the list LPRNG if there
exists some y such that (x, y) ∈ LPRNG.

Upon receiving a statement st = (E0, (E1, · · · , EN ), E′), possibly not in the language of Rfac, and a valid
proof (com, ch, resp), the extractor Ext proceeds as follows.

1. Parse ch = (c1, · · · , cλ) where ck ∈ {0, 1} for i ∈ [λ]. Also, parse com = (root1, · · · , rootλ) and
resp = (resp1, · · · , respλ).

2. Collect K ⊆ [λ] where ck = 1 for any k ∈ K.

3. Collect the queries S = {seedj}j∈[qPRNG] recorded in list LPRNG.

4. Find one (k, j) ∈ K× [qPRNG] such that rootk, seedj satisfy rootk = O(MT∥(r1, · · · , rN )⋆(E1, · · · , EN ))
where (r1, · · · , rN )← O(PRNG ∥ seedj) . If no such pairs found, return ⊥.

5. Execute the extractor Ext′ described in Thm. 4.3 on input two valid transcripts (comk, 0, seedj),
(comk, 1, respk) to extract wt ∈ GN and return wt.

We have to argue the pair (k, j) in Item 4 exists with an overwhelming probability.
For simplicity, we say a seed seed can serve as a 0-response for root if (r1, · · · , rN ) ← O(PRNG ∥ seed) and
root = O(MT ∥ (r1, · · · , rN ) ⋆ st, (Πri) ⋆ E0). For example, one can interpret Item 4 as finding a 0-response
for rootk for some k ∈ K.

Case I: O(FS ∥ st ∥ com) has not been queried before the verification. This implies that the A
produces com and resp without knowing the challenge. However, it requires ch equals O(FS ∥ st ∥ com) in the
verification process. This occurs with a probability not greater than 1/2λ.

Analysis. We analyze the advantage of A against Ext by aiming at each FS challenge query made by the
adversary to O(FS ∥ st′ ∥ ·) for some st′. We analyze when A submit a new com′ = (root′1, · · · , root′λ) to the
FS oracle, whether there exist 0-responses in the query list LPRNG.

For K ′ ⊆ [λ], we define the EK′ that when A submitting com to the FS oracle of the form (FS ∥ st′ ∥
root1, · · · , rootλ) to the random oracle, there exist no 0-responses in the query list LPRNG for rootk for any
k ∈ [K ′]. We also define event FK′ that the FS oracle returns the challenge (c′1, · · · , c′λ) where c′k = 1 for all
k ∈ K ′ and ck = 0 otherwise. Obviously, Pr[FK′ ] = 1/2λ for every new FS query. Denote the event that A
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outputs a transcript containing com′ by Ocom′ (e.g. (com′, ch′, resp′)) and the output is extractable for Ext
by Lcom′ . The latter case implies A fails.

Note that EK′ forms a partition. Therefore, if A returns (com′, ch′, resp′) we have

Pr[Ocom′ ] =
∑

K′⊆[λ]

Pr[Ocom′ ∩ EK′ ]

= Pr[Ocom′ ∩ EK′ ], for some K ′

= Pr[Ocom′ ∩ EK′ ∩ FK′ ] + Pr[Ocom′ ∩ EK′ ∩ ¬FK′ ]

≤ 1/2λ + Pr[A wins using com′ ∩ EK′ ∩ ¬FK′ ] + Pr[Lcom′ ∩ EK′ ∩ ¬FK′ ],

where Pr[Ocom′ ∩ EK′ ∩ FK′ ] ≤ 1/2λ since Pr[FK′ ] = 1/2λ. We partition the event that Ocom′ ∩ EK′ ∩ ¬FK′

into two cases: A wins or not (i.e. whether the tuple (com′, ch′, resp′) is extractable).

Case II: A wins with a tuple using com′∩EK′ ∩¬FK′ . Recall that if there exists k ∈ [λ]−K ′ such that
c′k = 1, then one can invoke Ext to extract the witness using resp′k and the list of O(PRNG ∥ ·). Therefore,
the case that A wins implies that c′k = 0 for all k ∈ [λ] − K ′ and A produces a seed seedk for some
c′k = 0, k ∈ K ′ such that com′

k = (r1, · · · , rN ) ⋆ E0 where (r1, · · · , rN )← O(PRNG ∥ seedk). Note that such
seedk is generated after the FS query. Since the protocol has the unique response property 4 and the group
elements are generated uniformly from G by O(PRNG∥·), the adversary can generate such a seed with chance
not greater than qPRNG/|G|N .

Therefore,
|Pr[Ocom′ ]− Pr[Lcom′ ]| ≤ 1/2λ + qPRNG/|G|N .

Wrapping up, given an adversary with qFS FS queries and qPRNG PRNG queries, by taking a union bound
over all FS queries we know the advantage of the adversary:

AdvOnlineExtract
ΠVRF

(A) ≤ Pr[Case I] +
∑

com in LFS

Pr[Case II wrt com]

≤ 1

2λ
+

∑
com in LFS

|Pr[Ocom′ ]− Pr[Lcom′ ]|

≤ qFS + 1

2λ
+

qFSqPRNG
|G|N

.

5 Verifiable Random Functions from Effective Group Actions

In this subsection, we present our first VRF construction from an effective group action – CAPYBARA
(Compact Action factorization Proofs Yielded By A RAndom function):

Construction. ΠVRF = {ParGen,KeyGen,VRFEval,Ver} using Πfac
NIZK = (P, V ), H where:

• ParGen(1λ): on input a security parameter 1λ, it returns pp = (G, E , ⋆, E0), which is a free, transitive
and effective group action.

• KeyGen(pp): On input public parameter pp = (G, ⋆,E0, E), it returns a secret key sk = (c0, c1, s1, · · · , sλ)
and a public key vk = (c0 ⋆ E0, c1 ⋆ E0, s1 ⋆ E0, · · · , sλ ⋆ E0).

4Given E ∈ EN there exist two unique group elements g ∈ GN and g ∈ G′N such that E = g⋆(E1, · · · , EN ) and E = g′⋆E0.
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• VRFEval(sk, x) 5: On input a secret key sk and an input x = (xi) ∈ {0, 1}λ, this algorithm outputs
(v, π) for the VRF value where v = (c0c1Π

λ
i=1s

xi
i ) ⋆ E0 together with the corresponding proof π where

I = {1, 2} ∪ {i+ 2|xi = 1 ∧ i ∈ [λ]} and π ← P (st = (E0, vkI , v),wt = skI) of ΠNIZK.

• Ver(vk, v, x, π): On input (vk, v, x, π), this algorithm computes b← V (st = (E0, vkI , v), π) using ΠNIZK

where I = {1, 2} ∪ {i+ 2|xi = 1 ∧ i ∈ [λ]}, and returns b.

ParGen(1λ)

1: Generate pp = (G, ⋆,E0, E)
2: return pp

KeyGen(pp)

1: (G, ⋆,E0, E)← pp
2: sk← Gλ+2

3: vk = sk ⋆ E0

4: return (vk, sk)

VRFEval(sk, x)

1: (G, ⋆,E0, E)← pp
2: v = E0

3: I ← {1, 2}
4: for i ∈ [λ] do
5: if xi = 1 then
6: I ← I ∪ {i+ 2}
7: for s ∈ skI do
8: v ← s ⋆ v
9: π ← P (st = (E0, vkI , v),wt = skI)

10: return (v, π)

VRFVer(vk, v, x, π)

1: (G, ⋆,E0, E)← pp
2: for i ∈ [λ] do
3: if xi = 1 then
4: I ← I ∪ {i+ 2}
5: return V (st = (E0, vkI , v), π)

Figure 3: The verifiable random function scheme ΠVRF based an effective group action and on the DDH
problem where Πfac

NIZK = (P, V ) is an NIZK for the relation Rfac described in Sec. 4.2.

Theorem 5.1. The VRF construction ΠVRF in Fig. 3 has provability.

Proof. Let (E, π) ← VRFEval(sk, x) and v = (c0c1Π
λ
i=1s

xi
i ) ⋆ E0. The proof π is generated by P (st =

(E0, vkI , v),wt = skI) and I = {1, 2} ∪ {i+ 2|xi = 1 ∧ i ∈ [λ]}. Since (st = (E0, vkI , v),wt = skI) ∈ R and
ΠNIZK has correctness, we have VRFVer(vk, v, x, π) = 1.

Theorem 5.2. If ΠNIZK is extractable, the VRF construction ΠVRF in Fig. 3 has computational full unique-
ness in the random oracle model. Concretely, for any full uniqueness adversary A against ΠVRF, there exists
an extractable adversary B against ΠNIZK such that

AdvUPΠVRF
(A) ≤ 2AdvOE

ΠNIZK
(B).

Proof. Given (vk, x, v1, v2, π1, π2) ← A where VRFVer((E0, vkI , v1), π1) = VRFVer((E0, vkI , v2), π2) = 1 and
v1 ̸= v2. where I = {1, 2} ∪ {i+ 2|xi = 1 ∧ i ∈ [λ]}.

By invoking the extractor Ext of ΠNIZK in Thm. 4.8 twice, we have s1 ← Ext((E0, vkI , v1), π1), s2 ←
Ext((E0, vkI , v2), π2) such that v1 = (Πi(s1)i) ⋆ E0 and v2 = (Πi(s2)i) ⋆ E0. Also, vkI = s1 ⋆ E0 and
vkI = s2 ⋆ E0. Since the action is free and transitive, we have s1 = s2, which contradicts v1 ̸= v2.

In other words, ifA wins, then the extractor E shall fail among two extractions. We can therefore tranform
A into an extractabililty adversary B against ΠNIZK. Concretely, if A returns (vk, x, v1, v2, π1, π2), then B
randomly outputs one of ((E0, vkI , v1), π1) or ((E0, vkI , v2), π2) where I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}.
Therefore, we have

AdvUPΠVRF
(A) ≤ 2AdvOE

ΠNIZK
(B).

5In the formal syntax of VRF, vk is not inclueded in the VRFEval. One can also include vk as part of the public key. In our
case, the user can recover vk from sk. Both justify the notation here.
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Theorem 5.3. If the decisional master CSIDH problem is hard, then the VRF construction ΠVRF in Fig. 3,
with a subroutine ΠNIZK = (P, V ) in Fig. 2, has (residual) pseudorandomness. Concretely, for any residual
pseudorandomness adversary A against ΠVRF with at most qPRNG queries of O(PRNG ∥ ·) and qFS queries of
O(FS ∥ ·), there exists a MDDH adversary B such that

AdvPRΠVRF
(A) ≤ qPRNG

2λ
+

qFS
2λN

+ AdvMDDH(B).

Proof. We show by using a hybrid argument that such an adversary A can be transformed into a MDDH
adversary B2. Let Game0 be the original residual pseudorandomness experiment and Game1 be the modi-
fied experiment. For i ∈ {0, 1}, we denote the advantage of A in Gamei by Advi(A) = |Pr[A(Gamei(b =
1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|, where b ∈ {0, 1} represents the random coin chosen by the challenger
(Def. 2.10 Item 7). Since Game0 is the original experiment, we know Adv0(A) = AdvPRΠVRF

(A) by definition.

We introduce Game1 which is the same as Game0 except for the way of evaluating x for a query. Rather
than generated via Prove from the subroutine ΠNIZK, the proof is generated using the simulator Sim for ΠNIZK

in Thm. 4.7. By Thm. 4.7, since the simulator Sim is statistically indistinguishable from a real prover, the
change in Game1 results in a negligible loss. Concretely, |Adv0(A)− Adv1(A)| ≤ qPRNG

2λ
+ qFS

2λN .

We now transform an adversary in Game1 into a MDDH problem adversary B. The reduction B starts
the MDDH problem with parameter n = λ ∈ N, receives (E1, · · · , Eλ), and proceeds as follows.

1. First, B simulates the oracle of O(FS ∥ ·), O(FS ∥MT) and O(PRNG ∥ ·) by keeping lists LFS, LMT, and
LPRNG respectively using the straight-line and on-the-fly method. B also keeps a list L to simulate the
oracle queries. Take O(FS∥·) for instance; upon receiving an oracle query as O(FS∥x), the B simulates
the oracle as follows.

(a) Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.

(b) Otherwise draw y ← {0, 1}λ uniformly at random. Add y to the list (x, y) and return y.

2. Generates c0, c1 ← G.

3. Invoke A with vk = (c0 ⋆ E0, c1 ⋆ E0, E1, · · · , Eλ).

4. Upon receiving the evaluation query x ∈ {0, 1}λ, forward the query x to the MDDH problem oracle
and recieve E. Run the simulator in Thm. 4.7 to produce a proof π ← Sim(E0, vkI , (c0c1) ⋆ E) where
I = {1, 2} ∪ {i+ 2|xi = 1 ∧ i ∈ [λ]}. Return (x, π) to A.

5. Upon receiving the challenge x̃, forward the challenge to x̃ to the MDDH problem challenger and
obtains vb. Forward vb to A and output whatever A returns.

When the MDDH problem challenger using the random coin b ∈ {0, 1} in the experiment (Def. 2.22
Item 4). B creates Game1 using the same random coin b. Therefore,

Adv1(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|

=
∣∣∣Pr[B2(ExpMDDH(λ, 1))→ 1]− Pr[B2(ExpMDDH(λ, 0))→ 1]

∣∣∣
= AdvMDDH(B).

Hence,

AdvPRΠVRF
(A) ≤ qPRNG

2λ
+

qFS
2λN

+ AdvMDDH(B).
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6 TSUBAKI - Twist-Square-Based Tweak for Isogenies

This subsection presents the variant using the CSIDH-based action with quadratic twists. Let (G, E , ⋆, E0)
denote the group action where E0 ∈ E denote the element has the property that Et

0 = E0. Also, for any
(g,E) ∈ G× E , we have (g ⋆ E)t = g−1 ⋆ Et.

A variant of CAPYBARA is described as follows.

Construction.

ParGen(1λ)

1: Generate pp = (G, ⋆,E0, E)
2: return pp

KeyGen(pp)

1: (G, ⋆,E0, E)← pp
2: sk← Gκ+2

3: vk = sk ⋆ E0

4: return (vk, sk)

Expands(sk)

1: (c0, c1, s1, · · · , sκ)← sk
2: return (c0, c1, s1, · · · , sκ,−s1, · · · ,−sκ)

Expandv(vk)

1: (X1, X1, E1, · · · , Eκ)← vk
2: return (X1, X1, E1, · · · , Eκ, E

t
1, · · · , Et

κ)

VRFEval(sk, x)

1: (G, ⋆,E0, E)← pp
2: v = E0

3: I ← {1, 2}
4: for i ∈ [κ] do
5: if xi = 1 then
6: I ← I ∪ {i+ 2}
7: if xi = −1 then
8: I ← I ∪ {i+ κ+ 2}
9: sk′, vk′ ← Expands(sk),Expandv(vk)

10: for s ∈ sk′I do
11: v ← s ⋆ v
12: π ← (P (st = (E0, vk

′
I , v),wt = sk′I))

13: return (v, π)

VRFVer(vk, v, x, π)

1: (G, ⋆,E0, E)← pp
2: for i ∈ [κ] do
3: if xi = 1 then
4: I ← I ∪ {i+ 2}
5: if xi = −1 then
6: I ← I ∪ {i+ κ+ 2}
7: vk′ ← Expandv(vk)
8: return V (st = (E0, vk

′
I , v), π)

Figure 4: Our verifiable random function scheme ΠVRF⋆ based on the sDDH problem where Πfac
NIZK = (P, V )

is an NIZK for the relation Rfac described in Sec. 4.2. The input x is ternary of length κ = λ/ log2(3).

The complete probability and the unique provability hold naturall by embedding ΠVRF⋆ in Fig. 4 back to
ΠVRF in Fig. 3. We therefore skip the proofs here. We only show the residual pseudorandomness of ΠVRF⋆ .

Theorem 6.1. The VRF construction ΠVRF in Fig. 4 has complete provability.

Theorem 6.2. If ΠNIZK is extractable, the VRF construction ΠVRF in Fig. 4 has unique provability in the
random oracle model. Concretely, for any unique provability adversary A against ΠVRF⋆ , there exists an
extractable adversary B against ΠNIZK such that

AdvUPΠVRF
(A) ≤ 2AdvOE

ΠNIZK
(B).

Theorem 6.3. If the twist decisional master CSIDH problem is hard, then the VRF construction ΠVRF⋆ in
Fig. 4, with a subroutine ΠNIZK = (P, V ) in Fig. 2, has (residual) pseudorandomness. Concretely, for any
residual pseudorandomness adversary A against ΠVRF with at most qPRNG queries of O(PRNG ∥ ·) and qFS
queries of O(FS ∥ ·), there exists a tMDDH adversary B such that

AdvPRΠVRF
(A) ≤ qPRNG

2λ
+

qFS
2κN

+ AdvtMDDH(B).
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Proof. We show by using a hybrid argument that such an adversary A can be transformed into a tMDDH
adversary B2. Let Game0 be the original residual pseudorandomness experiment and Game1 be the modi-
fied experiment. For i ∈ {0, 1}, we denote the advantage of A in Gamei by Advi(A) = |Pr[A(Gamei(b =
1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|, where b ∈ {0, 1} represents the random coin chosen by the challenger
(Def. 2.10 Item 7). Since Game0 be the original experiment, we know Adv0(A) = AdvPRΠVRF

(A) by definition.

We introduce Game1, which is the same as Game0 except for the way to respond to an evaluation query.
Rather than generated via Prove from the subroutine ΠNIZK, the proof is generated using the simulator Sim
for ΠNIZK in Thm. 4.7. By Thm. 4.7, since the simulator Sim is statistically indistinguishable from a real
prover, the change in Game1 results in a negligible loss. Concretely, |Adv0(A)− Adv1(A)| ≤ qPRNG

2λ
+ qFS

2κN .

We now transform an adversary in Game1 into a tMDDH problem adversary B. The reduction B starts
the tMDDH problem with parameter n = κ ∈ N, receives (E, (E1, · · · , Eκ)), and proceeds as follows.

1. Firstly, B simulates the oracle of O(FS ∥ ·), O(FS ∥MT) and O(PRNG ∥ ·) by keeping lists LFS, LMT,
and LPRNG respectively using the straight-line and on-the-fly method. B also keeps a list L to simulate
the oracle queries. Take O(FS ∥ ·) for instance; upon receiving an oracle query as O(FS ∥ x), the B
simulates the oracle as follows.

(a) Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.

(b) Otherwise draw y ← {0, 1}κ uniformly at random. Add y to the list (x, y) and return y.

2. Generates c0, c1 ← G.

3. Invoke A with vk = (c0 ⋆ E0, E,E1, · · · , Eκ).

4. Upon receiving the evaluation query x ∈ {0,±1}κ, forward the query x to the tMDDH problem oracle
and recieve E. Write vk′ = (c0 ⋆ E0, c0 ⋆ E,E1, · · · , Eκ, E

t
1, · · · , Et

κ) and I = {1, 2} ∪ {i + 2|xi =
1 ∧ i ∈ [κ]} ∪ {i + 2 + N |xi = −1 ∧ i ∈ [κ]}. Run the simulator in Thm. 4.7 to produce a proof
π ← Sim(E0, vk

′
I , c0 ⋆ E). Return (x, π) to A.

5. Upon receiving the challenge x̃, forward the challenge to x̃ to the tMDDH problem challenger and
obtains vb. Forward vb to A and output whatever A returns.

When the tMDDH problem challenger using the random coin b ∈ {0, 1} in the experiment (Def. 2.22
Item 4). B creates Game1 using the same random coin b. Therefore,

Adv1(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|

=
∣∣∣Pr[B2(ExptMDDH(κ, 1))→ 1]− Pr[B2(ExptMDDH(κ, 0))→ 1]

∣∣∣
= AdvtMDDH(B).

Hence,

AdvPRΠVRF∗
(A) ≤ qPRNG

2λ
+

qFS
2κN

+ AdvtMDDH(B).

7 Optimization and Performance

We ameliorate the proof size by utilizing the two techniques presented in [BKP20]. A brief is given as follows.

Unbalanced Challenge Space. One can observe the response of a prover in the proof system Fig. 2 for the
challenge 0 is much shorter than the one for challenge one. The former is a single seed, while the latter is a
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bunch of group elements. By introducing the unbalanced challenge space CM,K = {ch ∈ {0, 1}M | |ch| = K},
where | · | is the ℓ1-norm and 2λ ≤ M !

K!(M−K)! . We thereby obtain a much smaller proof size while the online-

extractability and zero-knowledge remain the same.

Seed Trees. The seed tree technique allows the prover to produce a large amount of the seeds using PRNG
and iteratively generating binary subtrees. The leaves of the tree are the seeds to be used. The prover
can later reveal the generating nodes while not disclosing the information of those unrevealed leaves. The
method reduces the size of responses for the challenge 0 in our case. Though the proof size regarding this
technique is not fixed, we will calculate the worst case for the proof size estimation.

The performances of CAPYBARA and TSUBAKI are given in Tab. 1 for the input space to be {0, 1}128.
CAPYBARA is based on the standard DDH assumption while TSUBAKI is based on the stronger square
DDH (Def. 2.23), of which the computational version is as hard as the group action inverse problem (Dlog).
We use the group action from CSIDH512, as specified in [BKV19], with M = 855 and K = 19 as the
unbalanced challenge space in our implementation. Our proof sizes are flexible and depend on the input
length, with lengths approximately 79|x|/128 for CAPYBARA and 51|x|/81 for TSUBAKI. The group action
from CSIDH512 has been estimated to have 128 bits of classical security and over 60 bits of quantum security
[Pei20]. We also compare our VRFs to other existing post-quantum VRFs, including LB-VRF [EKS+21],
SL-VRF [BDE+22], and LaV [ESLR22], all aiming to meet the NIST II security level. LB-VRF has limited
residual pseudorandomness, while SL-VRF, LaV, and our VRFs are full VRFs. The security of SL-VRF is
based on LowMC, and LaV relies on a combination of a hybrid lattice assumption and additional conditions
(as detailed in Assumption 1 of [ESLR22]).

|sk| |vk| |v| |π| Assumption others
CAPYBARA [Fig. 3] 2KB 8.3KB 64B 39 KB DDH (Def. 2.20)
TSUBAKI [Fig. 4] 1.3KB 5.3KB 64B 34 KB sDDH (Def. 2.23)

LB-VRF I [EKS+21] 3.3KB 84B 4.9KB MSIS/MLWE 1-Time
LB-VRF II [EKS+21] 3.3KB 84B 6.1KB MSIS/MLWE 3-Time
LB-VRF III [EKS+21] 3.4KB 84B 7.3KB MSIS/MLWE 5-Time
SL-VRF[BDE+22] 24B 48B 32B 40 KB LowMC
LaV [ESLR22] 6.4KB 3.4KB 124B 12 KB See [ESLR22]

Table 1: CAPYBARA and TSUBAKI (Figs. 3 and 4, resp) using the group action setting CSIDH512
instantiated in [BKV19]. The unbalanced challenge space CM,K where M = 855,K = 19 is used in the proof
system Fig. 2. Note that one can also use a seed to generate the entire secret key sk to optimize the secret
key size to be 32B in our case. Our proof sizes are ≈ 79|x|/128 and ≤ 51|x|/81 respectively and vary with
the density |x|/κ of the input x where | · | is the ℓ1-norm. The notations |sk|, |vk|, |v|, |π| represent the length
of the secret key, verification key, output, proof, respectively. The security of SL-VRF is based on LowMC,
and LaV relies on a combination of a hybrid lattice assumption and additional conditions (as detailed in
Assumption 1 of [ESLR22]).

Acknowledgement

Yi-Fu Lai was supported by the Ministry for Business, Innovation and Employment in New Zealand. We
would like to express our gratitude to Steven Galbraith and the anonymous reviewers for their valuable
editorial suggestions that have helped to enhance the presentation of this work.

25



References

[ACF14] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions: Relations to
identity-based key encapsulation and new constructions. Journal of Cryptology, 27(3):544–593,
July 2014.

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group
actions and applications. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 411–439. Springer, Heidelberg, December 2020.

[AEK+22] Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and Doreen Riepel.
Password-authenticated key exchange from group actions. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceed-
ings, Part II, volume 13508 of LNCS, pages 699–728. Springer, 2022.

[BBD+22] Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D. Galbraith, Sab-
rina Kunzweiler, Simon-Philipp Merz, Christophe Petit, Benjamin Smith, Katherine E. Stange,
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A Hardness of Twisted Master Decisional Problem

We start from a quick recap of the assumptions in Sec. 2.6.

Definition A.1 (Decisional Square CSIDH (sDDH) Problem). Let (G, E , ⋆, E0) be a group action. The
decisional square CSIDH problem is that the adversary A is given Tb = (g1⋆E0, hb⋆E0) where h0 = g21 , h1 = g2
and (g1, g2, b)← G2 × {0, 1} and return b ∈ {0, 1}.

Definition A.2 (Decisional Reciprocal CSIDH (rDDH) Problem). Let (G, E , ⋆, E0) be a group action. The
decisional reciprocal CSIDH problem is that the adversary A is given Tb = (g1 ⋆ E0, g2 ⋆ E0, hb ⋆ E0, h

′
b ⋆ E0)

where h0 = g1g2, h1 = g3, h
′
0 = g1g

−1
2 , h′

1 = g4 and (g1, g2, g3, g4, b)← G4 × {0, 1}, and return b′ ∈ {0, 1}.

Definition A.3 (Multi-challenge Decisional Reciprocal CSIDH (mcrDDH) Problem). Let (G, E , ⋆, E0) be a
group action and b ∈ {0, 1}. The multi-challenge decisional reciprocal Diffie-Hellman experiment ExpmcrDDH(b)
on input b proceeds as follows. The adversary A is given (g1 ⋆ E0) where g1 ← G together with access to
OmcrDDH

b defined as follows:

1. OmcrDDH
0 : (g2 ⋆ E0, (g1g2) ⋆ E0, (g

−1
1 g2) ⋆ E0) where g2 ← G,

2. OmcrDDH
1 : (g2 ⋆ E0, g3 ⋆ E0, g4 ⋆ E0) where g2, g3, g4 ← G,

and outputs b′ ∈ {0, 1}.

30

https://eprint.iacr.org/2017/099
https://eprint.iacr.org/2022/1038


We denote the advantage of a mcrDDH problem adversary A problem by

AdvmcrDDH(A) =
∣∣∣Pr[A(ExpmcrDDH(b = 0))→ 1]− Pr[A(ExpmcrDDH(b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment.
The group action (G, E , ⋆, E0) is implicitly parameterized in the experiment. We say the mcrDDH problem is
hard, if for any PPT adversary A, there exists a negligible function negl such that Adv(A)mcrDDH ≤ negl(λ).
One can use a standard hybrid argument to give a reduction from the rDDH problem to the mcrDDH problem.
We skip the proof here.

Definition A.4 (Twisted Master Decisional CSIDH (tMDDH) Problem). Let (G, E , ⋆, E0) be a group action,
n ∈ N, and b ∈ {0, 1}. The twisted master DDH problem experiment ExptMDDH(n, b) on input (n, b) proceeds
as follows.

1. The challenger C computes E = g ⋆ E0 where g ← G.

2. C generates a tuple (g1 ⋆E, · · · , gn ⋆E) where g1, · · · , gn ← G, and sends the tuple to the adversary A.

3. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0,±1}n returning
∏n

i g
xi
i ⋆

E.

4. A sends a string v = (v1, · · · , vn) ∈ {0,±1}n to
∏n

i g
vi
i ⋆ E to the challenge oracle C.

5. C ignores if v has been queried before or is of the Hamming weight less than 2. Otherwise, C, depending
on b, computes X0 =

∏n
i g

vi
i ⋆ E or X1 = r ⋆ E for some r ← G, and send Xb to A. This process will

only output for one time.

6. A outputs b′ ∈ {0, 1}.

We denote the advantage of the decisional problem adversary A by

AdvtMDDH(A) =
∣∣∣Pr[A(ExptMDDH(n, b = 0))→ 1]− Pr[A(ExptMDDH(n, b = 1))→ 1]

∣∣∣ ,
where b is the randomness in the experiment, and the probability is taken over the randomness used by A
and the randomness used in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in
the experiment. We say the tMDDH problem is hard, if for any PPT adversary A, there exists a negligible
function negl such that Adv(A)tMDDH ≤ negl(λ).

Theorem A.5. The tMDDH problem is not easier than the mcrDDH problem. Concretely, let A be an
adversary against the mcrDDH problem with the parameter (G, E , ⋆, E0) and n ∈ N. If at most qDH = poly(λ)
queries are made in the mcrDDH experiment, then there exists tMDDH problem adversaries B2, · · · Bn such
that

AdvtMDDH(A) ≤
n∑

i=2

AdvmcrDDH(Bi).

Proof. We prove the theorem via a hybrid argument by introducing two series of games Game1, · · · ,Gamen
by modifying the responses of the DH oracle and the challenge oracle in the tMDDH experiment gradually.
Among the games, Game1 be the original tMDDH experiment, We will modify the response of the challenge
oracle and the DH oracle together, which will be explained later. For i ∈ [n] where b ∈ {0, 1}, let A(Gamei(b))
represent A running the Gamei, the modified tMDDH experiment with the random coin b used in the
experiment, and A will return 0 or 1. Therefore, by definition,

AdvtMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|. (4)
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Looking ahead, Gamen be the modified tMDDH experiment where both the DH oracle and the challenger
reply with random elements in E . Therefore, since b is information theoretically hidden from A,

|Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamen(b = 0))→ 1]| = 0. (5)

Game1 : the original tMDDH experiment starting with a tuple (g1 ⋆E, · · · , gn ⋆E) where g1, · · · , gn ← G
and the oracle response as specified.

Game2 to Gamen: for j ∈ {2, · · · , n}, Gamej is the same as Gamej−1 except that the response of the DH
oracle and the challenge oracle is modified as follows. The modification starts with a list L which is initially

{(0, E), (e1, g1 ⋆ E), · · · , (ej , gj ⋆ E)} ⊆ {0,±1}j × E .

On the query x = (x1, · · · , xn) ∈ {0,±1}n, if ((x1, · · · , xj), X) ∈ L for some X ∈ E , the oracle returns
(
∏n

i=j+1 g
xi
i )⋆X; otherwise, it draws g′ ← G, computes X = g′ ⋆E, adds ((x1, · · · , xj), X) to the list L, and

returns (
∏n

i=j+1 g
xi
i ) ⋆X to A. The reply for the challenge query is modified in the same way if the random

coin b = 0.

Claim that Gamej−1 ≈c Gamej for A for any 2 ≤ j ≤ n by assuming the mcrDDH problem. Concretely,
a reduction Bj to the mcrDDH problem proceeds as follows

1. Obtain T = (g′ ⋆ E0, {(Xi, X
′
i, X

′′
i )}i∈[qDH+j−1]) from the mcrDDH oracle.

2. Overwrite the notations of Xi, X
′
i, X

′′
i by

(
g′ ⋆ E, {Xi, X

′
i, X

′′
i }i∈[qDH+j−1]

)
← g ⋆ T where g ← G.

3. Then, Bj initializes with a list

L =

{
(e1, X1), · · · , (ej−1, Xj−1),(e1 + ej , X

′
1), · · · , (ej−1 + ej , X

′
j−1), (0, E),

(e1 − ej , X
′′
1 ), · · · , (ej−1 − ej , X

′′
j−1), (ej , g

′ ⋆ E)

}
⊂ {0,±1}j × E ,

where ei is the i-th elementary vector in {0,±1}j , and set a counter ct = j to record the number of
the pairs (Xi, X

′
i, X

′′
i ) taken into the list L.

4. Invoke A on input (E,X1, · · · , Xj−1, g
′ ⋆ E0, gj+1 ⋆ E0, · · · , gn ⋆ E0) where gj+1, · · · , gn ← G.

5. Upon receiving the oracle query (x1, · · · , xn) ∈ {0,±1}n, check whether ((x1, · · · , xj), X) ∈ L for some
X ∈ E . If so, return

∏n
i=j+1 g

xi
i ⋆ X. Otherwise, update

L← {((x1, · · · , xj−1, 0), Xct), ((x1, · · · , xj−1, 1), X
′
ct), ((x1, · · · , xj−1,−1), X ′′

ct)} ∪ L,

and set ct← ct+ 1, and rerun this step again.

6. Output whatever A returns.

Note that in Step 1. if Bj is in ExpmcrDDH(0) (Def. A.3 Item 1) then Bj generates Gamej−1 because

g′ ⋆ Xi = X ′
i and g′−1 ⋆ Xi = X ′′

i . In contrast, if it is in ExpmcrDDH(1) (Def. A.3 Item 2), then Bj generates
Gamej . It follows that for b ∈ {0, 1},

AdvmcrDDH(Bj) =|Pr[Bj(ExpmcrDDH(0))→ 1]− Pr[Bj(ExpmcrDDH(1))→ 1]|
=|Pr[A(Gamej−1(b))→ 1]− Pr[A(Gamej(b))→ 1]| (6)
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Therefore, we have

AdvtMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]| (By Eq. (4))

≤
n∑

j=2

(|Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Gamej(b = 0))→ 1]|

+ |Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|)
+ |Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamej−1(b = 1))→ 1]| (Union bounds.)

=

n−1∑
j=2

AdvmcrDDH(Bj). (By Eqs. (5) and (6))

The result follows.
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