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Abstract—In recent years, quantum computers and Shor’s 

quantum algorithm have been able to effectively solve NP (Non-

deterministic Polynomial-time) problems such as prime 

factorization and discrete logarithm problems, posing a threat 

to current mainstream asymmetric cryptography, including 

RSA and Elliptic Curve Cryptography (ECC). As a result, the 

National Institute of Standards and Technology (NIST) in the 

United States call for Post-Quantum Cryptography (PQC) 

methods that include lattice-based cryptography methods, code-

based cryptography methods, multivariate cryptography 

methods, and hash-based cryptography methods for resisting 

quantum computing attacks. Therefore, this study proposes a 

PQC neural network (PQC-NN) that maps a code-based PQC 

method to a neural network structure and enhances the security 

of ciphertexts with non-linear activation functions, random 

perturbation of ciphertexts, and uniform distribution of 

ciphertexts. The main innovations of this study include: (1) 

constructing a neural network structure that complies with 

code-based PQC, where the weight sets between the input layer 

and the ciphertext layer can be used as a public key for 

encryption, and the weight sets between the ciphertext layer and 

the output layer can be used as a private key for decryption; (2) 

adding random perturbations to the ciphertext layer, which can 

be removed during the decryption phase to restore the original 

plaintext; (3) constraining the output values of the ciphertext 

layer to follow a uniform distribution with a significant 

similarity by adding the cumulative distribution function (CDF) 

values of the chi-square distribution to the loss function, 

ensuring that the neural network produces sufficiently uniform 

distribution for the output values of the ciphertext layer. In 

practical experiments, this study uses cellular network signals 

as a case study to demonstrate that encryption and decryption 

can be performed by the proposed PQC neural network with the 

uniform distribution of ciphertexts. In the future, the proposed 

PQC neural network could be applied to various applications. 

Keywords—post-quantum cryptography, McEliece 

cryptography, neural network 

I. INTRODUCTION 

In the recent years, the development of quantum 
computers and Shor’s quantum algorithm [1] have been used 
for effectively solving NP (Non-deterministic Polynomial-
time) problems (e.g. prime factorization and discrete 
logarithm problems). Therefore, the current mainstream 
asymmetric cryptography methods (e.g. RSA based on the 
prime factorization problem and Elliptic Curve Cryptography 
(ECC) based on the discrete logarithm problem) may be 
attacked by quantum computing. Therefore, the National 
Institute of Standards and Technology (NIST) in the United 
States has called for Post-Quantum Cryptography (PQC) 
methods [2] and collected latticed-based cryptography 
methods [3], code-based cryptography methods [4-5], 
multivariate cryptography methods [2], and hash-based 
cryptography methods [6] based on different NP problems for 

improving security. For instance, McEliece cryptography 
method (i.e. one of code-based cryptography methods) 
generates several matrices as the private key and the 
multiplication of these matrices as the public key, and the non-
negative matrix factorization (NMF) problem (i.e. one of NP 
problems) supports the security of McEliece cryptography 
method. Moreover, some noises can be added into ciphertexts 
for improving security, and these noises can be detected and 
corrected through the error-correcting phase in McEliece 
cryptography method for resisting quantum computing attacks. 

Furthermore, neural networks have been a popular tool to 
provide encoding and decoding. Therefore, this study 
proposes PQC neural network (PQC-NN) based on the ability 
of encoding and decoding in the neural network [7]. The 
proposed PQC neural network can map a code-based PQC 
method to a neural network structure and enhance the security 
of ciphertexts with non-linear activation functions, random 
perturbation of ciphertexts, and uniform distribution of 
ciphertexts. 

The contributions and innovations of this study are 
highlighted and summarized as follows. 

• Constructing a neural network structure that complies 
with code-based PQC, where the weight sets between 
the input layer and the ciphertext layer can be used as 
a public key for encryption, and the weight sets 
between the ciphertext layer and the output layer can 
be used as a private key for decryption. 

• Adding random perturbations to the ciphertext layer, 
which can be removed during the decryption phase to 
restore the original plaintext. 

• Constraining the output values of the ciphertext layer 
to follow a uniform distribution with a significant 
similarity by adding the cumulative distribution 
function (CDF) values of the chi-square distribution to 
the loss function, ensuring that the neural network 
produces sufficiently uniform distribution for the 
output values of the ciphertext layer. 

This manuscript has five sections. Section II describes a 
code-based PQC method and presents the principle and 
calculation examples of McEliece cryptography method. 
Section III proposes PQC neural network from a neural 
network for McEliece cryptography method to the advanced 
neural network for PQC method. For generating secure 
ciphertexts, Subsection III.C illustrates the added random 
perturbations in the ciphertext layer and the added CDF values 
in the loss function for the chi-test of ciphertext uniform 
distribution. In Section IV, practical cellular network signals 
are selected as a case study to be encrypted by the proposed 
PQC neural network, and the mean-square errors and CDF 
values are evaluated under different hyperparameter values. 
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Finally, Section V concludes the contributions of this study 
and discusses the future work. 

II. CODE-BASED POST-QUANTUM CRYPTOGRAPHY 

This section presents McEliece cryptography method (i.e. 
one of code-based PQC methods) and uses Hamming code 
method as the error-correcting method in McEliece 
cryptography method. Section II.A gives a calculation 
example to explain encoding and decoding by Hamming code 
method. Section II.B gives a calculation example to explain 
encryption and decryption by McEliece cryptography method. 

A. Hamming code method 

This subsection illustrates the initial phase, encoding and 
decoding phase, and error-correcting phase. 

1) Initial phase 
In the initial phase, Hamming code method generates three 

matrices that include a generator matrix (i.e. an encoder) G, 
an error-detector matrix H based on G, a decoder matrix R 
based on G. This manuscript shows a calculation example to 
present the matrices G, H, and R in Equations (1), (2), and (3). 

𝐺 = [

1 1
1 0

1 0 0 0 0
0 1 1 0 0

0 1
1 1

0 1 0 1 0
0 1 0 0 1

] (1) 

𝐻 =

[
 
 
 
 
 
 
1 0 0
0 1 0
1
0
1
0
1

1
0
0
1
1

0
1
1
1
1]
 
 
 
 
 
 

 (2) 

𝑅 =

[
 
 
 
 
 
 
0 0 0 0
0 0 0 0
1
0
0
0
0

0
0
1
0
0

0 0
0 0
0 0
1 0
0 1]

 
 
 
 
 
 

 (3) 

2) Encoding and decoding phase 
In the encoding phase, the generator matrix G can be 

multiplied by the plaintext x to obtain the encoded text y 
(shown in Equation (4)). Furthermore, the decoding phase, the 
decoder matrix R can be multiplied by the encoded text y to 
obtain the plaintext x (shown in Equation (5)). In the 
calculation example, the plaintext 𝑥 = [1 0 0 0]  is 
selected as a case for explanation, and the encoded text y can 
be calculated as [1 1 1 0 0 0 0]  (shown in 
Equation (6)). Furthermore, the plaintext x can be obtained by 
the multiplication of the encoded text y and the decoder matrix 
R (shown in Equation (7)). 

𝑦 = 𝑥𝐺 (4) 

𝑥 = 𝑦𝑅 (5) 

𝑦 = 𝑥𝐺

= [1 0 0 0] [

1 1
1 0

1 0 0 0 0
0 1 1 0 0

0 1
1 1

0 1 0 1 0
0 1 0 0 1

]

= [1 1 1 0 0 0 0] 

(6) 

𝑥 = 𝑦𝑅

= [1 1 1 0 0 0 0]

[
 
 
 
 
 
 
0 0 0 0
0 0 0 0
1
0
0
0
0

0
0
1
0
0

0 0
0 0
0 0
1 0
0 1]

 
 
 
 
 
 

= [1 0 0 0] 

(7) 

3) Error-correcting phase 
For the demonstration of error-correcting phase, a random 

number r is added into the encoded text y to obtain the text y’ 
with a noise (shown in Equation (8)). The positioning of error 
bit z in the text y’ can be detected by the error-detector matrix 
H (shown in Equation (9)) for correction. In the manuscript, 
the random number 𝑟 = [0 0 0 0 0 0 1]  is 
selected to be a noise for generating the text y’ (shown in 
Equation (10)). Furthermore, the error-detector matrix H can 
be multiplied by the text y’ to obtain the positioning of error 
bit 𝑧 = [1 1 1] (shown in Equation (11)). The seventh bit 
is incorrect and detected by the positioning of error bit z, so 
the seventh bit of the text y’ can be corrected to obtain the 
corrected encoded text 𝑦 = [1 1 1 0 0 0 0]. 

𝑦′ = 𝑦 + 𝑟 (8) 

𝑧 = 𝑦′𝐻 (9) 

𝑦′ = 𝑦 + 𝑟 = [1 1 1 0 0 0 0]
+ [0 0 0 0 0 0 1] 

                     = [1 1 1 0 0 0 1] 
(10) 

𝑧 = 𝑦′𝐻 = [1 1 1 0 0 0 1]

[
 
 
 
 
 
 
1 0 0
0 1 0
1
0
1
0
1

1
0
0
1
1

0
1
1
1
1]
 
 
 
 
 
 

 

   = [1 1 1] 

(11) 

B. McEliece cryptography method 

This subsection illustrates the key generation phase, 
encryption phase, and decryption phase. 

1) Key generation phase 
In the key generation phase, McEliece cryptography 

method generates three matrices that include a scrambler S, a 
generator matrix G, and a permutation matrix P. These three 
matrices (i.e. {S, G, P}) are selected as a private key, and the 
multiplication of these three matrices G’ is selected as public 
key (shown in Equation (12)). For the explanation of 
McEliece cryptography method, a calculation example of S, G, 
and P is given in Equations (13), (1), and (14). Furthermore, 
the public key G’ can be obtained by Equation (15). 

𝐺′ = 𝑆𝐺𝑃 (12) 

𝑆 = [

1 1
1 0

0 1
0 1

0 1
1 1

1 1
0 0

] (13) 

𝑃 =

[
 
 
 
 
 
0 1
0 0

0 0
0 1

0 0 0
0 0 0

0 0
1 0

0 0
0 0

0 0 1
0 0 0

0 0
0
0

0
0

1 0
0
0

0
0

0 0 0
0
1

1
0

0
0]
 
 
 
 
 

 (14) 
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𝐺′ = 𝑆𝐺𝑃 

     = [

1 1
1 0

0 1
0 1

0 1
1 1

1 1
0 0

] × [

1 1
1 0

1 0 0 0 0
0 1 1 0 0

0 1
1 1

0 1 0 1 0
0 1 0 0 1

]

×

[
 
 
 
 
 
0 1
0 0

0 0
0 1

0 0 0
0 0 0

0 0
1 0

0 0
0 0

0 0 1
0 0 0

0 0
0
0

0
0

1 0
0
0

0
0

0 0 0
0
1

1
0

0
0]
 
 
 
 
 

 

     = [

0 1
1 0

1 0 1 0 1
0 0 1 0 1

1 0
1 0

1 0 1 1 0
1 1 0 0 1

] 

(15) 

2) Encryption phase 
In the encryption phase, the public key G’ can be 

multiplied by the plaintext x to obtain the ciphertext y with a 
random number r (shown in Equation (16)). For random 
perturbations, the same plaintext can be encrypted for 
generating different ciphertexts based on different random 
numbers. The plaintext 𝑥 = [1 0 0 0] and the random 
number 𝑟 = [0 0 0 0 0 0 0]  are selected as a 
calculation example, and the ciphertext 𝑦 =
[0 1 1 0 1 0 1] can be obtained by Equation (17). 
Due the random number 𝑟 = [0 0 0 0 0 0 0] for 
the explanation of McEliece cryptography method, the error-
correcting phase in Subsection II.A.3 is not necessary in this 
case. If other random numbers are used in the encryption 
phase, the ciphertext with a noise could be denoted as y’; 
furthermore, the noise in y’ can be corrected and detected by 
the steps in Subsection II.A.3 for removing the influence of 
random number r. 

𝑦 = 𝑥𝐺′ + 𝑟 = 𝑥𝑆𝐺𝑃 + 𝑟 (16) 

𝑦 = 𝑥𝐺′ + 𝑟 

  = [1 0 0 0] [

0 1
1 0

1 0 1 0 1
0 0 1 0 1

1 0
1 0

1 0 1 1 0
1 1 0 0 1

]

+ [0 0 0 0 0 0 0] 
  = [0 1 1 0 1 0 1] 

(17) 

 

3) Decryption phase 
The ciphertext is obtained in accordance with the public 

key G’ (i.e. the multiplication of S, G, and P), so the ciphertext 
can be decrypted by the multiplication of the matrix P-1, the 
decoder matrix R, and the matrix S-1 for obtaining the plaintext 
x. Firstly, the inverse matrix of the permutation matrix P (i.e. 
P-1) can be multiplied by the ciphertext y to remove the 
influence of the permutation matrix P (shown in Equation 
(18)). Furthermore, the error-correcting phase in Subsection 
II.A.3 can be performed to remove the influence of the random 
number r (i.e. 𝑟𝑃−1 in Equation (18)) and get the matrix 𝑥𝑆𝐺. 
The decoding phase can be performed by Equation (19), the 
decoder matrix R can be multiplied by the matrix 𝑥𝑆𝐺  to 
remove the influence of the generator matrix G for getting the 
matrix 𝑥𝑆. Finally, the inverse matrix of the scrambler S (i.e. 
S -1) can be multiplied by the matrix 𝑥𝑆  to remove the 
influence of the scrambler S (shown in Equation (20)) for 
obtaining the plaintext x. 

 

𝑦𝑃−1 = 𝑥𝐺′𝑃−1 + 𝑟𝑃−1 
           = [0 1 1 0 1 0 1]

× 

[
 
 
 
 
 
0 0
1 0

0 1
0 0

0 0 0
0 0 0

0 0
0 1

0 0
0 0

1 0 0
0 0 0

0 0
0
0

0
0

0 0
0
1

0
0

0 0 1
0
0

1
0

0
0]
 
 
 
 
 

 

= [1 0 1 0 1 0 1] 
= 𝑥𝑆𝐺𝑃𝑃−1 + 𝑟𝑃−1 
= 𝑥𝑆𝐺 + 𝑟𝑃−1 

(18) 

𝑥𝑆𝐺𝑅 = [1 0 1 0 1 0 1]

[
 
 
 
 
 
 
0 0 0 0
0 0 0 0
1
0
0
0
0

0
0
1
0
0

0 0
0 0
0 0
1 0
0 1]

 
 
 
 
 
 

 

           = [1 1 0 1] = 𝑥𝑆 

(19) 

𝑥𝑆𝑆−1 = [1 1 0 1] [

1 1
1 1

0 1
0 0

0 1
1 0

1 1
0 1

] 

             = [1 0 0 0] = 𝑥 

(20) 

For the explanation of McEliece cryptography method 
with a calculation example, Hamming code method (i.e. a 
linear error-correcting method) is used, but the non-linear 
error-correcting methods could be used for improving security 
levels. Furthermore, this section uses small matrices, but 
bigger matrices could be considered for practical applications. 
For instance, the McEliece cryptography method which was 
submitted to NIST for PQC standardization has different sizes 
of bigger matrices for the requirements of security levels in 
the standard of NIST. 

III. POST-QUANTUM CRYPTOGRAPHY NEURAL NETWORK 

This section presents detail explanation of the proposed 
PQC neural network from step-by-step. Subsection III.A 
presents the structure of neural network for Hamming code 
method based on the case in Subsection II.A, and Subsection 
III.B presents the structure of neural network for McEliece 
cryptography method based on the case in Subsection II.B. 
Finally, the proposed PQC neural network is illustrated in 
Subsection III.C. 

A. Neural network for Hamming code method 

Fig. 1 presents the structure of neural network for 
Hamming code method based on the case in Subsection II.A. 
The neural network has four neurons in the input layer (i.e. X 
= {x1, x2, x3, x4}), seven neurons in the hidden layer (i.e. Y = 
{y1, y2, …, y7}), and four neurons in the output layer. Each 
neuron has no bias, and the linear function is adopted as the 
activation function. The outputs of the neural network is 
fitting the inputs of the neural network (i.e. an auto-encoder 
network). Therefore, the weights between the input layer and 
the hidden layer is a 4 x 7 matrix G (i.e. the generator matrix 
G in Subsection II.A), and the value of each element in the 
matrix G is denoted in Equation (1). The weights between the 
hidden layer and the output layer is a 7 x 4 matrix R (i.e. the 
decoder matrix R in Subsection II.A), and the value of each 
element in the matrix R is denoted in Equation (3). In this 
subsection, the red line is represented as the weight value of 
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one, and the black line is represented as the weight value of 
zero in the structure of neural network. Therefore, Hamming 
code method in Subsection II.A can be represented as the 
neural network in Fig. 1 for encoding and decoding. When the 
values of the input X are [1 0 0 0], the values of the 
neurons in the hidden layer Y are [1 1 1 0 0 0 0] 
(i.e. the encoded values). Furthermore, the encoded values can 
be decoded as [1 0 0 0] through the output layer. 

 

Fig. 1. Neural network for Hamming code method 

B. Neural network for McEliece cryptography method 

Fig. 2 presents the structure of neural network for 
McEliece cryptography method on the case in Subsection II.B. 
The neural network has four neurons in the input layer (i.e. X 
= {x1, x2, x3, x4}), four neurons in the first hidden layer, seven 
neurons in the second hidden layer, seven neurons in the third 
hidden layer (i.e. the ciphertext layer) Y = {y1, y2, …, y7}, 
seven neurons in the fourth hidden layer, four neurons in the 
fifth hidden layer, and four neurons in the output layer. Each 
neuron has no bias, and the linear function is adopted as the 
activation function. In this subsection, the red line is 
represented as the weight value of one, and the black line is 
represented as the weight value of zero in the structure of 
neural network. 

  

Fig. 2. Neural network for McEliece cryptography method 

Encryption can be performed from the input layer to the 
third hidden layer (i.e. the ciphertext layer). In the neural 
network, the weights between the input layer and the first 
hidden layer is a 4 x 4 matrix S (i.e. the scrambler S in 
Subsection II.B), and the value of each element in the matrix 
S is denoted in Equation (13). The weights between the first 
hidden layer and the second hidden layer is a 4 x 7 matrix G 
(i.e. the generator matrix G in Subsection II.A), and the value 
of each element in the matrix G is denoted in Equation (1). 
The weights between the second hidden layer and the third 
hidden layer is a 7 x 7 matrix P (i.e. the permutation matrix P 
in Subsection II.B), and the value of each element in the 
matrix P is denoted in Equation (14). When the values of the 
input X are [1 0 0 0], the values of the neurons in the 
third hidden layer (i.e. the ciphertext layer) Y are 
[0 1 1 0 1 0 1] (i.e. the values of ciphertexts). 

Decryption can be performed from the third hidden layer 
(i.e. the ciphertext layer) to the output layer. In the neural 
network, the weights between the third hidden layer and the 
fourth hidden layer is a 7 x 7 matrix P-1 (i.e. the inverse matrix 

of the permutation matrix P in Subsection II.B). The weights 
between the fourth hidden layer and the fifth hidden layer is a 
7 x 4 matrix R (i.e. the decoder matrix R in Subsection II.A), 
and the value of each element in the matrix R is denoted in 
Equation (3). The weights between the fifth hidden layer and 
the output layer is a 4 x 4 matrix S -1 (i.e. the inverse matrix of 
the scrambler S in Subsection II.B). When the values of the 
neurons in the third hidden layer (i.e. the ciphertext layer) Y 
are [0 1 1 0 1 0 1] (i.e. the values of ciphertexts), 
the values of the neurons in the output layer [1 0 0 0] 
(i.e. the decrypted values). 

C. Post-quantum cryptography neural network 

Subsection III.B shows that the neural network can be 
constructed for McEliece cryptography method, so this study 
proposes an advanced PQC method based on neural networks. 
Non-linear functions can be adopted as the activation 
functions, and random numbers can be added to the neurons 
in the ciphertext layer (i.e. the third hidden layer in Fig. 3) for 
random perturbations and security improvement. From the 
ciphertext layer and the output layer, the random perturbations 
can be removed through the calculation of neural network to 
obtain plaintexts for decryption. 

For the explanation of the proposed PQC neural network, 
the case in Subsection III.B is used to construct the neural 
network with an input layer, five hidden layers, and an output 
layer. For encryption, the structure of neural network includes 
four neurons (i.e. X = {x1, x2, …, xc } and the number of inputs 
c is four) in the input layer, four neurons in the first hidden 
layer, seven neurons in the second hidden layer, and seven 
neurons in the third hidden layer (i.e. the ciphertext layer). The 
weights between the input layer and the first hidden layer is a 
4 x 4 matrix S; the weights between the first hidden layer and 
the second hidden layer is a 4 x 7 matrix G; the weights 
between the second hidden layer and the third hidden layer is 
a 7 x 7 matrix P. Furthermore, the notation ⨂ is denoted as 
the non-linear activation functions in each layer for generating 
the n-dimension ciphertexts (i.e. n neurons in the ciphertext 
layer Y = {y1, y2, …, yn}) by Equation (21). For improving the 
security, random numbers can be added to the output of the 
ciphertext layer. For instance, the i-th neuron in the ciphertext 
layer yi can add the random number ri based the weight 𝛼 by 
Equation (22). For decryption, the structure of neural network 
includes seven neurons in the fourth hidden layer, four 
neurons in the fifth hidden layer, and four neurons in the 
output layer. The weights between the third hidden layer and 
the fourth hidden layer is a 7 x 7 matrix L; the weights between 
the fourth hidden layer and the fifth hidden layer is a 7 x 4 
matrix M; the weights between the fifth hidden layer and the 
output layer is a 4 x 4 matrix N for decrypting the ciphertexts 
and obtain the c-dimension plaintexts (i.e. O = {o1, o2, …, oc}) 
by Equation (23). Furthermore, the Mean-Square Error (MSE) 
function is adopted as a part of loss function to reduce the 
errors of decrypted data. 

 

Fig. 3. PQC neural network 
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𝑌 = 𝑋⨂𝑆 ⊗ 𝐺 ⊗ 𝑃 (21) 

𝑦𝑖 ′ = 𝑦𝑖 + 𝛼 × 𝑟𝑖 (22) 

𝑂 = 𝑌′⨂𝐿 ⊗ 𝑀 ⊗ 𝑁 (23) 

For improving the security of ciphertexts, the outputs of 
the ciphertext layer subject to an uniform distribution in this 
study. The ciphertext layer has n neurons, and the value of 
each neuron is normalized. The normalization of the i-th 
neuron value yi’ with a random number ri is performed to be 
the variable hi. This study considers m intervals and groups 
each variable into a range. Furthermore, the probability of 
each range can be estimated; for instance, the probability of 
the j-range is denoted as pj. This study adopts the CDF value 
of chi distribution (i.e. (1 – p-value in chi-squared test) to 
analyze the outputs of the ciphertext layer for testing the 
subjection to uniform distribution. The chi-squared value 𝜒2 
and the CDF value 𝜃 of chi distribution based on degrees of 
freedom (i.e. m – 1 in this case) are measured by Equations 

(24) and (25). The gamma function is denoted as Γ (
𝑚−1

2
), and 

the incomplete gamma function is denoted as 𝛾 (
𝑚−1

2
,
𝜒2

2
). If 

the CDF value is smaller than 0.5, the distribution of 
ciphertexts is similar to an uniform distribution with a 
significance. Therefore, this study adopts the CDF value 𝜃 in 
Equation (25) as a part of loss function 𝐹(𝑋) to improve the 
security of encrypted data by Equation (26). 

𝜒2 = ∑
(𝑝𝑗 −

1
𝑚

)
2

1
𝑚

𝑚

𝑗=1

= 𝑚 ∑(𝑝𝑗 −
1

𝑚
)

2𝑚

𝑗=1

 (24) 

𝜃 =
𝛾 (

𝑚 − 1
2

,
𝜒2

2
)

Γ (
𝑚 − 1

2
)

 (25) 

𝐹(𝑋) = 𝜃 +
1

𝑐
∑(𝑜𝑖 − 𝑥𝑖)

2

𝑐

𝑖=1

 (26) 

In the proposed PQC neural network, the matrix set {S, G, 
P} is adopted as the public key for encryption, and the other 
matrix set {L, M, N} is adopted as the private key for 
decryption. The ciphertexts have random perturbations based 
on random numbers, and the distribution of ciphertexts is 
subject to an uniform distribution for obtaining secure 
ciphertexts. Furthermore, the random perturbations can be 
removed through the decryption neural network for restoring 
plaintexts. In this subsection, a small neural network is given 
as a case, but deeper and wider PQC neural networks with 
billion neurons can be designed for encrypting more data and 
provide higher security. 

IV. PRACTICAL EXPERIMENTAL RESULTS AND DISCUSSIONS 

For the evaluation of the proposed PQC neural network, 
the data from the previous study [8] is adopted to perform 
practical experimental results. The cellular network signals 
are adopted as training data and testing data, and the encrypted 
cellular network signals can be obtained by the proposed PQC 
neural network. The number of inputs and outputs is 361 (i.e. 
c = 361), and the number of neurons in the ciphertext layer is 
64 (i.e. n = 64).  

For adding random perturbations, the random number ri is 
added based on the weight 𝛼. This section evaluates the MSEs 
and CDF values under different weights, and the results are 
shown in Table 1. For comparison, the same random seed is 

considered to generate random numbers, so the CDF values of 
uniformed random numbers is 0.009227 (i.e. 0.009227 < 0.05) 
under different weights. In the practical experimental results, 
the distribution of ciphertexts is subject to an uniform 
distribution with a higher significance when the weight 𝛼 is 
bigger than 0.4; for instance, the value of weight 𝛼 is 0.4, the 
CDF value of ciphertexts Y’ is 0.038992 with a significance 
(i.e. 0.038992 < 0.5). However, if the weight 𝛼 is smaller, the 
MSEs of the output layer is lower (i.e. precise decrypted 
values); for instance, the MSE of the output layer is 3.74E-05, 
but the CDF value of ciphertexts Y’ is 0.303414 with no 
significance (i.e. 0.303414 > 0.5) when the value of weight 𝛼 
is 0.1. Therefore, in this case, the value of weight 𝛼  is 
recommended as 0.4 to provide uniformed ciphertexts and 
precise decrypted values. 

TABLE I.  THE MSES AND CDF VALUES UNDER DIFFERENT VALUES 

OF 𝛼 

Weight 𝛼 
The MSEs of 

output layer 

The chi-test CDF 
values of random 

numbers 

The chi-test CDF 
values of 

ciphertexts Y’ 

0.1 3.74E-05 0.009227 0.303414 

0.2 5.86E-05 0.009227 0.202276 

0.3 6.84E-05 0.009227 0.089382 

0.4 8.27E-05 0.009227 0.038992 

0.5 0.0001 0.009227 0.018034 

0.6 0.0001 0.009227 0.013643 

0.7 0.0002 0.009227 0.016572 

0.8 0.0002 0.009227 0.012751 

0.9 0.0003 0.009227 0.017519 

1 0.0003 0.009227 0.017685 

V. CONCLUSIONS AND FUTURE WORK 

This study proposes a PQC neural network based on a 
code-based PQC method (i.e. McEliece cryptography 
method). In the proposed PQC neural network, non-linear 
activation functions, random perturbations, and uniformed 
ciphertexts with a significance are performed for improving 
the security of ciphertexts. In experiments, the practical 
cellular network signals are analyzed and encrypted by the 
proposed PQC neural network, and the distribution of the 
encrypted cellular network signals is subject to an uniform 
distribution (i.e. a lower CDF value) with precise decrypted 
values (i.e. a lower MSE). Although the small neural networks 
are presented in this study, deeper and wider PQC neural 
networks with billion neurons can be designed for encrypting 
more data and provide higher security. 

In the future, more efficient and more secure activation 
functions can be designed for encryption and decryption with 
less computation time. Furthermore, the proposed PQC neural 
network can be applied to a wide variety of applications. 
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