
Cryptanalysis of QARMAv2

Hosein Hadipour1(�) and Yosuke Todo2

1 Graz University of Technology, Graz, Austria
hossein.hadipour@iaik.tugraz.at

2 NTT Social Informatics Laboratories, Tokyo, Japan
yosuke.todo@ntt.com

Abstract. QARMAv2 is a general-purpose and hardware-oriented family of lightweight
tweakable block ciphers (TBCs) introduced in ToSC 2023. QARMAv2, as a redesign
of QARMA with a longer tweak and tighter security margins, is also designed to
be suitable for cryptographic memory protection and control flow integrity. The
designers of QARMAv2 provided a relatively comprehensive security analysis in the
design specification, e.g., some bounds for the number of attacked rounds in differential
and boomerang analysis, together with some concrete impossible differential, zero-
correlation, and integral distinguishers. As one of the first third-party cryptanalysis of
QARMAv2, Hadipour et al., [HGSE23] significantly improved the integral distinguishers
of QARMAv2, and provided the longest concrete distinguishers of QARMAv2 up to now.
However, they provided no key recovery attack based on their distinguishers. This
paper delves into the cryptanalysis of QARMAv2 to enhance our understanding of its
security. Given that the integral distinguishers of QARMAv2 are the longest concrete
distinguishers for this cipher so far, we focus on integral attack. To this end, we first
further improve the automatic tool introduced by Hadipour et al. [HSE23,HGSE23]
for finding integral distinguishers of TBCs following the TWEAKEY framework. This
new tool exploits the MixColumns property of QARMAv2 to find integral distinguishers
more suitable for key recovery attacks. Then, we combine several techniques for
integral key recovery attacks, e.g., Meet-in-the-middle and partial-sum techniques to
build a fine-grained integral key recovery attack on QARMAv2. Notably, we demonstrate
how to leverage the low data complexity of the integral distinguishers of QARMAv2 to
reduce the memory complexity of the meet-in-the-middle technique. As a result, we
managed to propose the first concrete key recovery attacks on reduced-round versions
of QARMAv2, by attacking 13 rounds of QARMAv2-64-128 with a single tweak block,
14 rounds of QARMAv2-64-128 with two independent tweak blocks, and 16 rounds of
QARMAv2-128-256 with two independent tweak blocks. Our attacks do not compromise
the claimed security of QARMAv2, but they shed more light on the cryptanalysis of
this cipher.
Keywords: Cryptanalysis · Integral attacks · Partial-sum technique · Constraint
programming · QARMAv2

1 Introduction
Our computing devices perform a wide range of computations, some of which are very
sensitive, e.g., cryptographic operations, and others might even be malicious, e.g., malware.
In addition, with the growth of cloud computing, we increasingly rely on running mutually
untrusted processes on a shared platform. Overall, the adversary may have access to the
system in use and can run a task on the same platform as the victim. In this security model,
we trust the host hardware/platform but not the software running on it. Therefore, it’s
crucial to safeguard the sensitive parts of codes and data from unauthorized access by other

mailto:hossein.hadipour@iaik.tugraz.at
mailto:
mailto:
mailto:yosuke.todo@ntt.com

2 Cryptanalysis of QARMAv2

processes on the same platform, ensuring that these operations and data remain private
and secure. One solution is cryptographic memory protection to guarantee confidentiality
and control flow integrity [Com16,Sec17].

One example is the Pointer Authentication Code (PAC) [Com16,Sec17], used in Arm
architectures, which provides a control flow integrity mechanism and makes it much harder
for an attacker to modify protected pointers in memory without being detected. The idea
behind PAC is to insert a PAC into each pointer we want to protect before writing it
to memory, and then verify the PAC before using the pointer. Therefore, an adversary
who aims to modify a protected pointer has to find the correct PAC for the new value
of the pointer to control the program flow. Another example of cryptographic memory
protection can be found in Intel’s SGX technology (Software Guard Extensions) [Gue16]
incorporated into their CPUs. SGX creates a secure enclave within the processor, providing
a protected area where sensitive operations, including encryption tasks, can occur without
being accessible to external interference. The enclave ensures the confidentiality and
integrity of the data and code within it, offering a secure execution environment even when
the broader system may not be fully trusted.

The cryptographic primitives required for memory encryption, should be very fast to
minimize the performance overhead. At the same time, they should be secure enough.
Therefore, latency is the primary engineering constraint in the design of lightweight block
ciphers for memory encryption, whereas area and, thus, the power are the secondary
constraints. The previous well-analyzed ciphers, such as AES is not a good choice as its
latency is too high for memory encryption. In addition, for efficient memory encryption,
we need a cryptographic primitive where the permutation not only depends on the key and
plaintext but also on a public parameter tweak that can be the encrypted block’s physical
address. One approach to achieve this is to use modes of operations based on classical block
ciphers. But these modes typically require constructions that lead to increased latency or
extra memory to store, for example, the nonce. Another approach is to use a tweakable
block cipher (TBC), where the permutation is determined by the secret parameter key and
public parameters tweak and plaintext. In a TBC, the cipher should remain secure even if
the tweak can be controlled by the adversary.

QARMAv2 is a general-purpose and hardware-oriented family of lightweight TBC that
is designed to be also suitable for cryptographic memory protection and control flow
integrity. This paper explores QARMAv2 from the cryptanalysis aspect, shedding light on
its security against cryptanalytic attacks. The designer of QARMAv2 provided a relatively
comprehensive security analysis in the design specification, e.g., differential, boomerang,
integral, impossible differential, and zero-correlation attacks. For instance, the designers
used the method introduced initially in [HBS21,HNE22] to provide some bounds for the
number of attacked rounds in boomerang analysis. They also used the methods intro-
duced very recently at EUROCRYPT 2023 [HSE23] to provide some concrete impossible
differential and zero-correlation distinguishers. As another example, they used division
property [Tod15,XZBL16] to provide concrete integral distinguishers for up to 5 rounds of
QARMAv2-64.

As a first third party cryptanalysis of QARMAv2, Tim Beyne [Bey23] found a nonlinear
invariant for the unkeyed round function of QARMAv2-64, a property that can be extended
to multiple rounds only for a set of weak keys, but does not affect the full-round QARMAv2-
64. However, it might be helpful to attack reduced-round versions when combined
with integral attacks. As another third-party analysis, very recently, Hadipour et al.,
[HGSE23] significantly improved the integral distinguishers of QARMAv2. The longest
concrete distinguishers for QARMAv2 up to now are the integral distinguishers proposed
in [HGSE23]. The authors of [HGSE23] exploited the control of the adversary over the tweak
part and improved the automatic tool introduced in [HSE23] to find integral distinguishers
for up to 10 (resp. 12) rounds of QARMAv2-64 (resp. QARMAv2-128). However, they did not

Hosein Hadipour, Yosuke Todo 3

provide any key recovery attack based on their distinguishers, and the efficiency of integral
key recovery attacks for QARMAv2 is still an open question. Therefore, this paper focuses
on the integral cryptanalysis of QARMAv2.

Table 1: Summary of our attacks on QARMAv2. T : No. of independent tweak blocks.
Version T #Rounds Time Data Memory Ref.
QARMAv2-64-128 1 13/16 2110.47 246.32 246.32 Subsection 5.1
QARMAv2-64-128 2 14/20 2110.17 246.32 246.32 Subsection 5.2
QARMAv2-128-256 2 16/32 2234.11 246.58 252.00 Subsection 5.3

Our contributions. In this paper, we shed more light on the security of QARMAv2.
Considering that the integral distinguishers of QARMAv2 are the longest concrete distin-
guishers for this cipher so far, we focus on integral attack. We first improve the automatic
tool introduced in [HSE23,HGSE23] for finding integral distinguishers of TBCs following
the TWEAKEY framework. This new tool exploits the MixColumns property of QARMAv2
to find integral distinguishers more suitable for key recovery attacks. The application
of our new CP model to find integral distinguishers is not limited to QARMAv2, and it
is applicable to other TBCs such as MANTIS and CRAFT [BLMR19]. Then, we combine
several techniques for integral key recovery attacks, e.g., Meet-in-the-middle [SW12] and
partial-sum [FKL+00] techniques to build a fine-grained integral key recovery attack on
QARMAv2. Notably, we demonstrate how to leverage the low data complexity of the integral
distinguishers of QARMAv2 to reduce the memory complexity of the meet-in-the-middle
technique. Table 1 summarizes our key recovery attacks. While the designers of QARMAv2
assert κ − ε-bit security for a κ bit secret key, with ε as a small number, such as 2, they
recommend larger values for ε, such as 16 for standardization. Our analyses remain valid
even for standardization purposes, i.e., ε ≤ 16. However, our attacks do not compromise
the claimed security of QARMAv2.

Outline. We first recall the specification of QARMAv2 in Subsection 2.1. It is followed
by a brief overview of the integral distinguishers and their relation to zero-correlation
distinguishers in Subsection 2.2. Subsection 2.3 briefly reviews the partial-sum and meet-
in-the-middle techniques in the key recovery of integral attacks. Section 3 discusses the
MixColumns property of QARMAv2 in terms of integral cryptanalysis. After that, we present
our improved automatic tool for finding integral distinguishers of TBCs following the
TWEAKEY framework in Section 4. Lastly, we present our integral key recovery attacks on
QARMAv2 in Section 5 and conclude in Section 6.

2 Background
In this section, we review the QARMAv2 specification. We then provide a brief overview of
ZC distinguishers and their conversion to integral distinguishers for block ciphers. Lastly,
we cover the partial-sum and meet-in-the-middle techniques in the key recovery of integral
attacks.

2.1 Specification of QARMAv2

QARMAv2 is a redesign of QARMA with a longer tweak and tighter security margins that
was introduced in ToSC 2023 [ABD+23]. The goal behind the design of QARMAv2 is to
provide a general TBC that is also suitable for memory encryption, and fast computation
of short-message MACs. It offers two block sizes, b = 64, 128 bits, denoted by QARMAv2-b-s,

4 Cryptanalysis of QARMAv2

where s is the bit size of the key (or the security level in bits). For b = 128, the key size
can be s = 128, 192, or 256 bits, and for b = 64, the key length is always s = 128 bits
and can be omitted from the notation. Similar to MANTIS [BJK+16], and PRINCE [BCG+],
QARMAv2 also follows the reflector construction as illustrated in Figure 1. Following the
specification of QARMAv2 [ABD+23], we represnet the inverse of a function f by f , and f−1

interchangeably, in this paper.

Figure 1: Reflector structure of QARMAv2

As Figure 1 shows, the reflector construction consists of three parts: forward function
F , backward function F = F −1, and the central construction G. This construction allows
the implementation of both encryption and decryption using the same circuit with a minor
set-up cost. According to Figure 1, the first and the last rounds include only the S-box
layer and key addition without mixing with a tweak. The reflector is also independent of
a tweak. K(i), (resp. T (i)) are derived by applying a linear function on a master key K
(resp. master tweak T).

Algorithm 1: The QARMAv2 algorithm.
Input: op, r, K0, K1, W0, W1, T0, T1, P
Output: C

1 t0 ← T0, t1 ← T1 /* Round tweak setup */
2 k0 ← K0, k1 ← K1 /* Round key setup */
3 X ← S (P ⊕ k0) /* Round #0 */
4 for i = 1, . . . , r do

/* Rounds #1 to #r */
5 X ← X ⊕ ki mod 2 ⊕ ti mod 2 ⊕ ci;
6 X ← (S ◦M ◦ τ) (X);
7 if i ≡ 1 mod 2 then t1 ← φ(t1) else t0 ← φ(t0);
8 {if i ≡ r mod 2 then X ← eXchangeRows (X)} /* Only for ℓ = 2 */
9 k0 ← o (k0) , k1 ← o (k1);

10 if op = enc then
11 k0 ← k0 ⊕ α, k1 ← k1 ⊕ β
12 else
13 k0 ← k0 ⊕ o (β) , k1 ← k1 ⊕ o−1 (α)
14 X ← τ (M · (τ (X)⊕Wr+1 mod 2)⊕Wr mod 2) /* Reflector */
15 for i = r, . . . , 1 do

/* Rounds #r + 1 to #2r */
16 {if i ≡ r mod 2 then X ← eXchangeRows (X)}/* Only for ℓ = 2 */
17 X ←

(
τ ◦M ◦ S

)
(X);

18 X ← X ⊕ ki+1 mod 2 ⊕ ti+1 mod 2 ⊕ ci;
19 if i > 1 and i ≡ 0 mod 2 then t1 ← φ (t1) else t0 ← φ (t0);
20 C ← S (X)⊕ k1/* Round #2r + 1 */
21 return M;

The algorithm 1 describes the encryption/decryption of QARMAv2 in detail. X in
algorithm 1 represents the internal state of the cipher and can be considered as ℓ layers of
4 × 4 arrays of nibbles, where ℓ ∈ {1, 2}. The data is arranged row-wise in each layer as
follows:

X = x0||x1|| · · · ||x15 =

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

Hosein Hadipour, Yosuke Todo 5

In addition, assuming that b is the block size of QARMAv2-b, the first cell of the first
layer includes bit inidices [b − 1, · · · , b − 4], and the last cell of the last layer includes bit
indices [3, · · · , 0]. Consequently, the number of layers is ℓ = b/64. Besids, a b-bit value in
the design of QARMAv2 is called a block. In what follows, we briefly describe the operations
in QARMAv2 encryption in algorithm 1. The round constraints ci in algorithm 1 have no
impact on our analysis and we omit them.

The state shuffle τ is applied to each layer separately, rearranging the nibbles’ positions
as shown in Figure 2.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ

X τ(X)

Figure 2: State shuffle τ of QARMAv2.

The S-box layer, denoted as S, applies a 4-bit S-box to each nibble of the state. QARMAv2
employs the following S-box for general-purpose applications:

S = [4, 7, 9, b, c, 6, e, f, 0, 5, 1, d, 8, 3, 2, a], (1)

and offers the following S-box for Pointer Authentication Code (PAC), or memory authen-
tication use cases:

σ0 = [0, e, 2, a, 9, f, 8, b, 6, 4, 3, 7, d, c, 1, 5]. (2)

The MixColumns layer M multiplies the following matrix to each column of each layer:

M := circ
(
0, ρ, ρ2, ρ3) =

0 ρ ρ2 ρ3

ρ3 0 ρ ρ2

ρ2 ρ3 0 ρ
ρ ρ2 ρ3 0

 , (3)

where ρ ∈ F4
2, and ρ4 = 1. In other words, ρ is the rotation to the left by one bit, i.e.,

ρ ((x3, x2, x1, x0)) = (x2, x1, x0, x3), for x = (x3, x2, x1, x0) ∈ F4
2.

The exChangeRows operation is exclusively employed in the case of 2-layer versions
(ℓ = 2). It involves swapping the first two rows between the two layers. This operation is
applied every second rouns in forward and backward rounds, and should always appear in
rounds r, and r + 1, i.e., before and after the central construction.

The tweakey schedule of QARMAv2 closely follows the TWEAKEY framework [JNP14], but
it distinguishes the key and tweak, maintaining separate schedules for each. The key
schedule of QARMAv2, splits the master key K into two halves, K = K0||K1. Then, it
alternates between using K0 and K1 as the round keys for the forward rounds. For the
backward rounds it uses L0, and L1 as the round keys which are derived from K0, and
K1, by the following linear transformations:

(L0, L1) :=
(
o(K0) ⊕ α, o−1(K1) ⊕ β

)
, (4)

where α, and β are constants and o is a linear function over Fb
2 as follows: o(w) := (w ≫

1) ⊕ (w ≫ (b − 1)). For the reflector part, it uses W0 = o2(K0), and W1 = o−2(K1), as
the round keys (see Figure 4b).

Assume that T denotes the master tweak. For T = 1, we define T1 = φ (T0), where
T0 = T . Besides, the two tweak blocks just before the center for encryption are equal in
the case of T = 1. For T = 2, T0, and T1 are two independent blocks (each one b bits)

6 Cryptanalysis of QARMAv2

of the master tweak T = T0||T1. Let ti be the round tweak in round i. Besides, assume
that t1 = T1, and t2 = φ−r(T0), where r is the number of forward/backward rounds. The
tweak schedule of QARMAv2 derives the round tweaks as follows: t2i+1 = φ(t2i−1), and
t2i+2 = φ−1(t2i) for i ≥ 1, where φ is a permutation on the position of the tweak nibbles
as illustrated in Figure 3.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

1 a e 6
2 9 d 5
0 8 c 4
3 b f 7

φ

T φ(T)

(a) Tweak shuffle φ of QARMAv2 (ℓ = 1).

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

1 10 14 22
18 25 29 21
0 8 12 4
19 27 31 23
17 26 30 6
2 9 13 5
16 24 28 20
3 11 15 7

φ

T φ(T)

(b) Tweak shuffle φ of QARMAv2 (ℓ = 2).

Figure 3: Tweak shuffle of QARMAv2.

(a) A full round of QARMAv2.

(b) QARMAv2 encryption for odd r.

Figure 4: Overal view of QARMAv2 encryption.

One round of QARMAv2 is represented in Figure 4a, and in Figure 4b, you can see
the QARMAv2 encryption for odd values of r, where the number of forward and backward
rounds are the same. Table 2 briefly describes the main parameters of different versions of
QARMAv2. As per [ABD+23], ε in Table 2 is typically a small number like 2. However, for
standardization, the QARMAv2 designers recommend setting ε to 16.

In the context of cryptanalysis, we need to study the security of reduced round versions
of QARMAv2. A reduced round version of QARMAv2 can be obtained by reducing the number
of rounds before or after the reflector construction, or both. According to the designers
in [ABD+23], rounds are counted as S-box layers. If the number of rounds before and after
the reflector construction are the same, we call it a balanced reduced round of QARMAv2,
otherwise it is called an unbalanced reduced round. We recall that, the designers of QARMAv2
also provided cryptanalysis results in unbalanced setting in [ABD+23]. For example, the
impossible-differential distinguisher for 9 rounds of QARMAv2-64 (T = 2) in [ABD+23] is

Hosein Hadipour, Yosuke Todo 7

composed of 5 forward rounds and 4 backward rounds. As another example, most of the
bounds for boomerang distinguishers in [ABD+23], apply to unbalanced reduced rounds.

Table 2: Main parameters of QARMAv2

(a) Parameters of QARMAv2 with two tweak blocks (T = 2).

Version Block size (b) Key Size (s) r #Rounds Time Data
QARMAv2-64-128 64 128 9 20 2128−ε 256

QARMAv2-128-128 128 128 11 24 2128−ε 280

QARMAv2-128-192 128 192 13 28 2192−ε 280

QARMAv2-128-256 128 256 15 32 2256−ε 280

(b) Parameters of QARMAv2 with a single tweak block (T = 1).

Version Block size (b) Key Size (s) r #Rounds Time Data
QARMAv2-64-128 64 128 7 16 2128−ε 256

QARMAv2-128-128 128 128 9 20 2128−ε 280

QARMAv2-128-192 128 192 11 24 2192−ε 280

QARMAv2-128-256 128 256 13 28 2256−ε 280

2.2 From Zero-Correlation to Integral Distinguishers
The concept of integral distinguishers was initially introduced as a theoretical extension of
differential distinguishers by Lai [Lai94] and subsequently, as a practical attack by Daemen
et al., [DKR97]. This concept was further formalized by Knudsen and Wagner [KW02].
The fundamental idea behind integral distinguishers is to identify a set of inputs whose
corresponding outputs sum up to zero (or a key-independent value) in specific bit/cell
positions. The idea of Zero-correlation (ZC) distinguishers was initially proposed by
Bogdanov and Rijmen [BR14] after introducing integral distinguishers. The core idea
of ZC distinguishers is to exploit the linear approximations with zero correlation of the
block cipher to distinguish it from a random permutation. ZC attacks were later improved
further by Bogdanov and Wang at FSE 2012 in [BW12].

At ASIACRYPT 2012, Bogdanov et al. demonstrated in [BLNW12] that an integral
distinguisher, as defined by a balanced vectorial Boolean function, unconditionally implies
a ZC distinguisher. At CRYPTO 2015, Sun et al. introduced Theorem 1 in [SLR+15]
which states that a ZC linear hull for block ciphers defined over Fn

2 always results in an
integral distinguisher.

Theorem 1 (Sun et al. [SLR+15]). Let F : Fn
2 → Fn

2 be a vectorial Boolean function.
Assume A is a subspace of Fn

2 and β ∈ Fn
2 \ {0} such that (α, β) is a ZC approximation

for any α ∈ A. Then, for any λ ∈ Fn
2 , ⟨β, F (x + λ)⟩ is balanced over the set

A⊥ = {x ∈ Fn
2 | ∀ α ∈ A : ⟨α, x⟩ = 0}.

According to Theorem 1, the data complexity of the integral distinguisher obtained
from a ZC linear hull is 2n−m, where n is the block size, and m is the dimension of the
linear space created by the input linear masks in the corresponding ZC linear hull. At ToSC
2019, Ankele et al. investigated the impact of the tweakey on ZC distinguishers for TBCs,
as discussed in [ADG+19]. Their research revealed that considering the tweakey schedule

8 Cryptanalysis of QARMAv2

P

TK1
TK2

...
TKz

C

C0

f

h α1

h α2

h αz

Γ0

C1

f

h α1

h α2

h αz

Γ1

C2

f

h α1

h α2

h αz

Γ2

Cr−1

f

h α1

h α2

h αz

Γr−1

CR

ΓR

Γ0[i] Γ1[h−1(i)] Γ2[h−2(i)] Γr−1[h−r+1(i)] Γr[h−r(i)]

Figure 5: The STK construction of the tweakey framework.

can lead to longer ZC and integral distinguishers. They introduced Theorem 2, offering an
algorithmic approach to find ZC linear hulls for TBCs based on the super-position tweakey
(STK) construction within the TWEAKEY framework [JNP14].

Theorem 2 (Ankele et al. [ADG+19]). Let EK(T, P) : Ft×n
2 → Fn

2 be a TBC following
the STK construction as illustrated in Figure 5. Suppose that the tweakey schedule of
EK has z parallel paths and applies a permutation h on the tweakey cells in each path.
Let (Γ0, Γr) be a pair of linear masks for r rounds of EK , and Γ1, . . . , Γr−1 represents
a possible sequence for the intermediate linear masks. If there is a cell position i such
that any possible sequence Γ0[i], Γ1[h−1(i)], Γ2[h−2(i)], . . . Γr[h−r(i)] has at most z linearly
active cells, then (Γ0, Γr) yields a ZC linear hull for r rounds of E.

At EUROCRYPT 2023, Hadipour et al. introduced a new CP/MILP modeling [HSE23],
to find ZC linear hulls for TBCs based on Theorem 2, and significantly enhanced the ZC
and integral attacks on all variants of SKINNY and some other tweakable block ciphers.
This CP model was further improved in [HGSE23].

The QARMAv2 design is related to TWEAKEY framework. Besides, the methods introduced
in [HSE23,HGSE23] have proven highly efficient in uncovering integral distinguishers for
TBCs using the TWEAKEY construction. Consequently, we employ the same approach to
discover integral distinguishers for QARMAv2. Nevertheless, as we will elaborate in Section 4,
we refine the technique introduced in [HGSE23] by taking into account the distinctive
structure of the QARMAv2 diffusion layer. This enhancement allows us to identify integral
distinguishers that are more effective for integral key recovery attacks.

2.3 Key Recovery in Integral Attacks using the Partial-Sum Technique
For integral distinguishers derived from ZC linear hulls the sum of the outputs is zero
in specific bit positions (balanced bit positions). We typically append some rounds to
the distinguisher to build a key recovery upon an integral distinguisher. Then, we guess
the involved key bits to partially decrypt the ciphertexts and compute the sum of the
distinguishers’ outputs in the balanced bit positions. If the sum is zero, we keep the
guessed key bits as potential candidates. Otherwise, we discard the guessed key bits.

The partial-sum technique was initially introduced by Ferguson et al. in [FKL+00]
to reduce the time complexity of integral attacks. Unlike the naive integral key recovery,
where we guess the involved key bits all at once, the partial-sum technique divides the
partial decryption into several steps. We guess a subset of the involved key bits at each step
and store the intermediate results. We repeat the process until we reach the distinguisher’s
output. At each step, only a portion of the internal state is involved, whose values are
needed to calculate the final sum. One advantage is that the size of involved positions
reduces as we approach the distinguisher’s output. In addition, to compute the sum of
the distinguisher’s outputs in the balanced bit positions, we only need to know if each
involved value appears an even or odd number of times.

Hosein Hadipour, Yosuke Todo 9

Figure 6 represents the integral key recovery for 6 rounds of AES using the partial-sum
technique. This attack relies on a 4-round integral distinguisher, derived by encrypting
232 plaintexts that take all possible values in the main diagonal and a fixed value in other
positions. After 4 rounds of AES, the sum of the outputs is zero in all bytes. The last
round does not include the MixColumns, and instead of K4, we retrieve K̄4 = MC−1(K4),
i.e., the so-called equivalent key for 5th round. The colored numbers in Figure 6 denote
the corresponding step of the partial-sum technique for each byte in the internal state or
round keys. according to Figure 6 we have:

C4[0] = S−1
(

K̄4[0]⊕ 0E · S−1 (C6[0]⊕K5[0])⊕ 09 · S−1 (C6[7]⊕K5[7])

⊕ 0D · S−1 (C6[10]⊕K5[10])⊕ 0B · S−1 (C6[13]⊕K5[13])
)

, (5)

where S is the AES S-box.We first implement 0E · S−1(.) by S0(.), 09 · S−1(.) by S1(.),
0D · S−1(.) by S2(.), and 0B · S−1(.) by S3(.) as lookup tables. Next, we perform the
partial-sum key recovery as outlined in algorithm 2.

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

A
A

A
A

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15 K−1

BBBB
BBBB
BBBB
BBBB 4

4

1
3

2
1

1
3

2
1

4 rounds

C4 C5 C6

K̄4 K5

SB
SR

MC
SB
SR

Figure 6: Involved cells in integral key recovery on 6 rounds of AES [HGSE23].

Algorithm 2: Partial-sum key recovery attack on 6 rounds of AES [HGSE23]
Input: 232 ciphertexts, and the set of discarded keys DK (empty in the first run)
Output: A set of candidates K for K̄4[0]||K5[0, 7, 10, 13]

1 K ← ∅;
2 forall K5[0, 7] do
3 Initialize a list L1 of size 224 with zeros;
4 forall 232 ciphertexts do
5 p1 ← S0 (C6[0]⊕K5[0])⊕ S1 (C6[7]⊕K5[7]);
6 L1 [(p1, C6[10, 13])]← L1 [(p1, C6[10, 13])]⊕ 1;
7 forall K5[10] do
8 Initialize a list L2 of size 216 with zeros;
9 forall (p1, C6[10, 13]) s.t. L1 [(p1, C6[10, 13])] = 1 do

10 p2 ← p1 ⊕ S2 (C6[10]⊕K5[10]);
11 L2 [(p2, C6[13])]← L2 [(p2, C6[13])]⊕ 1;
12 forall K5[13] do
13 Initialize a list L3 of size 28 with zeros;
14 forall (p2, C6[13]) s.t. L2 [(p2, C6[13])] = 1 do
15 p3 ← p2 ⊕ S3 (C6[13]⊕K5[13]);
16 L3[p3]← L3[p3]⊕ 1;
17 forall K̄4[0] do
18 if K̄4[0]||K5[0, 7, 10, 13] /∈ DK then
19 Result←

⊕
p3∈F8

2: L3[p3]=1 S
−1
(

K̄4[0]⊕ p3
)

;

20 if Result = 0 then K ← K ∪ {K̄4[0]||K5[0, 7, 10, 13]};
21 else DK ← DK ∪ {K̄4[0]||K5[0, 7, 10, 13]}

22 return K;

In total 5 bytes of round keys are involved, and each balanced byte provides an 8-bit
filter. Therefore, we need six sets of 232 chosen plaintexts to retrieve the involved key
bits uniquely. The time complexity of the naive approach is 6 · 232 · 240 ≈ 274.58 partial
decryptions. However, the time complexity of algorithm 2 is 250 S-box computations.
Repeating it for six sets of 232 chosen plaintexts yields a total complexity of at most

10 Cryptanalysis of QARMAv2

6 · 250 ≈ 252.58 S-box lookups. The required memory to store discarded keys and also 232

ciphertexts dominates the memory complexity, and the data complexity is 6 · 232 ≈ 234.58

chosen plaintexts. As can be seen, the partial-sum technique significantly reduces the time
complexity of integral attacks. So, we use this technique to build integral key recovery
attacks on QARMAv2.

2.4 Meet-in-the-Middle Technique
From the 6-round integral key recovery attack on AES one can see that the number of
involved key bits to compute the final sum is an effective factor in time complexity. Meet-
in-the-middle technique in integral key recovery, firstly introduced in [SW12], splits the
involved key bits into two sets and enables us to retrieve each set of key bits independently.
We explain this technique with a simple example. As Figure 7 shows, assume that we aim
to compute

⊕
Z from the ciphertexts and check if

⊕
Z = 0. In a naive approach, we

must guess all the involved key bits K1 ∪ K2. However, by looking at Figure 7, we observe
that Z = X ⊕ Y . Verifying

⊕
Z = 0 is the same as confirming that

⊕
X =

⊕
Y . This

enables us to independently calculate
⊕

X and
⊕

Y and then compare them for equality.
The advantage is that we only need to guess K1 (resp. K2) to compute

⊕
X (resp.

⊕
Y).

Each guess of K1 and K2 that satisfies
⊕

X =
⊕

Y is considered a potential candidate.
Consequently, the time complexity of guess-and-filter for the involved key bits decreases
from 2|K1∪K2| to 2|K1| + 2|K2|.

Path 1

K1 ¤

C

Path 2

K2 ¤

C

X

Y

Z

Figure 7: Meet-in-the-middle technique in integral key recovery.

3 Integral Properties of QARMAv2 Diffusion Matrix
In this section, we show how to exploit the properties of QARMAv2 MixColumns to bypass
the diffusion layer right after the distinguisher. This way, fewer key bits will be involved in
the key recovery. As a result, we can reduce the time complexity and append more rounds
to the distinguisher for a key recovery attack.

The matrix used in the MixColumns of QARMAv2 is an almost MDS matrix represneted
in Equation 3. We show that two balanced cells in one column of one layer before the
MixColumns yield two balanced cells at the same positions in the next layer after the
MixColumns. Let (X0, X1, X2, X3)T , and (Y0, Y1, Y2, Y3)T represent columns before and
after the MixColumns, respectively. Then, we have:

Y0
Y1
Y2
Y3

 =

0 ρ ρ2 ρ3

ρ3 0 ρ ρ2

ρ2 ρ3 0 ρ
ρ ρ2 ρ3 0

×

X0
X1
X2
X3

 =

ρX1 + ρ2X2 + ρ3X3
ρ3X0 + ρX2 + ρ2X3
ρ2X0 + ρ3X1 + ρX3
ρX0 + ρ2X1 + ρ3X2

 . (6)

Assume that C is a pool of ciphertexts derived from the input set of integral distinguisher.
Besides, Xi, Yj are the intermediate variables that can be expressed as a function of

Hosein Hadipour, Yosuke Todo 11

ciphertext and round keys. Given that the key is fixed in the integral attack, we use
Xi(c), Yi(c) to indicate the dependency on the ciphertext c ∈ C. Then, for i, j ∈ {0, 1, 2, 3},
i ̸= j, we have⊕

c∈C

(
(ρ(i−j) mod 4Xi(c)) ⊕ Xj(c)

)
=
⊕
c∈C

(
(ρ(i−j) mod 4Yi(c)) ⊕ Yj(c)

)
.

Hence, if Xi, and Xj have the zero-sum property, then
⊕

c∈C ρ(i−j) mod 4Yi(c) =
⊕

c∈C Yj(c),
and we can use the meet-in-the-middle technique to derive

⊕
c∈C ρ(i−j) mod 4Yi(c) and⊕

c∈C Yj(c) independently. Note that we essentially bypass the diffusion effect of the
MixColumns by transforming the distinguishing property after the MixColumns. With
our updated model for distinguishers, as explained in Section 4, we identify new integral
distinguishers for QARMAv2 that leverage the MixColumns property to increase the number
of rounds for the key recovery attack.

4 Search for Distinguishers
This section introduces our new CP model designed for detecting integral distinguishers in
the QARMAv2 cipher. Our approach follows the method introduced in [HSE23,HGSE23].
However, we enhance the model by considering the unique structure of the QARMAv2
diffusion layer. This refinement enables us to identify integral distinguishers that are more
effective in key recovery attacks. More precisely, we take advantage of the properties of the
MixColumns matrix discussed in Section 3 to bypass the diffusion effect of the MixColumns
layer and reduce the number of involved key bits in the key recovery attack. We elaborate
on our model for a TBC following the TWEAKEY framework, as represented in Figure 5.
Therefore, besides QARMAv2, it is adaptable to many TBCs, such as SKINNY, MANTIS, and
CRAFT, which share similar diffusion layers.

We aim to use Theorem 2 to find a ZC distinguisher suitable for integral key recovery
attacks. Then, using Theorem 1, we convert the ZC distinguisher to an integral distinguisher
and build a key recovery attack. Therefore, we explain how to create a CP model to
search for ZC distinguishers based on Theorem 2. For this purpose, we must encode
deterministic linear trails forward and backward through the cipher. We model the
deterministic linear trails using the same method as in [HSE23,HGSE23]. Thus, one can
refer to [HSE23,HGSE23] for more details on encoding deterministic linear trails at the
cell level.

We first briefly review the model in [HGSE23] for finding integral distinguishers. As
illustrated in Figure 5, let E be a tweakable block cipher following the STK framework,
with block size of n = m · c, where m and c denote the number of cells and the cell size,
respectively. Suppose that E has z parallel independent tweakey paths, and h denotes the
permutation on the position of the tweakey cells. Besides, assume that STKr[i] represents
the ith cell of the subtweakey after r rounds.

As Figure 8b illustrates, we define integer variables AXUr[i] (resp. AXLr[i]) to represent
the activeness pattern of the ith cell of the internal state after r rounds in the forward
direction (resp. background direction). The domain of these variables is {0, 1, 2, 3}, where
0 indicates the zero linear mask, 1 indicates a fixed nonzero linear mask, 2 indicates
a free nonzero linear mask, and 3 indicates a free linear mask. Then, as visualized by
Figure 8b, we define some constraints to encode the propagation of the deterministic
linear trails in forward and backward direction over rd rounds independently. For more
details on the constraints, please refer to [HSE23,HGSE23]. We also add the constraints∑m−1

i=0 AXU0[i] ̸= 0, and
∑m−1

i=0 AXLrd [i] ̸= 0 to exclude trivial solutions. Assume that
CSPu(AXU0, . . . , AXUrd) and CSPl(AXL0, . . . , AXLrd) denote the CSP models for the forward
and backward propagation, respectively.

12 Cryptanalysis of QARMAv2

Eu

El

ru

rl

Γu

Γl

AX
U 0

AX
U 1 · · ·

AX
U r

u
AX

L 0

AX
L 1 · · ·

AX
L r

l

�

(a) Modeling the distinguisher in [HSE23].

Eu

El

rd

rd

Γu

Γl

AX
U 0

AX
U 1 · · ·

AX
U r

d

AX
L 0

AX
L 1 · · ·

AX
L r

d

� � � �

(b) Modeling the distinguisher in [HGSE23]

Eu

El

El

rd

rd

Γu

Γ1l

Γ2l

AX
U 0

AX
U 1 · · ·

AX
U r

d

AX
L1

0

AX
L1

1

· · ·
AX

L1
r

d

AX
L2

0

AX
L2

1

· · ·

AX
L2

r
d

� � � �

� � � �

(c) Our modeling for integral distinguishers.

Figure 8: Modeling the ZC and integral distinguishers as a CSP problem.

We define the integer variables ASTKr[i] ∈ {0, 1, 2, 3} to encode the activation pattern
of STKr[i]. We know that the activeness pattern of tweakey cells in the propagation of
linear trails should follow the linear mask of the internal states. Assume that AYU and AYL
are integer variables like AXU and AXL, indicating the activeness pattern of the internal
state right before the round tweakey addition. Therefore, we add the new constraint
ASTKr[i] = min{AYUr[i], AYLr[i]} for all 0 ≤ r ≤ rd − 1 and 0 ≤ i ≤ m − 1, to link the
activeness pattern of the subtweakey to the activeness pattern of the internal state. This
way, the subtweakey follows the activeness pattern in one of the forward or backward
propagations with less active cells. Then, to ensure that the conditions of Theorem 2 are
met, we add the following constraint:

CSPTK(ASTK0, . . . , ASTKrd−1) :=∨m−1
i=0

((∑rd−1
r=0 bool2int

(
ASTKr[h−r(i)] ̸= 0

)
≤ z

∧
∨rd−1

r=0

(
ASTKr[h−r(i)] = 1

))
∨
(∧rd−1

r=0 ASTKr[h−r(i)] = 0
)) (7)

The conjunction of the CSP models above, i.e., CSPd = CSPu ∧ CSPTK ∧ CSPl, creates
a unified CP/MILP model based on satisfiability, whose all feasible solutions are the
ZC/integral distinguishers for rd rounds of the block cipher E. By including the objective
function max .

∑m−1
i=0 AXU0[i], we can maximize the number of linearly active cells at the

input. According to Theorem 1, the number of active cells at the input of the corresponding
integral distinguisher is minimized, and we can find integral distinguishers with minimum
data complexity. Additionally, the linear combination

⊕
i∈{0,··· ,m−1}:AXLrd [i]̸=0 Xrd [i] is

balacned (has a zero-sum property).

Hosein Hadipour, Yosuke Todo 13

The authors of [HGSE23] applied the model above to find integral distinguishers
for some TBCs, including QARMAv2, resulting in a significant improvement for integral
distinguishers of QARMAv2. However, all integral distinguishers reported in [HGSE23] have
only one balanced cell at the output right before the MixColumns. Therefore, we can not
exploit the MixColumns property of QARMAv2 because we need at least two balanced cells
in one column to bypass the diffusion effect of the MixColumns layer. In what follows, we
explain how to refine the model in [HSE23,HGSE23] to find integral distinguishers with
more than one balanced cell in one column at the output of distinguishers.

We need at least two balanced cells in the output of distinguishers to exploit the
MixColumns property. We keep the constraints for the forward propagation, i.e., CSPu,
unchanged. However, we modify the model for the backward propagation. As illustrated
in Figure 8c, we create two independent CSP models CSP1l, and CSP2l with independent
variables, (AXL1r[i], AYL1r[i]), and (AXL2r[i], AYL2r[i]), respectively, to model the determin-
istic linear trails in the backward direction. The idea is that the combination of each
CSP model CSP1l and CSP2l with CSPu should create a CSP model whose solutions are
ZC/integral distinguishers. We define two independent sets of integer variables ASTK1r[i],
and ASTK2r[i] for subtweakey cells and add the following constraints to link the activeness
pattern of the subtweakey to the activeness pattern of the internal state for each backward
propagation: ASTK1r[i] = min{AYUr[i], AYL1r[i]}, ASTK2r[i] = min{AYUr[i], AYL2r[i]}. Then
to gurantee that the conditions of Theorem 2 are hold for both CSP models CSPu ∧ CSP1l
and CSPu ∧ CSP2l, we add the constraints CSPDT K as follows:

contradict1[i] :=

(∑rd−1
r=0 bool2int

(
ASTK1r[h−r(i)] ̸= 0

)
≤ z

∧
∨rd−1

r=0

(
ASTK1r[h−r(i)] = 1

))
∨
(∧rd−1

r=0 ASTK1r[h−r(i)] = 0
)

(8)

contradict2[i] :=

(∑rd−1
r=0 bool2int

(
ASTK2r[h−r(i)] ̸= 0

)
≤ z

∧
∨rd−1

r=0

(
ASTK2r[h−r(i)] = 1

))
∨

(
rd−1∧
r=0

ASTK2r[h−r(i)] = 0

)
(9)

m−1∨
i=0

(contradict1[i] + contradict2[i] = 2) = True, (10)

where contradict1[i], and contradict2[i] are binary variables for all 0 ≤ i ≤ m − 1. We
want to ensure that the CSP1l and CSP2l yield two different activeness patterns for the
output cells. Additionally, the active cells in AXL1rd and AXL2rd should be in the same
columns. For this purpose, we first limit the value of AXL1rd [i], AXL2rd [i] to {0, 1}. Then
we include the constraints AXL1rd [i] ̸= AXL2rd [i] for all 0 ≤ i ≤ m − 1. Finally, we add some
constraints to ensure that the active cells of AXL1rd and AXL2rd appear in the same column.
Therefore, the conjunction of the CSP models CSPd := CSPu ∧ CSP1l ∧ CSP2l ∧ CSPDT K

creates a unified CP/MILP model based on satisfiability, whose all feasible solutions are the
integral distinguishers for rd rounds of the block cipher E with at least two balanced cells in
the same column at the output of distinguishers. We developed this model for all versions
of QARMAv2 using MiniZinc [NSB+07] and successfully solved it with the open-source CP
solver Or-Tools [PF] on a regular laptop within a matter of seconds.

For QARMAv2-64 (T = 1/2), and QARMAv2-128 (T = 2), we found 9/10-round, and
11-round ZC-based integral distinguishers with data complexity 244, respectively. Figure 9,
Figure 10, Figure 11 illustrate some of these distinguishers featuring two balanced cells
within a single column of the output state. The colors employed in the figures signify the
activity pattern of the corresponding cells in the ZC distinguishers, where denotes any
linear mask, signifies a nonzero linear mask, and represents a nonzero fixed linear
mask. Inactive cells remain white (blank). To transform the ZC distinguishers into integral
distinguishers, we must invert the activity pattern in the input. In other words, active

14 Cryptanalysis of QARMAv2

S
0 1 2 3

4 5 6 7

8 9 a b

c d e f

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S

τ M τ̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
0 1 2 3

4 5 6 7

8 9 a b

c d e f

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
a c f d

e 8 b 9

1 0 3 2

6 4 7 5

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
8 0 4 c

b 7 3 f

9 5 1 d

a 6 2 e

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
c 3 7 b

f 0 4 8

a 1 6 e

d 2 5 9

S̄

(a) Integral distinguisher I for 9 rounds
of QARMAv2-64. Data complexity: 244.

S
0 1 2 3

4 5 6 7

8 9 a b

c d e f

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S

τ M τ̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
0 1 2 3

4 5 6 7

8 9 a b

c d e f

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
a c f d

e 8 b 9

1 0 3 2

6 4 7 5

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
8 0 4 c

b 7 3 f

9 5 1 d

a 6 2 e

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
c 3 7 b

f 0 4 8

a 1 6 e

d 2 5 9

S̄

(b) Integral distinguisher II for 9 rounds
of QARMAv2-64. Data complexity: 248.

Figure 9: ZC-based integral distinguishers for QARMAv2-64 (T = 1).

cells with an arbitrary linear mask () should assume a fixed value, while inactive cells
should take all possible value exactly once. Then, the output cells with are balanced in
the corresponding integral distinguisher.

As mentioned earlier, we model the propagation of linear masks in the backward
direction using two independent CSP models. This is why we depict the activity pattern
in the backward direction with upper and lower triangles in each cell. For instance,
and signify that the linear mask of the corresponding cell can assume any value in
one backward path, but it must be nonzero in the other backward path. In addition,
denotes the tweak cell that should take all possible values in the corresponding integral
distinguishers.

We explain the interpretation of Figure 9 as an example, and interpreting other figures
is similar. Figure 9 represents a 9-round ZC linear hull for QARMAv2, taking the tweak
schedule into account. As seen in Figure 9a, 6 input cells can take any linear mask (),
while the linear masks of the other 10 input cells are zero. The output cells can take a
fixed nonzero linear mask () in 8th (first backward propagation) and 12th (second
backward propagation) cells. The tweak cell 0 takes a nonzero liner mask exactly once
(after the reflector construction), whereas its linear mask is zero everywhere else. As a
result, according to Theorem 2, we have two independent ZC linear hulls with the same
activeness pattern at the input, but different active cells at the same column of the output.

To convert the ZC linear hulls in Figure 9 into integral distinguishers, the input cells

Hosein Hadipour, Yosuke Todo 15

S
0 1 2 3

4 5 6 7

8 9 a b

c d e f

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
c 3 7 b

f 0 4 8

a 1 6 e

d 2 5 9

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
a c f d

e 8 b 9

1 0 3 2

6 4 7 5

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S

τ M τ̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
a c f d

e 8 b 9

1 0 3 2

6 4 7 5

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
c 3 7 b

f 0 4 8

a 1 6 e

d 2 5 9

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
0 1 2 3

4 5 6 7

8 9 a b

c d e f

S̄

(a)Integral distinguisher I for 10 rounds
of QARMAv2-64. Data complexity: 244.

S
0 1 2 3

4 5 6 7

8 9 a b

c d e f

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
c 3 7 b

f 0 4 8

a 1 6 e

d 2 5 9

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S
a c f d

e 8 b 9

1 0 3 2

6 4 7 5

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S

τ M τ̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
a c f d

e 8 b 9

1 0 3 2

6 4 7 5

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1 a e 6

2 9 d 5

0 8 c 4

3 b f 7

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
c 3 7 b

f 0 4 8

a 1 6 e

d 2 5 9

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
0 1 2 3

4 5 6 7

8 9 a b

c d e f

S̄

(b)Integral distinguisher II for 10 rounds
of QARMAv2-64. Data complexity: 244.

Figure 10: ZC-based integral distinguishers for QARMAv2-64 (T = 2).

with active linear masks () should take a fixed value and the linearly inactive cells should
take all possible values exactly once. In addition, the tweak cell number 0 should take
all possible values exactly once. Then, the output cells with / labels are balanced
in the corresponding integral distinguishers. Due to 10 + 1 active cell (10 active cells at
the internal state and 1 active cell in the tweak) at the input, the data complexity of the
resulting integral distinguisher is 244.

According to Table 2, the data complexity of any valid attack on QARMAv2-64 (resp.
QARMAv2-128) should be less than 256 (resp. 280). Therefore, our integral distinguishers
satisfy the data complexity limits. We also found a 12-round integral distinguisher for
QARMAv2-128 (T = 2) with two balanced output cells, as illustrated in Figure 15. However,
we do not use it in our key recovery attack since its data complexity is 296 (above
the threshold). In Section 5, we elaborate on applying meet-in-the-middle and partial-
sum techniques to construct an efficient key recovery attack based on our new integral
distinguishers.

16 Cryptanalysis of QARMAv2

S
0 1 2 3

4 5 6 7

8 9 1011

12131415

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
16171819

20212223

24252627

28293031

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
1219 7 27

1516 4 8

10 1 6 30

29 2 2125

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
28 3 2311

31 0 2024

26172214

1318 5 9

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
1 101422

18252921

0 8 12 4

19273123

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
172630 6

2 9 13 5

16242820

3 1115 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
10123113

302411 9

1 0 1918

6 20 7 5

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S XR

τ M τ̄

XR

S
26281529

14 8 2725

1716 3 2

22 4 2321

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S

τ M τ̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
10123113

302411 9

1 0 1918

6 20 7 5

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
26281529

14 8 2725

1716 3 2

22 4 2321

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1 101422

18252921

0 8 12 4

19273123

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
172630 6

2 9 13 5

16242820

3 1115 7

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1219 7 27

1516 4 8

10 1 6 30

29 2 2125

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
28 3 2311

31 0 2024

26172214

1318 5 9

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
0 1 2 3

4 5 6 7

8 9 1011

12131415

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
16171819

20212223

24252627

28293031

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
19 6 2120

231718 0

12102915

1114 9 24

S̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
3 22 5 4

7 1 2 16

28261331

273025 8

S̄

(a) Integral distinguisher I for 11
rounds of QARMAv2-128. Data com-
plexity: 244.

S
0 1 2 3

4 5 6 7

8 9 1011

12131415

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
16171819

20212223

24252627

28293031

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
1219 7 27

1516 4 8

10 1 6 30

29 2 2125

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
28 3 2311

31 0 2024

26172214

1318 5 9

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
1 101422

18252921

0 8 12 4

19273123

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
172630 6

2 9 13 5

16242820

3 1115 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
10123113

302411 9

1 0 1918

6 20 7 5

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S XR

τ M τ̄

XR

S
26281529

14 8 2725

1716 3 2

22 4 2321

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S

τ M τ̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
10123113

302411 9

1 0 1918

6 20 7 5

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
26281529

14 8 2725

1716 3 2

22 4 2321

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1 101422

18252921

0 8 12 4

19273123

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
172630 6

2 9 13 5

16242820

3 1115 7

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1219 7 27

1516 4 8

10 1 6 30

29 2 2125

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
28 3 2311

31 0 2024

26172214

1318 5 9

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
0 1 2 3

4 5 6 7

8 9 1011

12131415

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
16171819

20212223

24252627

28293031

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
19 6 2120

231718 0

12102915

1114 9 24

S̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
3 22 5 4

7 1 2 16

28261331

273025 8

S̄

(b) Integral distinguisher II for 11
rounds of QARMAv2-128. Data com-
plexity: 244.

Figure 11: ZC-based integral distinguishers for QARMAv2-128 (T = 2).

5 Integral Key Recovery
Here, we use the partial-sum technique [FKL+00] and the meet-in-the-middle approach [SW12]
to provide key recovery attacks upon our distinguishers for QARMAv2. Moreover, to exploit
the low data complexity of the integral distinguisher, we construct each distillation table
after guessing the whole of L0. It is also helpful to reduce the required memory complexity
for the meet-in-the-middle approach.

Recall that the authors of QARMAv2 claimed κ−ε-bit security for κ-bit secret key, where

Hosein Hadipour, Yosuke Todo 17

ε is adjusted to values such as 16 for standardization purposes. We emphasize that our
key recovery attacks are valid for the parameters suggested for general or standardization
purposes.

5.1 Integral Attack for 13-Round QARMAv2-64 (T = 1)

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

9 8 b a
d f c e
5 7 0 6
1 3 4 2

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

3 6 5 4
7 1 2 0
c a d f
b e 9 8

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

5 9 d 1
6 e a 2
7 f 8 3
0 c b 4

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

6 d 9 2
5 a e 1
3 c b 7
4 f 8 0

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

9 8 b a
d f c e
5 7 0 6
1 3 4 2

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

3 6 5 4
7 1 2 0
c a d f
b e 9 8

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

5 9 d 1
6 e a 2
7 f 8 3
0 c b 4

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

6 d 9 2
5 a e 1
3 c b 7
4 f 8 0

X0

X1

X2

X3

Z0

Z1

Z2

Z3

Y0

Y1

Y2

Y3

X0

X1

X2

X3

Z0

Z1

Z2

Z3

Y0

Y1

Y2

Y3

Figure 12: Key recovery for 13-round QARMAv2-64 (T = 1)

Here, we propose an integral attack against 13-round of QARMAv2-64 (T = 1) by
appending 4 rounds for key recovery to the ciphertext side of our 9-round distinguisher in
Figure 9a. Figure 12 shows the overview of the key recovery. As seen in Figure 12, thanks
to having two balanced cells in the same column at the output of the distinguisher, we can
bypass the diffusion effect of the MixColumns layer. Otherwise, much more key bits would
be involved in the key recovery, yielding a higher time complexity. Besides, we sometimes
guess L̃0 = M ◦ τ(L0) and L̃1 = M ◦ τ(L1) instead of L0 and L1. Let Xi, Yi, and Zi be
internal states defined in Figure 12.

Attack Procedure. The 9-round integral distinguisher is built by using 244 chosen
plaintexts. We have the 8-bit balanced value after the S-box layer. We use the following
relation for the efficiency of the key recovery.{⊕

Z−1[8] =
⊕(

ρ2(X0[0]) ⊕ ρ3(X0[10]) ⊕ ρ(X0[15])
)

= 0,⊕
Z−1[12] =

⊕(
ρ(X0[0]) ⊕ ρ2(X0[10]) ⊕ ρ3(X0[5])

)
= 0,

⇒
⊕

(ρ(X0[15]) ⊕ X0[5]) =
⊕

(Z−1[8] ⊕ ρ(Z−1[12])) = 0.

Only two nibbles of X0 are enough to observe the 4-bit balanced property. Therefore,
we use the meet-in-the-middle approach, where we independently compute the sum of
X0[5] and X0[15]. We finally retrieve the secret key satisfying ρ

⊕
X0[5] =

⊕
X0[15].

One structure, using 244 chosen plaintexts, can be a 4-bit filter, i.e., the secret-key space
is reduced by the factor of 2−4. However, we need a more substantial filtering effect to
build an attack whose complexity is less than 2128−16, and hence valid for standardization
purposes. Therefore, we use s structures to enhance it to a 4s-bit filter.

The straightforward meet-in-the-middle approach yields an enormous memory com-
plexity to store all the guessed key bits. To reduce the memory complexity, we share some

18 Cryptanalysis of QARMAv2

Table 3: Partial-sum technique to compute X0[5], where L0 is guessed in advance.
Step Guessed key Stored nibbles (size) Complexity (unit)

0 - Z2[0, 2, 3, 5, 6, 7, 11, 12, 13], T0[0] 240

1 L̃1[12] Z2[0, 2, 3, 5, 6, 7, 11, 13], X2[12] 236 24 × 240 × 1 (SB)
2 L̃1[3] Z2[0, 2, 5, 6, 7, 13, 15], mix(X2[12], X2[3]) 232 24 × 236 × 24 (SB)
3 L̃1[6] Z2[0, 2, 5, 7, 13, 15], Z1[14] 228 24 × 232 × 28 (SB)
4 (L̃0[14]) Z2[0, 2, 5, 7, 13, 15], X1[14] 228 1 × 228 × 212 (SB)
5 L̃1[0] Z2[2, 5, 7, 13, 15], X2[0], X1[14] 228 24 × 228 × 212 (SB)
6 L̃1[5] Z2[2, 7, 13, 15], mix(X2[0], X2[5]), X1[14] 224 24 × 228 × 216 (SB)
7 L̃1[15] Z2[2, 7, 13], Z1[4], X1[14] 220 24 × 224 × 220 (SB)
8 (L̃0[4]) Z2[2, 7, 13], mix(X1[4], X1[14]) 216 1 × 220 × 224 (SB)
9 L̃1[2] Z2[7, 13], X2[2], mix(X1[4], X1[14]) 216 24 × 216 × 224 (SB)
10 L̃1[7] Z2[13], mix(X2[2], X2[7]), mix(X1[4], X1[14]) 212 24 × 216 × 228 (SB)
11 L̃1[13] Z1[11], mix(X1[4], X1[14]) 28 24 × 212 × 232 (SB)
12 (L̃0[11]) Z0[5] 24 1 × 28 × 236 (SB)
13 (L̃1[5]) X0[5] 24 1 × 24 × 236 (SB)

Total 250.15 (SB)

Table 4: Partial-sum technique for X0[15], where L0 is guessed in advance.
Step Guessed key Stored data nibbles (size) Complexity (unit)

0 - Z2[0, 1, 8, 10, 11, 13, 14, 15], T0[0] 240

1 L̃1[2] Z2[0, 1, 8, 10, 11, 13, 14, 15], T0[0], X2[2] 240 24 × 240 × 1 (SB)
2 L̃1[8] Z2[0, 1, 10, 11, 13, 14, 15], T0[0], mix(X2[2], X2[8]) 236 24 × 240 × 24 (SB)
3 L̃1[13] Z2[0, 1, 10, 11, 14, 15], T0[0], Z1[7] 232 24 × 236 × 28 (SB)
4 (L̃0[11]) Z2[0, 1, 10, 11, 14, 15], X1[7] 228 1 × 232 × 212 (SB)
5 L̃1[0] Z2[1, 10, 11, 14, 15], X2[0], X1[7] 228 24 × 228 × 212 (SB)
6 L̃1[10] Z2[1, 11, 14, 15], mix(X2[0], X2[10]), X1[7] 224 24 × 228 × 216 (SB)
7 L̃1[15] Z2[1, 11, 14], Z1[8], X1[7] 220 24 × 224 × 220 (SB)
8 (L̃0[8]) Z2[1, 11, 14], mix(X1[7], X1[8]) 216 1 × 220 × 224 (SB)
9 L̃1[1] Z2[11, 14], X2[1], mix(X1[7], X1[8]) 216 24 × 216 × 224 (SB)
10 L̃1[11] Z2[14], mix(X2[1], X2[11]), mix(X1[7], X1[8]) 212 24 × 216 × 228 (SB)
11 L̃1[14] Z1[13], mix(X1[7], X1[8]) 28 24 × 212 × 232 (SB)
12 (L̃0[13]) Z0[15] 24 1 × 28 × 236 (SB)
13 (L̃1[15]) X0[15] 24 1 × 24 × 236 (SB)

Total 250.67 (SB)

guesses, specifically the whole of L0, in both procedures. Specifically, we use the following
procedure.

1. Guess the whole of L0, 64 bits, and construct two distillation tables to compute the
sum of X0[5] and X0[15].

(a) Compute the sum of X0[5] by using the partial-sum technique (see Table 3).
(b) Compute the sum of X0[15] by using the partial-sum technique (see Table 4).
(c) Apply the meet-in-the-middle approach and retrieve about 264−4s key candidates

about L1.
(d) Guess 264−4s L1 and check the correctness by a few trial encryptions.

Table 3 and Table 4 summarize the partial-sum procedures to compute the sum of X0[5]
and the sum of X0[15], respectively. Here, mix(X, X ′) denotes a linear function represented
by ρi(X) ⊕ ρj(X ′) with a proper i and j.

We finally estimate the attack complexity. The time complexity is

264 ×
(
s × 244RF + s × 250.15SB + s × 250.67SB + 264−4sENC

)
,

Hosein Hadipour, Yosuke Todo 19

Note that each list for the meet-in-the-middle contains 236 key candidates. Even if we
repeat the procedure 264 times for guessing L0, the cost of sorting and matching two lists
is negligible. When we regard SB and RF as 1

16 RF and 1
13 ENC, respectively, the total time

complexity is 2110.47 with s = 5. Thus, the data complexity is 5 × 244. Each partial-sum
procedure has to store at most 244 s-bit values, but storing s × 244 ciphertexts is more
significant. Therefore, the memory complexity is about s × 244.

5.2 Integral Attack for 14-Round QARMAv2-64 (T = 2)

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

3 6 5 4
7 1 2 0
c a d f
b e 9 8

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

8 0 4 c
b 7 3 f
9 5 1 d
a 6 2 e

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

6 d 9 2
5 a e 1
3 c b 7
4 f 8 0

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

9 8 b a
d f c e
5 7 0 6
1 3 4 2

3 6 5 4
7 1 2 0
c a d f
b e 9 8

8 0 4 c
b 7 3 f
9 5 1 d
a 6 2 e

6 d 9 2
5 a e 1
3 c b 7
4 f 8 0

9 8 b a
d f c e
5 7 0 6
1 3 4 2

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

X0

X1

X2

X3

Z0

Z1

Z2

Z3

Y0

Y1

Y2

Y3

X0

X1

X2

X3

Z0

Z1

Z2

Z3

Y0

Y1

Y2

Y3

Figure 13: Key recovery for 14-round QARMAv2-64 (T = 2)

We have discovered a 10-round integral distinguisher with two balanced output words
for QARMAv2-64 (T = 2) as illustrated in Figure 10. By adding 4 rounds to the integral
distinguisher, we obtain a 14-round integral attack. Almost the same attack procedure
as the key recovery for T = 1 is applicable. We guess the whole of L1 and construct
two distillation tables for computing the sums of X0[11] and X0[4]. The complexity for
computing the sum of X0[4] is slightly efficient because it involves no active tweak nibble.
Finally, the complexity is

264 ×
(
s × 244RF + s × 250.15SB + s × 250.13SB + 264−4sENC

)
,

With the same conversion of the unit of complexity, the attack complexity is 2110.17 with
s = 5. The required data complexity is 5 × 244. Figure 13 summarizes the 14-round key
recovery.

5.3 Integral Attack for 16-Round QARMAv2-128 (T = 2)
We append 5 rounds to our 11-round integral distinguisher for QARMAv2-128 (T = 2)
in Figure 11 to obtain a 16-round integral attack. The attack procedure is similar to
the QARMAv2-64 attack. We initially guess further bits to reduce the time and memory
complexity, i.e., the whole of L1 and part of L̃0. Specifically, we use the following procedure.

1. Guess the whole of L1 and L̃0[1, 5, 10, 14, 18, 19, 22, 23, 24, 25, 28, 29], 176 bits and
compute 244 partial decryption.

20 Cryptanalysis of QARMAv2

mix 14 11

X0

X1Z0Y0

X2Z1Y1

X3Z2Y2

X4Z3Y3

Z4Y4

X0

X1Z0Y0

X2Z1Y1

X3Z2Y2

X4Z3Y3

Z4Y4

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

16272229
26172823
21301924
31202518

16171819
20212223
24252627
28293031

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

0 1 2 3
4 5 6 7
8 9 1011
12131415

mix 29 24

Figure 14: Key recovery for 16-round QARMAv2-128 (T = 2)

(a) Guess L̃0[0, 11] and construct a distillation table to compute the sum of X0[21].
Compute the sum of X0[21] by using the partial-sum technique (see Table 5).

(b) Guess L̃0[4, 15] and construct a distillation table to compute the sum of X0[31].
Compute the sum of X0[31] by using the partial-sum technique (see Table 6).

(c) Apply the meet-in-the-middle approach and retrieve about 280−4s key candidates
about L0.

(d) Guess 280−4s L0 and check the correctness by a few trial encryptions.

Table 5 and Table 6 summarizes the partial-sum procedures to compute the sum of X0[21]
and the sum of X0[31], respectively. Here, mix(X, X ′) denotes a linear function represented
by ρi(X) ⊕ ρj(X ′) with a proper i and j.

The time complexity is

2176 ×
(
s × 244PD + s × 28 × 254.15SB + s × 28 × 254.15SB + 280−4sENC

)
,

Each list for the meet-in-the-middle contains 244 key candidates. Therefore, we regard
the cost of sorting and matching two lists as negligible. When we regard SB and PD as
1

16 RF and 4RF = 4
16 ENC, respectively, the total time complexity is 2234.11 with s = 6. Thus,

the data complexity is 6 × 244. Each partial-sum procedure has to store at most 252 s-bit
values. Therefore, the memory complexity is about 252.

Hosein Hadipour, Yosuke Todo 21

Table 5: Partial-sum technique to compute X0[21], where L1 and L̃0[0, 1, 5, 10, 11, 14,
18, 19, 22, 23, 24, 25, 28, 29] are guessed in advance.

Step Guessed key Stored nibbles (size) Complexity (unit)

1 L̃0[7] Z3[8, 13, 20, 21, 26, 27, 30, 31], X3[7], mix(X1[11], X1[14]) 240 24 × 240 × 1 (SB)
2 L̃0[8] Z3[13, 20, 21, 26, 27, 30, 31], mix(X3[7], X3[8]), mix(X1[11], X1[14]) 236 24 × 240 × 24 (SB)
3 L̃0[13] Z3[20, 21, 26, 27, 30, 31], Z2[15], mix(X1[11], X1[14]) 232 24 × 236 × 28 (SB)
4 (L̃1[15]) Z3[20, 21, 26, 27, 30, 31], X2[15], mix(X1[11], X1[14]) 232 1 × 232 × 212 (SB)
5 L̃0[21] Z3[20, 26, 27, 30, 31], X3[21], X2[15], mix(X1[11], X1[14]) 232 24 × 232 × 212 (SB)
6 L̃0[26] Z3[20, 27, 30, 31], mix(X3[21], X3[26]), X2[15], mix(X1[11], X1[14]) 228 24 × 232 × 216 (SB)
7 L̃0[31] Z3[20, 27, 30], Z2[16], X2[15], mix(X1[11], X1[14]) 224 24 × 228 × 220 (SB)
8 (L̃1[16]) Z3[20, 27, 30], mix(X2[0], X2[15]), mix(X1[11], X1[14]) 220 1 × 224 × 224 (SB)
9 L̃0[20] Z3[27, 30], X3[20], mix(X2[0], X2[15]), mix(X1[11], X1[14]) 220 24 × 220 × 224 (SB)
10 L̃0[27] Z3[30], mix(X3[20], X3[27]), mix(X2[0], X2[15]), mix(X1[11], X1[14]) 216 24 × 220 × 228 (SB)
11 L̃0[30] Z2[21], mix(X2[0], X2[15]), mix(X1[11], X1[14]) 212 24 × 216 × 232 (SB)
12 (L̃1[21]) Z1[4], mix(X1[11], X1[14]) 28 1 × 212 × 236 (SB)
13 L̃0[4] Z0[5] 24 24 × 28 × 236 (SB)
14 (L̃1[5]) X0[21] 24 1 × 24 × 236 (SB)

Total 254.15 (SB)

Table 6: Partial-sum technique to compute X0[31], where L1 and L̃0[1, 4, 5, 10, 14, 15,
18, 19, 22, 23, 24, 25, 28, 29] are guessed in advance.

Step Guessed key Stored nibbles (size) Complexity (unit)
0 - Z3[3, 9, 12, 16, 17, 26, 27, 30, 31], φ6(T1)[9], mix(X1[24], X1[29]) 244

1 L̃0[9] Z3[3, 12, 16, 17, 26, 27, 30, 31], X3[9], mix(X1[24], X1[29]) 240 24 × 244 × 1 (SB)
2 L̃0[3] Z3[12, 16, 17, 26, 27, 30, 31], mix(X3[3], X3[9]), mix(X1[24], X1[29]) 236 24 × 240 × 24 (SB)
3 L̃0[12] Z3[16, 17, 26, 27, 30, 31], Z2[2], mix(X1[24], X1[29]) 232 24 × 236 × 28 (SB)
4 (L̃1[2]) Z3[16, 17, 26, 27, 30, 31], X2[18], mix(X1[24], X1[29]) 232 1 × 232 × 212 (SB)
5 L̃0[16] Z3[17, 26, 27, 30, 31], X3[16], X2[18], mix(X1[24], X1[29]) 232 24 × 232 × 212 (SB)
6 L̃0[26] Z3[17, 27, 30, 31], mix(X3[16], X3[26]), X2[18], mix(X1[24], X1[29]) 228 24 × 232 × 216 (SB)
7 L̃0[31] Z3[17, 27, 30], Z2[24], X2[18], mix(X1[24], X1[29]) 224 24 × 228 × 220 (SB)
8 (L̃1[24]) Z3[17, 27, 30], mix(X2[18], X2[24]), mix(X1[24], X1[29]) 220 1 × 224 × 224 (SB)
9 L̃0[17] Z3[27, 30], X3[17], mix(X2[18], X2[24]), mix(X1[24], X1[29]) 220 24 × 220 × 224 (SB)
10 L̃0[27] Z3[30], mix(X3[17], X3[27]), mix(X2[18], X2[24]), mix(X1[24], X1[29]) 216 24 × 220 × 228 (SB)
11 L̃0[30] Z2[29], mix(X2[18], X2[24]), mix(X1[24], X1[29]) 212 24 × 216 × 232 (SB)
12 (L̃1[29]) Z1[23], mix(X1[24], X1[29]) 28 1 × 212 × 236 (SB)
13 (L̃0[23]) Z0[31] 24 1 × 28 × 236 (SB)
14 (L̃1[31]) X0[31] 24 1 × 24 × 236 (SB)

Total 254.15 (SB)

6 Conclusion and Future Works

In this paper, we further improved the tool for finding integral distinguishers proposed
in [HSE23,HGSE23]. Using this new tool, we could exploit the MixColumns property of
QARMAv2 to find new integral distinguishers for QARMAv2 that are more efficient in terms
of integral key recovery. Then, we leveraged the combination of meet-in-the-middle and
partial-sum techniques to propose the first concrete key recovery attacks on QARMAv2. Our
CP model to search for integral distinguishers is not limited to QARMAv2 and can be applied
to similar designs such as MANTIS and CRAFT. In summary, we provided a 13-round attack
on QARMAv2-64 (T = 1), a 14-round attack on QARMAv2-64 (T = 2), and a 16-round attack
on QARMAv2-128 (T = 2). Although our attacks do not threaten the security of QARMAv2
in practice, they shed more light on the security of QARMAv2 and initiate further research
on the security of QARMAv2. For example, it is interesting to see whether the invariant
property of unkeyed QARMAv2-64 round function discovered in [Bey23] can improve our
integral attacks.

22 Cryptanalysis of QARMAv2

References
[ABD+23] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam

Ghosh, Marcel Nageler, and Francesco Regazzoni. The qarmav2 family of tweak-
able block ciphers. IACR Transactions on Symmetric Cryptology, 2023(3):25–
73, Sep. 2023. doi:10.46586/tosc.v2023.i3.25-73.

[ADG+19] Ralph Ankele, Christoph Dobraunig, Jian Guo, Eran Lambooij, Gregor Le-
ander, and Yosuke Todo. Zero-correlation attacks on tweakable block ciphers
with linear tweakey expansion. IACR Transactions on Symmetric Cryptology,
2019(1):192–235, Mar. 2019. doi:10.13154/tosc.v2019.i1.192-235.

[BCG+] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for pervasive computing ap-
plications - extended abstract. In Xiaoyun Wang and Kazue Sako, edi-
tors, ASIACRYPT 2012, volume 7658 of LNCS, pages 208–225. Springer.
doi:10.1007/978-3-642-34961-4_14.

[Bey23] Tim Beyne. An invariant of the round function of QARMAv2-64. Cryptology
ePrint Archive, Report 2023/963, 2023. URL: https://eprint.iacr.org/
2023/963.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO
2016, pages 123–153. Springer, 2016. doi:10.1007/978-3-662-53008-5_5.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: lightweight tweakable block cipher with efficient protection against
DFA attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019. doi:
10.13154/tosc.v2019.i1.5-45.

[BLNW12] Andrey Bogdanov, Gregor Leander, Kaisa Nyberg, and Meiqin Wang. In-
tegral and multidimensional linear distinguishers with correlation zero. In
ASIACRYPT 2012, volume 7658 of LNCS, pages 244–261. Springer, 2012.
doi:10.1007/978-3-642-34961-4_16.

[BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. Des. Codes Cryptogr., 70(3):369–383,
2014. doi:10.1007/s10623-012-9697-z.

[BW12] Andrey Bogdanov and Meiqin Wang. Zero correlation linear cryptanalysis
with reduced data complexity. In FSE 2012, volume 7549 of LNCS, pages
29–48. Springer, 2012. doi:10.1007/978-3-642-34047-5_3.

[Com16] Arm Community. Armv8-a architecture: 2016 ad-
ditions, 2016. URL: https://community.arm.com/
arm-community-blogs/b/architectures-and-processors-blog/posts/
armv8-a-architecture-2016-additions.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
Square. In FSE 1997, volume 1267 of LNCS, pages 149–165. Springer, 1997.
doi:10.1007/BFb0052343.

https://doi.org/10.46586/tosc.v2023.i3.25-73
https://doi.org/10.13154/tosc.v2019.i1.192-235
https://doi.org/10.1007/978-3-642-34961-4_14
https://eprint.iacr.org/2023/963
https://eprint.iacr.org/2023/963
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/978-3-642-34047-5_3
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-a-architecture-2016-additions
https://doi.org/10.1007/BFb0052343

Hosein Hadipour, Yosuke Todo 23

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael.
In FSE 2000, volume 1978 of LNCS, pages 213–230. Springer, 2000. doi:
10.1007/3-540-44706-7_15.

[Gue16] Shay Gueron. A memory encryption engine suitable for general purpose
processors. Cryptology ePrint Archive, Report 2016/204, 2016. URL: http:
//eprint.iacr.org/2016/204.

[HBS21] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks
on SKINNY and CRAFT. IACR Trans. Symmetric Cryptol., 2021(2):140–198,
2021. doi:10.46586/tosc.v2021.i2.140-198.

[HGSE23] Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, and Maria Eichlseder.
Improved search for integral, impossible-differential and zero-correlation at-
tacks: Application to ascon, forkskinny, skinny, mantis, present and qar-
mav2. IACR Cryptology ePrint Archive, Report 2023/1701, 2023. URL:
https://eprint.iacr.org/2023/1701.

[HNE22] Hosein Hadipour, Marcel Nageler, and Maria Eichlseder. Throwing boomerangs
into feistel structures: Application to CLEFIA, WARP, LBlock, LBlock-
s and TWINE. IACR Trans. Symmetric Cryptol., 2022(3):271–302, 2022.
doi:10.46586/tosc.v2022.i3.271-302.

[HSE23] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the im-
possible: Automated search for full impossible-differential, zero-correlation,
and integral attacks. In EUROCRYPT 2023, volume 14007 of LNCS, pages
128–157. Springer, 2023. doi:10.1007/978-3-031-30634-1_5.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In ASIACRYPT 2014, volume 8874 of
LNCS, pages 274–288. Springer, 2014. doi:10.1007/978-3-662-45608-8_15.

[KW02] Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In FSE
2002, volume 2365 of LNCS, pages 112–127. Springer, 2002. doi:10.1007/
3-540-45661-9_9.

[Lai94] Xuejia Lai. Higher order derivatives and differential cryptanalysis. Communi-
cations and Cryptography: Two Sides of One Tapestry, pages 227–233, 1994.
doi:10.1007/978-1-4615-2694-0_23.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gre-
gory J. Duck, and Guido Tack. Minizinc: Towards a standard CP modelling
language. In CP 2007, volume 4741 of LNCS, pages 529–543. Springer, 2007.

[PF] Laurent Perron and Vincent Furnon. OR-Tools. URL: https://developers.
google.com/optimization/.

[Sec17] Qualcomm Product Security. Pointer authentication on Armv8.3: Design and
analysis of the new software security instructions, 2017. URL: https://www.
qualcomm.com/documents/whitepaper-pointer-authentication-armv83.

[SLR+15] Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang,
Hoda AlKhzaimi, and Chao Li. Links among impossible differential, integral
and zero correlation linear cryptanalysis. In CRYPTO 2015, volume 9215 of
LNCS, pages 95–115. Springer, 2015. doi:10.1007/978-3-662-47989-6_5.

https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
http://eprint.iacr.org/2016/204
http://eprint.iacr.org/2016/204
https://doi.org/10.46586/tosc.v2021.i2.140-198
https://eprint.iacr.org/2023/1701
https://doi.org/10.46586/tosc.v2022.i3.271-302
https://doi.org/10.1007/978-3-031-30634-1_5
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-1-4615-2694-0_23
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83
https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83
https://doi.org/10.1007/978-3-662-47989-6_5

24 Cryptanalysis of QARMAv2

[SW12] Yu Sasaki and Lei Wang. Meet-in-the-middle technique for integral attacks
against Feistel ciphers. In SAC 2012, volume 7707 of LNCS, pages 234–251.
Springer, 2012. doi:10.1007/978-3-642-35999-6_16.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
EUROCRYPT 2015, volume 9056 of LNCS, pages 287–314. Springer, 2015.
doi:10.1007/978-3-662-46800-5_12.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In ASIACRYPT 2016, volume 10031 of LNCS, pages
648–678, 2016. doi:10.1007/978-3-662-53887-6_24.

https://doi.org/10.1007/978-3-642-35999-6_16
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-53887-6_24

Hosein Hadipour, Yosuke Todo 25

A 12-Round Integral Distinguisher for QARMAv2-128 (T = 2)

S
0 1 2 3

4 5 6 7

8 9 1011

12131415

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
16171819

20212223

24252627

28293031

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
19 6 2120

231718 0

12102915

1114 9 24

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
3 22 5 4

7 1 2 16

28261331

273025 8

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
1 101422

18252921

0 8 12 4

19273123

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
172630 6

2 9 13 5

16242820

3 1115 7

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
1219 7 27

1516 4 8

10 1 6 30

29 2 2125

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S
28 3 2311

31 0 2024

26172214

1318 5 9

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M

S XR
10123113

302411 9

1 0 1918

6 20 7 5

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S XR

τ M τ̄

XR

S
26281529

14 8 2725

1716 3 2

22 4 2321

0 1 2 3
4 5 6 7
8 9 1011
12131415

0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

τ M S

τ M τ̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
10123113

302411 9

1 0 1918

6 20 7 5

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
26281529

14 8 2725

1716 3 2

22 4 2321

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1219 7 27

1516 4 8

10 1 6 30

29 2 2125

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
28 3 2311

31 0 2024

26172214

1318 5 9

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
1 101422

18252921

0 8 12 4

19273123

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
172630 6

2 9 13 5

16242820

3 1115 7

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
19 6 2120

231718 0

12102915

1114 9 24

XR

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
3 22 5 4

7 1 2 16

28261331

273025 8

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
0 1 2 3

4 5 6 7

8 9 1011

12131415

S̄

S̄
0 11 6 13
10 1 12 7
5 14 3 8
15 4 9 2

M̄
0 1 2 3
4 5 6 7
8 9 1011
12131415

τ̄
16171819

20212223

24252627

28293031

S̄

Figure 15: 12-round integral distinguisher for QARMAv2-128 (T = 2). Data complexity 296.

	Introduction
	Background
	Specification of QARMAv2
	From Zero-Correlation to Integral Distinguishers
	Key Recovery in Integral Attacks using the Partial-Sum Technique
	Meet-in-the-Middle Technique

	Integral Properties of QARMAv2 Diffusion Matrix
	Search for Distinguishers
	Integral Key Recovery
	Integral Attack for 13-Round QARMAv2-64 (T = 1)
	Integral Attack for 14-Round QARMAv2-64 (T = 2)
	Integral Attack for 16-Round QARMAv2-128 (T = 2)

	Conclusion and Future Works
	12-Round Integral Distinguisher for QARMAv2-128 (T = 2)

