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Abstract. The Quantum Fourier Transform is a fundamental tool in
quantum cryptanalysis. In symmetric cryptanalysis, hidden shift algo-
rithms such as Simon’s (FOCS 1994), which rely on the QFT, have been
used to obtain structural attacks on some very specific block ciphers.
The Fourier Transform is also used in classical cryptanalysis, for exam-
ple in FFT-based linear key-recovery attacks introduced by Collard et al.
(ICISC 2007). Whether such techniques can be adapted to the quantum
setting has remained so far an open question.
In this paper, we introduce a new framework for quantum linear key-
recovery attacks using the QFT. These attacks loosely follow the classical
method of Collard et al., in that they rely on the fast computation of a
correlation state in which experimental correlations, rather than being
directly accessible, are encoded in the amplitudes of a quantum state.
The experimental correlation is a statistic that is expected to be higher
for the good key, and on some conditions, the increased amplitude creates
a speedup with respect to an exhaustive search of the key. The same
method also yields a new family of structural attacks, and new examples
of quantum speedups beyond quadratic using classical known-plaintext
queries.

Keywords: Linear cryptanalysis, Quantum cryptanalysis, Fast Walsh-Hadamard
Transform, Quantum Fourier Transform

1 Introduction

Quantum cryptanalysis can be said to have started with Shor’s algorithm [47],
which showed that cryptosystems based on the hardness of factoring and com-
puting discrete logarithms, which are secure classically, could be broken using
a quantum computer. While Shor’s algorithm provides an exponential speedup,
at the other end of the spectrum, Grover’s quantum search algorithm [25] pro-
vides a quadratic acceleration for NP problems, which is optimal for black-box
search [4]. In particular, it halves the level of security for key-recovery provided
by all ciphers.

Since then, many quantum algorithms have been designed and applied in
cryptanalysis. In symmetric cryptanalysis, which is the main focus of this paper,
they can be classified in two ways.



Q1 / Q2. Following a widely used terminology [34,33,29,28], Q1 adversaries
are those which are capable of offline quantum computations, but only work
from classical data. This is the most commonly used threat model in public-key
post-quantum cryptography, underlying the ongoing standardization process or-
ganized by NIST [44]. In contrast, Q2 adversaries are capable of quantum access
to oracles holding secret data (e.g., encryption, decryption, signing oracles). It is
known since Kuwakado and Morii [38] that some symmetric cryptosystems are
especially vulnerable to Q2 adversaries, while remaining secure against Q1 ones.
For example, the Even-Mansour cipher is broken in Q2 [39] and secure in Q1 [2].
All Q2 breaks known to date rely on structure-finding algorithms: Simon’s [48],
Shor’s, Kuperberg’s [37], Bernstein-Vazirani [5], Deutsch-Josza [21].

Below quadratic / above quadratic. Starting from Grover’s algorithm, one can
build a family of nested search algorithms which reach at most a quadratic
speedup. Most dedicated quantum attacks on symmetric cryptosystems so far
belong to this family, with the notable exception of quantum slide attacks [33].
Notably, this category includes some Q2 attacks [34], collision attacks on hash
functions [30] and a wide range of key-recovery techniques [24,20,12].

Better speedups than quadratic do not necessarily require Q2 queries, but all
such attacks to date use the Quantum Fourier Transform in one way or another,
usually a subcomponent of a structure-finding algorithm (Simon, Shor, etc.).
The offline-Simon algorithm of Bonnetain et al. [11] was shown to reach a Q1
speedup of 2.5 for key-recovery on some block cipher constructions [13], i.e., from

Õ
(
22.5n

)
to Õ(2n). Yamakawa and Zhandry achieved a more fundamental sep-

aration result [51]. They demonstrated that under a random oracle assumption,
one can build a classically secure one-way function, which is quantumly invert-
ible. That is, Q1 exponential speedups on various primitives (hash functions,
block ciphers) are theoretically possible. However this separation has not been
converted into an attack on practical constructions. Recently, Hosoyamada [28]
achieved a (Q2) quantum speedup beyond quadratic on some types of integral
distinguishers. His attack relies on a modified subroutine of Simon’s algorithm
and can be seen, like ours, as a statistical attack using the QFT.

Motivation and Contribution. The classical (fast) Fourier Transform is also
a major tool of classical cryptanalysis. In particular, since the work of Collard
et al. [16] it is used to speed up linear key-recovery attacks. It leads to the best
attacks on well studied ciphers such as Present [23], and several variants exist
such as FFT-based zero correlation linear attacks [9]. However, while quantum
linear attacks were investigated before [34,28], these works left as an open prob-
lem the use of the QFT in key-recovery attacks.

In this paper, we solve (partially) this long-standing open question, and intro-
duce a new way to use the QFT in quantum key-recovery attacks. Our framework
applies to the setting introduced by Collard et al. However, it comes with var-
ious limitations, and does not necessarily reach the same number of rounds as
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x EM F

k

EK(x) = k + F ◦ EM (x)

Fig. 1. Case considered by Collard et al. [16]. Under a guess of k, we have access to
the middle rounds EM (or a random permutation) and we compute the correlation of
a linear approximation α, β of EM .

classical attacks. But it can also do more: we show a 2.5 speedup on a structural
attack, in a case where the offline-Simon algorithm [11,13] seems inapplicable.

Main Feature: The Correlation State. FFT-based linear cryptanalysis relies on
the fast evaluation of experimental correlations ĉor(z) which depend on a subkey
guess z and on a large database of N known-plaintext queries (see Figure 1).
When guessing the good subkey right, we observe the reduced-round cipher
EM , which has a linear approximation, and the correlation is higher. One could
evaluate each ĉor(z) in time N for a total O

(
N × 2|k|

)
; however, Collard et al.

showed how to evaluate all correlations in time Õ
(
N + 2|k|

)
using a fast Walsh-

Hadamard transform.

Our main ingredient is a quantum analogue of this procedure which produces
the correlation state:

|Cor〉 :=
1√∑

z ĉor(z)2

∑
z

ĉor(z) |z〉 .

Encoding correlations in the amplitude is also what Hosoyamada [28] did for
quantum distinguishers. However, the quantum state that he constructed was
a superposition of linear masks. We have a superposition of keys instead, since
we are targeting key-recovery attacks. In this context, the construction of |Cor〉
is more technical. It requires both the QFT and a state preparation technique,
which is common in quantum algorithms. In fact, the principle is similar to [18],
where the QFT is used to compute a discrete convolution of functions in the
amplitudes of a quantum state.

From there, since the good subkey guess is expected to have a higher cor-
relation, we use quantum amplitude amplification subroutines to complete the
search for the key. This is the main limitation of our algorithm. Indeed, the
speedup with respect to exhaustive search depends directly on the quality of the
linear approximation (its expected linear potential, ELP). This can be seen in
the statement of our main theorem, given in Section 4:

Theorem 1. In the situation of Figure 1, let t = 1.005
√

ELP2n/2, where ELP
is the ELP of the linear approximation (α, β). There exists a quantum algo-
rithm that takes no input and returns (after measurement) the master key with
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probability ≥ 1
2 . This algorithm has complexity:

π2

8t
2|K|/2r(E)Tof (E) +

π2

8t
2n/2Tof (CORCOMP) (1)

where Tof (E) is the gate count of E, r(E) the number of trial encryptions to
test a key, and Tof (CORCOMP) is the gate count of computing the correlation
state |Cor〉. The attack succeeds with probability 0.271.

New Structural Attack. When the experimental correlation for the right key
becomes really large, the cipher EM basically degenerates into a linear function,
and our algorithm becomes a structural attack. We observe that this attack
is different from the offline-Simon algorithm [11]. While offline-Simon typically
requires chosen-plaintext queries, classical known-plaintext queries are sufficient
in our case. Indeed, we use the QFT to compute a statistic (the correlation)
instead of recovering a hidden structure.

Outline. In Section 2 we give preliminaries of linear cryptanalysis, notably the
statistical models of experimental correlations of right and wrong key guesses,
which are essential for our framework. In Section 3 we give some preliminaries
of quantum algorithms. Our new algorithm is introduced in Section 4 and ex-
tended to multiple linear cryptanalysis in Section 5. Our applications are given
in Section 6. We conclude the paper with several open questions in Section 7.

2 Preliminaries on Linear Cryptanalysis

In this section we give preliminaries on classical linear cryptanalysis, linear dis-
tinguishers and key-recovery attacks. We also recall quantum linear attacks which
were proposed in [34]. From now on, we use · to denote the scalar product of
vectors in Fn2 and + for addition modulo 2 of bit-strings (including single bits).

2.1 Classical Linear Cryptanalysis

Linear cryptanalysis was introduced by Matsui [41] in order to attack the DES
block cipher [42]. Let EK be an n-bit block cipher instantiated with a given key
K. A (keyless) linear approximation of EK is a pair of n-bit masks (α, β) ∈ (Fn2 )2.
The correlation of this approximation is:

corK(α, β) :=
1

2n

∑
x∈Fn

2

(−1)α·x+β·EK(x) . (2)

Linear cryptanalysis exploits approximations with a large correlation. Matsui
proposed two algorithms, Algorithm 1 and Algorithm 2, to perform a key-
recovery. We will focus here on Algorithm 2, which targets a block cipher of
the form EK = Fk ◦ E′K , where E′K has a correlated linear approximation and

4



x E′K Fk EK(x) = Fk ◦ E′K(x)

Fig. 2. Case considered in Matsui’s Algorithm 2.

Fk is a keyed permutation (e.g., the last round) in which only a subset of the
master key K, denoted k, intervenes. This is represented in Figure 2.

Algorithm 2 starts from a database D of N known plaintext-ciphertext pairs,
and for each possible value z of k, it uses the database to compute the experi-
mental correlation:

ĉor(z) :=
1

N

∑
(x,y)∈D

(−1)α·x+β·F
−1
z (y) . (3)

Since it is a sum of N terms, this requires a total time N × 2|k|. The right key
k is expected to be the one with the highest correlation (in absolute value).
More generally, one keeps a certain proportion of subkeys having the largest
correlations, and for each of these subkeys, one completes the key by exhaustive
search.

ELP. As it can be seen in Equation 2, the correlation is a key-dependent quan-
tity. The quality of an approximation (α, β) is measured over all the keys, using
the expected linear potential (ELP):

ELP(α, β) :=
1

2|K|

∑
K∈F|K|2

corK(α, β)2 . (4)

Statistical models for the experimental correlation were first formalized for
single linear approximations [17,10] and then extended [7,8] for multiple linear
approximations. These models depend on a factor B: B = 1 if the plaintexts are
chosen uniformly at random with repetition and B = 2n−N

2n−1 if they are distinct.
In particular, if N = 2n (we know the whole codebook) we have B = 0. They
also depend on whether the approximation has a dominant trail, or if it is a
linear hull with many trails having a high correlation. In our applications, we
focus on the second case. Here the experimental correlation for right and wrong
keys follows normal distributions with different variances.

Assumption 1 (Right-key randomization hypothesis). The experimental correla-
tion for the right subkey k (ĉor(k)) is a random variable over k with normal
distribution N (0, σ2

R) where σ2
R = B

N + ELP .

Assumption 2 (Wrong-key randomization hypothesis). Given a subkey k, the
experimental correlation for wrong subkey guesses z (ĉor(z)) is a random variable
over z with normal distribution N (0, σ2

W ) where σ2
W = B

N + 2−n .

If we want to keep only a proportion 2−a of possible subkeys, we define a
threshold T = σWΦ

−1(1−2−a−1), where Φ is the cumulative density function of
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N (0, 1). We will then keep all keys z with |ĉor(z)| ≥ T . This approach succeeds
if the right key belongs indeed to this set, and the probability of this event is:

p := 2− 2Φ

(
σW
σR

Φ−1(1− 2−a−1)

)
.

Intuitively, for a constant a and p, we need σR to be bigger than σW by at
least a constant factor, which gives that N × ELP should be constant. So the
data complexity of the attack is of order N = O

(
ELP−1

)
.

2.2 Multiple Linear Cryptanalysis

Linear cryptanalysis becomes more powerful when we can use multiple linear
approximations αi, βi [32]. These approximations do not need to relate to the
same key and state bits [6].

Consider M approximations. The correlation is replaced by the capacity :

C(K) =

M∑
i=1

corK(αi, βi)
2 . (5)

The capacity is estimated by summing the correlations for representative families
of trails for each approximation. If we can include all M approximations in this
computation, we obtain an estimate C such that: ExpK(C(K)) ' C + M2−n

and VarK(C(K)) ' 2
MC2. (Theorem 4.5 in [7]). The corresponding experimental

statistic is:

q̂(z) =

M∑
i=1

ĉori(z)
2 . (6)

We use the results of [7] (Theorem 6) for the distributions of the statistics
of the right and wrong key, which hold under an assumption of independence of
the approximations.

Assumption 3 (Right-key randomization hypothesis, multiple). The statistic q̂(k)
for the right subkey k is a random variable over K following a normal distribution
N (µR, σ

2
R) where{

µR = B
NM + ExpK(C(K))

σ2
R = 2B

2

N2M + 4BNExpK(C(K)) + VarK(C(K)) .
(7)

Assumption 4 (Wrong-key randomization hypothesis, multiple). Given a subkey
k, the statistic q̂(z) for wrong subkey guesses z follows a multiple of a χ2 distri-

bution with M degrees of freedom: B+N2−n

N χ2
M , so with average and variance:{

µW = M
(
B
N + 2−n

)
σ2
W = 2M

(
B
N + 2−n

)2
.

(8)

With B = 0 and N = 2n, these parameters are simplified into:{
µR = ExpK(C(K)) ' C +M2−n, σ2

R = VarK(C(K)) ' 2
MC2

µW = M2−n, σ2
W = 2M2−2n .

(9)
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2.3 Advanced key-recovery Attacks and the FFT

Once the linear approximation has been chosen, we must find the best strategy
to evaluate the experimental correlations ĉor(z) for all z and filter out the z
exceeding a selected threshold. One can usually do better than the generic N ×
2|k| using an early-abort technique. We guess only the necessary key bits to
compute a sequence of intermediate tables, which count the number of plaintext-
ciphertext pairs leading to certain internal state values. An example of this
technique can be found in [49]. However, on many ciphers like Present [23] or
Simon [40], the best key-recovery attacks use the FFT approach introduced by
Collard et al. [16].

We focus on the situation studied in [16], represented in Figure 1, which is
closer to our situation in the quantum setting. We note that it was extended
afterwards in [23] with key additions in both the first and last rounds.

Hadamard Transform. The Walsh-Hadamard Transform (WHT) is a special case

of the discrete Fourier transform. Given a function f : Fn2 → C, its transform f̂
is defined as: {

f̂ : Fn2 → C
x 7→

∑
y∈Fn

2
(−1)x·yf(y)

(10)

Note that by convention, we do not normalize it (contrary to the quantum
Hadamard transform). The Fast Walsh-Hadamard Transform (FWHT) algo-
rithm is a special case of FFT which evaluates the WHT of f in time O(n2n).

Considering the databaseD ofN known-plaintext queries, we let “(x, ∗) ∈ D”
be the predicate that determines if x is among the plaintexts, (∗, x) ∈ D to
determine if x is among the ciphertexts, and for a given x, we let D(x) and
D−1(x) be the corresponding ciphertext (resp. plaintext).

Recall that for each z ∈ Fn2 , we need to evaluate the experimental correlation:

ĉor(z) =
1

N

∑
(x,∗)∈D

(−1)α·x+β·F
−1(z+D(x))

=
1

N

∑
y∈Fn

2

1 [(∗, y) ∈ D] (−1)α·D
−1(y)(−1)β·F

−1(z+y) .

Adapting [16], we introduce the pair of functions f, g:

∀x ∈ Fn2

{
f(x) := 1 [(∗, x) ∈ D] (−1)α·D

−1(x)

g(x) := (−1)β·F
−1(x)

(11)

The experimental correlation is actually the discrete convolution of f and g at
z:

ĉor(z) =
1

N

∑
y∈Fn

2

f(y)g(y + z) :=
1

N
(f ? g) (z) . (12)
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In order to evaluate (f ? g), we use the convolution theorem: the convolution of
two functions is equal, under a Fourier Transform, to the pointwise product of
their Fourier Transforms. In our case:

(f ? g) =
1

2n
̂̂
f · ĝ . (13)

The complexity to compute all correlations is thus reduced from N2|k| to
O
(
n(N + 2|k|)

)
, since we only need to do WHTs and pointwise products of

vectors of length 2|k|.

2.4 Quantum Linear Cryptanalysis

In [34, Section 7], Kaplan et al. showed that quantum search (Grover search and
Amplitude Amplification) could be used to speedup some classical linear key-
recovery attacks. The proposed attack is a last-rounds attack similar to Matsui’s
algorithm 2, using either Q1 or Q2 queries.

With Q1 queries, it has a complexityO
(
N + 2|k|/2

√
N
)

(and then the partial

key must be completed). Note that this assumes that the good subkey k can be
identified by its correlation, and that there are no false positives. While the first
step (obtaining the data) is not accelerated, the second uses a Grover search on
the possible values of k, and approximate counting to estimate the correlation
for a given k (in time

√
N).

If quantum queries are given, then the data collection step is not required

anymore, and the complexity becomes O
(

2|k|/2
√
N
)

. Also, this method uses a

single linear approximation. In the case of multiple linear cryptanalysis, it may
work only if we can guess globally the |k| bits of key required for all linear
approximations at the same time, which is rarely the case in advanced attacks.

Thus, an important characterization of these known attacks is that they can-
not reach more rounds than the classical attacks that use a single approximation
and no FFT.

New Approach for Distinguishers. Recently Hosoyamada [28] used a procedure
inspired by Simon’s algorithm to speedup some linear distinguishers. The main
idea is that, using a single Q2 query to a function f : {0, 1}n → {0, 1}n, one
can produce a superposition:

1√
2n

∑
(α,β)∈(Fn

2 )
2

∑
x

(−1)α·x+β·f(x) |α〉 |β〉 .

It can be seen that the correlations appear directly in the amplitudes. Thus, to
distinguish a function f having a correlated approximation (α, β), it suffices to
estimate the corresponding amplitude, with typically a quadratic speedup with
respect to classical estimates of the correlation.

The important difference with [34] is that this approach also speeds up mul-
tidimensional linear distinguishers. Besides, for some multiple multi-dimensional
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integral distinguishers, the amplitude on the component α, β can become so
large that the speedup is better than quadratic. However, extending this to key-
recovery attacks remains an open question.

The similarity of this approach with our work is evident, as in both cases, one
obtains a quantum state with amplitudes encoding a statistic (the correlation).
The difference is that we have a superposition of keys, instead of a superposition
of masks. The subroutine that computes our own correlation state is also much
different from the one in [28]. In Hosoyamada’s attacks, the statistic appears with
a singe Hadamard transform, while our procedure involves a discrete convolution,
which will be detailed in Section 4.

3 Preliminaries of Quantum Computing

In this section, we collect some important preliminaries of quantum computing
and detail the important building block of state preparation.

3.1 Quantum Computing Basics

We assume some basic knowledge of the quantum circuit model, e.g., quantum
gates, operators, measurements [43]. In this paper, we will measure the time
complexity of a quantum circuit as its Toffoli gate count, written Tof (). Indeed,
all the circuits that we consider below are entirely made of Clifford and Toffoli
gates; Clifford gates are often considered cheaper.

qRAM and Q2 queries. A quantum algorithm can make use of different types of
memory: classical memory, but also quantum-accessible and quantum memory,
which is often denoted as qRAM. In this paper we consider quantum-accessible
classical memory (QRACM). This is a special hardware holding classical bits,
but allowing quantum access, i.e., an efficient implementation of the following
unitary:

|b〉 |i〉 qRAM(y1,...,yM )7−−−−−−−−−−→ |b+ yi〉 |i〉 (14)

where M is the number of bits of the QRACM and y1, . . . , yM its contents.
Notice that such a circuit could be implemented using about O(M) standard
gates. In the QRACM model, we allow such access in time O(1).

When analyzing a block cipher EK in the Q2 model, we assume that superpo-
sition queries are available via a unitary: |x〉 |0〉 7→ |x〉 |EK(x)〉. Such an operator
can also be realized by storing classical queries in QRACM, which is why our
attacks can use either QRACM, Q2 queries, or both. From this perspective, we
consider a QRACM query to cost as much as a block cipher query.

Elementary Arithmetic Operations. We recall gate counts for some standard
arithmetic operations, which can be found in the literature.

– Addition: adding two integers modulo 2n can be done with 2n − 1 Toffoli
gates [50]. A controlled addition circuit can be done with 3n+3 Toffoli gates.
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– Comparison: comparing two n-bit numbers can be done with the same cost
as an addition or subtraction (e.g., we can subtract the numbers and observe
the sign of the result), so we consider a cost of 2n− 1 Toffoli gates as well.

– Multiplication: multiplying two integers modulo 2n can be done with a se-
quence of n controlled additions and shifts (see e.g. Appendix A and B
in [27]). We evaluate the corresponding number of Toffoli gates to

∑n
i=1 3(n−

i) + 3n = 3
2n

2 + 3
2n.

3.2 Quantum Search

Quantum Amplitude Amplification [14] (QAA) is a generalization of Grover’s
algorithm [25] which amplifies the probability of success of any quantum algo-
rithm. Let A be a quantum algorithm that produces a superposition of a “good
state” |ψG〉 and a “bad state” |ψB〉 of the form:

A |0〉 =
√
p |ψG〉 |1〉+

√
1− p2 |ψB〉 |0〉 (15)

where p is the probability of success of A. Let Otest be an operator which flips
the phase in the case 1 only. Let O0 be an operator called inversion around
zero, that flips the phase of the basis vector |0〉 (and only this one). The QAA
starts from the output of A: |ψ0〉 := A |0〉 and constructs a sequence of states
|ψi+1〉 := −AO0A†Otest |ψi〉. Its main property is:

Lemma 1 (From [14]). Let θ be such that θ = arcsin
√
p. Then: |ψi〉 =

sin((2i+ 1)θ) |ψG〉 |1〉+ cos((2i+ 1)θ) |ψB〉 |0〉.

This is shown with a geometric argument: the QAA operator AO0A†Otest

realizes a rotation of angle 2θ in the plane spanned by |ψG〉 |1〉 and |ψB〉 |0〉.

Exhaustive Key Search. For a block cipher EK , exhaustive key search using
Grover’s algorithm consists in finding among all possible keys the one that
matches a few known plaintext-ciphertext pairs. This requires π

2 2|K|/2r(E)Tof (E)
Toffoli gates, where r(E) is the number of trial encryptions required to discrim-
inate the good key with certainty. In fact, the factor r(E) can be amortized to
1 [19], both in exhaustive search and in our attacks. However, we will keep it to
simplify the analysis.

Exact QAA and Unknown Success Probability. When the success probability
is known exactly, it is possible to construct the state |ψG〉 exactly using a final
partial rotation that reaches an angle π

2 [14]. The total number of iterates is thus⌈
π

4 arcsin
√
p

⌉
≤ π

4
√
p + 1. The implementation of this final operator is handled

via the Solovay-Kitaev theorem (see e.g. [46] for efficient implementations of
arbitrary rotation operators). As it will not dominate the complexity anyway,
we will not enter its details here.

When an interval on the success probability is known, performing an Exact
QAA is still a good strategy: the relative error on p does not increase after
amplification.
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Algorithm 1 Main subroutine of quantum state preparation (from [45], adapted
to handle negative values).

Input: Q2 access to EK

Output: returns the master key K or fails

1: Call A .
∑

x αx |x〉
2: Call B .

∑
x αx |x〉 |f(x)〉

3: Flip the phase depending on the sign of f(x) .
∑

x αxsgn(f(x)) |x〉 |f(x)〉
4: Create a uniform superposition over [0; 2n − 1] in a new register, using Hadamard

gates
.
∑

x αxsgn(f(x)) |x〉 |f(x)〉 1

2n/2

∑
0≤y≤2n−1 |y〉

5: Compare the value of y with |f(x)| and write the result in a new output qubit
6: Apply B to uncompute f(x)

.
∑

x αxsgn(f(x)) |x〉 1

2n/2

(∑
0≤y≤|f(x)|−1 |y〉 |0〉+

∑
|f(x)|≤y≤2n−1 |y〉 |1〉

)
7: Apply Hadamard gates on the register holding y

Lemma 2 (Lemma 5 in [12]). Assume that A has a success probability p′ ∈
[p(1−ε); p(1+ε)] for ε ≤ 1

2 . After running an exact QAA that assumes a success
probability exactly equal to p, the success probability becomes greater than 1− ε2.

3.3 State Preparation for Amplitude Products

One of the main ideas of our algorithm is to perform computations in the am-
plitude. In particular, we need to multiply the amplitudes of a quantum state by
values given separately by an oracle.

Let X be a set (identified with a set of bit-strings). Let A and B be two
unitary operators (quantum circuits without measurements) such that: A |0〉 =∑
x∈X αx |x〉 and B |x〉 = |x〉 |f(x)〉, where f : X →]]−2n; 2n[[. In other words, we

have a quantum circuit that produces a superposition and another that computes
an integer function. Our goal is to multiply the amplitudes by f(x) and re-
normalize, that is, obtain the state:

1√∑
x∈X α

2
xf(x)2

∑
x∈X

αxf(x) |x〉 .

This is a generalization of state preparation, where we would have αx = 1√
|X|

.

A generic method for black-box state preparation was given by Grover [26],
but it relies on heavy quantum arithmetic circuits. In this paper, we use the
more lightweight method of Sanders et al. [45]. The main subroutine is given
in Algorithm 1.

Lemma 3. There exists a unitary U such that:

U |0〉 =
∑
x

αx
f(x)

2n
|x〉 |0〉+ |φ〉
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where |φ〉 is a non-normalized state where the last qubits are not zero. The Toffoli
gate count of U is upper bounded by:

Tof (U) ≤ 2Tof (B) + Tof (A) + 2n− 1 .

Proof. After running Algorithm 1, we obtain a state of the form:∑
x

αxsgn(f(x))
|f(x)|

2n
|x〉 |0〉 |0〉+ |φ〉 (16)

where |φ〉 is a non-normalized state with either the last flag equal to 1, or the y
register different from zero. ut

Afterwards, we must amplify the part of the state with flag zero, in order to
obtain the exact superposition that we want.

4 Our new Algorithm

Recall the situation presented in Section 2.3: the experimental correlations for
key guesses can be expressed as the convolution of two functions. In the quantum
setting, with a similar sequence of operations, we will show how to compute the
convolution into the amplitudes:

1√∑
z (f ? g) (z)2

∑
z

(f ? g) (z) |z〉

We know that the right key guess will have a higher amplitude in this su-
perposition. However, as it remains rather small, trying to measure directly this
state would be useless. Instead, we use this as the starting point of another QAA
which tries to complete the whole key.

4.1 Situation

We now consider the generic situation depicted in Figure 3, which is a hybrid
between [16] and [23]. We define 3 subsets of key bits: • kin are the inner key bits
(they need to be guessed first); • kout are the outer key bits (they are handled
by the WHT); • kc are the key bits which allow to complete the master key.

We assume that there are s bit relations between kin and kout, and that a
choice of agreeing kin, kout, kc determines completely the master key. We also
assume that |kout| = n, i.e., like in Collard et al.’s initial attack, the FWHT is
computed on the whole state size. With all these definitions, we have: |K| =
(|kin|+ |kout| − s) + |kc|.

We assume that EM admits a linear approximation (α, β) without a dominant
trail, with a certain ELP. We assume that a database D of N known plaintext
queries (x,EK(x)) is given. We use the abbreviation “x ∈ D” to denote that the

12



x E′ FL

→ EM
FR

←

kin kout kin kin

EK(x)

Fig. 3. Our generic attack. While E′ is a permutation, both FL (computed forwards)
and FR (computed backwards) are functions which determine the value in the input
and output masks.

plaintext x belongs to the database and D(x) := EK(x) in that case. For each
guess of inner key zin and outer key zout, the experimental correlation is:

ĉor(zin, zout) =
1

N

∑
x∈D

(−1)β·F
R
zin

(D(x))(−1)α·F
L
zin

(zout+E′
zin

(x))

=
1

N

∑
x∈Fn

2

1 [x ∈ D] (−1)β·F
R
zin

(D(x))(−1)α·F
L
zin

(zout+E′
zin

(x))

=
1

N

∑
x∈Fn

2

1
[
E′−1
zin

(x) ∈ D
]

(−1)β·F
R
zin
◦D◦E′−1

zin
(x))(−1)α·F

L
zin

(zout+x) .

Thus, even in the case of reduced data, we can still define the experimental
correlations as the convolution of two functions. For each zin, we define:

∀x ∈ Fn2 ,


fzin(x) = 1

[
E′−1
zin

(x) ∈ D
]

(−1)β·F
R
zin
◦D◦E′−1

zin
(x))

gzin(x) = (−1)α·F
L
zin

(zout+x)

ĉor(zin, z) = 1
2n (fzin ? gzin) (z)

|Corzin〉 = 1√∑
z ĉor(zin,z)2

∑
z ĉor(zin, z) |z〉 .

(17)

By assumption, in the state |Corkin〉, there is a bigger amplitude on the basis
state kout. This is what we want to exploit; we start with the construction of
|Corzin〉, and around this, we build several layers of QAA to complete the search
for the good key.

4.2 Construction and Analysis of |Cor〉

First, we must make some assumptions. We assume that efficient unitaries are
given for FR, FL and E′, of gate counts Tof (FR), Tof (FL) and Tof (E′). In order
to compute fzin , we need either: • Q2 queries (in that case, N = 2n); • a large
QRACM storing the database D. In both cases, we have access to two unitaries:{

INIT : |0〉 7→ 1√
N

∑
x∈D |x〉

QUERY : |x〉 |0〉 7→ |x〉 |D(x)〉
(18)

where INIT can be implemented with an appropriate data structure, and QUERY
is either a Q2 query, or a QRACM query which is undefined if x /∈ D.

13



Algorithm 2 Subroutine of CORCOMP (Lemma 4). It runs in two phases: 1.
Computation of f in the amplitude (Steps 1 to 7), 2. Fourier transform and
multiplication by ĝ (Steps 8 to 9).

Input: state |zin〉 |0n〉
1: Initialize ancilla registers . |zin〉 |0n〉 |0n〉 |0n〉
2: Apply INIT . |zin〉 1√

N

∑
x∈D |x〉 |0n〉 |0n〉

3: Apply E′ in place (needs to compute E′ and E′−1)
.

|zin〉 1√
N

∑
x∈D |E

′
zin(x)〉 |0n〉 |0n〉 = |zin〉 1√

N

∑
x∈Fn2

1
[
E′−1

zin
(x) ∈ D

]
|x〉 |0n〉 |0n〉

4: Apply QUERY
. |zin〉 1√

N

∑
x 1
[
E′−1

zin
(x) ∈ D

]
|x〉 |EK(x)〉 |0n〉

5: Apply FR . |zin〉 1√
N

∑
x 1
[
E′−1

zin
(x) ∈ D

]
|x〉 |EK(x)〉 |FR ◦ EK(x)〉

6: Compute the dot-product with α in the phase
. |zin〉 1√

N

∑
x fzin(x) |x〉 |EK(x)〉 |FR ◦ EK(x)〉

7: Re-apply FR and QUERY . |zin〉 1√
N

∑
x fzin(x) |x〉 |0n〉 |0n〉

8: Apply H . |zin〉 1√
N2n

∑
x f̂zin(x) |x〉 |0n〉 |0n〉

. Forget about the ancilla registers
9: Apply the state preparation technique of Lemma 3

. |zin〉
(
|φ〉+ 1

G
√
N2n

∑
y(f̂zin ĝzin)(y) |y〉 |0〉

)
. Here |φ〉 is a non-normalized vector whose details are insignificant for the rest of
the algorithm

Finally, we need a unitary that computes the Fourier coefficients of gzin . In
some cases this may be done with a precomputation, but otherwise, we will have
to implement this unitary “by hand”:

GFOURIER : |zin〉 |x〉 |0〉 7→ |zin〉 |x〉 |ĝzin(x)〉 . (19)

For zin = kin, let G be an upper bound on the absolute value of Fourier
coefficients of gkin . For a random permutation, G is of order O

(√
n2n/2

)
, as we

show in Appendix A.

Lemma 4. There exists an algorithm CORCOMP returning a state of the form:

CORCOMP |zin〉 |0〉 = |zin〉 |Corzin〉 .

The Toffoli gate count of CORCOMP is given by:

Tof (CORCOMP) ≤
(
π

2

G

2n/2
+ 3

)[
Tof (INIT) + 2Tof (QUERY)

+ 2Tof (GFOURIER) + Tof (E′) + Tof
(
E′−1

)
+ 2Tof

(
FR
)

+ (2 dlog2Ge − 1) + 2(n+ dlog2Ge)
]
. (20)
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Proof. We start from Algorithm 2. In the superposition at the end, the proba-
bility to measure the flag 1 is equal to:

p :=
1

G222n

∑
z

(f̂zin ĝzin)2 =
1

G22n

∑
z

(fzin ? gzin) (z)2 =
2n

G2

∑
z

ĉor(zin, z)2 .

To estimate
∑
z ĉor(zin, z)2, we neglect the case of the good key z = kout, since

its contribution to the sum will remain negligible. We use only the wrong-key
randomization hypothesis, assuming that the ĉor(zin, z) for wrong zin and z
follow a normal distribution N (0, 2−n) (since we have the full codebook). So
2n/2ĉor(zin, z) follows a normal distribution N (0, 1) and 2n

∑
z ĉor(zin, z)2 fol-

lows a χ2
2n distribution with mean 2n and variance 2n+1. Using Chebyshev’s

inequality:

Pr

(∣∣∣∣∣2n∑
z

ĉor(zin, z)2 − 2n

∣∣∣∣∣ ≥ 10 · 2(n+1)/2

)
≤ 1

100
. (21)

Thus, with 99% chance over the run of the attack, we have the bound on p:∣∣∣∣p− 2n

G2

∣∣∣∣ ≤ 10 · 2(n+1)/2

G2
. (22)

The Toffoli gate count is given by putting together the different operations.
In order to eliminate the component |0〉, we apply an Exact QAA over Al-

gorithm 2, assuming that the success probability is exactly 2n

G2 . The term 2(n+
dlog2Ge) is due to the inversion around zero in the QAA. The minor relative error
on the success probability does not disrupt QAA computations (see Lemma 2).

Finally, we apply a final Hadamard transform to obtain the correlations. ut

From now on, unless stated otherwise, we will consider N = 2n (full codebook
available), as it simplifies the computations and makes INIT trivial. Besides, we
will always neglect the terms T (E′)+T (E′−1)+2T (FR)+(2 dlog2Ge−1)+2(n+
dlog2Ge), as we expect all of them to cost much less than complete block cipher
evaluations. The cost of each iterate becomes dominated by 2Tof (QUERY) +
2Tof (GFOURIER).

Analysis of |Corkin〉. Our attack works because the amplitude on the right key
in |Corkin〉 is bigger. To quantify how much, we need to bound |ĉor(kin, kout)|.
We write both an upper and a lower bound using some threshold t, as:

t2−n/2 ≤ |ĉor(kin, kout)| ≤ 2t2−n/2 . (23)

For fixed t, since |ĉor(k
in,kout)|√
ELP

follows a normal distribution N (0, 1), the proba-

bility that this event happens (over the run of the attack) is equal to:

2

(
Φ

(
2t2−n/2√

ELP

)
− Φ

(
t2−n/2√

ELP

))
.
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Algorithm 3 QAA architecture for the key-recovery, using CORCOMP as build-
ing block, in the situation represented on Figure 3.

Input: access to EK (Q2 or QRACM)
Output: returns the master key K or fails

1: Run QAA over the following:
2: Create a uniform superposition of zin

3: Run QAA over the following:
4: Run CORCOMP
5: Test if zin agree with zout

6: EndQAA
7: Run QAA over the following:
8: Create a uniform superposition of zc

9: Write 1 if zin, zout, zc leads to the correct K
10: EndQAA
11: Check if the flag is 1
12: EndQAA

CORFILT
(Lemma 5)

SETUP
(Lemma 6)

Later on, we will see that the complexity of the attack is proportional to 1
t .

In order to minimize it for a given ELP, we must choose c = t2−n/2
√
ELP

such that

2c(Φ(2c)− Φ(c)) is maximal. Via numerical optimization we find that c = 1.005
gives the maximal value 0.272. For this value of c we also have 2(Φ(2c)−Φ(c)) =
0.271. Thus by selecting t = 1.005

√
ELP2n/2 we are ensured that Equation 23

holds with probability at least 0.271.

4.3 QAA Layers

Starting from the computation of |Corzin〉, several layers of QAA are necessary
to complete our algorithm, given in Algorithm 3. We analyze each level carefully
in a bottom-up approach, starting from the innermost level and computing the
probability of success of each QAA.

As we have seen, CORCOMP outputs a superposition of outer keys; however
it does not take into account the relations with the inner key. Classically, these
relations reduce the number of degrees of freedom and can be used in conjunction
with a pruned Walsh transform [23]. However, in our case they are problematic.
To eliminate them, we need to perform another layer of QAA.

Lemma 5. There exists an algorithm CORFILT such that:

CORFILT |zin〉 |0〉 = |zin〉 2s/2
∑

zin,zout agree

ĉor(zin, zout) |zout〉 . (24)

Its gate count is given by:

Tof (CORFILT) =
(π

2
2s/2 + 3

)
Tof (CORCOMP) (25)
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Proof. Note that we have simplified the writing by approximating
∑
z ĉor(z)2 '

1.
The structure of CORFILT is simply an Exact QAA performed over the output

of CORCOMP, to force that zout agrees with zin. The number of iterates depends
on the probability, on the output of CORCOMP, that zin and zout agree. For a
given zin, and setting aside the right key case, this is a sum of 2n−s squared
random correlations. So by similar arguments as above, this sum is highly con-
centrated around its mean 2−s. This gives the number of iterates that we need
to make. ut

At this point, we have a quantum algorithm that on input zin, creates a
“filtered correlation state”. The right key in this state has an amplitude propor-
tional to the experimental correlation. It remains to complete the key and check.
Recall that to discriminate the right key with certainty, we will perform r(E)
trial encryptions.

Lemma 6. There exists a quantum algorithm SETUP such that:

SETUP |0〉 = 2(s−|k
in|)/2

∑
zin,zout agreeing

ĉor(zin, zout) |zin〉 |zout〉 |good〉 (26)

where good = 1 ⇐⇒ zin, zout = kin, kout. Its gate count is:

Tof (SETUP) = Tof (CORFILT) +
π

2
2|k

c|/2r(E)Tof (E) . (27)

Proof. The algorithm runs as follows. We first create a uniform superposition
over zin, then we apply CORFILT, then we use an Exact QAA over the remaining
key bits zc to mark exactly the good subkeys by trial encryptions. We simply
run this QAA and set the flag good to 1 if it outputs the good key. Indeed, if
zin, zout 6= kin, kout, the completed key is never good and the QAA returns a
uniform superposition of bad keys (so we always write 0). If zin, zout = kin, kout,
we find the good key with certainty, so we always write 1. ut

Our algorithm is obtained by applying a QAA on SETUP.

Theorem 1. Let t = 1.005
√

ELP2n/2. There exists a quantum algorithm that
takes no input and returns (after measurement) the master key with probability
≥ 1

2 . This algorithm has complexity:

π2

8t
2|K|/2r(E)Tof (E) +

π2

8t
2(n+|k

in|)/2Tof (CORCOMP) (28)

and succeeds with probability 0.271 over the run of the attack.

Proof. We apply a QAA on SETUP, by amplifying the part which leads to a flag
1, i.e., the good subkey kin, kout. By Equation 23 and the definition of t, with
probability 0.271, the corresponding amplitude can be bounded by:

t2(s−|k
in|−n)/2 ≤ 2(s−|k

in|)/2|ĉor(kin, kout)| ≤ 2t2(s−|k
in|−n)/2 . (29)

17



This amplitude determines the number of iterates that we need to perform in the
QAA. Given the upper bound, the maximal number that we can apply before
over-amplifying is:⌊

π

4

(
arcsin

2t

2(|kin|−s+n)/2

)−1⌋
' π

4

2(|k
in|−s+n)/2

2t
=

π

8t
2(|k

in|−s+n)/2

The corresponding success probability, i.e., the probability to measure a flag 1
at the end, can be lower bounded as:

sin2

((
2
π

8t
2(|k

in|−s+n)/2 + 1
)√

2(s−|kin|)/2|ĉor(kin, kout)|
)
≥ sin2 π

4
=

1

2
.

We obtain the complexity as:

π

4t
2(|k

in|−s+n)/2Tof (SETUP) .

We replace Tof (SETUP) by its formula and develop to conclude. ut

If the first term is dominant, it differs from the complexity of Grover search
(π2 2κ/2rTof (E)) by a factor π

4t . However Grover search succeeds with overwhelm-
ing probability, while this one succeeds only with probability 0.271×0.5 ' 0.1355.
The difference in average complexity is of a factor: π

4t/0.1355.
We conclude that we can only use an ELP such that:

π

4
/0.1355 < t = 1.005 · 2n/2

√
ELP =⇒ ELP ≥ 2−n+5.06 .

5 Multiple Linear Cryptanalysis using the QFT

With multiple linear approximations, the statistics have a much smaller variance,
so it becomes easier to distinguish the right key from the other ones. In this
section, we show that this also helps quantum attacks.

5.1 Intuition

We consider the structure of Figure 3, but this time, we introduce M linear
approximations: αi, βi (we use subscripts to denote the different cases). While
the outer key bits kout remain the same in all cases, the inner key bits kini can
be different, and the number of relations between kini and kout (denoted si) can
vary.

We consider these approximations to be statistically independent. For sim-
plicity, assume for now that all subkey guesses kini can be included in a single
inner key guess kin. The statistic of interest is denoted q̂(kin, k):

q̂(kin, k) =

M∑
i=1

ĉori(k
in, k)2 .

18



For the right subkey, we expect this statistic to be higher. Instead of trying
to compute it by hand, we notice already that for individual approximations
αi, βi, we can obtain the state:

|Corzini 〉 '
∑
z

ĉori(z
in, z) |z〉 ,

where the normalization follows from
∑
z ĉori(z

in, z)2 ' 1. Thus, if we compute
this for all M approximations in superposition over i, we obtain:

|Corzin〉 :=
1√
M

∑
i

|Corzini 〉 |i〉 =
1√
M

∑
i,z

ĉori(z
in, z) |z〉 |i〉 . (30)

Despite the presence of i, a subsequent QAA layer will only care on the total
amplitude that is put on a given key guess. Here, the total amplitude on (zin, z)

is
√

q̂(kin,k)
M , which depends on the multiple linear cryptanalysis statistic. There

is no computational overhead, because we do not compute the statistic; it simply
appears in the amplitude.

5.2 Computation of the Correlation State

We start by computing the state |Corzin〉 defined in Equation 30 above. This
means that:

– The partial computations of the cipher (E′, FR) must now take into account
the dependency on i. They might cost more, but remain insignificant;

– The functions f, g in the convolution can depend on i, although we simply
write them fzini , gzini to simplify notation;

– We need a quantum circuit GFMULT to compute the Fourier coefficients of
these different functions:

GFMULT : |zini 〉 |x〉 |i〉 |0〉 7→ |zini 〉 |x〉 |i〉 |ĝzini (x)〉 .

– We need an all-encompassing bound G on the Fourier coefficients of gkini ,
valid for all i simultaneously.

Fortunately in our applications, the different g are actually all similar func-
tions, and there is no big difference in computing their Fourier coefficients.

Lemma 7. There exists an algorithm CORMULT such that:

CORMULT |zini 〉 |i〉 |0〉 = |zini 〉 |i〉
∑
z

ĉori(z
in
i , z) |z〉

Tof (CORMULT) =

(
π

2

G

2n/2
+ 3

)
(2Tof (GFMULT) + 2Tof (QUERY)) .
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Proof. We run Algorithm 2 in superposition over |i〉. By an analysis similar
to Lemma 4, the subroutine outputs:

|zini 〉 |i〉

(
2n/2

G

(∑
z

ĉori(z
in
i , z) |z〉

)
|1〉+ |∗〉 |0〉

)
. (31)

Then, we use an Exact QAA to amplify the component 1. Note that we have
simplified the writing by approximating the sum of correlations to 1. ut

Before we analyze the amplitude on the right key, we must (like before) use
the relations between zini and z. These relations differ depending on i, but there
should be the same amount for all i. This is because the correlations are rescaled
by a quantity 2si/2, where si is the amount of relations. We can only obtain the
statistic q̂(z) if all the si are equal.

Lemma 8. There exists an algorithm FILTEREDMULT such that:

FILTEREDMULT |zini 〉 |i〉 |0〉 = |zini 〉 |i〉 2s/2
∑

zouti agrees

ĉori(z
in
i , z

out
i ) |zouti 〉

Tof (FILTEREDMULT) =
π

2
2s/2Tof (CORMULT) .

Proof. On the output of CORMULT, we apply an Exact QAA. ut

5.3 QAA Layers

With the same structure as in Section 4.3, we add other QAA layers to complete
our algorithm.

We start by completing the subkeys. Like before, we use an Exact QAA
which marks the key guesses (zini , z

out
i ) = (kini , k

out
i ). The resulting algorithm is

the “setup” on which we will apply QAA again. Notice that from now on, since
all keys have the same amount of relations, we have ∀i, j, |kini | = |kinj |, |kci | = |kcj |.

Lemma 9. There exists an algorithm SETUPMULT such that:

SETUPMULT |0〉 =
∑

i,zini ,z
out
i agree

2(s−|k
in|)/2

√
M

ĉori(z
in
i , z

out
i ) |i〉 |zini , zouti 〉 |good〉

Tof (SETUPMULT) ≤ Tof (FILTEREDMULT) +
π

2
2|k

c|/2r(E)Tof (E)

Proof. The algorithm runs as follows. We first create a uniform superposition
over i and zini , then we apply FILTEREDMULT, then we mark the good subkeys
with an Exact QAA. There are π

4 2|k
c|/2 iterates; each iterate calls E a total of

2r(E) times. ut

Finally, we apply QAA on top of this algorithm, where we just want to find
a subkey guess zini , z

out
i (whichever the i) which completes into the good key.
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Theorem 2. Assuming M � 1, there exists an algorithm which outputs a good
guess i, kini , k

out
i , with probability of success ≥ 1− 18

M , in time:

T :=
1√

2nC/M + 1

(
π2

4
2|K|/2rTof (E) +

π2

4
2(n+|k

in|)/2Tof (CORMULT)

)
.

(32)

Proof. On the output of SETUPMULT, the total probability of measuring the
flag 1, which corresponds exactly to the good subkeys for different paths, is equal
to:

p :=
∑
i

2s−|k
in|

M
ĉori(k

in
i , k

out
i )2 =

2s−|k
in|

M
q̂(kin, kout) . (33)

By the right-key randomization hypothesis, q̂(kin, kout) follows a normal distri-
bution with mean C +M2−n and variance 2

MC2 where C is the capacity of the
multiple approximation. Thus, with overwhelming probability, we have:

C

(
1− 3

√
2√
M

)
+M2−n ≤ q̂(kin, kout) ≤ C

(
1 +

3
√

2√
M

)
+M2−n (34)

Thus, we can bound p′(1− ε) ≤ p ≤ p′(1 + ε) where p′ = 2s−|k
in| ( C

M + 2−n
)

and

ε = 3
√
2√
M

. We conclude with Lemma 2. ut

If the first term in Equation 32 is dominant, then we can have an advantage
with respect to Grover search. The main interest in using the multiple crypt-
analysis statistic is that we have reduced the variance on the right key case,
allowing a good probability of success for this procedure (instead of the 0.1355
given by Theorem 1).

6 Applications

In this section, we give several examples of our technique. We start with the
block ciphers Fly [35] and Pipo [36]. In both cases our QFT-based algorithm
can reach more rounds than previous quantum linear attacks, like classical FFT-
based cryptanalysis. We assume either Q2 queries (in which case they are not
the dominant cost anyway), or QRACM queries, with a QRACM containing the
whole codebook. Because we use large ELPs in both cases, it would be possible
to reduce the data complexity (but this complicates the analysis).

6.1 Linear Characteristics on FLY and PIPO

Both ciphers have similar structures: a 64-bit state, S-Boxes of 8 bits, a linear
layer which is a simple bit permutation (like Present), and a trivial key sched-
ule. Fly is defined only with 128-bit keys, with 20 rounds. The round function
is represented on Figure 4: it applies a round key addition, followed by 8 parallel
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Fig. 4. Fly round function (Figure 5.2 in [35].

S-Boxes of 8 bits (the S-Box Littlun-1 which is also defined in [35]) and a
permutation of the bits.

We consider the simple key-schedule KS1 proposed for a case where related-
key security is not required. The master key K of 128 bits is divided into two
halves: K = k0‖k1 and the round keys alternate between k0 and k0 ⊕ k1. In
the following, we replace (k0, k0⊕ k1) by (k0, k1), since this makes no difference.
For other details of the specification which are irrelevant for our attack (such as
round constants) we refer to [35].

The bit-permutation in Pipo is different, but it has the same property that
the 8 bits of each S-Box are distributed to the 8 S-Boxes of the next round.
There are two versions: Pipo-128 and Pipo-256 with respectively 13 and 17
rounds (i.e., 14 and 18 subkey additions). In both cases, the master key K is cut
into |K|/64 subkeys which are XORed alternatively to the state. The authors [36]
claimed attacks for up to 9 / 13 and 11 / 17 rounds, but without details. In [31],
quantum circuits for Pipo were given, using respectively 1248 = 210.29 and
1632 = 210.67 Toffoli gates for the two versions. For Fly, a quick look at its 8-bit
S-Box shows that it contains 12 nonlinear operations (AND and OR) which can
be implemented with 12 Toffoli gates. For 11 complete rounds this gives the
count of 8× 11× 24 = 2112 = 211.04 Toffoli gates.

Search for Linear Distinguishers. In both cases, we follow the approach of [1]
to search for linear trails in a restricted family of masks. We use all masks
which activate at most 2 S-Boxes, and at most 2 S-Boxes before the previous
permutation layer. This forms a family of 6000 masks. We compute the 6000×
6000 sparse correlation matrix through a single round, then obtain the ELPs for
multiple rounds via matrix multiplication. In our attacks, we only use trails that
activate exactly two S-Boxes at the rounds before and after.

Results (Table 1). On Fly, we find 64 approximations through 8 full rounds
having ELP of order 2−58. We did not find any useful approximation through
9 rounds (ELPs are too close to 2−64). On Pipo, we find 24 approximations
through 5 rounds of ELP 2−50. Although this is the best ELP for 5 rounds, we
prefer having more suboptimal approximations, so we rely on a family of 112
approximations of ELPs between 2−51.8 and 2−52. Likewise, we did not find any
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Table 1. Results on linear characteristics.

Cipher Rounds M ELP

Fly 8 64 2−58

Pipo 5 112 ≥ 2−52

Pipo 5 24 2−50

useful approximations for 6 rounds. Nevertheless, the authors of [36] report a
characteristic on 6 rounds using the branch-and-bound technique, so it is likely
that one can improve over our estimates in both cases.

6.2 Attacks on FLY and PIPO-128

On Fly and Pipo-128, which have the same structure, we can propose a similar
attack pattern. Following Figure 3, we remove the block E′ and append two
rounds before (this corresponds to FL) and one round after (FR) the distin-
guisher.

In the case of Fly, the distinguisher contains 8 rounds, so the outer key
kout is k0 and the inner key kin contains ≤ 16 + 16 bits of k1 (because only
two S-Boxes are active in these rounds). Whichever the linear approximation
considered, due to the regularity of the bit permutation, there are exactly bit
relations between the 16 bits of k1 in the second and last rounds, so |kin| = 28.

In the case of Pipo, we have the same scheduling but the distinguisher spans
5 rounds, so the outer key is k0 and the inner key contains exactly 16 bits of k0
and 16 bits of k1. We have |kin| = 32 and s = 16 bits of relation between kin

and kout.

In both cases, we use multiple linear cryptanalysis and Theorem 2. Using M
linear approximations with capacity C, our algorithm succeeds with probability
1− 18

M and runs in time:

T =
1√

2nC/M + 1

[
π2

4
2|K|/2r(E)T (E)+

π2

4
2

n+|kin|
2 Tof (CORMULT)

]
. (35)

We take r(E) = 3, as 3 plaintext-ciphertext pairs are enough for checking the
key.

Computing the Fourier Coefficients. We must implement the circuit GFMULT,

which computes ĝzini (x) =
∑
y(−1)x·y(−1)β·F

L
zin

(y) in superposition over zin (cur-

rent inner key guess), i and x. We show how to reduce this to a feasible com-
putation, using the structure of FL. We expect that this will also be possible in
general for a small number of rounds in any SPN cipher.

All linear approximations considered activate two S-Boxes before the distin-
guisher. Thus, if we cut the input x into x0, . . . , x7 and the inner key z into bits
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z0, z1, . . . , z15, we can simplify FLz (x) into:

FLz (x) = S′0 [z0 + S0(x0), z1 + S1(x1), . . . , z7 + S7(x7)] ,

S′1 [z8 + S8(x0), z9 + S9(x1), . . . , z15 + S15(x7)] (36)

where all these functions are simply applying S-Boxes and selecting some input
and output bits, up to permutations of these bits.

By merging S′0 and S′1 with the scalar product on β, we can rewrite this as:

gz(x) = S′0 [z0 + S0(x0), z1 + S1(x1), . . . , z7 + S7(x7)]×
S′1 [z8 + S8(x0), z9 + S9(x1), . . . , z15 + S15(x7)] (37)

where S′0 and S′1 are functions into {−1, 1}. The independence between these
different parts is the key to a faster computation of ĝz. Indeed:

ĝz(y) =
∑
x

(−1)x·ygz(x)

=
∑

u0,...,u15

∑
x0|z0+S0(x0)=u0

z8+S8(x0)=u8

. . .
∑

x7|z7+S7(x7)=u7

z15+S15(x7)=u15

(−1)x·ygz(x)

=
∑

u0,...,u15

7∏
i=0


∑
xi

Si(xi)=ui

Si+8(xi)=ui+8

(−1)xi·yi


︸ ︷︷ ︸

:=hi(yi,ui,ui+8)

S′0(u0 + z0, . . . , u7 + z7)
×S′1(u8 + z8, . . . , u15 + z15)

.

At this point, we already arrive at a feasible cost using some precomputations
(and QRACM tables). But we can reduce this cost further by noticing that it is
easier to compute ĝz directly into the amplitude than digitally.

Amplitude Computation Pattern. We start from the state:∑
y

f̂z(y) |y〉

We first append a 16-bit value u, in uniform superposition:∑
y

∑
u

f̂z(y) |y〉 |u〉 .

We compute digitally the functions hi, their product, and both S′0 and S′1:∑
y

∑
u

f̂z(y) |y〉 |u〉 |S′0(u+ z)S′1(u+ z)
∏
i

hi(yi, ui, ui+8)〉 .
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If we consider that the products of hi are a sum of (26)8 = 248 independent
variables taking value ±1, then by the argument of Lemma 10, the value to
multiply in the amplitude is upper bounded by 224H where:

H :=
√

6(ln 100 + 49 ln 2 + lnM) '
√

27.85 + 6 lnM .

After doing the product in the amplitude, we obtain a quantum state of the
form:

α
∑
y

∑
u

f̂z(y)

(
7∏
i=0

hi(yi, ui, ui+8)S′0(u+ z)S′1(u+ z)

)
|y〉 |u〉 |0〉+ |Φ〉

where |Φ〉 is a non-normalized bad state and α is such that we project on 0 with
probability about 1

H2 .
Next, we apply a Hadamard transform on the u register. The “0” component

of the state evolves as follows:

α√
216

∑
y

∑
u,v

f̂z(y)

(
7∏
i=0

hi(yi, ui, ui+8)S′0(u+ z)S′1(u+ z)

)
(−1)u·v |y〉 |v〉 .

Thus, the component v = 0 has amplitude about 1
H28 , and it corresponds

to the state
∑
y f̂z(y)ĝz(y) |y〉 that we want. In total, we can create the correla-

tion state via a procedure which performs π
4H28 iterates of QAA. Each iterate

queries fz twice and does the following operations: compute the hi (8×28 S-Box
computations), their product (7 multiplications of 32-bit integers, i.e., 1584× 7
Toffolis) and S0, S

′
1 (2 S-Box computations) twice. Using a Toffoli count of 12

for the Fly S-Box (less for the Pipo S-Box), this gives an additional gate count
of 35688 = 215.12 Toffolis, and:

Tof (CORMULT) =
π

2
28
√

27.85 + 6 lnM
(
Tof (QUERY) + 215.12

)
. (38)

In both our attacks we have M ≤ 112 so we can write: Tof (CORMULT) ≤ 227.78.
We will also consider that Tof (QUERY) is dominated by the second term. Indeed,
it performs either a query to the cipher (around 211 Toffolis) or a QRACM query.

Results. For Pipo, we have M = 112 and C = M × 2−52, thus:

Tof = 2−6.00 ×
(
22.89 × 264 × 210.29 + 21.30 × 232+16 × 227.78

)
= 2−6.00

(
277.18 + 277.08

)
= 272.13 .

The success probability is 1 − 18
M = 0.84. This compares favorably to an

exhaustive search of the key in T-gate count 274.94 (multiplying the count of [36]
for Pipo-128 with a factor π

2 264).
For Fly, we have a smaller capacity C = M × 2−58, but benefit from 4

bit-relations which reduce a little the complexity. Furthermore, there is one less
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level of QAA since there are no relations to enforce between kin and kout.

Tof = 2−3.01 ×
(
22.89 × 264 × 210.67 + 20.65 × 232+14 × 227.78

)
= 2−3.01

(
277.56 + 274.43

)
= 274.71 .

These results are summarized in Table 2. In both cases, the quantum linear
attacks from [34] are applicable, but reach one less round.

Table 2. Summary of attacks. “Data” in the Q2 setting is the total number of Q2
queries performed during the attack.

Attack Rounds Time (Toffoli gates) Success prob. Data Memory

Pipo-128
Classical search 13 / 13 2128 1 3 negl.

Quantum search (Q1) 13 / 13 274.94 1 3 negl.
Linear QFT (Q1) 8 / 13 272.13 0.84 264 271 QRACM
Linear QFT (Q2) 8 / 13 272.13 0.84 261.96 negl.

Fly
Classical search 20 / 20 2128 1 3 negl.

Quantum search (Q1) 20 / 20 275.69 1 3 negl.
Linear QFT (Q1) 11 / 20 274.11 0.72 264 271 QRACM
Linear QFT (Q2) 11 / 20 274.11 0.72 259.31 negl.

6.3 Discussion on Other Applications

We have tried to apply our technique to other block ciphers, but ran into the
limitations of our framework.

Present. For Present, linear attacks using the FWHT give the best results
classically (up to 29 rounds out of 31 for the 128-bit key version [22]). However,
we quickly run into the following problem: the simple quantum linear attack
(without QFT) can work with relatively smaller ELPs, while our attack needs
relatively bigger ones (e.g., 2−n+5.06 for Theorem 1).

Thus, if we try to use our framework to add a round of key-recovery, we
lose roughly one round in the linear distinguisher: we cannot demonstrate the
interest of this technique on Present with a single linear approximation.

With multiple approximations, the increase in amplitude in the correlation
state is also so small that it becomes difficult to observe any speedup.

NOEKEON. We studied the linear attack on Noekeon given in [15]. Here the
key and blocks have the same length of 128 bits. The classical data complexity
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x E′ FL FR

koutkin kinkout

EK(x)

Fig. 5. Generic Structural Attack.

being at least around 2120, the only way to compete with Grover search is the
Q2 model. Here the formula of Theorem 1 becomes:

π2

8t
2128/2r(E)Tof (E) +

π2

8t
2128/2Tof (CORCOMP) . (39)

However, the computation of the correlation state is always more costly than a
single query to the cipher, and the factor t does not compensate this enough.
Like in the case of Present, the ELP would need to be larger than what the
standard linear attack can use.

6.4 Structural Attacks and a Beyond-quadratic Speedup

Replacing EM by a key addition in Figure 3, and removing the inner key kin

from FL, we obtain the structure represented in Figure 5. Here, our algorithm
can achieve a better speedup than quadratic, up to 2.5 precisely, like the offline-
Simon algorithm [13]. On a construction like this, offline-Simon needs at least
2n(1−O(1/n)) classical known-plaintext queries (Lemma 1 in [13]). However, our
algorithm can use any number of known-plaintext queries. Its cost is dominated
by QRACM queries.

Theorem 3. Let t be the gate cost of a QRACM query and a cipher evaluation.
Given N classical known-plaintext queries to the EK of Figure 5, there exists a

quantum algorithm recovering K in O
(

2|k
in|/2 2n/2

√
N

√
n(n+ t) + n2n

)
gates, using

O(n2n) bits of QRACM.

Proof. We follow the analysis in Section 4.2, using an arbitrary boolean mask
α = β = (1, 0, . . . , 0). Because there is no dependency on zin in the middle per-
mutation Π, we can precompute its Walsh-Hadamard transform in O(n2n) and
store it in O(n2n) bits of QRACM. For the good key kin, the wrong experimental

correlations are of order O
(√

N
2n

)
, while the right key guess reaches exactly N

2n :

indeed, the correlation of a linear function is 1. Computing the correlation state
takes O(

√
n) iterates (because of the bound on Fourier coefficients for a random

function of Lemma 10) of a procedure using O(n+ t) gates (a comparator and
a query to the QRACM).

After creating the correlation state for a given zin, we complete the setup by
performing a trial encryption. With a uniform superposition over zin, the right
key kin, kout, marked with 1, has an amplitude equal to: 1

2|kin|/2 ×
1√

N×2nN =
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O
(√

N2−(|k
in|+n)/2

)
. Therefore, the key is found using O

(
2(|k

in|+n)/2/
√
N
)

it-

erates of QAA. ut

In particular, if QRACM queries are considered as costly as block cipher
evaluations (typically O

(
n2
)

gates), then the gate count at the minimal point
N = 2n(1−O(1/n)) is smaller than the one of offline-Simon, which requires n
block cipher calls and O

(
n3
)

gates per iterate.

7 Conclusion and Open Problems

In this paper, we have introduced a new technique in quantum key-recovery
attacks on block ciphers. After Hosoyamada [28] showed that one could use the
Quantum Fourier Transform in a statistical cryptanalysis, this technique shows
that we can use it in key-recovery attacks. From the perspective of quantum
algorithms, we have switched from Simon’s algorithm, which is limited to strong
algebraic structures, to computing a discrete convolution. However, this new
perspective opens several important questions.

Computing Fourier Coefficients. While the construction of the correlation state
is central to our work, it is also quite technical, due to the computation of Fourier
coefficients into the amplitudes of a quantum state. In our applications, we have
shown that this could be done efficiently by considering the structure of the
functions involved. As a future work, we plan to give a generic algorithm and
complexity analysis for the relevant cases in FFT-based linear cryptanalysis, e.g.,
a small number of rounds of any SPN structure. However, more generally, we do
not know if there exists a competitive generic algorithm for this task.

Problem 1. Let f, g : Fn2 → {−1, 1} be two functions. Given query access to g,

given a black box that produces
∑
x f̂(x) |x〉, produce

∑
x ĝ(x)f̂(x) |x〉.

Assuming that the Fourier coefficients of g and f are distributed somewhat
uniformly, we can produce the state

∑
x ĝ(x)f̂(x) |x〉 with O

(
2n/2

)
queries to

both functions: we simply start with
∑
x ĝ(x) |x〉

∑
y f̂ |y〉 and amplify the part

of the state where x = y. But if we use this in Theorem 1, we will need at least
|K| ≥ 2n to obtain a speedup with respect to exhaustive search, leaving this
generic method useless for most applications.

Finding the Largest Correlation. After building the correlation state, we need
to find the key which has the largest experimental correlation. In general, the
problem that we would like to solve is the following.

Problem 2. Given a black-box quantum that produces a state
∑
x αx |x〉, where

the amplitude are distributed according to a centered Gaussian, and either: • all
of them are below a threshold t; • exactly one of them is above the threshold t;
determine the case and / or find the corresponding coordinate.
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This problem is not specific to symmetric cryptanalysis, as it appears in
quantum algorithms for dual lattice sieving attacks [3]. In the worst case, the
experimental correlations have a standard deviation of O

(
2−n/2

)
and the largest

one is only of order O
(
2n/2

)
as well. Here, we do not know of any algorithm faster

than O(2n). Unfortunately, this case seems typical in both applications (lattice
sieving and linear cryptanalysis).

A related problem is zero-correlation attacks, where the experimental corre-
lation of the right subkey, instead of being bigger, is exactly zero.

Problem 3. Given a black-box quantum that produces a state
∑
x αx |x〉, where

the amplitude are distributed according to a centered Gaussian, and either: •
one of them is exactly zero; • or not; determine the case and / or find the
corresponding coordinate.

Again, when the others have a standard deviation O
(
2−n/2

)
, no algorithm

better than O(2n) is known. Consequently, we do not know how to exploit this
property, which would be very useful for key-recovery attacks.

Acknowledgments. The author thanks Xavier Bonnetain, Antonio Flórez-
Gutiérrez and Maŕıa Naya-Plasencia for helpful discussions and comments.

Appendix

A Bounding Fourier Coefficients

Lemma 10. Let fi : {0, 1}n → {−1, 1}, 1 ≤ i ≤M be a family of independent
random functions. With probability at least 0.99, it holds that:

∀z,∀i, |f̂i(z)| ≤ 2n/2
√

6(ln 100 + (n+ 1) ln 2 + lnM) . (40)

Proof. Let f : {0, 1}n → {−1, 1} be a random function. We want to bound the

maximum of its Fourier coefficients: maxz |f̂(z)|.
We consider each coefficient separately, although they are not independent.

For each z, f̂(z) is a random variable over f equal to: 2Bin(2n, 1/2) − 2n =
2
(
Bin(2n, 1/2)− 2n−1

)
. We use a Chernoff bound:

∀δ, ∀z,Prf (|Bin(2n, 1/2)− 2n−1| ≥ δ2n−1) ≤ 2 exp

(
−δ22n

6

)
Prf (|f̂(z)| ≥ δ2n) ≤ 2 exp

(
−δ22n

6

)
=⇒ ∀δ, ∀z,Prf (|ĝ(z)| ≥ δ

√
2n) ≤ 2 exp

(
−δ2

6

)
=⇒ ∀δ,Prf (∃z, |ĝ(z)| ≥ δ

√
2n) ≤ 2n+1 exp

(
−δ2

6

)
.

We find a value of δ for which this probability is smaller than 1/100:

ln(2n+1)− δ2

6
≤ − ln 100 =⇒ δ ≥

√
6(ln 100 + (n+ 1) ln 2) .
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