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Abstract. Anonymous credentials are cryptographic mechanisms en-
abling users to authenticate themselves with a fine-grained control on the
information they leak in the process. They have been the topic of count-
less papers which have improved the performance of such mechanisms or
proposed new schemes able to prove ever-more complex statements about
the attributes certified by those credentials. However, whereas these pa-
pers have studied in depth the problem of the information leaked by
the credential and/or the attributes, almost all of them have surpris-
ingly overlooked the information one may infer from the knowledge of
the credential issuer.
In this paper we address this problem by showing how one can efficiently
hide the actual issuer of a credential within a set of potential issuers.
The novelty of our work is that we do not resort to zero-knowledge
proofs but instead we show how one can tweak Pointcheval-Sanders sig-
natures to achieve this issuer-hiding property at a very low cost. This
results in an efficient anonymous credential system that indeed provide a
complete control of the information leaked in the authentication process.
Our construction is moreover modular and can then fit a wide spectrum
of applications, notably for Self-Sovereign Identity (SSI) systems.

1 Introduction

Authentication in the digital world often consists in presenting certificates de-
livered by issuers to verifiers that can check them with the sole knowledge of
the issuers’ public keys. For example, in the context of electronic passport, the
issuers are governmental agencies (or private companies mandated by govern-
ments) that deliver certificates (embedded in the passport chip) that can be
verified worldwide. Similarly, the European Union digital Covid certificate was
issued by governmental health agencies, mostly to attest to the vaccination sta-
tus of European citizens. Here again, the certificate was widely verifiable using,
e.g., a dedicated application. More generally, this approach is exactly the one
used by the W3C for its Verifiable Credentials [22], which represent the core of
Self-Sovereign Identity (SSI) systems [13], and is envisioned by the future Eu-
ropean Digital Identity (EUDI) wallet [11] where certificates will be issued by a
set of (qualified or non-qualified) Electronic Attestation of Attributes Providers
and then verified by Relying Parties.



This approach intrinsically relies on cryptographic digital signatures that
support the main requested features of those use-cases: (1) centralised issuance,
(2) public verification and (3) strong unforgeability assurances. However, digital
signatures also come with features that may be undesirable in some situations.
For example, each presentation of the certificate requires to transmit the under-
lying digital signature, which allows to trace users. Verification of the signature
additionally requires the knowledge of all the signed data which is typically a
problem in the context of digital identity where certificates usually attest to
several attributes such as the name, date of birth, address, etc. It indeed means
that controlling the user’s age requires the knowledge of all the other attributes
which are totally irrelevant. Far from being contrived, these problems are exactly
the ones faced by governments trying to enforce age control to access adult-only
websites, as is currently the case in France [10] or United Kingdom [16].

These limitations of standard digital signatures led cryptographers to intro-
duce anonymous credential, a mechanism replicating the previous approach but
in a privacy-preserving way. Concretely, users of such systems still get certifi-
cates (called credentials) from issuers that can then be presented while limiting
the information revealed in the process. Of course, this generic goal of “limiting
the information” encompasses different situations with different privacy require-
ments. For example, one may require different shows of the same credential to
be unlinkable [7, 8, 14, 17, 19] whereas, in some cases, one simply seeks to break
the link between credential issuance and credential presentation [5]. Similarly,
some systems [6, 14] offer a binary control over the attributes in the sense that
the attributes can be either disclosed or hidden whereas others [7,8,17,19] allow
to prove statements about the attributes without revealing them. This diversity
of features explains the absence of widely accepted definitions and models, such
as the ones [1,2] existing for groups signatures, despite 40 years of existence [9].

In all cases, it is important to note that anonymous credentials are designed to
replace digital signatures as smoothly as possible. They indeed consider the same
trust model and achieve the same security property (unforgeability) than digital
signatures but add this additional layer of privacy protection. For example, in the
context of digital identity (e.g. passport) the issuer would issue an anonymous
credential instead of a digital signature. Thanks to this credential, the user could
reveal the requested information, for example that he is over 18 years old, without
leaking anything else. Just after that, he could use the same credential to disclose
his city of residence (e.g. to have access to a preferential rate for public transport)
while being untraceable. The possibilities are actually endless, hence the diversity
of constructions mentioned above.

However, a very recent line of works [3, 4, 12] has pointed out the blindspot
of such mechanisms, namely the inability of hiding the credential issuer. Indeed,
all the mechanisms mentioned above have devised intricate ways of concealing
the credential and/or some attributes but all of them assume public knowledge
of the public key of the issuer who generated the credential. This is obviously
a natural assumption when only one issuer is authorised in a system but this
does not reflect usual situations where credentials are generally issued by differ-
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ent entities. Typically, passports and Covid certificates are issued by different
countries. The architecture of the (EUDI) wallet mentioned above considered an
even broader set of issuers which can be local authorities, educational entities
(e.g. universities), private companies (e.g. banks), etc. In this context, revealing
the credential issuer might lead to leak the very information we try to hide by
using anonymous credentials. For example, in the case of age control, one may
want to hide information about irrelevant attributes such as his address and
this is exactly what anonymous credentials enable to do. However, doing that
by using a credential issued by some local authority (e.g. a town hall) would be
contradictory as it would at least reveal the area of residence.

More generally, one can infer information on the user from the sole knowl-
edge of the credential issuer, which makes the anonymous credential approach
incomplete. To fill this gap, the authors of [3,4,12] propose solutions to hide the
credential issuer among a set of authorised issuers, which is also called a policy.
The goal of the user then becomes proving possession of a valid credential from
one of these issuers without telling which one.

The approach in [12] is conceptually the simplest one as it does not require
any action from the verifier. Concretely, the user will raise each element of the
issuer public key to some random power and then generate an OR-proof that the
resulting elements are indeed a re-randomisation of one the keys in the policy.
Thanks to the properties of zero-knowledge proofs, one is ensured that nothing
leaks beyond that but it requires to send a number of elements linear in the
number of keys in the policy, which can quickly become cumbersome.

The solution described in the PETS 2022 paper [4] is very different and
relies on an intermediate primitive called aggregator. The purpose of the latter
resembles the one of accumulators but the concrete instantiation consists in using

a secret value sk to generate witness elements W = g
sk
xi for each element g

1
xi in

the authorised set S. This is unfortunately very malleable as someone knowing
xi could derive a new witness for any xj without knowing sk. This probably
explains why the authors hash the attributes in the credential as it somehow
breaks the malleability of the aggregator. In all cases, this forces the user to
reveal the full set of certified attributes {mi} (since classical zero-knolwedge
proofs do not interact smoothly with hash functions), which is something we
usually try avoid in anonymous credential system. In other words, [4] trades
attributes privacy for issuers privacy and so does not provide a fully complete
answer to our problem.

In [3], the authors propose an elegant solution to the problem of issuer-hiding
anonymous credential. Their core idea is that the verifier of the credential does
not only select the policy it wants to enforce but it also signs each public key
contained in the policy. This makes the user’s work much easier as he can now
prove that his credential is valid for one of the authorised public keys by only
proving knowledge of a signature on his issuer’s public key. This leads to a
constant size proof, contrarily to [12]. However, this makes the whole statement
to prove rather complex. Indeed one must prove knowledge of a credential and
a signature S on potentially hidden attributes issued under an hidden public
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key that is certified by S. The complexity of the statement is obviously reflected
by the size of the proof of knowledge despite the clever instantiation described
in [3]. Concretely, showing a credential in their case requires the user to send a
presentation token of 688 Bytes (see Section 5), which is still high.

1.1 Our Contribution.

In this paper, we aim at designing an issuer-hiding anonymous credential with
shorter presentation tokens without relaxing any privacy requirements. Instead
of introducing a new generic framework that we would then try to instantiate
as in [3, 4, 12], we start from one of the most common tools used to design
standard anonymous credentials, namely PS signatures [17,18], and then adapt
it to conceal all the information about the actual issuer. The advantages of this
approach is that it does not fundamentally change the underlying credential
and that it avoids zero-knowledge proofs and thus the incompressible costs they
entail.

Starting Point: PS signatures. PS signatures [17, 18] are pairing-based digital
signatures with two important properties that make them amenable for anony-
mous credentials. First, they can be re-randomized, meaning that raising each
element of the signature σ to the same random power leads to a new signature σ′

which is still valid on the same attributes. This enables users to derive as many
variants of their credentials as necessary, which is the key to untraceability: if
one of the attributes is hidden (which can easily be enforced) no one can tell if
σ and σ′ are related. Second, they have a rather simple algebraic structure that
interacts smoothly with the celebrated Schnorr zero-knowledge protocol [21].

In practice, building an anonymous credential system based on PS signature
is rather straightforward. A credential on a set of n attributes {mi}ni=1 is simply a
PS signature on those attributes, that is, a pair of elements σ1 and σ2 in a pairing-
friendly group G1 verifying e(σ1, X̃

∏n
i=1 Ỹ

mi
i ) = e(σ2, g̃), where (g̃, X̃) are some

public parameters and {Ỹi}ni=1 constitute the issuer’s public key. Presenting a
credential then consists in re-randomising (σ1, σ2) and then proving knowledge of
the attributes mi one wants to conceal while revealing (or proving more complex
statements about) the others. The facts that the elements mi are involved as
exponents of the previous equation makes such proofs very easy to produce
using [21], as explained above. However, when it comes to hiding the issuer’s
identity, the problem gets much more complicated as one must now hide the
elements Ỹi that are specific to the issuer while proving that they indeed belong
to the set of authorised public keys defined by the policy. As in [3], we could
resort to zero-knolwedge proofs for that but we would end up with the same
problem, namely a rather large proof to transmit when showing a credential.

Making PS signatures issuer-hiding. In our construction, we follow a very differ-
ent approach which consists in forcing the verification equation to depend on all
the public keys in the policy in the same way. Concretely, if the policy defines a
set of |J | authorised public keys, then we replace

∏n
i=1 Ỹ

mi
i , which is specific to
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an issuer, by
∏n

i=1

∏
j∈J Ỹ mi

j,i which puts all issuers on the same level. Obviously,
this is just a first step as adding those elements naturally unbalance the equa-
tion. We then show that one can compensate for all those elements by adding
a single group element σ̃ to the signature without jeopardising security. This is
easier said than done as one must ensure that σ̃ is only used to remove the terms
we artificially added in the process. In particular, one must ensure that σ̃ is not
used to cancel elements that are crucial for the security of PS signatures such as
X̃ or Ỹi. Of course, all of this must be done without using any zero-knowledge
proof, otherwise it would bring us back to the situation of [3].

To this end, we will extend the policy by adding some elements, generated
by the verifiers, that the users will be forced to use to compute σ̃. This way,
we will limit the possibilities offered by the latter element to what is strictly
necessary for honest users and in particular prevent malicious use of this ele-
ment as shown in our security analysis. We note that extending the policy with
elements generated by the verifier is already done in [3, 4] and this is actually
one of the key steps of their protocol. The same holds true in our case although
the nature of those elements is extremely different. In [3] and [4], these are re-
spectively signatures and aggregators. In our case, these additional elements are
essentially re-randomised version of the public keys but with a few tweaks to
prevent malleability but also to keep track of the number of such elements used
to generate σ̃. As we shall explain in Section 3, this will be crucial for security.
There are also a few remaining challenges as, for example, (σ1, σ2) still provides
information on the issuer. Fortunately, we can solve them without adding new
elements by slightly adapting the protocol.

In the end, this means that our issuer-hiding variant of PS signatures only
consists in two elements σ1 and σ2, which are essentially the ones from the
original PS signature, and σ̃. In other words, hiding issuer of PS signatures only
adds one element to the credential, which seems optimal. As we believe that this
variant of PS signature could be of independent interest we chose to introduce
a new primitive, called Issuer-Hiding Authentication (IHA), which can be seen
as a lightweight version of Issuer-Hiding Anonymous Credential (IHAC) in the
sense that it only seeks to hide the issuer, not the attributes. As we shall see,
upgrading our IHA construction to get an IHAC system is rather straightforward,
also there are some subtleties to address. In other words, IHA can also be seen
as an intermediate primitive towards full-fledged IHAC which allows to better
understand the actual impact of each property on the construction. Beyond the
sole efficiency of our construction, we believe that it provides new insights on
the problem of hiding the issuer of a credential. In particular , it shows that one
does not necessarily need to resort to the full arsenal of zero-knowledge proofs
to achieve this goal, which may lead to new contributions in this area.

1.2 Organisation

In Section 2, we recall the definition of bilinear groups and a few facts about PS
signatures. In Section 3, we introduce IHA that which will be the cornerstone of
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the IHAC system presented the next Section. Finally, we evaluate the complexity
of our construction in Section 5.

2 Preliminaries

Bilinear Groups. Our construction requires bilinear groups whose definition
is recalled below.

Definition 1. Bilinear groups are a set of three groups G1, G2, and GT of order
p along with a map, called pairing, e : G1 ×G2 → GT that is

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(g
a, g̃b) = e(g, g̃)ab;

2. non-degenerate: for any g ∈ G∗
1 and g̃ ∈ G∗

2, e(g, g̃) ̸= 1GT
;

3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

In [15], the authors introduced a classification of bilinear groups according
to the existence of efficiently computable homomorphisms between G1 and G2.
The most interesting groups are arguably those belonging to the “type-3” family
as they are, by far, the most efficient ones while supporting a broader set of
computational assumptions. In this paper, we will only consider this type of
bilinear groups which is anyway required by PS signatures [17].

PS Signature. PS signatures [17] are a popular tool for building privacy-
preserving systems. They consist in two group elements of G1, no matter the
size n of the signed vector (m1, . . . ,mn), and can be re-randomised by raising
each element to the same random power. They also benefit from a relatively sim-
ple algebraic structure which interacts smoothly with Schnorr’s zero-knowledge
proof systems [21]. The original paper introduced two versions of these signa-
tures: the classical one, without any setup assumption, and the one supporting
sequential aggregation where a pair (X, X̃) = (gx, g̃x) is made public in the sys-
tem parameter. This pair can for example be jointly generated by a set of issuers
(or any other parties) who would each compute (gxi , g̃xi), for some random xi,

and prove knowledge of the latter. If the proofs verify, the resulting pair (X, X̃)
would then be set as (

∏
i g

xi ,
∏

i g̃
xi). We will use this second version in our

construction but will still refer to it as “PS signatures” for sake of simplicity.

– Setup(1λ, n). This algorithm outputs the parameters pp containing the de-
scription of type-3 bilinear groups (G1,G2,GT , e) of order p along with a set

of generators (g, g̃) ∈ G1 × G2 and a pair (X, X̃) = (gx, g̃x) ∈ G1 × G2 for
some x ∈ Zp.

– Keygen(pp). This algorithm generates n random scalars (y1, . . . , yn) and sets

sk as (y1, . . . , yn) and pk as (Ỹ1, . . . , Ỹn) = (g̃y1 , . . . , g̃yn).
– Sign(sk, (m1, . . . ,mn)). On input a set of n messages (m1, . . . ,mn), it gener-

ates a signature (σ1, σ2)← (gr, Xr · gr(
∑n

i=1 yi·mi)) for some random r ∈ Zp.
– Verify(pk, (m1, . . . ,mn), (σ1, σ2)). This algorithm returns 1 (accept) if (1)

mi ̸= 0 ∀i and (2) e(σ1, X̃ ·
∏n

i=1 Ỹ
mi
i ) = e(σ2, g̃) and 0 otherwise.
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3 Issuer-Hiding Authentication

As a first step towards an Issuer-Hiding Anonymous Credential System, we in-
troduce an intermediate primitive called issuer-hiding authentication. It is essen-
tially a signature scheme but verification is done through an interactive protocol
[Show, Verify], as in an anonymous credential (AC) systems [14], and depends
on a policy P which is essentially a set of acceptable public keys. This proto-
col allows the verifier to check that the user it is interacting with owns a valid
signature for one of these public keys, without being able to tell which one. We
however stress that this primitive only focuses on hiding the issuer of a signature
and thus do not try to conceal some of the signed messages. This latter goal will
be considered in Section 4.

3.1 Security Model

Syntax. An issuer-hiding authentication mechanism scheme is defined by sets
of users U , issuers I and verifiers V along with the following algorithms and
protocols.

– Setup(1λ, n). This algorithm outputs the public parameters enabling to sign
vectors of n messages.

– IKeygen(pp). This algorithm is run by an issuer to generate its secret key
skI and a public key pkI consisting of n elements pkI,i, for i ∈ [1, n].

– Sign(skI , (m1, . . . ,mn)). On input a set of n messages (m1, . . . ,mn), this
algorithm run by the issuer owning skI generates a signature σ.

– VerifSign(pkI , (m1, . . . ,mn), σ). This algorithm enables to check the valid-
ity of the signatures generated by the previous algorithm. It outputs 1 (valid)
or 0 (invalid).

– SetPolicy({pkj,1}j∈J1
, . . . , {pkj,n}j∈Jn

). On input a policy P consisting in
n sets of public key elements, the algorithm generates a public component
pkP of the policy along with a secret component skP .

– AuditPolicy(pkP). On input pkP , this algorithms returns either 1 or 0.

– [Show((m1, . . . ,mn), σ, pkI , pkP), Verify((m1, . . . ,mn), skP)]. This interactive
protocol between a user and a verifier is initiated by the former who owns
some signature σ issued under public key pkI on some vector (m1, . . . ,mn).
At the end of the interaction, the verifier returns either 1 or 0.

Remark. We chose to keep our definitions as general as possible by considering
different sets J1, . . . ,Jn in the policy. This in particular reflects the case where
a policy would contain several public keys from the same issuer that would
coincide in some indices. For those indices, our construction allows to include
only one element in the policy, regardless of the number of such keys. However,
in practice, we believe that the most general case will be the one where the
policy will contain a set of complete public keys, each with one component per
position, leading to J1 = . . . = Jn.
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Correctness. Let pkI be (pkI,1, . . . , pkI,n). Correctness requires that the [Show,
Verify] protocol between honest users and verifiers outputs 1 with probability
1 if the following two conditions are satisfied:

1. σ has been output by Sign(skI , (m1, . . . ,mn))
2. ∃(j1, . . . , jn) ∈ J1 × . . .× Jn such that pkI,i = pkji,i.

In other words, every honestly generated signature satisfying a policy P
should be accepted by the verifier.

Remark. In our system, each public key element pkI,i is unambiguously associ-
ated with a given position i ∈ [1, n]. This is done to retain a strong definition
of unforgeability where a valid signature on (mπ(1), . . . ,mπ(n)) -for any permu-
tation π of {1, . . . , n}- is considered as a valid forgery, even if a signature on
(m1, . . . ,mn) was already issued. It is thus assumed that all sets {pkj,i}j∈Ji

con-
tained public key elements corresponding to the position i. The verifier, who is
honest during the unforgeability game, can easily enforce this when it defines
the policy P.

Policy Audit. As we explain above, each verifier selects a policy P and gen-
erates a corresponding data pkP through SetPolicy. As we shall see, the latter
specifies the authorised issuers’ public keys but can also provide some elements
accelerating users’ computations during signature presentation. For complete-
ness, we nevertheless need to consider the case where the verifier generating pkP
is malicious. In such a case, this entity could depart from the specifications of the
SetPolicy algorithm and generate pkP so as to leak some information on the
public keys related to the signature presented by the user. This is not a speci-
ficity of our scheme as [3,4] face the same problem and therefore provide a way
to check the validity of the policy. In [3], the policy contains one signature per
authorised public key. Checking the policy thus consists in running the verifica-
tion algorithm for every signature. In [4], the policy3 contains a zero-knowledge
proof of well-formedness that can be verified to check the policy. Finally, we note
that [12] is also theoretically vulnerable to this kind of attacks as one could place
invalid public keys in the policy. However, in their case, checking the validity
of the policy only consists in checking whether the public keys are valid, which
should not require cryptographic computations.

In all cases, the AuditPolicy algorithm allows anyone to detect a malicious
policy and then denounce the verifier enforcing it. A verifier publishing an ill-
formed pkP would then take a considerable risk, all the more so as we expect
policy modifications to remain rare in most scenarios: the verifier could go un-
punished only if no one runs AuditPolicy over the whole lifespan of the policy. In
situations where this policy check cannot be done once and for all by some entity
on behalf of all users, we could program the users’ devices to run AuditPolicy

with some probability ϵ after the [Show, Verify] protocol. This way, policy veri-
fication does not impact the performance of the signature presentation and, even

3 [4] does not use this specific terminology but their aggregator notion essentially
plays this role.
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with a very low ϵ, one could ensure that at least one user will detect an invalid
policy with overwhelming probability.

Finally, we note that the AuditPolicy algorithm is unnecessary if one only
considers honest-but-curious adversaries.

Unforgeability. The first property we expect from an Issuer-Hiding Authen-
tication mechanism is unforgeability. It requires that no user should be able to
falsely claim possession of a signature on (m1, . . . ,mn) satisfying a policy P. This
must hold true even if the messages m1, . . . ,mn have been individually signed.

As in [3], we assume that the public keys accepted by the policy belong to
honest issuers. This looks like a natural restriction given the issuer-hiding prop-
erty we aim to achieve. We indeed recall that the very purpose of the verification
algorithm in our context is to check that the user has received a signature from
one of the issuers accepted by the policy P. If one of these issuers is malicious,
then the adversary can generate valid signatures (with respect to P) on any
messages of its choice and the unforgeability property becomes moot.

The formal definition of unforgeability is provided in Figure 1. It makes use
of the following oracles.

– OAddI(): this oracle creates a new issuer key pair (skI , pkI) and returns pkI .
The set of all created issuers’ public key is K.

– OSign(pkI , (m1, . . . ,mn)): on input a vector of n messages, this oracle re-
turns Sign(skI , (m1, . . . ,mn)).

– OSetPolicy({pkj,1}j∈J1
, . . . , {pkj,n}j∈Jn

): this oracle is used to generate
(skP , pkP for a policy P = {pkj,1}j∈J1

, . . . , {pkj,n}j∈Jn
). The adversary then

receives pkP while skP remains secret.

– OShow((m1, . . . ,mn), pkP): this oracle is queried by the adversary playing
the role of the user. If no pkP was created through a query to OSetPolicy,
then the oracle aborts. Else, it runs the Verify part of the protocol on
((m1, . . . ,mn), skP) and returns the corresponding bit.

Issuer-Hiding. The second property we expect from our primitive is the issuer-
hiding one which requires that the verifier, even colluding with all issuers, is
unable to identify under which public key the presented signature has been
signed. The adversary thus controls all entities of our system except the user
that runs the Show protocol.

At this stage, we nevertheless need to make a few comments on some in-
herent limitations of the issuer-hiding property. The latter is indeed limited by
the information leaked by the revealed messages as they may give some hints
on the potential issuers. Typically, a proof of possession of a valid driving li-
cence should only involve public keys of entities authorised to issue this kind of
licences. Adding the public key of an university in the policy would for example
be pointless as one could trivially exclude it from the list of potential issuers of
the driving licence.
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Unforgeability
Exp

uf
A (1λ, n)

1. pp← Setup(1λ, n)
2. P = ({pkj,1}j∈J1 , . . . , {pkj,n}j∈Jn)← AO(pp)
3. If ∃i ∈ [1, n] and ji ∈ Ji such that pkji,i ̸= pki, for all (pk1, . . . , pkn) ∈ P , return

0
4. (skP , pkP)← SetPolicy(P)
5. (m1, . . . ,mn)← AO(pp, pkP)
6. If OSign(pkI , (m1, . . . ,mn)) was queried for some pkI ∈ I satisfying P, return 0
7. return b← [A(), Verify((m1, . . . ,mn), skP)]

Issuer-Hiding Expih−b
A (1λ, n)

1. pp← Setup(1λ, n)

2. (m1, . . . ,mn, pkP , σ
(0), σ(1), pk

(0)
I , pk

(1)
I )← AO(pp)

3. If AuditPolicy(pkP) = 0, return 0

4. If VerifSign(pk
(b′)
I , (m

(b′)
1 , . . . ,m

(b′)
n ), σ) = 0 for some b′ ∈ {0, 1}, return 0

5. b∗ ← [Show((m1, . . . ,mn), σ
(b), pk

(b)
I , pkP)A()]

6. Return (b∗ = b).

Fig. 1. Security Notions for Issuer-Hiding Authentication Mechanisms

We therefore stress that the issuer-hiding property is meaningful only if there
are at least two issuers authorised for the presented attributes in the policy
selected by the verifier. This is an obvious requirement of all papers targeting
this property. In practice, this calls for a quick check of the verifier’s policy
which is completely transparent by design in our case. The way it would be done
concretely obviously depends on the use case so we will not discuss it further in
this paper.

In our formal definition of this property, this will be modelled by the fact that
the adversary outputs (m1, . . . ,mn) along with a policy P = {pkb,1}b∈{0,1}, . . . ,
{pkb,n}b∈{0,1} where (pkb,1, . . . , pkb,n) is the public key of some issuer Ib, for

b ∈ {0, 1}. The adversary additionally outputs the corresponding signatures σ(0)

and σ(1) along with the elements in pkP that will be used in the Show protocol.
In other words, our adversary has a total control over all the elements used in
the latter protocol, which makes our model very strong. In particular, it can
maliciously generate the signatures and pkP , provided that they pass the sanity
checks constituted by AuditPolicy and VerifSign.

In the issuer-hiding experiment of Figure 1, the adversary has access to the
following oracle:

– OShow((m1, . . . ,mn), σ, pkI , pkP): this oracle plays the role of the user in the
[Show, Verify] protocol. The adversary has a full control of its inputs as long
as AuditPolicy(pkP) = 1.

Let A be a probabilistic polynomial adversary. An IHA mechanism is

– unforgeable if Advuf (A) = |Pr[ExpufA (1λ, n) = 1]| is negligible for any A.
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– anonymous if Advih = |Pr[Expih−1
A (1λ, n) = 1]

− Pr[Expih−0
A (1λ, n) = 1]| is negligible for any A.

3.2 Construction

Our first construction is designed as an Issuer-Hiding variant of PS signatures.
The system indeed works as the PS signatures we recall in Section 2 except during
the verification stage. Concretely, a signature issued on (m1, . . . ,mn) by an issuer

with public key (Ỹj1,1, . . . , Ỹjn,n) is still a pair (σ1, σ2) = (gr, Xr·gr(
∑n

i=1 yji,i
·mi)).

What does change is the presentation of the signature that we describe as an
interactive protocol, prefiguring the Show protocol of an anonymous credential
system.

In classical digital signature or anonymous credentials systems, verification
takes as input a unique public key which acts as a very basic policy. The presented
signature or anonymous credential is either valid for this public key or it is
rejected. In our system, the verifier selects n sets {Ỹj,1}j∈J1 , . . . , {Ỹj,n}j∈Jn of
allowed public keys that constitute the policy for the current authentication. The
goal of the user is then to prove that it owns a PS signature on (m1, . . . ,mn)

valid for a vector of n public key elements (Ỹj1,1, . . . , Ỹjn,n) without revealing

anything on these elements beyond that Ỹjk,k ∈ {Ỹj,k}j∈Jk
, for all 1 ≤ k ≤ n.

In other words, it proves that (m1, . . . ,mn) has been certified by one of the
authorised issuers without revealing which one.

To achieve this goal, we need to move from the current verification equation
of PS signatures, namely e(σ1, X̃ ·

∏n
i=1 Ỹ

mi
ji,i

) = e(σ2, g̃), which inherently reveals
the issuer, to an equation involving in the same way all issuers’ public keys from
the policy. More precisely, we would like to replace

∏n
i=1 Ỹ

mi
ji,i

by something akin

to
∏n

i=1[
∏

j∈Ji
Ỹj,i]

mi . Clearly, this does not work with the original signature σ1

and σ2. We then add a new element σ̃ =
∏n

i=1[
∏

j∈Ji\{ji} Ỹj,i]
mi to compensate

for all the public keys in the product above. By construction, σ̃ satisfies

e(σ1, X̃ · σ̃−1
n∏

i=1

[
∏
j∈Ji

Ỹj,i]
mi) = e(σ2, g̃).

We thus have our issuer-hiding verification equation but the triplet (σ1, σ2, σ̃)
would be a very poor solution to our problem. First, because one can still
infer information on the issuer from σ2 and σ̃. Second, because the result-
ing signature scheme could be trivially broken. For example, by setting σ̃ =∏n

i=1[
∏

j∈Ji
Ỹj,i]

mi , one removes all the public keys from the verification equa-
tion. One can thus claim a signature on any vector (m1, . . . ,mn) by simply setting
σ1 = g and σ2 = X.

If we focus on the second problem we can see that it stems from the inability
to bound the number of public keys used to compute σ̃. Intuitively, we use σ̃ to
compensate for the public keys that we artificially added to the equation. For
each position i, we indeed added |Ji| − 1 elements Ỹ mi

j,i and they are exactly the
ones we cancel with σ̃. The latter element can thus legitimately be built from
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|Ji| − 1 public keys. If one exceeds this threshold then one can remove all the
public keys from Ji and the verification becomes moot: this is exactly the idea
behind the forgery we have just described.

To enforce this threshold, the verifier will provide a set of elements T̃j,i =

(Ỹj,i · g̃bi)a, for all public keys Ỹj,i in his policy, and will force the prover to use
them to build σ̃ by raising the latter to the power 1

a in the equation. Concretely,

σ̃ will now be computed as
∏n

i=1[
∏

j∈Ji\{ji} T̃j,i]
mi and our verification equation

becomes

e(σ1, X̃σ̃− 1
a

n∏
i=1

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi) = e(σ2, g̃).

An honestly computed σ̃ contains a component g̃bi·mi(|Ji|−1) which cancels
the one in the equation above. Conversely, building σ̃ from |Ji| elements or
more leads to residual elements that invalidate the equation with overwhelming
probability.

Our security analysis will formalise this, showing that satisfying this equation
without a valid PS signature on (m1, . . . ,mn) is not possible but we provide here
the intuition behind the proof. Indeed, let us consider a malicious prover trying
to forge a valid (σ1, σ2, σ̃) for (m1, . . . ,mn) without a valid signature. It can

compute σ̃ as
∏n

i=1[
∏

j∈Ji
T̃

α
(i)
j

j,i ], for any tuples (α
(i)
1 , . . . , α

(i)
Ji
) but the condition

we introduced means that
∑

α
(i)
j = mi(|Ji| − 1), for all i ∈ [1, n]. Therefore, if

we consider the left member of the verification equation, we have

e(σ1, X̃σ̃− 1
a

n∏
i=1

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi) = e(σ1, X̃

n∏
i=1

∏
j∈Ji

Ỹ
mi−α

(i)
j

j,i )

which can be satisfied only if σ2 = σ
x+

∑n
i=1

∑
j∈Ji

yj,i(mi−α
(i)
j )

1 . Since
∑

j∈Ji

α
(i)
j =

mi(|Ji| − 1), there is no i such that α
(i)
j = mi ∀j ∈ Ji. For all i, there is thus

at least one Ỹj,i that has a non-zero exponent mi − α
(i)
j . If, for all i, there is

only one ji ∈ Ji such that (mi − α
(i)
j ) ̸= 0, then we must have α

(i)
ji

= 0 and

α
(i)
j = 0 for all j ̸= ji. If we simplify σ2 accordingly, we get that (σ1, σ2) is

exactly PS signature on (m1, . . . ,mn), which would contradict the EUF-CMA
security of this signature scheme. Now, if there is some i with at least two non-

zero elements (mi − α
(i)
jb
) for b ∈ {0, 1}, then (σ1, σ2) is essentially an aggregate

PS signature under the public keys Ỹjb,i. However PS signatures can only be
sequentially aggregated, meaning that aggregation is not possible without the
help of the second signer. As no issuer generates aggregated signatures in our
protocol, (σ1, σ2) are necessarily forgeries, which, here again, would contradict
the security of PS signatures.

We have thus solved the forgeability problem mentioned above but it remains
to address the one regarding the information leaked by σ2 and σ̃. To this end
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we resort to a technique similar to the one used in [19, 20]. We indeed add
σ−t
1 to σ2 and g̃a·t to σ̃, for some random t. Taken individually, the resulting

σ2 and σ̃ are perfectly uniform element that no longer leak anything on the
issuer. One must then combine these two elements using a pairing equation
to remove the masks σ−t

1 and g̃a·t but then one essentially falls back on the
verification equation. Actually, our security proof will essentially show that our
system is unconditionally issuer-hiding. While this is obviously a good point
from the privacy standpoint, this has a side-effect on the unforgeability proof.
As the underlying PS signature is now perfectly hidden, one can no longer reduce
unforgeability to the one of PS signatures, as sketched above. This is the problem
already experienced in [19,20] which adapted the original proof of PS signatures
(in the Generic Group Model) to their variants. We resort to the same solution
here and will then provide a tailored proof in the GGM while emphasizing that
it relies on the same arguments as the original PS proof.

The scheme. As explained above, the scheme only differs from PS signatures
during the [Show, Verify] step. To match the syntax of anonymous credentials
we nevertheless rename Keygen as IKeygen to emphasize that it is run by an
issuer.

– Setup(1λ, n). This algorithm outputs the parameters pp containing the de-
scription of type-3 bilinear groups (G1,G2,GT , e) of order p along with a set

of generators (g, g̃) ∈ G1 × G2 and a pair (X, X̃) = (gx, g̃x) ∈ G1 × G2 for
some x ∈ Zp.

– IKeygen(pp). This algorithm generates n random scalars (y1, . . . , yn) and

sets skI as (y1, . . . , yn) and pkI as (Ỹ1, . . . , Ỹn) = (g̃y1 , . . . , g̃yn).
– Sign(skI , (m1, . . . ,mn)). On input a set of n messages (m1, . . . ,mn), this

algorithm generates a signature (σ1, σ2) ← (gr, Xr · gr(
∑n

i=1 yi·mi)) for some
random r ∈ Zp.

– VerifSign(pkI , (m1, . . . ,mn), σ). This algorithm checks the validity of σ =

(σ1, σ2) on (m1, . . . ,mn) by parsing pkI as (Ỹ1, Ỹn) and testing whether the
following equation holds:

e(σ1, X̃ ·
n∏

i=1

Ỹ mi
i ) = e(σ2, g̃).

Note that this is exactly the verification algorithm of PS signatures.
– SetPolicy({Ỹj,1}j∈J1 , . . . , {Ỹj,n}j∈Jn). On input n sets of G2 group ele-

ments such that Ỹj1,i1 ̸= Ỹj2,i2 for all pairs (i1, j1) ̸= (i2, j2), the algorithm

generates n + 1 random scalars a, b1, . . . , bn and computes S̃ = g̃a along
with T̃j,i ← (Ỹj,i · g̃bi)a for all i ∈ [1, n] and j ∈ Ji. It then produces a

zero-knowledge proof π that the elements T̃j,i are well formed. An example
of such a zero-knowledge proof is provided below. It then outputs the pub-
lic part of the policy pkP = [π, S̃, {(Ỹj,1, T̃j,1)}j∈J1

, . . . , {(Ỹj,n, T̃j,n)}j∈Jn
]

along with a secret part skP = [a, b1, . . . , bn].
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– AuditPolicy(pkP). This algorithm runs the verification algorithm of the
zero-knowledge proof π and returns 1 if π is correct and 0 otherwise.

– [Show((m1, . . . ,mn), (σ1, σ2), pkI , pkP), Verify((m1, . . . ,mn), skP)]. This in-
teractive protocol is initiated by the user who first checks if the public key
pkI = (Ỹ1, . . . , Ỹn) associated with his signature (σ1, σ2) is compatible with
the policy P. This concretely means that ∃(j1, . . . , jn) ∈ J1 × . . .×Jn such

that Ỹi = Ỹji,i. It then selects two random scalars r and t and computes

σ′
1 ← σr

1, σ
′
2 ← σr

2 · (σ′
1)

−t and σ̃ ← S̃t
∏n

i=1[
∏

j∈Ji\{ji} T̃j,i]
mi . The ele-

ments (σ′
1, σ

′
2, σ̃) are then sent to the verifier who returns 1 if (1) σ′

1 ̸= 1, (2)
∃i ∈ [1, n] : mi ̸= 0 and (3) the following equation holds:

e(σ′
1, X̃σ̃− 1

a

n∏
i=1

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi) = e(σ′

2, g̃).

Else, it returns 0.

Remark.We explicitly include the elements Ỹj,i in pkP so as to allow the prover to
easily check if its certificate satisfies the policy. However, any (hopefully shorter)

element unambiguously identifying Ỹj,i would be sufficient.

Correctness. Let (σ1, σ2) be a signature under public keys (Ỹj1,1, . . . , Ỹjn,n)
on (m1, . . . ,mn) satisfying the verifier’s policy P and (σ′

1, σ
′
2, σ̃) be the elements

generated by the user during the Show protocol. We have:

e(σ′
1, X̃σ̃− 1

a

n∏
i=1

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi)

=e(σ′
1, X̃(S̃t

n∏
i=1

[
∏

j∈Ji\{ji}

T̃j,i]
mi)−

1
a

n∏
i=1

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi)

=e(σ′
1, X̃(g̃t

n∏
i=1

[
∏

j∈Ji\{ji}

(Ỹj,ig̃
bi)]mi)−1

n∏
i=1

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi)

=e(σ′
1, X̃ · g̃−t

n∏
i=1

Ỹ mi
ji,i

) = e((σ′
1)

x−t+
∑n

i=1 yji,i
mi , g̃) = e(σ′

2, g̃).

Policy Audit. As discussed in Section 3.1, we include in pkP a zero-knowledge
proof π attesting that it has been honestly generated. Our protocol does not
prescribe any particular instantiation but we note that Schnorr’s proofs [21] are
very well suited to our case. It indeed results in a proof π containing only n+ 2
scalars, regardless of the number of public keys in P.

Concretely, let H : {0, 1}∗ → Zp be a hash function. The entity running
SetPolicy produces π by selecting n+1 random scalars r0, . . . , rn and computes,
for all i ∈ [1, n] and j ∈ Ji, K̃j,i ← T̃ r0

j,i ·g̃ri along with K̃ = S̃r0 . It then computes
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c← H(pkP , K̃, {K̃j,1}j∈J1 , . . . , {K̃j,n}j∈Jn), z0 = r0+ c ·a−1 and zi = ri− bi · c,
∀i ∈ [1, n]. It finally outputs π ← (c, z0, . . . , zn).

The algorithm AuditPolicy then consists in computing c′ ← H(pkP , S̃
z0 ·

g̃−c, {T̃ z0
j,1 · g̃zi · Ỹ

−c
j,1 }j∈J1

, . . . , {T̃ z0
j,n · g̃zi · Ỹ

−c
j,n }j∈Jn

) and checking whether c = c′.

3.3 Security Analysis

The theorem below formalises the security claims we made in Section 3.2.

Theorem 2. – Our construction is unforgeable in the generic group model if
π is a zero-knowledge proof system.

– Our construction is issuer-hiding if π is a sound proof system.

The proof π affects the security of our system in the sense that (1) an ill-
formed pkP could leak information on the issuer’s identity and (2) a proof π
that would not be zero-knowledge could leak information on the scalars a or
bi, enabling the adversary to circumvent the countermeasures embedded in the
elements T̃j,i. However, as we explain above, the proof π is only necessary to
deal with active adversaries that do not shy away from tampering with pkP .
In situations where one would only expect honest-but-curious adversaries, one
could remove it altogether. In this case, the issuer-hiding property would be
ensured unconditionally.

Proof of the Issuer-Hiding Property. We prove here that the elements
(σ′

1, σ
′
2, σ̃) are distributed independently of those depending on the bit b in

the experiment of Figure 1, namely (σ
(b)
1 , σ

(b)
2 ) and the associated public key

(Ỹb,1, . . . , Ỹb,n), provided that the elements in pkP are well-formed. Thanks to π,
we can assume the latter point. Otherwise, one would get a direct attack against
the soundness of the proof system used to generate π.

By construction (σ
(b)
1 , σ

(b)
2 ) is exactly (grb , grb(x+

∑
i yb,imi)) for some rb. This

can be checked by running the verification algorithm of PS signatures. Let r and
t be the scalars used to generate (σ′

1, σ
′
2, σ̃) during the Show protocol and let us

write them r = r′

rb
and t = u+

∑
i yb,i ·mi for some r′ and u. Let b be 1− b. We

then have

1. σ′
1 = gr

′

2. σ′
2 = (σ

(b)
2 )r · (σ′

1)
−t) = gr

′(x−u)

3. σ̃ = g̃a·t
∏n

i=1[(g̃
bi Ỹb,i)

a]mi

= (g̃u)a
∏n

i=1[(g̃
bi
∏

j∈{0,1} Ỹj,i)
a]mi

Since r and t are uniformly random, r′ and u are also uniformly random and
in particular do not leak any information on b. The elements (σ′

1, σ
′
2) are thus

totally independent of b. The element σ̃ involves both Ỹb,i and Ỹb, in the same
way. One thus cannot infer information on b from it, which concludes the proof.
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Proof of Unforgeability. As we explain in Section 3.2, it seems impossible to
directly rely on the unforgeability of PS signatures. We will therefore adapt the
arguments underlying the security of PS signatures to our system, leading to the
following proof in the Generic Group Model. But first we need to deal with the
zero-knowledge proof π, which is done by introducing an intermediary game.
Game 0. This is exactly the unforgeability game described in Section 1.
Game 1. This is the same game as Game 0 except at Step 4 where the challenger
runs SetPolicy as usual but now simulates the proof π. This game is then
indistinguishable from the previous one if π has indeed be generated using a
zero-knowledge proof system.

Lemma 3. In the generic group model, no adversary can succeed in Game 1
with probability greater than 2(5 + 2(

∑n
i=1 |Ji|) + 3qS + qG)

2/p, where qG is a
bound on the number of group oracle queries and qS is a bound on the number
of OSign queries.

Proof of Lemma 3. Any adversary against our system has access to the following
elements:

– (g,X) and (g̃, X̃) from the public parameters;

– {Ỹj,1}j∈J1
, . . . , {Ỹj,n}j∈Jn

from the public keys;

– S̃ = g̃a and {T̃j,1}j∈J1
, . . . , {T̃j,n}j∈Jn

from the policy;

– (σk,1, σk,2) by runningOSign on (mk,1, . . . ,mk,n) for some public key Ỹjk,1, . . . ,

Ỹjk,n.

Each of these group elements is associated with a formal polynomial repre-
senting its exponent in base g (for the elements in G1) and g̃ (for those in G2)
whose variables are the scalars unknown to the adversary, namely x, a, {bi}ni=1,
{yj,1}j∈J1

, . . . , {yj,n}j∈Jn
, along with rk such that σk,1 = grk .

The first step of a proof in the Generic Group Model is to show that an
adversary is unable to symbolically produce a tuple (σ∗

1 , σ
∗
2 , σ̃

∗) passing the ver-
ification test for the policy P and a message (m1, . . . ,mn) ̸= (mk,1, . . . ,mk,n),
∀k ∈ [1, qS ].

In the GGM, the adversary can only obtain new group elements by query-
ing the group oracle. In G1, this means that there are known scalars (α, α′),
(β, β′), {(γk, γ′

k)}
qs
k=1, {(δk, δ′k)}

qs
k=1 such that the polynomials [σ∗

1 ] and [σ∗
2 ] are

respectively:

[σ∗
1 ] = α+ β · x+

∑
k

γkrk +
∑
k

δk · rk(x+

n∑
i=1

yjk,i ·mk,i)

[σ∗
2 ] = α′ + β′ · x+

∑
k

γ′
krk +

∑
k

δ′k · rk(x+

n∑
i=1

yjk,i ·mk,i)

Similarly, inG2, there must be known α”, β”, {γ”j,1, δ”j,1}j∈J1 , . . . , {γ”j,n, δ”j,n}j∈Jn

and ϵ such that
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[σ̃∗] = α” + β” · x+ ϵ” · a+
∑
i

∑
j∈Ji

[γ”j,i · yj,i + a · δ”j,i · (bi + yj,i)]

Since we know that (σ∗
1 , σ

∗
2 , σ̃

∗) passes the verification test for the policy P
and message (m∗

1, . . . ,m
∗
n), we have:

[σ∗
1 ] · [x−

1

a
[σ̃∗] +

∑
i

mi(bi(|Ji| − 1) +
∑
j∈Ji

yj,i)] = [σ∗
2 ] (1)

Before developing this formula we note that all the monomials in [σ̃∗] that
are not a multiple of a will end up with a factor 1

a that cannot be cancelled by
any of the other elements from the equations. This means that the equations
cannot be satisfied unless if those monomials are 0, which concretely means that
α” = β” = γ”j,i = 0, ∀i and j ∈ Ji. We thus get [σ∗

2 ] =

[σ∗
1 ] · [x− ϵ”−

∑
i

∑
j∈Ji

δ”j,i(bi + yj,i) +
∑
i

mi(bi(|Ji| − 1) +
∑
j∈Ji

yj,i)].

Now, we can notice that every monomial in [σ∗
1 ] will be multiplied by x in the

right member, resulting in some cases in monomials of degree 2 in x. However,
there are no monomials of such a degree in the left member of the equation. This
means that we necessarily have β = δk = 0, ∀k.

At this stage, we therefore know that:

[σ∗
1 ] = α+

∑
k

γkrk

[σ∗
2 ] = α′ + β′ · x+

∑
k

γ′
krk +

∑
k

δ′k · rk(x+

n∑
i=1

yjk,i ·mk,i)

[σ̃∗] = ϵ” · a+
∑
i

∑
j∈Ji

[a · δ”j,i · (bi + yj,i)]

and we can thus rewrite the verification equation: [σ∗
2 ] =

[α+
∑
k

γkrk] · [x− ϵ” +
∑
i

mi · bi(|Ji| − 1) +
∑
j∈Ji

(mi · yj,i − δ”j,i(bi + yj,i))]

If we consider the monomials of degree 0 in rk, we get the following relations:

α′ = −α · ϵ”;
α = β′;

0 = α
∑
i

(mi · bi(|Ji| − 1) +
∑
j∈Ji

(mi · yj,i − δ”j,i(bi + yj,i))).
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The last equation implies that either α = 0 or we have, for all i ∈ [1, n]:

mi(|Ji| − 1) =
∑
j∈Ji

δ”j,i (1)

0 = mi − δ”j,i,∀j ∈ Ji (2)

However the two equations cannot be simultaneously satisfied unless mi = 0
for all i ∈ [1, n], which would make the whole forgery invalid. We can then
conclude that α = 0.

Now, if we focus, for each k, on the monomials in rk, we have

γ′
k + δ′k(x+

n∑
i=1

yjk,i ·mk,i)

= γk[x− ϵ” +
∑
i

mi · bi(|Ji| − 1) +
∑
j∈Ji

(mi · yj,i − δ”j,i(bi + yj,i))]

which means that δ′k = γk and γ′
k = −γk · ϵ”. If γk = 0 ∀k ∈ [1, qS ], then

[σ∗
1 ] = 0 and (σ∗

1 , σ
∗
2 , σ̃

∗) would then not be a valid forgery. We can then assume
that there is at least one k ∈ [1, qS ] such that γk ̸= 0. For this k, we can note
that there is no monomial in bi in the left member of the equation. We must
then have, for all i ∈ [1, n]:

mi(|Ji| − 1) =
∑
j∈Ji

δ”j,i (1)

Similarly, considering the monomials in yj,i leads to the following relations,
∀i ∈ [1, n]:

δ′k ·mk,i = γk(mi − δ”jk,i) (2)

and 0 = mi − δ”jk,i,∀j ∈ Ji \ {jk} (3)

Therefore, δ”jk,i = mi ∀j ∈ Ji \ {jk}. Plugging this result in (1) means that
δ”jk,i = 0 and so (2) becomes δ′k ·mk,i = γk ·mi. As we have shown that δ′k = γk,
this means that mk,i = mi ∀i ∈ [1, n] and so that (σ∗

1 , σ
∗
2 , σ̃

∗) is not a valid
forgery, which concludes this part of the proof.

In practice, the variables of these formal polynomials will be replaced by
random scalars which could lead to accidental equalities, where two elements
associated with different polynomials would be equal. This would mean that
the corresponding polynomials would evaluate to the same value, leading the
simulation in the GGM to fail. Thanks to the Schwartz-Zippel lemma, we can
bound the probability of such an event. We indeed note that the polynomials
in G1 and G2 are of degree at most 2, leading to polynomials of degree at most
4 in GT . In parallel, the adversary has access to (5 + 2(

∑n
i=1 |Ji|) + 3qS + qG)

polynomials. The probability of an accidental validity is then at most 2(5 +
2(
∑n

i=1 |Ji|) + 3qS + qG)
2/p, which remains negligible for a polynomial number

of queries to the group and signing oracles.
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4 Issuer-Hiding Anonymous Credentials

In this section, we extend our IHA construction to build an Issuer-Hiding Anony-
mous Credentials (IHAC) system. Actually, we have done the bulk of the work in
our previous section as we already dealt with the unforgeability and issuer-hiding
properties while retaining essentially the same syntax as the one of IHAC. What
remains to be done is then to allow the user to control the information it leaks
on the signed messages m1, . . . ,mn. This will essentially be achieved thanks to
an appropriate zero-knowledge proof during the [Show, Verify] protocol. Note
that this proof can easily be implemented in our case. Our verification equation
is indeed

e(σ′
1, X̃σ̃− 1

a

n∏
i=1

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi) = e(σ′

2, g̃)

where the messages m1, . . . ,mn to be hidden are involved as exponents. Al-
though the elements g̃bi are not public in our IHA construction, we will show that
they can be added to pkP without jeopardising security. Schnorr-like proofs [21]
are thus very well suited to our case, either to perform selective disclosure of the
messages, or to prove more complex statements if necessary.

4.1 Security Model

We here essentially follow the model of [3] that we slightly adapt to match
the syntax of IHA. The main difference is that we do not consider a generic
policy ϕ for the messages but instead allow the user to selectively disclose a
subset {mi}i∈I of the messages he wants to reveal, where I ⊂ [1, n]. This makes
the whole description simpler and better matches the usual syntax of classical
anonymous credential system [14]. We nevertheless stress that proving more
complex statements about m1, . . . ,mn would be rather simple with our concrete
construction given the form of the verification equation.

Syntax. An IHAC system involves a set of issuers, users and verifiers running
some of the following algorithms. In this section, the messages mi (resp. the
signature) will be called “attributes” (resp. “credential”) to comply with the
usual terminology of anonymous credential systems.

– Setup(1λ, n). This algorithm outputs the public parameters enabling to sign
vectors of n attributes.

– IKeygen(pp). This algorithm is run by an issuer to generate his secret key
skI and a public key pkI consisting of n elements pkI,i, for i ∈ [1, n].

– Sign(skI , (m1, . . . ,mn)). On input a set of n attributes (m1, . . . ,mn), this
algorithm run by the issuer owning skI generates a credential σ.

– VerifSign(pkI , (m1, . . . ,mn), σ). This algorithm enables to check the va-
lidity of the certificates generated by the previous algorithm. It outputs 1
(valid) or 0 (invalid).

19



Unforgeability
Exp

uf−ac
A (1λ, n)

1. pp← Setup(1λ, n)
2. P = ({pkj,1}j∈J1 , . . . , {pkj,n}j∈Jn)← AO(pp)
3. If ∃i ∈ [1, n] and ji ∈ Ji such that pkji,i ̸= pki, for all (pk1, . . . , pkn) ∈ P , return

0
4. (skP , pkP)← SetPolicy(P)
5. {mi}i∈I⊂[1,n] ← AO(pp, pkP)
6. If OSign(pkI , (m∗

1, . . . ,m
∗
n)) was queried for some pkI ∈ K satisfying P, with m∗

i =
mi ∀i ∈ I, return 0

7. return b← [A(), Verify({mi}i∈I , skP)]

Anonymity Expano−b
A (1λ, n)

1. pp← Setup(1λ, n)

2. (I, (m(0)
1 , . . . ,m

(0)
n ), (m

(1)
1 , . . . ,m

(1)
n ), pkP , σ

(0), σ(1), pk
(0)
I , pk

(1)
I )← AO(pp)

3. If ∃i∗ ∈ I: m(0)
i∗ ̸= m

(1)
i∗ , return 0

4. If AuditPolicy(pkP) = 0, return 0

5. If ∃b′ ∈ {0, 1}: VerifSign(pk(b
′)

I , (m
(b′)
1 , . . . ,m

(b′)
n ), σ) = 0, return 0

6. b∗ ← [Show((m
(b)
1 , . . . ,m

(b)
n ), σ(b), pk

(b)
I , pkP)A()]

7. Return (b∗ = b).

Fig. 2. Security Notions for Issuer-Hiding Anonymous Credentials

– SetPolicy({pkj,1}j∈J1
, . . . , {pkj,n}j∈Jn

). On input a policy P consisting in
n sets of public key elements, the algorithm generates a public component
pkP of the policy along with a secret component skP .

– AuditPolicy(pkP): on input pkP , this algorithms returns either 1 or 0.
– [Show((m1, . . . ,mn), I, σ, pkI , pkP), Verify({mi}i∈I , skP)]. This interactive pro-

tocol between a user and a verifier is initiated by the former who wants to
show that the presented attributes {mi}i∈I have been certified under some
public key pkI accepted by the policy P. At the end of the interaction, the
verifier returns either 1 or 0.

Security Properties. Correctness can be defined as in Section 3.1. The un-
forgeability property is also very similar to the one defined in Figure 1 - and
uses the same oracles- although we have to slightly adapt the success condition
as the adversary can choose to only perform selective disclosure. The resulting
experiment can be found in Figure 2. The anonymity experiment described in
the same figure encompasses the issuer-hiding property and the privacy of unre-
vealed messages. The novelty compared to the issuer-hiding property in Figure 1
is that the challenge signatures σ(0) and σ(1) may now be associated to two dif-

ferent message vectors (m
(0)
1 , . . . ,m

(0)
n ) and (m

(1)
1 , . . . ,m

(1)
n ), provided that they

coincide in all indices i ∈ I.
Let A be a probabilistic polynomial adversary. An IHAC mechanism is

– unforgeable if Advuf (A) = |Pr[ExpufA (1λ, n) = 1]| is negligible for any A.
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– anonymous if Advano = |Pr[Expano−1
A (1λ, n) = 1]

− Pr[Expano−0
A (1λ, n) = 1]| is negligible for any A.

4.2 Construction

Let Σ be the issuer-hiding authentication mechanism presented in Section 3.2.
We construct our IHAC system as follows.

– Setup(1λ, n). This algorithm runs Σ.Setup(1λ, n) and then returns the re-
sulting public parameters, namely the description of type-3 bilinear groups
(G1,G2,GT , e) of order p along with a set of generators (g, g̃) ∈ G1×G2 and

a pair (X, X̃) = (gx, g̃x) ∈ G1 ×G2 for some x ∈ Zp.
– IKeygen(pp). This algorithm runs Σ.IKeygen(pp) and returns the resulting

keys skI = (y1, . . . , yn) and pkI = (Ỹ1, . . . , Ỹn) = (g̃y1 , . . . , g̃yn).
– Sign(skI , (m1, . . . ,mn)). This algorithm runs Σ.Sign(skI , (m1, . . . ,mn)) to

output a certificate (σ1, σ2)← (gr, Xr · gr(
∑n

i=1 yi·mi)) for some random r ∈
Zp.

– VerifSign(pkI , (m1, . . . ,mn), σ). This algorithm returns Σ.VerifSign(pkI ,
(m1, . . . ,mn), σ).

– SetPolicy({pkj,1}j∈J1
, . . . , {pkj,n}j∈Jn

). This algorithm generates n + 1

random scalars a, b1, . . . , bn and computes S̃ = g̃a, g̃bi(|Ji|−1), for i = 1, . . . , n,
along with T̃j,i ← (Ỹj,i · g̃bi)a for all i ∈ [1, n] and j ∈ Ji. It then produces
a zero-knowledge proof π that these elements are well formed by adapting
the solution described in Section 3.2. It then outputs the public part of the
policy pkP = [π, S̃, {g̃bi(|Ji|−1)}ni=1, {(Ỹj,1, T̃j,1)}j∈J1

, . . . , {(Ỹj,n, T̃j,n)}j∈Jn
]

along with the secret part skP = [a, b1, . . . , bn].
– AuditPolicy(pkP). This algorithm runs the verification algorithm of the

zero-knowledge proof on π and returns the corresponding bit.
– [Show((m1, . . . ,mn), I, σ, pkI , pkP), Verify({mi}i∈I , skP)]. As inΣ.Show, the

user is expected to own a certificate σ = (σ1, σ2) generated under some

public key pkI = (Ỹ1, . . . , Ỹn) such that ∃(j1, . . . , jn) ∈ J1 × . . . × Jn with

Ỹi = Ỹji,i. It then selects two random scalars r and t and computes σ′
1 ← σr

1,

σ′
2 ← σr

2 · (σ′
1)

−t and σ̃ ← S̃t
∏n

i=1[
∏

j∈Ji\{ji} T̃j,i]
mi . As it can no longer

reveal anything about {mi}i∈I , where I = [1, n] \ I, it will generate a proof
of knowledge π′ of these values which satisfy the following equation:

∏
i∈I

e(σ′
1, g̃

bi(|Ji|−1)
∏
j∈Ji

Ỹj,i)
mi

= e(σ′
2, g̃) · e(σ′

1, X̃
−1σ̃

1
a

∏
i∈I

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
mi).

To this end, it can follow the Schnorr’s protocol [21] by generating |I| scalars
{ki}i∈I and compute K =

∏
i∈I e(σ′

1, g̃
bi(|Ji|−1)

∏
j∈Ji

Ỹj,i)
ki . The latter

is taken as input, along with (σ1, σ2, σ̃) and pkP by a hash function H
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to produce a challenge c which is used to compute and zi = ki + c · mi,
for all i ∈ I. Verification of (c, z1, . . . , zn) can then be done by computing

T = e(σ′
2, g̃) · e(σ′

1, X̃
−1σ̃

1
a

∏
i∈I [g̃

bi(|Ji|−1)
∏

j∈Ji
Ỹj,i]

mi) along with K ′ =

[
∏

i∈I e(σ′
1, g̃

bi(|Ji|−1)
∏

j∈Ji
Ỹj,i)

zi ] · T−c and then testing whether it leads
to the same value c.

Remark. In alternative models for anonymous credentials, such as the one from
[14], the users generate some key pair (usk, upk) that is used to bind the user and
his credential. Concretely, this means that the credential cannot be showed with-
out the knowledge of usk. As we use the model from [3], our users do not generate
such a key pair and we thus do not consider this property. We nevertheless note
that it could readily be added to our construction through a minor tweak. One
of the attributes (let us say m1) would have to be defined as the user’s secret
key usk. This would slightly change the signing procedure as m1 could no longer
be revealed but PS signature can easily be generated on committed values as
shown in the original paper [17]. Now, since m1 will never be revealed (that is,
{1} ⊂ I), the user will prove knowledge of it during each authentication, which
clearly leads to the requested property. An adversary able to illicitly use a given
credential would have to prove knowledge of the associated secret key which, in
our case, would imply an attack against the discrete logarithm assumption.

pp pkI cred pkP Show

[3] (2 + n)G1 +2G2 1G2 2G1 + 1G2 (1+|J |)G1+3|J |G2 3G1+4G2+5Zp

Ours 2G1 +2G2 nG2 2G1
(1 + n+ 2n|J |)G2

+(n+ 2)Zp
2G1+1G2+1Zp

Table 1. Size complexity.

pkI cred pkP Show Verify

[3] 1e2 4e1 + 1e2 (1+ |J |)e1 +4|J |e2 (11 + |I|)e1 +
5e2 + 7p

(8 + n)e1 + 13p

Ours ne2 3e1 (1 + 2n+ 4n|J |)e2
(1 + n+ |I|)e2 +

3e1 + p
(1 + n)e2 +
1eT + 3p

Table 2. Computational complexity.

4.3 Security Analysis

The security analysis directly follows from the one of our IHA system and is
stated by the theorem below.

Theorem 4. – Our construction is unforgeable in the generic group model if
π is a zero-knowledge proof system and π′ is an extractable proof system.

– Our construction is anonymous if π is a sound proof system and π′ is a
zero-knowledge proof system.
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Proof of the Issuer-Hiding Property. The proof is very similar to the one
of Section 3.3. Thanks to the soundness of π we can assume well-formedness of
the element in pkP . We also know that (σ

(b)
1 , σ

(b)
2 ) = (grb , grb(x+

∑
i yb,imi)) for

some scalar rb. If we write the scalars r and t generated in the Show protocol as
r = r′

rb
and t = u+

∑
i∈I yb,imi −

∑
i∈I yb,imi, we then have:

1. σ′
1 = gr

′

2. σ′
2 = (σ

(b)
2 )r · (σ′

1)
−t) = gr

′(x−u+
∑

j∈{0,1}
∑

i∈I yj,imi)

3. σ̃ = g̃a·t
∏n

i=1[(g̃
bi Ỹb,i)

a]mi =

(g̃u)a
∏

i∈I [(g̃
bi
∏

j∈{0,1} Ỹj,i)
a]mi

It then only remains to simulate the zero-knowledge proof π′ of the [Show,
Verify] protocol. The elements r′ and u are distributed as r and t (which are
random) and so do not leak information on either b or {mi}i∈I . Regarding σ′

2

and σ̃, we note that they do not depend on {mi}i∈I and that they involve yb,i
and yb,i in the same way for all i ∈ I. They thus do not leak any information on
b, which concludes the proof.

Proof of the Unforgeability Property. The proof relies on the same argu-
ments as the one of the IHA mechanism but we need to slightly adapt the latter
to take into account the modifications we introduced for anonymous credentials.

We first note that, when producing its forgery, the adversary no longer re-
veals the attributes mi for i ∈ I. However, we can easily revert to the previous
situation by running the extraction algorithm for π′. Our proof in the generic
group model can thus work exactly as the one in Section 3.3 except that the
adversary has now access to a few additional elements in pkP , namely the ones
in {g̃bi(|Ji|−1)}ni=1. As they all belong to G2, they could only be used to construct
the element σ̃∗ of the forgery. However, the equation (1) of the unforgeability
proof of Section 3.3 implies that all these elements will end up with a factor 1

a
in their exponent and so can only have null coefficients to satisfy the verification
equation. In other words, these additional elements are useless to the adversary
and so do not change4 the security analysis.

5 Performance

In this section, we compare the performance of our IHAC scheme with the one
of the instantiation proposed in [3]. We indeed recall that the two other contri-
butions [4, 12] from the state-of-the-art do not allow like for like comparisons.
Indeed, [12] only provides a generic solution to the problem of hiding the issuer
of a credential which consists in an OR-proof that the issuer key is one of those
from the verifier’s list. This single proof is of size linear in |J |, the number of

4 Technically, providing new elements in a generic group model analysis changes the
bound on the success probability of the adversary but the difference is insignificant.
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public keys in the verifier’s list, and so cannot compete with the sizes of the pre-
sentation tokens from [3] and our construction. The situation of [4] is different as
it only considers the problem of hiding the issuer, not the one of leaking as few
information as possible on the attributes m1, . . . ,mn. In that sense, it is closer to
an IHA mechanism than to an anonymous credential system. However, even in
this context, we note that the user has to send 960 Bytes in [4] whereas he can
only send 192 Bytes with our construction of Section 3, when using BLS12-381
curves in both cases.

We recall that we have considered the most general situation where |Ji| may
be different from |Jj | for some i ̸= j. For a proper comparison with [3], we will
nevertheless assume that |J1| = . . . = |Jn| = |J |, which slightly disadvantages
our construction.

For both [3] and our construction, the Show complexity does not include the
n attributes that are either revealed or hidden in a proof of knowledge. Note
that, in all cases, this leads to n elements of Zp when using the Schnorr’s proof
of knowledge.

Table 1 shows that our public keys, and hence our policies, are larger than
those in [3] but that our Show protocol requires to send less elements. Concretely,
when instantiating the bilinear groups with the BLS12-381 curve, the Show pro-
tocol requires to send 688 Bytes in the case of [3] and 224 Bytes in the case
of our construction, hence a threefold improvement. We believe that this is an
interesting feature of our construction because the Show protocol is usually the
one subject to the most stringent requirements but we note that [3] offers an
interesting tradeoff in the case where public elements (public keys or policies)
would frequently change.

Table 2 evaluate the computational complexity of [3] and our construction
in the worst case, namely the one where all attributes would be hidden. It only
considers costly operations, namely exponentiations (denoted ei) and pairings
(denoted p). In the case of our construction, we note that the element K can be
computed as

K = e(σ′
1,
∏
i∈I

[g̃bi(|Ji|−1)
∏
j∈Ji

Ỹj,i]
ki)

so as to minimise the number of pairings. We have rewritten similarly the ele-
ments in [3] for a fair comparison. We also recall that the elements g̃bi(|Ji|−1)

are provided in pkP and so do need to be recomputed. This table illustrates the
differences of the approach in [3] and ours. In our case, the user’s computations
in the Show protocol involve more exponentiations but less pairings than in [3].
The number of exponentiations is essentially the same during verification but
our protocol require to evaluate less pairings (3) than in [3] (13).

Swapping groups. We instantiate our construction so as to optimise the sizes
of the credential and of the elements sent by the user during Show as these are
usually the main metrics for anonymous credentials. Concretely, we generate our
credentials in G1 to minimise the number of elements in G2. This nevertheless
implies that most computations will be performed in G2, which is not ideal if
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one favours computational performance. In the latter case, we recall that the
roles of G1 and G2 are interchangeable and so that one can straightforwardly
derive a variant of our scheme by simply swapping groups G1 and G2. In that
case, almost all computations will be performed in G1 at the cost of twice larger
credentials (192B instead of 96B) and slightly larger (+48B) Show transcript.

6 Conclusion

In this paper, we have proposed a new approach to hide all information about
the issuer when presenting a credential, which was so far an important source of
leakage in classical anonymous credentials systems. Our approach does not re-
quire heavy machinery such as complex zero-knowledge proofs but instead simply
extends PS signatures with one additional element. It leads to a Show transcript
that is only slightly larger than the one of classical systems, proving that the
issuer-hiding feature is not necessarily costly to add. In the process, we have
introduced an intermediate primitive, Issuer-Hiding Authentication, whose pur-
pose is orthogonal, but complementary, to the one of anonymous credentials. We
believe it constitutes a worthwhile addition to the arsenal of privacy-preserving
mechanisms as it efficiently addresses a problem that was, so far, mostly over-
looked.
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