
The Last Yard: Foundational End-to-End Verification of
High-Speed Cryptography

Philipp G. Haselwarter
∗

philipp@haselwarter.org
Aarhus University

Denmark

Benjamin Salling Hvass
∗

bsh@cs.au.dk
Aarhus University

Denmark

Lasse Letager Hansen
∗

letager@cs.au.dk
Aarhus University

Denmark

Théo Winterhalter

theo.winterhalter@inria.fr
Inria Saclay

France

Cătălin Hrit,cu

catalin.hritcu@mpi-sp.org
MPI-SP

Bochum, Germany

Bas Spitters

spitters@cs.au.dk
Aarhus University

Denmark

Abstract
The field of high-assurance cryptography is quickly matur-

ing, yet a unified foundational framework for end-to-end for-

mal verification of efficient cryptographic implementations

is still missing. To address this gap, we use the Coq proof

assistant to formally connect three existing tools: (1) the Hac-

spec emergent cryptographic specification language; (2) the

Jasmin language for efficient, high-assurance cryptographic

implementations; and (3) the SSProve foundational verifica-

tion framework for modular cryptographic proofs. We first

connect Hacspec with SSProve by devising a new transla-

tion from Hacspec specifications to imperative SSProve code.

We validate this translation by considering a second, more

standard translation from Hacspec to purely functional Coq

code and generate a proof of the equivalence between the

code produced by the two translations. We further define

a translation from Jasmin to SSProve, which allows us to

formally reason in SSProve about efficient cryptographic im-

plementations in Jasmin. We prove this translation correct in

Coq with respect to Jasmin’s operational semantics. Finally,

we demonstrate the usefulness of our approach by giving a

foundational end-to-end Coq proof of an efficient AES im-

plementation. For this case study, we start from an existing

Jasmin implementation of AES that makes use of hardware

acceleration and prove that it conforms to a specification

of the AES standard written in Hacspec. We use SSProve to

formalize the security of the encryption scheme based on

the Jasmin implementation of AES.

1 Introduction
Research on high-assurance cryptography recently led to

significant practical success, with formally verified crypto-

graphic code making its way into mainstream libraries and

software products [7, 14, 16, 19, 21, 34, 37, 41, 42]. Since in

this area missing any bugs can have a serious security impact,

some additionally try to reduce the trusted computing base of

their verification tools for cryptographic code and construct

foundational proofs [5, 14, 21, 25, 29, 32]. Such foundational

∗
Equal Contribution

proofs rely on strong logical foundations—usually by work-

ing in a proof assistant like Coq or Isabelle/HOL—and only

on standard, clearly stated assumptions. Yet despite good

progress in this direction, a couple of important gaps remain

for foundational end-to-end cryptographic verification.

First, there is a specification gap. Currently, cryptographic

primitives and protocols are specified only using informal

pseudo-code in the standards (e.g., in IETF RFCs). The Hac-

spec language [15, 31] aims to improve this, by making the

code of these cryptographic specifications executable, which

allows them to also serve as reference implementations that

can be used as oracles for testing more efficient implementa-

tions. Hacspec is a simple subset of the Rust programming

language, which aims to be understandable for both ordinary

developers and cryptographers. Hacspec can be translated

to the typed, purely functional language of proof assistants

such as Coq, EasyCrypt, or F
★
, which allows sharing crypto-

graphic specifications across these proof assistants.

Such translations from Hacspec to a proof assistant pro-

duce a functional specification that can be used for verifying

cryptographic code. In such a verification one often starts

by proving the equivalence of the functional specification

with an imperative specification, which is closer to the code

of an implementation to be verified [5]. We automate this

step by devising a new translation from Hacspec to imper-

ative programs in SSProve, which is a recent foundational

verification framework for modular cryptographic proofs

in Coq [1, 25]. Moreover, we provide translation validation

infrastructure for automatically proving the equivalence of

the code produced by these two translations.

Second, there is an implementation gap. Implementing

cryptography in C has pitfalls: (1) unverified C compilers can-

not be trusted to be always correct and secure [39], and (2) the

CompCert verified C compiler does not perform aggressive

optimizations and generates code with efficiency comparable

only to GCC at optimization level 1 [2, 28]. Moreover, even

aggressively optimized C programs are sometimes not fast

enough since they cannot make use of special instructions

providing hardware acceleration for cryptographic primi-

tives (e.g., Intel AES-NI [23]). So cryptographic primitives

1

https://orcid.org/0000-0003-0198-7751
https://orcid.org/0000-0001-9390-3441
https://orcid.org/0000-0003-3271-3593
https://orcid.org/0000-0002-9881-3696
https://orcid.org/0000-0001-8919-8081
https://orcid.org/0000-0002-2802-0973

Haselwarter, Hvass, Hansen, Winterhalter, Hrit,cu, Spitters

Hacspec
specification

SSProve
implementation

Jasmin
implementation

Assembly Coq AST

SSProve
specification

Equivalence
proof Jasmin Coq AST

Standard

Security
proof

This paper

verified translation/compilation

validated translation

Functional
specification

Equivalence
proof

formalized in Coq

formalized in SSProve

handwritten artifacts

generated artifacts

unverified parsing/pretty printing

Assembly
implementation

Figure 1. Proposed workflow for foundational end-to-end verification of high-speed cryptography

are often implemented directly in assembly, at the cost of

loss of abstraction, clarity, and convenience. The Jasmin lan-

guage [4] was proposed as a solution to this problem. It is a

language for implementing cryptographic primitives com-

bining structured control flow with assembly instructions,

which allows one to produce efficient code for x86 and ARM.

Moreover, the Jasmin compiler comes with Coq proofs that

it preserves the semantics of the source code [4, 5] and that

it does not introduce timing side-channel attacks [6].

In the fundamental ‘Last Mile’ paper [5], Jasmin programs

are given semantics in Coq and compiled with a compiler

verified in Coq, but reasoning about the security and cor-

rectness of Jasmin programs is done only after an unverified
translation to EasyCrypt. In this paper, we close this gap by

providing a verified translation from Jasmin to SSProve. Stay-

ing in Coq not only allows us to reduce the trusted computing

base, but it also facilitates reusing existing mathematical Coq

libraries [3, 30] to verify Jasmin implementations.

Contributions
We formally connect three existing tools, Hacspec, Jasmin,

and SSProve, into a unified foundational Coq framework

for the end-to-end verification of high-speed cryptography

(Figure 1). This includes the following novel contributions:

• We devise a new translation from Hacspec specifica-

tions to imperative SSProve code. In contrast to the

existing functional translations, it allows us to reason

about the stateful behavior of Hacspec.
• We provide a translation validation infrastructure,

which automatically produces Coq proofs of program

equivalence between the results of this imperative

translation and those of a more standard functional

translation. We do this by performing a compositional

symbolic evaluation, relating imperative code to its

mathematical model.

• We connect the Jasmin language and verified compiler

to SSProve, by providing a translation of Jasmin source

code to SSProve. We overcome the challenge created

by the fact that SSProve only supports global state

while Jasmin programs can use local state.

• We give a mechanized proof in Coq that this transla-

tion from Jasmin to SSProve preserves Jasmin’s oper-

ational semantics.

• We demonstrate the usefulness of our approach on a

case study by producing a foundational end-to-end

Coq proof of an efficient AES implementation. We

start from an existing Jasmin implementation of AES

using the Intel AES-NI instructions for hardware ac-

celeration [23] and prove (in ∼2500 lines of Coq code)
that it conforms to a Hacspec specification of the AES

standard [20]. Finally, we instantiate a PRF-based sym-

metric encryption scheme with the implementation

of AES, and use SSProve to prove IND-CPA security

of this scheme under the (standard) assumption that

AES is a pseudo-random function (PRF).

Outline. We start by giving an overview of our method-

ology and illustrating it on a very simple one-time pad ex-

ample (Section 2). We then discuss necessary background

(Section 3), before diving in the two formal connections we

establish: the one between Hacspec and SSProve (Section 4),

the other between Jasmin and SSProve (Section 5). We finally

present the AES case study (Section 6), before discussing re-

lated (Section 7) and future work (Section 8).

2

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

2 Foundational end-to-end verification,
from specification to efficient
implementation

In this section, we first give an overview of our methodology

following Figure 1 and then demonstrate its workings on

the very simple example of a one-time pad. At a high level,

we provide a foundational framework for proving the equiv-

alence between a specification in Hacspec and an efficient,

low-level implementation in Jasmin, by translating both to

imperative SSProve programs. Once translated, we relate

the programs and prove properties about them in Coq using

SSProve’s probabilistic relational Hoare logic.

2.1 Workflow
Theworkflow is illustrated in Figure 1. Starting from an infor-

mal description, such as an official standard (e.g., published

by NIST or IETF) for a cryptographic primitive or proto-

col, one uses a subset of Rust with a simple, well-defined

semantics to develop a Hacspec specification.1 We then

automatically translate this specification in two ways:

• once to the purely functional language of Coq; this

translation produces a functional specification; and
• once to the imperative language of SSProve; this trans-

lation produces an SSProve specification.

The functional translation [35] targets Coq’s mathematical

language, and is similar to the usual functional semantics

of Hacspec in F
★
and EasyCrypt. The imperative translation

serves as a stepping stone towards a Jasmin implementation,

which is inherently imperative.

We then perform translation validation [33] to automati-

cally construct an equivalence proof in Coq, which formally

shows that the functional and imperative Hacspec transla-

tions produce equivalent SSProve code from a given Hacspec

program. More specifically, we prove that in a clean state,

the program produced by the imperative translation will

return the same value as the one produced by the functional

translation. The proof is conducted in SSProve’s relational

Hoare logic (see Section 3.3.4).

The second part of our framework concerns efficient cryp-

tographic implementations written in Jasmin. We imple-

mented a translation from Jasmin to the imperative language

of SSProve and proved that it preserves semantics. This proof

is entirely mechanized in Coq, which is possible because both

SSProve and Jasmin already have formal semantics in Coq [4–

6, 25]. So from the same Jasmin implementation (1) we can

produce an assembly implementation using the existing

Jasmin compiler, which was proved in Coq to preserve the

source language semantics [4, 25]; and (2) we can obtain the

Jasmin Coq AST of the Jasmin implementation, which we

1
In fact, Hacspec is directly used in the upcoming hash-to-curve IETF

standard [22] for writing a reference implementation.

then translate to an SSProve implementation in a way that

we proved to preserve semantics.

We are now in a position to reason about the SSProve

implementation using the relational probabilistic Hoare logic

of SSProve. On the one hand, we can conduct an equivalence
proof between the SSProve implementation obtained from

Jasmin and the SSProve specification obtained from Hacspec.

On the other hand, we can connect the translated Jasmin

implementation with security proofs done in the SSProve

framework. These proofs use the standard security games

from the cryptographic literature [13, 24, 36, 38].

Formal guarantees. By combining the correctness theo-

rems of the Jasmin compiler and our translation to SSProve,

we get the following corollary: for any function in a Jas-

min program with well-defined semantics, there exists a

corresponding compiled assembly function and translated

SSProve function with the same semantics, i.e., which maps

equal arguments to equal results and which modifies mem-

ory in an equivalent manner. In particular, the semantics of

the SSProve and assembly functions agree and we can prove

properties of the assembly program by analyzing the corre-

sponding SSProve program; probabilistic properties cannot

however be carried to the assembly level, since the seman-

tics there are deterministic. Note that we inherit some as-

sumptions from the compiler proof (e.g., assuming sufficient

stack-space) and introduce some in the translation proof

(e.g., functions cannot use while-loops), see also Section 5.

2.2 One-time pad example
We now illustrate this methodology using a very simple

example: We construct a one-time pad (OTP) from exclusive

or (XOR). This toy example should convey intuition on the

methodology. A more interesting case study for the AES

encryption scheme is presented in Section 6.

2.2.1 Specification. The Hacspec specification for xor
takes two 64-bit words as input, puts them into mutable

variables, and computes their XOR (^ in Hacspec). The result

is stored in a mutable variable
2
, which is then returned.

fn xor(w1 : u64, w2 : u64) -> u64 {
let mut x : u64 = w1;
let mut y : u64 = w2;
let mut r : u64 = x ^ y;
r

}

Our framework produces an automatic translation of this

code to the following Coq function of type both.

2
We use mutable variables to illustrate more of our workflow even though

they are not necessary.

3

https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve

Haselwarter, Hvass, Hansen, Winterhalter, Hrit,cu, Spitters

Definition hacspec_xor (w1 : int64) (w2 : int64) :=

letbm x_0 : int64 loc(x_0_loc) := w1 in
letbm y_1 : int64 loc(y_1_loc) := w2 in
letbm r_2 : int64 loc(r_2_loc) := x_0 .^ y_1 in
r_2.

Here letbm stands for “let bind mutable”. The type both can
be projected both to pure Coq and to SSProve code (see

Section 4.3), resulting in the following two functions:

Definition hacspec_xor_pure x y := x .^ y.

Definition hacspec_xor_state x y : raw_code int64 :=

put x_loc := x ;;

temp_x ← get x_loc ;;

put y_loc := y ;;

temp_y ← get y_loc ;;

put r_loc := int_xor temp_x temp_y ;;

temp_r ← get r_loc ;;

ret temp_r.

For achieving translation validation, the both type also car-

ries an equivalence proof between the two:

Lemma hacspec_xor_equiv : ∀ x y,
⊢ {{{ λ '(h0 , h1) , ⊤ }}}
hacspec_xor_state x y ≈
ret (hacspec_xor_pure x y)
{{{ λ '(v0 , h0) '(v1 , h1) , v0 = v1 }}}.

2.2.2 Jasmin implementation. A Jasmin implementa-

tion of xor could look as follows.

export fn xor(reg u64 x, reg u64 y) -> reg u64 {
reg u64 r;
r = x;
r ^= y;
return r;

}

It takes two register-allocated arguments x and y (as indi-

cated by the reg keyword) and writes the XOR of x and y
into the return register r.

2.2.3 SSProve implementation. The next step is to trans-
late the Jasmin code to the following SSProve function.

Definition JXOR id0 w1 w2 :=

put x := w1 ;;

put y := w2 ;;

put r := w1 ⊕ w2 ;;

r1 ← get r ;;

ret r1.

While this readable code is not the literal output of the trans-

lation, it is the result of some careful (but semi-automated

and verified) unfolding and simplification. The produced

code also takes an “identifier”, id0, as input: this determines

which locations on the heap it will use for its local memory.

This technical detail will be explained in Section 5 and can

safely be ignored for now.

2.2.4 Equivalence of implementation and specifica-
tion. Now that we have both translations to SSProve, we

can prove that they are equivalent in our program logic.

Theorem xor_equiv : ∀ id0 w1 w2,
⊢ {{{ λ '(h0 , h1) , ⊤ }}}
JXOR id0 w1 w2 ≈ hacspec_xor_state w1 w2
{{{ λ '(v0 , h0) '(v1 , h1) , v0 = v1 }}}.

The precondition is a predicate over the two initial heap

states and the postcondition is a predicate over the two final

heaps and values. The notion of equivalence we use here to

relate the two functions only requires the return values v0 ,
v1 of the two programs to be equal, provided we run them

both on the same inputs. In particular, we do not make as-

sumptions or restrict how the two programs use the heaps h0 ,
h1 . The programs are thus allowed to use different locations

to store their intermediate values. This theorem is proved

using the rules of the relational program logic of SSProve [1].

2.2.5 Security proof for the OTP implementation. We

now prove perfect cryptographic security of the Jasmin im-

plementation of OTP using XOR. To this end, we first need

to define some terminology. In SSProve a package is a finite
set of procedures that might contain calls to external proce-

dures. The set it implements is called its export interface and
the set on which it depends its import interface. A game is a
package with no imports and a game pair is a pair of games

that export the same procedures. These can be used to model

cryptographic games, e.g., a game pair might consist of a

real encryption scheme and an oracle: these have the same

interfaces but different implementations.

For OTP we define the game pair consisting of an imple-

mentation of OTP using the Jasmin code and an implemen-

tation which is obviously secure. The Jasmin game is the

package JOTP_real exporting the single procedure:

Definition JOTP id0 m :

k_val ← sample uniform ('word n) ;;

JXOR id0 m k_val.

We already have a security proof for the package OTP_real
exporting the single procedure:

Definition OTP m :

k_val ← sample uniform ('word n) ;;

ret m ⊕ k_val.

This game is already proven to be indistinguishable under

chosen plaintext attack from an implementation where the

message is chosen at random. The statement and proof are in

the SSProve library. This is done by proving that, when the

input is disregarded and a random message is encrypted, the

advantage of an attacker in distinguishing between OTP_real
and a game OTP_ideal is zero.

4

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

If we can prove that JOTP_real is perfectly indistinguish-

able from OTP_real, then we can combine the two results us-

ing the triangle inequality for advantages of games (Lemma

1 in the SSProve paper [1]) and prove that an adversary also

cannot distinguish between JOTP_real and OTP_ideal, i.e.,
the Jasmin implementation is IND-CPA. That is, we only

need to prove the following theorem.

Lemma JOTP_OTP_perf_ind id : JOTP_real id ≈0 OTP_real.

Here ≈0 means that the advantage of an adversary trying

to distinguish between the two games is zero. To prove this

lemma we use Theorem 1 from the SSProve paper [1], which

allows us to conclude if we can prove the following code

equivalence for all𝑚 and some stable invariant inv:

⊢ {{{ λ '(s0 , s1) , inv (s0 , s1) }}}
JOTP id0 m ≈ OTP m
{{{ λ '(b0 , s0) '(b1 , s1) , b0 = b1 ∧ inv (s0 , s1) }}}.

For the precise definition of stable invariant see Section 4.2 of

the SSProve paper [1]. In our case, we can use the invariant

heap_ignore, which asserts that both heaps are preserved

during execution if the locations used by JXOR are ignored.
Combining this result with the already established security

of OTP_real we get security of JOTP_real.

Theorem unconditional_secrecy_jas : ∀ LA A,
fdisjoint LA xor_locs→
ValidPackage LA

[interface #val #[i1] : 'word → 'word]

A_export A →
Advantage IND_CPA_jasmin A = 0.

That is, for all adversaries A and regions of adversarial mem-

ory LA, if the adversary cannot use the same locations as JXOR
then their advantage in distinguishing between JOTP_real
and OTP_ideal is zero.

3 Background
3.1 Hacspec
Hacspec is a High Assurance Cryptography SPECification
language [15, 27, 31] aiming to provide a common language

to programmers, cryptographers and proof engineers. It pro-

poses to make future internet standards, such as those pub-

lished by IETF and NIST, machine-readable. Hacspec is a sub-

set of Rust (see Appendix A.1 for the syntax) which makes

it executable and accessible to cryptographic engineers.

The Hacspec language was carefully crafted to have a

functional semantics, in which assignments are translated

to let-expressions. The Hacspec tool comes with functional

translations to the purely functional languages of several

proof assistants, currently F
★
, Coq, and EasyCrypt. As such it

is a convenient tool to share specifications across proof assis-

tants.
3
Hacspec also comeswith an operational semantics [31,

3
This also allows one to combine code generated from different proof as-

sistants. For example, one could combine a hash function from F
★
and an

appendix], but the functional translation is not formalized

and proved sound w.r.t. the operational semantics, as it is a

shallow embedding into Coq, even though it would also be

a good target for future formalization.

Currently, all Hacspec backends use a functional seman-

tics. However, both in EasyCrypt and in Coq/SSProve, one

could also choose to use a translation to an embedded imper-

ative language. We will explain how to do so in Section 4.

3.2 Jasmin
Jasmin [4] is a low-level language designed for implementing

high-speed cryptography, with a verified compiler backend

supporting the x86 and ARM architectures. The language has

a formal big-step operational semantics in Coq. The Jasmin

compiler is also implemented and verified in Coq, in the sense

that it preserves the semantics of the Jasmin source [4, 5] and

also that it does not introduce timing side-channel attacks [6].

We give a condensed overview of Jasmin, focusing on the

aspects that are interesting for the sake of our discussion, and

limiting the explanation to a few representative examples.

For more details please see the Jasmin paper [4].

3.2.1 The language. Jasmin is an imperative language

with structured control flow in the form of loops, condi-

tionals, and procedure calls. Jasmin has types for booleans,

integers, bit-words of various sizes, and arrays. Despite these

high-level features, the Jasmin compiler produces predictable

assembly code, which enables efficient and secure crypto-

graphic implementations. For instance, the programmer can

use architecture-specific assembly instructions, and can spec-

ify whether procedure-local variables should be stored in

registers (using the reg keyword) or on the stack (using the

stack keyword). Jasmin’s operational semantics was care-

fully crafted to hide low-level details such as the distinction

between the storage types reg and stack. Our correctness
theorem for the translation from Jasmin to SSProve, like Jas-

min’s compiler correctness theorem, is proven with respect

to this operational semantics, and we can thus safely ignore

such distinctions.

A Jasmin program 𝑃 consists of a list of non-recursive

function definitions, associating to each function name 𝑓 a

list of variables used for arguments 𝑃 (𝑓)param, variables used
for returning results 𝑃 (𝑓)res , and a command, i.e., a sequence

of instructions 𝑃 (𝑓)body for the body of the function.

Instructions are sequences of assignments, operators, con-

ditionals, for and while loops, and function calls. Expressions

occurring in instructions include variable and array access,

arithmetic and logical operators, as well as assembly opera-

tions such as shifts, increments, etc.

elliptic curve implementation from Coq, both of which would be specified

in Hacspec, verified, and then extracted to C (or Rust, or ASM). This is the

methodology proposed in the libcrux library [27].

5

Haselwarter, Hvass, Hansen, Winterhalter, Hrit,cu, Spitters

3.2.2 Jasmin state. Jasmin features both global and local

state, denoted by a pair (𝑚, 𝜌) of a global memory 𝑚 and

local variable map 𝜌 . A variable is local when it is declared

within a function, and global when declared at the top level.

We will write 𝜌 [·] and 𝜌 [· ← ·] respectively for local

variable map lookup and update. For global state, we will

write𝑚[·]𝑖 and𝑚[· ← ·]𝑖 for lookup and storage of size i,
given in bits (possible values are 8, 16, 32, 64, 128, 256). Global

state is indexed by integers (pointers) and local state by

variables (strings). Note that looking up memory in Jasmin

can fail, so we will abuse notation by denoting by𝑚[𝑝]𝑖 = 𝑣

that 𝑣 is stored at 𝑝 in𝑚 and that it is valid to make a read

of size 𝑖 at 𝑝 in𝑚. We will do the same for writes.

3.2.3 Jasmin operational semantics. The operational se-
mantics of Jasmin is mostly standard. A judgment of the form

⟨ 𝑐 | (𝑚, 𝜌) ⟩ ⇓ (𝑚′, 𝜌 ′) means that for an initial state (𝑚, 𝜌),
execution of the command 𝑐 terminates in the final state

(𝑚′, 𝜌 ′), and ⟨ 𝑒 | (𝑚, 𝜌) ⟩ ⇓exp 𝑣 means that the expression 𝑒

evaluates to the value 𝑣 under state (𝑚, 𝜌) (expressions can
only read, not modify the state). All judgments are implicitly

parametrized by an ambient program (i.e., list of function

definitions), which will not be mentioned explicitly unless

required. For instance, in the rule for assigning a local vari-

able in Figure 2 we start by evaluating the expression 𝑒 to 𝑣 .

We then look up the type 𝛼 of the variable 𝑥 , and perform a

truncation
4
of 𝑣 at type 𝛼 , yielding 𝑣 ′ compatible with the

type of 𝑥 . Finally, we update the local state to 𝜌 [𝑥 ← 𝑣 ′],
while the global state remains unchanged.

assgn

⟨ 𝑒 | (𝑚, 𝜌) ⟩ ⇓exp 𝑣 𝛼 = 𝑡𝑦 (𝑥) 𝑣 ′ = ∥𝑣 ∥𝛼

⟨𝑥 = 𝑒 | (𝑚, 𝜌) ⟩ ⇓ (𝑚, 𝜌 [𝑥 ← 𝑣 ′])

funcall

⟨ 𝑒𝑖 | (𝑚, 𝜌0) ⟩ ⇓exp 𝑣𝑖 for 𝑖 = 1, . . . , 𝑘

⟨ 𝑓 (𝑣1, . . . , 𝑣𝑘) |𝑚 ⟩ ⇓call ⟨ (𝑤1, . . . ,𝑤𝑛) |𝑚′ ⟩
⟨𝑥 𝑗 = 𝑤 𝑗 | (𝑚′, 𝜌 𝑗−1) ⟩ ⇓ (𝑚′, 𝜌 𝑗) for 𝑗 = 1, . . . , 𝑛

⟨𝑥1, . . . , 𝑥𝑛 = 𝑓 (𝑒1, . . . , 𝑒𝑘) | (𝑚, 𝜌0) ⟩ ⇓ (𝑚′, 𝜌𝑛)

callrun

let 𝜌0 = ∅ and 𝑐 = 𝑃 (𝑓)body
and let 𝑦𝑖 = (𝑃 (𝑓)param)𝑖 and 𝑥 𝑗 = (𝑃 (𝑓)res) 𝑗
⟨𝑦𝑖 = 𝑣𝑖 | (𝑚, 𝜌𝑖−1) ⟩ ⇓ (𝑚, 𝜌𝑖) for 𝑖 = 1, . . . , 𝑘

⟨ 𝑐 | (𝑚, 𝜌𝑘) ⟩ ⇓ (𝑚′, 𝜌 ′)
𝑤 𝑗 = ∥𝜌 ′ [𝑥 𝑗] ∥𝑡𝑦 (𝑥 𝑗)

for 𝑗 = 1, . . . , 𝑛

⟨ 𝑓 (𝑣1, . . . , 𝑣𝑘) |𝑚 ⟩ ⇓call ⟨ (𝑤1, . . . ,𝑤𝑛) |𝑚′ ⟩

Figure 2. Excerpt of Jasmin operational semantics

4
This truncation only exists at the high level to mimic the implicit trun-

cations happening at the assembly level. In practice, the types of 𝑣 and 𝑥

mostly agree and the truncation can be simplified away.

The main subtlety for translating Jasmin to SSProve arises

from function calls and their treatment of local state. The

execution of function calls in Jasmin is split into two rules.

The perspective of the caller is captured by funcall: We

evaluate the arguments 𝑒𝑖 and perform the call to the function

𝑓 according to the callee’s perspective. We obtain a new

global state𝑚′ and store the resulting values𝑤 𝑗 in the caller-

local variables 𝑥 𝑗 . Jasmin’s type checker guarantees that the

number of returned values equals the number of variables.

Crucially, when switching from caller to callee, we retain the
local state 𝜌0 and pass only the global state𝑚 to callrun

as witnessed by the use of ⇓call relating pairs of instructions

and global memories and values and global memories.

To describe the callee perspective, we write 𝜌0 for the

empty local state, and 𝑐 , 𝑦𝑖 , and 𝑥 𝑗 for the body, parameter-,

and result-variables of 𝑓 respectively. We again assume here

that the number of arguments supplied to 𝑓 matches the

number of parameters. Each argument 𝑣𝑖 is stored in the

local variable 𝑦𝑖 according to the definition of parameters

of 𝑃 (𝑓)param. We then execute 𝑐 from state (𝑚, 𝜌𝑘), yielding
(𝑚′, 𝜌 ′). We obtain the values𝑤1, . . . ,𝑤𝑛 by reading the re-

sult variables 𝑥 𝑗 from the local state 𝜌 ′ and truncating as

necessary. Finally, the local state 𝜌 ′ is discarded, and the

result values and updated global state𝑚′ are returned.

3.3 SSProve
SSProve is a Coq library for modular cryptographic proofs

introduced by Abate et al. [1]. We only review the concepts

needed to understand the current paper. More details can be

found in the extended version of the SSProve paper [25].

3.3.1 Code. In this paper, we de-emphasize the probabilis-

tic capabilities of SSProve, as they are not currently reflected

in Jasmin. Thus, for our purposes, SSProve essentially em-

beds a stateful language inside Coq using a monad called

raw_code. In raw_code A one can (1) embed any pure value

x of type A using ret x, (2) read from a memory location

ℓ to a variable x, and use x in a continuation k, written
x ← get ℓ ;; k x, (3) write a value v to a memory location

ℓ and then continue with k, written put ℓ ;; k, (4) sequen-
tially combine u : raw_code X and k : X → raw_code A us-
ing the bind operator that we write x ← u ;; k x. It is also
possible to sample from a distribution D in this monad using

x ← sample D ;; k x as shown in Section 2.

3.3.2 Memory model. Memory locations consist of a nat-

ural number and a type that together serve as an index in

a global shared memory. This global state is represented as

a map from locations to values. We say that a state is valid

for a set of (typed) locations when all locations point to val-

ues of the matching type. Note that to be able to use the

type in the key of the memory, we must in fact use codes

of types; since SSProve is built for probabilistic programs,

these codes represent types on which one may build (dis-

crete) distributions. In type-theoretic terms, they encode a

6

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

universe of datatypes choice_type which represents a sub-

set of mathcomp’s choiceType [30, §8.3]. For the purposes of
our translation, we use a modified version of SSProve where

choice_type is extended to include sums, words and lists.

This allows us to encode all the types needed to represent

Hacspec and Jasmin programs. Memory is simulated using

a structure we call heap, essentially a map from locations

to values. We would like to stress the fact that in SSProve

the memory is global, in contrast to Jasmin’s function local

state. Thus, one must take care to generate code without

overlapping locations. We address this in Section 5.

For a heap ℎ, location ℓ and value 𝑣 , we will write ℎ[𝑙] and
ℎ[ℓ ← 𝑣] for heap lookup and storage (as for Jasmin state).

3.3.3 Packages. Another defining feature of SSProve is

that of packages. Packages are used extensively to com-

pose modular security games in the style of state-separating

proofs [17]. Since our methodology allows us to reuse ex-

isting security proofs [25], we will not get into the details

of security proofs, so we only introduce packages briefly.

Packages are collections of procedures that can all refer to

the same set of locations and invoke certain procedures that

are part of an import interface. The signature of this collec-
tion defines the export interface of the package. Packages can
thus be combined modularly to create bigger packages. For

instance, a package can be linked to another that implements

its import interface or they can be composed in parallel to

export the union of their respective export interfaces.

3.3.4 Relational Hoare logic. Finally, SSProve features a
(probabilistic) relational Hoare logic that allows us to prove

relational properties of programs. Once again, we will focus

on the stateful but deterministic fragment. In this program

logic, we prove judgments of the form

⊢ {{{𝜙}}} 𝑐0 ∼ 𝑐1 {{{𝜓}}}

where 𝑐0 and 𝑐1 are two code pieces we compare and 𝜙 and

𝜓 are respectively a pre- and a postcondition relating (1) the

initial heaps (for𝜙); (2) the final heaps and final return values

of both code pieces (for 𝜓). For deterministic code, this is

equivalent to: for all initial memory states𝑚0 and𝑚1 such

that 𝜙 (𝑚0,𝑚1) holds, running 𝑐𝑖 in state𝑚𝑖 will yield final

state𝑚′𝑖 and final value 𝑣𝑖 such that𝜓 (𝑣0,𝑚′0) (𝑣1,𝑚′1) holds.
SSProve comes with a number of rules for this logic and

provides tactics to facilitate writing proofs. Moreover, one

can fall back on the semantics above to prove judgments [25].

4 Hacspec & SSProve
Hacspec facilitates proving the correctness of efficient imple-

mentations with respect to a specification by translating it

to multiple proof assistants. We further this goal by adding a

translation from Hacspec to SSProve. This imperative trans-

lation is accompanied by a pure translation, which adds a

wrapper around the existing Coq translation to embed it into

SSProve.We can thus compare the imperative and pure trans-

lations using SSProve’s relational logic and automatically

generate a proof that they return the same values.

4.1 The functional translation
The pure translation constitutes a minor modification of Hac-

spec’s existing Coq backend [35] that we undertook to facil-

itate the connection to Jasmin. Coq does not provide a stan-

dard library for machine integers, so the existing backend

chose the CompCert library to model machine integers [28].

Jasmin uses its own word library. In the long run, we would

hope for a unified word library in the Coq ecosystem. Mean-

while, we changed the backend to use Jasmin words.

We translate for-loops as a fixed point with an accumulator

of all the mutable variables changed inside the loop. Hacspec

has support for early return of option or result types. We

model these early returns using the option and error monad.

We thus need a fold operation that respects the monadic

operations to allow early returns in for-loops.

4.2 The imperative translation
Since we provide the first translation from Hacspec to an

imperative programming language, we need to extend the

information gathered in the translation from Hacspec to the

various backends. SSProve needs information about what

memory locations and functions are used in a given scope.

To compute this, we add static dependency analysis to the

Hacspec pipeline. This is done by walking the AST for every

block of code and adding a unique memory location for each

mutable variable. In a second pass, we then unify thememory

locations used by all the local function calls, to get the total

set of memory locations a function might change.

The translation evaluates arguments passed to function

calls or operators before evaluating the function or operator.

This is done by binding the arguments to temporary values,

which are then passed to the function. This makes it easier

to prove equality to another SSProve implementation, as we

can first prove that all the arguments are equal, and then

show that the functions agree on equal input.

A subtlety arises from the fact that Hacspec supports early

return statements: x = e? is operationally equivalent to

x = match e { Some(v) => v, None => return None }

In particular, if e evaluates to None, the ambient function

in which the statement x = e? occurs returns early with

the result None. Since SSProve’s raw_code does not support
control effects, we cannot directly represent this return. We

instead embed Rust code with early returns into the option

monad. To ensure that this encoding interacts well with the

effectful operations of SSProve which manipulate state, we

define a special bind operation, combining the two monads.

Definition obind (x : raw_code (option A))
(f : A → raw_code (option B)) : raw_code (option B)
:= t_x ← x ;;

7

Haselwarter, Hvass, Hansen, Winterhalter, Hrit,cu, Spitters

match t_x with Some s ⇒ f s | None ⇒ ret None end.

The Hacspec code we translate carries sufficient typing in-

formation to determine whether a function may return early.

We leverage this information to select between this custom

bind operator and SSProve’s standard bind. For example:

x = f(v)? ; y = g(x) ; y + 2

is translated to the following SSProve code:

temp_x ← f(v) ;;

obind temp_x (λ x, temp_y ← g(x) ;; temp_y .+ 2)

4.3 Equivalence between the Hacspec translations
On the one hand, it is often easier to define and prove prop-

erties for a functional specification. On the other hand, it

is easier to show an efficient imperative implementation

equivalent to an imperative specification. So, it is desirable

to derive an equality between the imperative and functional

translations. We automatically generate such a proof, as part

of the translation from the Hacspec specification. To achieve

this we first define a record both, which has projections to a

piece of code for the functional translation and for the im-

perative translation. It also contains the proof of equivalence

for the two pieces of code. We traverse the AST building

the functional translation, the imperative translation and

their equivalence at the same time. This is achieved by using

compositional blocks for the control structures of Hacspec.

An example of such block is the one used for let expres-
sion in Hacspec, where the functional translation is a func-

tional let binding in Coq, while the imperative translation

uses bind in SSProve. The equivalence can be proven using

the bind rule in SSProve, since we have a proof of equality of

the arguments and a proof of equality of the rest of the code

bodies. Other blocks are loops, mutable let bindings (where

a location is used, as shown in Section 2.2.1), early returns,

operator calls, lifting pure values, etc. We can therefore get

the full translation to the imperative and functional code,

together with the equality between them, by chaining these

compositional blocks. This also requires us to define all the

library functions in Hacspec in the both type. Using this

combined type, we can write elements in a style where the

translation looks close to the original specification and can

be made more readable by the notation engine of Coq.

5 Jasmin & SSProve
5.1 Memory
A major difference between the Jasmin and SSProve seman-

tics is how memory is handled: SSProve only has a global

notion of memory and Jasmin supports both global and local

variables. To model local variables in SSProve, we parame-

terize all translated code over a “process ID” which reserves

an (a priori unbounded) region of SSProve’s global memory

for local variables. Then instantiating code with a process ID

correctly assigns new process IDs to all its called functions.

In particular, we prove that variables translated with differ-

ent process IDs never overlap, i.e., translation of variables is

injective w.r.t. IDs. We store the Jasmin global memory in a

map (from integers to bytes) at a static location called MEM.

5.2 Program translations
We now describe our translation from Jasmin to SSProve,

meaning the translation of programs, but also of types, val-

ues, expressions and commands. As a first step, we use the

Jasmin compiler to pretty-print the internal AST correspond-

ing to a Jasmin source program to Coq syntax. Since this

AST datatype was extracted from Coq in the first place, it

amounts to ‘de-extracting’ it back to Coq. Our translation

thus translates Coq’s datatype of Jasmin programs to SSProve

programs (i.e., the raw_code monad).

5.2.1 Types and values. The only base typesmissing from

SSProve’s choice_type (the restricted set of types which

a raw_code can return; see Section 3.3.2) were words and

arrays. Following Jasmin, we use the coqword library’s type

of words, which is based on the mathcomp library [30]. We

represent arrays as maps from integers to bytes. The only

minor difference is our implementation of maps differs from

Jasmin. Using similar types makes it easy to embed Jasmin

values into SSProve values (via the identity) for all except

array values. We denote the function taking Jasmin values

to SSProve values by translate_value.

5.2.2 Expressions. For the translation of expressions (de-

noted translate_pexpr) we have to be careful and do the

right casts and truncations, as dictated by the semantics of

Jasmin: e.g., when looking up in an array, the index is always

cast to an integer type. For the translation of function ap-

plications in expressions (additions, subtractions, etc.), we
reused the semantics from Jasmin expressions, by transport-

ing values back to Jasmin types, applying the operations, and

then transporting back to SSProve types. Note that this trans-

port is only non-trivial for arrays. This simplifies the proof

significantly, only requiring us to prove that all operations

are invariant under this transport.

5.2.3 Instructions. The main difficulty in translating in-

structions is translating function calls; for calls to operations

we could mostly use the same solution as for expressions and

for for-loops we simply iterate the translated body. To be

able to call functions, we choose to let our translation keep

track of previously translated functions, and only allow these

to be called; this avoids cyclic calls and recursion (which are

always rejected by the Jasmin compiler). Furthermore, we

make sure to call these translated functions with a fresh

process ID to avoid collisions between local variables.

Note that we currently do not translate Jasmin while loops,

as they do not have a correspondent in SSProve. This does

not constitute a conceptual problem in practice, since for-

loops are sufficient for most cryptographic routines.

8

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

5.2.4 Programs. We translate Jasmin programs, which

map function names to function declarations (Section 3.2.1),

to maps from function names to SSProve functions taking

an ID and a list of inputs to SSProve code.

5.3 Unary deterministic judgments
SSProve originally supported only relational judgments of

the form ⊢ {{{𝜙}}} 𝑐0 ∼ 𝑐1 {{{𝜓}}}, as presented in Section 3.3.

For the sake of our correctness theorem, we want to relate a

translated Jasmin term 𝑐0 to the value 𝑣 it evaluates to, i.e.,

𝑐1 is always of the form ret 𝑣 . Since Jasmin’s semantics is

deterministic, we do not need the full power of a probabilistic

judgment. We thus extend SSProve and build a new unary

judgment on top of the relational logic, to deal with the

special case where we relate a raw_code with a return value:

⊢ {{{𝜙}}} 𝑐 ⇓ 𝑣 {{{𝜓}}}. Here 𝜙 is a precondition on the initial

state of 𝑐 , while𝜓 is a postcondition on the final state after

running 𝑐 . The postcondition no longer mentions a final state

or return value for the right hand side, instead the return

value 𝑣 is part of the judgment. We define ⊢ {{{𝜙}}} 𝑐 ⇓ 𝑣 {{{𝜓}}}
as the following judgment relating 𝑐 to ret 𝑣 :

⊢ {{{(𝑚0,𝑚1). 𝜙 𝑚0}}} 𝑐 ∼
ret 𝑣 {{{(𝑎0,𝑚′0), (𝑎1,𝑚′1). 𝜓 𝑚′

0
∧ 𝑎0 = 𝑎1 ∧ 𝑎1 = 𝑣}}}

The precondition only considers the memory of the left-hand

side, while the postcondition also states that both sides must

produce the value 𝑣 .

While this unary judgment is conceptually simpler than

the relational logic, we have found it beneficial to reuse the

existing theory instead of starting from scratch. An advan-

tage of this is that we can easily leverage the rules of the

relational program logic and the tactics provided by SSProve

to prove unary judgments. Moreover, we establish a precise

connection between the two logics by proving that when-

ever 𝑐 is free of sampling operations, the judgment above

is equivalent to saying that running 𝑐 on any initial state

𝑚 such that 𝜙 𝑚 will yield return value 𝑣 and final state𝑚′

such that 𝜓 𝑚′. For instance, we obtain the expected rules

for values, sequential composition, and writing to the heap.

∀𝑚. 𝜙 𝑚 =⇒ 𝜓 𝑚 ∧ 𝑣 = 𝑣 ′

⊢ {{{𝜙}}} ret 𝑣 ⇓ 𝑣 ′ {{{𝜓}}}

⊢ {{{𝜙}}} 𝑐 ⇓ 𝑢 {{{𝜉}}} ⊢ {{{𝜉}}} 𝑘 𝑢 ⇓ 𝑣 {{{𝜓}}}
⊢ {{{𝜙}}} 𝑥 ← 𝑐 ; ; 𝑘 𝑥 ⇓ 𝑣 {{{𝜓}}}

⊢ {{{λ𝑚, ∃𝑚′, 𝜙 (𝑚′) ∧𝑚 =𝑚′ [ℓ ← 𝑣]}}} 𝑟 ⇓ 𝑤 {{{𝜓}}}
⊢ {{{𝜙}}} put ℓ 𝑣 ; ; 𝑟 ⇓ 𝑤 {{{𝜓}}}

Other rules can also be derived straightforwardly from

the definition of the unary judgment as analogues of the

relational rules, which are detailed by Haselwarter et al. [25].

5.4 Correctness theorem
Weprove that our translation preserves the semantics of well-

defined programs. To do this we define a relation between

Jasmin memory states and SSProve memory states. First, we

relate the global Jasmin memory to the “global memory map”

stored on the heap in SSProve. We say that the global Jasmin

state𝑚 is related to the heap ℎ when, if one can successfully

read a single byte at an address from the Jasmin memory,

then one can look up the corresponding value in the “global

memory map” stored at MEM on the SSProve heap:

𝑚 ∼ ℎ := ∀𝑝 𝑣. 𝑚[𝑝]8 = 𝑣 ⇒ ℎ[MEM] [𝑝] = 𝑣

To relate the local memory of Jasmin and our encoding

of local memory in SSProve, we define a relation between

a variable map 𝜌 and a heap ℎ relative to a process ID 𝜄.

We write ℎ[𝑥]𝜄 for the lookup of the variable 𝑥 on the heap

relative to ID 𝜄. A variable map 𝜌 is related to the heap ℎ

w.r.t. 𝜄 if successfully looking up a variable 𝑥 in 𝜌 implies

that looking up 𝑥 on ℎ relative to 𝜄 yields the same value:

𝜌 ∼𝜄 ℎ := ∀𝑥 𝑣 . 𝜌 [𝑥] = 𝑣 ⇒ ℎ[𝑥]𝜄 = 𝑣

Now, the relation between a Jasmin memory pair (𝑚, 𝜌)
(of global and local state) and an SSProve heap is not just

the conjunction over all these relations, since we need to

know that a certain process can spawn arbitrarily many sub-

processes and not run out of space on the heap. To state this

we need some terminology: We say that a process ID 𝜄 is

fresh w.r.t. a heap ℎ when 𝜌0 ∼𝜄 ℎ holds, where 𝜌0 is the

empty variable map. We assume that we have a prefix order

⪯ on process IDs and say that a process ID 𝑠 is valid w.r.t. a

heap ℎ when all strict successors of 𝑠 are fresh w.r.t. ℎ, i.e., for

all 𝑠′ ≻ 𝑠 , 𝜌0 ∼𝑠′ ℎ. Furthermore, we say that two IDs 𝑠1 and

𝑠2 are disjoint, when there is no ID which they are both a

prefix of (i.e., for all IDs 𝑠 not both 𝑠1 ⪯ 𝑠 and 𝑠2 ⪯ 𝑠 hold). We

assume that storing at disjoint ID locations preserves values:

if 𝑠1 and 𝑠2 are disjoint then ∀𝑥,𝑦, ℎ[𝑦 ← 𝑣]𝑠2 [𝑥]𝑠1 = ℎ[𝑥]𝑠1 .
For a variable map 𝜌 , two process IDs 𝜄, 𝜎 (main and sub-

ID) and a set 𝐼 of IDs we say that the tuple (𝜌, 𝜄, 𝜎, 𝐼) is a
stack frame. We say that a stack frame (𝜌, 𝜄, 𝜎, 𝐼) is valid
w.r.t. a heap ℎ when the following conditions hold: (1) 𝜎 is

valid w.r.t. ℎ, (2) 𝜌 ∼𝜄 ℎ, (3) 𝜎 ∉ 𝐼 , (4) for all 𝜎 ′ ∈ 𝐼 , 𝜄 ≺ 𝜎 ′, 𝜎 ′

is disjoint from 𝜎 and 𝜎 ′ is valid w.r.t. ℎ, (5) for all 𝜎 ′, 𝜎 ′′ ∈ 𝐼 ,
𝜎 ′ and 𝜎 ′′ are disjoint.

The intuition for a valid stack frame (𝜌, 𝜄, 𝜎, 𝐼) is that 𝜌
should be related to 𝜄 and 𝜎 should be a valid process ID,

from which the process can spawn new processes with fresh

memory; 𝐼 is there to keep track of which IDs are currently

in use and to which variable maps they relate. Note that the

set 𝐼 is only needed for the proof of correctness, and is not

actually used in the translation of a given program.

A stack is then a list of stack frames. The empty stack is

denoted by 𝑆0. A stack frame (𝜌, 𝜄, 𝜎, 𝐼) is disjoint from a

stack 𝑆 when 𝜄 is disjoint from all sub IDs and IDs occurring

in sets of the stack frames on 𝑆 . A stack 𝑆 is valid w.r.t. a

9

Haselwarter, Hvass, Hansen, Winterhalter, Hrit,cu, Spitters

heap ℎ when either 𝑆 is empty or 𝑆 = 𝐹 :: 𝑆 ′ where 𝑆 ′ is a
valid stack and 𝐹 is a valid stack frame disjoint from 𝑆 ′.

Using these constructions we can finally define our rela-

tion on Jasmin and SSProve states. A Jasmin state pair (𝑚, 𝜌)
is related to the heap ℎ w.r.t. the stack 𝑆 , which we write

(𝑚, 𝜌) ∼𝑆 ℎ, when the following conditions hold: (1) 𝑆 is

valid w.r.t. ℎ, (2)𝑚 ∼ ℎ, (3) 𝜌 is the variable map at the top

of the stack, i.e., the top of the stack is of the form (𝜌, 𝜄, 𝜎, 𝐼).
This relation satisfies two key lemmas, which are needed to

prove the correctness of our translation.

Lemma 1 (Push empty stack frame). If (𝑚, 𝜌) ∼(𝜌,𝜄,𝜎,𝐼) ::𝑆 ℎ
and 𝜎1, 𝜎2 are two disjoint IDs with 𝜎 ≺ 𝜎1, 𝜎2, then

(𝑚, 𝜌0) ∼(𝜌0,𝜎1,𝜎1,∅) ::(𝜌,𝜄,𝜎2,𝐼) ::𝑆 ℎ.

Lemma 2 (Pop stack frame). Let 𝐹𝑖 = (𝜌𝑖 , 𝜄𝑖 , 𝜎𝑖 , 𝐼𝑖), then if
(𝑚, 𝜌2) ∼𝐹2::𝐹1::𝑆 ℎ then (𝑚, 𝜌1) ∼𝐹1::𝑆 ℎ.

These two lemmas correspond to (1) calling a function

and assigning it a fresh region of memory for local state and

(2) returning from a function call to its caller, accounting for

the operational semantics of Jasmin function calls according

to Figure 2. Note in Lemma 1 that the subprocess ID of the

calling stack frame, 𝜎 , is updated to a fresh ID and that we

initialize processes with the same main and sub ID.

Using this relation, we show how our translation of Jasmin

code relates to its source. For example, if we consider the

function translate_pexpr, which translates Jasmin expres-

sions to raw_code, we get the following correctness lemma.

Lemma 3. Let 𝑣 be a value, 𝑒 an expression, 𝑠 a Jasmin state
pair and 𝑆 a stack. If ⟨ 𝑒 | 𝑠 ⟩ ⇓exp 𝑣 then

⊢ {{{ℎ. 𝑠 ∼𝑆 ℎ}}} translate_pexpr 𝑆 𝑒 ⇓
translate_value 𝑣 {{{ℎ. 𝑠 ∼𝑆 ℎ}}}

As evaluating expressions does not have memory side

effects, the relation between Jasmin and SSProve states is

preserved under expression translation.

We now prove the main theorem, which establishes the

connection between function calls in Jasmin and in SSProve:

Theorem 1. Let 𝑃 be a Jasmin program, (𝑚, 𝜌) a Jasmin
state-pair, 𝑓 a function name, and 𝑣𝑖 ,𝑤𝑖 values for 𝑖 = 1, . . . , 𝑘 .
Furthermore, let 𝜄, 𝜎, 𝜎1, 𝜎2 be IDs such that 𝜎1 and 𝜎2 are dis-
joint and strict successors of 𝜎 . If 𝑃 ′ is the result of translating
𝑃 and ⟨ 𝑓 (𝑣1, . . . , 𝑣𝑘) |𝑚 ⟩ ⇓call ⟨ (𝑤1, . . . ,𝑤𝑛) |𝑚′ ⟩ then

⊢ {{{ℎ. (𝑚, 𝜌) ∼(𝜌,𝜄,𝜎,𝐼) ℎ}}}
𝑃 ′ 𝑓 𝜎1 translate_values (𝑣1, . . . , 𝑣𝑘)

⇓ translate_values (𝑤1, . . . ,𝑤𝑛)
{{{ℎ. (𝑚′, 𝜌) ∼(𝜌,𝜄,𝜎2,𝐼) ℎ}}}

The theorem states that if calling the function 𝑓 in the

Jasmin program 𝑃 and global memory𝑚 with arguments ®𝑣
results in the new global memory𝑚′ and returns the values

®𝑤 , then we can conclude two things:

1. Calling the function at a fresh ID (𝜎1) and with the

translation of the arguments ®𝑣 evaluates to the trans-

lation of the return values ®𝑤 .

2. After calling the translated function, the global mem-

ory𝑚′ is related to heap where we have updated the

sub-ID to a fresh one (from 𝜎 to 𝜎2).

This is the expected behavior: calling a function can change

the global but not the local state. We have to update our

sub-ID because the previous one is no longer fresh, as we

might have stored local state inside the function call.

6 AES example
As a larger case study of our framework, we verify the secu-

rity of a Jasmin implementation of a PRF-based encryption

scheme using AES and prove it equivalent to a Hacspec

reference implementation. The Jasmin implementation and

the general methodology for proving security are similar to

the presentation in EasyCrypt [8], but we use our toolchain

based on SSProve to conduct the formalization.

We follow the same workflow as presented in Section 2:

1. Implement the encryption scheme in Hacspec and

Jasmin.

2. Translate the two implementations to SSProve code.

3. Prove the two translations equivalent and prove secu-

rity properties of the Jasmin translation.

We skip implementing the Jasmin code by reusing the

implementation from the EasyCrypt and Jasmin tutorial [8],

which relies on the Intel AES-NI hardware acceleration in-

structions [23]. Our reference implementation in Hacspec is

based on the NIST standard [20], and it successfully passes

the corresponding public test vectors [20, 23].

For the security analysis, we prove indistinguishability

under chosen plaintext attack (IND-CPA) of the AES imple-

mentation of the PRF-based symmetric encryption scheme

described below. Concretely, we prove that the advantage

of an adversary in distinguishing the encryption of a mes-

sage from the encryption of a random message is (linearly)

bounded by the advantage of the same adversary in distin-

guishing AES from a PRF. For details on the concrete bounds,

see the SSProve journal paper [25, §2.3].

As was the case in Section 2, we do not have to write a se-

curity proof of the abstract encryption scheme from scratch,

since such a proof, for an abstract PRF, is already present

in the SSProve library [25, §2.3]. To connect this with our

efficient implementation, we need to prove that an adversary

cannot distinguish between the efficient implementation and

the abstract implementation given in SSProve [25, §2.3] in-

stantiated with a Coq implementation of AES.

As in loc. cit., our definitions follow SSP methodology [17].

The PRF-based encryption scheme is given by the code:

Definition PRF_ENC f m :=

k_val ← kgen ;; enc m k_val.

10

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

Here, kgen is a key generation code that uniformly samples

a key on its first invocation and returns a fixed key on sub-

sequent calls. The enc function is given by the code:

Definition enc m k :=

r ← sample uniform N ;;

let pad := f r k in let c := m ⊕ pad in
ret (r, c) .

Here f is the function which we assume to be a PRF and

which we will instantiate with AES. The PRF is used to gen-

erate a pad from a uniformly sampled nonce r; the ciphertext
is computed as the xor of the message and the pad. For all
functions f : word → word → word we denote the game

consisting of the single export PRF_ENC f by PRF_real f.
We reuse the SSProve proof [1, §2.3] by showing that

PRF_real aes is perfectly indistinguishable from the same

scheme with enc replaced by the translated Jasmin code.

The high-level structure of the security analysis of the

implementation is as follows:

1. Write an intermediate imperative implementation di-

rectly in SSProve code.

2. Write a functional implementation directly in Coq.

3. Prove the equivalence between the intermediate im-

plementation and the functional implementation.

4. Prove the equivalence between the translated imple-

mentation and the intermediate implementation.

5. Connect the equivalences to the existing security proof

of the abstract encryption scheme.

Steps (1) and (2) can also be copied almost verbatim from

the EasyCrypt development: the syntactic similarities of the

EasyCrypt and SSProve codes make the translation very

straightforward. For the proofs in steps (3) and (4) we can

reuse some parts, e.g., the loop invariants, but in general the

differences in the programming languages and the underly-

ing proof assistants require new proofs.

6.1 Translation
As mentioned in Section 2, we start by printing the Coq

ASTs of all the involved functions during Jasmin compilation.

Then we use the translation described in Section 5 to obtain

SSProve code for each function used in the implementation.

6.2 Specification
Next, we write intermediate specifications for the Jasmin

functions. Compared to the example in Section 2, these cor-

respond to the pure Coq XOR function. As mentioned, we

take inspiration from the specifications in the EasyCrypt and

Jasmin tutorial [8]. This step removes translation artefacts

(e.g., compiler-generated memory locations) and allows us

to focus on proving the underlying logical statements.

6.3 Equivalences for intermediate code
Then we prove that our intermediate implementations are

equivalent to functional (stateless) Coq functions. The state-

ments we prove are generally of the form:

⊢ {{{(𝑚0,𝑚1). 𝜙 (𝑚0,𝑚1)}}} 𝑐 𝑖 ∼
ret (𝑓 𝑖) {{{(𝑎0,𝑚′0), (𝑎1,𝑚′1). 𝜙 (𝑚′0,𝑚′1) ∧ 𝑎0 = 𝑎1}}}

where 𝑖 is arbitrary input, 𝑐 is the intermediate SSProve code

and 𝑓 is the pure Coq function. Note that we also prove

that these equivalences preserve the precondition 𝜙 ; for the

equivalences to hold we usually have to assume that 𝜙 is

stable w.r.t. memory locations used by 𝑐 .

Even though 𝑓 is usually stateless, we have to keep the

heap of the right-hand side inmind, since it might be relevant

in certain contexts; otherwise we could have used the unary

judgments of Section 5.3.

6.4 Equivalences for translated code
When reasoning about the code generated by our translation

from Jasmin to SSProve, we have to prove equivalences of

the following form:

⊢ {{{(𝑚0,𝑚1). 𝜙 (𝑚0,𝑚1)}}} 𝑃 ′ 𝐹 𝑖𝑑 𝑖 ∼
𝑐 𝑖 {{{(𝑎0,𝑚′0), (𝑎1,𝑚′1). 𝜙 (𝑚′0,𝑚′1) ∧ 𝑎0 = 𝑎1}}}

where 𝑃 ′ is the translated Jasmin program, 𝑖 is an arbitrary

input, 𝑖𝑑 is a process ID, 𝐹 is the function name in the Jasmin

program and 𝑐 is the intermediate code.

Once we have proven such an equivalence, we can reuse it

in proofs where 𝐹 appears as a called function. It is therefore

important that the equivalences are parametric in 𝑖𝑑 . We

also want to preserve the precondition 𝜙 and again we have

to assume that 𝜙 is stable w.r.t. the locations of 𝐹 and 𝑐 .

However, there is one issue here: the locations set of 𝐹 is not

straightforward to compute and might also be rather large.

Instead we require that 𝜙 is stable w.r.t. all possible locations
used by 𝜙 , i.e., locations stored using an 𝑖𝑑 ′ with prefix 𝑖𝑑

(𝑖𝑑 ⪯ 𝑖𝑑 ′). This turns out to be a sufficient and reasonably

manageable invariant to preserve.

6.5 Connecting AES to the PRF security proof
The encryption function of which we want to prove the

security can be implemented in Jasmin as:

fn enc(reg u128 n,reg u128 k,reg u128 p) -> reg u128 {
reg u128 mask, c;
mask = aes(n, k);
c = xor(mask, p);
return(c);

}

We translate it into SSProve as JENC and use it in the

following security game, supplying the random nonce r:

Definition JPRF_real id0 m :=

k_val ← kgen ;;

r ← sample uniform N ;;

11

Haselwarter, Hvass, Hansen, Winterhalter, Hrit,cu, Spitters

res ← JENC id0 k_val r m ;;

ret (r, res)

We then prove it perfectly indistinguishability from a similar

scheme CPRF_real which uses an intermediate, simplified

SSProve encryption function, ENC, in place of JENC.
We establish the indistinguishability by applying Theo-

rem 1 of the SSProve paper [1]. We thus have to find a stable

invariant that is preserved by a run of each of these schemes

and prove that they return equal values. We prove a slight

generalization of the version that theorem. Before, the invari-

ant was required to be stable w.r.t. the finite sets of locations
used by the program. Moreover, these sets were assumed

to be disjoint from the state of the adversary. We now only

require the invariant to be stable w.r.t. some arbitrary sets

of locations assumed to be disjoint from the state of the

adversary. In particular, the sets can be infinite.

Thanks to this generalization we can apply the theorem

when one of the programs is the output of our translation,

since we do not have to provide the concrete set of locations

used by the program, but instead we can use an infinite

over-approximation. We thus obtain the following.

Theorem JPRF_perf_ind id : JPRF_real id ≈0 CPRF_real.

We prove that CPRF_real is perfectly indistinguishable from

PRF_real aes using the original SSProve Theorem 1 as we

have better control over which locations are used.

Theorem CPRF_perf_ind : CPRF_real ≈0 PRF_real aes.

Combining these two theorems, we get the following: the

advantage of any adversary, which uses locations disjoint

from JENC and from the intermediate encryption schemes, in

distinguishing between JPRF_real and PRF_ENC is 0. This we
can then combine with the result from the SSProve paper [1,

Section 2.3] which states that PRF_ENC is IND-CPA secure up

to the advantage of an adversary against aes as a PRF.

7 Related work
The use of formal verification for cryptography has been in-

tensely investigated, and Barbosa et al. [7] give an overview.

More narrowly, work related to SSProve can be found in the

extended version of the SSProve paper [25]. In this section,

we survey the closest related work to ours in this space.

CertiCrypt [9] is the earliest framework for reasoning

about cryptographic code in Coq, but is no longermaintained.

FCF [32] is a more recent foundational Coq framework for

cryptographic proofs. It was used together with VST to ver-

ify the C implementations of HMAC in OpenSSL [14] and

mbedTLS [41]. Our work is similar in that we prove the se-

curity and correctness of the Jasmin implementation of AES.

While FCF could have been a reasonable option for us, we

chose SSProve because it is under active development, uses

the well-developed mathcomp [30] and mathcomp-analysis

libraries [3], and supports modular proofs.

EasyCrypt [10, 11] is a proof assistant and verification tool

specifically designed for game-based cryptographic proofs.

Its good integration with automatic theorem provers (e.g.,

SMT solvers) is helpful for large proofs, even though it comes

at a cost in terms of trusted computing base. The program

logics of CertiCrypt and EasyCrypt comewith native support

for reasoning about function calls. This was not available in

SSProve before and addressing this is one of the contributions

of the present work (see Section 5.1).

In the fundamental ‘Last Mile’ paper [5] Jasmin programs

are given semantics in Coq and the correctness of the Jasmin

compiler is proved in Coq with respect to this semantics. As a

realistic case study, they use EasyCrypt to prove the security

and correctness of a Jasmin implementation of SHA3, relying

on an unverified translation from Jasmin to EasyCrypt. In

the present work, we bridge this gap by providing a verified

translation from Jasmin to SSProve.

CryptHOL [12] is a foundational framework for game-

based proofs that uses the theory of relational parametricity

to achieve automation in Isabelle/HOL. However, unlike FCF

and EasyCrypt, CryptHOL has so far not been used for the

verification of efficient programs, as far as we are aware.

Schwabe et al. [37] prove the correctness of the C imple-

mentation of X25519 in TweetNaCl using VST. Protzenko et

al. [34] verify an impressive library of cryptographic code in

F*. Fiat-Crypto [21] is a foundational tool that can generate
verified efficient implementations of finite field arithmetic.

These works are focused on correctness though and do not

consider cryptographic security.

Currently, there is no formal specification for the complete

Rust language. The Hacspec semantics can be seen as a pre-

cise semantics for a non-controversial subset of Rust. Similar

proposals, but for much larger subsets of Rust, include those

of Ho and Protzenko [26] and Denis et al. [18].

8 Future work
Jasminify [40] is a python tool that simplifies the process of

calling Jasmin code from Rust. After compiling a program,

the Rust object file is replaced with the Jasmin object file.

However, Jasminify does not come with any correctness

guarantees. We have shown how to prove the equivalence of

a Rust (Hacspec) implementation for AES with a Jasmin pro-

gram. Hacspec is expressive enough to implement high-level

cryptographic protocols. For such protocols, we now have a

safe way to replace its cryptographic primitives by optimized

Jasmin ones, as we know that their source-level semantics

agree. As future work, one could try to test this toolchain, by

using Jasminify, proving equivalence between the Hacspec

and Jasmin implementations and then benchmarking to see

what kind of performance gains one can achieve.

In concurrent work, libcrux [27] provides a library of ver-

ified implementations from different frameworks; and com-

bines them with a safe Rust API. For example, it starts with

12

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

a Hacspec reference implementation of HMAC and HKDH,

and replaces their hash functions with optimized Jasmin im-

plementations. It was proved [5] in EasyCrypt that the SHA3

implementation indeed implements a hash-function, but a

formal connection with Hacspec is still missing. It would be

exciting to use our framework to formally verify some of the

replacements done in libcrux.

The Jasmin language is still under active development. In

the present work, we devised a verified translation for the

published version of the language [4]. It would be interesting

to extend our work with language features that were added

to Jasmin concurrently to our work.

Acknowledgements
We are very grateful to François Dupressoir for feedback on

an earlier version of this article.

This work was in part supported by the Concordium

Blockchain Research Center at Aarhus University, by a Vil-

lum Investigator grant (no. 25804), Center for Basic Research

in ProgramVerification (CPV), from the VILLUM Foundation,

by the German Federal Ministry of Education and Research

BMBF (grant 16KISK038, project 6GEM), and by the Deutsche

Forschungsgemeinschaft (DFG, German Research Founda-

tion) as part of the Excellence Strategy of the German Federal

and State Governments – EXC 2092 CASA - 390781972.

References
[1] C. Abate, P. G. Haselwarter, E. Rivas, A. V. Muylder, T. Winterhal-

ter, C. Hriţcu, K. Maillard, and B. Spitters. SSProve: A Foundational

Framework for Modular Cryptographic Proofs in Coq. 2021.

[2] AbsInt. Factsheet: CompCert C compiler. Available at https://www.
absint.com/factsheets/factsheet_compcert_c_web.pdf.

[3] R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi, D. Rouhling, K. Sak-

aguchi, and P.-Y. Strub. mathcomp-analysis. Analysis library compat-

ible with Mathematical Components, 2021.

[4] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,

T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub. Jasmin: High-

assurance and high-speed cryptography. In B. M. Thuraisingham,

D. Evans, T. Malkin, and D. Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. 2017.

[5] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos, V. La-

porte, T. Oliveira, and P.-Y. Strub. The Last Mile: High-Assurance and

High-Speed Cryptographic Implementations. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020.

[6] B. Ammanaghatta Shivakumar, G. Barthe, B. Grégoire, V. Laporte, and

S. Priya. Enforcing fine-grained constant-time policies. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 2022.

[7] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao,

and B. Parno. Sok: Computer-aided cryptography. IACR Cryptol.
ePrint Arch., 2019, 2019.

[8] M. Barbossa, F. Dupressoir, B. Grégoire, V. Laporte, P. Strub, and

T. Oliveira. EasyCrypt and Jasmin Tutorial, 2022. Šibenik.

[9] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification

of code-based cryptographic proofs. In POPL, 2009.
[10] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin. Computer-

aided security proofs for the working cryptographer. In CRYPTO.
2011.

[11] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub.

EasyCrypt: A tutorial. In Foundations of Security Analysis and Design
VII - FOSAD 2012/2013 Tutorial Lectures. 2013.

[12] D. A. Basin, A. Lochbihler, and S. R. Sefidgar. CryptHOL: Game-based

proofs in higher-order logic. J. Cryptol., 33(2), 2020.
[13] M. Bellare and P. Rogaway. Code-based game-playing proofs and the

security of triple encryption. IACR Cryptol. ePrint Arch., page 331,
2004.

[14] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel. Verified correctness

and security of OpenSSL HMAC. In 24th USENIX Security Symposium.

2015.

[15] K. Bhargavan, F. Kiefer, and P. Strub. hacspec: Towards verifiable

crypto standards. In C. Cremers and A. Lehmann, editors, Security
Standardisation Research - 4th International Conference, SSR 2018, Darm-
stadt, Germany, November 26-27, 2018, Proceedings. 2018.

[16] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,

B. Parno, A. Rane, S. T. V. Setty, and L. Thompson. Vale: Verifying

high-performance cryptographic assembly code. USENIX Security.
2017.

[17] C. Brzuska, A. Delignat-Lavaud, C. Fournet, K. Kohbrok, and

M. Kohlweiss. State separation for code-based game-playing proofs.

In ASIACRYPT. 2018.
[18] X. Denis, J.-H. Jourdan, and C. Marché. Creusot: A foundry for the

deductive verification of Rust programs. In A. Riesco and M. Zhang,

editors, Formal Methods and Software Engineering. 2022.
[19] J. A. Donenfeld. Wireguard: Formal verification. Available at https:

//www.wireguard.com/formal-verification/.
[20] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,

and J. Dray. Advanced Encryption Standard (AES), 2001.

[21] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple

high-level code for cryptographic arithmetic - with proofs, without

compromises. IEEE S&P , 2019.
[22] A. Faz-Hernandez, S. Scott, N. Sullivan, R. S. Wahby, and C. A. Wood.

Hashing to Elliptic Curves. Internet-Draft draft-irtf-cfrg-hash-to-

curve-16, Internet Engineering Task Force, 2022. Work in Progress.

[23] S. Gueron. White Paper: Intel® Advanced Encryption Standard (AES)

New Instructions Set, 2012.

[24] S. Halevi. A plausible approach to computer-aided cryptographic

proofs. IACR Cryptol. ePrint Arch., page 181, 2005.
[25] P. G. Haselwarter, E. Rivas, A. Van Muylder, T. Winterhalter, C. Abate,

N. Sidorenco, C. Hriţcu, K. Maillard, and B. Spitters. SSProve: A

Foundational Framework for Modular Cryptographic Proofs in Coq.

ACM Trans. Program. Lang. Syst., 45(3), 2023.
[26] S. Ho and J. Protzenko. Aeneas: Rust verification by functional trans-

lation. Proc. ACM Program. Lang., 6(ICFP), 2022.
[27] F. Kiefer, K. Bhargavan, L. Franceschino, D. Merigoux, L. L. Hansen,

B. Spitters, M. Barbosa, A. Séré, and P.-Y. Strub. HACSPEC: a gateway

to high-assurance cryptography. In RWC23, 2023.
[28] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, and C. Ferdinand.

CompCert – a formally verified optimizing compiler. In ERTS 2016:
Embedded Real Time Software and Systems, 8th European Congress,
2016.

[29] A. Lochbihler, S. R. Sefidgar, D. A. Basin, and U. Maurer. Formalizing

constructive cryptography using CryptHOL. In CSF. 2019.
[30] A. Mahboubi and E. Tassi. Mathematical components. Online book,

2021.

[31] D.Merigoux, F. Kiefer, and K. Bhargavan. hacspec: succinct, executable,

verifiable specifications for high-assurance cryptography embedded

in Rust. Technical report, Inria, 2021.

[32] A. Petcher and G. Morrisett. The foundational cryptography frame-

work. POST . 2015.
[33] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In

B. Steffen, editor, Tools and Algorithms for Construction and Analysis
of Systems, 4th International Conference, TACAS ’98, Held as Part of

13

https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf
https://github.com/math-comp/analysis
http://dx.doi.org/10.1145/3133956.3134078
http://dx.doi.org/10.1145/3133956.3134078
http://dx.doi.org/10.1145/3548606.3560689
https://eprint.iacr.org/2019/1393
https://formosa-crypto.gitlab.io/news/2022-06-07/sibenik
http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.1007/s00145-019-09341-z
http://dx.doi.org/10.1007/s00145-019-09341-z
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
http://dx.doi.org/10.1007/978-3-030-04762-7_1
http://dx.doi.org/10.1007/978-3-030-04762-7_1
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://eprint.iacr.org/2018/306
https://www.wireguard.com/formal-verification/
https://www.wireguard.com/formal-verification/
https://www.wireguard.com/formal-verification/
http://dx.doi.org/https://doi.org/10.6028/NIST.FIPS.197
http://dx.doi.org/10.1109/SP.2019.00005
http://dx.doi.org/10.1109/SP.2019.00005
http://dx.doi.org/10.1109/SP.2019.00005
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/16/
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
http://eprint.iacr.org/2005/181
http://eprint.iacr.org/2005/181
http://dx.doi.org/10.1145/3594735
http://dx.doi.org/10.1145/3594735
http://dx.doi.org/10.1145/3547647
http://dx.doi.org/10.1145/3547647
http://dx.doi.org/10.1109/CSF.2019.00018
http://dx.doi.org/10.1109/CSF.2019.00018
https://math-comp.github.io/mcb/
https://hal.inria.fr/hal-03176482
https://hal.inria.fr/hal-03176482
https://hal.inria.fr/hal-03176482
http://dx.doi.org/10.1007/978-3-662-46666-7_4
http://dx.doi.org/10.1007/978-3-662-46666-7_4
http://dx.doi.org/10.1007/BFb0054170

Haselwarter, Hvass, Hansen, Winterhalter, Hrit,cu, Spitters

the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. 1998.

[34] J. Protzenko and B. Parno. EverCrypt cryptographic provider offers

developers greater security assurances. Microsoft Research Blog, 2019.

[35] M. M. Rasmus Holdsbjerg-Larsen, Bas Spitters. A verified pipeline

from a specification language to optimized, Safe Rust. CoqPL, 2022.

[36] M. Rosulek. The Joy of Cryptography. Online textbook, 2021.

[37] P. Schwabe, B. Viguier, T. Weerwag, and F. Wiedijk. A Coq proof of

the correctness of X25519 in TweetNaCl. In 2021 34th CSF, 2021.
[38] V. Shoup. Sequences of games: a tool for taming complexity in security

proofs. IACR Cryptol. ePrint Arch., page 332, 2004.
[39] L. Simon, D. Chisnall, and R. Anderson. What you get is what you

c: Controlling side effects in mainstream c compilers. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2018.

[40] J. van Drunen. Calling Jasmin from Rust, 2021.

[41] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W.

Appel. Verified correctness and security of mbedTLS HMAC-DRBG.

In CCS’17. 2017.
[42] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche.

HACL*: A verified modern cryptographic library. CCS. 2017.

A Appendix
A.1 Hacspec language

Items i :=
(* import modules *)
| use u;
(* constant variables *)
| const x : 𝜏 = c;
(* type aliases *)
| type y = 𝜏 ';
(* fixed -length array declaration *)
| array!(y, 𝜏 , c);
(* fixed -length polynomials *)
| poly!(y', y, a);
(* abstract field integer declaration *)
| field_integers !(y, c, c);
(* function *)
| fn f([x: (&)𝜏 ,]+) -> 𝜏 ' { e }
(* enum type *)
| enum y { [z(𝜏) ,]+ }
(* struct type *)
| struct y { [f: 𝜏 ,]+ }

Use path u :=
(* sequence of nested modules *)
| [m::]*m'

Type 𝜏 :=
| bool | usize
| u8 | u16 | u32 | u64 | u128 | U8
| U16 | U32 | U64 | U128
| i8 | i16 | i32 | i64 | i128 | I8
| I16 | I32 | I64 | I128
(* Unknown -length array *)
| Seq <𝜏 >
(* type variable *)

| y
(* tuples *)
| ([𝜏 ,]+)

Statement s :=
(* let binding *)
| let (mut) p (: 𝜏) = e
(* mutable variable reassignment *)
| x = e
(* if statement *)
| if e1 { e2 } (else { e3 })
(* for loop *)
| for x in e1..e2 { s }
(* sequencing *)
| s1; s2
(* array update *)
| x[e1] = e2

Expression e :=
(* literal *)
| l
(* variable *)
| (u::)x
(* function call *)
| (u::)(y::)f([(&)e]+);
(* method call *)
| e.f([e']+)
(* tuple *)
| ([e])
(* tuple member access *)
| e1.n
(* range *)
| e1..e2
(* arithmetic operations *)
| e1 op e2
(* unary op *)
| unop e
(* array indexing *)
| x[e]
(* Unsafe integer casting *)
| e1 as e2

Operator op := + | - | * | / | ^ | &&
| || | & | | | % | >> | <<
| == | != | <= | >=

Unary operator unop := ~ | ! | -

Pattern p :=
| x
(* tuple destructing *)
| ([p,]*)
(* wildcard *)
| _

14

https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/
https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/
https://cs.au.dk/~spitters/CoqPL22.pdf
https://cs.au.dk/~spitters/CoqPL22.pdf
http://web.engr.oregonstate.edu/~rosulekm/crypto/
http://dx.doi.org/10.1109/CSF51468.2021.00023
http://dx.doi.org/10.1109/CSF51468.2021.00023
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://gitlab.com/Jur/jasminify
http://dx.doi.org/10.1145/3133956.3133974
http://eprint.iacr.org/2017/536

	Abstract
	1 Introduction
	2 Foundational end-to-end verification, from specification to efficient implementation
	2.1 Workflow
	2.2 One-time pad example

	3 Background
	3.1 Hacspec
	3.2 Jasmin
	3.3 SSProve

	4 Hacspec & SSProve
	4.1 The functional translation
	4.2 The imperative translation
	4.3 Equivalence between the Hacspec translations

	5 Jasmin & SSProve
	5.1 Memory
	5.2 Program translations
	5.3 Unary deterministic judgments
	5.4 Correctness theorem

	6 AES example
	6.1 Translation
	6.2 Specification
	6.3 Equivalences for intermediate code
	6.4 Equivalences for translated code
	6.5 Connecting AES to the PRF security proof

	7 Related work
	8 Future work
	References
	A Appendix
	A.1 Hacspec language

