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Abstract—Remote side-channel attacks on processors exploit hardware and micro-architectural effects observable from software
measurements. So far, the analysis of micro-architectural leakages over physical side-channels (power consumption, electromagnetic
field) received little treatment. In this paper, we argue that those attacks are a serious threat, especially against systems such as
smartphones and Internet-of-Things (IoT) devices which are physically exposed to the end-user. Namely, we show that the observation
of Dynamic Random Access Memory (DRAM) accesses with an electromagnetic (EM) probe constitutes a reliable alternative to time
measurements in cache side-channel attacks. We describe the EVICT+EM attack, that allows recovering a full AES key on a T-Tables
implementation with similar number of encryptions than state-of-the-art EVICT+RELOAD attacks on the studied ARM platforms. This
new attack paradigm removes the need for shared memory and exploits EM radiations instead of high precision timers. Then, we
introduce PRIME+EM, which goal is to reverse-engineer cache usage patterns. This attack allows to recover the layout of lookup tables
within the cache. Finally, we present COLLISION+EM, a collision-based attack on a System-on-chip (SoC) that does not require
malicious code execution, and show its practical efficiency in recovering key material on an ARM TrustZone application. Those results
show that physical observation of the micro-architecture can lead to improved attacks.
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1 INTRODUCTION

1 MODERN Central Processing Units (CPUs) embed ad-2

vanced prediction and optimization mechanisms to3

improve their performances. Several of these features, such4

as cache memories or speculative execution, have been5

shown to expose security vulnerabilities exploitable by soft-6

ware attacks [1]–[6]. For instance, cache-based side-channel7

attacks allow a malicious process to gain information about8

other processes, hence bypassing memory isolation pro-9

vided by the Operating System (OS). In practice, cache attacks10

have been successfully employed for the recovery of cryp-11

tographic keys or application fingerprinting. These attacks12

have been shown to be practical on smartphones [7] as well13

as desktop computers [8], [9].14

Embedded devices’ CPUs or microcontrollers have been15

widely investigated through the lens of physical side-16

channels such as power consumption or electromagnetic17

(EM) radiations. These physical vectors have been proved18

to contain leakages that statistically depend on the code19

and data manipulated by the CPU [10]–[15]. Interestingly,20

smartphones embark increasingly more powerful and com-21

plex CPUs, which contain micro-architectural optimizations22

similar to those found in desktop computers. Smartphones23

are physically exposed to the users, thus falling under24

both micro-architectural software attacks and physical side-25

channel attacks (SCA) paradigms.26

In this paper, we show that the electromagnetic em-27
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anations of Dynamic Random Access Memory (DRAM) ac- 28

cesses represent an exploitable side-channel on Systems-on- 29

chip (SoC). The profiling of EM radiations has well known 30

advantages over power consumption measurement. Partic- 31

ularly, it allows exploiting local leakages (coping with, for 32

example, peripherals’ noise) while being less invasive on 33

the targeted device. We exploit this side-channel in order 34

to perform key recovery attacks on a lookup table based 35

cryptosystem. Moreover, the attacks presented in this paper 36

are non-profiled: an attacker can recover secret material on 37

a secure device without the need of prior profiling on a 38

“whitebox” device. Because a Last-Level Cache (LLC) miss 39

results in a DRAM access, this work explores variants of 40

LLC cache attacks with physical inputs [1], [2]. The aim of 41

this paper is to evaluate the effectiveness of DRAM access 42

fingerprinting through EM radiations as an alternative to 43

high precision timers. First, we design a novel attack, named 44

EVICT+EM, an adaptation of EVICT+RELOAD [5], that has 45

no need for shared memory with the victim and requires 46

similar number of encryptions. Then we demonstrate a 47

collision-based attack, COLLISION+EM, that reduces the 48

entropy of an AES key down to 268 on a SoC, and down 49

to 280 on a ARM TrustZone application in a few thousands 50

measurements. COLLISION+EM can potentially be foreseen 51

on recent SoCs with stacked packages, where classical phys- 52

ical SCAs are difficult and physical bus probing almost 53

impossible without deteriorating the chip. Eventually, COL- 54

LISION+EM is able to recover secrets where cache flushing 55

countermeasures are enabled, and even when the cache is 56

partitioned and/or randomized. 57



1.1 Contributions58

In this paper, we make the following contributions: (i)59

in section 4 we characterize DRAM accesses through EM60

measurements and we show that they constitute a reliable61

side-channel vector, (ii) we derive EVICT+EM in section 5,62

a hybrid attack on a T-tables AES implementation and63

compare the results with existing methods, (iii) in section 664

we present the PRIME+EM attack, which allows monitoring65

cache set accesses during encryptions or any other applica-66

tion, (iv) we show the practical feasibility of cache collision-67

based attacks with EM measurements on a high-end SoC68

in section 7 and (v) we apply the COLLISION+EM attack69

paradigm on a TrustZone application in section 8 with70

cache attack countermeasures and demonstrate a successful71

partial key recovery.72

2 BACKGROUND73

2.1 Physical side-channel analysis74

Side-channel analysis is a specific category of physical at-75

tacks. It exploits a so called “side-channel leakage”, which76

can lead to a disclosure of private data within the obser-77

vation of auxiliary effects such as heat propagation, power78

consumption or EM radiation. The literature mainly studies79

attacks on intermediate values of cryptosystems in order80

to partially or fully recover sensitive data (i.e., often cryp-81

tographic keys). Depending on the attacker model, these82

attacks can either be profiled (i.e., requiring a training phase83

prior to the attack) or non-profiled.84

2.2 Cache memory85

SoCs embed high-speed processors that need to exchange86

data with “slow” DRAM. Such memories have a large87

storage capacity (several gigabytes), but have a high ac-88

cess latency. To fill the gap between CPU requirements89

and DRAM capacities, processor designers introduced cache90

memories. The smallest storage component within a cache91

is called a cache line. Cache lines are grouped within cache92

ways, that are themselves gathered into cache sets. When93

data is cached, its address (physical or virtual, depending94

on the architecture) is used to determine the cache set and95

the cache line. The cache replacement policy handles the96

affectation of a cache way. Different caches in a system are97

organized hierarchically. First level caches (L1) are fast and98

small, they can directly provide data to the CPU’s pipeline.99

Upper cache levels gradually gain storage capacity at the100

cost of a higher response latency, until the last level cache101

(LLC) which is directly linked to the DRAM main memory,102

and shared by all the cores of the CPU. If the data required103

by the CPU are not currently in the cache, we observe a cache104

miss: the data needs to be retrieved from the higher caches105

(or ultimately the main memory), and the cache hierarchy106

is updated. On the contrary, the recovery of data already107

fetched in cache memory is called a cache hit.108

2.3 Cache attacks109

The ability to distinguish between cache hits and cache110

misses is the keystone of cache attacks. Cache attacks can111

be (i) time-driven if they measure the time of a com- 112

plete encryption, (ii) access-driven if they analyze if tar- 113

get cache lines have been accessed during an encryp- 114

tion, (iii) trace-driven, if every memory access is pro- 115

filed during an encryption. EVICT+TIME [3] and collision 116

attacks [4] are examples of time-driven attacks. Differ- 117

ent access-driven attacks exist, depending on the avail- 118

ability of cache flushing instructions (FLUSH+RELOAD, 119

FLUSH+FLUSH) [2] or not (EVICT+RELOAD) [5]. Some at- 120

tacks, such as PRIME+PROBE [3], succeed without the pos- 121

session of shared memory with the victim’s process. Finally, 122

trace-driven attacks can reuse the concept of access-driven 123

attacks, but they also require a mechanism that allows 124

memory access timing measurements during the encryption 125

process (e.g., process preemption techniques). There exist a 126

myriad of variants of these attacks [16], that we leave out of 127

the scope of this paper. 128

2.4 AES T-tables implementation 129

In this paper, we target an AES T-tables implementation 130

from openssl-1.0.0f [17]: it is a common use-case in the 131

literature since the work of Osvik et al. [3]. T-tables are 132

precomputed lookup tables of 256 × 32 bits words that are 133

designed to accelerate the computations of AES rounds. Let 134

δ be the number of 32 bits words that can fit within a cache 135

line. We denote by x
(r)
i the i-th byte of the AES state at 136

round r. Let K(r)
i , for 0 ≤ i < 4 be the i-th 32 bits word of 137

the key at round r (e.g., K(r)
0 = (k

(r)
0 , k

(r)
1 , k

(r)
2 , k

(r)
3 )). Simi- 138

larly, W (r)
i , for 0 ≤ i < 4 represents the i-th 32 bits words of 139

the AES state at round r (e.g., W (r)
0 = (x

(r)
0 , x

(r)
1 , x

(r)
2 , x

(r)
3 )). 140

We denote 〈x〉 the most significant bits (MSBs) that can be 141

recovered thanks to a memory access observation. Namely, 142

if δ = 8, the 3 lower-bits of the T-table address cannot be 143

recovered. In that case, 〈x〉 represent the 8−3 = 5 upper bits 144

of x. T-tables implementations consist in computing the first 145

9 AES rounds by consulting 4 precomputed lookup tables 146

T0, T1, T2 and T3, as shown on Equation 1. AES state bytes 147

for round r′ = r + 1 are computed as follows: 148

W
(r′)
0 = T0[x

(r)
0 ]⊕ T1[x

(r)
5 ]⊕ T2[x

(r)
10 ]⊕ T3[x

(r)
15 ]⊕K

(r′)
0

W
(r′)
1 = T0[x

(r)
4 ]⊕ T1[x

(r)
9 ]⊕ T2[x

(r)
14 ]⊕ T3[x

(r)
3 ]⊕K

(r′)
1

W
(r′)
2 = T0[x

(r)
8 ]⊕ T1[x

(r)
13 ]⊕ T2[x

(r)
2 ]⊕ T3[x

(r)
7 ]⊕K

(r′)
2

W
(r′)
3 = T0[x

(r)
12 ]⊕ T1[x

(r)
1 ]⊕ T2[x

(r)
6 ]⊕ T3[x

(r)
11 ]⊕K

(r′)
3

(1)

With (x
(0)
i )0≤i<16 being the outputs of the first Ad- 149

dRoundKey operation (i.e., x(0)
i = pi ⊕ ki). The last round 150

is computed with classical sbox substitutions. Each lookup 151

table contains 256 elements of 32 bits each. Thanks to the C 152

language attribute attribute (aligned(·)), we ensure in the 153

remainder of this paper that all T-tables are aligned on 4× δ 154

bytes boundaries in memory, so that all tables’ first element 155

coincide with the start of a cache line: such an alignment is 156

the worst case scenario for an attacker (misalignment effects 157

are discussed in section 7). 158

3 ATTACKER MODELS 159

Put shortly, this work considers an attacker model that 160

has the same requirements as traditional EM side-channel 161
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analysis. Namely, all the introduced hybrid models (i.e.,162

EVICT+EM, PRIME+EM and COLLISION+EM) require163

physical access to the target device, as well as a trigger164

signal (EM pattern, GPIO, network activity, etc.). Additional165

prerequisites of proposed attacks are highlighted in Table 1.166

Note that these assumptions are particularly sound in the167

case of smartphones that can easily be robbed.168

In this paper, we use a software controlled GPIO as a169

trigger signal for synchronizing traces. Synchronization of170

traces is left out of the scope of this work, since several171

methods exist for this problem [18]. Also, we consider172

that the target device is running an algorithm that realizes173

secret-dependent memory accesses (instructions or data).174

Throughout this paper, we use the AES T-tables imple-175

mentation as a meaningful use-case, with a “known plain-176

text” scenario, but all applications that perform memory177

accesses are potentially vulnerable to the attacks listed in Ta-178

ble 1. Finally, EVICT+EM and PRIME+EM, analogously to179

EVICT+RELOAD and PRIME+PROBE, require malicious code180

execution, while COLLISION+EM does not.181

4 OBSERVING DRAM ACCESSES182

In this section, we describe our experimental methodology183

assessing that EM radiations of DRAM accesses can be184

exploited as a reliable side-channel.185

4.1 Device Under Test186

We use a Digilent Zybo XC7Z020-1CLG400C board as our187

device under test (DUT). This board incorporates a SoC with188

a dual-core Cortex-A9 CPU running up to 667 MHz which189

belongs to the ARMv7-A family (32bit) [19]. We choose this190

DUT because (i) it contains a two-level cache hierarchy, (ii)191

the Cortex-A9 CPU contains several optimizations such as192

out-of-order execution, dynamic branch prediction, dual-193

issuing of instructions and a deep pipeline: the induced194

noise and jitter in EM measurements make the attack sce-195

nario realistic compared to a “smartphone context”, (iii)196

applicative CPUs are known to have a very poor Signal-to-197

Noise Ratio (SNR) compared to simpler microcontrollers [20],198

[21] and Cortex-A9 on the Zybo-z7 board is no exception in199

this matter.200

4.2 Software experimental setup201

Here, we want to reliably provoke a DRAM access. The goal202

is to make the latter as distinguishable as possible in side-203

channel observations.204

4.2.1 Target code205

The target code for DRAM access discovery is depicted206

in Figure 1. The goal of such code snippet is to keep a207

constant execution while realizing a memory access whether208

it is a cache hit or a cache miss (i.e., DRAM access) in order209

to not introduce a confounding factor. It is composed of 8210

steps:211

• Step 1 and 8 are the function’s prolog and epilog which212

handle the context saving (i.e., pushing and popping213

register values into the stack).214

• Step 2 consists in initializing the r9 register to 0: it will215

be used as an offset in step 4.216

Fig. 1: Target code for DRAM access discovery.

• Step 3 and 7 operate an inline repetition of 200 NOP 217

instructions. The goal of these operations is to fully 218

flush the pipeline state and generate a visual pattern 219

on the EM traces. 220

• Step 4 is the target memory access: the content at the 221

address contained in r0 is loaded into r6. 222

• Step 5 consists in the execution of a chainable Read- 223

after-Write (RAW) dependency code snippet crafted 224

with sub instructions: this forces in-order execution 225

and single issuing. It also provides a workload to the 226

CPU while the target memory load is processed. We 227

chain this snippet 50 times during our experiments: 228

this allows minimizing the total payload execution time 229

divergences between cache hits and misses induced in 230

step 4. 231

• Step 6 behaves as a synchronization barrier, as the 232

sub instruction requires the ldrb instruction to be 233

completed in order to use the r6 register. 234

4.2.2 Crafting eviction sets 235

The access to cache maintenance instructions (such as the 236

clflush instruction in x86) requires kernel privileges on 237

ARMv7-A Instruction Set Architecture (ISA). Consequently, 238

we need to craft an eviction set for each address we plan to 239

target. An eviction set is a collection of addresses that fills 240

the entire cache set in which the target address would be 241

mapped. It is necessary for the attacker to fill the whole 242

cache set because the cache way that would contain the 243

target data is determined by the cache replacement policy, 244

which is proprietary and hardly predictable. To this aim, 245

for each targeted cache set, we select a group of congruent 246

addresses from a large memory pool, the latter allocated 247

through C function mmap with the MAP HUGETLB flag 248

activated. The congruent addresses are organised into an 249

eviction set in the form of a double-linked list in order to 250

tweak the hardware prefetcher: this technique is known as 251

“pointer chasing” [3]. Once the eviction set is obtained, the 252

eviction of a target cache line is performed by consulting 253

each address of the eviction set. 254

4.2.3 Target code wrapper 255

We elaborate a controlled pre and post context around the 256

target code execution. As we will need to discriminate if 257

our target access is a DRAM access, the wrapper firstly 258

implements a branchless constant time selection of a “hit 259

target” address between the real target address A and 260

a dummy one in order to prevent side-effect speculative 261

behavior induced by the branch predictor (e.g., speculative 262

loads or unwanted pipeline flushes). Then,A is evicted from 263

the cache hierarchy by traversing an eviction set and the 264

“hit target” is accessed: if the “hit target” is A, the target 265

access occurring during target code execution would result 266

3



TABLE 1: Comparison of attacker models prerequisites. Attacks that are presented in this paper are indicated with ∗.

Attack Malicious code Shared memory Timer Knowledge of addresses Physical access
EVICT+RELOAD yes yes yes yes no
PRIME+PROBE yes no yes no no
EVICT+EM∗ yes no no yes yes
PRIME+EM∗ yes no no no yes

COLLISION+EM∗ no no no no yes

Fig. 2: Voltage amplitude cartography above the SoC.

in a cache hit, otherwise it will be a cache miss. Then, we267

perform a computationally intensive workload in order to268

force the Digital Voltage and Frequency Scaling (DVFS) to raise269

the CPU frequency to its maximum. Afterwards, a data270

synchronization barrier is placed to prevent late memory271

loads to be executed between the trigger up and the trigger272

down operations. Eventually, the target code is executed. We273

add that the whole process is tied to a single core of the chip274

in order to avoid context switches.275

4.2.4 Side-channel acquisition setup276

The near field EM emanations of the DUT are acquired277

through an EM Langer H-field RF-U 2.5-2 probe connected278

to a Tektronix 6 series oscilloscope with a 2.5 GHz band-279

width through a +45/50 dB low noise amplifier. The probe is280

attached to a 3-axis motorized bench. We use a sampling rate281

of 3.125 GS/s, and an Analogic to Digital Converter (ADC)282

precision of 12 bits.283

4.3 Best position localization284

As we observe local EM radiations, it is necessary to find an285

adequate probe position on the top of the chip that allows286

to accurately observe DRAM accesses. We expect the latter287

event to produce high amplitude EM radiation, because288

it involves the use of several components (e.g., DRAM289

controller, data buses, etc.). Additionally, the structure of290

our target code and its wrapper prevents high amplitude291

events, such as pipeline flushes or context switches, to occur292

between trigger up and trigger down events.293

The amplitude of the perceived EM signal is mapped294

upon a 25×25 spatial grid over the main chip. Interestingly,295

the amplitude cartography exposes a high signal amplitude296

on several positions near the DRAM interconnection buses297

(see Figure 2). For, this DUT, we assess the best probe posi-298

tion as the one that captures the highest signal amplitude.299

4.4 Identification of patterns300

We acquire one million traces of target code execution at301

the best position identified previously. For each execution,302

Fig. 3: High amplitude pattern identification on two exam-
ple traces, green lines indicate estimated pattern boundaries.

the target access is either a cache hit or a cache miss with a 303

50 % probability. Several patterns emerge within the traces 304

(see Figure 3). One can observe that (i) the patterns stand out 305

from the remaining signal (this seems to correspond to the 306

steps 3 and 7 baseline NOPs and step 5 RAW dependency 307

instructions depicted in Figure 1) in terms of amplitude 308

and shape, (ii) they have variable lengths, and they are 309

located at variable positions and (iii) some of them seem 310

unrelated to our target memory access, potentially caused 311

by evictions from other processes. To analyze the traces, 312

we automatically locate the patterns within the traces by 313

applying a metric on a sliding window. More specifically, 314

we compute the standard deviation of samples’ amplitude 315

on each window, then we establish a threshold (500 in our 316

experiments). A standard deviation value above this thresh- 317

old indicates the presence of a pattern (see Figure 3). The 318

advantage of this method, compared to a straightforward 319

peak detection, is that the standard deviation allows to 320

precisely spot the boundaries of a pattern. It is also more 321

resilient regarding the variations of the patterns’ shapes, 322

making it more generic (i.e., for different probe positions 323

or platforms). 324

4.5 Lengths and locations of patterns 325

In this subsection, we aim at answering the following ques- 326

tions: (i)Are there patterns with fixed length that appear mostly 327

for traces where the target access is a cache miss? (ii) Can we relate 328

pattern lengths to micro-architectural events? (iii) What can we 329

deduce from the position of the patterns within traces? 330

We start by gathering the lengths of patterns throughout 331

our set of traces, and we label them according to cache hit 332

or cache miss property of the corresponding target access. 333

In Figure 4 we observe that patterns with a width of 334

300 samples (approximately 110 ns) are only present in 335

cache miss related traces: we associate the label P1 to such 336

patterns. Interestingly, DRAM accesses on similar platforms 337

last between 100 and 120 ns [22], [23]. We also observe 338
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Fig. 4: Distribution of pattern lengths for hit and miss traces.

Fig. 5: Distributions of the starting offsets of patterns P1 and
P2 for hit and miss related traces.

slightly shorter patterns that are present in both hit and miss339

related traces. We call P2 such patterns. These observations340

bring insights about the phenomena producing P1 and P2:341

P1 seems to be related to our target memory access, and342

P2 to an event independent from the target memory access,343

such as function epilog’s pop instruction.344

Figure 5 depicts P1 and P2 starting offset distributions345

within the traces. We clearly observe that P1 mostly appears346

at the middle of target code execution (i.e., where the target347

memory access should occur) while P2 occurs later. As a348

consequence, P1 seems to be the pattern corresponding to349

our intentional DRAM access.350

4.6 Summary351

In this section, we established a link between the appear-352

ance of patterns within the EM measurements with DRAM353

accesses. This implies that pattern matching or statistical354

techniques allow detecting DRAM accesses through EM355

radiations: this can then be used in a side-channel attack356

context.357

5 EVICT+EM358

We showed in section 4 that we are able to detect DRAM359

accesses through EM emanations. This leads to the ques-360

tion: can EM observation of DRAM accesses be exploited as an361

information leaking phenomenon in a cache side-channel attack362

context?363

This section introduces EVICT+EM, a novel hybrid soft-364

ware and physical side-channel attack against memory ac-365

cesses to recover secret keys. The attack principle is the366

following: (i) the attacker fills a target cache set, evicting367

the victim’s data from the cache, (ii) the victim resumes its368

execution and (iii) the attacker decides whether a DRAM369

access has been performed or not by the victim by ob-370

serving EM radiations. Note that this is an adaptation371

of EVICT+RELOAD [5], with (iii) replacing the RELOAD372

phase. We stress that EVICT+EM does not require the at-373

tacker to share memory with the victim, and hence falls into374

the same application contexts than PRIME+PROBE [3].375

Algorithm 1: Target code running on the DUT.
Input: P, T, L,w
// Warmup AES encryptions

1 for i from w down to 0 do
2 C← AES encrypt(P , K);
3 end
4 evict(T , L);
5 trigger up();
6 C← AES encrypt(P , K);
7 trigger down();

Fig. 6: EM traces of an AES encryption where the number of
warmup rounds is set to 100 (top) or 0 (bottom).

5.1 Software experimental setup 376

In this experiment, the DUT runs a TCP server that is tied to 377

one Cortex-A9 core. Warmup encryptions can be executed 378

in order to cope with several jitter and noise sources. Then, 379

one T-table related cache line, whose index is sent by the 380

client, is evicted before the target encryption (see subsubsec- 381

tion 4.2.2 for the eviction procedure). This target encryption 382

is surrounded by trigger operations. 383

The monitor computer samples random 16 bytes plain- 384

texts and sends them to the DUT among several parameters 385

such as the target T-table T , the target cache line to evict L, 386

as well as the number of warmup rounds w. This process is 387

repeated N times for each T-table T (see algorithm 1). 388

5.2 The impact of warmup encryptions 389

Warmup operations allow to reduce indeterminism due to 390

cache memory, hence limiting jitter effects. When several 391

warmup rounds are performed before evicting the target 392

line (see Figure 6), we observe a clear single pattern within 393

the EM measurement: the only observable DRAM access 394

is a consequence of a cache miss during a table access in 395

the course of the encryption (i.e., the one induced by the 396

eviction phase). On the contrary, when no warmup rounds 397

are performed, we observe the presence of several patterns, 398

with different shapes, that are unrelated with the target 399

DRAM access. Due to jitter, the target pattern that appears 400

for 100 warmup rounds is slightly shifted in the no warmup 401

case. 402

Even if performing warmup encryptions would intu- 403

itively enhance the accuracy of attacks, it would come at a 404

cost: the attacker would be forced to wait a certain number 405

of encryptions before triggering the target one, increasing 406

the duration of the attack. Consequently, in subsection 5.3 407

we aim at designing an attack framework that is resilient 408
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regarding the noise and jitter while executing no warmup409

encryption.410

5.3 Attack procedure411

In the course of this subsection, we discuss the different412

steps of the key recovery attack which are (i) making hy-413

potheses, (ii) Region of Interest (RoI) selection, (iii) traces414

preprocessing, (iv) choosing and evaluation of a metric, (v)415

ranking of the hypotheses according to metric value.416

5.3.1 Key distinguisher417

Making a hypothesis on a key byte consists in splitting the418

traces (ti)0≤i≤N into two groups g0 and g1 based on the419

fact that a DRAM access at a desired encryption instant420

occurs or not under the hypothesis. This attack follows the421

methodology of the Differential Power Analysis (DPA) [14].422

Let k∗ ∈ F28 be the right key byte, K = F28 be the423

set of all possible key candidates and Z = F28 be a set424

of intermediate values. Then, we denote DRAMk̃(z)z∈Z425

a Boolean predicate that is True if the manipulation of z426

under the hypothesis k̃ results in a DRAM access, and False427

otherwise. Under each key hypothesis k̃, it is possible to428

separate the traces between two sets g0
k̃

and g1
k̃

such that429

g0
k̃

= {ti | DRAMk̃(zi)} and g1
k̃

= {ti | ¬DRAMk̃(zi)}.430

Now it is possible to lift an arbitrary metric M(g0
k̃
, g1

k̃
),431

its choice is discussed in subsubsection 5.3.4. The best key432

hypothesis retained is then defined as:433

kbest = argmax
k̃∈K

{
M(g0

k̃
, g1

k̃
)

}
(2)

5.3.2 RoI and window selection434

When no warmup encryption is performed, we observe (i)435

a jitter that misaligns our pattern of interest and (ii) other436

erratic patterns that appear during the encryption. Nonethe-437

less, we make the following assumption: It is possible to find438

a RoI where the interesting patterns appear more frequently for439

the good hypothesis.440

It is hard to specifically locate one AES round (e.g.,441

the first) within the traces for various reasons. Firstly, the442

probe position does not allow us to observe pipeline EM443

emanations, making harder the use of Simple Power Analysis444

(SPA) in order to precisely locate the AES routines. Secondly,445

the presence of jitter would automatically shift the RoI.446

However, guessing can be performed by knowing the447

algorithm. Indeed, the AES first round is unlikely to expose448

side-channel leakage in, say, the 10% last samples of the449

trace, even with the presence of jitter. In our experiments,450

we thus consider a RoI of 2000 samples for targeting the first451

AES round, which, in our experimental setup, corresponds452

to 400 clock cycles (approximately 640 ns).453

5.3.3 Preprocessing with integral computation454

As we consider discrete measurements, the integral of a455

trace t = (t[j])0≤j≤n is defined as the sum of its sam-456

ples’ values. This operation performs a linear combination457

of the samples over a RoI. This is useful when a jitter458

desynchronizes the traces. However, the main limitation459

of this method is that the per-sample precision is mostly460

lost. For the sake of our experiments, we consider integral461

computation upon a fixed sized sliding window of 300 sam- 462

ples within the RoI. This processing step is systematically 463

applied to g0
k̃

and g0
k̃

before computing the metric. 464

5.3.4 Metric 465

We use the Welch’s t-test as our distinguisher metric (not as 466

a proper statistical test). It is an adaptation of Student’s t-test 467

designed to test whether two normal distributions (X1 and 468

X2) have the same mean (possibly with distinct variances). 469

This test computes a t-statistic value as follows: 470

t =
Ē(X1)− Ē(X2)√

¯V ar(X1)
N1

+
¯V ar(X2)
N2

(3)

Here, Ē and ¯V ar denote the empirical mean and variance 471

with N1 observations of X1 and N2 observations of X2. 472

A high t-statistic indicates that the two means are highly 473

different. 474

In our case, this metric seems relevant because (i) the 475

data to be processed is divided into two groups g0
k̃

and 476

g1
k̃

and (ii) the population of these two groups is very 477

heterogeneous (g0
k̃

has few elements): we can benefit from 478

the in-class normalization. For the good hypothesis, we 479

expect the t-statistic to be higher than for wrong hypotheses. 480

5.4 First round attack 481

The first step of the attack is to craft eviction sets for at 482

least one cache set per T-table with the method described 483

in section 4. The attacker is supposed to be able to evict at 484

least one cache line per T-table. 485

The information the attacker can learn is whether one 486

of the addresses that is mapped in this same cache line has 487

been consulted or not. In the case of our DUT, this means 488

that an attacker that only exploits the first AES round can 489

only guess the five most significant bits (with δ = 8) of the 490

state bytes indexing the T-tables. 491

In order to attack the AES’s first round, it is needed to 492

draw hypotheses on each (〈x(0)
i 〉)0≤i≤15. As our attacker 493

model allows only one eviction per encryption and as each 494

table Tj is consulted for each (x
(0)
i )0≤i≤15,i≡j (mod 4), four 495

sets of traces need to be gathered (one for each table). 496

Each set of traces allow to draw hypotheses on 4 bytes. 497

For simplicity, the targeted cache line for each table Tj 498

corresponds to its first δ = 8 elements. The global guessing 499

entropy is obtained by performing the attack 100 times for 500

each byte on N randomly selected traces (see Figure 7), 501

and computing the average rank of all good hypotheses. 502

A guessing entropy down at 0 indicates that all guesses are 503

correct. 504

In Figure 7a, one can observe that the guessing entropy 505

of EVICT+EM reaches 0 between 800 and 900 traces per ta- 506

ble. This means that, on average, an attacker that is allowed 507

to observe 3600 encryptions is able to guess the 5 MSBs of 508

each byte of the secret key. 509

5.5 Second round attack 510

Following the attack of Osvik et al. [3], it is possible to 511

rewrite all (x
(1)
i )0≤i≤15 according to the bytes of the plain- 512

text and the secret key. Among those 16 state bytes equa- 513

tions, four of them are particularly interesting. Indeed, the 514
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TABLE 2: Start of second round state target bytes, their
corresponding hypotheses quadruplets to enumerate and
the first round misses that need to be avoided.

Byte Table Key quadruplet Round 1 misses to avoid
x
(1)
2 T2 (k0, k5, k10, k15) x

(0)
2 , x

(0)
6 , x

(0)
10 , x

(0)
14

x
(1)
5 T1 (k3, k4, k9, k14) x

(0)
1 , x

(0)
5 , x

(0)
9 , x

(0)
13

x
(1)
8 T0 (k2, k7, k8, k13) x

(0)
0 , x

(0)
4 , x

(0)
8 , x

(0)
12

x
(1)
15 T3 (k1, k6, k11, k12) x

(0)
3 , x

(0)
7 , x

(0)
11 , x

(0)
15

MSBs of x(1)
2 , x(1)

5 , x(1)
8 and x(1)

15 only depend on four secret515

key bytes LSBs (the others depend on five). Let us denote516

Si = sbox(pi⊕ ki). For the second round we can exploit the517

following equations:518

x
(1)
2 = S0 ⊕ S5 ⊕ 2 · S10 ⊕ 3 · S15 ⊕ sbox(k15)⊕ k2

x
(1)
5 = S4 ⊕ 2 · S9 ⊕ 3 · S14 ⊕ S3 ⊕ sbox(k14)⊕ k1 ⊕ k5

x
(1)
8 = 2 · S8 ⊕ 3 · S13 ⊕ S2 ⊕ S7 ⊕ sbox(k13)⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x
(1)
15 = 3 · S12 ⊕ S1 ⊕ S6 ⊕ 2 · S11 ⊕ sbox(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

(4)
The second round attack relies on the information gained519

from first round attack (i.e., the MSBs of each key bytes). In520

order to recover the full key, one needs to draw hypotheses521

on key bytes LSBs and use equations in Equation 4 to predict522

whether a DRAM access occurs for each plaintext. As each523

equation in Equation 4 involves only 4 key bytes, hypothe-524

ses are drawn on each quadruplet (e.g., (k0, k5, k10, k15) for525

the first equation). For each quadruplet hypothesis and tar-526

get address, we select plaintexts and traces so that the target527

address is not accessed during the first round(see Table 2)1.528

Then, the key distinguisher (see subsubsection 5.3.1) is ap-529

plied to highlight the best hypothesis for each quadruplet.530

Note that we are able to reuse the traces gathered for the531

analysis of the first round.532

Globally, guessing entropies for the quadruplets con-533

verge towards 0 with less than 1600 traces per T-table534

on average. This means that the whole secret key can be535

recovered with less than 6400 traces on average.536

5.6 Comparison with EVICT+RELOAD537

We now compare EVICT+EM with the EVICT+RELOAD [5]538

attack. Note that they are similar in terms of malicious539

code execution, as EVICT+RELOAD does not suppose any540

preemption of the victims process, nor multiple evictions541

per encryption. For a fair comparison, EVICT+RELOAD uses542

the same eviction set construction and roaming strategies543

as EVICT+EM. We use two different timer sources for the544

“Reload” part of the attack: a monotonic timer based on545

the gettime function from the libc denoted “User”, and a546

high-resolution cycle counter available in ARM Performance547

Monitoring Unit (PMU). We stress that the latter requires548

to load a kernel module in order to allow the access to549

the CPU’s internal performance monitoring registers: this550

method is ran at a kernel privilege level. Finally, we use551

the same distinguisher (i.e., Welch’s t-test), except that our552

EVICT+RELOAD attack version implements the t-test upon553

the timing distributions.554

1. This is a slight improvement of the initial EVICT+TIME attack
shown by Osvik et al. [3].

<

<

(a) First round

(b) Second round

Fig. 7: Guessing entropy comparison, per table, for
EVICT+RELOAD and EVICT+EM first round attack (7a)
where 〈k∗〉 is recovered, and second round attack (7b) where
the full key quadruplet is recovered (see Table 2), with no
warmup.

In Figure 7, we can observe that (i) EVICT+EM has better 555

performances than EVICT+RELOAD with kernel privileges 556

for the first round attack: this can be explained by a better 557

temporal resolution, (ii) EVICT+EM has better performances 558

on second round quadruplets candidates, but it is less 559

significant. An argument to explain this phenomenon is 560

an increased amount of first round induced jitter for the 561

EVICT+EM for the second round attack. Consequently, we 562

can assess that EVICT+EM constitutes a userland alterna- 563

tive to cache attacks with similar performances than an 564

EVICT+RELOAD attack with kernel privileges. When per- 565

forming EVICT+EM, the attacker does not need to share 566

memory with the victim, hence it is an interesting alterna- 567

tive to PRIME+PROBE family attacks when EVICT+RELOAD 568

is not practical. 569

6 PRIME+EM 570

EVICT+EM relies on the use of eviction sets to evict target 571

cache lines: the eviction set crafting phase requires to locate 572

the targets’ physical addresses in main memory. The main 573

goal of this section is to overcome this restriction. The 574

technique presented in this section, called PRIME+EM, is 575

based on PRIME+PROBE [3]. It aims to discover the cache 576

sets hosting the T-Tables within cache memory. This attack, 577

which can be viewed as a reverse-engineering step, can 578

precede an EVICT+EM attack for full key recovery. 579

6.1 Profiling cache set activity 580

We assume that the T-tables are stored contiguously and 32 581

bytes aligned within the DRAM, and that T0 is page aligned. 582

For a memory page size of 4 KB, this results in the T-tables 583

filling exactly one page so that there is no risk that two 584

distinct T-tables share the same cache set. We also assume 585

that the attacker knows the physical addresses that they are 586

manipulating. 587
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Fig. 8: Cache set activity metric of the Zybo-z7 during AES
encryption with 100 warmup rounds and N = 400.

Then, the attacker is able to craft eviction sets for each588

cache set by using the methodology described in section 4.589

We denote evi the eviction set for cache set i. The profiling590

of cache set activity is performed as follows: (i) (Warmup)591

the attacker lets the victim’s process perform random en-592

cryptions so as to fill the cache, (ii) (Prime) the attacker593

accesses evi to realize an eviction, (iii) (Observation) the594

attacker triggers the encryption of a random plaintext with595

the oscilloscope. This procedure is repeated several times596

for each cache set, and for all cache sets. For each cache set,597

an activity metric is computed for N EM traces as follows:598

metric =
1

N

N∑
k=0

σk (5)

With σk being the standard deviation of the signal ampli-599

tude of the EM observation on a 1000 samples RoI for trace600

k. Then, an averaging of the standard deviation over the601

N traces is made. This metric is based on the automatic602

pattern identification conducted in subsection 4.4: the key603

idea is that DRAM accesses highly stand out compared to604

other activities for the assessed probe position on this DUT.605

Experimental results of PRIME+EM for 100 warmup606

rounds with N = 400 are depicted in Figure 8. We clearly607

observe high metric values for the contiguous cache sets608

where the T-tables are mapped. Interestingly, we also ob-609

serve non contiguous high peaks for other cache sets. These610

accesses can be related to cached assembly code (as we611

are targeting the LLC in which both instructions and data612

can be cached) or other memory locations accessed during613

the encryption (e.g., plaintext or secret key buffers). With614

this experiment, we show that an attacker is able to craft615

eviction sets targeting the T-tables without precise timers,616

shared memory nor knowledge of the T-tables’ location in617

memory.618

7 COLLISION+EM619

The EVICT+EM and PRIME+EM attacks we presented so far620

have the drawback of imposing to the attacker the forgery621

of eviction sets. In this section, we remove the constraint622

of malicious code execution by designing a collision-based623

attack. We define a collision as equivalent to a cache hit with624

data that is belonging to the same target algorithm during625

a single encryption. Our attacker model is built under626

the following assumption: every non-colliding memory access627

made by the victim will most likely generate a DRAM access628

during the targeted round. As a prerequisite, the attacker is629

supposed to be able to erase T-tables’ content from the cache630

hierarchy before the encryption. Several circumstances can631

validate this prerequisite, such as cache eviction from other632

processes, a reset of the DUT or a systematic cache flushing 633

implemented as a cache attack countermeasure. Finally, a 634

collision can be inferred from the absence of a DRAM 635

access through EM measurement during the encryption. 636

Once again, we opt for a differential approach on the EM 637

traces. 638

7.1 First-round attack 639

Let i, j ∈ {0, ..., 16} with i 6= j be such as x(0)
i = pi ⊕ ki 640

and x
(0)
i′ = pi′ ⊕ ki′ are indexing the same table T . A 641

collision is obtained when 〈x(0)
i 〉 = 〈x(0)

i′ 〉, which implies 642

that 〈pi ⊕ pi′〉 = 〈ki ⊕ ki′〉. Then, it is possible for an 643

attacker to craft hypotheses on 〈ki ⊕ ki′〉 under a known 644

plaintext scenario. All the T-tables’ contents are evicted from 645

the cache before each encryption. No warmup is used, as it 646

would fetch T-tables’ contents within the cache and thwart 647

the attack. Under each hypothesis, it is possible to separate 648

the traces and plaintexts into two groups g0 and g1, based 649

on the apparition of a collision or not for each plaintext. As 650

in section 5, we use integral computation as preprocessing 651

and the Welch’s t-test as a distinguisher. We setup a window 652

of 300 samples for integral computation that slides along the 653

traces with a single sample stride. 654

Graph theory provides an insightful representation for 655

collision-based attacks [24]. Let G = (V, E) be an undi- 656

rected graph such as its vertices V represent key bytes 657

MSBs (〈ki〉)0≤i<15. An edge is drawn between two vertices 658

vi = 〈ki〉 and vi′ = 〈ki′〉 when the knowledge of the value 659

of vi allows to uniquely determine the value of vi′ . Knowing 660

a relationship of the form 〈ki ⊕ ki′〉 = r creates an edge in 661

G between vi and vi′ , because if 〈ki〉 is known, the value of 662

〈ki′〉 is 〈ki〉 ⊕ r. Let Gj = (Vj , Ej)0≤j<4 be subgraphs such 663

as Vj = {〈ki〉 | i ≡ j (mod 4)} (see Figure 10). In other 664

words, Gj covers key bytes that concern table Tj during 665

the first round computations. By observing collisions within 666

the same table, one can hope to recover enough vertices 667

between edges of Gj to make it a connected graph. 668

Figure 9 illustrates the guessing entropies for each vertex 669

corresponding to each subgraph Gj . Concerning the G0 and 670

G1 subgraphs (see Figure 9a and Figure 9b), we observe that 671

the guessing entropies converge towards 0 with between 8k 672

and 14k attack traces. We also remark that G2 and G3 have a 673

slower convergence towards 0. In our experiments, guessing 674

entropies for each 〈ki ⊕ ki′〉 reach 0 for 20k traces, making 675

all the Gj subgraphs fully connected. This shows that our 676

method allows discovering 〈k(0)
i ⊕k

(0)
i′ 〉 relationships with a 677

few thousands of encryptions on average and no malicious 678

code running on the target. 679

Recall that, for δ = 8 (e.g., on the Zybo board), knowing 680

if a cache line has been accessed by an intermediate value 681

grants information upon the 5 MSBs of this value. If a 682

subgraph Gj is connected, fixing a value for any 〈ki〉 ∈ Ej 683

allows recovering the values of all other 〈ki′〉 ∈ Ej , i
′ 6= i. 684

Thus there are 25 hypotheses to be tested for each subgraph 685

Gj . By combining the four subgraphs, we obtain a search 686

space of size 25×4 = 220. Then, remember that for δ = 8, 687

the 3 LSBs of each key byte cannot be guessed from the first 688

round attack. Hence, after the first round attack, the total 689

key entropy drops from 2128 to 220 × 23×16 = 268. 690
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(a) T0 (G0 subgraph). (b) T1 (G1 subgraph).

(c) T2 (G2 subgraph). (d) T3 (G3 subgraph).

Fig. 9: Guessing entropy for Gj related collisions corre-
sponding to each table (T0 to T3) on the Zybo-z7 platform,
each point displays the average rank of the good candidate
over 100 attack iterations upon randomly sampled traces,
with no warmup.

Now we consider Equation 4. For each of the four691

quadruplets depicted in Table 2, each key byte involved is692

concerned by a different Gj . Hence, in our case, this means693

that the complexity of the second round attack is in the694

order of 4 × 220 × 23×4 = 234. More precisely, an attacker695

would need to derive 234 hypotheses in total for the four696

quadruplets depicted Table 2 and perform a Welch’s t-test697

for each of them.698

7.2 About connecting G699

Having no connections linking the different Gj subgraphs700

keeps the key entropy too high to mount a bruteforce attack701

in a reasonable amount of time. Creating links between702

the subgraphs, in order to make G connected, implies that703

collisions must be exploitable between state bytes that are704

indexing different tables. Several hardware or software fea-705

tures could enable this, such as (i) misaligned T-tables and706

(ii) known or controlled data prefetching behavior.707

Firstly, as stated in [25], misaligned T-tables have the708

effect of not mapping their base address to the beginning709

of a cache line. As T-tables are often contiguous in memory,710

this would imply that cache lines contain data from adjacent711

tables, and inherently allow collisions between state bytes712

indexing distinct tables. Secondly, data prefetching, that713

brings data closer to the CPU speculatively, could bring714

data from one table when another is accessed, potentially715

leading an attacker to observe a collision. Leaving aside716

other optimizations to the attack, a connected graph G on717

our DUT would lead to a total key entropy upper bound of718

25×23×16 = 253 after the first round attack. An upper bound719

of the complexity of the second round attack would be of720

4×25×23×4 = 219 Welch’s t-tests. The AES implementation721

we target in this experiment has no misaligned tables, and722

we found no exploitable prefetching behavior.723

Fig. 10: Example of a collision graph G, composed of the
four subgraphs G0, G1, G2, G3. Plain vertices indicate inter
table collisions, dashed vertices represent the collisions that
would be observable with misaligned tables or favorable
prefetching behavior.

7.3 Conclusion 724

We were able to exploit collisions within an AES T-tables 725

implementation with less than 20k traces on average with a 726

non-profiled model on a Cortex-A9 processor, dropping the 727

total key enumeration complexity from 2128 to 268. Putting 728

aside the use of COLLISION+EM to reduce key entropy, 729

this attack can be coupled to a classical EM SCA in order 730

to reduce the total number of needed measurements. This 731

attack has no need for malicious code execution on the 732

DUT and only requires the attacker to flush the whole T- 733

tables region before encryptions. Interestingly, cache flushes 734

before sensitive application execution, which is a common 735

countermeasure against cache attacks, would actually make 736

COLLISION+EM possible. 737

8 ARM TRUSTZONE ATTACK 738

The ARM TrustZone is a mechanism that aims at pro- 739

viding hardware-based security features on ARM CPUs. 740

ARM TrustZone ecosystems have widely been deployed in 741

embedded devices such as smartphones, automotive and 742

industrial systems [26]. This technology separates the so 743

called secure world from the normal world. TrustZone pro- 744

vides a Trusted Execution Environment (TEE) which hosts 745

the security critical features such as payment or authen- 746

tication operations within Trusted Applications (TAs). The 747

secure monitor is a privileged entity that handles context 748

switches between secure and normal worlds. The secure 749

and normal world’s resources are isolated at the hardware- 750

level. Such an isolation inherently prevents shared memory 751

based attacks such as EVICT+RELOAD. For the past several 752

years, researchers have identified several vulnerabilities in 753

TEEs. Notably, Lipp et al. [7] exposed a PRIME+PROBE attack 754

on a trusted application, bringing forward the fact that the 755

ARM TrustZone does not guarantee “as-is” security against 756

cache attacks. Nevertheless, the authors emphasized that 757

some devices ensure that the cache is flushed when entering 758

or leaving a trusted application. This countermeasure has 759

the effect of making PRIME+PROBE attacks harder, as the 760

eviction sets need to be browsed between the cache flushing 761

procedure and the beginning of the encryption (respectively 762

between the end of the encryption and the following cache 763

flush), imposing strict timing constraints to the attacker. As 764

a consequence, authors were unable to perform complete 765

or partial key recovery, but rather determined if a valid or 766

invalid key had been used by the trusted application. 767

9



The COLLISION+EM attacker model (see Table 1) is par-768

ticularly relevant for targeting a TA’s AES implementation769

with such countermeasures in a realistic scenario because (i)770

the addresses of the T-tables are unknown, (ii) the target771

cache sets are flushed before entering the secure world772

as a countermeasure for PRIME+PROBE, PRIME+EM and773

EVICT+EM attacks and (iii) no malicious code is executed774

(GPIO toggles before and after the encryption used to775

trigger the oscilloscope are not considered as malicious776

code), only legitimate calls to the trusted application are per-777

formed. For the rest of this section we use a STM32MP157F-778

EV1 dual-core Cortex-A7 based SoC with TrustZone support779

as our DUT. This platform encompasses several peripherals780

(screen, keyboard, ethernet port, etc.) that are active while781

performing the analysis, potentially adding extra noise and782

jitter to our measurements. Finally, the Cortex-A7 has two783

levels of cache, with a cache line size of 64 bytes and a 8-way784

set-associative LLC of size 1MB.785

8.1 Leakage assessment786

The printed circuit board (PCB) layout of this DUT exposes787

the data buses that are headed towards the two DRAM788

chips (see Figure 11). Similarly to subsection 4.3, we perform789

a 15 × 50 voltage range cartography during the execution790

of the characterization program (see Figure 1). Figure 11791

illustrates that the signal amplitude is more significant792

above the data buses. Leakages of those buses could not793

be analysed on the Zybo-z7 due to the PCB layout. This is794

explained by the greater current through the latter. Contrary795

to Figure 2, the signal dynamics do not effectively highlight796

a best probe position: the latter needs to be determined with797

more specific leakage assessment. Hence, a Welch’s t-test is798

performed (with 2000 traces per position) in order to mea-799

sure the distinguishability between the traces regarding the800

presence of the target DRAM access. Further measurements801

are headed with the probe placement related to the highest802

t-value in Figure 11. The total procedure represents less than803

a day.804

8.2 Attack of a trusted application805

The DUT is running a full-fledged Linux distribution as806

a host operating system, and an OP-TEE OS [27] that807

handles the TrustZone environment. The OP-TEE operating808

system’s cryptographic primitives are implemented within809

the LibTomCrypt library [28] whose default AES implemen-810

tation is based on T-tables. Note that no cache flushing811

countermeasure is implemented by default before or after812

encryption, enabling PRIME+PROBE and PRIME+EM threat813

models (see Table 1). This countermeasure is hence the814

responsibility of the developer that writes the TA.815

For the sake of this experiment, we design a trusted816

application that realizes T-tables AES encryptions such that817

(i) lookup tables’ offsets are aligned to a cache line size (64818

bytes on this platform) and (ii) cache lines that would hold819

T-tables contents are systematically evicted before and after820

every encryption thanks to the TEE cache clean function821

provided by the OP-TEE API.822

To carry out this experiment, we gathered one million823

encryption traces. The RoI lower bound is assessed by824

locating the start of a region of significant activity within EM825

measurements. Such an instant is determined by observing 826

an increasing trend in the average of the traces in absolute 827

value (see Figure 12). The upper bound is determined to be 828

empirically large so that the risk for the first round DRAM 829

accesses to be out from the RoI is minimized. 830

Because of low amplitude noise and important jitter, 831

the preprocessing method presented in subsection 5.3 is 832

inefficient on this DUT. A variant, that counts the number 833

of samples that exceed an amplitude threshold on a sliding 834

window fashion, is preferred for this platform. 835

With a cache line size of 64 bytes, each T-table fills exactly 836

16 cache lines. As a consequence, a random guess on 〈ki ⊕ 837

ki′〉 ranks in eighth position in average. Also, an attacker 838

that is able to build subgraphs Gj reduces the total AES key 839

entropy to 280. 840

Guessing entropies for the first round collision attack 841

on the four tables are depicted in Figure 13. The G0 and 842

G1 subgraphs become fully connected with less than 10k 843

traces. Some collisions are harder to detect for theG2 andG3 844

subgraphs, which become fully connected with almost 60k 845

traces. It is important to notice that some collisions are accu- 846

rately detected from 2000 traces (e.g., 〈k0 ⊕ k4〉). Figure 13c 847

and Figure 13d expose that collisions with bytes belonging 848

to W (1)
3 need more traces to be accurately recognized. When 849

focusing on the G3 case, we remark that collisions related 850

to k6 have the worst guessing entropy convergence towards 851

zero. Interestingly, the analysis of the binary file informed us 852

that the compiler reordered memory accesses so that T2[x
(0)
6 ] 853

is processed last. 854

8.3 Conclusion 855

Despite extra noise and jitter in the electromagnetic mea- 856

surements, we show that COLLISION+EM succeeds in ex- 857

tracting secret data in a TrustZone environment. We can 858

conclude that TrustZones with cache flushing based coun- 859

termeasures are not resistant against COLLISION+EM. This 860

raises major security concerns for TAs handling critical data 861

(e.g., banking, authentication) on embedded devices. We are 862

able to recover secret key material with COLLISION+EM 863

with less than 10k encryptions. This means that information 864

about secrets stored and manipulated by trusted environ- 865

ments are potentially vulnerable to COLLISION+EM with 866

a reasonable time spent on measurements and analysis (a 867

few hours). As mentioned, smartphones are particularly 868

vulnerable to this threat model, as no malicious code needs 869

to be executed on the device. 870

9 DISCUSSION 871

9.1 Comparison with EM SCA 872

SoCs EM radiations encompass the activity of all the com- 873

ponents that are close to the probe. Hence, measurements of 874

small-scale phenomena (e.g., register updates) often present 875

a high amount of noise and jitter due to micro-architectural 876

complexity and concurrent activity. Even so, after EM traces 877

are gathered, traditional SCA often require preprocessing 878

steps, such as filtering or synchronization [21]. Finally, when 879

dealing with EM measurements on noisy SoCs, finding a 880

good probe position is a time consuming process (i.e., sev- 881

eral days to a month). Still, even at the best probe position, 882
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Fig. 11: Voltage range (left), top view of the board (middle) and Welch’s t-test cartography (right).

Fig. 12: Region of interest selection based on activity detec-
tion upon average of absolute traces values.

(a) T0 (G0 subgraph). (b) T1 (G1 subgraph).

(c) T2 (G2 subgraph). (d) T3 (G3 subgraph).

Fig. 13: Guessing entropy for Gj related collisions cor-
responding to each table (T0 to T3), each point displays
the average rank of the good candidate over 100 attack
iterations upon randomly sampled traces, with no warmup.

attacking a cryptosystem on a high-end SoC with non-883

profiled methods often requires up to millions of traces [29].884

By profiling DRAM accesses through EM measurements,885

we tackle some of these issues. The attacks we propose are886

more resilient to noise and jitter than classical physical side-887

channel attacks. We recall that DRAM accesses last for vari-888

ous clock cycles and produce rather high amplitude signal:889

the constrains upon the acquisition chain (e.g., ADC pre-890

cision, voltage precision, sampling rate, probe positioning)891

are less restrictive in our case. Moreover, chip packages with892

stacked DRAM on are known to impose a lot of EM traces893

gathering and preprocessing [29]. These stacked packages894

also limit the possibility for an attacker to directly probe the895

buses to harvest DRAM access information.896

Combining EM measurements with the cache attack897

paradigm comes at the cost of being more intrusive on the898

DUT. As we have seen, EVICT+EM and PRIME+EM require899

eviction set construction, hence malicious code execution.900

However, COLLISION+EM removes this limitation.901

9.2 Comparison with cache attacks 902

Cache attacks often require a high amount of malicious 903

memory accesses. The extreme case is reached with trace- 904

driven attacks, which need to profile almost every memory 905

accesses performed by the victim process. Moreover, the 906

vast majority of cache attacks require a way to measure time 907

with enough precision. Finally, software micro-architectural 908

attacks are often noisy. For example, access-driven and time- 909

driven attacks on AES first round are noisy because of other 910

rounds accesses. The method we describe here (i) has a small 911

memory footprint, as abnormal memory interactions are 912

performed for initial data evictions only, (ii) can be headed 913

with better temporal precision, (iii) does not require cycle 914

accurate timer and (iv) can target DRAM accesses through 915

time during the encryption. In terms of drawbacks, our 916

EVICT+EM and PRIME+EM attacks, presented in this paper, 917

hardly allow to profile several memory addresses at the 918

same time. Moreover, the attacker needs to have physical 919

access on the target and add several hardware components 920

to its experimental setup (i.e., oscilloscope, probe). 921

9.3 Mitigations 922

A natural countermeasure to EVICT+EM, PRIME+EM and 923

COLLISION+EM is a systematic prefetch of the victim’s data 924

before encryption. This would prevent any DRAM accesses 925

during the encryption as long as there are no self evictions 926

occurring within the victim’s process. Note that this can 927

represent a performance bottleneck. Also, such a prefetch is 928

not always possible, especially when the sensitive lookup 929

tables are wider than the available cache size. A perfor- 930

mance compromise can be reached by performing random 931

accesses to the sensitive data before encyption: this would 932

drastically increase the number of measurements required 933

by an attacker. Note that this mitigation “as-is” does not 934

prevent the attacks, and needs to be implemented jointly to 935

other security measures (e.g., frequent rekeying). 936

The attacks presented in this paper exploit side-channel 937

information leaked by DRAM accesses that are statisti- 938

cally dependent to a secret. Preventing table lookups and 939

branches from depending on a secret, which is a cornerstone 940

of so called constant time implementations [30], is also 941

a viable mitigation strategy. Note that these methods are 942

already widely deployed for asymmetric cryptography (e.g., 943

square-and-multiply always for RSA). 944

Classical SCA countermeasures such as hiding (e.g., 945

metallic shields or artificial EM noise addition), and mask- 946

ing [31] can thwart the attacks proposed in this paper. Note 947

that, due to a high tolerance to jitter, our attacks would be 948

poorly affected by shuffling countermeasures. Finally, con- 949

current activity in multi-core platforms could be employed 950
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to add noisy DRAM activity and increase the difficulty of951

our attacks.952

9.4 Related work953

Bertoni et al. [32] designed a simulated attack exploiting954

intentionally induced cache misses. More precisely, they955

target first round misses in a sbox AES implementation on a956

simulated microcontroller architecture with an 8 bytes cache957

line size. This attack provided inspirational insights for the958

EVICT+EM approach.959

Osvik and al. [3] proposed an attack on an AES T-960

tables implementation. They formalized the key recovery961

procedure for attacking the two first rounds of the AES962

with EVICT+TIME and PRIME+PROBE. They recovered963

the whole key with 500k encryptions with EVICT+TIME964

on an AMD Athlon64 CPU. Our EVICT+EM attack is an965

adaptation of EVICT+TIME.966

Dey et al. proposed a monitoring of CPU stalls induced967

by LLC misses through the observation of EM emana-968

tions [33]. For this purpose, they use micro-benchmarks969

by executing controlled code with known memory access970

behavior. They pinpoint the benefit of their work for bench-971

marking code segments when performance counters are972

unavailable (e.g., bootloaders). While our study and Dey et973

al.’s [33] both target similar memory events, the main pur-974

pose of our work is to mount a key recovery attack on975

CPUs that could be packaged with a stacked DRAM and976

potentially support Out-of-Order execution. Then, rather977

than relying on precise (and potentially device dependent)978

pattern matching results, we exploit statistical links between979

the EM radiations and DRAM accesses in order to leverage980

a differential non-profiled attack.981

Schramm et al. identified that collisions of intermediate982

variables in a cryptographic primitive are an attack vec-983

tor [34]. They experimentally confirmed this new attack984

paradigm by showing a chosen plaintext collision-DPA985

attack on the AES on an Intel 8051 compatible microcon-986

troller [35].987

Fournier and Tunstall designed a theoretical attack ex-988

ploiting cache collisions during AES encryptions [36]. The989

target is a smartcard with a single level of cache which990

is shared for instruction and data. The cache line size is991

16 bytes, thus containing 16 sbox elements. To break the992

remaining bits of each byte, they first propose a method993

exploiting second round SubBytes routine. Alternatively,994

they propose exploiting cache collisions in the MixColumns995

precomputed tables (i.e., the one performing the xtime func-996

tion). This work has been since extended [37]. Bogdanov [24]997

proposed an enhanced collision-based attack targeting Sub-998

Bytes and MixColumns outputs. He formalized the collision999

attack as a set of linear equations that can be represented1000

as a connected graph. A practical implementation of the1001

attack was shown on a PIC16F microcontroller. This work1002

was extended by combining the key ranking features of1003

DPA, Correlation Power Analysis (CPA) or Mutual Information1004

Analysis (MIA) with collision-based attack [38].1005

Gérard and Standaert formalized collision attacks linear1006

problems as a Low Density Parity Codes (LDPC) decoding1007

problem [39]. They pinpoint that collision attacks are hard-1008

ened by the diversity of possible implementations when1009

considering software primitives. This work may allow to 1010

optimize the COLLISION+EM attack. 1011

GPU caches are also vulnerable, from timing attacks [40] 1012

to correlation-collision exploiting memory coalescing [41]. 1013

Gao et al. investigated the EM leakages of cache collision 1014

on a NVIDIA GEFORCE GPU [42]. They find an AES key 1015

through chosen plaintext attack with 6k traces. The occur- 1016

rence of a collision is used as a separation criterion for a 1017

DPA attack. 1018

10 CONCLUSION 1019

In this paper, we described a new methodology to exploit 1020

the electromagnetic emanations of DRAM accesses on SoCs 1021

as an attack vector. We develop three attack scenarios, 1022

EVICT+EM, PRIME+EM and COLLISION+EM, that require 1023

a physical access to the attacked device, which is rele- 1024

vant when considering embedded devices such as smart- 1025

phones. We show that EVICT+EM enables full AES key 1026

recovery with similar precision as EVICT+RELOAD attacks 1027

with kernel level timer. Furthermore, the aforementioned 1028

attacks require no process interruption nor concurrency 1029

constraints. Eventually, we demonstrate the efficiency of 1030

COLLISION+EM, that do not require any malicious code 1031

execution. We showed that this technique allows partial 1032

key recovery against a T-Table AES implementation running 1033

in a trusted application on an ARM TrustZone. The attack 1034

even works with the presence of systematic cache flushing 1035

before encryptions. COLLISION+EM can be applied to a 1036

wide range of algorithms with secret dependent memory 1037

access patterns. This represents a threat regarding trusted 1038

execution environments on embedded devices, which re- 1039

main physically accessible to an attacker. Future work may 1040

consider recovering the addresses of the DRAM accesses 1041

to mount more efficient attacks. Eventually, it could be 1042

beneficial to evaluate the security of mitigations suggested 1043

in subsection 9.3. 1044
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