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Abstract. Recently the notion of blockwise error in a context of rank based cryptography has been
introduced in [30]. This notion of error, very close to the notion sum-rank metric [26], permits, by
decreasing the weight of the decoded error, to greatly improve parameters for the LRPC and RQC
cryptographic schemes. A little before the multi-syndromes approach introduced for LRPC and RQC
schemes in [3, 17] had also allowed to considerably decrease parameters sizes for LRPC and RQC
schemes, through in particular the introduction of Augmented Gabidulin codes.

In the present paper we show that the two previous approaches (blockwise errors and multi-syndromes)
can be combined in a unique approach which leads to very e�cient generalized RQC and LRPC schemes.
In order to do so, we introduce a new problem, the Blockwise Rank Support Learning problem, which
consists of guessing the support of the errors when several syndromes are given in input, with blockwise
structured errors. The new schemes we introduce have very interesting features since for 128 bits security
they permit to obtain generalized schemes for which the sum of public key and ciphertext is only 1.4
kB for the generalized RQC scheme and 1.7 kB for the generalized LRPC scheme. The new approach
proposed in this paper permits to reach a 40% gain in terms of parameters size when compared to
previous results [17, 30], obtaining even better results in terms of size than for the KYBER scheme
whose total sum is 1.5 kB.

Besides the description of theses new schemes the paper provides new attacks for the l-RD problem
introduced in [30], in particular these new attacks permit to cryptanalyze all blockwise LRPC param-
eters proposed in [30] (with an improvement of more than 40bits in the case of structural attacks). We
also describe combinatorial attacks and algebraic attacks, in the spirit of the recent paper [17], for the
new Blockwise Rank Support Learning problem we introduce.

1 Introduction and previous works

Background on rank metric code-based cryptography. Classical code-based cryptography relies on
the Hamming distance but it is also possible to use another metric: the rank metric. This metric introduced
in 1985 by Gabidulin [18] is very di�erent from the Hamming distance. In recent years, the rank metric
has received very strong attention from the coding community because of its relevance to network coding.
Moreover, this metric can also be used for cryptography. Indeed it is possible to construct rank-analogues
of Reed-Solomon codes: the Gabidulin codes. Gabidulin codes inspired early cryptosystems, like the GPT
cryposystem ( [19]), but they turned out to be inherently vulnerable because of the very strong structure
of the underlying codes. More recently, by considering an approach similar to NTRU [23](and also MDPC
codes [25]), constructing a very e�cient cryptosystem based on weakly structured rank codes was shown to
be possible, the LRPC cryptosystem [21]. Overall the main interest of rank-metric based cryptography is
that the complexity of the best known attack grows very fast with size of parameters: unlike (Hamming)
code-based or lattice-based cryptography, it is possible to obtain a cryptosystem based on a general instance
of the rank decoding problem with size only a few thousands bytes, when such sizes of parameters can only be
obtained with additional structure (quasi-cyclic for instance) for code-based or lattice based cryptography.
At the 2017 NIST standardization process several schemes based on rank metric were proposed (LAKE,
LOCKER, OUROBOROS-R and RQC), for the second round the three schemes LAKE, LOCKER and
OUROBOROS-R were merged in the ROLLO 2nd round submission and the RQC submission remained
as an independent submission. Eventually due to incertitudes brought by algebraic attacks [13] which at-
tacked NIST proposed parameters for rank metric, the schemes did not reach the Third round of the NIST



standardization, meanwhile the overall process permitted to give a new audience for the potentiality of rank-
based cryptosystems. The Loidreau cryptosystem [24] and its recent improvement [8] are another example
of rank-based cryptosystem. In this paper we focus on the LRPC and RQC cryptosystems.

Historical evolution of the LRPC cryptosystem. The main point which permits to obtain small size
parameters for the LRPC cryptosystem is their decoding algorithm. In the original 2014 version of the
cryptosystem [21], the Decoding Failure Rate (DFR) is related to the block size n of the code, which is
a major drawback if one intents to reach a very low DFR as expected to obtain IND-CCA2 security. The
adopted approach for LRPC was either to consider a cryptosystem with high DFR (of order 2−30, as in the
LAKE cryptosystem), or considering a very low DFR but at a cost of a high block size n, which leads to
very high parameters (as in the LOCKER cryptosystem). Overall, even if the LAKE parameters were very
appealing (public key ≃ 600 bytes) the high DFR remained a strong limitation, and on the contrary obtaining
a very low DFR implied very high parameters (4 kB) for LOCKER which made the scheme less competitive
than its high DFR counterpart. Another possibility to decrease the DFR was proposed in [9] but relies on
having a bigger m (the dimension of the extension �eld), which overall is too expensive. If one excepts the
introduction of Ideal LRPC for the second round of NIST standardization process for ROLLO, which permits
to increase the number of choices for the block size of LRPC, there was not any major breakthrough for LRPC
until the introduction in 2022 [3] of the multiple syndromes approach: this approach, based on the Rank
Support Learning problem, permits to consider several syndromes. It has a strong impact on parameters
since it permits to increase the number of considered syndromes and hence the overall decoding capacity of
the code. This approach did not really change the high DFR approach, but had a strong impact on the very
low DFR approach which reached a size (pk+ct) of 2.4 kB, a strong improvement compared to the previous
4 kB. In practice the multiple syndrome approach permits to consider a decoding capacity potentially close
to the rank Gilbert-Varshamov which has a double impact on parameters: �rst the attacks become more
expensive in complexity, and approaching the RGV bound is a parameter area for which algebraic attack
are less e�cient and have a complexity similar to combinatorial attacks. The previously cited paper [3] also
allows to build unstructured LRPC variations of the scheme with very low parameters of 7 kB, which beats
best unstructured lattices schemes. At last the paper also introduced the extended multiple syndromes (xMS)
approach in which at a cost of a slower decoding algorithm it is possible to decode LRPC codes with smaller
m, the key point to obtain smaller parameters. Very recently another approach was proposed in [30]. This
approach uses blockwise errors to increase the decoding capacity of the LRPC codes: it permits to reach
smaller parameters but not as small as the multiple syndrome approach, mainly because the classical LRPC
approach relies on large block size to reach very low DFR.

Historical evolution of the RQC cryptosystem. The RQC cryptosystem was submitted to the 2017
NIST standardization process and in [1], prepublished in 2016. It is also in the scope of the 2010 Gaborit-
Aguilar patent [4]. The scheme is an equivalent in rank metric of the HQC scheme submitted to the NIST
standardization process. The security of the protocol can be reduced to the security of random instances, but
it comes at a cost of two parts ciphertexts, which naturally implies a bigger parameters size. The main strong
feature of the RQC protocol is the fact that thanks to the Gabidulin decoder, it is possible to obtain a zero
DFR, avoiding potential DFR existential drawbacks. In practice RQC parameters were rather large and after
algebraic attacks of 2019 [13] reached 5.6 kB (for 128b security) for public key + ciphertext size. There are
two reasons for this. First the fact that the weight of the decoded error increases quadratically, which induces
a bigger block size n and hence a bigger m which for Gabidulin codes has to be greater than n. Second the
fact that for the RQC scheme the security of the code is reduced to attacking a [3n, n] code rather than a
[2n, n] code (as for LRPC), which signi�cantly impacts the complexity of attacks. Overall, although in itself
the zero DFR is an attractive feature, the parameters size is less appealing. After the RQC NIST submission
several improvements were proposed. First in 2019 a notion of non-homogeneous error was proposed for the
second round submission of RQC, this approach with a common error support for the �rst 2n coordinates
and a di�erent support the last n length block, was a way to counter the costly [3n, n] reduction. At last,
recently in [14] the notion of multiple syndromes was also extended to the RQC cryptosystem, this approach
as for LRPC is very interesting in itself but is even more e�cient with the Augmented Gabidulin codes
also introduced in [14]. The Augmented Gabidulin codes correspond to Gabidulin codes with additional zero
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positions, in practice it permits to mitigate the condition n ≤ m, it comes at a cost of obtaining a non
zero DFR but with quadratic negative exponent which makes the approach very e�cient, since it practice
it permits to decrease m but with a similar decoding capacity and for a very low DFR. This approach
combined with the multiple syndromes approach and the non-homogeneous errors, permits to reach a 2.7
kB parameters size. It also permits to reach low parameters for the unstructured case (see [14] for details).

Recent results and introduction of blockwise rank errors for rank codes for LRPC and RQC
schemes Very recently in [30], the authors introduced the notion of rank blockwise errors, which permits
to decrease the weight of decoded errors. The main idea of this approach is to consider words formed of
blocks of respective length n1, ..., nl with each block being associated to a given error ei of rank ri with
support Ei such that the supports Ei do not intersect. In the case of l = 2 it permits to get an error to
decode for LRPC of smaller weight r1.d1 + r2.d2 rather than r.d in the case of classical LRPC. In fact to
give a general idea one exchanges the complexity of searching for an error of weight 2r and length 2n by
the complexity of searching for a blockwise error of weight (r, r) associated to two blocks of length n. If one
considers r = d and r1 = r2 = d1 = d2 = r

2 , the classical LRPC approach with homogeneous errors gives

an error of weight r.d = r2 when for the blockwise case the error has weight r1.d1 + r2.d2 = r2

2 . Having
to decode of smaller weight can have a strong impact for decoding. In their paper [30] the authors then
generalize previously known attacks in their blockwise rank error case (both for combinatorial and algebraic
attacks) following recent results on non-homogeneous errors. In practice they show that in certain cases there
can be an advantage in considering the blockwise approach rather than the classical homogeneous approach.
The approach is especially interesting for the RQC scheme for which they propose parameters with size 2.5
kB (public key + ciphertext), and a little less for the ILRPC case where with high DFR 2−30 where their
parameters are 15% smaller than ROLLO-I (ex-LAKE) (but in fact as we will explain later their proposed
parameters can be broken). Overall the approach they propose is very interesting and completely develop
the potential of rank metric.

Blockwise rank errors: why this new structured error structure is completely suited for rank
metric based cryptography The notion of rank error is a well known notion, historically this metric
bene�ts from strange properties. Indeed suppose one wants to solve the RSD problem H.et = s (for e a
codeword of Fn

qm of weight r and H a random (n − k) × n matrix), the error e can be seen as an m × n
matrix and in practice the complexity of best attacks becomes linear whenever n becomes large enough.
This property is directly related to the notion of support of the error: when the error has a larger length
the support of the error does not change, this peculiar property leads to the fact that it is easily possible
to construct simple codes which can decode up to the rank Gilbert-Varshamov bound [20]. Notice that this
type of feature is not present for Hamming or Euclidean distance for instance. This property also explains
why a straightforward adaptation of the Learning Parity with Noise (LPN) or Learning With Errors (LWE)
problem does not work for rank metric, since at some point after a quadratic number of given syndromes it is
possible to polynomially solve the system. A way to obtain an equivalent approach for LPN or LWE in rank
metric is proposed in [16] in which rather than adding errors with always the same support one adds �xed
length block errors with di�erent error supports. This Learning with Rank Errors (LRE) approach permits
to get an equivalent notion to LPN and LWE. The previous LRE approach is very close to the approach
proposed in [30] and is also closely related to the sum-rank approach. Also the non homogeneous approach
of [14] can be seen as a particular case of blockwise rank errors. In practice the rank blockwise error approach
permits to e�ciently counter the attack in which for a given m one dramatically increases the length n of
the code. Concretely the best combinatorial attacks have a complexity with roughly an exponent in krm/n,
the blockwise structured error support counters the m/n e�ect so that the best attacks essentially remains
in kr for the exponent and typically this type of structured error is especially resistant for [ℓn, n] codes
with blocks of size n and m = n. This type of parameters corresponds very well to ideal LRPC and RQC
schemes for which the main attacks corresponds precisely to this case. However the case of unstructured
scheme when m is larger than n (and n is small) does not permit to bene�t from the advantage of this
blockwise structure and hence does not seem to reach any improvement. Moreover the blockwise structure,
as explained in [30] permits to decrease the weight of error to decode for LRPC and RQC. This point of view
leans in the direction that the blockwise rank error approach is the natural approach to consider for rank
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metric since �rst it naturally permits to get smaller error weight to decode and since, second, it is naturally
resilient to the very long length attack approach which necessary leads to polynomial attacks. In particular
this approach is especially e�cient for RQC since it permits to counter the [3n, n] attack which strongly
impacts parameters. This explains why RQC parameters of [30] are rather small. In practice this block size
approach is especially interesting for the case where the main attack arises for m << n, which is precisely
the case of ideal LRPC and RQC.

Contributions In this paper we combine the two previous approaches : multiple syndromes (together
with Augmented Gabidulin codes) and blockwise errors for LRPC and RQC schemes. This new combined
approach is especially e�cient for the RQC scheme for which it permits to obtain parameters of size 1.4
kB (public key + ciphertext) for 128 bit security, since the blockwise approach counters the [3n, n] security
reduction. However the approach in the case of LRPC codes combined with the xMS approach of [3] also
remains interesting with a 1.7 kB size. These results are really a big step compared to previous results with
a 40% decrease in terms of parameters size, giving parameters even smaller than KYBER parameters (1.5
kB), it is the �rst time that one gets so small parameters in rank metric (and codes in general) along with
very small DFR.

Besides these main results the contributions are the following:

- We de�ne a new problem : the Blockwise Rank Syndrome Learning problem which permits to design new
generalized LRPC and RQC schemes using multiple syndromes and blockwise rank error approaches. We
generalize the xMS approach of [3] for the case of rank block errors.

- We give new attacks for the ℓ-RD blockwise error problem, in particular we break all parameters of [30]
for their LRPC variations. Notice that it does not alter the con�dence we can have in the scheme, since
parameters can be increased to thwart this attack.

- We give generalized combinatorial and algebraic attacks for the new Blockwise Rank Syndrome Learning
problem.

- We revisit some combinatorial and algebraic attacks described in [30].

Organisation of the paper Section 1 gives a general overview of the situation for LRPC and RQC schemes
and also gives a perspective on the blockwise rank error approach. Section 2 gives the general background on
rank metric and cryptographic schemes. Section 3 describes the new blockwise RSL problem together with
the generalization of the XMS approach in the case of blockwise rank errors. Section 4 gives a description of
our new generalized RQC and LRPC schemes. Section 5 and 6 gives details for combinatorial and algebraic
attacks for the problem we consider , but also revisit some complexities of [30]. Section 7 describes the
cryptanalyze of LRPC parameters of [30]. At lest Section 8 describes new parameters with our new approach
and compares to other schemes.

2 Preliminaries and background

2.1 Background on rank metric

De�nition 1 (Rank metric over Fn
qm). Let x = (x1, . . . , xn) ∈ Fn

qm and let (b1, . . . , bm) ∈ Fm
qm be a basis

of Fqm over Fq. Each coordinate xj is associated to a vector of Fm
q in this basis: xj =

∑m
i=1 mijbi. The m×n

matrix associated to x is given by M(x) = (mij)1⩽i⩽m
1⩽j⩽n

.

The rank weight ∥x∥ of x is de�ned as the rank of M(x). This de�nition does not depend on the choice of
the basis. The associated distance d(x,y) between elements x and y in Fn

qm is de�ned by d(x,y) = ∥x− y∥.

The support of x, denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates of x: Supp(x)
def
=

⟨x1, . . . , xn⟩. We have dimSupp(x) = ∥x∥.
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De�nition 2 (Fqm-linear code). An Fqm-linear code C of dimension k and length n is a subspace of
dimension k of Fn

qm seen as a rank metric space. The notation [n, k]qm is used to denote its parameters.

The code C can be represented by two equivalent ways:

� by a generator matrix G ∈ Fk×n
qm . Each row of G is an element of a basis of C,

C = {xG,x ∈ Fk
qm}.

� by a parity-check matrix H ∈ F(n−k)×n
qm . Each row of H determines a parity-check equation veri�ed by

the elements of C:
C = {x ∈ Fn

qm : Hxt = 0}.

We say that G (respectively H) is under systematic form if and only if it is of the form (Ik|A) (respectively
(In−k|B)).

2.2 Di�cult problems in rank metric

We begin by recall the two main equivalent problems of decoding in rank metric:

De�nition 3 (RD Problem). On input (G,y) ∈ Fk×n
qm × Fn

qm , the Rank Syndrome Decoding problem
RD(n, k, r) asks to compute e ∈ Fn

qm such that y = xG+ e and ∥e∥ ≤ r.

De�nition 4 (RSD Problem). On input (H, s) ∈ F(n−k)×n
qm ×Fn−k

qm , the Rank Syndrome Decoding problem
RSD(n, k, r) asks to compute e ∈ Fn

qm such that Het = st and ∥e∥ ≤ r.

It is proven in [28] that the Syndrome Decoding problem in the Hamming metric, which is a well-known
NP-hard problem, is probabilistically reduced to the RSD problem. The following problem was introduced
in [20] and generalizes the Rank Syndrome Decoding problem: instead of having only one syndrome, several
syndromes which shares the same support are given as input.

De�nition 5 (RSL Problem). On input (H,S) ∈ F(n−k)×n
qm ×Fℓ×(n−k)

qm , the Rank Support Learning Problem

RSL(n, k, r, ℓ) asks to compute a subspace E of Fqm of dimension r, such that there exists a matrix V ∈ Eℓ×n

such that HVt = St

The security of the RSL problem is similar to the RSD problem for a small number of syndromes. A detailed
analysis of the di�culty of solving this problem can be found in [3].

2.3 Ideal codes

Let P ∈ Fq[X] an irreducible polynomial of degree n. We de�ne the intern product of two vectors x,y in
Fn
qm as:

xy
def
= X(X)Y(X) mod P

where X(X) =
∑k−1

i=0 xiX
i and Y(X) =

∑k−1
i=0 yiX

i. It can be seen as a matrix-vector product by the
so-called ideal matrix generated by x and P .

De�nition 6 (Ideal matrix). Let P ∈ Fq[X] a polynomial of degree n and v ∈ Fn
qm . The ideal matrix

generated by v and P , noted IMP (v) (or IM(v) if there is no ambiguity on the value of P ), is an n × n
whose coe�cients belong to Fqm , such that:

IMP (v) =


v(X) mod P
Xv(X) mod P

...
Xk−1v(X) mod P

 .
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One can see that u · v = uIM(v) = vIM(u) = v · u. An ideal code C of parameters [sn, tn]qm is an
Fqm-linear code which admits a generator matrix made of s× t ideal matrix blocks. A crucial point is that
if P ∈ Fq[X] is irreducible and n and m are prime, then C admits a systematic generator matrix made of
ideal block [1]. Hereafter, we only consider the case t = 1.

De�nition 7 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n, and gi ∈ Fn
qm for i ∈

{1, ..., s − 1}. We call the [sn, n]qm ideal code C of generators (g1, ..., gs−1) the code with generator matrix
G =

(
In IM(g1) ... IM(gs−1)

)
∈ Fn×sn

qm . Equivalently, C admits a parity check matrix of the form

H =

 IM(h1)

In(s−1)
...

IM(hs−1)

 .

We can therefore de�ne the RSD and RSL problem adapted to ideal codes.

De�nition 8 (IRSD Problem). Let H the parity check matrix of a [sn, n] ideal code. On input (H, s) ∈
F(s−1)n×sn
qm × F(s−1)n

qm , the Ideal Rank Support Decoding Problem IRSD(n, s, r) asks to compute a subspace E
of Fqm of dimension r, such that there exists a matrix e ∈ En such that Het = st

De�nition 9 (IRSL Problem). Let H the parity check matrix of a [sn, n] ideal code. On input (H,S) ∈
F(s−1)n×sn
qm ×FN×(s−1)n

qm , the Ideal Rank Support Learning Problem IRSL(n, s, r,N) asks to compute a subspace

E of Fqm of dimension r, such that there exists a matrix V ∈ EN×n such that HVt = St

2.4 LRPC codes

LRPC codes, introduced by [21], are well suited codes for cryptography thanks to their strong decoding
capacity and their weak algebraic structure.

De�nition 10 (LRPC code). Let H = (hi,j)(i,j)∈{1,...,n−k}×{1,...,n} ∈ F(n−k)×n
qm a full-rank matrix, whose

coordinates generate an Fq-vectorial space F = ⟨hi,j⟩ of small dimension d. Let C the code with parity
check matrix H. By de�nition, C is an [n, k]qm LRPC code of dual weight d. Such a matrix H is called a
homogeneous matrix of weight d and support F .

We clearly see that it is possible to combine the two ideas above to obtain codes whose parity check matrix
has the two properties on the same time, by imposing to the set of polynomials (hi)i to have its coe�cents
belonging to a vectorial space of small dimension. This is the type of code that we use later in our new
schemes.

De�nition 11 (Ideal-LRPC code). An Ideal-LRPC code is both an Ideal code and an LRPC code.

Notice that the IRSL problem isn't easier if H is a low-rank parity check matrix than in the general case
of a random Ideal Parity check matrix. Let F the vectorial space generated by coe�cient of an low-rank
parity check matrix. Then there exists an e�cient algorithm Rank Support Recover (RSR) that takes in
input F , the syndrome associated to the error and its rank, and recovers the support of the error [21]. Let
P ∈ Fq[X] an irreducible polynomial of degree n. ⊕ denotes here the bitwise XOR. The LOCKER Public
Key Encryption scheme, presented in Figure 1, was introduced in [7]. Its security relies on the di�culty to
solve the IRSD problem, whose the parity check matrix in instance is

(
1 h

)
.

A Key Encapsulation Mechanism KEM = (KeyGen,Encap,Decap) is a triple of probabilistic algorithms
together with a key space K. The key generation algorithm KeyGen generates a pair of public and secret keys
(pk, sk). The encapsulation algorithm Encap uses the public key pk to produce an encapsulation c and a key
K ∈ K. Finally Decap, using the secret key sk and an encapsulation c, recovers the key K ∈ K, or fails and
returns ⊥.
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KeyGen(1λ):

- Sample uniformly (x,y)
$←− S2n

d (Fqm ).

- Compute h = x · y−1 mod P

- Output pk = h and sk = (x,y)

Encrypt(pk,m):

- Sample uniformly at random (e1, e2)
$←− S2n

r (Fqm )

- Compute E = Supp(e1, e2) and cipher = m⊕ H(E)

- Compute c = e1 + e2 · h and output ct = (cipher, c).

Decrypt(sk, ct):

- Compute s = xc, set F = Supp(x,y) and retrieve E = RSR(F, s, r)

- Output m = cipher ⊕ H(E)

Fig. 1: Description of the LOCKER scheme

The encapsulation scheme also needs a hash function H, modeled as a random oracle. The KEM scheme
shown in Figure 2 has been introduced in [3], and exploits several syndromes given for decoding. Its security
relies on RSL problem.

KeyGen(1λ):

- Choose uniformly at random a subspace F of Fqm of dimension d.

- Sample U = (A|B)
$←− F (n−k)×n.

- Output H = (In−k|A−1B) the systematic form of U.

Encap(H):

- Choose uniformly at random E of dimension r.

- Sample uniformly V
$←− En×N

- Output C = HV

- De�ne K = H(E)

Decap(C,U):

- Compute S = AC

- Recover E ← RSR(F,S, r)

- Return K = H(E) or ⊥ if RSR failed.

Fig. 2: Algorithms KeyGen, Encap and Decap of the Key Encapsulation Mechanism ILRPC-MS

2.5 Augmented Gabidulin codes

Augmented Gabidulin codes have been introduced in [17]. They are an improvement of Gabidulin codes,
which can be seen as an analog of Reed-Solomon codes in rank metric, where standard polynomials are
replaced by q-polynomials. The main idea behind these codes is to add a sequence of zeros at the end of the
Gabidulin codes; by doing this, one directly gets elements of the support of the error, which correspond to
support erasure in a rank metric context. More precisely, support erasures are de�ned as a subspace of the
vector space spanned by the coordinates of the error, i.e. the support of the error.

We will only recall here the basic de�nitions and properties, the interested reader can found more details
and proofs in [17].

De�nition 12 (Augmented Gabidulin codes). Let (k, n, n′,m) ∈ N4 such that k ≤ n′ < m < n. Let
g = (g1, . . . , gn′) be an Fq- linearly independent family of n′ elements of Fqm and let g be the vector of
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length n which is equal to g padded with n − n′ extra zeros on the right. The Augmented Gabidulin code
G+
g
(n, n′, k,m) is the code of parameters [n, k]qm de�ned by:

G+
g
(n, n′, k,m) :=

{
P (g), degq(P ) < k

}
,

where P (g) := (P (g1), . . . , P (gn′), 0, . . . , 0).

Proposition 1 (Decoding capacity of Augmented Gabidulin codes). Let G+
g
(n, n′, k,m) be an aug-

mented Gabidulin code, and let ε ∈ {1, 2, . . . ,min(n − n′, n′ − k)} be the dimension of the vector space
generated by the support erasures. Then, G+

g
(n, n′, k,m) can uniquely decode an error of rank weight up to

t :=

⌊
n′ − k + ε

2

⌋
.

Proposition 2 (Decoding Algorithm for Augmented Gabidulin codes). Let G+
g
(n, n′, k,m) be an

augmented Gabidulin code, and let ε ∈ {1, 2, . . . ,min(n − n′, n′ − k)} be the dimension of the vector space
generated by the support erasures. This code bene�ts from an e�cient decoding algorithm correcting errors

of rank weight up to δ :=
⌊
n′−k+ε

2

⌋
with a decryption failure rate (DFR) of:

qδ(n
′−n)

ϵ∑
i=1

i−1∏
j=0

(qδ − qj)(qn−n
′ − qj)

qi − qj

2.6 RQC-MS-AG scheme

An encryption scheme presented later is an improvement of the RQC-MS-AG (RQC - Multi Syndrome -
Augmented Gabidulin) Public Key Encryption (PKE) scheme, introduced in [17], that we present here. We
brie�y recall the two initial Multi-RQC-AG schemes (there are two: the standard scheme and the other with
non homogeneous errors), for which we need the following notations:

Sn
ω,1(Fqm) = {x ∈ Fn

qm | ∥x∥ = ω, 1 ∈ Supp(x)}

S3n
(ω1,ω2)

(Fqm) ={x = (x1,x2,x3) ∈ F3n
qm |

∥(x1,x3)∥ = ω1,

∥x2∥ = ω1 + ω2,

Supp(x1,x3) ⊂ Supp(x2)}

Let n1 and n2 two integers, and let P ∈ Fq[X] an irreducible polynomial of degree n2. Two types of codes
are used in the RQC scheme: a �rst random [2n2, n2]qm ideal code with parity check matrix

(
1 h

)
which

permits to ensure the security of the scheme, and a second public code which permits to code and decode the
ciphertext. Augmented Gabidulin codes are used as public decryption codes, thanks to their high capacity
of decoding. The resulting schemes can be found in Figure 3 and Figure 4.

2.7 Blockwise errors and related problems

The block-wise errors have been recently introduced in [30], where they exploit a particular structure of the
error to increase the capacity of decoding.

De�nition 13 (Blockwise ℓ-error). Let n = (n1, ..., nℓ) ∈ Nℓ and r = (r1, ..., rℓ) ∈ Nℓ vectors of integers,

and n =
∑ℓ

i=1 ni. We say that an error e ∈ Fn
qm is an ℓ-error with parameters n and r if it is the concatenation

of ℓ vectors e = (e1, ..., eℓ) such that:

� For all i ∈ {1, ..., ℓ}, the vector ei ∈ Fni
qm has rank-weight ri,

8



KeyGen(1λ):

- Sample uniformly h
$←− Fn

qm , g
$←− Sn′

n′ (Fqm ) and (x,y)
$←− S2n2

ω,1 (Fqm ).

- Compute s = x+ h · y mod P

- Output pk = (g,h, s) and sk = (x,y)

Encrypt(pk,m):

- Compute the generator matrix G ∈ Fk×n1n2
qm

of the code G+
g
(n1n2, n

′, k,m)

- Sample uniformly at random (R1,E,R2)
$←− Sn2×3n1

ω1,ω2
(Fqm )

- Compute U = R1 +H ·R2 mod P and V = mG+ s ·R2 + E

- Output C = (U,V)

Decrypt(sk,C):

- Output G+
g
.Decode(Unfold(V− y ·U))

Fig. 3: Description of the RQC-AG-MS scheme

KeyGen(1λ):

- Sample uniformly H
$←− Fn×n

qm
, g

$←− Sn′
n′ (Fqm ) and (x,y)

$←− Sn×2n1
ω,1 (Fqm ).

- Compute S = X+HY

- Output pk = (g,H,S) and sk = (X,Y)

Encrypt(pk,m):

- Compute the generator matrix G ∈ Fk×n1n2
qm

of the code G+
g
(n1n2, n

′, k,m)

- Sample uniformly at random (R1,E,R2)
$←− Sn2×(n,n1,n)

ω1,ω2
(Fqm )

- Compute U = R1 +R2H and V = Fold(mG) +R2 · S+ E

- Output C = (U,V)

Decrypt(sk,C):

- Output G+
g
.Decode(Unfold(V−UY))

Fig. 4: Description of the RQC-AG-MS scheme with non-homogeneous errors

� For all i ̸= j, Supp(ei) ∩ Supp(ej) = {0}

We denote Snr as the set of blockwise errors with parameters n and r. For an integer N and vectors n
and r, we can similarly de�ne SN×n

r , the set of matrices of size N × ni whose elements are block matrices
{M = (M1, ...,Mℓ)} such that Mi ∈ FN×ni

qm and all its entries lying in a subspace of dimension ri.

Let V = (Vi)i∈{1,...,ℓ} a �nite sequence of subspaces of Fqm such that dimVi = ri and for all i ̸= j:
Vi ∩Vj = {0}. We denote Snr (V) the set of vectors of the form x = (x1, ...,xℓ), such that for all i ∈ {1, ..., ℓ},
the coe�cients of xi belongs to Vi. Similarly, we denote as S

N×n
r (V) the set of matrices of size N × n whose

lines belong to Snr (V).

We can naturally de�ne a generalization of the RD and IRSD problems by considering only blockwise errors.

De�nition 14 (ℓ − RD problem). Let n = (n1, ..., nℓ) ∈ Nℓ and r = (r1, ..., rℓ) ∈ Nℓ vectors of integers,

and n =
∑ℓ

i=1 ni. Given G ∈ Fk×n
qm of full rank, y = xG + e where x is uniformly sampled from Fk

qm and
e ∈ Sn

r
, the Blockwise Rank Decoding problem RD(n, k, r,m) asks to �nd x and e.

De�nition 15 (ℓ− IRSD problem). Let n = (n1, ..., nℓ) ∈ Nℓ and r = (r1, ..., rℓ) ∈ Nℓ vectors of integers,

and n =
∑ℓ

i=1 ni. Let H the parity check matrix of a [sn, n] ideal code. On input (H, s) where st = Het and
e ∈ Sn

r
, the Blockwise Ideal Rank Syndrome Decoding problem IRSD(n, k, r,m) asks to �nd e.

9



An improved version of LOCKER based on the 2-IRSD problem have been proposed in [30]. The scheme is
presented in Figure 5. The algorithm denoted RSR is similar to the previous de�ned in Figure 1, but suitable
for decoding blockwise errors.

KeyGen(1λ):

- Sample uniformly (x,y)
$←− S(n1,n2)

(d1,d2)
(Fqm ).

- Compute h = x · y−1 mod P

- Output pk = h and sk = (x,y)

Encrypt(pk,m):

- Sample uniformly at random (e1, e2)
$←− S(n1,n2)

(r1,r2)
(Fqm )

- Compute E1 = Supp(e1), E2 = Supp(e2), E = E1 + E2 and cipher = m⊕ H(E)

- Compute c = e1 + e2 · h and output ct = (cipher, c).

Decrypt(sk, ct):

- Compute xc = xe1 + ye2, and retrieve (E1, E2) = RSR((x,y),xc, r1, r2)

- Compute E = E1 + E2, and output m = cipher ⊕ H(E)

Fig. 5: Description of the Blockwise LOCKER scheme

3 ℓ-LRPC codes and their decoding

In this section we study multiple decoding algorithms for ℓ-LRPC codes, in particular, we focus on the
decoding of ℓ-errors. First we present the decoding algorithm as well as the analysis of the decoding failure
rate (DFR) from [30], adapted to decode multiple syndromes. We then generalize this algorithm using the
techniques from [3].

3.1 New problems related to blockwise errors

We introduce in this subsection new problems of decoding when several syndromes associated to errors
with the same blockwise support are given in input. The security of our new schemes is conditioned by the
hardness of these new problems.

De�nition 16 (ℓ-RSL problem). Given (H,HEt), whereH ∈ F(n−k)×n
qm is of full rank, and E = (E1, ...,Eℓ) ∈

FN×n
qm is a block matrix such that for all i ∈ {1, ..., ℓ}, Ei ∈ FN×ni

qm has all its entries lying in a subspace Vi

of dimension ri, the Blockwise - Rank Support Learning Problem ℓ-RSL(m,n, r, k,N) asks to �nd the set of
subspaces (Vi)i∈{1,...,ℓ}.

We can also de�ne a variant of this problem in the case of an ideal code [sn, n]qm , whose systematic matrix
is de�ned by a set of polynomials (hi)i∈{1,...,s−1}. We consider only the particular case of s-errors whose the
s blocks have the same length n.

De�nition 17 (s-IRSL problem). LetH the parity check matrix of a [sn, n]qm ideal code. Let r = (r1, ..., rs) ∈
Ns and n = (n, ...n) ∈ Ns. On input (H,S) ∈ F(s−1)n×sn

qm × FN×(s−1)n
qm , the Blockwise - Ideal - Rank Support

Learning Problem IRSL(s, n, r,N) asks to compute a set of s subspaces E = (E1, ..., Es) in Fqm such that
dimEi = ri, Ei ∩Ej = {0} for i ̸= j, and such that there exists a matrix V ∈ SN×n

r
(E) such that HVt = St

3.2 Decoding algorithm and multiple syndromes

We recall the de�nition of ℓ-LRPC codes from [30]:

10



De�nition 18. Let H = (H1, . . . ,Hℓ) be an (n− k)× n matrix over Fqm such that:

� The coe�cients of the submatrix Hi ∈ F(n−k)×ni

qm generate an Fq-subspace Fi of Fqm of small dimension
di,

� The support of all these submatrices are mutually disjoint: Fi ∩ Fj = ∅ for all i ̸= j.

Let C be the code with parity-check matrix H. By de�nition C is an ℓ-LRPC code.

The decoding algorithm of ℓ-LRPC codes is described Algorithm 1. We refer the reader to [9, 30] for the
proofs of correctness of this decoding algorithm.

Algorithm 1 Decoding algorithm of ℓ-LRPC codes for ℓ-errors

Input: A collection of syndromes (s1, . . . , sN ) ∈ F(n−k)×N
qm and the parity-check matrix H ∈ F(n−k)×k

qm

Output: The ℓ-error e, or error
Compute the syndrome space S = ⟨s1,1, . . . sN,n−k⟩
Let {Fi1, . . . Fidi} be a basis of Fi for all i
Compute Sij = F−1

ij S for all i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , di}

Compute Ei =
di⋂
j=1

Sij

if dim(Ei) ̸= ri for any i then
return error

else

Recover E =
ℓ∑

i=1

Ei

Solve the linear system He = s with e ∈ En as unknown
return e

Algorithm 1 has a non-null DFR. There are two cases that makes the algorithm fail:

1. The dimension of the syndrome space S is lower than the dimension of the whole product space
ℓ∑

i=1

EiFi,

2. There exists i such that Ei ⊋
di⋂
j=1

Sij .

An upper bound of the decoding failure rate is given in Theorem 1.

Theorem 1. Let µ =
ℓ∑

i=1

ridi and let N be the number of given syndromes. Under the assumption that each

sij behaves like a random element of
ℓ∑

i=1

EiFi, the decoding failure probability of ℓ-LRPC codes is bounded

by:

q−(N(n−k)−µ) +

ℓ∑
i=1

q−(di−1)(m−µ)+µ−ri

To prove this theorem we use the following result from [7]:

Proposition 3. Let r and d be two integers. Let E be a �xed subspace of dimension r and let Ri, 1 ⩽ i ⩽ d,
be d independently chosen random subspaces if dimension rd containing the subspace E. The probability that

dim
d⋂

i=0

Ri > r is bounded from above by:

11



qrd−r
(
qrd − qr

qm

)d−1

≈ q−(d−1)(m−rd−r)

Proof. First we study the probability that dim(S) < dim(
ℓ∑

i=1

EiFi).

Each sij is an element of the product space P =
ℓ∑

i=1

EiFi. We can thus write the syndromes (s1, . . . , sN ) as

an N(n−k)×µ matrix by unfolding each sij in a basis of P . By assumption, each sij behaves like a random

element of
ℓ∑

i=1

EiFi, thus the probability that dim(S) < dim(P ) is equal to the probability that a random

N(n− k)× µ matrix is not full rank, which is not more than q−(N(n−k)−µ) (see [9] for a proof of this upper
bound).

The second case which leads to a decoding failure is the case where there exists i such that Ei ⊋
di⋂
j=1

Sij .

From Proposition 3 we have that for each 1 ⩽ i ⩽ ℓ, the probability that Ei ⊋
di⋂
j=1

Sij can be upper bounded

by q−(di−1)(m−µ−ri). We need to recover Ei for all 1 ⩽ i ⩽ ℓ, hence the result.

3.3 Extended decoding algorithm

Using the techniques from [3], we extend Algorithm 1 to reduce its DFR. The resulting algorithm is Algo-
rithm 2.

Algorithm 2 Decoding algorithm of ℓ-LRPC codes for ℓ-errors

Input: A collection of syndromes (s1, . . . , sN ) ∈ F(n−k)×N
qm , the parity-check matrix H ∈ F(n−k)×k

qm and an algorithm
parameter c

Output: The ℓ-error e, or error
Compute the syndrome space S = ⟨s1,1, . . . sN,n−k⟩
Let {Fi1, . . . Fidi} be a basis of Fi for all i
Compute Sij = F−1

ij S for all i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , di}

Compute Ei =
di⋂
j=1

Sij

if dim(Ei) > ri + c for any i then
return error

else

E′ =
ℓ∑

i=1

Ei

Solve the linear system He = s with e ∈ E′n as unknown
return e

Correctness of the Algorithm 2. The linear systemHe = s has (n−k)m equations in Fq and
ℓ∑

i=1

ni(ri+c)

unknowns. As long as the system has more equations than unknowns, then it will have a unique solution
with overwhelming probability. The rest of the algorithm works the same way as Algorithm 1.

Theorem 2. Let µ =
∑
i=1

ridi and let N be the number of given syndromes. Under the assumption that each

sij behaves like a random element of
ℓ∑

i=1

EiFi, the decoding failure probability (DFR) of the extended decoding

algorithm for ℓ-LRPC codes is bounded by:
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q−(N(n−k)−µ) +

ℓ∑
i=1

q
1

ϕ(q−1)
(c+1)(µ−ri−(c+1)+(di−1)(µ−m))

Where ϕ is the Euler function given by:

ϕ(x) =

inf∏
k=1

(1− xk)for∥x∥ < 1

Proof. The probability that the dimension of the syndrome space is lower than the dimension of the product
space is the same as for Algorithm 1.

For each 1 ⩽ i ⩽ ℓ, we want to compute the probability that dim(
di⋂
j=1

Sij) > ri + c. From [3, Proposition 3]

we have:

P (dim(
⋂
j=1

diSij) > ri + c) ⩽ q
1

ϕ(q−1)
(c+1)(µ−ri−(c+1)+(di−1)(µ−m))

Hence the result.

4 New cryptographic schemes based on support learning problem with

blockwise errors

4.1 RQC-MS-AG scheme with blockwise errors

In this subsection, we improve the RQC-MS with Augmented Gabidulin codes by sample 2-errors and 3-errors
rather than unstructured errors.

Let n1 and n2 positive integers, and P ∈ Fqm [X] an irreducible polynomial of degree n1. For a vector v ∈ Fn2
qm

and a matrix M ∈ Fn2×n1
qm whose columns are denoted mi for i ∈ {1, ..., n1}, we de�ne a generalization of

product of two vectors with:
v ·M =

(
(vm1)

t, ..., (vmn1
)t
)

Let v = (v1, ...,vn1
) ∈ Fn

qm with every vi ∈ Fn2
qm for all i ∈ {1, ..., n1}. The procedure Fold turns the vector

v into a matrix Fold(v) =
(
vt
1, ...,v

t
n1

)
∈ Fn2×n1

qm .

Protocol. Let G the generator matrix of an Augmented Gabidulin [n1n2, k]qm , that can correct up to
δ =

⌊
m−k+ε

2

⌋
errors. There exists an e�cient algorithm Decode that allows to decode noisy words x ∈ Fn

qm .

The scheme uses two other codes: a random ideal code [2n1, n1]qm with parity check matrix
(
1 h

)
, and a

random ideal code [3n1, n1]qm with parity check matrix

(
1 0 h
0 1 s

)
. A description of the resulting scheme can

be found in Figure 6.

Proposition 4. The decryption algorithm is valid as long as:

∥Unfold(x ·R2 − y ·R1 +E)∥ ≤ δ

Proof. The correctness of the scheme follows from:

V− y ·U = Fold(mG) + (x+ hy) ·R2 +E− y · (R1 + hR2)

= Fold(mG) + x ·R2 − y ·R1 +E
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KeyGen(1λ):

- Sample randomly from the seed λ: g
$←− Sm

m , h
$←− Fn1

qm
and (x,y)

$←− S
(n1,n1)

(rx,ry)

- Compute s = x+ h · y mod P

- Output pk = (g,h, s) and sk = (x,y)

Encrypt(pk,m):

- Compute the generator matrix G ∈ Fk×n1n2
qm

of the code G+
g
(n1n2,m, k,m)

- Sample (R1,R2,E)
$←− S

n2×(n1,n1,n1)

(r1,r2,re)

- Compute U = R1 + h ·R2 and V = Fold(mG) + s ·R2 + E

- Output C = (U,V)

Decrypt(sk,C):

- Output Decode(Unfold(V−UY))

Fig. 6: Algorithms KeyGen, Encrypt and Decrypt of the RQC-MS-AG scheme with blockwise errors

Therefore:
Unfold(V− y ·U) =mG+ Unfold(x ·R2 − y ·R1 +E) ∈ Fn

qm

It does mean that the algorithm Decode will output m as long as:

∥Unfold(x ·R2 − y ·R1 +E)∥ ≤ δ

4.2 ILRPC-MS with blockwise errors

Our new scheme presented in �gure 7 is an adaptation of the one in [3] with ℓ-errors, in the case of an
ideal code generated by a polynomial h = x−1y, where x,y ∈ Fqm [X]. Decode is an algorithm that allows to
decode LRPC codes in case of blockwise errors, for example Algorithm 1. Note that this algorithm output the
error vector rather than its support, but �nding the full vector error or its support are equivalent problems.
By default when the extended decoding algorithm is not used the system is denoted by ILRPC-Block-MS, in
the case where the extended algorithm of previous section is used with parameter c, the scheme is denoted
by ILRPC-Block-XMS(r+c).

KeyGen(1λ):

- Choose uniformly at random two subspaces F1 and F2 of Fqm of respective dimensions d1 and d2.

- Sample a couple of polynomials whose coe�cients belong to F : (x,y)
$←− Fn × Fn.

- Compute h = x−1y

- Output pk = h and sk = (x,y)

Encap(pk):

- Choose uniformly at random V = (V1,V2) such that dimVi = ri and V1 ∩ V2 = {0}

- Sample uniformly N polynomials whose coe�cients belong to S(n,n)
r

(V): (e1, ..., eN )
$←− (S(n,n)

r
(V))N

- Write each vector ei as concatenation of ei,1 and ei,2, i.e. ei = (ei,1|ei,2)

- Compute ci = ei,1 + ei,2h

- De�ne K = H(V) and output c = (c1, ..., cN )

Decap(sk, c):

- Compute S = (xc1, ...,xcN )

- Recover V ← Decode(F,S, r)

- Return K = H(V) or ⊥ if the Decode algorithm failed.

Fig. 7: Algorithms KeyGen, Encap and Decap of the Key Encapsulation Mechanism ILRPC-Block-MS
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5 Combinatorial attacks

In this section, we present combinatorial attacks against three di�cult problems adapted to blockwise errors:

1. For the ℓ− RD problem, we present an adaptation of the AGHT attack, di�erent from [30], as well as a
new attack called Shortening and Truncating. We compare these attacks on a speci�c parameter case;

2. For the ℓ− RSL problem

3. A structural attack against ℓ-LRPC codes.

5.1 Combinatorial attacks against ℓ-RD

To study the complexity of solving the ℓ-RD problem with combinatorial attacks, we will adapt and derive
the new complexity of the attacks from [10, 22, 27] to the case of ℓ-errors. Most of the times, we present
results in a simpli�ed situation where k = n, n1 = · · · = nℓ = n, r1 ≤ r2 ≤ · · · ≤ rℓ.

These attacks are similar to what was presented in [29], although it does not require the support to be
disjoint. Another di�erence is that we take advantage of simpli�ed situations as explained in the previous
paragraph.

5.1.1 The Ourivski-Johansonn attack As presented in [30], the complexity of the OJ attack when
k = n, n1 = · · · = nℓ = n, r1 ≤ r2 ≤ · · · ≤ rℓ is

O((m(r − 1) + (n− r1))
ωq(r1−1)(n−r1)+rℓ) (1)

5.1.2 The AGHT attack

The general idea of the AGHT attack from [10] is to �rst compute a parity-check matrix H′ of the code
C′ which is generated by a parity-check matrix of the code C and x, where x is a solution to the equation
Hx⊺ = s⊺. Then if e is solution to the ℓ-RD problem, any e′ = αe, α ∈ Fqm , is solution to the system:

H′e′⊺ =0

∥e′∥ =r
(2)

The strategy to solve this system is as follows:

� Randomly sample F , a subspace of Fqm of dimension t,

� Solve the system H′e′⊺ = 0 with e′ ∈ Fn. This system has m(n− k − 1) equations and nt unknowns in
Fq.

Complexity of the attack.

The value t is chosen as t = ⌊m(n−k−1)
n ⌋ = m − ⌈m(k+1)

n ⌉ in order to have more equations than unknowns.
This way if for any αE = αSupp(e) we have αE ⊂ F , we will obtain a codeword of weight r of C′ and from
that we can recover the solution e to the ℓ-RD problem. We refer the reader to [10] for more details about
this step. The probability that αE ⊂ F can be approximated by:

qm − 1

q − 1

[
t
r

]
q[

m
r

]
q
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Which gives a total complexity of:

O((n− k)3m3qr⌈
(k+1)m

n ⌉−m)

Adaptation to ℓ-errors

In order to adapt this algorithm to the case of ℓ-errors, we will sample ℓ di�erent vector spaces Fi of dimension
ti, and the algorithm will succeed if ∃α such that ∀i, αEi ⊂ Fi. Using the same techniques as in [10] this
probability can be approximated by:

qm − 1

q − 1

ℓ∏
i=1

q−ri(m−ti)

Which gives a total complexity of:

O((n− k)3m3q
−m+

ℓ∑
i=1

ri(m−ti)
) (3)

In the following we restrict ourselves to the case where ∀i, ni =
n
ℓ .

The total complexity depends on the choice of tis. First we must choose these values such that
ℓ∑

i=1

tini ⩽

m − ⌈m(k+1)
n ⌉ for the system to have more equations than unknowns, and ti > ri for having a non-zero

probability that Ei ⊂ Fi. Then there are two cases:

1. All of the ris are equal. In this case the choice of the tis does not change the complexity, and the
complexity is the same for ℓ-errors and an error of weight r.

2. The ris are not equal. In this case the optimal strategy is to try to make perfect guesses for the smaller
ris (i.e choosing ti = ri) in order to have the highest possible value for the ti corresponding to the highest
ri.

The more the ris are di�erent, the bigger the advantage of speci�cally targeting ℓ-errors instead of errors of
weight r.

Comparison with [30].

In [30, Section 3.3], the authors propose an adaptation of the AGHT attack to the case of ℓ-errors. We claim
their adaptation misestimates the complexity of ℓ-AGHT attack. We give below two arguments to support
our assertion.

First, in the demonstration of their Lemma 3.5 (cf. [30, Appendix C.1]), they seem to imply that the number
of subspaces of Fqm of dimension t2 disjoint from a �xed E1 is exactly equal to the number of subspaces of
Fqm/E1 of dimension t1, which is not the case. In particular, in their ℓ = 2 example, they guess a subspace

F2 in Fqm/E1, but in order to perform the rest of the attack, this F2 needs to be lifted in Fqm into a F̂2.

Even though F2 contains E2/E1, it is not guaranteed that F̂2 will contain E2, as it depends on the choice of
the representatives for the lifting.

Second, as we understood their attack, sampling Fℓ requires a correct guess for each E1, . . . , Eℓ−1. Therefore
F1, . . . , Fℓ−1 play no role in the attack, which sounds somewhat strange.

5.1.3 Hybrid shortening and truncating attack

This new attack is an hybrid between Ourivski-Johansonn and other attacks against the plain RD problem.
The attack consists of reducing the problem to solving the same problem in a code with smaller dimension
(shortening), and then considering only the part of the code associated to error coordinates belonging to
vectorial space of dimension r1 (truncating). Then, we obtain a Rank Decoding problem instance with a
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Fig. 8: Complexity of the AGHT algorithm adapted to ℓ-errors for parameters m = 61, n = 134, k = 67, r =
(3, 5), l = 2 and di�erent values of t1. In this case t2 = 60− t1.

homogeneous error of smaller dimension. It is related to the hybrid attack presented in [14, Section 5.5], with
the di�erence that the truncating part was previously unpublished.

To simplify the analysis, let us present an attack of the 2-RD problem in a code C of size [2n, n]: letG ∈ Fn×2n
qm

the generator matrix of C, an error e ∈ S
(n,n)
(r1,r2)

with (r1, r2) ∈ N2. We reduce the problem to the resolution

of a homogeneous RD problem, in a code with smaller parameters. Let y = xG+ e with x ∈ Fn
qm .

We can perform Fq-linear combinations on coordinates of e1, in order to obtain 0 in the �rst t1 coordinates.
In other words, it is possible to apply a matrix P with t1 unknowns in Fq such that eP is (0...0 e′1 e2).

The attacker can then apply the same operations on the syndrome, and gets

y′ = yP = xG′ + e′

with G′ = GP. Without loss of generality, the matrix G can be in a semi-systematic form

G′ =

(
It ∗
0 ∗

)

Operations on the columns can then be performed to cancel to top-right block of G′, i.e. there exists an
invertible matrix Q such that

G′Q =

(
It 0
0 A

)
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Fig. 9: Complexities of the AGHT algorithm targeting an error of rank r (plain) and adapted to ℓ-errors for
parameters m = 61, n = 134, k = 67 and di�erent values of r.

Because the error e′ has its �rst t coordinates set to 0, e′Q = e′ hence by writing:

y′′, the n rightmost coordinates of y′Q

x′′, the n− t rightmost coordinates of x

G′′, the n rightmost columns of A

we get

y′′ = x′′G′′ + e2

which is an instance of the RD problem in a code of parameters [n, n− t1, r2]. The cost of transforming the
initial instance in this reduced instance is qr1t1 (for �nding the correct matrix P) times n2 (for calculating
the matrix Q).

By symmetry, another variant of the attack consists in canceling t2 coordinates in the rightmost part of the
error of weight r2, and then solving an RD instance in a code with parameters [n, n− t2, r1].

In the above explanation, the attacker truncates until obtaining a plain RD instance. Another possibility is
to truncate only t1 ≤ u1 < n columns of G′′, yielding a 2-RD instance (n− u1, n) with weights (r1, r2).

We can then deduce the following proposition:

Proposition 5. The complexity of solving the 2-RD problem in a code of size (n, n) by the Shortening and
Truncating attack is estimated as:
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n2 · min
1≤t1≤n
1≤t2≤n
t1≤u1≤n
t2≤u2≤n

(
qr1t1 × T2−RD([n− u1, n], n− t1, [r1, r2],m), qr2t2 × T2−RD([n, n− u2], n− t2, [r1, r2],m)

)
(4)

where T2−RD(n, k, r,m) is the complexity of the best algorithm for solving an instance of 2 − RD(n, k, r,m)
problem.

5.2 Combinatorial attacks against ℓ-RSL

In [17], a new combinatorial attack against the plain RSL problem was presented. It gave a new polynomial
bound, i.e. a number of syndromes above which the RSL problem becomes polynomial, as well as an improved
combinatorial complexity in the exponential regime adapted to the plain RSL.

Complexity of combinatorial attacks against plain RSL (from [17]){
polynomial when N ≥ kr m

m−r

O
(
qr(m−⌊

m(n−k)−ℓ
n−a ⌋)

)
with a =

⌊
N
r

⌋
when N < kr m

m−r

The principle of the attack consists in exploiting the fact that there exists an Fq-linear combination of the
errors with a =

⌊
N
r

⌋
zeros. In other words there exist scalars (λ1, . . . , λℓ) ∈ Fℓ

q and ẽ ∈ En−a such that

(0 | ẽ) =
ℓ∑

i=1

λiei

The zeros in the error creates a reduced instance of RSD problem, but the λi add new unknowns to the
system. Overall, when the number of equations is larger than the number of unknowns, the attacks becomes
polynomial, and in the other case, an adaptation of AGHT attack is devised and gives the above complexity.

This combinatorial can be adapted to the ℓ-RSL problem and gains in e�ciency due to the fact that the
number a of zeros obtained by the linear combination of the errors is increased in the case of ℓ-RSL. Indeed,
blockwise error coordinates belongs to a smaller subspace and can be canceled with fewer Fq-scalars. In order
to simplify the following analysis, we place ourselves in the typical case where n1 = n2 = · · · = nℓ = n,
r1 ≤ · · · ≤ rℓ (i.e. r1 = mini(ri)) and the number of syndromes is reasonably small N ≤ nr1, which will
always be the case for typical cryptographic applications.

Complexity of combinatorial attacks against ℓ-RSL
(when n1 = · · · = nℓ = n, r1 = mini(ri) and N ≤ nr1)

O
(
qr(m−⌊

m(n−k)−N
n−a ⌋)

)
with a =

⌊
N

r1

⌋

We prove in the following proposition the above complexity. We don't provide a polynomial bound because
for most parameters, it will be attained for N > nr1, and in that case, the number of zeros obtained by the
linear combination will over�ow the �rst block n1. As it would greatly complexify the analysis and that such
a big number of syndromes is usually not used for cryptographic parameters, we prefer not to mention this
case.
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Proposition 6. When n1 = n2 = · · · = nℓ = n, r1 ≤ · · · ≤ rℓ (i.e. r1 = mini(ri)), and N ≤ n1r1, the
combinatorial attack against ℓ-RSL(m,n, r, k,N) has a complexity of

O(qr(m−⌊
(n−k)m−N

n−a ⌋))

with a = ⌊N
r1
⌋.

Proof. As discussed earlier, there exists an Fq-linear combination of the errors with a =
⌊
N
r1

⌋
zeros.

Similarly to [17], by setting H̃ = H∗,[a+1,n], an attacker can solve the linear system of (n − k)m equations
over Fq

ẽH̃
T
=

ℓ∑
i=1

λiyi (5)

whose (n− a)m+N unknowns are the coordinates of ẽ and the λi.

The attacker then picks a vector space V of dimension r̃ ≥ r hoping that Supp(ẽ) ⊂ V . This reduces the
number of unknowns in Eq. 5 to (n− a)r̃ +N while the number of equations is still (n− k)m.

The complexity is given by the inverse of the probability that Supp(ẽ) ⊂ V , which can be calculated like
before and is equal to O(qr(m−r̃)). The optimal complexity is obtained for the highest value of r̃ has more

equations than unknowns, (n− a)r̃ +N = (n− k)m, i.e. r̃ = ⌊ (n−k)m−N
n−a ⌋, which �nalizes the proof. ⊓⊔

5.3 A structural attack against 2-LRPC codes

It is also possible to consider structural attacks, by exploiting a possible particular structure of the code to
recover the secret key H. For example: in the case of an 2-LRPC code.

Proposition 7. The complexity of recovering the structure of a 2-LRPC code C of size (n, n) by the Short-
ening and Truncating attack is estimated as:

n2 · min
1≤t1≤n
1≤t2≤n

t1+⌊n/d1⌋≤u1≤n
t2+⌊n/d2⌋≤u2≤n

(
qr1t1 × T2−RD([n− u1, n], n− t1 − ⌊ n

d1
⌋, [r1, r2],m),

qr2t2 × T2−RD([n, n− u2], n− t2 − ⌊ n
d2

⌋, [r1, r2],m)
) (6)

Proof. We explain using the attack described in [22] why we can reduce it to a subcode of C with smaller
parameters.

LetH ∈ Fn×2n
qm the parity check matrix of C. We can de�ne the matrix asH = (H1H2), whereH1,H2 ∈ Fn×n

qm

and H1 (resp. H2) has its coe�cients belong to the same subspace F1 (resp. F2, disjoint to F1) of dimension
d1 (resp. d2).

Let D the dual code of C, whose H = (H1H2) is a generator matrix. We denote by (Hi)i∈{1,...,n} the rows
of H, and we consider a word x ∈ D obtained from linear combination in Fq: x =

∑n
i=1 aiHi, with ai ∈ Fq.

Consider the block H2, whose coe�cients belong to F2. Since F2 has dimension d2, choose d2 variables ai
correctly allows to put to 0 a coordinate of x. Since there are n variables ai, one can put to 0 with a good
probability ⌊n/d2⌋ coe�cients of x. Therefore, the dual code C⊥ contains with a good probability a word
x = (x1x2), whose the coe�cients of x1 belongs to F1 and the ⌊n/d2⌋ �rst coordinates of x2 are equal to
zero (without loss of generality). Then, the attacker can perform the Shortening and Truncating attack on
D, knowing that the dimension of the code has already been reduced. ⊓⊔
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6 Algebraic attacks on ℓ-RD and ℓ-RSL

The algebraic attacks on ℓ-RD proposed in [30] are an adaptation of the known techniques for RD [13�15] by
taking advantage of the block structure. They do not exploit the fact that the supports are pairwise disjoint.
In addition to them, we should also mention the algebraic attack on RSL of [Bardet-Briaud]

6.1 MaxMinors attack

As in the most recent combinatorial attacks, RD is reduced to the problem of �nding a weight r codeword

in the code Cy
def
= C ⊕ ⟨y⟩Fqm

. The error vector satis�es the equation

eHT
y = 0,

where Hy ∈ F(n−k−1)×n
qm is a systematic parity-check matrix for Cy. Similarly to [27], we then express

M(e) ∈ Fm×n
q as a product SC, where S ∈ Fm×r

q and C ∈ Fr×n
q are the support and coe�cient matrices

respectively. Finally, the matrix SCHT
y ∈ Fr×(n−k−1)

qm is not full-rank because βSCHT
y = 0.

Modeling 1 (MaxMinors) Let Hy ∈ F(n−k−1)×n
qm be a systematic parity-check matrix for Cy = C ⊕ ⟨y⟩Fqm

and let C ∈ Fr×n
q be the secret coe�cient matrix associated to e ∈ Fn

qm . The MaxMinors modeling is the
system de�ned by {PJ}J⊂{1..n−k−1}, #J=r, where

PJ
def
=

∣∣∣C(HT
y
)∗,J

∣∣∣ .
By using the Cauchy-Binet formula, this system is known to be linear (over Fqm) in the maximal minors
cT := |C|∗,T of C for T ⊂ {1..n}, #T = r. As these minors are over Fq, the attack proceeds by solving a

system projected over Fq containing m
(
n−k−1

r

)
equations.

In order to solve ℓ-RD, the authors propose to �x certain variables in the MaxMinors system. A previous
attempt of the same type can be found in the RQC submission [1]. To attack an ℓ-RD instance of block size

n :=
∑ℓ

i=1 ni and dimension k with r :=
∑ℓ

i=1 ri, the idea is to write the coe�cient matrix as

C =


C1

C2

. . .

Cℓ

 ∈ Fr×n
q , Ci ∈ Fri×ni

q .

If we set n≤j :=
∑j

i=1 ni, we notice that the minor variables that are possibly non-zero are such that

Tj := (T − n≤j−1) ∩ {1..nj} is of size rj for j ∈ {1..ℓ}. This allows to consider
∏ℓ

i=1

(
ni

ri

)
unknowns instead

of
(
n
r

)
. Moreover, such minors can be seen as product of smaller ones, i.e.,

cT =
∏ℓ

i=1 ci,Ti
, ci,Ti

:= |Ci|∗,Ti
. (7)

The question left open in [30] is the study of linear dependencies between the MaxMinor equations by zeroing
the rest of the variables.

We attempted to study such relations on the system over Fqm , mainly for blocks of the same size. In turns
out that there always exist some when ℓ ≥ 3. In that respect, the situation is comparable to that of [17].
When ℓ = 2, there is a collision between leading terms which does not occur in the random case but we
observed in our tests that the equations remained linearly independent.
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Message attack. We restrict ourselves to blocks of the same size, for ℓ = 2 and ℓ = 3. Estimate 1 is based upon

the assumption that the equations remain linearly independent when ℓ = 2. We set N2(n, r1, r2)
def
=

(
n−1
r1+r2

)
.

Estimate 1 (2 blocks) We expect to solve a 2-RD instance of parameters (m, n1 = n, n2 = n, k =
n, (r1, r2)) by Gaussian elimination on the MaxMinors system whenever

mN2(n, r1, r2) ≥
(
n
r1

)(
n
r2

)
− 1, (8)

with cost O
(
mN2(n, r1, r2)

(
n
r1

)ω−1(n
r2

)ω−1)
, 2 ≤ ω ≤ 3. When Equation (8) does not hold, we estimate the

cost of the hybrid approach of by

O

min (a1,a2)

mN2(n,r1,r2)≥(n−a1
r1

)(n−a2
r2

)−1

(
qa1r1+a2r2mN2(n, r1, r2)

(
n−a1

r1

)ω−1(n−a2

r2

)ω−1) .

When ℓ = 3, we replace the total number of equations m
(

2n−1
r1+r2+r3

)
by the following sharper bound on the

number of linearly independent equations (obtained from preliminary analysis):

mN3(n, r1, r2, r3)
def
= m

∑r1+r2
j=r2−1

(
n−1
j

)(
n−1

r1+r2+r3−j
)
.

On our parameters, this value is still quite close to the maximum number of equations.

Estimate 2 (3 blocks) We expect to solve a 3-RD instance of parameters (m, n1 = n, n2 = n, n3 =
n, k = n, (r1, r2, r3)) by Gaussian elimination on the MaxMinors system whenever

mN3(n, r1, r2, r3) ≥
(
n
r1

)(
n
r2

)(
n
r3

)
− 1, (9)

with cost O
(
mN3(n, r1, r2, r3)

(
n
r1

)ω−1(n
r2

)ω−1(n
r3

)ω−1)
, 2 ≤ ω ≤ 3. When Equation (9) does not hold, we

estimate the cost of the hybrid approach of by

O

min (a1,a2,a3)

mN3(n,r1,r2,r3)≥(n−a1
r1

)(n−a2
r2

)(n−a3
r3

)−1

(
qa1r1+a2r2+a3r3mN3(n, r1, r2, r3)

(
n−a1

r1

)ω−1(n−a2

r2

)ω−1(n−a3

r3

)ω−1) .

Structural attack. In this case, we have more freedom to �x coordinates to zero in the error vector. We reduce
to a problem with a unique solution with probability 1 and we then proceed as before. On an instance with
parameters (m, n1 = n, n2 = n, k = n, (d1, d2)), we can freely

� �x b1 on the left and then the rest b2 =
⌊
n1+n2−k−r1b1

r2

⌋
on the right;

� �x b2 zeroes on the right �rst and then b1 =
⌊
n1+n2−k−r2b2

r1

⌋
on the left.

By doing so, we expect to attack a new instance with block size n1 = n−b1, n2 = n−b2 and with dimension
n− b1 − b2. The codimension remains (2n− b1 − b2)− (n− b1 − b2) = n.

Estimate 3 The complexity of this attack is O(m×min(A,B)), where

A = min0≤b1≤⌊n/d1⌋
b2=

⌊
n−r1b1

d2

⌋
min (a1,a2)

mN2(n,d1,d2)≥(n−b1−a1
d1

)(n−b2−a2
d2

)−1
qa1d1+a2d2N2(n, d1, d2)

(
n−b1−a1

d1

)ω−1(n−b2−a2

d2

)ω−1 ,

B = min0≤b2≤⌊n/d2⌋
b1=

⌊
n−d2b2

d1

⌋
min (a1,a2)

mN2(n,d1,d2)≥(n−b1−a1
d1

)(n−b2−a2
d2

)−1
qa1d1+a2d2N2(n, d1, d2)

(
n−b1−a1

d1

)ω−1(n−b2−a2

d2

)ω−1 .
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6.2 Attack based on Support-Minors

The Support-Minors system was introduced in [15] as a new modeling for the MinRank problem but its
analysis in the context of RD was inaccurate. This was corrected in [14] where they propose the SM-F+

qm

attack. When MaxMinors projected over Fq cannot be solved by direct linearization, it consists in adding
the following equations:

Modeling 2 (Support-Minors for RD) Let G ∈ Fk×n
qm be a systematic generator matrix of C and let

C ∈ Fr×n
q be the secret coe�cient matrix associated to e ∈ Fn

qm . The Support-Minors modeling is the system
de�ned by {QI}I⊂{1..n}, #I=r+1, where

QI
def
=

∣∣∣∣∣
(
xG+ y

C

)
∗,I

∣∣∣∣∣ .
This is a bilinear system in cT ∈ Fq and xj ∈ Fqm for j ∈ {1..k}.

On some RD instances, it can lead to better complexities than the hybrid MaxMinors attack.

However, we observe that Support-Minors is much sparser than MaxMinors. In particular, a lot more relations
are to be expected when we apply it to ℓ-RD. By Laplace expansion along the �rst row, the cT variables
present in QI are included in the set

{
cI\{i}, i ∈ I

}
. Now, a cI\{i} that remains after specialization is

necessarily as in Equation (7). In other words, this means that (I \ {i}−n≤j−1)∩ {1..nj} is of size rj for all
j. It imposes that (I − n≤j−1) ∩ {1..nj} is of size rj except for one j where it is of size rj + 1. Conversely,
for such an I and j0 for which (I − n≤j0−1) ∩ {1..nj0} is of size rj0 + 1 and the rest of the intersections are
of size rj , the cT present are of the form cI\{i}, i ∈ I ∩ {n≤j0−1 + 1..n≤j0}.

We have not studied the full SM-F+
qm modeling. For this reason and as the progress over MaxMinors in the

random case was often only by a few bits, we adopt Estimate 4:

Estimate 4 We do not take into account SM-F+
qm to derive our parameters.

6.3 Algebraic attack on ℓ-RSL

In addition to the RD attacks, we should also mention the algebraic attack on RSL of [12]. Since it involves
the same minor variables as in these previous methods, it can easily be adapted to ℓ-RSL. Still, the same
di�culty arises when studying algebraic relations. Since our number of syndromes is quite reduced, this
attack does not seem to be limiting. We plan to strengthen this intuition by adding further details.

7 Application to cryptanalysis

In this section, we apply the above attacks on the parameters given by [30] for their improvement of Lake
(ROLLO-I), based on 2-LRPC codes. There are two types of attacks to consider for the security of their
parameters, the structural attacks targeting weights (d1, d2) and the message attacks targeting weights
(r1, r2). In our case we propose two new structural attacks to recover the secret key of the system.

A �rst attack (attack1) corresponds to the attack against 2-LRPC codes explained in Section 5.3. The idea of
the attack is to shorten as much as possible the block corresponding to the higher di, then shorten on these
n
di

positions and then truncate the block corresponding to di, then one gets an homogeneous error that we
can attack with algebraic attacks for homogeneous errors. It is also possible to increase the number of terms
shortened by guessing zero positions on the di part at a cost of 2

di per new zero coordinate. In practice the
best results are obtained when guessing su�ciently many more zeros coordinates the part corresponding to
the case where the MaxMinor attack is the most e�cient, in that case we estimated the polynomial part at
the cost of n2 as it is usually the case for attacks and parameters and also we consider w = 2.8 the Strassen
exponent.

A second attack consists in having the same Shortening and Truncating approach but rather than truncating,
we just attack directly the code with algebraic attacks for blockwise errors described in [30], notice that at
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the di�erence of Attack1, it is more e�cient to shorten on the smallest ri, which permits to better decrease
the dimension of the code.

For instance consider the �rst parameter set n=67 m=61 d1 = 5, d2 = 4, we shorten on the d1 = 4 block,
there are naturally 67/5 = 13 zero positions, if we attack an error of weigth 4 for the [67,54] code obtained,
the best attack is the classical AGHT attack which gives a complexity of 170 bits. Now we may also decide
to guess more zero positions, for instance guessing 13 zeros positions on the d1 = 5 block comes at a cost of
265 and permits to attack an error of weight 4 on a [67,41] code which hast a complexity through MaxMinor
approach of 254 which with the linear algebra cost gives an overall complexity of 2131.

For attack2, on this parameters we shorten the d2 = 4 block on 67/4=16 positions and search for a (5,4)
error of blocksize (51,67) for a code of dimension 51 and length 118. The compelxity described in [30] gives
a security if 119 bits, in fact it is even possible to optimize by considering that there is on the average
probability 1/2 to have 17 positions at zero ((67+1)/4), which a security of 115 bits, hence 116 bits with the
1/2 probability.

The following table gathers the complexities of our cryptanalyzes.

We provide the resulting security of these parameters in Figure 10.

n m (d1, d2) (r1, r2) Security Claimed Message attack Security Claimed Structural attack Security Attack 1 Attack 2

67 61 (5,4) (4,4) 128 145 160 132 116

79 71 (5,5) (5,5) 192 225 255 181 166

89 79 (6,5) (5,5) 256 281 266 246 224

Fig. 10: Security of parameters on Lake given by [30]

Our new attack is very e�cient againt LAKE parameters given in [30], outperforming by 44 bits the security
for structural attacks for the 128 bits NIST type parameters.

8 Parameters

We discuss here on the security and parameters of our two new schemes: ILRPC-Block-MS and RQC-Block-
MS-AG. For a given security of λ bits, we choose our parameters in order to respect two constraints: have a
low decoding failure rate and resist to the attacks described in previous sections. For all our protocols, both
128 and 192 bits security level are considered. Parameters proposed are compliant with NIST security levels
1 and 3 of 143 and 207 classical bit security. The complexity of the attacks have been computed with a value
of ω = 2.8 as the Strassen constant.

To have available both several syndromes and blockwise errors allows to achieve excellent signature sizes:
the �rst idea allows to obtain more coordinates to guess the support error, and the second gives syndromes
relying to smaller spaces, which makes decoding easier.

8.1 Parameters of ILRPC-Block-MS

The security of the scheme relies on the hardness to solve the instance of a 2-IRSL problem on a code
[2n, n]qm with parity check matrix:

(
1 h

)
, where N syndromes with the same block support of size (n, n)

and dimension (r1, r2) are given in input. However, the attacks against 2-IRSL are not the best because the
number of syndromes given is too small within the parameters we propose.

The parameters have been chosen such that the Decode algorithm is able to retrieve the support with a low
failure rate. The resulting parameters for 128 and 192 bits of security are presented in Figure 11.
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Scheme n m (d1, d2) (r1, r2) N DFR Security

ILRPC-Block-xMS-128 (r + 1) 82 61 (4,5) (4,4) 2 -128 128

ILRPC-Block-xMS-128 (r + 2) 84 59 (5,5) (4,4) 2 -128 128

ILRPC-Block-xMS-128 (r + 5) 84 53 (5,5) (4,4) 2 -128 128

ILRPC-Block-xMS-192 (r + 1) 83 83 (6,5) (5,5) 3 -194 192

ILRPC-Block-xMS-192 (r + 2) 79 83 (6,5) (5,5) 3 -182 192

Fig. 11: Comparaison of parameters of ILRPC schemes

One may use seeds to represent the random data in order to decrease the key size. Since the ideal parity
check matrix is completely determined by the polynomial h, its size is reduced to

⌊
nm
8

⌋
bytes. The c is made

of N polynomials of degree n whose coe�cients belong to Fqm , so its size is
⌊
nmN

8

⌋
bytes. The resulting

sizes can be found in Figure 12. The parameters we obtain compare very well with previous results: 3.8
kB for 128 bits security in [30] and 2.4 kB for the multiple syndromes approach [3]. Indeed as explained in
the introductory section, the blockwise approach is essentially interesting for RQC and less for LRPC, since
blockwise small weight errors are more vulnerable to the Shortening and Truncating approach of Section
5, indeed the smallest the di the greater the zeros set for shortening. Overall the approach becomes more
interesting when one considers the XMS approach (originally described in [3]) that uses an extended decoding
algorithm for LRPC, decoding algorithm that we generalize in Section 3 to the case of blockwise rank errors.

Scheme pk (kB) c (kB) pk+ c (kB)

ILRPC-Block-xMS-128 (r + 1) 0.6 1.3 1.9

ILRPC-Block-xMS-128 (r + 2) 0.6 1.2 1.8

ILRPC-Block-xMS-128 (r + 5) 0.6 1.1 1.7

ILRPC-Block-xMS-192 (r + 1) 0.8 2.6 3.4

ILRPC-Block-xMS-192 (r + 2) 0.8 2.5 3.3

Fig. 12: Comparaison of sizes of di�erent ILRPC schemes

8.2 Parameters of RQC-Block-MS-AG scheme

The attacks 1 and 2 relies on the algebraic attack which consists on solving the 2-IRSL (on the [2n1, n1]qm

ideal code with parity check matrix
(
1 h

)
) and 3-IRSL problem (on the [3n1, n1]qm ideal code whose

(
1 0 h
0 1 s

)
is a parity check matrix). The attack 3 is the Shortening and Truncating attack on the 2-IRSL instance.
Note that there is currently no attack that takes advantage of the ideal structure of the parity check matrix,
this is why these instances are considered as di�cult to solve as 2-RSL and 3-RSL instances.

We explain here what constraints the parameters must respect. The decoding algorithm takes as input n2

vectors having the same errors support, that is to say it has n1n2 available coordinates to compute the
support. We use a public Augmented Gabidulin code of length n1n2 and dimension k, constructed from a
vector g of size m. Let ε the number of erasure coordinates one uses to recover the support error. The values
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above must be chosen such that the decoding capacity of the code thus obtained: δ =
⌊
m−k+ε

2

⌋
, must be

greater than or equal to the weight of the error which is rxr1 + ryr2 + re. On the other hand, the resulting
decryption failure rate (see Proposition 2) must be remain low.

The resulting parameters for 128 and 192 bits of security are presented in Figure 13. For comparison, we
also present the parameters of previous versions of RQC. We observe that the di�erent developments have
made it possible to consider increasingly smaller parameters, particularly due to the weight of the error in
the message to decode which decreases for the same security.

Scheme m n1 q k ε rx ry r1 r2 re n2 Security Att. 1 Att. 2 Att. 3

RQC-Block-MS-AG-128 43 52 2 3 32 4 4 4 4 4 2 128 145 153 154

RQC-Block-MS-AG-192 67 68 2 3 45 5 5 5 5 6 2 192 228 206 231

Fig. 13: Proposed parameters for RQC-Block-MS-AG and resistance to attacks

Scheme m n1 q k ε rx ry r1 r2 re n2 DFR Security

RQC-Block-MS-AG-128 (this paper) 43 52 2 3 32 4 4 4 4 4 2 -145 128

RQC-Block-128 [30] 83 79 2 7 - 4 4 4 4 4 1 - 128

RQC-NH-MS-AG-128 [17] 61 50 2 3 51 7 7 7 5 12 3 -158 128

RQC-128 [1] 127 113 2 3 - 7 7 7 7 13 1 - 128

RQC-Block-MS-AG-192 (this paper) 67 68 2 3 45 5 5 5 5 6 2 -206 192

RQC-Block-192 127 113 2 3 - 5 5 5 5 5 1 - 192

RQC-NH-MS-AG-192 79 95 2 5 65 8 8 8 5 13 2 -238 192

RQC-192 151 149 2 5 - 8 8 8 8 16 1 - 192

Fig. 14: Comparaison of parameters of di�erent RQC schemes

The sizes of the associated public key pk and ciphertext ct are expressed in kiloBytes (kB). Ours are comput-
ing according to the following formulas: |pk| =

⌈
n1m
8

⌉
+ 2λ

8 and |ct| =
⌈
2n1n2m

8

⌉
. Since g and h are uniformly

sampled from their respective spaces, they can be represented as seeds of size λ bits. Only the vector s ∈ Fn1
qm

must be completely expressed in the public key pk. The ciphertext ct contains two matrices lying in Fn2×n1
qm .

The resulting size can be found in Figure 15. The decrease in size of public key and ciphertext over time is
a direct consequence of the decrease in the size of the parameters.
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Scheme Security pk (kB) ct (kB) pk+ ct (kB)

RQC-Block-MS-AG-128 (this paper) 128 0.3 1.1 1.4

RQC-Block-128 [30] 128 0.8 1.7 2.5

RQC-NH-MS-AG-128 [17] 128 0.4 2.3 2.7

RQC-128 [1] 128 1.8 3.6 5.3

RQC-Block-MS-AG-192 (this paper) 192 0.6 2.2 2.8

RQC-Block-192 192 1.8 3.6 5.3

RQC-NH-MS-AG-192 192 0.9 3.8 4.7

RQC-192 192 2.8 5.7 8.3

Fig. 15: Comparaison of sizes of di�erent RQC schemes

8.3 Comparison with other schemes

For comparison, we compare our sizes with those of other encryption schemes, see Figure 16. We can see
that our scheme has very competitive performances for 128 bits of security,by getting slightly smaller sizes
than the lattice-based scheme KYBER.

Scheme 128 bits 192 bits

RQC-Block-MS-AG (this paper) 1.4 2.8

ILRPC-Block-MS (this paper) 1.7 3.3

KYBER [11] 1.5 2.2

BIKE [6] 3.1 6.2

HQC [2] 6.7 13.5

Classic McEliece [5] 261.2 624.3

Fig. 16: Comparaison of di�erent schemes, the sizes represent the sum of the key and the ciphertext, expressed
in kB
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