
Falcon Takes Off - A Hardware Implementation
of the Falcon Signature Scheme

Michael Schmid1, Dorian Amiet1, Jan Wendler1, Paul Zbinden1, and Tao Wei2

1 Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, Rapperswil,
Switzerland

{michael.schmid2, dorian.amiet, jan.wendler, paul.zbinden}@ost.ch
2 University of Rhode Island, Kingston, Rhode Island, United States

tao wei@uri.edu

Abstract. Falcon is one out of three post-quantum signature schemes
which have been selected for standardization by NIST in July 2022. To
the best of our knowledge, Falcon is the only selected algorithm that
does not yet have a publicly reported hardware description that performs
signing or key generation. The reason might be that the Falcon signa-
ture and key generation algorithms do not fit well in hardware due to
the use of floating-point numbers and recursive functions. This publica-
tion describes the first hardware implementation for Falcon signing and
key generation. To overcome the complexity of the Falcon algorithms,
High-Level Synthesis (HLS) was preferred over a hardware description
language like Verilog or VHDL. Our HLS code is based on the C reference
implementation available at NIST. We describe the required modifica-
tions in order to be compliant with HLS, such as rewriting recursive
functions into iterative versions. The hardware core at security level 5
requires 45,223 LUTs, 41,370 FFs, 182 DSPs, and 37 BRAMs to calcu-
late one signature in 8.7 ms on a Zynq UltraScale+ FPGA. Security level
5 key generation takes 320.3 ms and requires 100,649 LUTs, 91,029 FFs,
1,215 DSPs, and 69 BRAMs.

Keywords: High-Level-Synthesis, FPGA, Falcon, Post-quantum cryp-
tography

1 Introduction

Digital signatures are a widely used cryptographic tool that enables users to
prove that a digital message, document, or software code originates from a spe-
cific sender. This ensures, among other things, data integrity during transmis-
sion. Traditional signature algorithms suffer from progress in the area of quantum
computers. Quantum computers use quantum-mechanical phenomena to solve
various mathematical problems that are infeasible for traditional computers. In
theory, those quantum computers could break many of the standard public key
cryptosystems we are using today [25]. This would compromise the confidential-
ity and integrity of nearly every form of digital communication.

https://orcid.org/0009-0007-1004-6917
https://orcid.org/0000-0002-8427-7511
https://orcid.org/0000-0002-4765-1826

2 M. Schmid et al.

Post-quantum cryptography (PQC) refers to cryptographic algorithms that
are designed to be resistant to attacks from both quantum and classical comput-
ers. Small quantum computers work in a research environment, but to success-
fully attack cryptosystems in use, much larger quantum computers will need to
be built. It is almost impossible to predict when such quantum computers will
be available, but it is considered inevitable that they will come one day [6], and
the internet infrastructure must be prepared for that day [20].

The National Institute of Standards and Technology of the United States of
America (NIST) began standardizing PQC in 2017 with 69 algorithm candidates.
After three selection rounds, four algorithms were chosen in July 2022 to be
standardized. Three of them are digital signatures, and one of them is Falcon
[13]: Fast Fourier lattice-based compact signatures over NTRU. Compared to
the other selected signature schemes, Falcon has the smallest bandwidth (public
key size plus signature size) and a fast signature verification algorithm.

FPGAs are highly parallelized devices that can perform multiple opera-
tions simultaneously, making them ideal for implementing post-quantum cryp-
tographic algorithms as they require numerous operations [19]. FPGAs are not
only used to accelerate the algorithm execution; FPGA implementations have
also been used to evaluate PQC algorithms in terms of side-channel attack vul-
nerability [8,1,24]. This is a critical part of the evaluation of PQC algorithms
which will be used for real-world applications.

FPGA implementations for the other post-quantum signature schemes se-
lected for standardization exist. There are publications describing CRYSTALS-
DILITHIUM [3] hardware implementations [23,4,30,26] and SPHINCS+ [2] im-
plementations [1,7,28].

Contribution: In the case of Falcon, only the signature verification part has
been implemented to date [5,27], while key and signature generation still lacks
hardware implementation. This work aims to address this gap by presenting, to
the best of our knowledge, the first full hardware implementation of the Falcon
signature and key generation algorithms on an FPGA. The focus lies primarily
on how to implement the recursive structures of the Falcon. For transparency,
we make the source code publicly available3.

Paper Organization: In Section 2, we summarize the Falcon algorithms. In Sec-
tion 3, we explain how to rewrite the recursive tree structures in a way that the
high-level-synthesis (HLS) is able to generate synthesizable code in a hardware
description language. Implementation results and performance compares are pre-
sented in Section 4. Finally, the publication is completed with a discussion and
a conclusion.

3 https://gitlab.ost.ch/imes/public/papers/FalconHLS

https://gitlab.ost.ch/imes/public/papers/FalconHLS
https://gitlab.ost.ch/imes/public/papers/FalconHLS

Falcon Takes Off 3

2 Background

This section starts with a general description of Falcon with a focus on the
functions with a recursive structure. The second part contains a summary of
existing hardware implementations that are limited to signature verification.

2.1 Falcon

Falcon was developed by combining several works, including the lattice-based
signature scheme NTRUSign [16] (the GGH cryptosystems where the first to
propose a lattice-based signature scheme [15]), which had a flaw in its sign-
ing procedure [21,11]. In 2008, Gentry, Peikert, and Vaikuntanathan proposed
a method that fixes the flaw and provides a generic framework for building
secure hash-and-sign lattice-based signature schemes [14]. Stehlé and Steinfeld
combined the GPV framework with NTRU lattices to create a provably secure
NTRUSign [29], while Ducas et al. proposed a practical implementation of the
IBE part of the GPV framework over NTRU lattices [10]. Ducas and Prest also
proposed a new algorithm to address the slow signing time issue, which Falcon
uses to propose a practical lattice-based hash-and-sign scheme [12].

Falcon relies on NTRU lattices established by Hoffstein, Pipher, and Sil-
verman [17]. This allows reducing the keys to polynomials of degree n (n = 2k).
Computations are done modulo a monic polynomial ϕ of degree n, which equals
ϕ = xn + 1. Polynomials are treated as vectors and matrices throughout the
algorithm. With a small prime q ∈ N, let Zq be the quotient ring Z/qZ. NTRU
Lattices are constructed with the polynomials f, g, F,G ∈ Z[x]/(ϕ) and the
NTRU equation

fG− gF = q (modϕ) (1)

When f is invertible, then

h = gf−1 (modϕmod q). (2)

The key pair generation selects random f and g polynomials with a distribution
that yields short vectors. Afterward, the NTRU equation is solved to find the
matching F and G. The generated polynomials are then stored in a so-called
Falcon tree for which the LDL⋆ decomposition G = LDL⋆ of the matrix
G = BB⋆ must be computed with

B =

[
g −f
G −F

]
. (3)

L is stored in the tree root and diagonal elements Dii of D are split into
matrices Gi. Then a subtree for each Gi is created, and the process starts recur-
sively down to the bottom of the tree. The function ffLDL⋆ shown in Algorithm
1 describes the process to build the Falcon tree with its recursive structure.

4 M. Schmid et al.

Algorithm 1 ffLDL∗(G) [13]

Require: A full-rank Gram matrix G ∈ FFT(Q[x]/(xn + 1))2×2

Ensure: A binary tree T

1: (L,D)← LDL∗(G) ▷ L =

[
1 0

L10 1

]
,D =

[
D00 0

0 D11

]
2: T.value ← L10

3: if (n = 2) then
4: T.leftchild ← D00

5: T.rightchild ← D11

6: return T
7: else
8: d00, d01 ← splitfft(D00)
9: d10, d11 ← splitfft(D11)

10: G0 ←
[
d00 d01
d∗01 d00

]
, G1 ←

[
d10 d11
d∗11 d10

]
11: T.leftchild ← ffLDL∗(G0) ▷ Recursive calls
12: T.rightchild ← ffLDL∗(G1)
13: end if
14: return T

The signature generation hashes the message and a randomly generated string
(nonce) into a polynomial c (modϕ). The signer uses the secret lattice basis
(f, g, F,G) to create a pair of short polynomials (s1, s2) where

s1 = c− s2h (modϕmod q). (4)

The signature itself is s2.

The signature verification recomputes s1 by himself given the hashed message c,
public key h and signature s2. The signature is valid if (s1, s2) is an appropriately
short vector.

As trapdoor function, Falcon uses fast Fourier sampling proposed by Ducas
et al. [9]. Fast Fourier sampling makes use of the Falcon tree and discrete
Gaussians over Z. The function ffSampling shown in Algorithm 2 describes the
fast Fourier sampling with its recursive structure.

2.2 Falcon Top Functions

The official Falcon API that follows NIST’s guidelines in the PQC contest
offers three top functions:

key gen Generate a public and private key pair.

sign dyn Generate the signature given the private key and a message.

verify Check the validity of the signature when both signature, public key, and
message are known

Falcon Takes Off 5

Algorithm 2 ffSamplingn(t,T) [13]

Require: t = (t0, t1) ∈ FFT(Q[x]/(xn + 1))2 a Falcon tree T
Ensure: z = (z0, z1) ∈ FFT(Z[x]/(xn + 1))2

1: if n = 1 then
2: σ′ ← T.value
3: z0 ← SamplerZ(t0, σ

′)
4: z1 ← SamplerZ(t1, σ

′)
5: return z = (z0, z1)
6: end if
7: (l,T0,T1)← (T.value, T.leftchild, T.rightchild)
8: t1 ← splitfft(t1)
9: z1 ← ffSamplingn/s(t1,T1) ▷ First recursive call to ffSamplingn/2

10: z1 ← mergefft(z1)
11: t′1 ← t0 + (t1 − z1)⊙ l
12: t0 ← splitfft(t′0)
13: z0 ← ffSamplingn/s(t0,T0) ▷ Second recursive call to ffSamplingn/2

14: z0 ← mergefft(z0)
15: return z = (z0, z1)

The sign dyn function expands the private key into the Falcon tree form
and calculates the signature. The private key expanding calculation takes ap-
proximately half the processing time of sign dyn. If the same private key is used
to sign multiple messages, it makes sense to split the function into two parts:

expand pk Calculate the expanded private key given the private key.
sign tree Generate the signature given the expanded private key and the mes-

sage.

A call to expand pk and sign tree results in the same signature as a single
call to sign dyn would. In the case where the size of the key store is less crit-
ical, key gen and expand pk can be called once, and many signatures can be
generated by multiple calls to sign tree. Therefore, this paper describes imple-
mentations to key gen, expand pk, sign tree, and verify (without sign dyn)
and still claims to be a full Falcon implementation.

2.3 Existing FPGA Implementations of Falcon

Beckwith et al. [5] published a VHDL implementation, and Soni et al. [27] pro-
posed an HLS implementation of Falcons signature verification. The statements
why only the verification algorithm is implemented are the hard-to-implement
recursive structure of the Falcon tree and the use of floating-point numbers.

Although it is possible to perform floating-point arithmetic on FPGAs, floa-
ting-point processing usually requires more hardware resources and clock cycles
compared to integer arithmetic. The main obstacle is, therefore, the recursive
functions. We present a solution on how to rewrite the recursive function in the
next Section.

6 M. Schmid et al.

3 FPGA Implementation

Our FPGA implementation is based on the Falcon reference C-code submitted
to the NIST PQC standardization process. We used Vitis-HLS and Vivado tool
from AMD-Xilinx to synthesize and implement the Falcon algorithms on the
FPGA.

This Section focuses on how to rewrite the recursive tree structures in a
way that the high-level-synthesis (HLS) can generate synthesizable code in a
hardware description language.

3.1 Tree Traversal Algorithm

The signature generation algorithm and the computation of the Falcon tree
make use of two recursive structures. Both structures need a sufficiently large
array, which is allocated before the recursive functions are called. This array is
then used throughout the whole function. Listing 1.1 shows the typical structure
of such a top function.

1 void f oo top (double ∗ t ree , unsigend n) {
2 double tmp [2∗n] ;
3 double ∗g0 , ∗g1 ;
4 g0 = tmp ;
5 g1 = g1 + n ;
6 // c a l l o f a r e c u r s i v e func t i on
7 f o o r e c (t ree , g0 , g1 , n) ;
8 }
Listing 1.1. Call of a recursive function with the typical memory layout used in the
reference implementation

3.2 Tree Traversal without returning Computations

Listing 1.2 shows the tree traversal structure as used in Algorithm 1.

1 void f o o r e c 1 (double ∗ t ree , double ∗g0 , double ∗g1 , i n t n) {
2 i f (n == 1) { // bottom of the t r e e
3 t r e e [0] = g0 [0] ;
4 }
5 e l s e {
6 f oo (g1 , g1 + n/2 , g0 , n) ;
7 // f i r s t r e c u r s i v e c a l l
8 f o o r e c 1 (t r e e + n , g1 , g1 + n/2 , n − n/2 ,) ;
9 // second r e c u r s i v e c a l l

10 f o o r e c 1 (t r e e + n , g0 , g0 + n/2 , n − n/2) ;
11 }
12 }

Listing 1.2. First recursive structure

Falcon Takes Off 7

l

l0 l1

l00 l01 l10 l11

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

1

2

3

4

5

6

7

8 9

10

11

12

13

14

Fig. 1. First recursive structure of the tree traversal algorithm, represented in a binary
tree of depth three

Figure 1 shows the tree propagation. Implementing an iterative version of this
structure is straightforward. The recursive structure is already resolved with a
loop and a look-up table that stores the tree node sequence.

In detail, the number of times the recursive function is called (n it) as well
as the value of n that has been used for each call (n tree) is evaluated first.
To obtain the correct pointer for g0 and g1, the memory offset to the original
tmp (base address) array needs to be stored. For every recursive function call,
the pointer offset from input g0 and g1 to tmp is then saved in arrays that store
these offsets. The same approach is applied to the tree input pointer. These pre-
computed index tables compute the recursive tree structure in a loop as shown
in Listing 1.3.

1 void f o o i t 1 (double ∗ t ree , double ∗ base adr) {
2 f o r (i n t i = 0 ; i < n i t ; ++i) {
3 i n t n = n t r e e [i] ;
4 i f (n == 1) { // bottom of the t r e e
5 ∗(t r e e+t r e e o f f s e t [i]) = ∗(base adr + g 0 o f f s e t [i]) ;
6 }
7 e l s e {
8 f oo (base adr+g 1 o f f s e t [i] , base adr+g 1 o f f s e t [i]+n/2 ,
9 base adr+g 0 o f f s e t [i] , n) ;

10 }
11 }
12 }

Listing 1.3. Iterative version of the first recursive structure

8 M. Schmid et al.

This approach has the advantage that it is efficient to implement on FPGAs
as these pre-computed arrays can be stored in a few block memories (BRAMs).

3.3 Tree Traversal with returning Computations

The second recursive structure computes something when returning from a re-
cursive call. The ffSampling shown in Algorithm 2 employs this structure. A
corresponding code example is presented in Listing 1.4.

1 void f o o r e c 2 (double ∗ t ree , double ∗g0 , double ∗g1 , i n t n) {
2 i f (n == 1) {
3 t r e e [0] = g0 [0] ;
4 }
5 e l s e {
6 f oo (g1 , g1 + n/2 , g0 , n) ;
7 // f i r s t r e c u r s i v e c a l l
8 f o o r e c 2 (t r e e + n , g1 , g1 + n/2 , n/2 ,) ;
9 f oo (g1 , g1 + n/2 , g0 , n) ;

10 // second r e c u r s i v e c a l l
11 f o o r e c 2 (t r e e + n , g0 , g0 + n/2 , n/2) ;
12 f oo (g1 , g1 + hn , g0 , n) ;
13 }
14 }

Listing 1.4. Second recursive structure, where something is computed after returning
form the recursive call

l

l0 l1

l00 l01 l10 l11

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

1

2

3

4 55

6

7 8

9

10 1111

12

13

14 15

16

17

18 1919

20

21 22

23

24 2525

26

27

28

Fig. 2. Second recursive structure of the tree traversal algorithm including back-
propagation path, represented in a binary tree of depth three

Falcon Takes Off 9

The difference to the first recursive structure is the back-propagation path.
The returning sequence from the recursive calls must be kept. This is illustrated
in Figure 2.

1 void f o o i t 2 (double ∗ t ree , double ∗ base adr) {
2 i n t r 1 cn t = 0 ; // How many times returned r e cu r s i on 1
3 i n t r 2 cn t = 0 ; // How many times returned r e cu r s i on 2
4 f o r (i n t i = 0 ; i<n i t ; ++i) {
5 i n t n = n t r e e [i] ;
6 i f (n == 1) { // bottom of the t r e e
7 ∗(t r e e+t r e e o f f s e t [i]) = ∗(base adr + g 0 o f f s e t [i]) ;
8 }
9 e l s e {

10 f oo (base adr+g 1 o f f s e t [i] , base adr+g 1 o f f s e t [i]+n/2 ,
11 base adr+g 0 o f f s e t [i] , n) ;
12 }
13 f o r (; ;) { // there might be mul t ip l e r e tu rn s in a row
14 i f (i == r2 g [r 2 cn t]) {// return second r e c u r s i v e c a l l
15 double ∗ g0 = base adr + g 0 o f f s e t [r 2 l [r 2 cn t]] ;
16 double ∗ g1 = base adr + g 1 o f f s e t [r 2 l [r 2 cn t]] ;
17 n = n t r e e [r 2 l [r 2 cn t]] ;
18 f oo (g1 , g1+n/2 , g0 , n) ;
19 r 2 cn t++;
20 }
21 e l s e {
22 break ;
23 }
24 }
25 i f (i == r1 g [r 1 cn t]) { // return f i r s t r e c u r s i v e c a l l
26 double ∗ g0 = base adr + g 0 o f f s e t [r 1 l [r 1 cn t]] ;
27 double ∗ g1 = base adr + g 1 o f f s e t [r 1 l [r 1 cn t]] ;
28 n = n t r e e [r 1 l [r 1 cn t]] ;
29 f oo (g1 , g1+n/2 , g0 , n) ;
30 r 1 cn t++;
31 }
32 }
33 }

Listing 1.5. Iterative version of the second recursive structure

Upon analysis of Figure 2, it can be observed that all branches situated on
the left-hand side pertain to the first recursive invocation (e.g., call paths 1, 2,
3, 9, 16, etc. correspond to Listing 1.4 line 9). Analogously, all branches on the
right-hand side relate to the second recursive invocation (e.g., call paths 5, 8, 11,
15, etc.) corresponding to Listing 1.4 line 12). Call paths 4, 7, 14, and so forth
correspond to the return from the first recursive invocation (Listing 1.4 line 10),
whereas call paths 6, 12, 13, and so forth correspond to the return from the
second recursive invocation (Listing 1.4 line 13). Notably, multiple consecutive
returns may be from the second recursive invocation (12, 13, 14, or 26, 27, 28).

10 M. Schmid et al.

Now, the same approach as in the first structure is followed. Firstly, the offset
of the internal data to the base pointer g0 offset, g1 offset, tree offset, and
n tree must be stored.

Additionally, it is necessary to keep track of how many times the function
has been called when returning from the first recursive invocation (r1 g) and
which recursive call belongs to this returning (r1 l). This can be observed in
Figure 2 with corresponding paths e.g. 1& 14, 2&7, 5&6. More precisely, path
14 occurs after 14 recursive calls (r1 g = 14). We return from the first recursive
invocation, which was called at the 1st recursive call (r1 l = 1).

The same applies to the second recursive invocation with corresponding
paths, e.g., 5& 6, 8&13, 15&28 and the returning information stored in r2 g

and r2 l. Listing 1.5 shows the iterative version of the second recursive structure
when all the pre-computed index look-up tables are available.

The recursive structure in key gen, expand pk, and sign tree has been
solved with the strategy described above. The second obstacle, the need to han-
dle floating-point numbers, is solved by the tool choice: Floating point arithmetic
can be used directly in HLS using common data types such as float or double.
HLS utilizes embedded digital signal processors (DSPs) in the FPGA to perform
computations with floating-point numbers.

With HLS and the rewritten functions, synthesizable code can already be
generated. However, more steps are required to get a better-performing core
regarding latency and hardware utilization.

3.4 High-Level Synthesis Optimization

To improve the generation of the hardware description language (HDL) code,
pragmas in the C code are used to guide HLS. Here is a selection of these pragmas
that we used to guide the HLS in the latency-hardware utilization trade-off:

Array partitioning organizes C arrays in different BRAMs or entirely in FFs
instead of a single more significant memory to improve the total memory
bandwidth.

Loop unrolling in hardware means that loop iterations are executed in paral-
lel.

Function inlining dissolves functions into the calling function and no longer
appears as a separate hierarchy level.

Pipelining allows functions or loops the concurrent execution of operations.

Dataflow enables task-level pipelining, allowing functions and loops to overlap
during operation.

During design test and optimization, most of these options increased hardware
utilization significantly while the impact on latency reduction was marginal.
In the end, only a few of these options are left in the implementation results
described in the next section.

Falcon Takes Off 11

Table 1. The reported sign tree and verify numbers includes message hashing of a
short message (50 bytes)

Function Degree BRAM DSP FF LUT
Clock
Cycles

Latency
ms

Clock
MHz

sign tree 512 32 182 44,249 46,971 787,441 4.2 187.5

key gen 512 56 1,209 91,615 98,752 † 113.7 ± 22.2 100.0

expand pk 512 23 101 26,083 22,469 544,153 2.5 214.3

verify 512 13 15 8,078 11,544 132,482 0.6 214.3

sign tree 1024 37 182 41,370 45,223 1,638,253 8.7 187.5

key gen 1024 69 1,215 91,029 100,649 † 320.3 ± 69.1 100.0

expand pk 1024 29 139 30703 27666 1,191,337 5.6 214.3

verify 1024 14 15 8,619 13,302 269,608 1.3 214.3

†Latency of key gen depends on a random seed. Therefore, only the measured
latency is given, including standard deviation, but no exact clock cycle numbers.

4 Results

All Falcon functions but sign dyn have been implemented on a Zynq Ultra-
Scale+ (ZCU104) FPGA from AMD-Xilinx.

Hardware utilization and latencies of the Falcon functions are shown in
Table 1. The number of required clock cycles has been measured with HLS co-
simulation, and the maximum clock frequency has been determined with Vivado.
All results in this paper are represented in latency. The throughput of a single
instance is the reciprocal of the given latency. As the cores could be instantiated
several times, the total throughput can be multiplied by the number of instances.

The given clock speeds are chosen so that Vivado’s timing analysis is closed
(no negative slack remains). The runtime of the key generation process is influ-
enced by the seed value used in the random number generator. As a result, it
is not possible to accurately predict the number of clock cycles required using
HLS co-simulation. To obtain an estimate of the runtime, the key generation
algorithm was executed on our FPGA board with 1000 different seed values,
and the average runtime was measured.

4.1 Classification

The most suitable implementation to compare our result are FPGA-based im-
plementations of Falcon. We found two such implementations in the open liter-
ature, an HLS implementation [27] and a VHDL implementation [5]. Both only
implement the signature verification algorithm. As listed in Table 2, our HLS
implementation requires 5 times fewer LUTs and roughly half the latency com-
pared to the HLS implementation from [27]. The latency halving is primarily

12 M. Schmid et al.

Table 2. Hardware Utilization and latency of our core compared to other hard- and
software implementations of Falcon and hardware implementations of other PQC
signing algorithms.

Algorithm
Hardware Latency [ms]

Device (DSP/BRAM/kFF/kLUT) keygen sign verify

Security level 1 - 2

Falcon-512, our UltraScale+ (1,209/56/91.6/98.7) 113.7† - -

Falcon-512, our UltraScale+ (101/23/26.1/22.5) 2.5‡ - -

Falcon-512, our UltraScale+ (182/32/44.2/47.0) - 4.2 -

Falcon-512, our UltraScale+ (15/13/8.0/11.5) - - 0.618

Falcon-512 [5] UltraScale+ (2/4/7.3/14.3) - - 0.008

Falcon-512 [27] Artix-7 (18/26/17.7/57.6) - - 0.996

Dilithium-II [5] UltraScale+ (16/29/28.4/53.9) 0.019 0.117 0.026

SPHINCS+-128f [1] Artix-7 (1/11.5/72.5/48.0) - 1.01 0.16

Falcon-512 [22] Intel i7-6567U FPU 7.4† + 0.1‡ 0.21 0.026

Falcon-512 [18] Cortex M7 FPU 359† + 6.5‡ 13.1 2.6

Falcon-512 [22] Cortex M4 EMU 1,020† + 96‡ 126 3

Security level 4-5

Falcon-1024, our UltraScale+ (1,215/69/91.0/100.6) 320.3† - -

Falcon-1024, our UltraScale+ (139/29/30.7/27.7) 5.6‡ - -

Falcon-1024, our UltraScale+ (182/37/41.4/45.2) - 8.7 -

Falcon-1024, our UltraScale+ (15/14/8.6/13.3) - - 1.258

Falcon-1024 [5] UltraScale+ (2/4/6.87/13.7) - - 0.015

Falcon-1024 [27] Artix-7 (18/28/18.2/58.6) - - 2.1

Dilithium-V [5] UltraScale+ (16/29/28.4/53.9) 0.055 0.215 0.057

SPHINCS+-256f [1] Artix-7 (1/22.5/74.5/51.0) - 2.52 0.21

Falcon-1024 [22] Intel i7-6567U FPU 21.6† + 0.2‡ 0.26 0.045

Falcon-1024 [18] Cortex M7 FPU 897† + 14‡ 26.9 5.3

Falcon-1024 [22] Cortex M4 EMU 3,059† + 213‡ 268 6.14

†Latency of key gen

‡Latency of expand pk

Falcon Takes Off 13

due to the newer FPGA generation as we used an UltraScale+ FPGA, and the
results in [27] are based on an Artix-7. The drawback of the HLS approach com-
pared to a plain HDL implementation (or an HLS implementation started from
scratch with an efficient hardware architecture in mind) becomes clear when our
implementation is compared to the HDL implementation from [5]. Our imple-
mentation is two orders of magnitude slower at similar hardware utilization.

The signature and key generation algorithms cannot be compared to other
hardware implementations as we did not find any. However, we can compare the
latency to software implementations. Our HLS implementation is three times
faster than the Cortex-M7 implementation reported in [18], using a dedicated
floating-point unit. Compared to the Cortex-M4 version reported in [22] that
does not have a dedicated floating-point unit, our HLS implementation is roughly
30 times faster (except for signature verification where floating-point numbers
do not matter). Compared to the software implementation running on the Intel
i7-6567U [22], our performance is roughly 30 times slower.

Compared to SPINCS+, another signature algorithm selected for standard-
ization by NIST, our HLS implementation is in the same order of magnitude
in terms of hardware utilization and signing time (between 1 and 10 ms la-
tency and roughly 50k LUTs) as the HDL implementation reported in [1]. As
SPINCS+ requires primarily hash computations, it fits very well into FPGAs.
For CRYSTALS-DILITHIUM, the third signature algorithm selected for stan-
dardization by NIST, our HLS implementation signature generation core re-
quires a similar amount of hardware as the HDL implementation from [5], but
the Dilithium signature generation is roughly 40 times faster. In addition, the
HDL implementation from [5] implements all functions (key generation, signing,
and verification) within the same hardware core while we need separate cores.

5 Discussion

The C reference implementation of Falcon is not optimal for hardware imple-
mentation. Nonetheless, the Vitis HLS tool handles floating-point numbers and
our rewritten iterative loops that emulate Falcons recursive structure correctly.
This results in a functional HDL code that implements the Falcon algorithm
bit-by-bit identical to the C reference code. Due to the HLS approach based
on the C reference code, the resulting hardware architecture could be better
optimized.

For example, our HLS implementation instantiates the ChaCha20 cipher
block three times in the signature generation block. The reason for this re-
mains unclear. Technically, it makes little sense as parallel execution is excluded
because all ChaCha20 calls require output data from the previous call. In the
end, these redundant instances increase the hardware utilization of this part by
almost a factor tree at literally zero gain in the latency.

A pure HDL or restructured HLS implementation (HLS code written from
scratch, which describes an optimized hardware architecture in more detail)
could more precisely address the strengths of FPGAs or hardware in general. It

14 M. Schmid et al.

would generate an implementation with improved latency and/or smaller hard-
ware utilization.

5.1 Real Wold Applications

While we were able to implement the complex key generation algorithm on
an FPGA, its enormous hardware utilization and longer latency (compared to
the Intel i7 software-based implementation) make it somewhat impractical. As
the key generation is usually less used than signing and verification, our key
generation HLS implementation is probably not attractive for FPGA integration
for most applications.

For signing, an FPGA integration might be attractive for some applications
as the latency is significantly lower than the Cortex-M7 implementation at an
acceptable cost of FPGA resources. An interesting question is how efficient an
HDL or newly structured HLS implementation of the signature generation would
be. The signature verification HDL implementation from [5] is 100 times faster
than our HLS implementation at similar hardware utilization. The open question
is if a similar speed-up would be possible for an HDL or newly structured HLS
implementation of the signing algorithm. The most expensive parts of our imple-
mentation are the calculation in the tree traversal algorithms. These calculations
require roughly 80 % of the clock cycles and include the use of floating-point
numbers. While the use of floating-point numbers might not be the main issue,
speeding up the tree traversal requires complex memory management that allows
a kernel to read and write from different addresses in parallel. Further research
is required to pipeline the tree traversal structure. The second computationally
expensive part that requires roughly 15 % of the clock cycles is the iFFT calcu-
lation. This should not be a problem to speed up significantly for a plain HDL
or newly structured HLS implementation.

6 Conclusion

This publication presents, to our knowledge, the first FPGA implementation for
Falcon signing and key generation, representing an essential step in furthering
the NIST standardization process. We present a solution on how to implement
the recursive Falcon structures into hardware. The performance of our FPGA
implementation is compared to other FPGA implementations of PQC signature
schemes selected for standardization. The hardware utilization and latency are
in the same region as a SPHINCS+ HDL implementation for signing. However,
compared to CRYSTALS-DILITHUM HDL implementations, our HLS imple-
mentation needs more resources and has higher latency. Nonetheless, our Fal-
con core is significantly faster than the CPU versions for embedded devices,
even when the CPU uses a dedicated floating-point unit.

Falcon Takes Off 15

References

1. Amiet, D., Leuenberger, L., Curiger, A., Zbinden, P.: Fpga-based sphincs+ im-
plementations: Mind the glitch. In: 23rd Euromicro Conference on Digital System
Design, DSD 2020, Kranj, Slovenia, August 26-28, 2020. pp. 229–237. IEEE (2020).
https://doi.org/10.1109/DSD51259.2020.00046

2. Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M.,
Fluhrer, S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T.,
Lauridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J.,
Schwabe, P., Westerbaan, B.: SPHINCS+ Stateless hash-based signatures. https:
//sphincs.org/ (April 2023)

3. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: CRYSTALS-DILITHIUM. https://pq-crystals.org/dilithium/
index.shtml (April 2023)

4. Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implementation
of crystals-dilithium. In: International Conference on Field-Programmable Tech-
nology, (IC)FPT 2021, Auckland, New Zealand, December 6-10, 2021. pp. 1–10.
IEEE (2021). https://doi.org/10.1109/ICFPT52863.2021.9609917

5. Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implementa-
tion of lattice-based digital signatures. IACR Cryptol. ePrint Arch. p. 217 (2022),
https://eprint.iacr.org/2022/217

6. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer, Dordrecht (2008). https://doi.org/10.1007/978-3-540-88702-7

7. Berthet, Q., Upegui, A., Gantel, L., Duc, A., Traverso, G.: An area-efficient
sphincs+ post-quantum signature coprocessor. In: IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2021, Portland,
OR, USA, June 17-21, 2021. pp. 180–187. IEEE (2021). https://doi.org/10.
1109/IPDPSW52791.2021.00034

8. De Mulder, E., Buysschaert, P., Ors, S., Delmotte, P., Preneel, B., Vandenbosch,
G., Verbauwhede, I.: Electromagnetic analysis attack on an fpga implementation of
an elliptic curve cryptosystem. In: EUROCON 2005 - The International Conference
on ”Computer as a Tool”. vol. 2, pp. 1879–1882 (2005). https://doi.org/10.
1109/EURCON.2005.1630348

9. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans.
Cryptogr. Hardw. Embed. Syst. pp. 238–268 (2018). https://doi.org/10.13154/
tches.v2018.i1.238-268

10. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8874,
pp. 22–41. Springer (2014). https://doi.org/10.1007/978-3-662-45608-8_2

11. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: Cryptanalysis of ntrusign
countermeasures. In: Wang, X., Sako, K. (eds.) Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6, 2012. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7658, pp. 433–450. Springer
(2012). https://doi.org/10.1007/978-3-642-34961-4_27

https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/DSD51259.2020.00046
https://sphincs.org/
https://sphincs.org/
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://eprint.iacr.org/2022/217
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://doi.org/10.1109/EURCON.2005.1630348
https://doi.org/10.1109/EURCON.2005.1630348
https://doi.org/10.1109/EURCON.2005.1630348
https://doi.org/10.1109/EURCON.2005.1630348
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27

16 M. Schmid et al.

12. Ducas, L., Prest, T.: Fast fourier orthogonalization. In: Abramov, S.A., Zima, E.V.,
Gao, X. (eds.) Proceedings of the ACM on International Symposium on Symbolic
and Algebraic Computation, ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016.
pp. 191–198. ACM (2016). https://doi.org/10.1145/2930889.2930923

13. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon - Fast-Fourier Lattice-based
Compact Signatures over NTRU . https://falcon-sign.info/ (April 2023)

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008. pp. 197–206. ACM (2008). https://doi.org/10.1145/1374376.
1374407

15. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Jr., B.S.K. (ed.) Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 1997, Proceedings. Lecture Notes in Computer Science,
vol. 1294, pp. 112–131. Springer (1997). https://doi.org/10.1007/BFb0052231

16. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M. (ed.) Top-
ics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA Con-
ference 2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings. Lecture
Notes in Computer Science, vol. 2612, pp. 122–140. Springer (2003). https:

//doi.org/10.1007/3-540-36563-X_9

17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J. (ed.) Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings.
Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer (1998).
https://doi.org/10.1007/BFb0054868

18. Howe, J., Westerbaan, B.: Benchmarking and analysing the NIST PQC finalist
lattice-based signature schemes on the ARM cortex M7. IACR Cryptol. ePrint
Arch. p. 405 (2022), https://eprint.iacr.org/2022/405

19. Li, H., Tang, Y., Que, Z., Zhang, J.: Fpga accelerated post-quantum cryptography.
IEEE Transactions on Nanotechnology 21, 685–691 (2022). https://doi.org/10.
1109/TNANO.2022.3217802

20. Mosca, M.: Cybersecurity in an era with quantum computers: Will we be ready?
IEEE Security & Privacy 16(5), 38–41 (2018). https://doi.org/10.1109/MSP.
2018.3761723

21. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4004, pp. 271–288. Springer
(2006). https://doi.org/10.1007/11761679_17

22. Pornin, T.: New efficient, constant-time implementations of falcon. IACR Cryptol.
ePrint Arch. p. 893 (2019), https://eprint.iacr.org/2019/893

23. Ricci, S., Malina, L., Jedlicka, P., Smékal, D., Hajny, J., Ćıbik, P., Dzurenda, P.,
Dobias, P.: Implementing crystals-dilithium signature scheme on fpgas. In: Rein-
hardt, D., Müller, T. (eds.) ARES 2021: The 16th International Conference on
Availability, Reliability and Security, Vienna, Austria, August 17-20, 2021. pp.
1:1–1:11. ACM (2021). https://doi.org/10.1145/3465481.3465756

https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1145/2930889.2930923
https://falcon-sign.info/
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://eprint.iacr.org/2022/405
https://doi.org/10.1109/TNANO.2022.3217802
https://doi.org/10.1109/TNANO.2022.3217802
https://doi.org/10.1109/TNANO.2022.3217802
https://doi.org/10.1109/TNANO.2022.3217802
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1007/11761679_17
https://doi.org/10.1007/11761679_17
https://eprint.iacr.org/2019/893
https://doi.org/10.1145/3465481.3465756
https://doi.org/10.1145/3465481.3465756

Falcon Takes Off 17

24. Rodriguez, R.C., Bruguier, F., Valea, E., Benoit, P.: Correlation electromagnetic
analysis on an FPGA implementation of crystals-kyber. IACR Cryptol. ePrint
Arch. p. 1361 (2022), https://eprint.iacr.org/2022/1361

25. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994. pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

26. Soni, D., Basu, K., Nabeel, M., Aaraj, N., Manzano, M., Karri, R.: CRYSTALS-
Dilithium, pp. 13–30. Springer International Publishing, Cham (2021). https://
doi.org/10.1007/978-3-030-57682-0_2

27. Soni, D., Basu, K., Nabeel, M., Aaraj, N., Manzano, M., Karri, R.: FALCON,
pp. 31–41. Springer International Publishing, Cham (2021). https://doi.org/

10.1007/978-3-030-57682-0_3

28. Soni, D., Basu, K., Nabeel, M., Aaraj, N., Manzano, M., Karri, R.: SPHINCS+,
pp. 141–162. Springer International Publishing, Cham (2021). https://doi.org/
10.1007/978-3-030-57682-0_9

29. Stehlé, D., Steinfeld, R.: Making ntruencrypt and ntrusign as secure as standard
worst-case problems over ideal lattices. IACR Cryptol. ePrint Arch. p. 4 (2013),
http://eprint.iacr.org/2013/004

30. Zhao, C., Zhang, N., Wang, H., Yang, B., Zhu, W., Li, Z., Zhu, M., Yin, S., Wei,
S., Liu, L.: A compact and high-performance hardware architecture for crystals-
dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. pp. 270–295 (2022).
https://doi.org/10.46586/tches.v2022.i1.270-295

https://eprint.iacr.org/2022/1361
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-030-57682-0_2
https://doi.org/10.1007/978-3-030-57682-0_2
https://doi.org/10.1007/978-3-030-57682-0_2
https://doi.org/10.1007/978-3-030-57682-0_2
https://doi.org/10.1007/978-3-030-57682-0_3
https://doi.org/10.1007/978-3-030-57682-0_3
https://doi.org/10.1007/978-3-030-57682-0_3
https://doi.org/10.1007/978-3-030-57682-0_3
https://doi.org/10.1007/978-3-030-57682-0_9
https://doi.org/10.1007/978-3-030-57682-0_9
https://doi.org/10.1007/978-3-030-57682-0_9
https://doi.org/10.1007/978-3-030-57682-0_9
http://eprint.iacr.org/2013/004
https://doi.org/10.46586/tches.v2022.i1.270-295
https://doi.org/10.46586/tches.v2022.i1.270-295

	Falcon Takes Off - A Hardware Implementation of the Falcon Signature Scheme

