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Abstract
This paper presents Reef, a system for generating publicly ver-
ifiable succinct non-interactive zero-knowledge proofs that
a committed document matches or does not match a reg-
ular expression. We describe applications such as proving
the strength of passwords, the provenance of email despite
redactions, the validity of oblivious DNS queries, and the
existence of mutations in DNA. Reef supports the Perl Com-
patible Regular Expression syntax, including wildcards, al-
ternation, ranges, capture groups, Kleene star, negations, and
lookarounds. Reef introduces a new type of automata, Skip-
ping Alternating Finite Automata (SAFA), that skips irrel-
evant parts of a document when producing proofs without
undermining soundness, and instantiates SAFA with a lookup
argument. Our experimental evaluation confirms that Reef
can generate proofs for documents with 32M characters; the
proofs are small and cheap to verify (under a second).

1 Introduction
Regular expressions (regex) are used to represent and match
patterns in text documents in a variety of applications: content
moderation, input validation, firewalls, biology, and more.
Existing use cases assume that the regex and the document
are both readily available to the querier so they can match the
regex on their own with standard algorithms. But what about
situations where the document is actually held by someone
else who does not wish to disclose to the querier anything
about the document besides the fact that it matches or does not
match a particular regex? While slightly unusual, the ability
to prove such facts enables interesting new applications:
• Proving strong passwords. Asymmetric or Augmented Pass-
word Authenticated Key Exchange (aPAKE) [47, 74, 77, 82]
allow clients to register and authenticate to a server without
disclosing their password to the server. However, aPAKE
protocols have no mechanism for the server to confirm that
the client chose a “strong password”. This feature is crucial
in corporate settings where password policies help prevent
account compromise. Clients could convince the server of
this fact with a proof that their secret password satisfies a
password strength regex chosen by the server (e.g., at least 10
alphanumeric and one special character).
• Disclosing content with redactions. DomainKeys Identi-
fied Email (DKIM) [46] is a protocol whereby a sending
mail server signs the header and payload of an email so that
recipients can verify its authenticity. Journalists use DKIM

signatures to establish the veracity of leaked emails. It might
often be desirable to release a redacted version of an email
(e.g., an email without a name) while allowing the public to
confirm, via DKIM, the authenticity of the redacted email.
By creating a regex that expresses the public content of the
email, with redactions being expressed as wildcards with
Kleene star, it is possible to show that the redacted email is
derived from an email whose DKIM signature verifies under
the sending mail server’s public key. A similar idea is that
of selectively disclosing fields in JSON web tokens [49] or
verifiable credentials [15, 61] by “redacting” all other entries.
• ODoH blocklisting. Oblivious DNS over HTTPS [53] al-
low clients to obtain a domain’s IP address without revealing
which domain they are accessing. This technology improves
privacy for users, but network administrators within organi-
zations lose the ability to block certain sites (e.g., known
malware domains) as they can no longer see which domains
users query. One can reintroduce this functionality by asking
clients to generate ZKPs showing that their DNS queries do
not match a set of forbidden regexes before those packets are
allowed through to the ODoH proxy. The same idea applies
more generally to TLS traffic through middleboxes [45].
• Proofs about genes. DNA is used to establish ancestry or
the presence of particular mutations. If sequencing companies
(e.g., 23andme) were to provide users a signed commitment
to their sequenced genome, users would be able to prove prop-
erties of their DNA (expressed as a regex) without having to
disclose it in full. For instance, users could prove the presence
of a certain genetic mutation when they order personalized
medicine online or sign up to clinical trials.

In theory, the above applications can be designed with some
suitable combination of encryption, commitments, signatures,
and zero-knowledge proofs. In practice, creating efficient
proofs over arbitrary unstructured text is far from trivial.

This is precisely the problem we tackle with Reef, a com-
piler and runtime system that allows an entity to commit to a
secret document and then subsequently prove that the docu-
ment matches or does not match one or more public regexes
without revealing anything else about the document. Building
Reef requires answering the following research questions:

1. How should one commit to a text document D?

2. Given a commitment to a document D, how can one arith-
metize (i.e., express as some type of circuit) the statements
“D matches/does not match a regex R”?
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3. What regex features are needed to enable realistic applica-
tions (e.g., quantifiers, alternation, lookarounds, etc.) and
what is the best way to arithmetize these features?

4. What kind of zero-knowledge proof systems work well
with the chosen commitment and arithmetization schemes?

To answer these questions, Reef marries new theoretical
ideas and low-level techniques into a compiler that automati-
cally arithmetizes arbitrary regexes. In particular, Reef:

Exploits NP checkers. Reef uses the common observation
that checking the answer of a computation is often cheaper
than finding the answer in the first place (either asymptotically
or concretely). As a result, Reef does not arithmetize algo-
rithms for finding regex matches/non-matches (e.g., Thomp-
son’s NFA [78], recursive backtracking). Instead, the prover
in Reef computes the answer (i.e., finds the match and the
relevant locations within the document, or establishes that
there is no match) with a fast regex engine we built, and then
proves that this answer satisfies criteria that implies the docu-
ment has a match (or no match). Only this NP checker needs
to be arithmetized and proven with a ZK proof system.

Reef’s NP checker supports a wider class of regexes than
all prior works, while also producing smaller arithmetizations.
In particular, some works [16, 37] transform the regex into
a DFA or NFA, and then prove that if one feeds the entire
document into the automaton the final state is accepting/non-
accepting. This approach results in O(|D| · |QDFA| · |Σ|)
constraints (or gates in some arithmetic or boolean circuit)
to prove that there is a match, where D is the secret doc-
ument, QDFA is the set of states in the DFA, and Σ is
the alphabet. Three recent proposals, ZK-Regex [60], Zom-
bie [83], and zkreg [68] reduce these costs: ZK-Regex
and Zombie leverage Thompson’s NFA (TNFA) and pro-
duce O(|D| · |QTNFA|) constraints, while zkreg’s use of Aho-
Corasick DFA (ADFA) leads to O(|D|+ |QADFA|) constraints.

Reef’s NP checker is fundamentally different from the
above approaches: it does not require feeding the entire doc-
ument into the automata, only the relevant characters. This
allows the prover to skip vast amounts of unnecessary work.

Introduces skipping automata. Above we allude to the
idea of “skipping” irrelevant characters whenever possible.
But how do we rigorously define this notion and what does
“whenever possible” mean? To answer these questions, we in-
troduce a new type of finite automata for regexes that we call
Skipping Alternating Finite Automata (SAFA). SAFA gen-
eralize NFA to include the ability to change the cursor (i.e.,
the index of the next character to read in the input) following
certain rules. SAFA allow Reef’s prover to skip processing en-
tire chunks of a document when the regex contains wildcard
ranges such as “.*” or “.{4,100}” and let Reef handle
lookarounds, which are common in password strength regexes
and which no prior work supports.

Compared to prior works, Reef’s NP checker can be ex-
pressed in O(α log(|D| + |QSAFA| · |Σ|)) constraints, where

|QSAFA| ≤ |QTNFA| ≤ |QADFA| and α = O(max(|D|, |QSAFA|)).
There are two points worth emphasizing about the complexity
of Reef’s checker. First, SAFA have exponentially fewer states
than TNFA and ADFA for many common regexes (§3.2).
Second, α is much smaller than the above worst-case upper
bound whenever Reef can skip characters. For instance, if
Σ = {a, b, c}, the regex R = “a.*b” (meaning D has “a”
eventually followed by “b”) results in α = 2 regardless of the
size of D because Reef can skip all the wildcard characters.
In contrast, R = “^[a-b]*$” (meaning D can contain any
number of “a” or “b” characters but no “c”) results in α = |D|
because we fundamentally have to check every character in
the document to make sure it is not “c”.

Leverages recursion. We observe that Reef’s NP checker
essentially performs the same high-level operations (looking
up a character in the document and then transitioning to a
new state) over and over. Such repeated structure is suitable
for recursive zkSNARKs such as Nova [56], where the prover
establishes that it ran some step function F, each time on a
different input, until some terminating condition holds. Reef’s
termination condition is designed to allow the prover to safely
stop proving as soon as the SAFA reaches an accepting state
and the cursor points to the last character. This frees the
prover from having to process the entire document (since in
many SAFA the prover can skip to the last character without
changing states) while hiding how many times F executes.

Commits to the document. Before Reef can be used, the
document D needs to be committed in a form that allows
Reef’s NP checker to cheaply read arbitrary entries in D. Who
generates the commitment depends on the application. In
the gene example, the commitment is generated and signed
by a trusted party (23andme). In the other applications, the
commitment is generated by the user who must also supply
a proof that ties the underlying document to the data in the
application (e.g., the DKIM signature).

Reef uses a polynomial commitment [18, 27, 42, 58, 80, 84]
for multilinear polynomials to commit to D, and a lookup
argument [55] compatible with recursive proof systems. A
lookup argument is a cryptographic protocol for proving that
some entry exists in a public or committed table (polynomial)
without revealing the entry. When the lookup argument is
integrated into the step function F, it allows F to access any
entries in D without revealing them to the verifier.

Supports table projections. Reef modifies the nlookup ar-
gument [55] to support lookup operations on table projections.
Given a commitment to a table such as the document D, a
projection is a smaller table Dproj derived from one or more
contiguous chunks of D (the choice of which chunks of D
are projected is public information). Reef then runs nlookup
on Dproj, which incurs costs that are proportional to |Dproj|.
The verifier can still check that all lookups to Dproj were done
correctly by using the original commitment to D.

Table projections are a powerful construct in Reef and
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r, s ::= α α ∈ Σ
| ^ / $ document start / end
| . wildcard character
| rs concatenation
| r | s alternation
| r? / r * / r+ quantifiers
| [αi − αj] character classes
| [^αi . . . αj] negation of characters αi . . . αj
| r{m} / r{m,} / r{m,n} repetition ranges
| (?=r) / (?<=r) lookahead / lookbehind

FIGURE 1—Reef supports the entire PCRE syntax [7] except for
backreferences and subroutine references.

might be of independent interest. For example, a DNA chro-
mosome results in a document D with tens of millions of
entries. However, regexes on DNA usually have the form:
R = “.{1000}TT(T|C).{5000}CT(T|C|A|G).*”,
which says that the first thousand entries are irrelevant, but
right after we should see TTT or TTC, and 5000 entries later
we should see CTT , CTC, CTA, or CTG; beyond that is ir-
relevant. SAFA allows Reef to skip all the irrelevant entries.
However, in each step of the recursive proof system, nlookup
internally invokes the sum-check protocol [59] which incurs
costs linear in |D| (million of entries) in order to prove the ta-
ble accesses. With projections, nlookup runs the sum-check
protocol over Dproj (under 10 entries).

Combines private and public tables. To efficiently express
the state transitions and complex skipping rules in SAFA,
Reef again uses a lookup argument. In particular, Reef stores
SAFA’s states, transitions, and skipping rules in a public table
that both the prover and the verifier can derive from the regex.
Given this table, the prover can, with one lookup, prove that
it transitioned to the next state in the SAFA and advanced the
cursor following the prescribed rules.

Having both a private table and a separate public table is
undesirable because lookup arguments amortize their costs
over many lookups (i.e., the more lookups to a table, the
cheaper the per-lookup cost). If one has two tables, then
queries to one table do not apply towards the amortization
of queries to the other table. To remedy this situation, Reef
shows how to combine both private and public tables into a
single hybrid table (without leaking the contents of the private
table) so that all lookups can be done on this combined table,
improving amortization and eliminating repeated fixed costs.

We evaluate Reef on the applications described earlier and
find that it can generate small proofs (tens of KB) in a few sec-
onds, even for large documents such as DNA chromosomes.

2 Background
This section reviews regex matching, rank-1 constraint satis-
fiability (R1CS), NP checkers, and zero knowledge succinct
non-interactive arguments of knowledge (zkSNARKs).

2.1 Regular Expression Matching

Given an alphabet Σ, a regex R is a pattern matching a set
of strings, called the language of R or LJRK ⊆ Σ∗. Figure 7

outlines the basic syntax for the creation and combination of
regexes that Reef supports.

Regexes are converted to deterministic finite automata
(DFA) with known techniques [20, 26, 43, 50, 64, 76]. One
can determine if a document matches a regex R by starting
with the initial state and transitioning states on each character
of the document until reaching a final state. If the final state
an accepting states in the DFA, the document matches R.

A common extension to regexes that Reef supports is
lookarounds (e.g., positive or negative lookaheads and
lookbehinds), a way to only match a pattern if is lead
(or followed) by another pattern. For example, a pass-
word strength regex with two lookaheads might look like
^(?=.*[A-Z])(?=.*[!@#$&^*]).{10,}, meaning
it contains an upper case letter ([A-Z]), a special charac-
ter from {!,@,#,$,&,^,*}, and has length at least 10
characters. The way to think about a lookaround such as
“^(?=R)” for some regex R is that R should be matched
against the input string in the usual way, but once the match
has been found, the cursor (i.e., the next position to process
in the input string) should be reset back to what it was before
the lookaround was processed. DFA/NFA have no notion of
“resetting the cursor” and hence must simulate it by increasing
the number of states exponentially [36].

2.2 zkSNARKs

A zero-knowledge succinct non-interactive argument of
knowledge (zkSNARK) is a cryptographic protocol where
a prover P , convinces a verifier V , that it knows a satisfying
witness to some NP statement without revealing the witness.
zkSNARKs typically target some variant of the NP complete
problem of circuit satisfiability (e.g., R1CS [41, 71], Plonk-
ish [40], AIR [21], CCS [72]), as one can represent arbitrary
computations in this form. Informally, zkSNARKs are:
1. Zero-knowledge: The proof reveals no information to V

beyond the fact that P knows a satisfying witness.
2. Succinct: The size of the proof and its verification is sub-

linear in the size of the satisfiability instance.
3. Non-interactive: No interaction between P and V besides

the transferring of the computation’s output and proof.
4. Argument of knowledge: P must convince V that it

knows a witness that satisfies the instance. This argument
is complete and computationally sound.

• Perfect completeness: If P knows a satisfying witness, P
can always generate a proof that convinces V .

• Knowledge Soundness: If P does not know a satisfying
witness, it cannot produce a proof that V will accept, except
with negligible probability.

2.3 Rank-1 Constraint Satisfiability (R1CS)

We focus on rank-1 constraint satisfiability (R1CS) as this is
the arithmetization supported by the particular implementa-
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tion of the zkSNARK we use [56], but all of our ideas apply
to more general arithmetizations (e.g., CCS [72]). R1CS gen-
eralizes arithmetic circuit satisfiability, and an R1CS instance
is given by a tuple (F , A, B, C, io, rows, cols), where F is a
finite field, io is the public input and output of the instance,
A, B, C ∈ F rows×cols are matrices, and cols ≥ |io| + 1. The
instance is satisfiable if and only if there exists a witness
w ∈ F cols−|io|−1 that makes up a solution vector z = (io, 1, w)
such that (A · z)◦ (B · z) = (C · z), where · is the matrix-vector
product and ◦ is the Hadamard product. The entry of z fixed
at 1 allows constants to be encoded.

R1CS Arithmetization. Here we briefly explain how to turn
a simple program into R1CS. Other works [19, 71, 73] have
more complex examples. Suppose that P holds two elements
x0, x1 ∈ F and wishes to convince V that y is the output of the
following computation without leaking anything about x0 or
x1 beyond what is implied by the result.
field foo(field x0, field x1) {

field y;
if (x0 == 30) { y = x1; } else { y = x0/x1; }
return y;

}

To do so, we first express this function as a set of con-
straints (or equations) over elements in F that contain addi-
tions, subtractions, multiplications by constants, and at most
one multiplication between variables. The result is:

guard × (x0 − 30) = 0

guard × (y − x1) = 0

(1 − guard)× (x1 − tmp) = 0

(1 − guard)× (y − prod) = 0

x0 × inv − prod = 0

inv × tmp − 1 = 0

To see why this represents the original computation, ob-
serve that we introduced auxiliary variables called guard,
tmp, inv, and prod. Here, P is allowed to assign any values
it wishes to y and the auxiliary variables, but let us assume
that P provides the right values for x0 and x1 (this is usually
enforced through the use of commitments). The only way that
all six constraints are simultaneously satisfied is when: (1)
x0 = 30, y = x1, and guard = 1 (there are many suitable val-
ues for the remaining variables); or (2) x0 ̸= 30, guard = 0,
tmp = x1, y = prod = x0 × inv, inv = tmp−1. As a result, if
P claims that the output is y, and P can convince V that it
knows a satisfying assignment for variables in the constraints
given y, then V is assured that y is correct.

Appendix E shows how to convert these constraints into
matrices A, B, and C. The solution vector z is (y, 1, w), where
w = (x0, x1, guard, tmp, prod, inv) is P’s secret witness.

2.4 NP checkers

While the above example is relatively simple it employs some
clever tricks. In particular, it leverages non-determinism to

transform expensive computations (branches and inverses)
into cheap checkers that merely confirm the answers. For
instance, if F = Zp, computing 1/x with only additions and
multiplications requires log(p) constraints via Fermat’s little
theorem (basically computing xp−2). But in R1CS, we can just
ask P to supply the inverse of x, inv, and simply check that inv
is indeed the multiplicative inverse of x with one constraint:
“inv×x−1 = 0”. This is an example of an NP checker. There
are many others used in SNARKs [19, 25, 48, 73, 81, 85].

In this work, we construct a novel NP checker for regex
matching/non-matching based on a new type of automata.

3 Goals and standard approach
In Reef there are three parties: a committer G, a prover P , and
a verifier V (in many cases G and P are the same entity). G
generates a commitment comm for document D using random
blind r, and provides (comm, D, r) to P , and comm to V .
Later, P wishes to prove that D either does or does not match
a regex R that is public and known to both P and V . Given
this setting, Reef has the following goals:

• Completeness, Soundness, Succinctness, ZK. These are
analogs of the definitions given for zkSNARKs (§2.2) for
the concrete R1CS instance that represents the statement
“I know an opening of comm, and it matches R” (or not).

• Public verifiability: The proof should be verifiable by any-
one who has a commitment of the document and R.

• Expressiveness: Reef should be able to support any regex
written in PCRE syntax [7].

Additionally, our implementation of Reef achieves the fol-
lowing goal, though some settings might not need this and
could use more efficient cryptographic primitives.

• Transparency: All cryptographic parameters for Reef
should be generated without requiring a trusted setup.

3.1 A standard approach

As mentioned in Section 2.1, one can convert a regex into a
DFA and then arithmetize its transition function δ. It boils
down to a chain of if statements that takes as input the current
state and current character in the document (both represented
as field elements) and outputs the next state. For example, if
the alphabet is Σ = {a, b}, and the regex is R = “a+b.*”,
the corresponding DFA would be:

0 1 2

b

a

a

b

{a, b}

Assuming that “a” maps to the field element 0, and “b” to
1, the corresponding δ transition is given by:
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field delta(field state, field cur_char) {
if (state == 0 && cur_char == 0) return 1;
if (state == 0 && cur_char == 1) return 0;
if (state == 1 && cur_char == 0) return 1;
if (state == 1 && cur_char == 1) return 2;
if (state == 2 && cur_char == 0) return 2;
if (state == 2 && cur_char == 1) return 2;
return −1; // invalid state or character

}

To express the computation of finding whether a commit-
ted document matches the regex, one would then: (1) open
the commitment to obtain the document (an array of field
elements); (2) call δ once for every character in the document
in order; and (3) add a check at the end to see if the final state
is one of the accepting states (another chain of if statements).
The resulting match function is:
field match(field commit, field blind) {
// commit is public input, blind is secret
field[SIZE] document = open(commit, blind);
field state = 0; // initial state

for (i = 0; i < SIZE; i++) {
state = delta(state, document[i]);

}

if (state == 2) { // accepting state in example
return 1; // match

} else {
return 0; // no match

}
}

One would then arithmetize this match function like in the
example in Section 2.3. Indeed, this what some prior works
do [16, 37]. Two recent works [60, 83] improve upon this de-
sign by converting the regex to a Thompson NFA (TNFA) [78]
and performing additional optimizations.

3.2 Limitations of the standard approach

The previous standard approach has many drawbacks. We list
the most salient ones here.

Insufficient Regex Expressiveness. Directly arithmetizing
traditional finite state machines such as DFA, TNFA or Aho-
Corasick DFA (AC-DFA) [17] fails to meet Reef’s expressive-
ness goals. The most recent works in this area lack support
for several common regex features.

For example, Zombie [83] lacks support for lookarounds.
ZK-Regex [60] does not handle lookarounds, negations in
character classes such as “a[^[:space:]b”, or nega-
tions of entire matches (i.e., proving a non-match). Finally,
zkreg [68], which is based on AC-DFA, only supports
matching on a fixed set of strings. Unbounded repetition
such as “ab*c” is unsupported, and negation of character
classes, negation of entire matches, or wildcard ranges such as
“a.{100}b” lead to an exponential number of states (2100).

Poor scalability. The number of R1CS constraints produced
by the standard approach for proving that a document D
matches is O(|D| · |QDFA| · |Σ|), where |QDFA| is the number of

states of the corresponding DFA. Zombie [83] improves this
to O(|D|·|QTNFA|). But for applications where the document is
millions of characters this still results in billions of constraints,
even when the regex is small. In contrast, Reef’s NP checker—
based on SAFA (§5)—has O(α log(|D|+ |QSAFA| · |Σ|)) con-
straints, where |QSAFA| ≤ |QTNFA|. As we discuss in Sec-
tion 6.2, in the worst case α = O(max(|D|, |QSAFA|)); but in
practice α is small (under 100 for even our largest document).

4 Improving the standard approach
One way to improve on the standard approach is to observe
that the match function is well suited for a recursive proof
system (this observation has been made many times in the
context of other state machines such as blockchain rollups).
In a recursive zkSNARK [22–24, 28–30, 54, 55], instead of
arithmetizing the entire match function, we arithmetize one
step of it. The result is:

field[3] match_step(field[] commit, field[] blind,
field state, field cursor) {

field cur_char = open_at(commit, blind, cursor);

// accepting state and end of document (EOD)
if (cur_char == EOD && state == 2) {

return {0, 0, 1}; // match
}

state = delta(state, cur_char);
return {state, cursor + 1, 0}; // not yet

}

The above match_step function takes as input a public
polynomial [18, 27, 42, 51, 58, 80, 84] or vector [63] commit-
ment (which could consist of multiple field elements) and the
corresponding secret blind(s). These types of commitments
have the nice property that they allow opening a particular
entry within the commitment rather than having to open the
entire document at once. match_step additionally takes the
current state and the current cursor. If the current state is ac-
cepting and the cursor points to the end of D (“$” in PCRE
syntax, denoted by a special field element that the committer
G appends to D to mark the end), D is a match and the return
value is [0, 0, 1]. Else, match_step executes the DFA’s δ
function and returns the tuple [state, cursor + 1, 0].

A prover P in a recursive zkSNARK would then take the
R1CS instance representing the match_step function, and
produce a proof π0 that establishes that running match_step
correctly on a public commitment, private blinds, state = 0,
and cursor = 0, produces the output out. Of course, proving a
single step is not very useful (we could have done this without
recursion); the key benefit is that a recursive proof system
allows P to prove that it verified a prior proof (π0 in this
context) in addition to proving another match_step on the
same public commitment, but the state and cursor returned
by the prior step (out) which are bound by π0. In this way,
P can prove that, starting with state = 0 and cursor = 0,
if P runs match_step some number of times, eventually
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0 : ∀

1 : ∃

2 : ∃

3 : ∃ 4 : ∃

5 : ∃

6 : ∃7 : ∃8 : ∃

9 : ∃ 10 : ∃ 11 : ∃

ϵ ϵ ϵ

a

b

•

b

a

•

•

••

•

• • •

FIGURE 2—AFA for regex R = ^(?=.*a)(?=.*b).{2,6}$.

out = [0, 0, 1]. The verifier V only learns this final value of
out (and none of the intermediate values), in addition to a
proof πfinal that establishes that P checked all prior proofs
and the last step was executed correctly.

This approach has three benefits. First, there is no need to
unroll the loop and therefore the number of R1CS constraints
is no longer fundamentally tied to the size of the document.
This enables the second benefit: P can stop proving as soon
as match_step outputs [0, 0, 1]. While in the construction
presented so far P can only “stop” once it has gone through
the entire document sequentially (so as to reach the EOD
special character), Reef has the ability to skip many characters
(possibly all the way to the end)—allowing the prover to stop
without accessing the entire document. Last, with recursive
zkSNARKs like Nova [56], if P wants to prove the same step
function many times (which is the case with match_step),
there are significant performance gains.

5 Skipping Alternating Finite Automata
The use of recursion is a necessary first step in Reef, but it
still falls short of our goals of expressiveness and efficiency.

In this section we introduce a new type of finite automaton
called SAFA. The motivation for SAFA is twofold; avoid the
state explosion problem for regex with lookarounds (§2.1)
and capture the smallest set of characters within a document
that must be checked in order to confirm that it matches a
regex. We start by reviewing Alternating Finite Automata
(AFA) which are a generalization of NFA. SAFA extend AFA
to include the notion of skips.

5.1 Alternating Finite Automata (AFA)

AFA [32] are finite automata that generalize NFA by labeling
states with an existential (∃) or a universal (∀) quantifier. An
∃ state is identical to a state in an NFA; the AFA merely reads
the character at the current cursor, advances the cursor, and

then transitions to any one of its possible next states. A ∀
state is very different. First, the AFA creates a copy of the
remaining characters in the input string (starting at the current
cursor until the end of the string) for each of its transitions
(i.e., if there are 10 transitions it will create 10 copies of the
input string). Then, in parallel, it transitions to every next state,
and feeds each of those states their own independent copy of
the input. For the AFA to accept an input string, all of the
parallel branches need to end in accepting states. Intuitively,
∀ states capture the conjunction of multiple sub-automata,
each of which operates independently on the provided input.

Formally, an AFA [32] is a 6-tuple (Q,Σ, q0,λq, δ, F),
where Q is the set of all states; Σ is the alphabet; q0 ∈ Q is
the initial state; λq : Q → {∀, ∃} is a labeling that assigns
each state q either ∀ or ∃; δ ⊆ Q × Σ × Q is a transition
relation that defines final states with respect to initial states
and input characters; F ⊆ Q is the set of accepting states.

Example. Suppose we want to match documents of
length between 2–6 that contain “a” and “b” defined
over Σ = {a, b, c}. This is given by the regex R =
“^(?=.*a)(?=.*b).{2,6}$”. Representing R as an
NFA requires creating an automaton that accepts the alterna-
tion of all strings that contain both “a” and “b” and have length
between 2 to 6 (“ab”, “.ab”, “a..b”, “.a.b.”, etc.). The
minimal NFA for this has 17 states (the 16 shown here [10]
plus a sink state for all invalid characters). In contrast, one
can match R with the 11-state AFA given in Figure 2.

To understand this AFA, first recall epsilon transitions,
which AFA inherit from NFA and which mean that the au-
tomaton can take any transition with an ϵ label without advanc-
ing the cursor or reading any character from the document.
Second, notice the state at the top is labeled ∀, which means
that after processing the document, all of its transitions (the
3 vertical branches) should end in an accepting state. The
transitions of ∀ states are special in that each creates a private
copy of the cursor initialized to the value of the cursor when
the ∀ state is reached. As a result, states 1, 3, and 5 will all
have their own cursors (i.e., advancing the cursor of the left
branch does not affect the cursor of the right branch).

Consider for example the document D = acbcc which is
accepted since the three branches out of state 0 run in parallel
and each branch terminates in an accepting state. If instead
D = bccbb, the middle and right branches both terminate in
accepting states, but the left branch does not.

The above example immediately shows that AFA could
provide savings over the automata considered by prior works.
Indeed, if a regex requires n states to be represented in an
AFA, the same regex may require 22n

states in a DFA [36].

5.2 SAFA: Supporting Skips

AFA are a great way for Reef to increase the expressiveness
of the supported regexes without incurring exponential costs,
but AFA—just like DFAs and NFAs—are designed from the
lens of “computation” rather than the lens of “verification”.
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0 : ∀

1 : ∃ 3 : ∃

2 : ∃

5 : ∃

4 : ∃

Skip({[2, 6]})Skip(∗)
Skip(∗)

a
{b,c} b

{a,c}

Skip(∗)

•

Skip(∗)

FIGURE 3—SAFA for regex R = ^(?=.*a)(?=.*b).{2,6}$
over alphabet Σ = {a, b, c}. Skip(∗) means the skip {[0,+∞)}.

field[4] match_step(field[] commit, field[] blind,
field state, field cursor, field cursor_move,
field stack) {

field cur_char = open_at(commit, blind, cursor);

if (cur_char == EOD) { // end of the document
if !is_accept(state) {

return {0, 0, 0, 0}; // no match
}

if (is_empty(stack)) {
return {0, 0, 0, 1}; // match

} else {
// reached accepting state in one branch
// but there are other branches.
// process next branch
stack, (state, cursor) = pop(stack);
return {state, cursor, stack, 0};

}
}
// special handling for forall state
if (is_forall(state)) {

for child in children(state) {
stack = push(stack, (child, cursor));

}
stack, (state, cursor) = pop(stack);
return {state, cursor, stack, 0};

}
// perform character or skip transition
state, cursor = delta(state, cursor, cur_char,

cursor_move);
return {state, cursor, stack, 0};

}

FIGURE 4—Reef’s step function using SAFA.

This fundamental distinction between compute and checking
leaves a lot of opportunities unexplored.

As a concrete example, consider the regex R =“.*ab$”
and the document D =“aaab”. AFA (much like NFA) rep-
resent “.*” by a single, non-accepting state, with the option
to loop or progress forward with an ϵ transition. Finding the
solution to the question “is D ∈ LJRK”? (meaning is D in
the language defined by R) requires computing both the case
in which the first “a” in D matches the “.*” in R and the
case in which it matches the “a” in R. Confirming a match is
simpler: given a path through the AFA for D, we just need to

check that the path leads to an accepting state.
We can even take this concept further. When computing,

bounded wildcard matching has to be explicitly unrolled.
“.{m,n}”, “.{n}”, and “.{n,}” all require at least n tran-
sitions in an NFA or AFA. We see this in the right branch of
the AFA in Figure 2 (states 4 through 10), where each state
in “.{2,6}” has to be included explicitly.

But when checking, what if we could simply move the cur-
sor forward by a number between 2–6 (inclusive), and carry
on? Since “.{2,6}” is a wildcard, the content does not mat-
ter; what matters is that a wildcard region of the appropriate
length exists. To express wildcard regions, we introduce skips.
A skip is a finite set of intervals, s = {i1, . . . , in}, where each
interval is of the form i = [start, end] or i = [start,∞). Both
start and end are non-negative integers and start ≤ end; for
[start,∞), the interval is unbounded on the right.

The idea is that when we reach a state that has a skip tran-
sition defined by some skip s, instead of reading a character
from the input and transitioning to the next state based on the
read value, the automaton advances the cursor by any amount
within the intervals in s, and then moves to the next state.

Note that we need s to be a set rather than a single interval
because of regexes such as “(.{2,6}|.{8,10})a” that
have multiple acceptable disjoint wildcard regions. Also, ob-
serve that skips generalize epsilon transitions: we can simply
define skip ϵ = {[0, 0]}. Third, we can support Kleene-star
wildcard regions with Skip(∗) = {[0,∞)}.

SAFA. With the above notion of skips we can then define
Skipping Alternating Finite Automaton (SAFA) as the 8-tuple
(Q, E,Σ, q0,λq,λe, δ,F), where Q is the set of all states
(nodes); E is the set of all transitions (edges); Σ is the alpha-
bet; q0 ∈ Q is the initial state; λq : Q → {∀, ∃} defines the
label for each node q to be either ∀ or ∃; λe : E → Skip ⊎ Σ
sets the label for each edge e as either a skip s or α ∈ Σ;
δ ⊆ Q × E × Q is the transition relation; and F ⊆ Q is the
set of accepting states.

Much of this definition should look similar to the AFA
in Section 5.1. The only difference is the addition of two
new fields: E and λe. E is simply the set of all transitions.
λe can be thought of as an analog of λq, but over transitions
instead of states. It labels each transition e ∈ E as taking a
single step via a character (as is the case in AFA and NFA),
or as a skip, which does not consume any characters from the
document but increases the cursor non-deterministically by
some amount in s. The symbol ⊎ is the disjoint union.

Example. We defer the formal definition of skips and the
various transitions to Appendix B. In Figure 3 we show the
SAFA that corresponds to the AFA from Figure 2. The SAFA
replaces the long chain of states [4–10] in the AFA with
Skip{[2, 6]}. This compression is possible because skips form
a Monoid (Appendix A.1), so ϵ (the identity element) fol-
lowed by skip s is just s.

The examples in Figures 2 and 3 provide the intuition
for why SAFA might be cheaper to represent in an NP
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checker than AFA, while also being computationally equiv-
alent (though SAFA requires the automaton to “know” how
much to skip ahead of time). We formalize the equivalence
between SAFA and AFA by direct translation.

Theorem 5.1. Let S denote a SAFA. There exists an AFA A
such that the language LJSK = LJAK is regular.

The proof is in Appendix B.6.

5.3 Designing the SAFA match_step Function

Section 4 introduces a match_step function that is appro-
priate for recursive proof systems. Reef modifies this step
function to support SAFA. Reef’s match_step takes in two
additional arguments: cursor_move, which is the quantity
by which P plans on advancing the cursor in the next transi-
tion, and a stack. One can represent a stack very cheaply with
a simple hash chain (a single field element). A new stack is
simply the value stack = 0. To push a value val just append it
to the hash chain stack = H(stack||val). To pop a value from
stack, P must supply a preimage of stack; the first part of the
pre-image will be the new stack, the other part is the popped
value. That said, in our specific setting we can implement an
even more efficient version since we know ahead of time the
maximum depth of the stack (which depends on the number
of nested forall states and the number of transitions). The
details are provided in Appendix G.

Reef’s match_step function is given in Figure 4. A key
attribute for SAFA is that for a document D to be considered a
match for regex R, all children of a forall state must reach
accepting states. Additionally, all of these children must start
from the same cursor position, which is private. In Reef’s
match_step function, when a forall node is reached a
copy of the cursor and the state ID is pushed onto the stack for
each of the node’s children. When one of the child branches
terminates in an accepting state, its sibling and the original
cursor position are popped from the stack.

Reef’s delta function is then:
field[2] delta(field state, field cursor,

field cur_char, field cursor_move) {
field state, min, max = lookup(state, cur_char);
assert(min <= cursor_move <= max);
assert(cursor <= cursor + cursor_move);
cursor = cursor + cursor_move;
return {state, cursor};

}

Reef relies on lookup tables for determining whether a tran-
sition is valid. This is discussed more in-depth in Section 6,
but in the context of our delta function, they work as fol-
lows: given a current state, character, and proposed quantity
by which to move the cursor, we use a lookup table to validate
the next state, as well as the minimum and maximum quantity
the cursor is allowed to move, based on the type of skip. For
example, if the transition is a skip “{[n,m]}”, then min= n
and max= m. If the transition is Skip(*), then min= 0 and

max= |F | − 1. In addition, we check that the new cursor po-
sition is greater than or equal to the current cursor position
(i.e., that the prover did not decrement the cursor through an
arithmetic overflow). In all other cases max=min= 1.

6 SAFA and Document Lookup Tables
Reef uses two lookup tables. One lookup table is public and
represents the SAFA character and skip transitions; V can
derive this public table from the regex. The other lookup
table represents the document and is private (i.e., its contents
cannot be revealed to the verifier). In each invocation of Reef’s
match_step (§5.3), the document table is accessed to read
the character at the current cursor, and then the transition
table is accessed to determine the next state.

This section reviews lookup arguments (§6.1), how Reef
organizes the SAFA transitions table (§6.2); how it commits
to the private table representing the document (§6.3); how it
supports table projections that help filter which entries in the
private table are relevant to a particular regex (§6.4); and how
it combines both the public and private tables into one hybrid
table that reduces the fixed costs of the lookup argument and
improves its amortization (§6.5).

6.1 Lookup arguments

There are cases where one would want to check that a value
v in an R1CS instance is contained in some table T of size n.
A way to do this when T is public is to “hardcode” T in the
R1CS instance by expressing it as a cascade of if statements
similar to how we arithmetized the DFA’s δ function (§3.1).
Then, we check that v matches one of these if statements and
not the final return. This requires O(|T|) constraints per
lookup. An asymptotically cheaper (but sometimes concretely
more expensive) solution is to use a Merkle Tree where the
leaves represent T . One passes the root of the tree as a public
input and a secret Merkle proof; the R1CS instance computes
log(n) hashes to confirm there is a path to the root given v.

Lookup arguments [35, 39, 55, 75] generalize this idea:
given m values {v0, . . . , vm−1} each in F , lookup arguments
check that all m values are entries in a table T ∈ F n. Crucially,
lookup arguments amortize the costs over the m checks such
that as m increases, the per-lookup cost decreases.

nlookup [55]. We briefly describe nlookup, which is de-
signed for recursive proof systems such as the one we use (§4).
For now, assume that the table is public. Section 6.3 describes
additional techniques to handle private tables.

Let T be a table with n = 2ℓ elements and let T̃ be a multi-
linear polynomial in ℓ variables such that for all i ∈ {0, 1}ℓ,
T̃(i) = T[to-int(i)], where to-int : {0, 1}ℓ → {0, 1, . . . , n−1}
is a function that maps ℓ-sized bit strings to ℓ-bit integers in
a natural manner. Given T̃ , one can then prove that a value
v ∈ T by producing a point q ∈ {0, 1}ℓ such that T̃(q) = v.
nlookup’s core idea is to reduce the task of checking m of
these lookup proofs to evaluating T̃ at a single point. To do
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this, the nlookup prover proves:∑
i=1...m

ρi · vi =
∑

i=1...m

ρi ·
∑

j∈{0,1}ℓ

ẽq(qi, j) · T̃(j)

where vi ∈ F is the i-th value claimed by the prover to be in T ,
ρ ∈ F is a random challenge chosen by the nlookup verifier,
and ẽq is a designated multilinear polynomial for performing
Boolean equality checks. This equality can be proven using
the sum-check protocol [59].

On its own, this is sufficient for proving membership of
a set of elements in T . However, nlookup is particularly
beneficial in the case where we would want to look up m
elements multiple times (e.g., during different iterations of the
step function of a recursive proof system). Readers familiar
with the sum-check protocol can recall that in the above
description, the verifier has to evaluate T̃ at a random point at
the end of the sum-check protocol.

In the case where we want to lookup m elements, k sepa-
rate times, nlookup leverages a folding scheme to fold all k
evaluations of T̃ into a single one. It does this by initializing a
running claim vr = T̃(qr) where qr, vr ∈ F ℓ, and qr is chosen
arbitrarily. To incorporate new lookup claims (i.e., polyno-
mial evaluations) into this running claim, nlookup makes a
slight modification to the polynomial above. In particular, the
sum-check protocol is now run over the polynomial:

vr+
∑

i=1...m

ρi · vi =∑
j∈{0,1}ℓ

ẽq(qr, j) · T̃(j)+
∑

i=1...m

ρi ·
∑

j∈{0,1}ℓ

ẽq(qi, j) · T̃(j)

which incorporates the running claim over foldings.

Integrating nlookup into Nova. To use nlookup with
Nova, we encode nlookup’s verifier as an R1CS NP checker.
This involves implementing the sum-check verifier and the as-
sociated Fiat-Shamir transform involving hash computations
as R1CS. We then invoke this NP checker inside Reef’s step
function whenever we want to enforce that a group of R1CS
variables are set to values contained in a table.

The cost to represent the above NP checker is as follows. To
look up m entries in a table of size n within a step function, the
number of constraints depends on the above two components:
(1) sumcheck verifier and variable assignment, which requires
O(m · log n) constraints with small constant; and (2) Fiat-
Shamir transform which requires representing O(log n) hash
function evaluations in constraints, and each hash function
requires hundreds of constraints.

Since expressing the hash functions is the dominant cost,
lookup arguments are designed to amortize this component
over the batch of m lookups. This is in contrast to using
Merkle Trees which requires O(m log n) hash functions rep-
resented as constraints to handle m lookups.

Since the nlookup verifier is encoded as an NP checker in
R1CS, the Nova prover actually needs to know the witness

for this checker so that it can prove the satisfiability of the
statement. To compute this witness, the Nova prover has to
do O(n) finite field operations per series of m lookups. Also,
outside of R1CS (after the Nova verifier has checked the
proof), the verifier performs an additional O(n) finite field
operations at the very end of the protocol. A more detailed
explanation of the protocol can be found in [55, §7].

6.2 SAFA Lookup table

The lookup table T that Reef uses to encode the SAFA has a
row for each transition in the SAFA and 5 columns—current
state, character, next state, minimum cursor move, and max-
imum cursor move. The function of each of these columns
is covered in Section 5.3. To convert this into the multilinear
polynomial T̃ needed for nlookup we manifest T as a vector
of elements; each element represents an entire row and is
computed by hashing the corresponding 5 columns to pro-
duce a value in F . After a lookup takes place in Reef’s step
function, the result is therefore a single hash digest. To obtain
the columns, the step function has constraints that allow the
prover to supply the five values of the column entries, fol-
lowed by a check that confirms that the hash of these values
matches the looked up digest.

Constraints for SAFA lookups. As we discuss in Sec-
tion 6.1, the number of constraints required for m lookups in
a table of size n using nlookup is O(m · log n) constraints
plus O(log n) hash functions expressed as constraints. Each
of the m lookups represents one SAFA transition. The SAFA
table is of size O(|QSAFA| · |Σ|) in the worst case—a transi-
tion for every character from every state. If the step function
processes one SAFA transition at a time then m = 1 and
the number of constraints to represent the single lookup is
O(log(|QSAFA| · |Σ|)) plus O(log(|QSAFA| · |Σ|)) hashes.

Constraints across all steps. While it may seem that the
total number of transitions (and therefore steps) should be at
most O(|D|), that is not always the case. With no lookarounds,
the total number of transitions is ≤ |D|. However, because
SAFA may have multiple branches for lookarounds, certain
parts of D may be looked up more than once. In that case the
total number of transitions is ≤ |QSAFA|. We thus upper bound
the number of transitions by α = O(max(|D|, |QSAFA|)). The
number of constraints needed to check all of the transitions is
therefore O(α log(|QSAFA| · |Σ|)) plus O(α log(|QSAFA · |Σ|))
hash functions.

Of course, the whole point of using a lookup argument is
to benefit from its amortization, which is why Reef places
multiple SAFA transitions within a single step function based
on the results of our optimizing compiler (§7). As a result,
m ≥ 1, so each step function has m transitions but Reef needs
to run m times fewer steps. In this case, the total number
of constraints across all steps is O(α log(|QSAFA| · |Σ|)) plus
O(αm log(|QSAFA · |Σ|)) hash functions. One might think that
the optimal case is to have all lookups in a single step (which
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maximizes the amortization), but this is not so because there
are other considerations as we explain in Appendix G.

6.3 Committing to a document

To commit to a document D over an alphabet Σ, the committer
G first maps each character in Σ to an element in F . Then,
G simply treats D as a vector in F n. At this point, G can
commit to D using any vector or polynomial commitment [27,
58, 66, 80]. That said, we choose a polynomial commitment
since Reef uses a lookup argument to access SAFA transitions
anyway, so using a lookup argument to access D allows us to
combine both lookup tables to get lower costs (§6.5).

Note that if the optional transparency goal is desired, then
the commitment scheme must be transparent (§3).

Polynomial commitment. G treats the vector D as a multi-
linear polynomial T̃ in evaluation form and commits to T̃ with
a polynomial commitment. A polynomial commitment is a
tuple of algorithms (Setup, Commit, ProveEval, VerifyEval).
Informally, Setup outputs public parameters pp; Commit takes
pp, a polynomial T̃ , and outputs a hiding and binding com-
mitment to T̃ , CT̃ ; ProveEval takes pp, T̃ , a point q, value v,
and outputs a proof πpoly that T̃(q) = v; VerifyEval takes pp,
CT̃ , q, πpoly, and v and outputs whether T̃(q) = v.

In our implementation we use the Hyrax polynomial com-
mitment (Hyrax-PC) [80, §6.1], but one could make other
choices to get different tradeoffs (e.g., Dory [58] has smaller
commitments but its ProveEval algorithm results in larger
proofs and is more expensive).

Making nlookup zero-knowledge. nlookup [55] does not
explicitly discuss a way to guarantee zero-knowledge during
lookups. Here we give a concrete proposal, based on standard
techniques [34, 70, 80]. As we describe in Section 6.1, the
output of the recursive proof system will include an nlookup
running value vr purported to be the evaluation of the multi-
linear polynomial T̃ at a public random point qr ∈ F specified
by the Fiat-Shamir transform. When T is public, V can simply
compute T̃(qr) and check if it equals vr. This is what we do
with the SAFA table (§6.2). However, when T is private, there
are two issues: (1) P cannot give V the claim vr in the clear,
as vr is a weighted sum of the contents of T and would leak
information; and (2) V does not have access to T and hence
cannot compute T̃(qr) on its own.

We address these issues as follows. First, instead of out-
putting vr in the clear, we have the match_step function
output d, where d = H(vr||s1) and s1 is a random secret value
that P chooses. P can make d available to V without revealing
anything about v assuming H heuristically instantiates a ran-
dom oracle. P then computes another proof, πconsistency, with
a separate non-recursive zkSNARK (we use Spartan [70])
for the statement: “given commitment c and public input d,
I know a vr such that d = H(vr||s1) and c = gvr hs2 for some
s1 and s2”, where g and h are appropriate generators of the
polynomial commitment. In effect, πconsistency establishes that
P correctly transformed one type of commitment (d) that is

cheap to compute in R1CS but is not useful to verify poly-
nomial evaluations, into another type of commitment (c) for
the same value vr that can be used to verify polynomial eval-
uations. Furthermore, πconsistency is very cheap to compute
(≈ 300 constraints) as we make c an outer commitment [33]
(i.e., a commitment that is native to the underlying proof
system) and does not need to be expressed in R1CS at all.

Second, recall that V has access to a polynomial com-
mitment of T̃ , CT̃ . P can then give V a proof πpoly =

ProveEval(T̃ , qr, vr), which V can use alongside qr, c, and CT̃

to confirm that T̃(qr) = vr. The key idea is to realize that,
in Hyrax [80] and similar polynomial commitments [27, 58],
the first step of VerifyEval(CT̃ , qr,πpoly, vr) is for V to turn
the claim vr into the Pedersen commitment gvr hs3 for some
s3. However, V already has c = gvr hs2 and a proof πconsistency

that establishes that c is a valid Pedersen commitment for vr.
Hence, V can simply use c instead.

Security. Observe that the verifier sees d, c, CT̃ , qr, πconsistency

and πpoly. From this information, the verifier learns nothing
about vr beyond the fact that d and c commit to the same
value, and that c is a commitment to a correct evaluation
of a polynomial underneath the commitment CT̃ at point qr.
This is because πconsistency and πpoly are both zero-knowledge
arguments, and the three commitments d, c, and CT̃ are hiding.

6.4 Table projections

For proving m lookups over a committed document of size n,
nlookup’s prover incurs O(n) operations over F . Although
these are not expensive group operations, when n is large
(e.g., billions), this can be expensive. On the other hand, in
some applications, it is public information that lookups will
be made to particular portion of the document (though the
actual content within that portion of the document is private).
For example, a study may just care about DNA regions that
start at publicly known offsets.

To address this, we describe an approach to run nlookup
on a projected table (one that contains one or more “chunks”
of an original table) such that the prover incurs costs pro-
portional to the size of the projected table. Furthermore, the
verifier still only needs a commitment to the original table.
The core idea is to leverage certain basic facts about multilin-
ear polynomials to reduce claims about a projected table to
claims about the original table.

We begin with an overview, which we then generalize. Let
T be the original table with n = 2ℓ elements, and T̃ be its
multilinear extension as described in Section 6.1. Suppose
we project T into a smaller table T ′; T̃ ′ is then a multilinear
polynomial in ℓ′ < ℓ variables. It turns out that T̃ ′ and T̃ are
related in a fundamental way. This is what enables us to run
nlookup on T ′. At the end of nlookup, the verifier is left
with a claim about T ′, of the form T̃ ′(qr) = vr. However, the
verifier only has a commitment to the original table T . To
address this, we transform this claim to an equivalent claim
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about an evaluation of T̃ , allowing the verifier to check the
claim about T̃ using a commitment to T . We now elaborate.

We use a concrete example, to provide intuition. Suppose
that T = [a, b, c, d, e, f , g, h], so T̃ is a multilinear polynomial
in ℓ = 3 variables. Suppose the projected table is T ′ = [c, d],
so ℓ′ = 1. For this example, it follows that for all qr ∈ F ℓ′

T̃ ′(qr) = T̃(s, qr), where s = 01 ∈ {0, 1}2 = {0, 1}ℓ−ℓ′ .
In the context of nlookup, to check that T̃ ′(qr) = vr, the
verifier can instead check T̃(s, qr) = vr, where s = 01. A
key take-away here is that for 0 ≤ ℓ′ ≤ ℓ, observe that a
specified prefix s ∈ {0, 1}ℓ−ℓ′ “selects” a unique chunk of T
and specifies a particular projection of size 2ℓ

′
.

Note that this approach generalizes to project non-
contiguous chunks of T . For simplicity, suppose that we
want to project two chunks of T , specified with two selectors
s1 ∈ {0, 1}ℓ′ and s2 ∈ {0, 1}ℓ′ , where 0 ≤ ℓ′ ≤ ℓ. The pro-
jected table T ′ = (L, R) is a vector of size 2ℓ−ℓ′+1 and L and
R are vectors of size 2ℓ−ℓ′ , so T̃ ′ is a multilinear polynomial in
ℓ−ℓ′+1 variables. When we run nlookup with the projected
table T ′, the verifier ends up with a claim about the projected
table of the form T̃ ′(qr) = vr, where qr ∈ F ℓ−ℓ′+1. Again,
derived from the properties of multilinear polynomials,

T̃ ′(qr) = (1 − qr[0]) · L̃(qr[1..]) + qr[0] · R̃(qr[1..])

= (1 − qr[0]) · T̃(s1, qr[1..]) + qr[0] · T̃(s2, qr[1..])

Thus to check if T̃ ′(qr) = vr, the verifier can instead check
if (1− qr[0]) · T̃(s1, qr[1..])+ qr[0] · T̃(s2, qr[1..]) = vr, which
makes two evaluation queries to T̃ . Note that this idea gener-
alizes to projecting k > 2 non-contiguous chunks of T .

Low-cost padding to hide document size. In many settings,
one would like to hide not just the content of D, but also its
size. For example, if D is a password, revealing its size reveals
the password’s length. Projections allow the commitment gen-
erator G to pad the document to some upper bound (essentially
for free) while allowing P to perform operations proportional
to the unpadded document and without having to reveal the
selector s to V . Appendix F has the details.

6.5 Hybrid private/public lookup argument

Reef’s step function (§5.3) looks up values from two tables:
the public SAFA table (S) and the private document table
(D). We can do this with two separate instances of nlookup,
one for each table. However, this requires m log(|D| · |S|) +
OH(log(|D| · |S|)) constraints where m is the number of
lookups to each table per step.

Instead, we combine both tables into a single hybrid table,
all while preserving the privacy requirements of the document
table. Accessing this hybrid table requires only 2m log(|D|+
|S|)+OH(log(|D|+ |S|)) constraints. This optimization does
not pay off only when one of the tables is multiple orders of
magnitude larger than the other. But we never encountered
an imbalance between |D| and |S| large enough to nullify the
benefits in any of our experiments.

P has access to S and D and can merge the tables by pre-
tending they are two halves of a large table T and running
the nlookup prover. At the end, V will end up with a single
claim about the multilinear extension of T: T̃(qr) = vr, where
qr ∈ F ℓ and ℓ = log(2 · max(|D|, |S|)). Since T in this case
includes private data, V should not see vr in the clear, and
instead receives: d = H(vr||s1), Cvr (a Pedersen commitment
to vr), and a proof πconsistency as we discuss in Section 6.3.

To verify T̃(qr) = vr, V must treat the public and private
parts of the large table as separate “indexable” chunks, similar
to the way projections work. We define T̃(qr) as:

T̃(qr) = (1 − qr[0]) · S̃(qr[1..]) + qr[0] · D̃(qr[1..]) = vr

Notice that this means we need to arrange T such that it
can be divided equally into a public half (indexed by qr[0] =
0) and a private half (qr[0] = 1). The smaller of the two
tables will be padded to the size of the other, which is why
ℓ = log(2 · max(|D|, |S|)) above, and why the hybrid table
becomes inefficient if one table is extremely larger than the
other. Lookups to the public half of the table use exactly the
same indices as before. Lookups to the private half will use
the same indices as before added to 2 · max(|D|, |S|).

Given this structure, P evaluates D̃ at the point qr[1..] and
obtains a value vd ∈ F . P then generates a commitment Cvd

to vd, and a proof πpolytail = ProveEval(D̃, qr[1..], vd) that
establishes that D̃(qr[1..]) = vd. For its part, V computes
S̃(qr[1..]) = vs on its own, and runs VerifyEval on πpolytail

using the document commitment, CD̃, and Cvd .
So far, we have proceeded very similarly to the verification

of the running claim in the non-hybrid model. But notice that
V must still relate vs and Cvd to Cvr in the following way:

(1 − qr[0]) · vs + qr[0] · vd = vr

This is done as follows. V computes CL, which is a Ped-
ersen commitment to the value on the left-hand-side of the
above equation using vs and Cvd (this requires only linear
operations on Pedersen commitments, which are linearly ho-
momorphic). P then proves that CL and Cvr commit to the
same value using a Schnorr [69] zero-knowledge proof of
equality πeq.

Security. When the verifier computes the commitment CL,
it does not learn any additional information about vd as the
operations are done using Cvd (Cvd is a commitment that
hides the underlying value vd). Furthermore, πeq proves that
the values under the commitments CL and Cvr are the same
without revealing any additional information.

7 Implementation
Reef is implemented in 14K lines of Rust and is open
source [8]. We discuss the main components here and op-
timizations in Appendix G.
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7.1 Compilation: from regex to R1CS

Reef has two levels of compilation. First, Reef compiles
regexes written in standard PCRE syntax [7] (Figure 1)
and produces a SAFA. From this SAFA, Reef generates the
SAFA’s transition lookup table and the match_step func-
tion discussed in Section 5.3. Since the match_step function
uses lookups it also contains the checks that the nlookup
verifier [55] must perform in each step. In particular, it con-
tains a series of Fiat-Shamir challenges that we generate with
the Poseidon hash function [44] using the Neptune library [3].
Finally, Reef uses the CirC [65] compiler to output R1CS
instances that we convert to Bellman [1] instances.

7.2 Solving: finding the satisfying witness

Reef, given a document D, finds the witness to the R1CS
instance representing match_step in two parts. First, Reef
derives which paths in the SAFA to take, the skip values, the
entries in D to read, and the rows in the transition table to
look up. Reef’s solver might be of independent interest and
we discuss it in Appendix D.4. This solver only needs to run
once and tells P how many steps to prove.

Second, for each step, Reef runs the nlookup prover,
which we implement as there was no prior implementation, to
generate the values that will satisfy the nlookup checks that
were inserted in the corresponding match_step. The result
of this and the SAFA solver are sufficient to construct the
entire solution vector zi = (yi, 1, wi) where wi is the witness
and yi is the output of step i.

7.3 Proving knowledge of the witness

For the proving and verifying, we use Nova [4], which we
modify to make it zero-knowledge (the existing implementa-
tion was only succinct). This required changing 1.6K lines of
Rust to hide the number of steps executed, and making the
commitments hiding, and the folding scheme, sumcheck pro-
tocol, inner product argument, and SNARK zero-knowledge.
Our modified version of Nova is open source [5].

8 Costs and Complexity analysis
In this section we discuss the asymptotic costs of all of the
components of Reef. The analysis below considers the case
where Nova [56] uses Pedersen commitments to commit to
vectors, and Spartan [70] uses an IPA-based polynomial com-
mitment scheme to compress incrementally generated proofs.
Furthermore, for nlookup [55], the analysis considers the
case where documents are committed with Hyrax’s poly-
nomial commitment scheme [80]. Finally, one of the basic
operations of the above proof systems are multiexponentia-
tions: given generators g1, . . . , gn, and exponents e1, . . . , en,
compute ge1

1 · ge2
2 · · · gen

n . These are also called multi-scalar
multiplications (MSM). These proof systems typically use
Pippenger’s algorithm [67] which can compute a size-n MSM
in O(nλ/ log(nλ)) group operations. We will ignore the secu-
rity parameter λ and just treat a size-n MSM as O(n/ log n)

group operations.
For simplicity, let T = |D|+ |QSAFA| be the sum of the size

of both the document and the SAFA lookup tables.

Committer’s costs. Committing to a document D with
Hyrax’s polynomial commitment [80] requires the committer
G to perform O(|D|/ log

√
|D|) group operations.

Prover’s costs. Ignoring the distinction between the arith-
metization of hash functions and other operations, the
contribution of the lookup argument towards Reef’s step
function is O(m log T) R1CS constraints; Reef requires
a total of O(α/m) steps to finish processing a docu-
ment. Nova performs O(m log(T)/ log(m log T)) group op-
erations per step. This results in P performing a total of
O(α log(T)/ log(m log T)) group operations. The resulting
proof π is of size O(log(m log T)).

In addition, during each step, Reef needs to run the
nlookup prover in order to generate the relevant portion
of the satisfying witness for the R1CS instance. This re-
quires computing the sumcheck protocol over the hybrid table,
which necessitates O(T) field operations. If projections are
used, then D is substituted with Dproj in the definition of T .

At the end of the protocol P needs to compute ProveEval
in order to generate πpoly so that V can verify the private
component of the hybrid table. This requires P to perform
O(

√
|D|/ log

√
|D|) group operations. The proof, πpoly, is of

size O(log |D|).
Finally, our zero-knowledge extension to the lookup argu-

ment for D requires generating the proof πconsistency, which is
done with a constant-size R1CS instance, and therefore O(1)
group operations in Spartan [70].

P performs O(α log(T)/ log(m log T)+
√
|D|/ log

√
|D|)

group and O(T) finite field operations in total.

Verifier’s costs. The cost to the verifier V is
O(m log(T)/ log(m log T)) group operations in Nova
to verify π. Further, V must invoke Hyrax’s VerifyEval
to check πpoly, which requires O(

√
|D|/ log

√
|D|) group

operations. Lastly, the verifier needs to evaluate the public
component of the hybrid table which requires O(|QSAFA|)
finite field operations.

V performs O(m log(T)/ log(m log T)+
√
|D|/ log

√
|D|)

group and O(|QSAFA|) finite field operations in total.

Alternate approach. In Appendix H we discuss how if we
instantiate the SAFA table and the document commitment
using a Merkle tree, the asymptotic costs of Reef are much
lower (logarithmic number of group and finite field opera-
tions). However, the lower asymptotics do not translate to
lower concrete costs due to much higher constants.

9 Evaluation
This section answers Reef’s motivating questions: is prov-
ing general regular expression matching in zero knowledge
practical for various applications and do Reef’s optimizations
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Application Document
Size (B)

# States # Transitions R1CS
Constraints

# Steps Compiler
Time (s)

Solver
Time (s)

Prover
Time (s)

Verifier
Time (s)

Proof
Size (KB)

Redactions
Small Email 415 331 42,315 52,631 4 340.953 1.243 3.580 0.521 33.665
Large Email 1,000 908 116,748 54,636 10 550.010 5.005 7.012 0.534 33.793

ODoH 128 36 4,007 22,692 2 58.029 0.215 1.912 0.420 34.193

Passwords
Match 12 21 1,178 19,982 5 67.999 0.096 2.868 0.401 32.433
Non-Match 9 21 1,178 20,728 6 31.937 0.377 3.252 0.407 33.265

DNA
Match 32.3×106 976 4,857 85,352 8 252.596 8.037 18.254 0.886 165.745
Non-Match 32.3×106 976 4,857 95,916 1 509.691 3.111 12.449 0.931 165.809

FIGURE 5—Summary of all costs for the largest instance of each application evaluated in Reef. R1CS Constraints are for one step in Nova.
Proof sizes include all the Nova zkSNARK proof as well as all auxiliary proofs (e.g., πconsistency) and commitments needed to verify the prover’s
claim. Times are averaged across 10 runs, standard deviation was less than 5% for all components and applications.

meaningfully reduce the costs? Our results indicate that this
is indeed the case.

9.1 Experimental Setup

We run all of our experiments on a 16-core Intel Xeon Plat-
inum 8253 CPU (2.20GHz) with 764 GB of RAM. We evalu-
ate Reef over the applications discussed in Section 1: proving
password strength, disclosing redacted emails, ODoH block-
listing, and genetic proving. For each of our use cases we
evaluate documents and regexes of varying sizes.

9.2 Overall Performance

We start by showing the end-to-end results of Reef on our ap-
plications, averaged over 10 runs, and then later break down
some of these costs to show the benefits of each of Reef’s opti-
mizations. Figure 5 reports the results of the largest instances
based on SAFA size. However, full results, all document sizes,
and a list of all regexes can be found in Appendix I.

Compilation. Compiling a regex to R1CS is the most time
consuming part since it requires parsing the regex and gen-
erating the SAFA, lookup tables, and R1CS matrices. This
includes the generation of the document commitment. How-
ever, this is typically a one-time cost and can be done in
advance since the regex is public.

Solving (witness generation). Reef’s witness generation in-
cludes the time to find the regex match, the right values for
all the skips in SAFA, running the nlookup prover (whose
output becomes a witness value to the step function), and
finding the satisfying assignment to all R1CS variables. In
most cases, all of this can be done in a few milliseconds; the
exceptions are large documents (e.g., DNA or large emails)
which require considerable time.

Proving. Proving time depends on document length, the
regex complexity, how many steps the prover needs to run,
and the size of each step. It includes the time to generate all
the proofs, including the consistency and equality proofs of

the hybrid table (§6.5). In Appendix G we discuss how Reef
often batches many character and skip transitions into one
step (leading to a larger step function but fewer total steps).
Reef generally performs worse on regexes where the regex
is similar to the document, as it gives Reef’s prover fewer
opportunities to skip and stop early. For example, the email
redaction regexes are very similar to the original document,
and hence result in more proving steps than some of the other
regexes, and consequently larger proving time.

Reef’s benefits are best exemplified with the DNA match-
ing application, in which the document has over 32 million
characters. Reef is able to generate succinct proofs for DNA
in under 30 seconds (including both solving and proving)
because it can avoid processing most of the document, thanks
to its use of skips and projections.

Verification. The verifier’s costs depend on the number of
R1CS constraints for a single step (since Nova folds all steps
into one), as well as the cost to evaluate the SAFA polynomial
at a random point, and check the consistency polynomial eval-
uation, and the equality proof. Nova’s current implementation
uses Bulletproofs’s [27] linear-time inner product argument
on the folded instance (which we made zero-knowledge in
our evaluation); so while it has logarithmic proofs it still has
verification linear in the size of one step. This could be expen-
sive when the step function is large, but our step functions are
relatively small (under 100K constraints). As a result, verifica-
tion in Reef takes less than 1 second in all of our applications
and workloads.

Proof size. The proof column includes all materials needed
for the verifier to check the prover’s claim. This includes all
commitments and auxiliary proofs (e.g., πeq,πconsistency). Reef
is succinct so all proof sizes are sublinear (logarithmic) in the
size of the statement being proven. However, Reef’s use of
Hyrax means that document commitments consist of

√
|D|

group elements. When the document is very large, such as in
DNA, this can be sizable.
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FIGURE 6—Mean end-to-end completion time (which includes witness and proof generation) across 10 runs for proving that some committed
document matches/does not match a regex with Reef and various alternatives. Standard deviations were less than 5% of the mean. Each
subfigure describes a different application (regex) and type of document. The corresponding document sizes are found in Figure 5.

9.3 Comparative Performance

To contextualize the benefits of Reef, we compare it against
several alternatives:

• DFA. This is the standard approach articulated in Sec-
tion 3.1. To our knowledge, this is also the approach taken
by the ZK-Email project [16]. We use Circom [2] to com-
pile the match function and solve the corresponding R1CS
instance since CirC [65] is not presently capable of com-
piling such large statements due to memory issues.

• DFA + recursion. This is the approach described in Sec-
tion 4, which adds recursion and processes one character at
a time. It uses a hash-chain as a vector commitment, which
we believe is optimal (exactly one hash invocation) when
accessing entries in the committed document sequentially.
We use Circom and NovaScotia [6] to compile the step
function and connect it with our zero-knowledge version of
Nova (§7.3). Again, we are unable to compile these circuits
with CirC since they require expressing the (large) DFA
delta function in constraints.

• SAFA + lookup. This is our implementation of Reef (§7)
with SAFA and nlookup, but without projections (§6.4)
or the hybrid table optimization (§6.5).

The metric that we will consider in this section is the end-
to-end completion time for the Prover, which includes both
the time to solve and generate all witness values, and prove the
satisfiability of the R1CS instance. Appendix I has additional
graphs for these same experiments but separates the time for
solving and proving for readers interested in understanding
the contribution of each component towards the end-to-end
time. One thing to consider is that Reef pipelines the gener-

ation of a proof for step i with the generation of the witness
for step i + 1 in parallel, as we discuss in Appendix G. As a
result, the end-to-end time can sometimes be lower than the
sum of the corresponding proving and solving times.

Results. Figure 6 shows the results for the same documents
and regexes found in Figure 5. We are unable to run the pass-
word matching application with either of the DFA baselines
due to its use of lookaheads, and the DNA application due
to the massive R1CS instances (or number of steps) that are
required. In the cases where we are able to do a comparison,
SAFA +nlookup and Reef both dramatically outperform
the DFA and DFA+Recursion approaches. Take for example
Redactions Small. SAFA +nlookup and Reef took 4.12 and
4.10 seconds generate witnesses and prove, while the DFA
baselines took over an hour. This suggests that Reef’s ability
to skip irrelevant parts of the document and the use of our
zero-knowledge version of nlookup provides benefits.

One might notice that DFA + recursion actually performs
worse than just DFA. There are a few reasons for this. First,
each step processes a single character in a document, necessi-
tating a large number of steps. Second, in each step, there is
some non-trivial work that is performed to check if the docu-
ment is a match (§3.1). Third, each step of Nova includes a
verifier circuit (10,000 gates on each curve in the cycle).

Note that Reef also suffers from the latter two overheads
(though the specific invariants for checking a match in a SAFA
are different than in a DFA). However, Reef does not process
a single character in each step, allowing it to amortize the
latter two overheads over a batch of characters. Indeed, one
of our optimizations (Appendix G) is to process the optimal
number of characters per step for a given regex in the SAFA’s
match_step, which amortizes these costs over the batch.
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We find this optimal value with a cost model that we have
implemented in Reef’s compiler. Of course, the baseline can
also process a batch of characters in each step allowing it to
amortize the latter two overheads over the batch. But we find
that even if we ignore the latter two overheads, Reef is still
orders of magnitude faster than DFA or DFA+recursion, not
to mention that Reef is more expressive as well.

The final impact to consider is that of Reef’s additional
optimizations. As discussed in Section 6.5, using hybrid tables
reduces the number of constraints needed. This reduction is
usually 1K–3K fewer constraints in the step function; full
results are in Appendix I. This reduction in the size of the
step function results in some small performance gains.

More significant is the impact of document projections
in our DNA applications. Because common variants in the
genome occur at known, fixed locations, by using projections
(§6.4) Reef can skip over large parts of the genome directly to
the start of the variant of interest. In the case of DNA match-
ing, this results in a 50% reduction in proving time, and an
over 99% reduction in solving time. While SAFA +nlookup
can avoid the costs of a large document when it comes to
proving, it still has to evaluate the sum-check protocol on
the entire document for each step. When working with a
document as large as DNA, this rapidly becomes prohibitive.

Takeaway. Reef handles a wide class of regexes at reason-
able cost while producing succinct proofs. Each of Reef’s
optimizations provide benefits: SAFA allows expressing com-
plicated regexes and skipping irrelevant parts of the docu-
ment; recursion unleashes the power of SAFA by allowing
the prover to prove only for as long as needed; Reef’s com-
piler picks the optimal number of characters to process per
step for a regex to reduce the penalty of non-uniformity dur-
ing recursion; hybrid lookup tables reduce the size of the step
function; and projections make it possible for the prover to
solve more efficiently when the location of relevance within
the document is public.

10 Related Works
Reef relates to a series of very recent works on building proof
systems for regexes [16, 60, 68, 83]. Reef aims to be as gen-
eral as possible—targeting complex PCRE expressions and
arbitrarily long documents. Reef achieves this by introducing
SAFA, a brand new automata. In contrast, these other works
target particular applications (middlebox packet inspection,
malware hash membership tests) and use existing automata
(DFAs or NFAs) enhanced with various encoding optimiza-
tions for their application domains. Reef can also handle these
applications (and many others). It is unclear whether Reef
would achieve better performance on these applications over
these tailored proposals as we have not yet done an empiri-
cal comparison (they were all developed concurrently with
Reef). One exception is ZK Regex from the ZK Email Verify
project [16], which is in effect the “standard” approach in our
evaluation, and which Reef outperforms in all applications.

Another related area is that of secure regex evaluation [38,
52, 57, 60, 62, 79]. Here the goal is for one party to supply the
regex R and another party the document D, and to determine
whether D ∈ LJRK without revealing their inputs. This is
a multi-party computation, and the techniques used in this
domain aim to express computation rather than verification,
which is the main theme in our work (via NP checkers).

11 Discussion and Future Work
Reef is the most expressive zero-knowledge proof system for
regexes to date. It excels in situations where the document is
large and the match is small, or when the regex gives Reef
many opportunities to skip unnecessary work. In contrast,
works like Zombie [83] excel in the opposite regime (small
documents or when the document closely matches the regex).
We think there are opportunities to combine the techniques in
these two approaches to obtain the best of both worlds.

Reef has the ability to prove regex matches (and non-
matches), but an interesting extension is to support “search
and replace”. In such a setting, the prover would prove not
whether there is a match for some regex but rather that some
committed document is the result of performing a regex
search and replace transformation on some other commit-
ted document. Another extension to Reef is to support context
free grammars. We think a similar approach of developing a
custom automata would work there, and Reef already uses a
stack for SAFA, which we show is quite efficient.

Source Code
Our code is available at:
https://github.com/eniac/Reef.
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A Preliminaries
A.1 Monoids

A monoid is a triple (A, ·, ϵ) where A is the carrier set, · is
the append operation, and ϵ is the identity element of append,
such that the following lemmas apply

• Associativity a · (b · c) = (a · b) · c.

• Left-identity ϵ · a = a.

• Right-identity a · ϵ = a.

A.2 Boolean Algebras

A boolean algebra or boolean lattice is a 6-tuple
(A,⊤,⊥,∧,∨,¬) where A is the carrier set, ⊤ ∈ A,⊥ ∈ A
represent true or bit 1, and false or bit 0 respectively.

The binary combinators ∧,∨ are logical and and logical or,
correspond to conjunction and disjunction respectively, and
the unary ¬ logical not corresponds to negation. A boolean
algebra is closed in A under ∧,∨,¬ and has the following
lemmas.

• Associativity of ∨,∧.

• Commutativity of ∨,∧.

• Distributivity of ∧ over ∨ and ∨ over ∧.

• ⊥ the unit of ∨.

• ⊤ the unit of ∧.

• Annihilation for ∨,⊤ and ∧,⊥ respectively.

• Idempotence of ∨,∧.

• Complement rules for ∨,∧ and ¬.

Having a boolean algebra provides us with familiar intu-
itions, specifically DeMorgan’s laws which are derivable from
the lemmas above.

The free Boolean algebra over carrier set A, B(A), is the
most general boolean algebra such that the above laws are
satisfied and every other Boolean algebra can be derived from
it. The positive free Boolean algebra over A, B+(A), is the
free boolean algebra without using negation.

We combine Monoids and Boolean Algebras (Defini-
tion A.3) by taking a Monoid (A, ϵ, ·) and the free positive
Boolean algebra B+(A) over that monoid. We can show the
monoid operation · can be overloaded to indicate elementwise
concatenation over free Boolean algebras:

· : B+(A) → A → B+(A)

(a ∧ b) · x = (a · x) ∧ (b · x)

(a ∨ b) · x = (a · x) ∨ (b · x)

· : A → B+(A) → B+(A)

x · (a ∧ b) = (x · a) ∧ (x · b)

x · (a ∨ b) = (x · a) ∨ (x · b)
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r,s ::= ∅ Empty set
| ϵ Empty string
| C Non-empty character set (∅ ⊂ C ⊆ Σ)
| rs concatenation
| r + s Logical or (alternation)
| r & s Logical and (conjunction)
| r∗ Kleene-closure
| r{n, m} Bounded repetition (n, m ∈ N)

FIGURE 7—Low-level Regex syntax in Reef. Additionally define
the wildcard notation . to be the full character set Σ and n-repetition
as r{n} = r{n, n}.

A.3 Regular expressions

The low-level regular expression (regex) syntax used in Reef
is given in Figure 7. We point out that it is the same syntax
used by Owens et al. [64] with the addition of bounded repe-
tition (r{n, m}) which is useful to handle separately for per-
formance reasons. We see how r{n, m} = r{n}+ . . .+ r{m}
so this syntax reduces to the regex with character sets from
Owens et al. [64]; by the same work, it is a regular language
with a translation to DFA. For simplicity we might write rs to
mean concatenation r · s.

Given an alphabet Σ, the language accepted by regex r is
defined as LJrK ⊆ Σ∗.

Definition A.1.

LJ∅K = ∅
LJϵK = {ϵ}
LJCK = C (where C is a character class)

LJr · sK = {uv | u ∈ LJrK, v ∈ LJsK}
LJr + sK = LJrK ∪ LJsK
LJr&sK = LJrK ∩ LJsK
LJr∗K = {ϵ} ∪ LJr · r∗K

LJr{n, m}K =


{ϵ} if n = m = 0
LJr · r{0, m − 1}K if n = 0
LJr · r{n − 1, m − 1}K otherwise

A.4 Derivatives of regular expressions

Brzozowzki [26] first defined the derivative of a regex. The
derivative dα(r) of r, given a character α ∈ Σ, is another
regular expression, such that its language LJdα(r)K contains
all the suffixes w ⊆ Σ∗ of LJrK with prefix α. Formally,
LJrK = {αw | w ∈ LJdα(r)K}.

The regex derivative is a recursive algebraic procedure.
Before we can define it, let us introduce the nullable predi-
cate v(r) to be true only when a regex accepts the empty
string. Nullable regex correspond to accepting states in finite
automata.

Definition A.2.

v(ϵ) = true

v(r∗) = true

v(∅) = false

v(C) = false

v(rs) = v(r) ∧ v(s)

v(r + s) = v(r) ∨ v(s)

v(r&s) = v(r) ∧ v(s)

v(r{n, m}) =

{
true if n = 0
v(r) otherwise

The Brzozowki derivative [26] of a regex r with respect to
a character α ∈ Σ is defined as follows.

dα(∅) = ∅
dα(ϵ) = ∅

dα(C) =

{
ϵ if α ∈ C
∅ otherwise

dα(r · s) =

{
(dα(r)s) | dα(s) if v(r)
dα(r)s otherwise

dα(r + s) = dα(r) + dα(s)

dα(r&s) = dα(r)&dα(s)

dα(r∗) = dα(r)r∗

dα(r{n, m}) =


∅ if n = m = 0
dα(r · r{0, m − 1}) if n = 0
dα(r · r{n − 1, m − 1}) otherwise

Antimirov in his seminal work [20] notes that the upper
semilattice (r,+, ∅) induces a congruence with regards to the
ACIZ laws of regex: Associativity, Commutativity, Idempo-
tence, and Zero-element. This congruence defines a normal-
ization procedure for minimizing automata that both Brzo-
zowski and Antimirov exploit.

Antimirov, though, gives an algebraic construction that
admits ACIZ equivalence on derivatives “for free”. Partial
derivatives on regex given a character produce a set of regex,
intuitively changing the meaning of a derivative from a one-to-
one mapping to a one-to-many. This has a significant benefit,
as regex sets generated by partial derivatives, like all sets,
admit the ACIZ lemmas. There is no need for a weaker equiv-
alence relation, only set equality.

Caron et al. [31] generalize Antimirov’s partial derivatives
from sets to arbitrary support structures, a significant gen-
eralization used in Reef. The support structure we chose to
observe as the result of our derivative is the free positive
Boolean algebra (Section A.2). This structure is convenient as
Alternating Finite Automate (AFA) operate over states which
are in B+(T) for some carrier set T .

20



Here is how our Generalized Antimirov partial derivatives
∂α : regex → B+(regex) are defined.

Definition A.3.

∂α(∅) = ⊥
∂α(ϵ) = ⊥

∂α(C) =

{
ϵ if α ∈ C
⊥ otherwise

∂α(r · s) =

{
∂α(s) ∨ ∂α(r) · s if v(r)
∂α(r) · s otherwise

∂α(r + s) = ∂α(r) ∨ ∂α(s)

∂α(r&s) = ∂α(r) ∧ ∂α(s)

∂α(r∗) = ∂α(r) · r∗

∂α(r{n, m}) =


⊥ if n = m = 0
∂α(r · r{0, m − 1}) if n = 0
∂α(r · r{n − 1, m − 1}) otherwise

We overload the monoidal append · operator to apply ele-
mentwise over B+(regex) (Section A.2).

A.5 Existing Automata

A DFA is a 5-tuple (Q,Σ, q0, δ,F).

Q : the set of all states
Σ : The alphabet
q0 ∈ Q : Initial state
δ : Q × Σ → Q : Transition function
F ⊆ Q : Set of accepting states

A NFA is a 5-tuple (Q,Σ, q0, δ,F)

Q : the set of all states
Σ ∪ {ϵ} : The alphabet with ϵ (empty string)
q0 ∈ Q : Initial state
δ ⊆ Q × Σ× Q : Transition relation
F ⊆ Q : Set of accepting states

An AFA [32] is a 6-tuple (Q,Σ, q0,λq, δ,F) where

Q : the set of all states
Σ : The alphabet
q0 ∈ Q : Initial state
λq : Q → {∀, ∃} : Label states ∀ or ∃
δ ⊆ Q × Σ× Q : Transition relation
F ⊆ Q : Set of accepting states

B Skipping Alternating Finite Automata
AFA enable the distinction between logical and/or branches.
Next, to efficiently represent sparse matches we introduce
an automaton that can ignore irrelevant parts the document.
For example, the regex ^.{1,1000}ab$, indicates there
is a cursor i such that 1 ≤ i ≤ 1000 for a document D and
Di = a and Di+1 = b. The contents of D in the range of i
are irrelevant since wildcards match anything. We can skip
verifying those 1000 equations and only verify the inequality
on the cursor i above.

We must now give some preliminary definitions.
Interval sets are a collection of intervals of natural num-

bers in a light-weight memory representation that only stores
the start and end points. Our implementation never iterates
through an interval, thus allowing us to work with arbitrarily
large intervals with nearly constant overhead.

B.1 Intervals

A left-closed, right-closed interval of natural numbers [a, b]
where a ≤ b, a, b ∈ N represents the subset of natural
numbers { i | a ≤ i ≤ b} (inclusive in both ends).

A left-closed, unbounded interval [a,∞) represents the
subset of natural numbers { i | a ≤ i} (inclusive on the
left, unbounded on the right). Those will be the two types
of intervals we consider, the term Intervals will refer only to
those and we call them bounded and unbounded intervals for
brevity and represent them with the letters I, i, possibly using
subscripts.

B.2 Skips/Interval sets

An interval set S or a skip is a Set datastructure. It is a col-
lection of intervals {i1, . . . , in} ordered by increasing starting
point, such that there is no overlap between consecutive inter-
vals. We consider an overlap of two intervals to be a difference
of at most 1 between the end-point of the first and the start
point of the second. So for example [1, 2], [4, 5] do not over-
lap but both [1, 3], [2, 4] and [1, 2], [3, 4] overlap and are both
equivalent to [1, 4]. Formally, two intervals [a1, b1], [a2, b2]
overlap iff max(a1, b1) + 1 ≥ min(a2, b2).

Intervals and Interval sets admit the familiar set operations
union (∪), intersection (∩), complement (¬) and additionally
the operation append(+), which is element-wise addition of
interval bounds. We use set notation i ∈ s and n ∈ s, to mean
i is an interval in s, or n is a number contained in any i.

B.3 Operations on Interval sets

We define the combinators ∪,∩,¬ on intervals as a prepara-
tion for defining the boolean algebra of Interval sets. Notice
the return type of ∪,∩,¬ on Intervals is an Interval Set S, so
Intervals themselves are not closed under ∪,∩,¬ and as such,
Intervals do not form a boolean algebra.
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∪ : I → I → S

[a1, b1] ∪ [a2, b2] =
{[min(a1, a2), max(b1, b2)]} max(a1, a2) ≤ min(b1, b2)

{[a2, b2], [a1, b1]} b2 < a1

{[a1, b1), (a2, a2)} otherwise

[a1,∞) ∪ [a2, b2] =
{[a2, b2], [a1,∞)} b2 < a1

{[a1,∞))} b2 ≥ a1 ≤ a2

{[a2,∞))} otherwise

[a1, b1] ∪ [a2,∞) =
{[a1, b1], [a2,∞)} b1 < a2

{[a2,∞))} b1 ≥ a2 ≤ a1

{[a1,∞))} otherwise

[a1,∞) ∪ [a2,∞) ={
{[a1,∞))} a1 ≤ a2

{[a2,∞))} otherwise

∩ : I → I → S

[a1, b1] ∩ [a2, b2] ={
{[max(a1, a2), min(b1, b2)]} max(a1, a2) ≤ min(b1, b2)

{} otherwise

[a1,∞) ∩ [a2, b2] =
{[a2, b2]} b2 ≥ a1 ≤ a2

{[a1, b2]} b2 ≥ a1 > a2

{} otherwise

[a1, b1] ∩ [a2,∞) =
{[a1, b1]} b1 ≥ a2 ≤ a1

{[a2, b1]} b1 ≥ a2 > a1

{} otherwise

[a1,∞) ∩ [a2,∞) ={
{[a2,∞)} a1 ≤ a2

{[a1,∞)} otherwise

¬ : I → S

¬ [0, ∞) = {}
¬ [a, ∞) = {[0, a − 1]}
¬ [0, a] = {[a + 1,∞]}
¬ [a, b] = {[0, a − 1], [b + 1,∞)}

Intervals are closed under the + append operation and
ϵ = [0, 0] (the identity interval) and satisfy associativity, so
intervals form a monoid.

+ : I → I → I

[a1, ∞) + [a2,∞) = [a1 + a2,∞)

[a1, b1] + [a2,∞) = [a1 + a2,∞)

[a1, ∞) + [a2, b2] = [a1 + a2,∞)

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2]

Interval sets also form a boolean algebra (Section A.2),
with ⊤ = {[0,∞)},⊥ = {}, and where the combinators
∨ = ∪,∧ = ∩ and ¬. We show that boolean algebra lemmas
hold by simply observing that Interval sets are succinct rep-
resentations of sets of natural numbers and all sets induce a
boolean algebra with respect to set combinators.

∩ : S → S → S

{i, in} ∪ s = {i ∪ is | is ∈ s} ∪ {in}
{} ∪ s = s

∩ : S → S → S

{i, in} ∩ s = {i ∩ is | is ∈ s} ∩ {in}
{} ∩ s = {}

¬ : S → S

¬{i1, in} = ¬ii ∩ ¬{in}
¬{} = {[0,∞)}

+ : I → I → I

s1 + s2 =
⋃

{i1 + i2 | i1 ∈ s1, i2 ∈ s2}

Notice the concatenation operation + together with {[0, 0]}
induce a Monoid structure, as for Interval sets, it is easy
to show the associativity of + and left/right identity laws
hold. Interval sets form a boolean algebra with a monoidal
structure—unsurprisingly the same algebraic structure en-
joyed by regular expressions.

We can now formally define a finite automaton as the target
of our regex compiler. As hinted earlier, SAFA are a gener-
alization of AFA with skips on their transitions. A skip is an
interval set s and when matching on a document at cursor
position i, we can nondeterministically pick any n ∈ s and
continue matching at position i + s, without changing the out-
come of the match. This is a powerful technique for matching
on sparse documents.
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Definition B.1.

matchS(q, D, i) ≜ (1)
q ∈ F ∧ i = |D| (accept condition)
match∀(q, D, i) if λq(q) = ∀
match∃(q, D, i) if λq(q) = ∃

match∀(q, D, i) ≜

∀ e, q′, (q, e, q′) ∈ δ → matchE(q′, e, D, i) (2)

match∃(q, D, i) ≜

∃ e, q′, (q, e, q′) ∈ δ ∧ matchE(q′, e, D, i) (3)

matchE(q′, e, D, i) ≜ (4)
matchS(q′, D, i + 1) if λe(e) = D[i]
∃n ∈ s, matchS(q′, D, i + n) if λe(e) = s ∈ S
false otherwise

FIGURE 8—SAFA semantics, mutually recursive predicate matchS
is true iff document D at position i ≤ |D| is accepted by SAFA S.

q0

NI(i0,Σ) NI(in,Σ). . .

ϵ ϵ

FIGURE 9—NFA N (s,Σ) for interval set s = {in}.

B.4 SAFA formal definition

A Skipping Alternating Finite Automaton (SAFA) is an 8-
tuple (Q, E,Σ, q0, bq,λq,λe, δ,F) where

Q : the set of all states (nodes)
E : the set of all transitions (edges)
Σ : The alphabet
q0 ∈ Q : Initial state
λq : Q → {∀, ∃} : Label nodes, ∀ or ∃
λe : E → S ⊎ C : Label edges, skip or character set
δ ⊆ Q × E × Q : Transition relation
F ⊆ Q : Set of accepting states

The only difference with the AFA definition is edge labels.
In addition to a character set C ⊆ Σ which matches one
character from the document α ∈ C and increments the cursor
by one, an edge might be labeled as a skip transition s ∈ S,
which does not consume any characters from the document
and increases the cursor nondeterministically by n ∈ s ⊆ N.

For brevity, we overload the notation (q, s, q′) ∈ δ to indi-
cate a skip transition s, or more precisely there exists an edge

e ∈ E such that (q, e, q′) ∈ δ and λe(e) = s. Also overload
(q,α, q′) ∈ δ to indicate a character α ∈ Σ transition, or
there exists an edge e ∈ E and character set C ⊆ Σ such
that (q, e, q′) ∈ δ and λe(e) = C and α ∈ C. As the labeling
function λe maps to a disjoint union there is no confusion
with this notation.

B.5 SAFA Semantics

Now we can give the semantics of the language accepted by
a SAFA S. If D ∈ Σ∗ is a document with random-access,
and i ≤ |D| a cursor in the document, define the mutually-
recursive decidable procedure matchS which returns true if
at state q, a document D at index i is accepted by SAFA S.

With the auxilary definitions of Figure 8 in place, finally
define the language recognized by a SAFA S as

LJSK = {D | matchS(q0, D, 0)}

B.6 SAFA are regular

To prove SAFA are regular and have the same computational
power as the source regex language, we must provide an iso-
morphism from SAFA to another finite automaton which is
known to be regular, like DFA, NFA or AFA, as well as an iso-
morphism to our source language to show that no expressive
power is lost during compilation.

Source language ⇐⇒ DFA. The source language in Fig-
ure 7 is regular by giving a translation to the regular expres-
sion language with character sets [64], which is shown to be
regular by equivalence to a DFA. Our bounded range expres-
sions r{a, b} in Figure 7 translate to an alternation of finite
repetition r{a, b} = r{a}+ . . .+ r{b} where

r{0} = ϵ

r{i} = r · r{i − 1}

DFA ⇐⇒ AFA. A construction is given by Fellah et
al. [36]. The proof proceeds by constructing an intermedi-
ate NFA where states are Q×Q sized boolean matrices which
correspond to truth tables of B+(Q) of AFA states. By the
above, a n-state AFA is equivalent to an at most 2n-state NFA
and a 22n

DFA by the product construction [36]. The opposite
direction is trivial, as all DFA are AFA with only existential
nodes.

AFA ⇐⇒ SAFA. Finally, we show SAFA is regular by
translation to AFA. We give a translation N (s,Σ) of skip s
to NFA, given alphabet Σ. Then show substituting N (s,Σ)
in place of s produces an AFA which recognizes the same
language as the SAFA. The opposite direction, embedding an
AFA to a SAFA is trivial; all AFA are SAFA without skips.

A skip is a finite set of intervals (Section B.2), whose
union is a possibly infinite subset of the natural numbers
s = {in} ⊆ N. Before we give an NFA construction for s we
construct a NFA NI(i,Σ) for an interval i and alphabet Σ.
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Intervals to DFA. An NFA for a closed interval [a, b] (where
a ≤ b) is given by the following construction

Definition B.2.

Nc(a, b,Σ) = (

Q := {q1, q2, . . . , qb}
Σ := Σ

q0 := q1

F := {qa, . . . , qb}

δ := {q1
Σ−→ q2, q2

Σ−→ q3, . . . , qb−1
Σ−→ qb}

)

The NFA N[a,b] = Nc(a, b,Σ) is a finite chain with ac-
cepting states qi, a ≤ i ≤ b. Notice the final state qb is an
accepting state but does not transition. We will later give a
substitution function of an NFA in a SAFA S edge qA

s−→ qB

which adds an ϵ-transition from qb to SAFA state qB.
The Nc construction will not work for an open interval i =

[a,∞) as it will result in an infinite chain of states. Instead,
construct an NFA with an accepting self-loop in the end that
accepts infinite repeating strings.

Definition B.3.

No(a,Σ) = (

Q := {q1, q2, . . . , qa}
Σ := Σ

q0 := q1

F := {qa}

δ := {q1
Σ−→ q2, q2

Σ−→ q3, . . . , qb−1
Σ−→ qb, qa

Σ−→ qa}
)

Note the reflexive transition (qa,Σ, qa) on the only accept-
ing state qa means all a states must be traversed to accept.
Now combine Nc(a, b,Σ) and No(a,Σ) to construct an NFA
equivalent to an arbitrary interval, by conditionally branching
on if the interval is closed or open.

Definition B.4.

NI(i,Σ) ={
Nc(a, b,Σ) if i = [a, b]
No(a,Σ) if i = [a,∞)

Interval sets to NFA. Given skip s = {in} and alphabet Σ
construct an n + 1 state NFA N (s,Σ) as follows. Assume
no capturing of state identifiers—state q ∈ QNI(i,Σ) does not
appear in another NI(i′,Σ) where i ̸= i′.

Definition B.5.

N (s,Σ) = (

Q := {q0} ∪
⋃
i∈s

QNI(i,Σ)

Σ := Σ

q0 := q0

F :=
⋃
i∈s

FNI(i,Σ)

δ :=
⋃
i∈s

{(q0, ϵ, q0,N (i,Σ))} ∪
⋃
i∈s

δN (i,Σ)

)

The initial state q0 is non-accepting. Then add a nonde-
terministic choice from q0 to each one of NI(in,Σ). As long
as any NI(in,Σ) reaches an accepting state, then N (s,Σ)
accepts. This concludes the construction or N (s,Σ).

Substitution in SAFA. Now define formally a substitution
procedure ⟨N/e⟩S , for a SAFA S, NFA N , and SAFA edge
e ∈ ES .

Remember that SAFA edges are a set ES and map to either
skips or character-sets via the labeling function λe : E →
S ⊎ C. We build an edge set EN and labeling function λN :
EN → C for NFA N , such that

• No capturing: ES : EN ∩ ES = ∅.

• EN sound: ∀e ∈ EE , ∃q q′ (q,λN (e), q′) ∈ δN .

• EN complete: ∀q q′ C, (q, C, q′) ∈ δN → ∃e ∈
EN , λN (e) = C.

Also assume no capturing of states, QS ∩ QN = ∅ are
disjoint and their alphabets are equal. Let unique qsrc, qdst,
such that (qsrc, e, qsrc) ∈ δS

Definition B.6.

⟨N/es⟩S = (

Q := QN ∪ QS \ {qsrc, qdst}
E := EN ∪ ES \ {es}
Σ := ΣS

λq := λq,S ∪ {q 7→ ∃ | q ∈ QN }
λe := λe,S ∪ λN

δ := δS

∪ {(q, e, q′) | (q, C, q′) ∈ δN , C ⊆ Σ, λN (e) = C}
∪ {(qsrc, eϵ, q0,N )} ∪ {(qF, eϵ, qdst) | qF ∈ FN }

F := FS

)

The substitution construction may look complex but is in-
tuitive to understand. For SAFA S, NFA N and SAFA edge
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es with transition (qsrc, e, qsrc) ∈ δS , remove the transition
(qsrc, e, qsrc) from δS and replace it with N by connecting qsrc

and qdst to the initial and accepting states of N respectively.
Notice the accepting states FS of S do not change, so if we

can prove language equivalence of NFA N with the replaced
edge es, we should be able to prove a key lemma for the SAFA
⇐⇒ AFA proof. The definition of a language for an edge
e ∈ ES comes directly from the matchE rule in Figure 8.

Definition B.7.

LJeSK =

{
C if λe(eS) = C ⊆ Σ

{Σn | n ∈ s} if λe(eS) = s ∈ S

Either the edge e maps to a character set C ⊆ Σ and the
language is all the single characters in the set C, or a skip s
and the language is all the n-length strings, for every n ∈ s.

The language of an NFA is the textbook definition, where
δ∗ is the transitive-reflexive closure of the δ relation.

Definition B.8.

LJN K = {w | (q0, w, qF) ∈ δ∗N }

Define the language suffix at state q ∈ QS for a SAFA as a
generalization of LJSK to a given start state q ∈ QS instead
of initial state q0. This definition gives us a strong induction
hypothesis to use in the following lemma.

Definition B.9.

LJS : qK = {D | matchS(q, D, 0)}

Taking a transition e ∈ ES prepends the language LJeSK to
all the suffixes of the destination of e. Note the concatenation
operator · is overloaded, to mean the pairwise concatenation
of the product of two sets.

Lemma B.1. (q, e, q′) ∈ δS → LJS : qK = LJeSK·LJS : q′K

Proof. The proof proceeds by induction on the derivation
LJS : qK. In the base and the inductive case, perform case
analysis on λe(eS).

1. If λe(eS) = C ⊆ Σ then the language LJeSK =
C. Prepend each character in the character set C to
LJS : q′K. The documents D ∈ C · LJS : q′K are
matched by matchE(q′, eS , D, 0) for the base case and
matchE(q′, eS , D, i + 1) in the induction step.

2. If λe(eS) = s ∈ S then the language LJeSK =
{Σn | n ∈ s}. The documents D ∈ Σn · LJS : q′K
are matched by matchE(q′, eS , D, 0) for the base case
and matchE(q′, eS , D, i + 1) in the induction step.

Now what is left is to show the substitution operation re-
spects language equivalence between edge eS and NFA N .

Lemma B.2. LJN K = LJeSK → LJ⟨N/eS⟩SK = LJSK

Proof. This is a straightforward application of (Lemma B.1).

We need two more auxilary lemmas. First, describe how
interval set composition translates to langage union.

Lemma B.3. LJ{in+1, in}K = {Σm | m ∈ in+1} ∪ LJ{in}K

The second is similar, an interval set composition in the
NFA construction (Definition B.5) translates to language
union.

Lemma B.4.

LJN ({in+1, in},Σ)K = {Σm | m ∈ in+1} ∪ LJN ({in},Σ)K

Both lemmas are straightforward to prove from their defi-
nition. Finally, prove the NFA construction for interval sets
NI(s,Σ) has the same language as skip s for all possible
skips.

Lemma B.5. λe(es) = s ∈ S → LJN (s,Σ)K = LJeSK

Proof. For skip s = {in} prove this statement by induction
on the number of intervals n.

1. For the base case, n = 1 as skips are non-empty sets
of intervals, then LJS(es)K = {Σn | n ∈ i1} and
N (s,Σ) = NI(i1,Σ) as only one epsilon transition is
possible from N (s,Σ), the one to NI(i1,Σ). By inspect-
ing the δ relations in Nc(i1,Σ) and No(i1,Σ) (Defini-
tion B.4), both recognize exactly {Σn | n ∈ i1}.

2. For the inductive case, n′ = n + 1, use the auxilary lem-
mas (Lemma B.3, Lemma B.4) to translate composition
of interval sets to language union, as well as composi-
tion of interval NFA to language union. Both lemmas
produce a language union with {Σm | m ∈ in+1} which
cancel out. The result is exactly satisfied by the induction
hypothesis.

SAFA to AFA recursive definition. The last construction
that converts a SAFA to an AFA is now possible. We give a
well-founded recursion procedure unskip, based on the num-
ber of skips in SAFA nS = |{e | e ∈ ES ,λe(e) = s ∈ S}|
which will substitute skip n on each iteration, for 0 ≤ n ≤ nS .

Definition B.10.

unskip(0, S) = S
unskip(n + 1, S) = ⟨N (sn,Σ)/sn⟩unskip(n,S)

This procedure runs once for all e ∈ ES in S, where
λe(e) = s ∈ S is a skip and substitutes s for its equivalent
NFA N (s,Σ) until there are no more skips. By this definition
unskip(nS ,S) is an AFA.

Next to show S and unskip(nS ,S) are equivalent in terms
of the regular languages they recognize, we prove25



r? = (r|ϵ)
r+ = rr∗

[ ai ] =
∑

c ∈ ai

c

[∧ ai] =
∑

c ∈ (Σ\ai)

c

r{n} = r{n, n}
r{n, } = r{n, n}r∗

((?<=r)s = rs

FIGURE 10—Syntactic sugar rules for PCRE expansion to low-level
regex.

Lemma B.6. LJSK = LJunskip(nS ,S)K

Proof. We proceed by induction on the number of skips nS .

1. For nS = 0, there are no skips in S , then unskip(0,S) =
S an AFA, the automata are equal and their languages
are equal.

2. For nS = n + 1, assume Sn is an AFA with all skips
already substituted and the induction hypothesis LJSK =
LJSnK. We must prove LJSK = LJSn+1K.

(a) Let sn the current skip to substitute, then
LJSn+1K = LJunskip(n+1,Sn)K = LJ⟨N (sn,Σ)/
sn⟩SnK by unfolding the definition of unskip.

(b) The key equality to conclude the proof is by
(Lemma B.2) LJ⟨N/sn⟩SnK = LJSnK, provided
that LJN (sn,Σ)K = LJsnK, which we proved
(Lemma B.5).

(c) All that is left is exactly the induction hypothesis
LJSK = LJSnK which concludes the proof.

C Compiling Regular Expressions to SAFA
We present here a recursive compilation procedure from regex
to SAFA, based on generalized Antimirov derivatives (Sec-
tion A.3). Assume syntactic sugar expansion (Section D.1)
and regex normalization by weak equivalence ≃ is already
done.

Start with a fully normalized regex r, alphabet Σ. Create
an empty SAFA given alphabet Σ and states of type B+(r)
then run this recursive procedure.

Given a regex r,

1. If state r exists in the SAFA, return. Otherwise add the
new state r to Q.

2. Extract a skip r s−→ r′ (Section D.3) from r, if possible.
Then s is the skip interval set and r′ is the remaining
regex when no more wildcards can be extracted. Label
state r an ∃ state by λq(r) = ∃ and add to it a new
outgoing edge e such that (r, s, r′) ∈ δ and λe(e) = s.
Recurse for r′.

3. Otherwise, for each character α ∈ Σ take the derivative
of r with respect to α to be a boolean algebra expres-
sion ∂α(r) (Section A.4) in disjunctive normal form
(Section A.2) and add one transition for each character
(r,α, ∂a(r)) ∈ δ.

(a) In DNF, the derivative ∂α(r) =
∨

i(
∧

j ri,j) proceed
to add i existantial ∃ states (

∧
j ri,j) and for each j

add a forall ∀ state ri,j.

(b) Then add ϵ-transitions (∂α(r), ϵ,
∧

j ri,j) ∈ δ for
each i, as well as (

∧
j ri,j, ϵ, ri,j) ∈ δ for each j.

(c) Recurse for each leaf state ri,j.

Note, the number of new states added in step 3(a) is O(|Σ| ·
i · j). In practice, however, we noticed regex are not nested as
much so i · j is small.

D Preprocessing a PCRE
D.1 Syntactic sugar

All of the PCRE syntax in Figure 1 can be expressed in
terms of the simpler syntax in Figure 7. Reef performs the
conversion in Figure 10 as soon as possible, reducing the
domain of the compiler and thus simplifying the compilation
process.

D.1.1 Anchor elimination

Anchors (∧, $) are zero-length assertions, indicating a regex
matches the begining and end of a string respectively. In
preprocessing we eliminate anchors by converting a substring
regular expression to an exact match regular expression.

For example, the regular expression (?=a).b will match the
suffix ab in aab but ∧(?=a).b$ will only match exactly the
string ab and not aab. Consider now ∧. ∗ (?=a).b. ∗ $, it will
exactly match any string that has a substring ab – the boolean
behavior of (?=a).b and ∧. ∗ (?=a).b. ∗ $ are equivalent. As
Reef only cares about the boolean output of matching, this
regex transformation is sound.

More generally, a substring match r is transformed into
an exact match ∧. ∗ r. ∗ $. A start-anchored match ∧r is
transformed into an exact match ∧r. ∗ $. An end-anchored
match r$ is transformed into an exact match ∧. ∗ r$. Finally,
an exact match ∧r$ remains as is. In all cases we are left with
an exact match over a regex, so we can remove the anchors
and only implement the solving algorithm for exact matches.
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r ⪯ s s ⪯ r

r ≃ s
EQ

r ≃ s

s ≃ r
SYMM

r ⪯ s s ⪯ r

r ≃ s
ANTISYM

r ≃ ϵr
APPNILL

r ≃ rϵ
APPNILR

∅ ≃ ∅r
APPZL

∅ ≃ r∅
APPZR

r{i, j}r{i′, j′} ≃ r{i + i′, j + j′}
APPREP

s ⪯ r

r∗s{0, j} ≃ r∗
STARREP

s ⪯ r

s{0, j}r∗ ≃ r∗
REPSTAR

s ⪯ r

r∗s∗ ≃ r∗
STARSTARL

r ⪯ s

r∗s∗ ≃ s∗
STARSTARR

r ⪯ s

r | s ≃ s
ALTR

r ⪯ s

r | s ≃ r
ALTL

r ≃ r{1, 1}
ONE

r ≃ s i′ ≤ j + 1

r{i, j} | s{i′, j′} ≃ r{min(i, i′), max(j, j′)}
ALTREP

FIGURE 12—Inference rules for weak regex equivalence ≃.

.
{[1,1]}−−−−→ ϵ

DOT
r

{}−→ ϵ

r∗ ϵ−→ ϵ
EMPTY*

r ϵ−→ ϵ

r∗ ϵ−→ ϵ
NIL*

r s−→ ϵ

r∗
{[0,∞)}−−−−−→ ϵ

STAR* r
{}−→ ϵ

r{0, j} ϵ−→ ϵ
RE_1

r
{}−→ ϵ i ̸= 0

r{i, j} {}−→ ϵ
RE_2 r ϵ−→ ϵ i ≤ j

r{i, j} ϵ−→ ϵ
RNIL

r s−→ ϵ i ≤ j

r{i, j} si ∪...∪ sj

−−−−−−→ ϵ
RANGE

r1
s1−→ ϵ r2

s2−→ r′

r1r2
s1+s2−−−→ r′

APPR

r1
s−→ r′1

r1r2
s−→ r′1r2

APPL

FIGURE 13—Inference rules for a partial, recursive function r s−→ r′

extracting skip s from the head position of a regex r and returning
the tail r′

∅ ⪯ r
BOT

r ⪯ r
REFL

r ⪯ s s ⪯ u

r ⪯ u
TRANS

α ∈ Σ

α ⪯ .
WILD

v(r) = true

ϵ ⪯ r
NIL

r ⪯ r∗
STAR

r ⪯ s

r∗ ⪯ s∗
STARIN

j ∈ N

r{0, j} ⪯ r∗
REP∗

r ⪯ s i2 ≤ i1 j1 ≤ j2

r{i1, j1} ⪯ s{i2, j2}
REP

r ≃ s r′ ⪯ s′

rr′ ⪯ ss′
APP

r1 ⪯ r r2 ⪯ r

r1 | r2 ⪯ r
ALTOPP

r ⪯ r1

r ⪯ r1 | r2
ALTR

r ⪯ r2

r ⪯ r1 | r2
ALTR

r ⪯ u

r & s ⪯ u
ANDL

s ⪯ u

r & s ⪯ u
ANDR

u ⪯ r u ⪯ s

u ⪯ r & s
ANDOPP

FIGURE 11—Inference rules for a partial ordering on regex, when
r ⪯ s then r matches a subset of the language of s.

D.2 Regular expression normalization

Equivalence of regular expressions is computationally hard.
We provide a weaker syntactic equivalence for regex in Fig-
ure 12 similar to Owens et al. [64] and reuse their result

∀r, s, r ≡ s iff r ≃ s

The benefit of introducing this weaker notion of equiva-
lence is we get a syntactic normalization procedure for regex.
As Owens et al. [64] show, this normalization procedure is
fast and successfully minimizes the number of states of the
compiled automaton (SAFA) and thus the final step function
size, which is proportional to the number of states.

D.3 Extract skips

We define the rules for extracting skips from a regex composi-
tionally. Compositionality is possible by the Boolean algebra
properties of Interval sets. Then we can define the partial
function r S−→ r′ that extracts skips from the head of a regex
(Figure 13).
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D.4 SAFA solver

At a high-level, the SAFA solver algorithm is given by the
SAFA semantics (Section B.5). A side-note, an additional
advantage of non-determinism is the room for paralleliza-
tion. We take advantage of non-determinism to parallelize the
SAFA solver in at least three places using a threadpool.

1. On match∀ we parallelize solving across edges e ∈ E
then join and wait on the results.

2. On match∃ we parallelize solving across edges e ∈ E,
but instead of join we race the threads. The first thread
to find a solution returns and the rest are killed.

3. On matchs we parallelize our search for different values
of n ∈ s and race the threads again. Even though skips
s are unbounded, the document is bounded so we limit
our solution search from min(s) to max(max(s), |D|).

The benefits of parallelization in the solver are concrete and
is a contribution outside the cryptographic benefits of SAFA.
Using SAFA we improve the performance of regex matching
by taking advantage of non-determinism in branches and
wildcards.

E Matrix Representation of R1CS
We repeat our running example of constraints over F :

guard × (x0 − 30) = 0

guard × (y − x1) = 0

(1 − guard)× (x1 − tmp) = 0

(1 − guard)× (y − prod) = 0

x0 × inv − prod = 0

inv × tmp − 1 = 0

We would like to convert these constraints to matrices A,
B, and C such that (A · z) ◦ (B · z) = (C · z), where · is the
matrix-vector product and ◦ is the Hadamard product. There
should only exist a solution vector z = (io, 1, w), with witness
w ∈ F cols−|io|−1 when this set of constraints is satisfiable.

In the example from Section 2.3, y is the only public
variable in io. The variables x0, x1, guard, tmp, prod, and inv
are known only to P , so they make up our witness w. So
z = (y, 1, x0, x1, guard, tmp, prod, inv).

First, we shuffle some of the constraints so that each is of
the form (addition term) * (addition term) = (addition term):

guard × (x0 − 30) = 0

guard × (y − x1) = 0

(1 − guard)× (x1 − tmp) = 0

(1 − guard)× (y − prod) = 0

x0 × inv = prod

inv × tmp = 1

We create the corresponding R1CS matrices A, B, C:

A =


0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 −1 0 0 0
0 1 0 0 −1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1



B =


0 −30 1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 1 0 −1 0 0
1 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0



C =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0


Notice all of the matrices have 6 rows, since there are 6

multiplication constraints, and 8 columns, since the length
of z is 8. If P has (for example) x0 = 10, x1 = 5, and wants
to prove that y = 2, a vector z = (2, 1, 10, 5, 0, 5, 2, 5−1)
satisfies this R1CS instance. Note that we use 5−1 as the
inverse of 5 in F .

It is easy to see that this z only satisfies (A·z)◦(B·z) = (C·z)
when the assignments y = 2, x0 = 10, x1 = 5, guard = 0,
tmp = 5, prod = 2, inv = 5−1 satisfy our original constraints.

F Low cost padding
The obvious way to hide the size of a document D is by
constructing a document D′ which is equal to D but padded
with dummy characters to some suitable upper bound. If the
padding is chosen to be 0 ∈ F , then the committer G has
to do no extra work, since g0 = 1 for all generators g of
the polynomial commitment scheme. However, the nlookup
prover and the nlookup verifier (which is embedded within
Reef’s step function) still need to do work proportional to
|D′| for each step: linear for the prover and a logarithmic
number of constraints to express the verifier, plus O(|D′|)
operations at the end for ProveEval and O(

√
|D′|) operations

for VerifyEval when we use the Hyrax (§6.3). If the upper
bound is chosen to be large (e.g., |D′| = 230), the cost to the
prover would be prohibitive.

We observe that the same ideas in table projections that
allow the prover to do less work can be used here: the prover’s
work during each step can be made linear in |D| (the unpadded
document). The key observation is that given that D is a subset
of D′, and that padding is just 0s, it is possible for the prover
to project the entries in the table corresponding to D, without
having to reveal to the verifier the selector s. Consequently,
the verifier learns nothing about D except for |D′|, and the
prover is able to save considerable costs.
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The basic idea is to pad out the multilinear extension of
the document with 0, commit to the multilinear extension of
the larger document, D̃′, and run a slightly larger nlookup
in the step function that looks to be operating over a large
document, so the size of the real document is hidden. But
we leverage the structure of our multilinear polynomial so
that work to generate the commitment and the work of P to
generate nlookup witnesses is closer to the work done in the
case of the original, smaller document.

Given a multilinear extension to the original document,
D̃(x0, ..., xℓ−1), of length |D| = 2ℓ, we generate a multilinear
extension to a larger document, of length |D′| = 2ℓ

′
:

D̃′(p0, ..., pℓ′−ℓ−1, x0, ..., xℓ−1) = D̃(x0, ..., xℓ−1)

D̃′, will evaluate the same way D̃ does on any point, “throw-
ing away" its padding variables, p0, ..., pℓ′−ℓ. It is committed
to by inserting zeros into the multilinear extension’s coef-
ficient commitment vector for every term that includes any
padding variable pi. (This will be a predictable pattern.) Al-
though the literal document D′ (i.e. the evaluations of D̃′ over
the boolean hypercube) never has to be materialized, it may be
helpful to visualize it. For each padding variable added to the
input’s of D̃′, the document size doubles, and the document
repeats itself.

For example, if D̃(x0, x1) = 7 + 5x0 + 3x1 + 2x0x1,
the commitment to a extension with one padding variable,
D̃′(p0, x0, x1) will be to the vector [7, 0, 5, 3, 0, 0, 2, 0].
The final check of that D̃′(q0, q1, q2) = v will be
done with an inner product argument that proves
⟨[7, 0, 5, 3, 0, 0, 2, 0], [1, q0, q1, q2, q0q1, q0q2, q1q2, q0q1q2]⟩ =
v. The actual document D is [7, 12, 10, 17], and if materialized,
D′ would be [7, 12, 10, 17, 7, 12, 10, 17].

This varies from typical projections in that our padding
variables are not known to V , since knowing the length would
leak things about the length of the document.

The work to generate the commitment is the same as if
we did not have padding—any generator exponentiated by
0 is 1. So G does not have to do extra exponentiations or
multiplications for this larger commitment.

When producing sumcheck witnesses (as part of producing
nlookup witnesses), P has to calculate evaluations over D̃′

of the form:

D̃′(r0, ..., ri−1, x, bi+1, ..., xℓ′−1)

ri ∈ F

x ∈ {0, 1}
bi ∈ {0, 1}

Instead, it can calculate evaluations over D̃. Because of
the structure of D̃′, the evaluations over D̃(x0, ..., xℓ−1) can

be calculated once, and reused to mimic evaluations over
D̃′(p0, ..., pℓ′−ℓ−1, x0, ..., xℓ−1), no matter what the values of
p0, ..., pℓ′−ℓ−1. This ends up being O(|D|+ log( |D

′|
|D| )) work,

instead of O(|D′|). The log factor covers any doubling of
the precalculated D̃ evaluations that have to be done to pad
“extra" nlookup rounds (since there are now log(|D′|) rounds
in the step function).

At the end of our protocol, V must verify a claim of the
form D̃′(qr) = vr, where qr ∈ F ℓ′ . This is done in the usual
way using an inner product argument and our commitment
to D̃′, and implies consistency of all of our lookups with the
original D̃.

G Implementation Optimizations
G.1 Batching

To leverage the amortization of nlookup, Reef reads a batch
of m ≥ 1 characters and transitions from the hybrid table
within each step function. This results in having to perform
|α|
m where α = O(max(|D|, |QSAFA|)). The benefit is that
nlookup requires O(m log n) + OH(log n) constraints for
each step when looking up m entries from a table of size n,
and the hash component is typically the dominant cost. As
we discuss in Section 6.2, this results in O(α log(|QSAFA| ·
|Σ|))constraintsplusO(αm log(|QSAFA · |Σ|)) hashes.

Since the hash component is the dominant cost, one might
wonder whether setting m = α is optimal, as it minimizes
the impact of the hash component. But this has a variety of
issues.

First, we cannot actually set m to α since the actual value of
α depends on the document and the R1CS instance is created
independent of the document. This means we would need to
set m to be the worst-case α which grossly overestimates its
actual value (as we show in our evaluation).

Second, if there is a single step then there is no recursion.
If there is no recursion, then this means that Reef cannot skip
work because it cannot finish early—it has to perform all the
operations in the single step. A corollary of this is that to
benefit from the skipping powers of SAFA, Reef needs steps
to be of a reasonable granularity (not too big).

Third, Nova actually benefits from having many steps be-
cause folding is cheaper than proving. If there is a single step,
then there is no folding taking place and the entire cost is
proving.

Fourth, a larger step function leads to larger proof sizes
and a more expensive verifier since the size of proofs in our
version of Nova are logarithmic in the size of the step function,
and require work linear in the size of the step function to
verify (owing to our use of Bulletproofs [27] inner product
argument).

As a consequence of the above, the relationship between
the size of the final proof, the number of constraints, the
total computational cost, the ideal batch size, and the number
of steps is not linear and requires careful tuning since its
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dependent on many factors including the regex itself. Reef’s
compiler contains a cost model that takes into account all of
the above (and a few other low-level concerns) and decides
on the ideal batch size.

G.2 Optimized stack
Rather than using the hash chain stack construction, Reef
represents a stack using a vector of field elements and a stack
pointer field element:
field[stack_size+1] push(
field[2∗stack_size] stack,
field stack_ptr, (field child, field cursor)) {
for i in stack_size {
if i == stack_ptr {

stack[i] = (child, cursor);
stack_ptr += 1;

}
}
return {stack, stack_ptr};

}

field[stack_size+3] pop(field[2∗stack_size] stack,
field stack_ptr) {

for i in stack_size {
if i == stack_ptr {

(popped_child, popped_cursor) = stack[i];
stack_ptr -= 1;

}
}
return {stack, stack_ptr, popped_child,

popped_cursor};
}

The stack needs to be big enough to accommodate all of the
children for all of the nested forall nodes on any particular
path. This number, stack_size is calculated during the step
function compilation. This is usually more efficient than a
hash chain stack.

Additionally, since pushes to and pops from the stack only
need to happen under certain conditions (encountering a
forall state or finishing transversal of a branch), it is a
waste of constraints to include pop constraints and multiple
sets of push constraints for every lookup in the batch. Reef
instead uses constraints that may perform a single pop or
several pushes during only the first lookup. If during witness
generation, P needs to perform a pop/push and does not cur-
rently have access to the correct (first) lookup, it is allowed to
“loop" on the current state, consuming ϵ characters, until the
lookup constraints are available. Obviously, if the batch size is
set badly, this could become inefficient. We choose batch size
carefully; during table generation, Reef walks over the SAFA
in a depth-first search, and takes note of the length of paths
between forall nodes and accepting states. The batch size
is the average length of these paths. Users of Reef can also
override this mechanism and set the batch size themselves.

G.3 Pipelined solving and proving.

Reef also optimizes the solving/proving pipeline; P’s solver
runs in parallel with the thread that produces the folded cryp-

tographic proof for P . The solver thread calculates a witness
for step i and hands it off to the prover, which is able to focus
on proving step i while the solver moves on to generating
witnesses for step i + 1.

H Alternate instantiation of RAM with better
asymptotics

The majority of the costs in Section 8 come from our use of
lookup arguments and polynomial commitments. However,
Reef can easily swap the lookup argument and polynomial
commitment and use a Merkle Tree to represent the SAFA
table and the document (assuming the hash function heuristi-
cally instantiates a random oracle). This gives us the efficient
random access memory we need in Reef.

With Merkle trees using a SNARK-friendly hash function
like Posseidon [44], we have the following cost profile. Here
we redefine T = |D| · |QSAFA|, since Merkle Trees do not
amortize requests and hence there is no benefit in combining
the public SAFA table and the private document table. We
thus assume we have two separate Merkle trees.

Commitment generation. G must perform O(|D|) finite
field computations.

Prover’s cost. For processing a batch of m characters
at a time, the step function has O(m log T) constraints,
and there are a total of O(α/m) steps to finish process-
ing a document. This results in P performing a total of
O(α log(T)/ log(m log T)) group operations in Nova. The
resulting proof π is of size O(log(m · log T)).

To generate the witness for each step, P also needs to
perform O(m log T) finite field operations in order to generate
the appropriate Merkle proofs (though these could be pre-
generated and stored for later use).

In total, there are O(α log(T)/ log(m log T)) group and
O(α log T) finite field operations.

Verifier’s cost. The total cost to the verifier V is simply
O(m log(T)/ log(m log T)) group operations in Nova to ver-
ify π. There is no need for any auxiliary proofs.

Discussion. While clearly this alternate approach is asymp-
totically better, our experiments reveal that arithmetizing so
many hash functions leads to very large R1CS instances in
practice, and hence why we choose to rely on more compli-
cated lookup arguments that amortized these costs. Of course,
there is likely to be some document and SAFA size for which
this alternate approach is better. Fortunately, the main contri-
butions of our work: Reef’s match_step design and SAFA,
are orthogonal to the proof system (as long as it is recursive)
and the way that random access memory is instantiated.

I Applications
Here we recount the full results from our experimental eval-
uation of Reef for our motivating applications. We start by
discussing the origin and rationale behind our test data.
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Password Strength We randomly generated our good pass-
word set. Our bad password set was selected at random from
the NordPass list of the top 200 most common passwords
[11], which is a list of weak passwords. Our regex indicates
strong passwords, of a certain length, with required charac-
ters from several different fields (uppercase and lowercase
alphabet characters, numbers, and special characters).

Email Redactions For our redactions, we use the Enron
email dataset [12]. Our small instance is their smallest in-
stance, and our large instance was randomly selected. Our
regexes indicate redacted versions of both.

ODoH Blocklisting We use a regex filter for Pi-hole [9],
which is a DNS sinkhole, for our oblivious DNS over HTTPS
regexes. While blocklisting would traditionally prove non-
matching, to better compare to existing work we instead prove
matching. Our queries are randomly generated.

Genetic Matching For our evaluation we consider three
common mutations of the BRCAI and BRCAII genes. Mu-
tations in these genes are commonly linked to most forms
of breast cancer. The base pairs for these genes, as well as
for common mutations are all publicly available from the US
National Institutes of Health [13, 14].

Full results. The results are in Figures 14–16.
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Application Document
ID

Regex ID R1CS
Con-

straints

Document
Length

# Steps Compile
Time (s)

Solving
Time (s)

Proving
Time (s)

Verifying
Time (s)

Proof
Size (KB)

Redactions
Small
Email

r1 52,631 415 4 340.953 1.243 3.580 0.521 33.665

Large
Email

r2 54,636 1,000 10 550.010 5.005 7.012 0.534 33.793

ODoH
5f558 r3 18,437 128 3 75.168 0.106 2.084 0.378 32.401
25424 r4 22,692 128 2 58.029 0.215 1.912 0.420 34.193
55824 r5 23,148 128 1 132.777 0.050 1.533 0.402 33.105
21d97 r6 18,409 128 2 34.247 0.044 1.785 0.377 32.273
49b9a r7 18,433 128 2 34.688 0.045 1.783 0.376 32.273
b8f74 r8 18,263 128 2 57.819 0.042 1.774 0.368 32.273
3b4ed r9 17,177 128 2 26.310 0.033 1.753 0.369 32.273
24448 r10 18,865 128 2 18.105 0.045 1.777 0.382 32.273
b329c r11 18,241 128 2 29.502 0.040 1.770 0.373 32.273
6f74a r12 18,241 128 2 37.131 0.041 1.769 0.371 32.273
83a9c r13 17,785 128 2 63.528 0.037 1.761 0.368 32.273
5410f r14 17,617 128 1 32.646 0.020 1.478 0.366 32.273
4ad7a r15 17,365 128 1 26.982 0.019 1.442 0.370 31.953
b4ebd r16 17,617 128 3 43.684 0.049 2.083 0.370 32.273

Passwords
Match dcdc9 r17 19,982 12 5 67.999 0.096 2.868 0.401 32.433

43db4 r17 19,982 12 5 46.988 0.096 2.870 0.386 32.433
91edc r17 19,982 12 5 99.937 0.100 2.855 0.386 32.433
2bcf2 r17 19,982 12 5 69.578 0.096 2.866 0.387 32.433
10bf0 r17 19,982 12 5 41.517 0.097 2.884 0.387 32.433
aff42 r17 19,982 12 5 56.667 0.094 2.874 0.382 32.433
edde7 r17 19,982 12 5 89.487 0.099 2.883 0.389 32.433
1539c r17 19,982 12 5 43.381 0.100 2.869 0.384 32.433
7bfcc r17 19,982 12 5 75.974 0.096 2.836 0.383 32.433
dfa02 r17 19,982 12 5 89.154 0.103 2.870 0.382 32.433

Non-Match e73ee r17 20,728 8 7 49.026 0.432 3.594 0.404 33.265
b5f3a r17 20,728 8 6 48.109 0.373 3.228 0.397 33.265
fd1e7 r17 20,725 6 6 31.847 0.365 3.238 0.404 33.265
db267 r17 20,725 3 5 25.403 0.305 2.902 0.394 33.265
40867 r17 20,728 8 6 54.598 0.365 3.205 0.398 33.265
f4a98 r17 20,725 6 6 73.322 0.365 3.170 0.400 33.265
7474f r17 20,728 8 6 44.740 0.385 3.241 0.406 33.265
b20ef r17 20,725 6 6 131.589 0.370 3.228 0.397 33.265
27ba9 r17 20,728 7 6 40.408 0.369 3.202 0.399 33.265
304b5 r17 20,728 9 6 31.937 0.377 3.252 0.407 33.265

DNA
Match BRCA1

Var1
r18 37,182 43,054,295 2 152.790 1.823 20.952 0.829 296.033

BRCA1
Var2

r19 62,296 43,054,295 4 306.740 3.420 23.633 0.884 296.129

BRCA2
Var1

r20 85,352 32,325,508 8 252.596 8.037 18.254 0.886 165.745

Non-Match BRCA1
Var1

r19 38,885 43,054,295 1 261.704 1.726 20.454 0.835 296.097

BRCA1
Var2

r18 62,821 43,054,295 1 297.474 2.354 22.475 0.887 296.161

BRCA2
Primary

r20 95,916 32,325,508 1 509.691 3.111 12.449 0.931 165.809

FIGURE 14—Summary of all costs for all applications evaluated in Reef. R1CS Constraints are for the step function in Nova. Times are
averaged across 10 runs, standard deviation was less than 5% for all components and applications.
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Application Regex ID SAFA States SAFA Transitions DFA States DFA Transitions

Redactions
r1 331 42,318 433 55,424
r2 908 116,751 1,013 129,664

ODoH
r3 28 3,232 94 12,032
r4 36 4,012 33 4,224
r5 30 3,238 25 3,200
r6 12 1,421 11 1,408
r7 15 1,808 14 1,792
r8 20 2,453 19 2,432
r9 16 1,937 15 1,920
r10 13 1,550 12 1,536
r11 11 1,292 10 1,280
r12 11 1,292 10 1,280
r13 12 1,421 11 1,408
r14 8 905 7 896
r15 10 1,163 9 1,152
r16 14 1,679 13 1,664

Passwords
r17 21 1,188 — —

DNA
r18 331 42,318 43,052,484* 172,209,936*
r19 331 42,318 43,050,383* 172,201,532*
r20 976 4,861 32,318,453* 129,273,812*

FIGURE 15—SAFA size vs DFA size for all evaluated regex
∗ are estimates
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Application Document
ID

Regex ID DFA DFA #
Foldings

DFA +
Recur-

sion

DFA +
Recur-
sion #

Foldings

SAFA +
nlookup

SAFA +
nlookup

#
Foldings

Reef Reef #
Foldings

Redactions
Small
Email

r1 23,041,771 1 67,472 415 54,679 4 52,631 4

Large
Email

r2 — — 141,712 1,000 57,268 10 54,636 10

ODoH
5f558 r3 1,552,754 1 24,131 128 22,573 3 18,437 3
25424 r4 553,295 1 16,288 128 25,129 2 22,692 2
55824 r5 422,219 1 15,260 128 25,576 1 23,148 1
21d97 r6 192,831 1 13,456 128 22,193 2 18,409 2
49b9a r7 241,983 1 13,840 128 22,217 2 18,433 2
b8f74 r8 323,903 1 14,480 128 22,094 2 18,263 2
3b4ed r9 258,367 1 13,968 128 21,009 2 17,177 2
24448 r10 209,215 1 13,584 128 22,020 2 18,865 2
b329c r11 176,447 1 13,328 128 21,138 2 18,241 2
6f74a r12 176,447 1 13,328 128 21,749 2 18,241 2
83a9c r13 192,831 1 13,456 128 21,305 2 17,785 2
5410f r14 127,295 1 12,944 128 20,515 1 17,617 1
4ad7a r15 155,141 1 13,200 124 20,589 1 17,365 1
b4ebd r16 225,599 1 13,712 128 21,149 3 17,617 3

Passwords
Match dcdc9 r17 — — — — 21,002 5 19,982 5

43db4 r17 — — — — 21,002 5 19,982 5
91edc r17 — — — — 21,002 5 19,982 5
2bcf2 r17 — — — — 21,002 5 19,982 5
10bf0 r17 — — — — 21,002 5 19,982 5
aff42 r17 — — — — 21,002 5 19,982 5
edde7 r17 — — — — 21,002 5 19,982 5
1539c r17 — — — — 21,002 5 19,982 5
7bfcc r17 — — — — 21,002 5 19,982 5
dfa02 r17 — — — — 21,002 5 19,982 5

Non-Match e73ee r17 — — — — 21,721 7 20,728 7
b5f3a r17 — — — — 21,721 6 20,728 6
fd1e7 r17 — — — — 21,401 6 20,725 6
db267 r17 — — — — 21,401 5 20,725 5
40867 r17 — — — — 21,721 6 20,728 6
f4a98 r17 — — — — 21,401 6 20,725 6
7474f r17 — — — — 21,721 6 20,728 6
b20ef r17 — — — — 21,401 6 20,725 6
27ba9 r17 — — — — 21,721 6 20,728 6
304b5 r17 — — — — 21,721 6 20,728 6

DNA
Match BRCA1

Var1
r18 — — — — 44,698 2 37,182 2

BRCA1
Var2

r19 — — — — 71,818 4 62,296 4

BRCA2
Var1

r20 — — — — 96,296 8 85,352 8

Non-Match BRCA1
Var1

r19 — — — — 46,650 1 38,885 1

BRCA1
Var2

r18 — — — — 72,343 1 62,821 1

BRCA2
Primary

r20 — — — — 107,184 1 95,916 1

FIGURE 16—Total number of R1CS constraints for DFA, number for step function for DFA+Recursion, SAFA+nlookup, and Reef
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(a) Proof that a (small / large) committed email matches a redaction regex. DFA and DFA+recursion were unable
to finish within 12 hours for the large email.
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(b) Proof that a committed document matches an ODoH regex.
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(c) Proof that a committed password matches/does not match a password strength regex..
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(d) Proof that a committed DNA document matches/does not match a DNA regex. Neither DFA nor
DFA+recursion can handle this application.

FIGURE 17—Mean proving and solving time across 10 runs for proving that some committed document matches/does not match a regex with
Reef and various alternatives. Standard deviations were less than 5% of the mean. Each subfigure describes a different application (regex) and
type of document. The corresponding document sizes are found in Figure 5.
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Application Regex ID Regex

Redactions
r1 ∧ Message-ID: .*[[:space:]] Date: Tue, 8 May 2001 09:16:00 -0700 (PDT) [[:space:]] From: .* [[:space:]] To: .* [[:space:]]

Subject: Re: [[:space:]] Mime-Version: 1.0 [[:space:]] Content-Type: text/plain; charset=us-ascii [[:space:]] Content-Transfer-
Encoding:7bit [[:space:]] X-From: Mike Maggi [[:space:]] X-To: Amanda Huble[[:space:]]X-cc: [[:space:]]X-bcc: [[:space:]]
X-Folder:\\ Michael\_Maggi\_Jun2001 \\ Notes Folders \\ Sent[[:space:]]X-Origin: Maggi-M[[:space:]]X-FileName:
mmaggi.nsf[[:space:]]*at 5:00$

r2 ∧ Message-ID: .*[[:space:]]Date: Tue, 11 Jul 2000 11:11:00 -0700 (PDT)[[:space:]]From: .*[[:space:]]To: .*[[:space:]]
Subject: Reimbursement of Individually Billed Items[[:space:]]Mime-Version: 1.0[[:space:]]Content-Type: text/plain;
charset=us-ascii[[:space:]]Content-Transfer-Encoding: 7bit[[:space:]]X-From: Enron Announcements[[:space:]]X-To:
All Enron Employees North America[[:space:]]X-cc: [[:space:]]X-bcc: [[:space:]]X-Folder: \\Michelle_Lokay_Dec2000_
June2001_1\\Notes Folders\\Corporate[[:space:]]X-Origin: LOKAY-M[[:space:]]X-FileName: mlokay\.nsf[[:space:]]*The
memo distributed on June 27 on Reimbursement of Individually Billed Items [[:space:]]requires[[:space:]]clarification\. The
intent of the memo was to give employees an alternate [[:space:]]method[[:space:]]of paying for pagers, cell phones, etc\.
Employees can continue to submit[[:space:]]these[[:space:]]invoices to Accounts Payable for processing or pay these items
with their [[:space:]]corporate[[:space:]]American Express card and request reimbursement through an expense report\.
[[:space:]]Either[[:space:]]way is an acceptable way to process these small dollar high volume invoices\.$

ODoH
r3 ∧ad([sxv]?[0− 9] ∗ |system)[_.−]([∧.[[: space :]] + .){1, }|[_.−]ad([sxv]?[0− 9] ∗ |system)[_.−]|$
r4 ∧(. + [_.−])?adse?rv(er?|ice)?s?[0− 9] ∗ [_.−]
r5 ∧(. + [_.−])?telemetry[_.−]
r6 ∧(adim(age|g)s?[0− 9] ∗ [_.−]
r7 ∧(adtrack(er|ing)?[0− 9] ∗ [_.−]
r8 ∧(advert(s|is(ing|ements?))?[0− 9] ∗ [_.−]
r9 ∧(aff(iliat(es?|ion))?[_.−]
r10 ∧(analytics?[_.−]
r11 ∧(banners?[_.−]
r12 ∧(beacons?[0− 9] ∗ [_.−]
r13 ∧(ount(ers?)?[0− 9] ∗ [_.−]
r14 ∧(mads.
r15 ∧(pixels?[−.]
r16 ∧(stat(s|istics)?[0− 9] ∗ [_.−]

Passwords
r17 ∧(? = . ∗ [A− Z]. ∗ [A− Z])(? = . ∗ [!%∧@#$&∗])(? = . ∗ [0− 9]. ∗ [0− 9])(? = . ∗ [a− z]. ∗ [a− z]. ∗ [a− z]).{12}$

DNA
r18 ∧.{43052424}ATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTGAACCCGAAAATCCTTCCTTG

r19 ∧.{43050079}ATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAG. ∗ AGCCTACAAG
AAAGTACGAGATTTAGTCAACTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTTGGAGT. ∗ ATGCAAACAGCTATA
ATTTTGCAAAAAAGGAAAATAACTCTCCTGAACATCTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTT

CTACAGAGTGAACCCGAAAATCCTTCCTTG

r20 ∧.{32317478}CACAACTAAGGAACGTCAAGAGATACAGAATCCAAATTTTACCGCACCTGGTCAAGAATTTCTGTCTAAATCTCATTTGTATG
AACATCTGACTTTGGAAAAATCTTCAAGCAATTTAGCAGTTTCAGGACATCCATTTTATCAAGTTTCTGCTACAAGAAATGAAAAAATGAGACAC

TTGATTACTACAGGCAGACCAACCAAAGTCTTTGTTCCACCTTTTAAAACTAAATCACATTTTCACAGAGTTGAACAGTGTGTTAGGAATATTAA

CTTGGAGGAAAACAGACAAAAGCAAAACATTGATGGACATGGCTCTGATGATAGTAAAAATAAGATTAATGACAATGAGATTCATCAGTTTAACA

AAAACAACTCCAATCAAGCAGTAGCTGTAACTTTCACAAAGTGTGAAGAAGAACCTTTAG. ∗ ATTTAATTACAAGTCTTCAGAATGCCAGAGATA
TACAGGATATGCGAATTAAGAAGAAACAAAGGCAACGCGTCTTTCCACAGCCAGGCAGTCTGTATCTTGCAAAAACATCCACTCTGCCTCGAATC

TCTCTGAAAGCAGCAGTAGGAGGCCAAGTTCCCTCTGCGTGTTCTCATAAACAG. ∗ CTGTATACGTATGGCGTTTCTAAACATTGCATAAAAAT
TAACAGCAAAAATGCAGAGTCTTTTCAGTTTCACACTGAAGATTATTTTGGTAAGGAAAGTTTATGGACTGGAAAAGGAATACAGTTGGCTGAT

GGTGGATGGCTCATACCCTCCAATGATGGAAAGGCTGGAAAAGAAGAATTTTATAG. ∗ GGCTCTGTGTGACACTCCAGGTGTGGATCCAAAGCT
TATTTCTAGAATTTGGGTTTATAATCACTATAGATGGATCATATGGAAACTGGCAGCTATGGAATGTGCCTTTCCTAAGGAATTTGCTAATAGA

TGCCTAAGCCCAGAAAGGGTGCTTCTTCAACTAAAATACAG

FIGURE 18—Regexs with ID
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